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Safe Adaptive Policy Transfer Reinforcement Learning for Distributed
Multiagent Control

Bin Du™, Member, IEEE, Wei Xie"™, Member, IEEE, Yang Li~, Qisong Yang ", Weidong Zhang ", Senior Member,
IEEE, Rudy R. Negenborn™, Yusong Pang™, and Hongtian Chen™, Member, IEEE

Abstract— Multiagent reinforcement learning (RL) training is usually
difficult and time-consuming due to mutual interference among agents.
Safety concerns make an already difficult training process even harder.
This study proposes a safe adaptive policy transfer RL approach for
multiagent cooperative control. Specifically, a pioneer and follower
off-policy policy transfer learning (PFOPT) method is presented to
help follower agents acquire knowledge and experience from a single
well-trained pioneer agent. Notably, the designed approach can transfer
both the policy representation and sample experience provided by the
pioneer policy in the off-policy learning. More importantly, the proposed
method can adaptively adjust the learning weight of prior experience and
exploration according to the Wasserstein distance between the policy
probability distributions of the pioneer and the follower. Case studies
show that the distributed agents trained by the proposed method can
complete a collaborative task and acquire the maximum rewards while
minimizing the violation of constraints. Moreover, the proposed method
can also achieve satisfactory performance in terms of learning speed and
success rate.

Index Terms— Adaptive weight update, distributed multiagent
system, policy transfer, safe reinforcement learning (RL), transfer
learning.

I. INTRODUCTION

In the past few years, reinforcement learning (RL) has shown its
effectiveness [1], [2], [3]. Similar in principle to data-driven adaptive
optimal control methods, RL enables agents to maximize their cumu-
lative rewards by interacting with the real or virtual environment.
Owing to the inherent characteristics of data-driven techniques, the
majority of model-free deep RL methods necessitate a significant
amount of time and computational resources for agent training.
Training difficulty tends to increase geometrically as the number
of agents increases. Transfer learning helps multiagent systems to
improve training efficiency, thanks to a better baseline. Specifically,

Manuscript received 18 December 2022; revised 8 July 2023 and
6 September 2023; accepted 18 October 2023. Date of publication 2 November
2023; date of current version 8 January 2025. This work was supported in
part by the National Key Research and Development Program of China under
Grant 2022ZD0119903, in part by the National Natural Science Foundation of
China under Grant U2141234, in part by the Shanghai Science and Technology
Program under Grant 19510745200, in part by the China Scholarship Council
under Grant 202106230194, and in part by the SURF Cooperative through
the Dutch National e-Infrastructure under Grant EINF-2851. (Corresponding
authors: Weidong Zhang; Wei Xie.)

Bin Du is with the Ocean Institute, Northwestern Polytechnical University,
Taicang 215400, China, and also with the Department of Automa-
tion, Shanghai Jiao Tong University, Shanghai 200240, China (e-mail:
bin.dul123 @outlook.com).

Wei Xie, Weidong Zhang, and Hongtian Chen are with the Department of
Automation, Shanghai Jiao Tong University, Shanghai 200240, China (e-mail:
weixie @sjtu.edu.cn; wdzhang @sjtu.edu.cn; hongtian.chen @sjtu.edu.cn).

Yang Li is with the College of Mechanical and Vehicle Engineering, Hunan
University, Changsha 410082, China (e-mail: lyxc56 @gmail.com).

Qisong Yang is with the Xi’an Institute of High-Tech, Xi’an 710071, China
(e-mail: q.yang@tutanota.com).

Rudy R. Negenborn and Yusong Pang are with the Department of Maritime
and Transport Technology, Delft University of Technology, 2628 CD Delft,
The Netherlands (e-mail: r.r.negenborn@tudelft.nl; Y.Pang@tudelft.nl).

Digital Object Identifier 10.1109/TNNLS.2023.3326867

the multiagent training efficiency can be fully improved if it exploits
the pretrained agent policy neural network. In this process, agents
learn individual skills first and then learn how to work together
as a team. This brief aims to study how to utilize the transfer
learning method to make the multiagent RL training process more
efficient.

Transfer learning has achieved remarkable success in computer
vision, natural language processing, and RL control. In transfer
learning, a well-trained policy (similar to the control law) can be
treated as an expert policy that can be deployed on an untrained
agent [4]. Policy transfer [5] is derived from policy distillation (PD)
[6], which is one of the most common methods of transfer learning.
Policy transfer can be used to train a new policy and apply it to a
similar mission. The expert policy can be created by pretraining or
deriving from demonstration data of human [7]. The new policy is
always learned by regularizing the divergence of action distributions
between the expert policy and the new exploration. This technique
makes the training progress effortless and enormously improves data
efficiency. Policy transfer can also be used to adjust the exploration
and training strategy for multiagent systems [8]. To improve the data
efficiency, an off-policy sample repainted algorithm was proposed
in [9] by using samples collected from the expert policy. The
repainted policy is updated with the previous off-policy collected
samples. In [10], a multiagent lateral transfer method was proposed
to ease training in multiagent RL. It utilized features for knowledge
transfer and incorporated pretrained policy networks to boost training
efficiency. In [11], a transductive learning algorithm using the cellular
learning automata was introduced to address the negative transfers
issue. The algorithm employs two learning automata estimators and
integrates customized decision criteria, namely merit and attitude
parameters, to constrain negative transfers within the cellular learning
automata.

The safety concerns are crucial for multiagent systems that are
always associated with state constraints [12], [13], [14]. To solve state
constraint problems, constrained RL is employed in the safety-critical
learning [15], [16]. During this process, the safety-cost signal is
employed in the constrained RL. Constrained RL problems are
generally converted into unconstrained ones by adding a Lagrangian
multiplier [17]. This multiplier balances both the reward and the
safety-cost signal, simultaneously. Accordingly, a PID Lagrange
multiplier method was proposed in [18], which utilizes derivatives
of the constraint function where the traditional Lagrange multiplier
is substituted with the control coefficient of integral, proportional,
and derivative items. The Lagrangian approach can also solve the
max—min optimization problem, which employs penalty coefficients
to impose restrictions [19]. One common focus of previous studies is
to learn a safe policy by incorporating constraints into the policy
training [17], [20], [21]. Agents learn policies that satisfy state
constraints before deploying them to applications. The literature [22]
addressed the challenge of safely transferring existing policies to new
tasks in RL, especially in situations where safety is paramount. Policy
optimization algorithms for constrained RL have been developed
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in [23], [24], and [25], which maximizes the cumulative reward under
safety constraints.

Although the above research has made significant efforts on policy
transfer and constrained RL, the following problems have not been
fully studied.

1) Training multiple agents to cooperate with each other is much
more difficult than training a single agent, which often requires
more computing resources and training time. Constraints also
limit the training efficiency of multiagent RL. A promising
topic is how to utilize the prior experience of a single agent to
help multiple agents complete tasks when computing power is
limited.

2) Ongoing exploration and cooperation will be inhibited if agents
follow the pioneer experience blindly. A study of how to
balance the tradeoff between pioneer experience and ongo-
ing exploration is relatively crucial during different stages of
training.

Therefore, this brief proposes a safe adaptive policy transfer RL
approach for distributed multiagent control. To accelerate the training
process in multiagent RL, the pioneer and follower off-policy policy
transfer learning (PFOPT) method has been developed. The proposed
PFOPT expands the teacher—student architecture to encompass multi-
agent scenarios. It can leverage both on-policy and off-policy methods
to update the critic value network, utilizing samples collected from
pioneer policies. Besides, the learning weights of PFOPT are adap-
tively adjusted based on the Wasserstein distance. By employing this
adaptive weight update strategy, PFOPT effectively balances pioneer
experience with ongoing exploration. The main contributions of this
study are summarized as follows.

1) A distributed off-policy actor—critic architecture is proposed for
multiagent cooperation control, and safety constraints are taken
into consideration. It offers significant advantages by allowing
agents to build upon existing knowledge and experiences,
enabling them to learn more efficiently and complete training
faster.

2) A PFOPT method has been developed. It not only transfers
a pretrained pioneer policy representation from the on-policy
learning to the off-policy learning, but also utilizes a general-
ized advantage function to transfer useful knowledge deriving
from the pioneer policy. This transfer process allows for the
efficient utilization of previously acquired knowledge, reducing
the need for extensive retraining and accelerating the learning
process.

3) An adaptive weight update strategy is proposed for policy
updating, which effectively balances the integration of pioneer
experience and ongoing exploration. This equilibrium ensures
that follower agents can leverage the valuable knowledge and
experiences of the pioneer agent while retaining the flexibility
to explore.

The rest of the brief is organized as follows. Section II introduces
preliminaries of multiagent RL, policy transfer, and Wasserstein dis-
tance. The PFOPT method is proposed in Section III. In Section IV,
a case study is shown to verify PFOPT. Finally, the conclusion is
drawn in Section V.

II. PRELIMINARIES

In this section, the background of multiagent RL, policy transfer,
and Wasserstein distance are introduced.

A. Multiagent RL

We frame multiagent RL as a constrained Markov game
(N,S,A,R, P,C), where N is the number of agents, S is the state
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space, A is the action space of each agent, R : § x A" x § - R
is the collective reward, P is the transition function that maps the
current state s, and the joint action g, to a distribution over the next
state 5,11, and C; : § x A" x § — R is the space of auxiliary
cost functions. At each time step ¢, each agent’s target policy m;,
iel,...,n, selects an action a;, € A. A Markov decision process
involves state s, joint action a = (ay, ..., a,), transition probability
function p(s’ | s, @), and reward function r; (s;, a;). At each time step,
each agent executes an action according to its policy 7r; that maps the
state to an action probability. The action value function is expressed
as Qi(si, @) = Byn(isp[ 220 V' 1 (Gis @id) | Si0 = 5,010 = al.
The distributional safety critic is introduced to obtain a safety action.
By using policy 7, the expectation of long-term cumulative costs
is defined as Qc,(si,a;) = EaiNH(-|S,)[ZZO yic(sinais) | sio =
s,a;0 = a] and the cost state value function is defined as V¢ ;(s) =
IE,,[ZZO y'c(sir air) | sio = s]. The Bellman function is given
as 77 Qc.i(si,a;) = c(si, a;) + yESMNp[VC‘i(s,H)], where 77 is a
distributional Bellman operator [26], [27], s;+1 ~ p(- | s, a;), and
a1 ~ m(- | s'*1). The critic and actor functions in deep RL are
parameterized by neural networks, which are updated using a policy
gradient approach.

B. Policy Transfer

Referring to the survey in [28], the basic concept of transfer
learning is introduced in this section. Dy is defined as the source
domain that contains prior knowledge «,, and D, is the target domain
that has target knowledge «,. Knowledge can be transferred between
Dy and D,. The objective of transfer learning is to generate an optimal
policy 7* for the agent, by leveraging expert knowledge «, from D;
and target knowledge «, from D, such that

Tt =arg rrAlax]Eswd,m,,[Q”D(s, a)] (1)
mell
where 7 € l:[(Ks ~ Ds,k, ~ D) : § — A is a function mapping
from the states to actions for the target domain D,, and QT (s, a) is
an action-value function. The agent finally learns information from
both k, and «,. By using the information from «,, the agent learns
better in the target domain D, than the ones without utilizing ;.

C. Wasserstein Distance

The Wasserstein distance is essentially a distance metric between
two probability distributions. From a physical perspective, the
Wasserstein distance can be illustrated as the minimum energy cost of
transforming and moving blocks from the shape of one probability
distribution to that of another distribution. It has two advantages:
1) it is a symmetric distance, whereas Kullback—Leibler (KL) and
Jensen-Shannon (JS) divergence only measures similarity between
two distributions based on the information content or loss and
2) the Wasserstein distance takes into account the basic geometry
of the space that defines the distribution. In practice, there is a
distribution shift between two distributions, and the Wasserstein
distance is an appropriate measure to leverage the deviation between
the two. In this brief, Wasserstein distance is employed to measure
the deviation between two different probability distributions. The
standard Wasserstein distance is described as

1/p
/le —yll”df(x,y)) @)

where J is a joint probability and J (P, Q) is a coupling distribution
that combines a set of individual probability distributions P and Q.
In the first dimension, it can be expressed as

1 1/p
W, (P, Q) = (/ |F'(2) — G"(@!”) )
0

W,(P, Q) = ( inf

JeJ (P.Q)
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Fig. 1. Schematic of the pioneer and follower policy transfer.

where F~!' and G~! are the quantile functions. In the case of p =1,
a change of variables leads to the formula that

W,(P. Q) = / IF(x) — G(oldx. 4
R

In this brief, the learning weights of PFOPT are updated with
Wasserstein distance.

III. PIONEER AND FOLLOWER OFF-POLICY POLICY
TRANSFER METHOD

In this section, PFOPT is proposed to accelerate the RL training
process and assist in training agents to work cooperatively. It transfers
a pretrained pioneer policy from on-policy learning to off-policy
learning and utilizes a generalized advantage function to transfer
useful knowledge deriving from the pioneer policy. An adaptive
weight update strategy is presented to balance the tradeoff between
the pioneer experience and ongoing exploration.

A. Pioneer and Follower Transfer Learning

Fig. 1 illustrates the concept of the pioneer and follower policy
transfer. Initially, a few part of the agents are first trained to explore
the task environment. The selection of the pioneer agent is based on
its ability to achieve high rewards and a high success rate, ensuring
the reliability of its policies for subsequent transfer learning steps.
As a result, this pioneer agent contributes to positive transfer effects
for the follower agents. Then, the source knowledge learned by the
pioneer is transferred to the follower agents and trained together.
For one agent, PFOPT utilizes four neural networks including a
policy network 7y, three value networks for reward Q?) (s, a), cost
Q‘é,i(s,a), and policy transfer Q;p(s,a). 0, ¢, ¢, and Y represent
the networks parameters. The policy network generates the mean and
standard deviation of the conditional Gaussian probability, and then
the agent takes a continuous action a in the state s according to the
policy. The value networks take observation s and action a as inputs
and return the value Q?’(s, a), 0% (s, a), and Qld’ (s, a). To improve
the stability of the optimization, a network with the same structure
is set as the target network. The agent periodically updates the target
network parameters to that of the latest corresponding value network.

To improve data efficiency, off-policy learning is introduced in
PFOPT. A replay buffer D is formed by collecting training samples
generated by the pioneer policy m,, and then the policy transfer
value function Q;”(s,«,,, a; ) is computed by the neural network with
parameter ¥ from samples D. The pioneer-related advantage function
A,;,(si_,, a;,) is calculated via

A (Siys air)

1 n
=-npls2(— 52 (-
( n)["’(l—n)ﬂ”“(l—n)
2 T—t
0 U —ico [T
+y28"”+2(1—n) Tty '5”(1_”)}

—t

= > 82, )
1

~

Il
o
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where 7 is the number of steps and n € [0, 1] is the advantage
estimate parameter. The variable 8,% is defined as 8,% = riy +
1% QA}”(s,-, s Qi) — QA;//(S,-‘,, a; ). The samples are obtained from different
distributions and employed to update the critic state value network.
As a part of the global loss function, the pioneer loss function is

~ ﬂe,(ai [ si) -
L= —— - Aii(Sis, aiy)
ai~7g; (-Is;) ﬂ,,(a,— | S,‘)

B Texp (KL (5w 1s0T)] - (6)
where my, represents a policy of follower agent i and 7, stands for
the policy of the pioneer agent. An agent policy 7y, (follower policy)
acquires experience and knowledge from a pioneer agent. Apart from
the pioneer loss function, the global loss function contains the critic
loss L, policy improvement loss L, and cost loss L¢. Both L and
L, are employed to update the Q function. The policy evaluation
approach updates the policy m by reducing regularized TD error.
A TD target value function y; is defined as follows:

Yi (ri.z, Si,z+1) =ty + v, E [Q? (Si,z+1, ai,t+1)

1+1777G;
— p i log 7y, (aicir | sien)] (D)

where y is the discount factor, and o, ; is the entropy loss weight.
oy logmy (ai+1 | sii+1) is the weighted policy entropy for the
bounded output of the actor when in state s;. The entropy term is
set in (7) to enrich the exploration. The optimal policy is natural
to seek a policy with some entropy. It has a positive effect on
enlarging the exploration space. Initially, the policy network selects
an unbounded action randomly from a Gaussian distribution. PFOPT
calculates the entropy of a given policy based on the unbounded
probability distribution during training. By applying the Tanh(x)
function and scaling operations to the unbounded action, the policy
network generates bounded actions for the agent. When s; , indicates
a terminal state, the target value y;, equals the reward value r;,.
If not, the target value function equals the sum of r;,, the minimum
discounted future reward, and the weighted entropy. The parameters
of the critic are updated through the following equation:
1 M

Lo = > B [ntisen - 0a)]  ®

where M is the number of the mini-batch, 1; =
(S, @, 7y Cry S415---); is the trajectory of state and actions
from agent i, and D is the replay buffer. The objective of policy
improvement, which should be minimized, is expressed as follows:

| X
L, = i Z 51'}@“17 [an.i log 7, (ai, | Si,z)]

i=1 aj;~7p;
1 M
-2 LE, [Q?’(s,«,,, ai.,>]. ©)
i=1

aj,;~Tp;

Deriving from the soft-actor—critic algorithm [29], the entropy weight
is also updated by minimizing the following equation:

M

1
Lin) =+ > (—owilogmy, (is | 5is) — etz H)

i=1

(10)

where H is the target entropy. The cost state value function can be
expressed as Ve (Sisr1) = 2, wmyion) 7 @i | 5100 Q% (8110 ais). The
cost advantage function can be obtained as Ac(s;, a;) = Q‘éy (i, ai)—
Ve.i(si). The loss function of cost [30] can be written as
Lc= SIE [AC(Sivai)]-
i~P

aj~m

an
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Fig. 2. Tllustration of policy updates in PFOPT.

Eventually, the actor parameters are updated by minimizing the
following global loss function:

L. =L,4ML—-ALe (12)

where A, represents a weight that leverages the pioneer policy and
agent exploration which is automatically adjusted by the Wasserstein
distance between the two policies. The Wasserstein distance is
different from the KL divergence. The KL divergence only describes
the similarity of two distributions, and the Wasserstein distance
can measure the positional relationship between two distributions.
A, maintains a balance between exploration and compliance with
constraints, ensuring that the agent explores the state space while
avoiding actions that violate safety constraints. The local loss func-
tions, L, 1:, and L, are derived from (9), (6), and (11), respectively.

B. Adaptive Weight Update Strategy Based on Wasserstein Distance

The Wasserstein distance between the pioneer policy m,(-) and
agent policy 7y, () is defined as

W],(T[,,('), T, )= / (13)
R

Fﬂp(.) - F”Hi ) ‘dx

where F is the cumulative distribution function. The weight Ay in
(12) is updated by

Ay = 2/mh, arctan (W, (mp, 76,)7) (14)

where A; is a scale constant, and its effect will be considered
in the case study. The weight of X1 rises if Wasserstein distance
increases so that follower policy can be closer to pioneer policy at
the initial stage. As training progresses, the policy of follower agents
gets close to the pioneer policy. The knowledge from the pioneer
agent becomes less valuable, thus )A»l is decreased to improve the
exploration. After conducting multiple simulations, when A; is set
to 0.001, the estimates of ):1 are distributed between 0.0002 and
0.0005. Therefore, PFOPT can efficiently balance the tradeoff using
the previous pioneer experience and exploration. Fig. 2 shows the
policy update process, and the pseudocode of the proposed method
is shown in Algorithm 1.

Algorithm 1 PFOPT Algorithm
Initialize: Agent policy network my,; Pioneer policy m,; Value

network of reward Q?(s,a); Value network of policy transfer
Q;f'(s,a); Value network of costs Qgi(s,a); Discount rates y;
Generalized advantage estimate parameter n; Learning rates o,
oy, @3; and o, ;; Weights Ay, As.
for each episode do
for each agent i do
Collect samples D = {(s, a, s’, r)} using 7y, (-);
Collect samples D= {(5,a,5',7)} using 7, (-);
Compute advantage estimates A¢ from D and A[V, from D;
Get local loss functions: L, in (9), L in (6), and L¢ in (11);
Compute global actor loss function:

L;r =L, +5»1i, — M L.

Update value networks: ¢; <« ¢'; — o1, VyLo(¢),
@i < @i — ;i VLo, Vi < ¥ — a3, Vy A(¥);
Update actor policy network 0; < 6; — o, ; VoL ;
Compute the Wasserstein distance W, (7, 79);
Update the weight Ay via (13) and update temperature param-
eter oy < Qn; — Vo, L(og;).
end for
end for

IV. CASE STUDY

In this section, a simple simulation environment is developed
to validate PFOPT in the constraint multiagent RL control. The
simulation environment is called a “push-out game,” in which agents
are controlled to push the target circle out of the ring. In this study,
a single-agent policy is pretrained as a pioneer policy and then it
is employed to train follower agents using PFOPT. Additionally, the
state-of-the-art methods are employed for comparison with PFOPT.
Moreover, to explain the effect of core parameters on PFOPT, A; and
A, parameters are selected for sensitivity analysis.

A. Simulation Settings

As shown in Fig. 3, a simulation environment is designed, in which
agents cooperate to achieve a mission. The homogeneous agents
are trained to push a target object out of a ring together in the
2-D surface. Agents highlighted in red, green, magenta, and yellow
are represented by smaller circles with a 1-m radius, respectively.
Agents utilize collision forces to move a target blue circle outside
the black ring. The radius of the target blue circle and black ring
are 2 and 8 m, respectively. The agents start randomly in —10-10
rectangular areas. The target starts in the (0, 0) position. The mass
of the target and agent are 2 and 1 kg, respectively. Additionally,
the agents are encouraged to satisfy the safety concern: the target
circle should not be pushed out of red borders. The boundary line
is two vertical lines with x = =£6. All environmental components
have mass and follow Newton’s rules. Interaction forces between
components and environmental constraints are considered as springs
and mass dampers. A neural network is trained as a policy generator
to output the force in RL control. The hyperparameters are listed
in Table I. In each simulation, ten random seeds and 1000 training
episodes are set in the simulation. The agents’ departure locations
are random. The reward function is defined as R = Zf\’:l(ri)/N R
where r; = Fglobal ~+ Tocal,is Tglobal = 0.001 dtarget, and Nocal,i =
—0.005 d; targer — 0.008 ul.z. dyarger TEpresents the distance between the
center of the ring and the target. Reward r; is determined by rgjopa
and Fiocari- Tglobal 18 @ team reward received by all of the agents as
the target moves toward the ring’s boundary. d; e 1S the distances
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Fig. 3. Trajectories of a different number of agents. (a)—(d) One, two, three, and four agents, respectively.
TABLE I TABLE 11

HYPERPARAMETERS IN ALGORITHMS

PERFORMANCE OF DIFFERENT NUMBERS OF AGENTS
TRAINED BY PFOPT

Hyper-parameter MACPO | MAPPO-L | MATRPO-L | PFOPT
No. of hidden 3 3 3 3 Index 2 Agents | 3 Agents | 4 Agents
layers Success rate 96.1% 86.2% 61.4%
No. of hidden Average task time (s) 22.43 40.46 39.59
nodes >12 312 >12 >12 Constraint violation rate 27.6% 40.8% 45.2%
Activation relu relu relu relu
Initial log std -0.5 -0.5 -1 -0.5
Discount for 0.99 0.99 0.99 0.99 TABLE 111
reward, cost PERFORMANCE COMPARISON OF AGENTS TRAINED BY
Batch size 1024 1024 1024 1024 TRPO-L, CPO, PPO-L, AND PFOPT
Minibatch size N/A 64 N/A 64
Maximum episode le3 le3 le3 1e3 Index MACPO | MAPPO-L | MATRPO-L | PFOPT
Learnmg' rate N/A le-4 N/A le-4 Success rate 54.3% 42.7% 26.4% 96.1%
for policy Average
Learning rate for task time (s) 57.56 58.84 59.73 2243
reward, cost le-4 le-4 le-4 le-4 Constraint
value net.\vor‘k violation rate 24.1% 21.3% 8.4% 27.6%
L2:regulanzat10n le5 le-5 le-5 les
for value net
coefficient \q N/A N/A N/A 0.001
coefficient A2 N/A N/A N/A 0.1 C. Comparison of PFOPT and PD During Training

between the agent i and the target. The agents apply external forces
that result in motion. u; is the control variable of the agent i. The
range of u; is set to be from range —1 to 1. The cost function is also
defined as c(x) = 4 — || Xarget /|, Where Xigrger is the x coordinate of the
target.

B. Performance of PFOPT in Different Number of Agents

Fig. 3 shows the performance of agents with well-trained policy.
Training a single agent as the pioneer to perform the task alone
is an essential step before training a multiagent system in PFOPT.
Accordingly, the policy of a single agent is only used as the
cornerstone, even if its performance is unsatisfactory. Following
single-agent experience, multiagents are trained based on PFOPT.
In Fig. 3, a well-trained agent pushes the blue target out of the
ring after multiple touches and bounces. Generally, efficiency can
be improved by adding agents, however, too many agents can be
counterproductive due to mutual influence. It is generally accepted
that the more agents there are, the more difficult it is to train them
to cooperate. Table II shows the performance decreases with the
number of agents trained by PFOPT. The well-trained agents are
tested with 1000 randomly generated tasks. In Table II, the definition
of “constraint violation rate” is the ratio of operations that violate
constraints. Increasing the number of agents leads to a decrease in
both task success rate and training speed, while constraint violations
and task time also increase.

To demonstrate that PFOPT significantly improves the training
speed, a comparison has been made between the proposed method and
a state-of-the-art transfer learning method known as PD [5]. In Fig. 4,
the blue line represents the reward/cost curve of PFOPT, and the
yellow line stands for the reward/cost curve of PD. It illustrates that
PFOPT can significantly accelerate the convergence of the reward
curve in comparison with PD. Furthermore, the terminal reward of
PFOPT is higher than that of PD. There is a difference in average
costs between PFOPT and PD during training, but the terminal costs
are almost identical. Fig. 4(a) and (e) shows the single-agent training
process whose policy is used as a pioneer policy in transfer learning.
Fig. 4(b)—(d) and (f)—(h) displays the multiagent training process.
It can also be observed from the case study results that PFOPT shows
better performance compared to PD.

D. Performance Comparison of PFOPT With Other
Multiagent RL Methods

To evaluate the performance of PFOPT, it is compared with
the state-of-the-art methods, such as multiagent policy transfer
framework (MAPTF) [31] and multiagent deep deterministic policy
gradient (MADDPG) [32]. Due to the absence of safety constraints
in the aforementioned methods, we add the cost evaluation in
their loss functions. Besides, we also extend the classic single
safe RL methods including proximal policy optimization (CPO)
[17], proximal policy optimization-Lagrangian (PPO-L) [33], and
trust region policy optimization-Lagrangian (TRPO-L) [34] to the
multiagent RL. These methods are recalled as MACPO, MAPPO-L,
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Fig. 4. Performance of PFOPT with different numbers of agents compared to PD. (a)-(d) Reward curves. (e)—(h) Display cost curves.
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(c) normalized average rewards and costs.

and MATRPO-L, respectively. The hyperparameters of MACPO,
MAPPO-L, MATRPO-L, and PFOPT are listed in Table I.

Fig. 5 illustrates the training process of two agents using the
above four methods. Fig. 5(a) demonstrates that PFOPT not only
largely reduces the training time, but also improves the terminal
reward compared to MACPO, MAPPO-L, MATRPO-L, MAPTF,
and MADDPG. The PFOPT demonstrates exceptional performance
among all the investigated approaches, signifying its proficiency
in efficiently transferring valuable information to follower agents.
This effectiveness can be attributed to PFOPT’s adaptive mechanism,
which empowers each agent to selectively assimilate relational knowl-
edge from pioneer agents. However, PFOPT shows no substantial
difference in constraint costs from MACPO, MAPPO-L, MATRPO-L,
MAPTF, or MADDPG in the simulation [see Fig. 5(b)]. Fig. 5(c)
indicates that PFOPT has the highest average reward, and its cost is
only lower than that of the MACPO. As shown in Table III, PFOPT-
trained agents have the highest success rates and the shortest average
time to complete tasks.

E. Hyperparameters Sensitivity Analysis

In this section, the sensitivities of two essential hyperparameters
A1 and A, are investigated. PFOPT is tested with five different
values of A; and A,. A; directly affects weight ):1 which is used
to adjust the progress of transfer learning. Increasing X, will result
in a more pioneer-like behavior, and vice versa. In Fig. 6(a) and (b),
the performance of PFOPT is highly sensitive to A;. When 1, is less
than 0.05, convergence of the reward curves is slowing down. Instead
of imitating the pioneer agent, the follower agent can formulate its
own policy. The hyperparameter A, can be interpreted as a factor
that adjusts the strength of the safety constraint. As a result of its
increase, rewards will be reduced and costs will fluctuate. Simulation
results in Fig. 6(c) and (d) show that PFOPT is not sensitive to the
value of A,. The rewards and costs show insignificant changes when
the value of A, is varied between 0.05 and 0.3. Both the rewards and
costs exhibit significant fluctuations as the value of A, increases from
1to 5.
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Fig. 7.

F. Supplement Additional Simulation Scenarios

Pac-man and multiagent particle environment games are chosen
as testbeds in this section. Pac-Man is a discrete cooperative-
competitive game. This brief focuses on the OpenClassic scenario
[see Fig. 7(a)], which entails two ghost players and one pac-man
player. The objective of the pac-man player entails consuming as
many pills as feasible while evading the relentless pursuit of the
ghost players. Conversely, the ghost players are determined to capture
the pac-man player. The aim of the algorithm is to govern the
actions of the ghost players while considering the pac-man player
as the adversary. The termination of the game occurs when a ghost
captures the pac-man player or when the episode surpasses 100 steps.
Multiagent particle environment [32] is a simulation environment
that encompasses a particle world featuring continuous observation
and action spaces. Within the environment [Fig. 7(b)], the simple
tag scenario is chosen in this brief. The scenario consists of two
types of entities: good agents (green) and adversaries (red). Good
agents are faster and receive a negative reward (—10) for being hit
by adversaries. Adversaries are slower and receive a positive reward
(+10) for hitting good agents. Additionally, there are obstacles (large
black circles) that obstruct the entities” movement. By default, there
is one good agent, six adversaries, and two obstacles.

Fig. 8(a) depicts the average rewards attained in the OpenClassic
scenario. It is evident that the performance of PFOPT surpasses that
of MAPTF and attains an average discount reward of approximately
0.17, exhibiting a certain level of variance. Conversely, MAPTF
achieves an average discount reward of approximately —0.1. It sug-
gests that PFOPT effectively facilitates knowledge transfer among
ghost players, resulting in enhanced overall performance. Fig. 8(b)
illustrates the average rewards curve within the multiagent particle
environment. In this simulation, the final reward is determined as
the cumulative sum of individual agents’ rewards. It is evident
that PFOPT outperforms MAPTF in terms of average rewards.
This superior performance can be attributed to PFOPT’s ability to

Supplement simulation scenarios include (a) pac-man and (b) multiparticle environment.
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Fig. 8. Reward curves between MAPTF and proposed method in pac-man and
multiparticle environment. (a) Pac-man. (b) Multiagent particle environment.

effectively strike a balance between leveraging the pioneer agent’s
valuable experience and engaging in new explorations. Additionally,
PFOPT employs the Wasserstein distance metric to dynamically adapt
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the transfer learning process, thereby fostering a more efficient and
effective dissemination of knowledge among the pioneer agent and
the follower agents.

V. CONCLUSION

In this brief, a multiagent RL method has been proposed to solve
a distributed multiagent cooperative control problem. Specifically,
a distributed off-policy actor—critic architecture has been proposed
for training agents to collaboratively perform tasks. To accelerate the
training process, a pioneer and follower off-policy transfer learning
method has been developed, in which a well-trained policy is adap-
tively transferred from the pioneer agent to the follower agent. There
are two main advantages of the proposed PFOPT method. First, unlike
traditional RL methods wherein all agents are trained simultaneously,
in the PFOPT method, a pioneer agent is utilized to execute tasks
independently, accumulating foundational experience. Subsequently,
the learned policy and knowledge are transferred to other agents,
enabling the follower agents to swiftly assimilate the experience of
their predecessors. Second, to balance the learning weights between
pioneer experience and new exploration during training, an adaptive
weight update strategy based on the Wasserstein distance between
the pioneer policy and the agent’s policy has been proposed. The
effectiveness of the proposed PFOPT method has been verified by
case studies. In the future, the constraint transfer framework will be
investigated to quantify the safety requirements in safety-critical RL
systems.
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