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NOTATION

x - space coordinate

t - time coordinate

y - location of the shock front from the center
P ~ particle pressure in the perturbed gas
p ~— particle density in the perturbed gas
u - particle velocity in the perturbéd gas
T - gas temperature in the perturbed state
R - universal gas constant

Y ~— ratio of specific heats

P, ambient gas pressure

Py T initial gas density

e, - initial internal energy of the gas

C, - sound speed in the undisturbed gas

E, - initial energy release per unit area
¥, ~ a characteristic length parameter

b - internal volume of the’molecules

A - non-ideal parameter

£ - non-dimensional distance %

s - non-dimensional distance %;3“which is the pertu;bation parameter
V - shock velocity

5] - shock decay parameter

V2

— - shock Mach number

Co

n - shock strength

f -~ normalized non—dimensional velocity



iii

normalized non-dimensional pressure

normalized non-dimensional density

an integral

pressure immediately behind the shock front

particle velocity immediately behind the shock front

density immediately behind the shock front
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ABSTRACT

A solution for the propagation of blast waves in a low density gas in
which, a virial power expansions in terms of the parameter'(bpoz
representing the product of the internal volume of the molecules which
is assumed to be constant and the Iinitial gas density, is used in the
equation of state. o

Analytical expressions are obtained by means of a perturbation technique
showing the dependence of pressure, density and gas velocity on the
distance from the origin of the explosion and the distance of the shock
front. Computations are performed with these expressions for various
values of A (= bpo).

Its influence on the flow field and temperature distributions is studied
at different stages of the explosion process. Shock velocity variations
with the shock propagation distance and shock trajectories are also
determined. A comparison is made with ideal gas solutions. It is found
that the parameter A slows down the decay of the shock and results in

a significant temperature drop near the origin.



1. INTRODUCTION

The theory of blast waves is a fundamental one in gasdynamics and has
been applied to a variety of problems in hypersonic aerodynamics

[3, 6, 16], astrophysics [13, 17] and hypervelocity impact [9].

The term explosion in the context of the work, which is to follow,
describes the transient gasdynamic dispersion of energy by the mechanism
of a shock wave.

The physical problem we consider is as follows:

Initially a finite quantity of energy E is released in a finite usually
spherical volume in a medium at rest, which generates a shock wave in
the medium. At later times the shock expands dispersing its energy and
hence it attenuates. This decaying shock wave is conventionally called

a blast wave. The initial motion of the blast wave may be represented

by a simple model of the shock wave at the front and a purely gasdynamic
treatment of the gas inside. Similarity solutions have been widely used
in blast wave theory, which requires that the energy of explosions tends
to infinity in a particular manner so that the blast wave starts out
with an infinite strength and remains so till it attenuates. In practice,
the self similar profiles-are only valid in the neighbourhood of the
shock front and cannot adequately describe the flow in the region near

the center.

The one dimensional self-similar problem of a strong point explosion
was formulated and solved by Sedov [15] on the assumption that the
initial pressure of the gas, which is small in comparison with the
pressure at the front, can be neglected and that the initial density

is constant. Strong explosions in a medium of varying initial density
were considered in [5]. Departures from the classical self similar
solutions due to counter pressure effects are accounted for by

Sakurai [11, 12]. Landau [4], Whitham [18] and Sedov [15]with different
approaches, obtained an asymptotic. form of the solution in the weak

regime, when the blast wave has propagated far from the source.



Considerable computational difficulties encountered in non-self similar
problems have led to the appearance of several approximate methods.
Sakurai [13, 14] attempted a perturbation téchnique with the inverse
square of the Mach numbers as the perturbation parameter. The solution
was thus rendered more accurate for gréater distances from the point

of explosion. However, due to the asymptotic nature of the perturbation
expansions, they diverge rapidly and become inaccurate for low strength
shock waves. The quasi-similar method of Oshima [7] yields a solution
for any particular value of the shock Mach number specified. However,
it gives fairly good results only for the intermediate shock strength
regime, where the local simil§rity approximation is adequate. A serious
drawback of the quasi-similar technique is that mass is not conserved.
Hence flow distributions, particularly particle velocity trajectories,
are poorly described as compared to quantities such as the shock
trajectory. The density profile method proposed by Porsel [8] and
developed by Rae [10] gives good results for the entire range of shock
strengths. However, it lacks generality and can only be applied ko
problems, if the density distribution can adequately be described by

a simple power law. The coordinate perturbation method developed by
Sakurai [13, 14] and improved by Bach and Lee [2] is rigorous
mathematically and yields excellent results for relatively high shock
Mach numbers. However, due to the asymptotic nature of the perturbation
expanéions, they diverge rapidly and become again inaccurate for low

strength shocks. <

From statistical physics, for gases at low densities the equation of
state can be defined by means of virial power expansion in the

form [1]

p = PRT (1 + bp) ‘ M

With the limitations that bpo << 1, where Py and b refer to the initial

gas density and the internal volume of the molecules. The motive for



the present study is to extend the non-similar analysis and to study
the distribution of hydrodynamic variables in the gas with the equation

of state defined in (1).




2. DYNAMIC EQUATIONS AND SHOCK CONDITIONS

The one dimensional equations of continuity, momentum and energy
conservation for the plane adiabatic motion of a gas by considering

the equation of state as defined in equation (1) are

ap 9p du _
ot T ¢ P 0
du du . 9p _ -
Pagtuge*tsg=0 (2)
ap bp du

op - du _
ﬁ*“'&*P(Y”Y l)bp+]_+—bp>3x_o

where x, t are the Cartesian space coordinate and the time respectively
and u, p and p are particle velocity, pressure and density of the fluid

in the order mentioned. The energy integral is given by

y ¥y

2 P
1 P pu _ o) _
| et oot 3 e | = T+ ooy F7F &

o o]

where E0 is the energy input per unit area at x = 0 and t = O and P,
is the ambient gas pressure. The first integral on the left hand side
represents the total energy enclosed by the explosion products bounded
by the front y(t) and the origin. The second integral denotes the
initial thermal energy in the gas occupying the volume from x = 0 to

x = y(t). Here we‘have assumed that the shock front originates at the

origin x = 0.

The boundary conditions at the shock front are given by the following

Rankine-Hugoniot relations:

2 .
P]+pl (V—ul) "Po"'DOV . (4)



o

P
1 e, + l-(V - ul)z =

Py 12 s

o, e, * % V2

In the above equations the quantities Pys P and U, refer to the state

immediately behind the shock.

Let V be the shock front velocity and y(t) the shock position at time

t. We introduce the following dimensionless variables.

X y
E = — » S = —
y Yo
Eo . .
where Yo = B—»represents a scale connected with the effective range of
o

the power of the explosion.

o

VECE, S, p=Y—°v2g<s, s)

=1
]

(5)

©
]

o, B (E, &), V=1V(s)

the variable £ has values between 0 and 1. § = O corresponds to the
position at the origin and & = I to the position at the shock fromt.

/
In terms of the new variables defined in equations (5), the conservation

equations (equations (2)) and the energy integral (equation (3))

become
9f oh _ oh
hag"’(f g)s‘é’ SBS
(6)
3 1 3g _ _ 3 s av
h(E-8) gptyge =" b~ Ehgg
Jh of _ 5y %8 _ _ % _ 2gs dV
g(‘”‘”‘*(y 1)+Jh>3+(f 8 3£°7"85% TV s
2 1 s
v 8 LY g2 S S SRR P '
Czsj((y—1)+Jh+2fh)dg {(y-l+J)ds ! 2
[o] (o] (o)

where J = A(y - 1) in which



A= bp (8)

Making use of the equation of state definmed in (1) in the shock relatioms

(4) and simplifying one gets the following shock conditions at § = 1.

A
o] 2
—=1-2 (9)
P,

—5 =y (1 -2%) +n

PV

At the origin we impose the following zero particle velocity criteria:

fo(o) =0, f](o) =0, fz(o) =0

2
In the above conditions N = o C, being the sound velocity at the

origin and:

(Y—l-J+2n>+\/(v—1—J+2n)2+4<v+1)J(1+—2—$ﬂ>

2(y + 1)

Z

where

I CERE))
A_(Y‘1+J)



3. METHOD OF SOLUTION

For the initial motion of the blast wave we seek the solutions for the

flow field in power series of s in the following form:

2
f(&,ls) =fo+f15+f25 L
(E, s) =g+ gs+gs + (10)
g > go g] g2 .....
h(¢, s) =h_+ h,s + h 52 +
, o | T T

where fi’ g; and hi are functions of § only. Substituting the perturbat-
ion expressions given in equations (10) into the energy integral (7)

leads to the following expression, which determines the shock velocity

V2 _ 1 + n;s an
— = / _ )
c sM(s)
(¢)
where
’ 1
S Y R - S, A
M(s) J <(y e N h) g
) o
and
1
n=

I (y=-1+17J)

Making use of equations (10), M(s) can be expanded in power series of

S as

M(s)=Z(xisl i20

where in particular



1
g
= (Ye?2y 1 _J
@ = [ (2 £ h] Y fo ho £ % Cc C2 & h] dg
(o)
—11 I C N dE (12
%27 )c\B2cE M T2 T )
(o]
1 N
Y Y 2
+ j ( £ h2 +y f0 f1 h +5h (f] + 2 £, f2)> dg
(o]
in which
C=(y-1) + Jh0

Hence,zthe solution of the shock front velocity and the shock strength

0 . , . .
n = g7~ can be expressed as a power series in the distance coordinate

v
s as
2 o 0. 2 o o
y_ . 1 +(n, - —l) s + LI n 1 s2 + oiienn (13)
2 a s 1 a 2 a 1 o
c o] o a o) o
o o
o ol o :
1 2 2 1 2
n=o, s [1 + (a—- n1> s + (a—-+ n, n, &—> ST+ L.... ] (14)
. o o o
From the equation (14) one can readily determine an expansion for the
2s dV
shock decay parameter <6 = V—»H§> as
2
6 =-1+ Als + AZS o (15)

where the coefficients A, and A, are determined as

1 2
2
P T Wi SO (169
1T T 2 2 o o
(o] G,o (o]

Substituting the perturbation expressions (equations (10)) into
equations (6), we obtain the zeroeth,first and second order equations

after equating coefficients of similar order in s.



Zeroeth order

1 - v -
h0 fo + (fo £) ho 0

- ' R
Yho (fo £) fo * g 2 fo ho an

' - [ -
Yg, G, £,7 + (£, ~ &) g g

(o]

First order

1 - | I 1y - '
h, £,'+ (£, &) hy' = <-h (1 +£') £ h
- ' '=—- » -~
Yhy (£, - &) £,7 *+ g Y (hy £, + 0 (£ - E)) +
(18)
1 - -1
2 (hl fo ho fl) : fo ho Al
v - | LI v
Ygo Go f1 * (fo £) 81 (Ygl Go + go Gl) fo f1 go go A]
Second order
' - LI | B T L. L.
ho f2 + (f0 &) h2 h1 f] f1 h1 ,hz fo f2 h0 2h2
- — ' | — '
Yh (f, - &) £," + g, v [h, (£, - &) + b £,1 £
(19)
- v
Y [h2 (£, - &) + h £ f h f2] £
A A2

1 -1 - - % £
2 (hl fo + £ ho) 2 (3f2 h, *+hy £, - hy fo) 2 fo by

[ _ | I [ '
YGo & f2 * (fo £) g2 ‘ (Gl 8o * YGo gl) f1 . f1 g

- - 1
A2 8o (GZ & * Gl g * YGo 52) fo

- L. -
£, 8, 8) ~ A 8
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where
Jh Jh
G =]+_‘:’_+_.<)_
o Y yC
Jh1
G, =Jh + —— (y - 1) (20)
1 1 2 .
C
J : . J 2
G2 = th + EE—(Y - 1) (hz "z h] )

In these, the primes denote derivatives with respect to §. Boundary
conditions to be satistied by the zeroeth,first and second order
equations at the shock front § = 1 can be determined by substituting

for n from equation (l4) into the boundary conditions given in equations
(9), expanding them in ascending power in s and sorting out coefficients

of similar order in s, this yields for the zeroeth order

fo(l) = (1 - B)

go(l) =y (1 - B) . ‘ 21
1

ho(l) = B

for the first order

£(1) =5

g (1) =0, -8 | (22)
8

h(1) = -

! o

for the second order

fz(l)‘= -T.
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[
Q

g,(1) = o = T (23)

1 2
hy(1) = 23 (8" = IB)

where

1

. 21
B=W[Y_I—J+(4B-+C)2]

oLo 2.4
- 2
6-Y+1 [1+(4B+C) K]]
l"=——1——(0t -n oc)+(4B+C2)%
v+ 1) 1 1 “o”
2 2
[Kl(o‘l Tomp ey Ky - K)o ]}
in which
_ (YC + 2BA)
Ky ==—"———=_
Y(4B + C7)
1
K, = —— : ,
2 4+l ‘
(y + J) ’
= e 24
A (Y'1+J) \ ( )
B=(y +1)J
C=(y-1-0J)

The solution of the zeroeth order equations with the corresponding
"boundary conditions yields the solution for an infinitely strong

shock wave. Hence for very large values of the initiation energy EO,
the first and higher order conditions become zero and the shock remains

strong throughout its history under this condition.

Since the higher order equations have the same determinant as the
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zeroeth order, there are no singularities involved in the solutions.
The zeroeth order equations can be integrated immediately-.using the
Runge-Kutta method and this yields the value of o, by virtue of the
first expression of (12). However, the first and second order equations
cannot be integrated directly because of the presence of the constants
A1 and A2. To obtain the solutions for these, we follow the procedure
adopted by Sakurai [14]. At first the functions are split up into

two parts as | ‘

g T gt A g (23)

(26)

In these, A can be eliminated by substituting expressions (25) into

equations (18) and grouping the terms with and without A,. This leads,

1
after some manipulation, to the following two pairs of coupled ordinary
first order equations, the O-subscripted equations'and U—subscripted

equations.

' - | v v _
ho flo * (fo £ hlc hlo fo flo ho hlc

Yh, (£, =8) £l + g1 =7y (b, £, + by (£, - E)) £
(27)

Y -
+ 3 (h10 fo ho flo)



1]

1 - 1 = - ' -
Ygo Go f]O * (fo £) glO (ngo Go * go Glol fo f]O go

v ~ r - (- [
hO f]u + (f0 £) hlU hlu fo f]U ho hJU

_ ' ' = - - '
Yho (fo £) f]u * g]u Y [ho flu * (fo £ h]u fo ]

(28)

Y - -
g g by~ £ b £

' - v - - : v
Ygo Go f]u + (fo £) glu (Yglu Go * go G]u) fo flu o

The corresponding boundary conditions are

f]o(]) = =§
g1o(1) =a, - v8 (29)
b () =~ 27
and
£, =0
g, (1) = 0 (30)
- hlu(l) =0

By the same procedure A2 can be eliminated, which leads to the
following second order equations and the corresponding boundary
conditions

hy' = b, f v
(o)

' - 1 = |
ho £ + (£ &) h20 h1 £ £ 20

20 o 1 1

- LI
f20 ho 2h20



h0 (fo

T
ho f2u

h0 (fO

Y8, Gy

15

. 1
- ' —_— ! =
£) f20 + Y 82g

hy (£, - &) + hy fl] £,

- 1
p Ep by f20 * h20 (fo E)] £
-1 -
2 (3ho f20 * £ by h20 fo) G0
A
Ty (h] fo + f] ho)
' - t - 2 '
£20 % (5 7 8) 8y Gy g, * 76, &) £," - £ g
- ]
(G20 & * G1 g1 * YGo g20) fo
- '— —
"I 8 T 82g T Ay 8
_ [ [ v _
+ (£, = £) by By, £o' = £y Byt = Zhy
- ' P T ) _ '
£€) f2u MRS (hy f2u + h2u (£, - &) £
-1 - . -1
} (3hy £, ~hy, £) -4 £ b (32)
1 - t = - A\l
fZU + (£ - &) 82 (qu g, * YG, 82u) £,
- L. -
f2u g g2u N
= -T
=o; -0y o, =T (33)
1 2 )
=3 (8" - TR)
B
=0
=0 (34)
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h2u(]) =0

The o-subscripted and u-subscripted first and second order équations
with their corresponding boundafy conditions can he integrated by the
Runge-Kutta method. The constants Al and A2 can then be determined
based on the criteria that the correct solution must satisfy apart from
the energy integral, the physical boundary condition of zero particle

Velocity at the origin and this leads to the following relations

(n]oc -a, )

o lo '
A = —mam— (35)
1 (ao + alu)
2
2 L2
a 2 n1
[e] o
A, = ° (36)
2 .

200
(1 + ZU)
u ’
(o)

Having found the various coefficients of the polynomial expansions of
the dependent variables, one can determine the profiles by the use of
the polynomial equations (10) for any fixed value of the distance

parameter S. ;

For numerical integration schemes involving blast waves, one must

note the inadequacy of the blast wave solution in describing the
starting flow from an explosion of finite dimension. Hence, the
_integration was performed from £ = 1.0 to & = 0.001. Also a step size
should be selected such that the net effects of the t%uncation errors
of the applied iﬁtegration procedure and the round-off errors inherent
in the computer used, are a minimum. Comparison of the results of the
computer runs with 200 and 800 steps for various values of A are given

in Table 1.

Coefficients of the polynomial expansions for the decay parameter 6 and

the energy integral M(s) computed with<y = 1.4 for various values of A
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" are listed in Table 2.

\

ao ao A1 A] A2 A2

(N = 200) (N =2800) (N =200) (N=800) (N=200) (N =2800)

0 1.6960 1.6959 3.6360 3.6355 ~30.354 -30.766
0.1 1.4408 1.4407 3.4584 3.4583 -29.543 -29.540
0.2 1.2705 1.2704 3.3339 3.3338 -28.408 —-28.407
0.3 1.1410 1.1409 3.2046 3.2046 -26.636 -26.635

Table 1. Perturbation coefficients for step sizes 200 and 800.

A o A1 0y . A2 a,

0 1.6959 3.6355 -1.9258 -30.766 21.882

0.1 1.4407 3.4583 -1.7081 -29.540 18.571
0.2 1.2704 3.3338 -1.5887 -28.407 16.281

0.3 1.1409 3.2046 -1.4621 -26.635 14.022

Table 2. Perturbation coefficients for the

energy integral and the decay parameter.

The shock trajectory can be obtained from the definition of the shock

velocity as

c

)
T = J T ds _ (37)
) c,
Substituting the expansion for V—-in\terms of s from equation (14) into

the above equation and integrating it up to second order in s, the

resultant expression for the shock trajectory becomes

33/2 [1t+B s+ B s2 + o] (38)

T= Bo 1 2

where
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4, RESULTS AND DISCUSSION

Figure 1 and figure 2 depict the shock velocity variations and shock
trajectories respectively for various values of the non-ideal parameter
A. These indicate that increase in the value of X results in slowing
down the decay of the shock. The velocity, pressure and density
distributions of the flow behind the shock front correct up to the

third approximation are given by

u \' 2
—-— = — + +
C C (fo f] s f2 s7)
fo) o)
2
P V—— (g +g s+ g 52) (39)
P 2 o 1 2
o C
o)
2
— =h_ + h, s + h, s
o 1 2
o

and space profiles of these non-dimensional gas dynamic variables are
presented in figures 3-11. Their changing behaviour with respect to
time can be seen in their graphs against £ for various values of s.
Comparison of these results with those from the ideal gas solutions
show that the distributions of dimensionless densities and pressures
in the low density gas considered show the same qualitative behaviour
as those in the mediu; of ideal gas. However, in a very small region
closer to the origin the solutions of velocity profiles do not
correspond to those of the ideal gas solutions, which reiterates

the conclusions of the study of Anisimov and Spiner [1].

Normalized pressure and density distributions for the zeroeth, first
and second order approximations are compared in figures 15-17. It is
interesting to note that the physically incorrect maximum in the first
order curve is corrected by the second order term.

In his work on hypersonic blunt-body flows Swigart [16] indicated

that for blast wave Mach numbers below 3, the third order correction,
particularly for the density is a significant percentage of the first

and second order terms.
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Distributions of pressure for A = 0.1 at various stages of explosion
are shown in figure 12. Also presented in figures 13 and 14 are the
temperature distributions for various values of A and for varying
shock propagation distances. Shock velocity variations with s are

given in Table 3 for varying A.

2 V2 V2 VZ
MACHN = —5 MACHN = —5 MACHN = —5 MACHN = —5

C c C C

] o o o o

(A =0) (A =0.1) (A =0.2) (A = 0.3)
0.05 13.675 15.977 18.026 19.979
0.1 7.523 8.7311 9.8149 10.856
0.15 5.2987 6.1124 6.851 7.576
0.2 4.572 4.6501 5.1987 5.7567

Table 3. Variations of shock Mach number with s for varying A.

In conclusion, we ma& point out that a finite counter pressure in the
undisturbed gas is associated with a finite sound velocity and this
results in an increased shock velocity, particularly when the shock

is weak. This when coupled with the effect of the parameter A

defining the non-ideal character of the medium results in slowing down
the decay of the shock and effects in significant temperature drop

at the center.
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Figure 1. Shock propagafion velocity as a function of the propagation

distance s.



Figure 2. Shock trajectories

for various values of A.
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Figure 3. Particle velocity profiles for varying A (s = 0.05).
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Figure 4. Particle velocity profiles for varying A (s = 0.1).




25

N
o
T

00 02 04 06 08 10

£ —

Figure 5. Particle velocity profiles for wvarying A (s = 0.15).
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Figure 6. Pressure profiles for varying A (s = 0.05).
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Figure 7. Pressure profiles for varying A (s = 0.1).



Figure 8. Pressure profiles for vérying A (s = 0.15).
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Figure 9: Density profiles for varying A (s = 0.05).



30

00 02 04 06 08 10

Figure 10. Density profiles for varying A (s = 0.1).
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Figure 11. Density profiies for varying A (s = 0.15).



Figure 12. Pressure distributions for varying propagation distance s

(A =0.1).
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Figure 13. Temperature distributions for varying A (8 = 0.15).
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Figure 4. Temperature distributions for varying propagation distance 8

(= 0.1).
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Figure 15. Normalised pressure profiles zeroeth,

order (A = 0.1, s = 0.15).
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Figure 16. Normalised density profiles zeroeth, first and second order

ideal gas solutions (s = 0.15).
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