
Methodologies
for deep learning
SCA
An analysis on the design
and construction of convolu-
tional neural networks for side-
channel datasets

Philip Blankendal

Methodologies
for deep learning

SCA
An analysis on the design and construction of

convolutional neural networks for
side-channel datasets

by

Philip Blankendal
to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Friday August 26, 2022 at 09:00 AM.

Student number: 1547682
Supervisor: Dr. ir. S. Picek, TU Delft
Thesis committee: Prof. dr. ir. Inald Lagendijk, TU Delft

Dr. ir. S. Picek, TU Delft
Dr. E. Isulfi, TU Delft

This thesis is confidential and cannot be made public until August 26, 2022.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

Side-channel attacks leverage the unintentional leakage of information that indirectly relates to crypto-
graphic secrets such as encryption keys. Previous settings would involve an attacker conducting some
manual-statistical analysis to exploit this data and retrieve sensitive information from the target. With the
adoption of deep learning techniques, side-channel attacks have become more powerful and require
less manual analysis; hence, approaches involving deep learning have become the de facto standard
for side-channel analysis. Especially the convolutional neural network has been highly effective in
bypassing side-channel-specific countermeasures. The research surrounding the application of deep
learning in the side-channel domain has so far primarily focused on either introducing architectures
that perform well on specific datasets, data-preprocessing techniques, or the assessment of model
output. Only a few attempts have been made toward the methodology aspect involving the generation
of convolutional neural network architectures. The negligence of this part lends itself to the challenge
of interpreting the model’s decision-making process and the high number of tunable parameters and
design choices. In this work, we assess the architectural components and the hyper-parameters en-
countered when constructing a CNN and attempt to determine the steps of a conceivable methodology
for building well-performing CNNs in the side-channel domain regardless of the dataset used. We as-
sess the most influential hyperparameter values and architectural design choices for CNNs and decide
on suitable ranges and architectural constraints. We also evaluate how attribution methods can help us
achieve better results when tuning hyperparameters for SCA. Combining these acuities, we summarize
the general guidelines obtained and present them as a methodology for constructing CNNs for the SCA
domain. We evaluate our proposed methodology by applying it to unseen datasets and show that we
can obtain state-of-the-art results compared to other previously proposed SCA methodologies.

iii

Preface

This thesis is the final product of about nine months of effort. Even though I took a short break in
between, I truly enjoyed working on this project. Even with the challenges of overcoming multiple ob-
stacles within unprecedented times, it allowed me to become a true expert in deep learning mechanics
and appreciate some of the luxuries some of us might take for granted. First, I would like to thank my
family and friends for their support throughout my studies, my thesis project, and during tough times;
secondly, I would also like to thank Stjepan for his support and guidance throughout the project, as
many have said before it truly is a privilege to have such a Supervisor.

Philip Blankendal
Delft, August 2022

v

Contents

1 Introduction 1

2 Background 3
2.1 Machine learning . 3
2.2 Deep learning. 3

2.2.1 Neuron . 4
2.2.2 The importance of non-linearity . 5
2.2.3 Regularizing Layer types . 6
2.2.4 Multilayer perceptron . 7
2.2.5 Convolutional neural networks . 7
2.2.6 Evaluation metrics . 9

2.3 AES . 9
2.4 Counter-measures . 10
2.5 Side-channel databases . 11

2.5.1 ASCAD . 11
2.5.2 AES HD . 11
2.5.3 DPA V4 . 11
2.5.4 AES Random delay . 12

2.6 SNR . 12

3 Related work 13
3.1 Deep learning. 13
3.2 Deep learning in SCA . 14
3.3 Research questions . 15

4 Ranges and constraints 17
4.1 Motivation . 17
4.2 Approach . 17

4.2.1 Architectural design . 18
4.3 Experimental setup . 20
4.4 Results . 21

4.4.1 Architectures for Hyper-parameter injection. 21
4.4.2 Max-pooling vs Average-pooling. 24
4.4.3 Learning rate and mini-batch . 24
4.4.4 Activation function . 26
4.4.5 Range assessment . 29
4.4.6 Deeper networks . 33

4.5 Discussion . 34

5 Attribution methods 37
5.1 Motivation . 37
5.2 Exploitable trace properties . 38
5.3 Tuning and assessing convolutional layers . 44

5.3.1 Filter size and pooling size . 46
5.3.2 Amount of convolutional layers and amount of filters 47

5.4 Discussion . 50

vii

viii Contents

6 New methodology 53
6.1 Considerations . 53
6.2 Methodology . 54
6.3 Results . 55

6.3.1 DPA V4 . 56
6.3.2 AES RD . 56
6.3.3 AES HD . 57
6.3.4 Comparison with random search . 60

6.4 Discussion . 60

7 Conclusions 63
7.1 Research questions . 63
7.2 Summary of Contributions . 64
7.3 Limitations and Future work . 64

A Methodology comparison 69

B Increased filter sizes 71

C Model comparison 75
C.1 DPA v4 . 75
C.2 AES RD . 76
C.3 AES HD . 77

Chapter 1

Introduction

Many companies today depend entirely on computer systems and have almost all sensitive data in
a digitized form. Moreover, this data must be accessible across multiple interconnected embedded
systems across the globe. In other areas, such as hospitals, embedded systems can be found in
various medical equipment, ranging from wheelchairs to hospital beds.

Each of these electrical devices either stores or has access to sensitive data such as patient infor-
mation, financial data (credit card info, bank statements), company information, intellectual property,
key codes, and many other forms of potentially harmful material. If such devices were to be compro-
mised, the consequences could be catastrophic. Data breaches could risk a patient’s health, cause
company bankruptcies, and disrupt entire supply chains.

Indeed the digitalization era has had many benefits for both automation and communication; how-
ever, there has also been a significant drawback as it has become easier for an attacker to retrieve
sensitive data without having physical access to generative devices. Because of this, there has also
been a tremendous increase in the number of cyber-security attacks aimed at the retrieval of sensitive
information.

Due to these attacks, security researchers have been working around the clock on developing new
security measures that can be embodied into electrical devices and embedded systems to prevent this
data from falling into the wrong hands. So far, this task has proven to be non-trivial as present cyber-
attacks seem highly adaptive and able to circumvent many of these newly implemented measures
within a relatively short time after deployment. The cybersecurity attacks of today can be segmented
into two main categories, namely, passive and active attacks.

Active attacks are cyber security attacks where an attacker actively attempts to alter the inner-
workings of a system or actively attempts to exploit a weakness that is present in the system. In
contrast, passive attacks do not disrupt the system but rather observe it in its natural state. Passive
attacks are brutal to prevent because they do not seek to alter the target system in any way, shape, or
form, rendering many of the present cyber security measures useless against these specific types of
threats.

Among passive attacks, the side-channel attack [26] is currently amongst the most potent because
it is relatively inexpensive and, in many cases, has proven exceptionally challenging to detect. Side-
channel attacks exploit information sources that are not directly related to the attacker’s target; instead,
these sources unintentionally leak exploitable information that can be utilized to obtain the target. The
information sources used in these attacks are called side channels. Examples of side-channels that
can be used in SCA attacks are power consumption [27], EM waves [40] as well as any other data
source that may contain some form of leakage (e.g., cache readings [32] [25] or padding information
[1]).

Typically, the attacker’s target would be the secret key used by the encryption scheme on a target
device, which, once obtained, would allow the attacker to decrypt any sensitive messages or data
that passes through the device that could be of interest. There are two types of side-channel analysis:
profiled side-channel analysis and non-profiled side-channel analysis. In profiled side-channel analysis,
the attacker has complete access to a device similar to the target instrument. This copy device allows
the attacker to gather as much side-channel information (e.g., traces) as needed and plan his attack
accordingly: by using this copy device first before actually attempting an attack on the target device. In

1

2 1. Introduction

the non-profiled scenario, the attacker can only gather a limited amount of such information because
he does not have access to such a copy device.

The profiled side-channel analysis consists of two phases: the profiling stage, where information
is gathered from a clone device and analyzed in order to derive a model (or plan) that can be used to
attack the target device, and the attack phase, where the model constructed during the profiling stage
is used to retrieve the target information from the target device. In the past, side-channel attacks often
consisted of conducting a manual statistical analysis of the information contained within these sources.
However, with the advent of deep learning, side-channel attacks have become even more powerful,
making the need for manual statistical analysis obsolete. From an information-theoretical point of view,
the template attack [7] is among the most potent; however, this approach is susceptible to side-channel-
specific countermeasures. However, contrary to the template attack, research has shown that deep
learning architectures can easily break any encryption quickly, even when side-channel specific coun-
termeasures are present [3, 59].

So far, the research surrounding the use of deep learning architectures for side-channel analysis has
primarily focused on presenting architectures that perform well on specific datasets [59] [3]. However,
very little research is available on the steps required to create such a well-performing deep learning
model that can be applied to the SCA domain regardless of the data set used. In [59], numerous
state-of-the-art CNN architectures were presented that were effective for different data sets, whereas
in [41], the first actual methodology was introduced that produced high-performing models for SCA. In
this thesis, we will primarily focus on the methodology aspect of deep learning in SCA. We analyze the
building blocks, and standard practices [4] from other domains to produce steps that can be used to
construct high-performing models in the SCA domain. Furthermore, we also analyze various attribution
methods that have been useful in other domains and evaluate their current application in the SCA
domain. We aim to answer the following research questions:

Research question 1

• Can we identify structural constraints and hyper-parameter ranges that produce high-performing
CNNs and aid in the design and construction of CNNs in the field of side-channel analysis?

Research question 2

• Can attribution methods from other domains be used to aid in the design of deep learning models
for SCA?

Research question 3

• Can we derive a new methodology for the construction of CNNs that gives good results and is
easy to follow?

The structure of this thesis is as follows. In chapter 2, we provide some background necessary for
our research. In chapter 3, we summarize previous work concerning the usage of deep learning in
SCA. In chapters 4, 5, and 6, we focus on our research question, and in chapter 7, we summarize our
contributions and provide some possible areas that can be expanded upon in future work.

Chapter 2

Background

2.1 Machine learning

Machine learning refers to the process of automatically deriving a distribution function from a given set
of data points, with the purpose of inferring values of interest from new, unseen data points using this
newly derived function. The algorithms that automatically derive such a distribution function are referred
to as machine-learning algorithms. The process of creating such a distribution function is called training
(often referred to as learning). Machine learning algorithms are usually divided into twomain categories:
1)supervised-learning algorithms and 2)unsupervised-learning algorithms. Supervised learning is the
field in which all the input values used during training have a set of appropriate corresponding output
values (often referred to as labels or target values), whereas the field of unsupervised learning only
has the input values without any corresponding targets. Next to supervised and unsupervised learning,
there is also an intersection of the two called semi-supervised learning; however, In this thesis, we only
consider supervised learning.

As stated before, supervised algorithms require each input value to have an associated label; these
labels are often also called target variables and are usually denoted as ”𝑦”. These labels represent the
correct value that a learned function should infer when it is given the input belonging to that specific
label. During training, these labels (or target values) are compared to the corresponding inferred values
to create an effective model where the difference between these two values is minimal. Next to the
training phase, there is also a testing phase for supervised-learning algorithms. During the testing
phase, these labels are only used to determine the performance of the learned model by computing
performance-specific metrics such as accuracy.

2.2 Deep learning

Deep learning is a sub-field of machine learning in which architectural structures (called layers) are
used to construct the distribution function. In the context of deep learning, a layer is an abstract repre-
sentation of a function (or part of a function). A layer has both an input and an output value. The term
”architecture” is used to denote the amount and types of layers used and how they are combined (a
particular combination of specific layers connected in a specific matter) to create the final overall dis-
tribution function. The resulting function is often referred to as a ”model” as it tries to approximate the
underlying distribution function by using a set of sample points (often called training samples) drawn
from this underlying function.

The layers used in deep learning algorithms are typically placed in a sequence where one could
have different types of layers connected to create a more significant function. Such a function is often
called a ”Sequential” Model, consisting of smaller sub-functions (layers) placed in sequence. In a
sequential model, the output of one sub-function (layer) serves as input for the next until the final layer
is reached, at which point the output of the final layer is served as the model’s output. An example of
a deep learning model is given below in figure 2.1.

3

4 2. Background

𝑓(𝑥) = 𝑓3(𝑓2(𝑓1(𝑥)))

Figure 2.1: A distribution function 𝑓 (represented as a deep learning architecture), consisting of the 3 sub-functions 𝑓1, 𝑓2 and
𝑓3 (called layers), where 𝑥 is the input of the model 𝑓.

The first layer of a deep learning architecture is called the input layer, whereas the last layer of the
model is called the output layer. The layers in between the input and output layers are usually called
”hidden” layers. An example of a deep learning architecture is given in figure 2.1 where 𝑓1 is the input
layer, 𝑓2 is a hidden layer and 𝑓3 is the output layer. It has been common to use graphical diagrams
to depict the different types of layers used in deep learning architectures (and their connectivity). An
example of a graphical representation of deep learning architecture with one input layer, one hidden
layer, and one output layer is shown in figure 2.2.

Figure 2.2: An example of a graphical representation of a neural network with three layers.

A deep learning architecture can have any amount of layers, provided it has at least one input layer.
This layer is considered both the input and the output layer (with no hidden layers) for architectures
containing a single layer.

The term ”deep” refers to the number of layers used in a network: the more layers, the deeper the
network. Deep learning networks are often called neural networks, where the term ”neural” refers to
one of the most elementary functions that can be used to create a layer called the neuron function.
Neurons are often the most rudimentary building blocks for constructing a layer and are often referred
to as the ”perceptrons”. The term ”network” is commonly used due to the interconnectivity between
neurons and the layers. If all the layers in a deep architecture only have forward connections, it is
referred to as a feed-forward network. In this thesis, we only consider feed-forward networks.

2.2.1 Neuron
As stated before, the building block used to create a layer in a deep learning network is called a neuron
(or perceptron). A neuron is nothing more than a function that has several inputs and one output.

The function used for any neuron in this thesis is of the form:

𝑔(𝑊𝑇 ∗ 𝑥 + 𝑏) (2.1)

Where𝑊 is a weight vector, 𝑥 is the input vector, 𝑏 is called the bias, and 𝑔() is a fixed predefined
function often referred to as the ”activation” function. The weight vector𝑊 is a vector of scalar values,
and its size is equal to the size of the input vector 𝑥. The weight vector𝑊 is usually initialized to contain
random values, where the final values are then gradually learned during the training phase of the deep
learning algorithm. The bias 𝑏 is a single scalar value updated in a similar matter. Because these last
two parameters are not set until the end of the training phase, they are called ”trainable” parameters.
The input vector 𝑥 is given to the neuron as input. The ”activation” function 𝑔 can have many forms and
is chosen by the creator of the deep learning architecture. Even though an activation function can be

2.2. Deep learning 5

any predefined function, 𝑔(𝑥) is almost always, except for the last layer in most classification models,
set to be a function that contains some form of non-linearity.

Among a large amount of commonly used non-linear activation functions, one of the most commonly
used non-linear activation functions in deep learning architectures (and often the default choice for
hidden layers) is called the rectified linear unit (ReLU) shown below in equation 2.2:

𝑔(𝑥) = {𝑥, if 𝑥 > 0.
0, otherwise. (2.2)

Linear activation functions can also be used in deep learning architectures; however, they are pri-
marily used in the final layer of deep learning architectures. An example of a linear activation function
is the Softmax function, commonly used in the final layer of a classification model to perform some
form of regression, and output class probabilities, which has become common practice if the goal is to
classify the input 𝑥.

Because the perceptron is one of the main building blocks in neural networks, it is common to
present the neuron function as a graphical node when visually presenting neural architectures, as
depicted in figure 2.3:

Figure 2.3: Graphical representation of the neuron function of a deep learning network where edges represent input/output
connections. When a neuron does not ”fire” (e.g., a neuron has an output of 0), the outgoing edges can often be neglected for
that specific input.

There aremanymore types of activation functions; however, in this thesis, next to the ReLU function,
we only consider the following activation functions:

Exponential linear unit (ELU), which was originally introduced in [9] with the purpose of improving
ReLU as it allows negative values and hence gives a gradient when the input is negative at the cost of
computational expense.

𝑔(𝑥) = {𝑎(𝑒
𝑥 − 1), if 𝑥 ≤ 0.

𝑥, otherwise. (2.3)

Scaled exponential linear unit (SELU), initially introduced in [24] as an improvement upon the ELU
activation function, with the potential to significantly boost the training process of the deep learning
architecture as it is considered self-normalizing.

𝑔(𝑥) = {𝜆𝛼(𝑒
𝑥 − 1), if 𝑥 < 0.

𝜆𝑥, otherwise. (2.4)

With parameters 𝜆 = 1.0507 and 𝛼 = 1.67326.
Hyperbolic tangent (Tanh), which is extremely common as its derivative, has a simple form and is

hence computationally efficient when using gradient descent.

𝑡𝑎𝑛ℎ(𝑥) = 𝑒𝑥 − 𝑒−𝑥
𝑒𝑥 + 𝑒−𝑥 (2.5)

2.2.2 The importance of non-linearity
The non-linearity of an activation function makes a neuron (and deep learning architectures in general)
so powerful compared to other areas of machine learning. Whereas most machine learning techniques
are limited to linear functions, deep learning algorithms do not exhibit this limitation, allowing them to
approximate relatively complex relations between input and output values, as opposed to some other
machine learning methods.

6 2. Background

Non-linear activation functions significantly increase the amount and complexity of distribution func-
tions that a deep neural architecture can model. Because neurons can perform non-linear operations
on their input, using multiple such neurons in layers allows deep learning algorithms to learn not only
linear functions but also allow deep learning algorithms to learn non-linear functions, such as the XOR
function.

2.2.3 Regularizing Layer types

A wide variety of layer functions exists, and it has become standard practice to incorporate different
types of layers in deep learning architectures for different purposes. Here we discuss two relevant
layer types that reoccur trough-out this thesis and are commonly used in deep learning architectures
for regularization purposes. Because we are using one-dimensional data in this thesis, we only consider
layers for one-dimensional data.

Pooling layer

A pooling layer is a special kind of layer that reduces the size of its input by using a so-called ”filter”. A
filter can be thought of as a sliding window that slides over the input until the end of the input is reached.

When a pooling layer receives an input vector, the filter is gradually moved across the input, where,
at each filter position, a so-called ”pooling operation” is performed until the end of the input vector is
reached. The filter of a pooling layer is set by using two predefined parameters: filter size and stride.
The filter size represents the number of values the pooling operation ”spans” and takes as input before
returning any output. The stride of the filter represents how many elements the filter needs to skip or
move across the input after it has performed a pooling operation and before it uses the next set of input
values to calculate the consequent output value.

The value that a pooling operation returns at each filter position is dependent on the type of pooling
layer used. This thesis will consider two types of pooling: Max pooling and Average pooling. When
average pooling is used, the operation will return the average of the elements the filter covers for each
position. When max pooling is used, the maximum value is returned. An example of max pooling is
given figure 2.4.

Figure 2.4: example of the operations performed within a max-pooling layer with a filter (sliding window) size of 3 and a stride
of 3, with an input vector 𝑥 of length 9. Here the size of the input vector 𝑥 is reduced from 9 to 3 by only selecting the maximum
value for every three elements (filter size) whilst moving 3 elements (filter stride) to the right after every pooling operation.

Because either only peak information or summarized information is retained in the output, this re-
duction usually not only results in a reduction in training time but also has the potential to reduce noise
(as the output also tends to become invariant to small translations in the input), which, in turn, can
increase the overall model performance. The choice of pooling layer and pooling hyper-parameters is
often empirically chosen: if the filter size or stride is too large, it is possible that some information loss
can occur, which could result in poor performance of the model.

2.2. Deep learning 7

Batch normalization layer

A layer that does batch normalization [19] normalizes the input 𝑥 to zero mean and unit variance based
on the metrics calculated for the specific𝑚𝑖𝑛𝑖−𝑏𝑎𝑡𝑐ℎ (batch of inputs) that specific input 𝑥 belongs to.

2.2.4 Multilayer perceptron
A Multilayer perceptron [15] (MLP) is a deep learning architecture that only uses dense layers and
contains at least one hidden layer. It is consequently also one of the more simple deep learning archi-
tectures because it only allows feed-forward connections from its layers and also because its architec-
ture only contains dense layers. The number of neurons in such a layer type is not limited and varies
highly for different architectures. The number of neurons is often empirically chosen by the creator of
the architecture. An example of an MLP that was used to solve the XOR function is shown below in
figure 2.5. Another example of an MLP is given in figure ??. So far, the MLPs used in the side-channel
domain [3] have typically used multiples of 100 for the number of neurons in their dense layers.

Figure 2.5: A Multilayered perceptron with one input layer, one hidden layer (dense layer) consisting of two neurons, and one
output layer. Note that the output layer is also a dense layer (with one single neuron).

Figure 2.6: A larger mlp used in [].

2.2.5 Convolutional neural networks
Convolutional neural networks are deep learning architectures that use a so-called ”convolutional” layer,
which allows for automated feature extraction. The critical component in a convolutional layer is the
so-called ”filter,” often referred to as a ”kernel”. The kernel can be thought of as a vector of weights
that, similarly to pooling, slides over the input and performs certain mathematical operations (in this
case, a mathematical operation called convolution, of which the equation is given in equation 2.6) at
specific locations on the input in order to construct the output. The mathematical operator used to
perform convolution is often depicted by the ⊛ symbol, and the equation for convolution when using
one-dimensional input is given in equation 2.6.

𝑠(𝑡) = (𝑥 ⊛𝑤)(𝑡) =
𝑛

∑
𝑎=1

𝑥(𝑡 − 𝑎)𝑤(𝑎) (2.6)

8 2. Background

A convolutional layer has three important hyper-parameters: filter size, amount of filters, and stride.
The filter-size parameter is used to define the size of the filter, whereas both filter-size and filter-stride
are used to determine the locations on the input were-with the filter convolves with the input in order to
construct the output. Figure 2.7 shows an example of this process.

Figure 2.7: An example of convolution with an input size of 4X4 and a filter of size 2X2 with stride 2.

Normal convolution can reduce input dimensions when larger filters (or even smaller filters with a
stride larger than 1) are used in a convolutional layer. To prevent this from happening, often, zero-valued
vectors are added to the input 𝑥 borders to increase the input size before passing 𝑥 to the convolutional
layer. Adding zeros to the input before passing it to the convolutional layer is called padding. Padding
can also be used to ensure that the dimensions of the output of the convolutional layer will remain the
same relative to the input: this is called ”same” padding. An example of ”same” padding is given in
figure 2.8.

Figure 2.8: a) 2-dimensional example of how padding can be used to ensure that the output dimensions stay equal to that of the
input when convolution is applied (with stride 1), b) one-dimensional convolution example for ”same” padding (with stride 1).

The amount-of-filters parameter sets the number of filters to be used in a convolutional layer. For
every convolutional filter, a separate output is given. Hence when a convolutional layer with 16 filters
is given an input of size 64𝑥64, the resulting output for this specific layer will be of size 64𝑥64𝑥16 when
using same-padding. If another convolutional layer with 2 filters is placed after this layer, the output
of this next layer will be of size 16𝑥16𝑥32, as each filter produces an output for every output of the

2.3. AES 9

previous filter. The output for a single convolutional filter is called a feature map, and in the example
given above, the first layer may produce 16 feature maps (one for each filter) and the second layer 32
feature maps. Figure 2.9 shows an example for this particular scenario.

input conv-layer 1 conv-layer2 max-pooling

1@64x64
16@64x64

32@64x64 32@32x32 1x32768

Figure 2.9: An example of convolution network.

Because a convolutional layer with multiple filters usually increases the input size for the next layer
(as opposed to the original input size), it is common for CNN architectures to incorporate a pooling layer
after a convolutional layer to adjust input dimensions or input range of a layer. When a decrease in
input size is desired, one can also choose to use a stride larger than 1 or convolution without padding.
However, it is more common that convolutional layers are used along with pooling layers as a pooling
layer does not have any trainable parameters and hence can decrease the training time significantly
as opposed to many other methods.

It has been standard practice for most architectures to incorporate several fully connected layers
after the convolutional layer, as this is often where some form of classification would occur in the case
of a classification network. The connection to the fully connected (or classification) part of a particular
convolutional network is then often preceded by a so-called ”flatten layer,” which flattens the input by
changing the input dimensions 32𝑥32𝑥32 input matrix into a 1𝑥32768 input vector before it is passed
to the classification part of the CNN.

2.2.6 Evaluation metrics
Accuracy and precision are standard metrics used to evaluate the effectiveness of a deep learning
model for most machine learning tasks. However, it was shown in [39] that these metrics are often not
indicative enough to assess a model’s performance in the field of side-channel analysis. The reason
for these shortcomings is that these metrics only tend to take single input traces into account, whereas
in side-channel analysis, we are not interested in the model’s performance on individual traces but in
the encryption key that these traces employ. In order to address these shortcomings of standard ML
metrics and correctly assess the performance of a model on a side-channel dataset, two side-channel
specific metrics are introduced, namely, the success rate and the guessing entropy[48]. In this thesis,
we only consider the guessing entropy.

The Guessing entropy of a deep learning model on a side channel dataset is defined as the average
ranking of the correct key among all possibilities according to the inferred values on a fixed set of
traces. Hence, when a model’s guessing entropy on a specific dataset reaches 1, we know that we
have retrieved the correct key (as its ranking is 1). We define the amount of traces needed to reach a
guessing entropy of 1 as 𝑁𝑇𝐺𝐸 .

2.3 AES
At the time of writing, the Advanced Encryption Standard (Aes) [13] is one of the most common encryp-
tion schemes that are found on hardware chips. The size of its encryption key varies and is often either
128, 192, or 256 bits long. Depending on the encryption-key size, the algorithm for this encryption

10 2. Background

scheme uses either 10, 12, or 14 rounds to encrypt plaintext values. At a high level, the AES algorithm
can be described as follows:

1. KeyExpansion - Using the AES key schedule, all the round keys are derived from the secret key.

2. AddRoundKey - using the bitwise XOR, the first round key is combined with the plaintext.

3. For 9, 11, or 13 rounds (depending on the secret-key size)

(a) SubBytes - Using a predefined lookup table called S-box, each byte of the intermediate value
is substituted with its lookup value (this is a non-linear operation on the intermediate value).

(b) ShiftRows - The last three rows of the new intermediate value is shifted according to a pre-
defined cycle.

(c) MixColumns - The columns of the new intermediate value are mixed in a predefined (and
linear) matter.

(d) AddRoundKey - the new intermediate value is combined with the round-key using the XOR
operation.

4. Final round

(a) SubBytes

(b) ShiftRows

(c) MixColumns

AES is currently one of the most secure encryption schemes as, at the time of writing, there is still
no known attack on this cipher that has shown to be feasible if we take the computational complexity
of the attack [51].

2.4 Counter-measures

There are a significant number of counter-measures specifically aimed at SCA to ensure the security
of physical devices. There are two main counter-measures that we will consider in this thesis, which
are masking and de-synchronization.

Masking

The masking counter-measures add a second layer of security to the AES encryption schemes by
adding a random mask to the sensitive values. The random mask is often divided into multiple parts
(called shares), where the name first-order masking refers to when only one share is used and higher
order masking when multiple shares are used. When boolean masking is used, the mask is added
to the sensitive value through a boolean operation such as XOR, whereas affine masking uses both
arithmetic and additive operations. In this thesis, we only focus on boolean masking.

De-synchronization

The de-synchronization counter-measure is categorized as a hiding counter-measure because it ac-
tively attempts to hide the leakage of the device and the processing of sensitive values. The De-
synchronization counter-measure often works by waiting a random amount of clock cycles before
computing sensitive values, where the maximum waiting time is often fixed and pre-determined. De-
synchronization has proven to be an effective counter-measure for SCA as datasets that employ this
counter-measure have proven to be more difficult to break than those that only use (boolean)masking.

2.5. Side-channel databases 11

2.5 Side-channel databases
With the growth of deep learning in the field of side-channel analysis, there has also been a significant
increase in the amount of publicly available side-channel datasets; however, many of the currently
available public databases are trivial. For trivial SCA databases, even a simple MLP is sufficient to
retrieve the secret key from such databases [58]), which implies that a CNN is not strictly necessary in
such scenarios. For non-trivial databases there are only fewmethodologies [59] [41] that have obtained
relatively competitive results. To conduct our research, we choose a selection of databases that are
relatively more difficult to break based on their best-known 𝑁𝑇𝐺𝐸 and SCA-specific counter-measures.

2.5.1 ASCAD
v1

The ASCAD [3] dataset consists of traces obtained by measuring the electromagnetic radiation of an
ATMega8515micro-controller encrypted with the AES encryption scheme protected with both (boolean-
) masking and de-synchronization counter-measures against side-channel attacks. The ASCADdatabase
contains data from the first round of AES only. The dataset contains 50, 000 profiling traces and
10.000where the key is fixed. The dataset contains three different variants containing different counter-
measures. The first dataset, referred to as 𝑁 = 0, only contains the Masking counter-measures. The
other two selected versions we consider, referred to as 𝑁 = 50 and 𝑁 = 100, contain both masking
and a de-synchronization counter-measure of either 50 or 100.

The target value for this dataset is

𝑠𝑏𝑜𝑥(𝑝[3] ⊕ 𝑘[3]) ⊕ 𝑟𝑜𝑢𝑡 (2.7)

In the above equation, 𝑟𝑜𝑢𝑡 is the unknown random masking value that was used by the encryption
scheme during the encryption process.

2.5.2 AES HD
The 𝐴𝐸𝑆𝐻𝐷 [23] data-set was obtained by measuring the electromagnetic emissions of a Xilinx Virtex-5
FPGA encrypted with AES encryption scheme using an 128 bit encryption key. The data-set consists
of 1000, 000 traces of length 1, 250. This dataset sets itself apart from other datasets because the
measured traces seem to contain a large amount of noise and has proven difficult to break when using
a low amount of traces.

The target variable for this dataset is:

𝑠𝑏𝑜𝑥−1(𝐶𝑗(𝑖)⊕𝑘∗) ⊕ 𝐶𝑗′ (𝑖) (2.8)

Where 𝐶(𝑖) is a cypher-text byte associated with the i-th trace. The relationship between j and j’ is
obtained through the inverse shiftRows step of the encryption scheme algorithm. In this dataset j=12
is used (and hence j’=8) because this byte was easy to attack.

2.5.3 DPA V4
The DPAv4 dataset contains 4500 profiling and 500 attack traces with a total of 4000 features per trace.
The traces from this database were obtained by measuring the power consumption of an ATMega-163
smart-card (employing AES-128 encryption scheme).

The target variable for this dataset is:

𝑠𝑏𝑜𝑥(𝑃0𝑖⊕𝑘∗) ⊕𝑀 (2.9)

This dataset is relatively trivial compared to other datasets because of the known masked value;
hence, it is easier to break.

12 2. Background

2.5.4 AES Random delay
The traces for the AES RD [11] dataset were obtained by measuring the power consumption of an
8-bit Atmel avr microcontroller that makes use of an AES encryption scheme. This dataset contains
25000 profiling and 25000 attack traces, where each trace contains 3500 features. This dataset has the
same target variable as the DPA V4 dataset (𝑠𝑏𝑜𝑥[𝑃0𝑖⊕𝑘∗]⊕𝑀) with the addition of a random delay
counter-measure. The addition of the random delay counter-measure makes this dataset significantly
more difficult to break.

2.6 SNR
The signal-to-noise ratio (SNR) [34] is the ratio between the signal and the background noise of mea-
surement and is given by the following equation:

𝑆𝑁𝑅 = 𝑉𝑎𝑟(𝑠𝑖𝑔𝑛𝑎𝑙)
𝑉𝑎𝑟(𝑛𝑜𝑖𝑠𝑒) (2.10)

The signal-to-noise ratio is often used in electrical engineering and other signal processing prac-
tices to analyze signal strength. In the field of side-channel analysis, this measurement is helpful if
we measure the SNR when computations are performed that involve sensitive values because the
power consumption or electromagnetic emission of a device is often dependent on the data used for
these computations. Hence, if the SNR is analyzed on fragments of operations involving secret-key
(or any exploitable) data, we can locate the areas where the SNR is high and likely to leak exploitable
information to the attacker.

Chapter 3

Related work

There has been a significant amount of literature on deep learning strategies within the side channel
analysis community. Current methodologies for constructing deep learning architectures are based
primarily on trial-and-error and intuition. However, there has also been a significant amount of research
on automated techniques that use a predefined sequence of steps, such as reinforcement learning
and genetic algorithms, which are common methodology approaches for constructing deep learning
architectures. Many approaches are still black-box solutions for improving existing models, generally
focusing on adjusting the input or training setup instead of hyper-parameter adjustments.

3.1 Deep learning

The research published on Convolutional neural networks in the general field of deep learning has pri-
marily been results-driven. In [28], it was shown that a convolutional network could significantly improve
the state-of-the-art classification accuracy on several image datasets. This revelation resulted in the
wide adaption of Convolutional neural networks in the field of image recognition as many of the state-
of-the-art approaches since then made use of CNNs [43][44][47]. Many design choices concerning the
models used have been based on architectures that have worked well in the past. These architec-
tures resulted from intuition and empirical observations from trial-and-error instead of an architectural
methodology. The hyperparameter tuning of these architectures has resulted from trial-and-error and
the incorporation of automated processes such as grid search and random search. However, there
have been some attempts to improve computational efficiency. Two of the most noteworthy when it
comes to a methodology for the construction or topology of CNNs are Genetic Algorithms and Rein-
forcement learning.

Genetic approaches [14] aim to use a heuristic approach to solve specific types of combinatorial
problems. It is often used by first generating an (often random) set of solutions and iteratively selecting
viable solutions using a predefined function that analyzes the characteristics to calculate their viabil-
ity. The iterative process of this algorithm runs until either predefined runtime or performance level
is reached. This technique was proposed as a methodology for the construction of CNNs in several
works, of which the most notable ones are NEAT [50], hyperNeat [49], and ES-HyperNEAT [42]. How-
ever, it was shown in [54] that these approaches are inefficient and not competitive with state-of-the-art
architectures in terms of their accuracy in the image recognition field. Reinforcement learning [55] is
a method that aims to choose actions based on rewards. This technique was used in [2] to gener-
ate high-performing CNN architectures for image classification tasks. In their work, they introduced
MetaQNN, which used Q-learning and 𝜖 -greedy exploration strategy to choose CNN layers. So far,
to the best of our knowledge, at the time of writing, these two techniques have been the only success-
ful CNN-construction methodologies in the field of deep learning in general that showed significantly
better performance than grid-search or random-search and are not based on manual trial-and-error
techniques or manual human-intuition.

13

14 3. Related work

3.2 Deep learning in SCA

In [6] the first profiling attack strategy based on a Convolutional neural network was presented. Here
it was shown that data-augmentation [46] can be used to prevent over-fitting and eliminate the effect
of hiding countermeasures (e.g., misalignment) such as clock jitter. However, in this work, the SCA-
datasets were not public. Furthermore, only an abstract view of their network architecture was pre-
sented where the explicit choices for hyper-parameters values such as filter size were not discussed in
detail. In [3] one of the first challenging public side-channel databases was introduced to research, eval-
uate and compare deep-learning models and side-channel attack strategies on several databases con-
taining different countermeasures. Here various deep learning architectures were assessed in terms
of their hyper-parameter tuning and ability to retrieve the encryption key for encryption schemes pro-
tected with both masking and de-synchronization countermeasures. Later [59] became one of the first
to introduce several deep learning architectures that provided a significant performance boost to pre-
vious models on non-trivial versions of the databases presented in [3]. Their work required less than
95 percent of attack traces compared to the previous state-of-the-art. Also, they had decreased model
complexity by 99 percent, significantly improving models presented in [39] and [3] in both training time
and guessing entropy. Furthermore, [59] suggested a selection of tools they used to create and assess
their convolutional network architectures. However, Zaid et al. misused the word ”methodology” in the
title of their work since they failed to produce a sequence of steps that could be used and applied to
an unseen dataset to create effective deep-learning architectures in the side-channel-analysis domain.
Later [56] showed that parts of the architectures presented in [59] could be substituted by specific
data-preprocessing techniques, thereby significantly decreasing the number of trainable parameters,
resulting in a significant decrease in training time. In [58] automated hyper-parameter tuning, based on
Bayesian Optimization, was used to show that MLPs were sufficient for solving various side-channel
datasets, therefore, again, significantly decreasing the complexity of the models required for specific
side-channel datasets. However, the datasets used in their work were trivial as they only used SCA
datasets without any strong countermeasures. Furthermore, in [38], pruning was presented as a mea-
sure to help reduce over-fitting while maintaining high performance with state-of-the-art models in the
SCA domain. In [41] Rijsdijk et al. introduced reinforcement learning as a method to generate neural
networks for breaking side-channel datasets and obtained relatively good results for both ASCAD and
DPAv4 datasets. However, Jorai et al.’s approach does not give insights into the proper construction of
CNNs. Another critique is that agents that were used did not seem to learn the underlying relationship
between hyperparameters and the side-channel leakage, as they only produced good results on the
trivial version of the ASCAD dataset and not on non-trivial datasets such as 𝑁 = 100. Furthermore, this
approach is far from optimal as it is a sequential method where relatively few models are found even
with high resources and increased running times (seven days). The research presented in [33] was the
first to produce an architecture that could do end-to-end analysis by obtaining the complete encryption
key using raw traces. They argued that the implicit assumption that preprocessing the side-channel
traces to obtain reduced traces using POI was unrealistic, as extracting significant POI from the dataset
was not trivial. However, their architecture was relatively large regarding its parameter count, as they
used LSTMs, MLPs, CNNs, and auto-encoders. The training time of their models was also quite large,
making it unfeasible to run this strategy on machines with fewer resources. In [20] an assessment of
loss functions for models in SCA was done, leading to the suggestion of a new focal loss function which
showed increased performance compared to other standard loss functions in the SCA domain such as
the categorical cross-entropy.

In [39], it was shown that evaluation metrics such as accuracy could be misleading when evalu-
ating deep-learning models for side channel datasets. Additionally [39] also used various data pre-
processing techniques for Hamming weight leakage models in order to decrease the amount of traces
needed to retrieve the secret key from data-sets containing imbalanced unmasked traces [10][12][5].
In [23] artificial noise was used to increase the robustness and performance of models used on side-
channel datasets.

In [36] gradient visualization was used as a tool to localize points of interest and show that this is
as least as good as state-of-the-art characterization methods such as the signal-to-noise-ratio; how-
ever, this is not very useful in the construction of convolutional neural networks as their method is a
post-training method and requires a fully trained convolutional neural network that is able to learn the
underlying SCA pattern. In [16], follow-up research on attribution methods was done. In this work, tools

3.3. Research questions 15

such as saliency maps, occlusion maps, and LRPs were used to detect POI to help embedded systems
addmore resilience to side-channel attacks by identifying which operations caused the highest leakage.
Again in this research, a fully trained CNN or DNN is required and does not attempt to bring any insight
into a model’s hyper-parameter tuning or optimization. Hence, we can not use these research papers
for constructing convolutional neural networks or assessing the ranking of hyper-parameter relevance.

3.3 Research questions
As stated before, there is very little research on the steps required to create such a well-performing
deep learning model that can be applied to the SCA domain regardless of which dataset is used. In this
work, we analyze the building blocks of CNNs and standard practices from other domains to evaluate
the relevant hyper-parameters to produce steps that can be used to construct high-performing models
in the SCA domain. We formulate the expansion of our research questions as follows:

Research question 1:

Can we identify structural constraints and hyper-parameter ranges that produce high-performing
CNNs and aid in the design and construction of CNNs in the field of side-channel analysis?

• How do these ranges compare to the values used in state-of-the-art?

• Are any clear patterns identified concerning relationships between the architectural components
and model performance?

Research question 2:

Can attribution methods from other domains be used to aid in the design of deep learning models
for SCA?

• Can attribution methods help us find correct hyperparameter values?

• Can attribution methods reliably help us identify faults in structural components?

Research question 3:

Can we derive a new methodology for the construction of CNNs that gives good results and is easy
to follow?

• How do the generated CNNs compare to the state-of-the-art in terms of performance?

• How do generated CNNs compare in terms of trainable parameters?

Chapter 4

Ranges and constraints

In this section, we examine the constraints and hyper-parameter ranges for deep neural network de-
signs in the field of side-channel analysis. We seek to answer our first research question by construct-
ing a hypothesis for each relevant hyper-parameter and verifying its validity through experimentation.
Furthermore, we also construct several hypotheses on the architectural components and constraints
that can aid in designing CNNs for side-channel analysis. We also compare the different models con-
structed by using these ranges and identify the crucial elements of these networks. We start by giving
a short motivation on the usage of hyper-parameters and architectural constraints in the SCA domain
next; we give our approach in section 4.2, our experimental set-up in section 4.3, the examination of
our results in section 4.4, and in section 4.5, we conclude this chapter with a discussion.

4.1 Motivation
Hyper-parameter tuning has been quite challenging in deep-learning approaches for different domains.
It has been common to resort to random hyper-parameters [58][4] and hyper-parameters found trough
exhaustive methods such as grid search [17] [29]. Reasons for using such methods vary from lack of
interpretation to insufficient domain knowledge. However, even though these methods may not guar-
antee top results, they have been proven quite effective in almost every domain in which they have
been applied. As for the domain of side-channel analysis, there has been very little research done
in terms of methodologies that can be applied to unseen side-channel datasets. Furthermore, the
presently available research on methodologies is still quite lacking in interpretability and applicability.
Next to this, the term ”methodology” has often been miss-used [59] [56][60] by omitting the most crucial
element by which it may be identified: a sequence of steps that can be applied to an unseen dataset in
order to generate effective models. In the research done so far, the crucial elements of an adequately
working neural network so far have been proven different [41][59][33] for networks with a similar per-
formance which led to different approaches for the development of methodologies where several past
explanations [59] [56] have been inconsistent at best. The lack of proper methodologies for developing
neural networks in the side-channel analysis domain has to do with the inconsistent findings and their
in-applicability for new datasets. These findings suggest that the results obtained by current method-
ologies may be more in line with those of random hyper-parameters, which, in turn, could incline one
to ask the question: can we achieve better results by simply identifying the correct hyper-parameter
ranges and architectural constraints for CNNs?

4.2 Approach
A large number of hyper-parameters exist, where each can significantly affect the performance of a CNN
in the field of side-channel analysis. Our strategy is to analyze each one and construct a hypothesis
regarding the ranges of these hyper-parameters utilizing previous work, mathematical insights, and
experimentation. We combine our hypothesis for these hyper-parameters in the results section and
test their validity.

17

18 4. Ranges and constraints

For weight initialization we argue the use of the ℎ𝑒_𝑢𝑛𝑖𝑓𝑟𝑜𝑚 initializer in all except the last layer
as this was the setting that was used in [59] and showed relatively good results in both [59] and [41],
as well as in [30][56]. In [30], where a comparison of weight initializers was made, it was pointed
out that 𝑔𝑙𝑜𝑟𝑜𝑡_𝑢𝑛𝑖𝑓𝑜𝑟𝑚 assumed a linear activation function; hence it seems adequate to use this
weight initializer in the last layer since this makes use of the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 activation-function (as this is
encryption-key classification probabilities are calculated), which is a linear classifier.

We start with slightly different ranges but are nevertheless guided by the ones suggested in [58] for
our hyper-parameter search.

Namely, we initially adjust the number of convolutional layers from [1, 4] to [1, 2]; we do this because
we would like to see how our constraints compete with the existing state-of-the-art[59] methodology,
where a maximum of 3 convolutional layers are used. Consequently, we adjust the ranges based on
the models found that perform well on different datasets.

We argue that because convolutional neural networks that have been used so far in SCA tend to
be small in size, and hence we are not limited to small filters and can use larger filters, which is why
we set the initial ranges for the convolutional-filter size in any layer to [2, 20]. In other areas where
deep learning is used, such as image recognition, often the convolutional filter size is set to be small
(e.g., size 1 ∗ 3) to prevent performance issues. However, in the field of side-channel analysis, this is
perfectly acceptable as models tend to be much smaller compared to other domains and hence are
less likely to run into performance issues.

We also introduce mini-batch as a random hyper-parameter, as it was shown in [22] that this hyper-
parameter could significantly affect the minimization process concerning the gradient descent algo-
rithm. Another reason is that the effect has not yet been fully inspected for the SCA domain and
because both [41] and [59] used different batch sizes for different settings.

Initially, we set the pooling-filter size to [2, 20] and adjusted these ranges based on the observations
made throughout this chapter. Note that this is a perfectly valid range as the pooling operation tends to
decrease the input size with a factor proportional to the filter size; hence, larger pooling sizes can only
speed up the process, as opposed to the larger convolutional-filter size.

Because, in terms of trainable parameters, the contribution of the classification part is far less op-
posed to the convolutional part of the network, we can also increase the number of neurons for the
dense layers from [100, 400] to [100, 1000]. Combined with the fact that at the time of writing, most
architectures used in the SCA domain have been relatively small compared to other domains; hence,
there is no particular reason to limit the number of neurons until proven otherwise. We use the same
number of neurons for every dense layer of the classification part, as this has been a common practice
for deep learning and because this adds keeps the search space small.

Instead of using a fixed set of learning rates, we use range [0.0001, 0.001] with step-size 0.0001.
An overview of the ranges used in initial experiments along with the differences with [58] is shown in
table 4.1.

4.2.1 Architectural design

There are several different injection strategies and injection architectures in which one could inject the
randomly generated hyper-parameters chosen from the ranges from table 4.1; specifically, there are
some essential design choices to be made when considering the convolutional part of the network.

One of the design choices is the matter in which we choose to incorporate pooling [57] into the
convolutional part. The amount of different design choices that can be made concerning the pooling
layers alone is depicted below in figure 4.1. Due to the vast amount of options available concerning the
deep learning architectures and time limitations, we limit our architecture to exploring max-pooling and
average pooling as these are often the most streamlined in other domains such as image recognition.
We also decide to keep the pooling stride equal to the filter size because, intuitively speaking, if we
use a pooling stride that is the same as our filter size, we do not miss any information by skipping data,
which can occur when the stride is larger than the filter-size. If we were to allow the selection of a stride
smaller than the filter size, we argue that this may lead to unnecessary redundancy in the output of
the layer, as this setting would allow the pooling layer to repeatedly take the same input segment into
account for more than one output segment.

4.2. Approach 19

Figure 4.1: test design

We identified several recurring patterns and paradigms in terms of suggested architectures from
previous work. In previous work, the most common pattern used for CNN architectures is the input-
convolutional-flatten-dense-output pattern. However, some of the more recent trends in the design of
CNNs, suggest the incorporation of a GAP layer which aims to either replace the commonly used flat
layer, and its output is often directly fed into the final layer of the network, replacing the need for any
dense layers in between the convolutional part and the output layer altogether. We want to compare
the adequacy of these different paradigms for the SCA domain and how they compare to each other;
hence we investigate all three paradigms and see how they compare.

We incorporated batch normalization as a constraint, as shown in [19] to significantly reduce the
issue of internal (and external) covariant shift, which can occur when there is a shift in the distribution
of the input data. Next to this, it seemed to address the issue of the exploding (or vanishing) gradient
problem due to higher learning rates and the issue of getting stuck in local minima during the training
process. Combined with the fact that batch-normalization adds very few trainable parameters to the
model, we hypothesize that adding batch-normalization layers (as a constraint) to our deep learning
architecture can only benefit the training process and generalization of the models using our proposed
architectural structure.

It is a standard paradigm to gradually increase the number of filters as convolutional networks grow
deeper, with the underlying idea to gradually detect more and more abstract features in deeper convo-
lutional layers. In our architecture, we propose only to choose the number of filters once and multiply it
with the number of the convolutional block in which it is incorporated. Our final architectural structure
is depicted below in figure 4.2.

20 4. Ranges and constraints

Figure 4.2: The stride and kernel size are generated separately and independently for each convolutional layer. The amount of
filters, however, makes use of the same random number across all convolutional layers (which is multiplied by a certain amount
for each consequent layer in order to ensure that the latter convolutional layers have more filters than previous convolutional
layers). The number of convolutional blocks is random as well, as the amount of dense layers. The amount of neurons is the
same for all dense layers.

4.3 Experimental setup

Our experimental environment setup is as follows: For our experiments we use the Tensor-flow[35]
library along with the KERAS[8] package to train deep learning models and python’s built-in 𝑟𝑎𝑛𝑑𝑜𝑚
library for generating hyper-parameter values according to our specified constraints (initially selected
from table 4.1).

For each set of chosen hyper-parameters and model architecture, each model is trained 10 times to
account for any undesired randomness in the set-up environment. We train the models for 50 epochs.

4.4. Results 21

Hyper-parameter min max step

Convolutional layers 1 2 1

Convolution filters 8 32 8

Convolution kernel size 2 20 2

Pooling size 2 20 2

Pooling stride 2 20 2

Dense (fully-connected) layers 1 3 1

Neurons (for dense or fully connected layers) 100 1000 100

Learning rate 0.0001 0.001 0.0001

Mini-batch 100 700 100

Options

Pooling Type max pooling, average pooling

Activation function (all layers) ReLU, Tanh, ELU, or SELU

Table 4.1: Ranges used for random hyper-parameters where the differences with [58] are highlighted in green.

We train the models 10 times and use the following metrics to assess the model’s potential can-
didacy. Each time we train a model, we calculate the model’s average guessing entropy 𝐺𝐸 reached
when using 1000 attack traces averaged over 100 attacks. We then train the model 10 times, take the
average of the average GE reached over these 10 attempts, and define this metric as 𝑀𝐺.

̄(𝑀𝐺) = 1
10

10

∑
𝑖=1

̄𝐺𝐸𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑖 (4.1)

In the same matter, we define𝑀𝑁. Whereas 𝑁̄𝑇𝐺𝐸 is the average number of traces needed to reach
a guessing entropy of less than 1 when using 1000 attack traces averaged over 100 attacks, 𝑀𝑁 is
when we train the model 10 times and take the average 𝑁̄𝑇𝐺𝐸 reached over these 10 times.

(𝑀𝑁) = 1
10

10

∑
𝑖=1
𝑁̄𝑇𝐺𝐸𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑖 (4.2)

We define the minimum 𝑁̄𝑇𝐺𝐸 a model reached over the 10 times it was trained as 𝑁̄𝑇𝐺𝐸𝑚𝑖𝑛𝑖𝑚𝑢𝑚 .
When the algorithm selects a model based on its 𝑀𝐺 (and 𝑀𝑁) as a possible candidate. We confirm
these results by building and training this model one single time on a separate pc using the same
amount of attack traces (1000 traces averaged over 100 attacks) and defined the 𝑁̄𝑇𝐺𝐸 and 𝐺𝐸 obtained
as 𝑁̄𝑇𝐺𝐸𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 and 𝐺𝐸𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑. Initially we set the algorithm to select candidates based on their 𝑀𝑁
and categorize them into: possibly converging (where 10 < 𝑀𝐺 < 50), good candidates (where
1 < 𝑀𝐺 < 10) and strong candidates (where 𝑀𝐺 < 1).

Initial experiments are performed on an HPC cluster equipped with a 1080 TI video card and 8 GB
of RAM. Unless stated otherwise, all the experiments are conducted over a period of 7 days.

4.4 Results

4.4.1 Architectures for Hyper-parameter injection
In this section, we experiment with three different architectural patterns commonly used across deep
learning domains and investigate their effect on model performance for side-channel datasets. Initially,

22 4. Ranges and constraints

we use these architectures alongside the hyper-parameters selected from table 4.1.

The first pattern we investigate is the GAP design pattern (depicted in figure 4.3), where the ar-
chitecture uses a Global Average Pooling layer [31] after the convolutional part of the network. As
previously mentioned, the idea behind the GAP layer is to average all the feature maps extracted by
the convolutional part of the network before doing any classification. For this particular experiment, we
find multiple models that can retrieve the dataset’s encryption key. The result of re-training the can-
didates found by the algorithm for 1 single trail can be observed in figure 4.6. These results indicate
that combining a GAP layer with several dense layers before the final output can result in a beneficial
architecture as it can produce good results when applied to side-channel datasets.

In [31] it is argued that global average pooling can prevent overfitting because it directly uses the
output of the convolutional part and consequently feeds this to the softmax layer after averaging. Hence,
it makes sense to use a similar architectural approach to theirs by removing the classification part and
solely use the GAP layer between the convolutional part and the final layer. As this has worked well
for many previous approaches, we assumed that this would work well in the case of side-channel
analysis, as we suppose that the leakage extracted in the convolutional part of the network may be
sufficient enough to make an appropriate classification in the softmax layer of the network.

When we compared the previously obtained results to those obtained by the architecture that solely
uses a GAP layer, as depicted in figure 4.4, we observed a significant decrease in model efficiency rel-
ative to those depicted in figure 4.6, as no converging models are found for this particular construction.

We assumed that this might have to do with the low amount of features and convolutional layers
drawn from our initial ranges. The reason for presuming this is because additional (and more abstract)
features may be beneficial for the global pooling operation because there is more information to work
with than when using shallow convolutional parts. In order to test out this theory, we adjusted the
ranges to include more layers and more filters per layer before running any new experiments. For
the experiments with more convolutional layers containing more filters, we did indeed notice a slight
increase in overall model performance; however, these experiments did not show a significant enough
improvement concerning this particular architectural pattern as, again, here, no model was found that
reached a guessing entropy of 1.

Figure 4.3: GAP + Dense architecture.

A natural hypothesis arising from these results is that the GAP layer itself does not contribute sig-
nificantly to the results we obtained in figure 4.6. We confirm this by removing the GAP layer and only
keeping the dense layers (as depicted in figure 4.5). For this particular construction we achieve far
better results than those depicted in figure 4.6 as can be seen in figure 4.7. Hence we can confirm that
the usage of GAP layers does not seem adequate for side-channel datasets and that the conventional
approach using a flatten layer along with several interconnected dense layers is a far better option for
SCA.

Figure 4.4: GAP only architecture.

4.4. Results 23

Figure 4.5: The conventional architecture.

We suspect this observed behavior is because the GAP layer averages information, resulting in the
contamination of convenient features by averaging it with irrelevant feature maps. The consequence is
that the classification part of the network is given much more noisy features than when using the flatten
layer, which only flattens the input and preserves all the information as outputted by the convolutional
part. Certain specific ranges may exist where this architecture may give better results; however, be-
cause not a single model converges below a guessing entropy of 50, we conclude that the GAP layer
(whiteout consequent dense layers) does not aid in the detection exploitation of side channel informa-
tion.

For completeness, we also show that the same algorithm also achieves extremely good results on
a more trivial dataset such as Ascad 𝑁 = 0, as displayed in figure 4.7b. The smallest 𝑁̂𝑡𝐺𝐸 (averaged
over 10 trials) found for ASCAD 𝑁 = 0 was 169, which is less than both [59] who achieved 191 and
[41] who achieved 172. The smallest 𝑀𝑁 found for ASCAD 𝑁 = 50 was 397 (where the minimum 𝑁̂𝑡𝐺𝐸
reached within the 10 trials was 314), where [59] achieved 244 and [41] achieved 313.

Due to these results, we recommend the more conventional structure for convolutional neural net-
works depicted in figure 4.5 and continue with this particular set-up for the remainder of our chapter on
experimental results.

Figure 4.6: Architecture using a common GAP approach as depicted in figure 4.3. Results were obtained using the ASCAD
N=50 database and the hyper-parameters ranges presented in table 4.1. Initially, 38 converging models were found where: 34
were potential candidates and 4 were good candidates. When retraining the models (for one trial), we found 4 strong candidates.

24 4. Ranges and constraints

(a) Ascad N=50. (b) Ascad N=0.

Figure 4.7: Results for running the setup depicted in 4.5 along with random hyper-parameters with the ranges of table 4.1. In
4.7a: re-training of the initially found 145 converging (guessing entropy <= 50) models: Initially 46 potential, 74 good, and 25
strong candidates. When retraining the initially found 145 models for one trial: 30 strong candidates are found, 4.7a shows
the result of retraining the initially found 145 models. In 4.7b for ASCAD N=0 initially, 192 converging models were found: 39
were potential candidates, 24 were good candidates, and 128 were strong candidates. When retraining all the initially found 192
models for one trial: 146 strong candidates are found 4.7b shows the result of retraining the initially found 192 models.

4.4.2 Max-pooling vs Average-pooling
We found strong candidates using both average pooling and max-pooling, where the results when
using average pooling results were significantly better. As shown in figure 4.8, even-tough we find both
potential and good candidates, the initial run did not find any strong candidates; however, we did find
strong candidates when retraining the models for one single trial.

(a) Average pooling. (b) Max pooling.

Figure 4.8: Comparison between average pooling and max-pooling: in 4.8a Average pooling achieved 30 strong candidates
during re-training, whereas in 4.8b max-pooling only found 16 strong candidates.

The main reason for this difference could be attributed to the fact that when using average pooling,
we take all neighboring values into account that fall within the filter’s windows range and retain all rele-
vant information, where only the magnitude of this information is altered. In contrast, max-pooling omits
all values except those that are relatively high compared to its neighbors, with the risk of losing valuable
information because low channel values can also contain leakage concerning the relevant information.
Due to the insights gained from these results, we continue the remainder of the experiments with the
average-pooling layer as a fixed choice when injecting the random hyper-parameters for pooling size
and stride. The set-up of the architecture random hyper-parameter generation is depicted in figure 4.2

4.4.3 Learning rate and mini-batch
In [59] the One Cycle Learning Rate Policy is applied during model training with the argument that it
allows them to use very high learning rates due to the algorithm’s ability to adjust the learning rate
(based on the accuracy fluctuations) for every epoch during the learning process. In our experiments,
we applied the One Cycle learning rate Policy to the models trained with the hyper-parameters selected
from our ranges and compared the overall results with those that did not use the OCLP. We investigated
its effect on the number of models found and their performance.

4.4. Results 25

Figure 4.9: using the one cycle learning rate: the result of retraining the converging (averaged a guessing entropy of less than
50 over 10 trials) models found on ASCAD N=50: With 1000 attack traces averaged over 100 attacks,

The algorithm that used the One cycle learning rate found 97 converging (guessing entropy less
than 50) models, out of which 12 reached a guessing entropy of less than 1 and 50 reached a guessing
entropy between 10 and 1. The results of retraining these 97 models are shown in figure 4.9, where
25 models were found that reached a guessing entropy of less than 1. As can be observed in the
comparison made in table 4.2, this is far less than the 145 converging models that were found without
using the one-cycle-learning-rate.

Guessing entropy With One-cycle learning rate Without
Less than 1 12 25

Between 1 and 10 50 74
Between 10 and 50 33 46

Total 97 145

Table 4.2: One cycle learning rate.

The suspicion behind the poor performance of the algorithm when using the one-cycle-learning rate
is that the total training time per model increases by a marginal (often negligible amount) due to the
presence of an extra callback during each epoch in order to update the learning rate during the training
phase. For the overall algorithm, these marginal computation times may add up significantly in the
long run and may, in turn, result in fewer models per time period. Another possible reason is that our
ranges for the learning rate may be too small in order to fully take advantage of the benefits provided
by the OCLP algorithm; hence, it may be beneficial if we adjust our ranges concerning the learning rate
when using this algorithm. Because we observe consistently good results with a fixed learning rate,
we believe that the selected range is adequate. These results were expected as 0.001has given good
results across multiple domains where deep learning has been applied; hence is often considered
the default choice when tuning time is limited. Moreover, because the learning rate is arguably the
most critical hyperparameter to tune, we do not think any adjustments would be advantageous as an
increased range could result in highly fluctuating results. Nevertheless, as we did not see any apparent
benefit in our experiments, we continued the remainder of our research in this chapter without theOCLP,
as we found more architectures to inspect when this is not activated.

Hence for the remainder of our experiments, we do not use the one-cycle-learning rate when training
the models with randomly generated hyper-parameters from our pre-defined ranges.

Concerning the batch size, we found that models with both small and large mini-batches could reach
a guessing entropy of 1; however, we found that the best performing models used a batch size of > 200

26 4. Ranges and constraints

during their training. We assume this is because a larger mini-batch can enable faster computations
(because we have fewer steps per epoch) while reducing the noise in the gradient [21], allowing the
network to learn easier. The variations in the gradient are eliminated because we use a more significant
portion of the samples, and hence the gradient becomes less subject to high variance. Taking this point
into account, we argue that it is more likely for a model to converge when using a larger batch size. Of
course, it is possible to choose a batch size that may cause the learning algorithm to get stuck in local
minima; however, we did not observe this in our experiments because multiple models are found with
a batch size of 700. The best performing models found on 𝐴𝑆𝐶𝐴𝐷𝑁 = 0 used a mini-batch size of 100,
whereas the best performing models on 𝐴𝑆𝐶𝐴𝐷𝑁 = 50 used a mini-batch size between 400 and 600.
This observation might suggest that larger batch sizes may be more interesting for non-trivial datasets.

4.4.4 Activation function

Figure 4.10: Distribution of the models (that were re-trained figure 4.7a) found by the algorithm where 𝑀𝐺 < 1 in terms of their
𝑀𝑁 and amount of 𝑡𝑟𝑎𝑖𝑛𝑎𝑏𝑙𝑒 − 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 for ASCAD n=50.

When further analyzing the models from figure 4.7a, we see an interesting pattern concerning the
activation functions that the convergingmodels employ. We depicted the activation functions andmodel
parameter-count in figure 4.10, where we clearly see that the convergingmodels tend to favor the SeLU,
ReLU, and ELU activation functions over the Tanh functions. In [59] the 𝑆𝐸𝐿𝑈 activation-function is
recommended; however, figure 4.10 shows that 𝐸𝐿𝑈 was more common amongst the models selected
by the algorithm.

Parameters Activation-function Ntge observed Ntge min MN MG

187192 selu 495 398 508 0.112
88604 elu 710 405 510 0.11
85500 elu 875 391 534 0.127
363844 elu 506 322 540 0.186
455336 elu 773 412 544 0.115
295456 elu 418 409 556 0.136
358648 elu 593 404 581 0.16
209076 elu 525 498 584 0.162
342060 elu 664 417 611 0.431

Table 4.3

Looking more closely at the activation functions, we see that their ranges (depicted in figure 4.4)
show that Tanh, ELU, and SELU each contain negative values, whereas the RELU activation function

4.4. Results 27

only contains positive values. According to [9] the ELU activation function gives good results because it
contains negative values, which allow the ELU activation function to guide the mean activation function
toward 0, which could explain the good results obtained compared to the ReLU activation function.
However, when taking the Tanh activation function into account, we see that this activation function
also contains negative values but does not seem to contain any converging models for the side-channel
dataset. Further investigation into the differences in the mathematics behind the activation functions
shows that compared to other activation functions, the Tanh activation function has onemajor drawback
concerning the training process of models, namely, when the input x of the activation function is positive,
we do not get the (scaled) identity 𝑥 but a value between 0 and 1 which can result in a small derivative
(gradient). This phenomenon can cause the gradient to become too small when x is large and cause
the gradient to disappear (which is often referred to as the vanishing gradient problem).

Note that ELU and ReLU do not have this problem because the positive values of 𝑥 result in 𝑥 (in
the case of SELU in 𝜆𝑥 where 𝜆 > 1), as can be seen in figure 4.4.

af minimum value maximum value

relu 0 𝑥
elu 𝑎(𝑒𝑥 − 1) 𝑥
selu 𝜆𝛼(𝑒𝑥 − 1) 𝜆𝑥
Tanh −1 1

Table 4.4: ranges of the activation functions used in the experiments.

Hence we conclude that Tanh is not a good activation function when constructing DNN for side
channel analysis because it is more prone to the vanishing gradient problem than the RELU, ELU, and
SELU activation functions. We confirm these results by repeating the experiment multiple times for
each (fixed) activation function. The results when fixing the activation function are given below.

The results when keeping ReLU, ELU, SELU, and Tanh fixed confirm our hypothesis. Note that
we argue against any form of manual pre-processing (before training the model) in this thesis because
we would like the convolutional part to do our processing for us. Both [] and [] used pre-processing
for specific datasets, where the data values were normalized between 0 and 1. We leave research
surrounding pre-processing (for example, choosing normalization ranges of (0,1) or (-1,1)) for future
work. We further attribute the differences between the ELU and SELU activation functions (where
positive values are linear in 𝑥) to the scaling factor 𝜆 > 1, which was suggested to work well with
the 𝑙𝑒𝑐𝑢𝑛 − 𝑛𝑜𝑟𝑚𝑎𝑙 for weight initialization, however seeing as we make use of the he-normal weight
initializer, its does not seem to outperform ELU.

(a) 𝑁 = 50. 59 Potentially-converging, 94 good-candidates, 55 strong-
candidates. retraining 74 strong candidates. (b) N=100

Figure 4.11: 𝐸𝐿𝑈.

28 4. Ranges and constraints

(a) 𝑁 = 50. 64 Potentially-converging, 74 good-candidates, 19 strong-
candidates. When retraining 37 strong candidates. (b) N=100

Figure 4.12: 𝑆𝐸𝐿𝑈.

No converging models for Tanh were found, which is supported by some of the findings presented
in [58] and in figure 4.10.

As we can see, our hypothesis regarding the activation functions is confirmed. If we look at the
models found in more detail, we can see that based on both the number of models as well as the
performance of the models, we achieve outstanding results which confirm our hypothesis regarding
both the hyper-parameters as well as the architectural constraints we discussed in our approach section
of this chapter. We can see the top 10 models for each of the activation functions depicted in table 4.5.
If we look closer at the top models for each activation function, we see that they have a large variance
in their hyper-parameter values, as shown in figure 4.13. Due to this observation, we analyze the
remaining hyper-parameters on the construction of the models found in more detail in the next section.

ReLu ELU SELU

Rank parameters 𝑁𝑇𝐺𝐸 parameters 𝑁𝑇𝐺𝐸 patameters 𝑁𝑇𝐺𝐸
1 111736 461 69540 326 1136588 435

2 72272 489 63036 387 1650388 492

3 98260 652 520396 407 2335540 509

4 60020 688 2715484 431 404324 514

5 84536 719 514984 446 2745048 534

6 2732864 787 301300 452 168232 553

7 60052 798 1317300 469 714256 580

8 618624 805 545624 498 974432 582

9 1075604 867 788884 508 1541400 613

10 480192 872 301628 529 900600 637

Table 4.5: Top 10 performing models for activation functions ReLU, ELU and SELU on ASCAD 𝑁 = 50.

4.4. Results 29

(a) elu: with mini-batch 400 and learning-rate:
0.0003.

(b) relu: with mini-batch 300 and learning-
rate: 0.0005.

(c) selu: with mini-batch 200 and learning-
rate: 0.001.

Figure 4.13: Comparing the top models found during the initial round of experimentation.

4.4.5 Range assessment
Convolutional filter sizes

When analyzing the convolutional filter sizes of the models found, we find that they are widely spread
out in the selected ranges; however, we did notice a higher number of strong candidates with a larger
convolutional filter size, as can be observed in figure 4.14. We suspect that this phenomenon has to do
with the fact that a larger convolutional filter has a larger perceptive field and hence can extract useful
features from desynchronized traces more easily than smaller filters.

Smaller filter sizes can detect local features. Larger filter sizes can detect global features. Hence, it
stands to argue that we may want a more global view of the traces when traces are misaligned. How-
ever, when misalignment is not present, larger filter sizes are not extremely useful as, in this particular
scenario, we are more interested in local features.

We investigated this phenomenon further by increasing the range for the convolutional filters from
[2, 20] to [20, 40] (figure B.1), and [40, 65] (figure B.2). As we can see in figure B.1 and figure B.2, the

30 4. Ranges and constraints

increase in the range also caused an increase in the number of strong candidates; however, when we
look more closely at the performance of the models, we see that the performance gain is almost neg-
ligible. Because of the negligible performance gain, we conclude that the ranges [2, 20] are sufficient
when solely considering the 𝑁𝑇𝐺𝐸 metric. We suspect that the increase in strong candidates may have
to do with the dataset used and the counter-measures employed by the encryption algorithm, which
we investigate further in chapter 5.

One conclusion that we can draw from these experiments is that outside of the fact that our ranges
provide enough strong candidates, models with larger convolutional filter sizes train well on SCA
datasets as opposed to other domains such as image recognition (where only small filter sizes are
used). When training the models with a more extensive convolutional filter size range, we also noticed
that the memory usage was higher, and thus this could make a difference if we would require larger
models (which so far has not been the case for the side-channel domain). The overall increase in
training time was negligible for the individual models. Even when increasing the number of convolu-
tional layers, we did not notice that the convolutional filter size significantly impacted the overall model
performance or the training time.

(a) selu (b) relu

(c) elu

Figure 4.14: Assessing the filter sizes of the converging models: ranges [2, 20].

It is possible that even though smaller filters can detect more local and larger ones more global fea-
tures, both can be used by the classification part to ultimately construct the same abstract information
that may be required to ensure the correct classification of a trace. This possible theory lends itself to
the fact that it was shown in [47] how multiple sequential smaller convolutional filters (without spatial
pooling in between) can replace larger ones (e.g., two sequential 3𝑋3 filters can replace a 5𝑋5 filter, and
two 5𝑋5 filters can replace a 7𝑋7 filter). However, contrary to their architecture, because we chose to
incorporate a pooling (as well as a batch normalization) layer in between sequential convolutional lay-
ers, we may need to consider the pooling layer’s effect when assessing the model’s feature-extraction

4.4. Results 31

mechanism.
If we consider that larger convolutional filters can detect more global features and smaller ones

more local features, we also have to take into account what the pooling filter will do to the extracted
features. The pooling layer can increase the network’s ability to detect more shift-invariant features;
hence, we argue that many of the global features that a larger convolutional filter may detect can
also be detected by a smaller filter provided that it is combined with a pooling layer containing the
correct pooling filter size. This is another possible theory on why the use of different convolutional filter
sizes may result in the same performance; however, because multiple factors are involved, we do not
immediately eliminate the effect of other hyperparameters on the choice of the filter size, and further
empirical studies may give better insights into this phenomenon.

Pooling filter sizes

We investigated the effect of the pooling layer (where we constrained the size and stride to be of the
same size) and plotted these values against the model performance. As shown in figure 4.15, we see
that different combinations of sizes yield the same level of performance. We also see that filter sizes
are widely spread over our range selection, which leads us to conclude that the ranges we defined are
adequate for this specific dataset when combined with our architectural constraints.

(a) selu (b) relu

(c) relu

Figure 4.15: Assessing the pooling sizes of the converging models.

Another interesting thing to point out is that when increasing the pooling ranges from [2, 20] to
[20, 35] (while keeping other ranges the same), we only found strong candidates that solely consist of
1 convolutional layer for ELU, even though the ranges for the number of convolutional layers is 2. We
see this same phenomenon for the SeLU activation function, where we find 51 good candidates with
one convolutional layer and only 16 with two convolutional layers. As we can see from the experiments

32 4. Ranges and constraints

depicted in figure B.3 and B.4, the convolutional filter size can be small and still be able to detect leakage
when the pooling size is large. A more detailed example of such a scenario is given in figure 4.16. This
observation would suggest that the pooling size may be far more significant than the convolutional filter
size for certain datasets. As we also notice an increase in the number of models found when increasing
the filter ranges, we hypothesize that the choice of the convolutional filter size, as well as the choice of
the pooling filter size, may be dataset-dependent and may have more to do with dataset properties as
opposed to other hyperparameters settings. We will assess the pooling element further in chapter 5,
where we also consider dataset features.

(a) mini-batch 500 and learning-rate: 0.0003,
min 𝑁𝑇𝐺𝐸 : 343, avg 𝑁𝑇𝐺𝐸 : 439.

(b) mini-batch 200 and learning-rate: 0.001,
min 𝑁𝑇𝐺𝐸 : 437, avg 𝑁𝑇𝐺𝐸 : 659.

(c) mini-batch 400 and learning-rate: 0.0008,
min 𝑁𝑇𝐺𝐸 : 378, avg 𝑁𝑇𝐺𝐸 : 561.

Figure 4.16: Models with single convolutional layer (ASCAD 𝑁 = 50): Example where a model with a small convolutional-filter
size of 2 (figure 4.16a) along with a large pooling size, outperforms models with a large convolutional-filter size (fig 4.16b and
4.16c). This observation suggests that there may be a difference in the level of importance when comparing convolutional size
to pooling filter size.

Classification part

When inspecting the number of neurons used in the dense layers of the models found, we see that
they are evenly spread out and find well-performing models regardless of the number of neurons cho-
sen. When inspecting the number of neurons used in the dense layers of the models found by the
reinforcement learning methodology [41], we notice that often the amount of neurons found is relatively
tiny <= 15 with a maximum value of 20, the same counts for the models in [59], whereas we use
a maximum of 1000. Hence we attribute this observation to the fact that our range selection for the
classification part is more than capable of approximating the underlying distribution function associated
with the leakage. We could choose to lower them; however, because models in the field of SCA tend
to be small in size, we argue that our selected ranges are a proper choice as the number of neurons
does not add a significant drawback to the training time and because other future SCA data-sets may
require more capacity.

4.4. Results 33

Figure 4.17: Elu: Amount of dense layers vs amount of neurons (for models with both 1 and 2 convolutional layers).

4.4.6 Deeper networks
Even though we obtain competitive results with models that only contain either 1 or 2 convolutional lay-
ers, we pay attention to the fact that the models from [41] use at least 3 convolutional layers. Further-
more, the only models from [41] with which the results were reproducible were models that contained
either 4 or 5 convolutional layers. In this section, we aim to investigate models’ performance when
using an increased number of convolutional layers.

When extending the ranges for the number of convolutional layers, we are faced with the possibility
that, due to our selection of pooling ranges, certain combinations of random hyper-parameter selections
could result in a model that produces an output of size 0, which could happen if the pooling sizes used
in the convolutional-part of the network are too large. Hence, those specific combinations of hyper-
parameter values can produce an invalid CNN model.

We demonstrate this problem using the input and output sizes of the convolutional part for the
𝐴𝑆𝐶𝐴𝐷 databases depicted in figure 4.18. The 𝐴𝑆𝐶𝐴𝐷 database contains traces of length 700, and
when passed to a pooling layer of size 𝑥, the output of this pooling layer is 700 ∗ 1

𝑥 and if this output
is again passed to a pooling layer, it is again divided by pooling size 𝑥 (since we use a pooling-stride
equal to the filter-size of that pooling layer) until the last pooling layer is reached. If this value becomes
less than one at any point, the input for the next layer is considered invalid. When a trace has passed
through the last convolutional block, we refer to its dimensions as 𝑇𝐿𝐶.

Note that when we used a range of 2 for the number of convolutional layers, we were not faced with
this problem because the lowest value that could be for 𝑇𝐿𝐶 was 700 ∗

1
20 ∗

1
20 = 1, 75.

Figure 4.18: The value of 𝑇𝐿𝐶.

To prevent this from happening, we can either adjust the ranges of the pooling layers or only select
the models where the 𝑇𝐿𝐶 value is above a specific value. We chose to do the latter. We also hypoth-

34 4. Ranges and constraints

esize that the value of 𝑇𝐿𝐶 may have some relation to how well the network performs, and hence we
investigate this by repeating the experiments for different ranges. The results can these experiments
be observed in table 4.6. Although we do see an increase in the performance of the models that have
more convolutional layers, there is currently not a clear indication of the value of 𝑇𝐿𝐶 having a significant
impact on the performance of the models, as can be observed in figure []. Hence from this experiment,
we can conclude that the amount of features is not as relevant as the type of features that the classifi-
cation part receives from the convolutional part. We investigate this phenomenon further in chapter 6,
where we also consider the dataset features.

range [1,2] range [3,4] range [5,7]

Model Parameters MN Ntge min Parameters MN Ntge min Parameters MN Ntge min

1 520396 397 314 321728 315 174 730064 337 235

2 179804 473 352 361432 344 275 2249480 349 294

3 78836 483 381 2120668 362 275 562264 393 254

4 252128 495 387 2056332 410 330 1357816 407 284

5 1576760 509 436 123468 458 352 2524236 407 250

6 169196 533 425 83144 466 297 167720 416 306

7 514984 544 412 1828880 474 301 1813704 419 309

8 67948 558 308 714976 495 326 358156 423 331

9 63036 566 307 131892 509 366 187648 436 320

10 117852 568 380 377168 523 460 3130444 471 323

Table 4.6: Deeper models: increasing the number of layers for the architectural structure presented in figure 4.2.

4.5 Discussion
Although the GAP layer has worked well in other areas [31] where Deep learning has been applied,
in the experiments performed with our current setting with specific ranges and structural constraints, it
does not seem to perform well with side channel data. We presume this is because much information
is omitted as we average over all the feature maps. The omitting of certain information in the field of
SCA may have a less desirable effect than it does on other fields where DL is applied (such as image
recognition) because there is an active attempt to hide the exploitable information. The exploitable
information may be small at any given time point of the trace as it may also contain other information
such as background noise and other irrelevant computations. Hence, any vital information extracted
through one filter can become polluted by those extracted by a different one.

Furthermore, we see the same effect when comparing max-pooling to average pooling. We observe
that when substituting the average pooling layer with one that uses max-pooling, the performance of
the overall models is slightly decreased. Again here, we assume that this is because the max-pooling
layer only retains the larger values and omits contained by the window filter at the time of pooling, and
hence has a higher dismissive rate than average-pooling layers (where information is only averaged,
which leads to less information loss).

In our experiments, we also observed that the pooling filter size might have a higher significance
when it comes to model performance as opposed to that of the convolutional filter size. We observe
that we achieve similar performance with different filter sizes across multiple layers, where we see that,
even though we find more models with a large filter, their performance is not significantly higher than
the models using smaller filter sizes. We assume that the larger filter size’s ability to detect more global
features may have a more beneficial effect on datasets with some form of random delay, as we can
obtain a more abstract few of the properties, as opposed to datasets where there is no random delay
and the detection of local features may bemore beneficial. The pooling layer, however, can significantly
enhance a model’s ability to detect shift-invariant features and hence may make it easier for models to
detect any sort of feature even when using smaller filter sizes.

4.5. Discussion 35

Concerning the number of hidden layers and neurons within these layers, we know that the universal
approximation theorem [18] states that a feedforward network with only one hidden layer and a finite
number of neurons can approximate any measurable continuous function. Our experiments found that
our original ranges gave good results without any clear indication of a preference for 2 or 3 hidden
layers. Also, when looking at the number of neurons per layer, we did not see any clear indication of
choosing one over the other as we found similar performance for models with fewer neurons as those
with more. This result was expected as previous research used a relatively low amount of neurons
in their experiments with models that showed convergence. Contrary to a common assumption that
models using a high amount of neurons in their dense layers were more likely to overfit due to their
high capacity, we did not find any evidence of this during our experiments, which indicates that the high
capacity of our ranges is still a good selection.

Contrary to the universal approximation theorem, it was shown in several works [52] [53] that there
may be significant benefits for a deeper classification part as opposed to that of a shallow one; however,
this may be dataset dependent and may need to be empirically determined. Taking this into account,
we also did some experiments with ranges that used a deeper classification part, where we set the
number of layers between 5 and 10 with fewer neurons per layer. Also, for these experiments, we
only noticed a slight difference in results regarding the number of models found. We did not see any
significant differences in model performance for the experiments conducted so far with the databases
selected. These observations indicate that, at least for these databases, three layers may be more
than sufficient.

When using a deeper convolutional part, we notice an increase in the overall number of models
found and the individual models’ performance. We assume this is because we can abstract more
feature information and have deeper layers learn weights that can adjust features from previous layers,
making them more useful for the classification part of the network. Again, this may also be dataset-
dependent and is an element we look more closely at in the next chapter.

In this chapter, we have compared different architectural approaches and assessed their adequacy
for the side-channel domain. Using the insights gained from our comparison, we developed practical
architectural constraints for model construction. Furthermore, we have identified effective ranges that
work well with our architectural constraints and produce effective convolutional neural networks for the
side-channel analysis domain. The benefit of our approach lies in the way we assess our ranges. As
stated in section 4.3, the algorithm trains a model 10 times before any selection procedure starts, which
has the benefit that candidates selected by the algorithm perform well, even in the presence of unde-
sired randomness, and ensures the reproducibility of their results and ensures our range assessment
is robust (without any form of pre-processing). Not every existing methodology does this; whereas
we take the average performance over 10 trials into account, models selected by the methodology in
[41] do not. Yes, the methodology used in [41] produces good results; however, this only happens
occasionally. As depicted in appendix A, we attempted to reproduce the results from the top-10 mod-
els that were found by the reinforcement learning methodology and only found 3 of the top 10 models
showing signs of conversion (even-tough pre-processing), where one particular model showed strong
convergence, as can be observed in Appendix A (table A.2).

Hence, because our strategy consistently produces a high number of high-performing models with
reproducible results, we conclude that both our range assessment and architectural assessment are
fair and that the ranges and architectural constraints are indeed valid and effective for constructing
Convolutional neural networks for the side-channel analysis domain. Note that our assessment strategy
can easily be applied to any side channel analysis dataset. In the next chapter, we look at the dataset
attributes and interpret-ability methods with the intent to identify what the relationship between hyper-
parameters and different dataset characteristics looks like.

36 4. Ranges and constraints

Hyper-parameter min max step

Convolutional layers 1 2 1

Convolution filters 8 32 8

Convolution kernel size 2 20 2

Pooling size 2 20 2

Pooling stride 2 20 2

Dense (fully-connected) layers 1 3 1

Neurons (for dense or fully connected layers) 100 1000 100

Learning rate 0.0001 0.001 0.0001

Mini-batch 100 700 100

Options

Pooling Type average pooling

Activation function (all layers) ReLU, ELU, or SELU

Table 4.7: Ranges used for random hyper-parameters where the differences with [58] are highlighted in green.

Chapter 5

Attribution methods

Many deep learning architectures have currently been treated as black box solutions where one only
analyzes the output of the final layer and computes an error relative to the expected value. In case of
poor performance (e.g., high error rate), it has been a traditional approach to adjust hyperparameters
or input data until the error rate has become sufficiently small. It has been scarce in the past that
one tries to interpret individual components of the deep learning architecture itself. There are mainly
two reasons why interpretability has been lacking so far; one is a lack of domain knowledge, and the
other is a lack of deep learning knowledge, as it is scarce to find an expert in both categories. Another
factor to take into account is that when dealing with deep learning models, there may be thousands
(in some cases millions) of features that are extracted, which can make it a cucumbersome task to
assess each feature individually in terms of their meaning and relevance, and figure out where the fault
lies. This is often why often times automated empirical methods (e.g. reinforcement learning, genetic
algorithms) are used to fine-tune model hyper parameters concerning their decision making process;
however these approaches do not solve the black-box lemma.

Evaluating machine learning models by only using empirical methods has been prone to producing
models that exhibit unexpected behavior, especially when models were given unseen data in unantic-
ipated scenarios; this has led to surprising results in the past in both moral and technical settings.

In this chapter, we investigate the applicability of attribution methods in the side-channel analysis
domain and see whether these can be used to gain more insights into the models decision-making
process, and, in turn, whether these can be exploited (within the time frame of this thesis) in order
to generate high-performing CNNs for side-channel datasets. Specifically we aim to answer research
question 2. The chapter is set up as follows: first, we give a short motivation in section 5.1 concerning
our approach, in section 5.2, we compare the saliency maps of different high-performing models in
order to answer the question of whether or not different CNNs look at the same part of the input in
their classification procedure and investigate whether a high performing model can make use of data-
segments other than those that are indicated to have high leakage according to common leakage
assessment tools (such as SNR), for its decision-making process. In section 5.3, we investigate the
extent to which the hyper-parameters values of a model can be determined through knowledge of
dataset-specific features and the use of visual attribution methods, after which we conclude this chapter
with a discussion in section 5.4.

5.1 Motivation
Attribution methods are often used to gain insights into a neural network’s decision-making process
by determining the input areas that influence a model’s output and by what percentage. It has been
commonly used in image-recognition models to determine whether the pixels belonging to an object
are used to classify it or whether the pixels in the background contribute more to the determining fac-
tor. Hence they are often used as a tool to enhance both the interpretability and explainability of a
model’s decision-making process, which has often led to the construction of more robust models due
to insights gained on the relationship between deep-learning architectural components (such as hyper-
parameters) and input contributions toward object classification. As the use of deep learning in SCA has

37

38 5. Attribution methods

shown to be quite effective on several accounts [3] [41], it has grown into one of the more mainstream
methods for performing side-channel analysis attacks in somewhat practical settings. However, even
though it has been an effective strategy in the side-channel domain, even when counter-measures are
present, it is more often used as a black-box method to solve the key-retrieval process for side-channel
data. There have been few attempts made [59] where the model’s inner-workings were taken into
account in terms of interpret-ability and explain-ability; however, these claims were shown to be some-
what lacking at best [56]. Moreover, as we have seen from the previous two chapters, the models that
can solve a side-channel dataset may vary in terms of the hyper-parameters used. Although typical
attribution methods have been used in the past for SCA [16] [36], they were used as leakage detection
tools for SCA datasets and the localization of POIs, as opposed to increasing model performance on
SCA-datasets (or aiding in its design). Hence in this chapter, we aim to determine whether a relation-
ship can be established between the areas of the input contributing the most toward class probabilities
and hyper-parameter values; and seek to exploit this information for generating high-performing CNNs
for side-channel attacks.

5.2 Exploitable trace properties
Weuse the reduced traces for the ASCAD [3] database. Each of the traces within this database contains
700 samples corresponding to the interval [45400..46100] of the original traces. The database contains
50, 000 profiling and 10, 000 attack traces. The intermediate values for this interval that show leakage
according to the SNR are given in table 5.1.

Name Type Definition of the target variable Z

snr2 masked sbox output 𝑠𝑏𝑜𝑥(𝑝[3] ⊕ 𝑘[3]) ⊕ 𝑟𝑜𝑢𝑡
snr3 common sbox output mask 𝑟𝑜𝑢𝑡
snr4 masked sbox output in linear parts 𝑠𝑏𝑜𝑥(𝑝[3] ⊕ 𝑘[3]) ⊕ 𝑟[3]
snr5 sbox output mask in linear parts 𝑟[3]

Table 5.1: SNR for different intermediate values given in [3].

The corresponding SNR values are given in figure 5.1.

(a) snr2=sbox(𝑝[3] ⊕ 𝑘[3]) ⊕ 𝑟𝑜𝑢𝑡, snr3=𝑟𝑜𝑢𝑡. (b) snr4=sbox(𝑝[3] ⊕ 𝑘[3]) ⊕ 𝑟[3], snr5=𝑟[3].

Figure 5.1: SNR for the processing of intermediate values present in the interval [45400..46100] [3].

When inspecting figure 5.1 we observe that the SNRdetects high leakage in the interval [45530..45700]
for the intermediate value 𝑟𝑜𝑢𝑡 and high leakage in the interval [45850..46030] for the intermediate value
(𝑠𝑏𝑜𝑥(𝑝[3] ⊕ 𝑘[3]) ⊕ 𝑟𝑜𝑢𝑡). We also observe leakage in the interval [45500..45600] for intermediate
value 𝑟[3] and leakage in the intervals [45900..46000] and [46550..47550] for the intermediate value

5.2. Exploitable trace properties 39

(𝑠𝑏𝑜𝑥(𝑝[3] ⊕ 𝑘[3]) ⊕ 𝑟[3]). We insist that the interval [46550..47550] is not present in the reduced
traces and is mentioned for completeness rather than its relevance for the reduced traces.

The attack on the ASCAD database is set up to target the third byte of the encryption key where
corresponding labels in this database contain the value of 𝑧 = (𝑠𝑏𝑜𝑥(𝑝[3] ⊗ 𝑘[3]) ⊗ 𝑟𝑜𝑢𝑡). Because
of this, it could stand to argue that any particular model exploiting the SNR leakage for this particular
target variable would focus on the areas within these traces, where 𝑠𝑛𝑟2 and 𝑠𝑛𝑟3 have relatively high
values.

An example of a single trace taken from the interval [45400..46100] is given in figure 5.2a and the
average of the 50, 000 profiling traces is given in figure 5.2b.

(a) single profiling trace. (b) average profiling trace.

Figure 5.2: Traces from ASCAD 𝑁 = 0.

As we can see from the profiling traces depicted in figure 5.2, we do not observe any particular pat-
tern concerning the locations where leakage occurs according to the SNR from figure 5.1a. However,
if we were to assume that this is indeed the area that the model should devote more attention to, as
opposed to other areas of the signal, we could adjust the model in such a way so that the saliency map
has high values for that specific part of the signal (we can verify this by plotting the saliency map of that
model).

For the attack on the ASCAD database, we use the model initially introduced in [59] to attack the
𝐴𝑆𝐶𝐴𝐷 dataset with a desynchronization counter-measure of𝑁 = 50. However, in this scenario, we use
it to attack the synchronized (𝑁 = 0) traces. The performance of this model on this dataset containing
synchronized traces can be observed in figure 5.3.

Figure 5.3: Performance on ASCAD 𝑁 = 0, accuracy = 0.009700 and 𝑁𝑇𝐺𝐸 = 266.

As we can see in figure 5.3, the model performs well on 𝐴𝑆𝐶𝐴𝐷 𝑁 = 0, and hence we are interested
to see what areas of the input trace attribute more value to when the target variable is correctly classi-
fied. We do this by calculating and inspecting the model’s vanilla saliency map, which can be observed
in figure 5.4.

40 5. Attribution methods

(a) saliency map single trace. (b) Average saliency map over profiling traces.

(c) Average saliency map over attack traces.

Figure 5.4: Saliency map obtained for the model with the performance depicted in figure 5.3: Here we see that the areas two
highest peaks are in the same vicinity of 𝑠𝑛𝑟2 as opposed to that of 𝑠𝑛𝑟3, and that there is also a significant amount of saliency
attributed to areas where the singal-to-noise ratio does not detect any leakage.

When computing the saliency map, we see the significant peaks in the intervals [124, 300], where
the SNR shows leakage for (𝑝[3] ⊕ 𝑘[3]) ⊕ 𝑟𝑜𝑢𝑡, and [450..630] (where SNR shows leakage for 𝑟𝑜𝑢𝑡)
which explains the model’s performance.

We also see several peaks spread across the signal where the SNR shows only low leakage. These
peaks could imply that there is information in these areas used by the model that is relevant for a proper
decision-making process and that the SNR fails to detect the importance of the leakage in these areas.
Another possibility is that the information in these areas is irrelevant concerning the actual leakage and
that the fault lies in the models decision making process. If we assume that the peaks derived from the
SNR are the areas to which the model should assign more significant weight and higher saliency, we
would like to adjust the model’s hyperparameters so that the convolutional filter assigns high values to
these specific areas of the signal.

Before using the hyper-parameters to adjust the model’s saliency map, we would like to test our
theory by adjusting the traces so that only the areas deemed relevant by the SNR depicted in figure
5.1a remain. We do this by multiplying the signal trace with a vector places zeros at the areas where
no relevant leakage was depicted. The calculation vector and the resulting trace is given in figure 5.5.

5.2. Exploitable trace properties 41

Figure 5.5: Adjusting the trace to eliminate areas deemed irrelevant by SNR depicted in 5.1a. Here we only keep the trace areas
where the values for the snr2 and snr3 measurements are significantly higher.

When the model makes use of the altered traces (as depicted in figure 5.5), we observe that the
model continues to perform well in terms of its 𝑁𝑇𝐺𝐸 , and if we inspect the accuracy at each epoch, we
see that no over-fitting occurs. The resulting saliency maps for the altered traces are shown in figure
5.10.

Figure 5.6: Model performance on altered traces (in the form of those presented in figure 5.5) of 𝐴𝑆𝐶𝐴𝐷 𝑁 = 0, accuracy =
0.006800 and 𝑁𝑇𝐺𝐸 = 253. Here we see that we can still retrieve the correct key even though we use the altered traces.

As we can see in figure 5.10 the saliency maps continue to use the areas that have been set to
zeros in the altered traces. This phenomenon may have to do with the 𝑏𝑖𝑎𝑠 trainable parameter, which
can turn zero values into non-zero values, and due to the pooling and convolution operations that use
zero-valued neighbors.

(a) saliency map single trace.
(b) Average saliency map over profiling
traces.

(c) Average saliency map over attack
traces.

Figure 5.7: Saliency map obtained with the model-performance depicted in figure 5.6 on the altered traces (in the form figure
5.5: here we see that even tough parts of the original trace have been eliminated there are instances where high saliency is
attributed to these eliminated parts. We also see that the average saliency map over the profiling traces is fairly identical to that
of the attack traces with the exception of two peaks in the area of 𝑠𝑛𝑟3 and one peak 𝑠𝑛𝑟2), we also observe relativily high
variance when inspecting the saliency map for individual traces.

We also notice in figure 5.7b that there is a high saliency just outside of the area deemed relevant by
the SNR; this would suggest that although the model performs relatively well on this dataset (in terms
of its 𝑁𝑇𝐺𝐸), this model still has significant room for improvement.

42 5. Attribution methods

When reducing the signal even further by omitting the area deemed relevant by the SNR in terms
of 𝑟𝑜𝑢𝑡, we observe that the model does not converge to a guessing entropy of 0 as depicted in figure
5.8. Furthermore, if we inspect the accuracy for each epoch for the validation set, we also see that the
model fails to learn a pattern w.r.t. the labels.

Figure 5.8: Model-performance on traces where the leakage detected by the SNR w.r.t. (𝑝[3]⊕𝑘[3])⊕𝑟𝑜𝑢𝑡 has been removed)
and only the high leakage for 𝑟𝑜𝑢𝑡 is kept (as displayed in figure 5.9.

Figure 5.9: trace were only the high leakage detected by the SNR w.r.t. 𝑟𝑜𝑢𝑡 is kept.

(a) saliency-map single trace.
(b) Average saliency map over profiling
traces.

(c) Average saliency map over attack
traces.

Figure 5.10: Saliency map obtained for the performance depicted in figure 5.8 on the altered traces (in the form figure 5.9).

Interestingly when we only remove the higher SNR values for the intermediate value sbox(𝑝[3] ⊕
𝑘[3]) ⊕ 𝑟𝑜𝑢𝑡 as depicted in figure 5.11, we see that the model is still able to use some of the leakages
that have extremely low SNR, however not enough to retrieve the correct AES-key. This observation
is a testament that the SNR’s lower leakages may still serve as a valuable information source for the

5.2. Exploitable trace properties 43

feature extraction part of the CNN model. When we combine this leakage with the leakages for 𝑟𝑜𝑢𝑡
we see that the model shows strong convergence in the beginning; however, because the most critical
information concerning 𝑘[3] has been removed, the line runs parallel to the x-axes after reaching a
guessing entropy of 25. The strong convergence shows how more minor leakages within a trace can
be highly beneficial for the feature extraction process, as the performance in figure 5.11 drastically
improves on that of figure 5.8. This particular observation also draws attention to the fact that when
a model attributes high saliency to lower leakages, this may not necessarily indicate a fault in the
architecture, as these areas can still contribute toward the convergence of a model.

Figure 5.11: Model-performance on traces where the high leakage of the intermediate value sbox(𝑝[3]⊕𝑘[3])⊕𝑟𝑜𝑢𝑡 has been
removed), and only 𝑟𝑜𝑢𝑡 along with lower leakages (from sbox(𝑝[3] ⊕ 𝑘[3]) ⊕ 𝑟𝑜𝑢𝑡) are kept (as displayed in figure 5.12. This
figure shows that the model is able to extract information from the (significantly) lower leakages as the model does show some
form of convergence as opposed to figure 5.8.

Figure 5.12: trace were only the high SNR-leakage of the intermediate value sbox(𝑝[3] ⊕ 𝑘[3]) ⊕ 𝑟𝑜𝑢𝑡 is removed. The high
SNR-leakage of 𝑟𝑜𝑢𝑡 is kept along with the (extremely) low SNR-leakages related to sbox(𝑝[3]⊕𝑘[3])⊕𝑟𝑜𝑢𝑡 (which may contain
a high amount of background noise).

From this section, we can conclude that the SNR can be used to approximate the areas where a
deep-learning model can find sufficient for the AES-key retrieval with a short amount of traces. In the
following section, we use these findings to adjust model hyper-parameters so that the locations with
high SNR are given high attribution concerning the vanilla saliency map.

44 5. Attribution methods

5.3 Tuning and assessing convolutional layers

We use the model depicted in figure 5.13 for the experiments in this section. We use this model
because it only has one convolutional layer and has and requires more than 300 traces to reach a
guessing entropy of 0 (and hence has possible room for improvement). The fact that this model has a
single convolutional layer allows us to inspect this single convolutional layer first as we move toward
deeper (e.g., more convolutional layers) models. We also note that based on this model’s validation
accuracy, we can observe that it is still learning as the validation accuracy is still on the rise at 50
epochs, and hence it is possible that the model will have better performance if we train the model for
more epochs. To account for undesired randomness, experiments in this section have been repeated
at least ten times, and their results can be observed in Appendix B. Various visualization methods
are commonly used for convolutional layers to depict their effect on the input. In this chapter, we will
use Gradient-based class activation maps [45] (Grad Cams) and saliency maps to assess the model’s
ability to detect the leakages indicated by the SNR.

Figure 5.13: Performance of the unaltered model used in this section.

Unlike saliency maps that look at the relationship between the final class prediction and an input
trace, Grad-CAMs aims to show the relationship between the output of the last convolutional layer and
a class prediction. Hence in our case, we could use a grad-cam to inspect the relationship between the
prediction of the correct label and the output of our last convolutional layer. The reason for inspecting the
gradient of a particular class only for the last convolutional layer (as opposed to previous convolutional
layers) is because the last convolutional layer captures high-level features which make up the final
prediction, and hence are more relevant w.r.t what area is actually used to make the prediction (as
opposed to earlier convolutional layers that extract local features that may or may not be used in the
final prediction of a class).

The average grad-cam for the model depicted in figure 5.13 is depicted in figure 5.14.

5.3. Tuning and assessing convolutional layers 45

Figure 5.14: Average Grad-CAM over profiling traces. Contrary to the saliency map, the GRAD CAM only shows the saliency
that is attributed via the last (in this case, there is only one) convolutional layer. Here the GRAD CAM looks similar to the saliency
map as they both attribute higher saliency to the areas that fall within the higher SNR leakage, indicating that feature extraction
of the model is successful.

As we can see from figure 5.14 themodel does indeed use features that are present in the [124..300]
and [400..630] ranges. This observation could be one of the reasons why this model performs relatively
well with only one convolutional layer. The saliency map for this model is given in figure 5.15.

When inspecting the saliency map, we observe differences and similarities with the Grad-CAM
peaks. The differences can be attributed to the fact that the grad-cam only shows the peak information
for the convolutional part of the model, whereas the saliency map takes the entire model into account
(convolutional-part as well as the classification part). Hence, using both Grad-CAMs and saliency
maps, we can identify which part of the model is (or not) using the features extracted from the SNR-
detected leakage.

Figure 5.15: Average saliency-map over profiling traces. Here we see that the saliency map is reasonably similar to the GRAD
CAM, with some minor differences. The similarities indicate that the classification part of the model makes good use of the
features extracted by the convolutional part in the decision-making process. In contrast, the differences indicate that either the
convolutional part or the classification part of the model is faulty. The extent of the differences indicates the magnitude of the
faults.

The convolutional layer that the model depicted in figure 5.13 uses has three relevant hyperparam-
eters: filter size, amount of filters, and stride. Each of these three hyper-parameters influences the
structure of the average grad-cam.

46 5. Attribution methods

5.3.1 Filter size and pooling size
When selecting a filter size, it stands to argue that it should be small enough to accurately focus on
relevant information without noise from neighboring samples where there is no exploitable information.
When inspecting the SNR values from figure 5.1a, we would like to extract features from the ranges
[124...300] and [450...630] and not from background noise (although this can sometimes be beneficial
as was depicted in figure 5.11). However, the question of how to precisely tune this specific hyper-
parameter is still not answered by the GRAD CAM. Our first intuition was that the convolutional filter
could produce good results when a size is selected that is less than or equal to the subset of the trace
where SNR values are relatively high. However, even though this particular statement may be true
for many occasions, it does not cancel out the usage of larger filter sizes. We did several experiments
with high to extremely-high filter sizes and again found that we can obtain similar (and often also better)
results compared to models using small filter sizes (which is in line with some of the observations made
in chapter 4).

When selecting the filter size, Zaid et al. introduce a concept called entanglement, where Zaid et
al. argues that the larger the filter, the more spread out the relevant information is in the convoluted
samples. In his work, Zaid et al. proceeds to argue that this may lead to bad performance and labels
the phenomenon of two convoluted samples sharing the same relevant information as ”entanglement”
with the argument that this might lead to a performance decrease. Even though a larger filter size
may be able to cause the spreading of relevant information, we found no evidence of this leading to
a performance decrease (in terms of 𝑁𝑇𝐺𝐸). Decreases in performance are highly dependent on other
hyperparameter combinations.

When inspecting the Grad-Cam for different filter sizes, we found that this assumption is not valid
for many examples, as shown in figure 5.16.

(a) filter size 200. (b) filter size 400.

Figure 5.16: Grad-CAM for filter sizes 200 and 400.

When using larger filters, we notice that even though the information is more spread out compared
to the usage of smaller filters (which is also not always the case), we can still detect POIs in line
with SNR values from figure 5.1a. This observation can be attributed to the fact that global features
(where more neighbors are taken into account) can often still accurately represent exploitable leakage.
We can observe this in figure 5.17 where even though we use a large filter size to extract features,
the classification part (saliency-map) is still able to accurately extract the leakage without significantly
affecting the model’s performance. When inspecting the GRAD CAMs in figure 5.16, it may be tempting
to say that the convolutional layers do not contribute because of the spread out information; however,
this would be an invalid argument because if we remove this (single) convolutional layer, the model
does not converge at all. As a matter of fact the model with a filter size of 400 performs slightly better
than the model with an original filter size of 5. Furthermore, we also have to point out the difference in
the spread-out factor, which is significantly lower with a filter size of 400 as opposed to that of a filter
size of 200, even though it is twice its size (as can be observed in figure 5.16).

On a side note, we also notice that the larger the filter size, the more sporadic the GRAD CAM starts
to act; we assume this is because we have a high amount of weights which can learn a high number

5.3. Tuning and assessing convolutional layers 47

of different combinations of features where many of these combinations can be equally exploited by
the classification part of the model. The other factor that needs to be taken into account is that model
capacity can not only increase with the addition of layers or neurons but also with the choice of the filter
size, which can make a model more prone to overfitting and challenging to train.

(a) filter size 200. (b) filter size 400.

Figure 5.17: Saliencymap for filter sizes 200 and 400.

(a) filter size 200. (b) filter size 400.

Figure 5.18: Performance with filter sizes 200 and 400.

Filter size in image recognition is often set to be low in order to increase performance rather than
its ability to extract features accurately. Outside of performance the choice is not extremely indicative
w.r.t. to feature extraction in the SCA domain (as can be seen in figure 5.17).

Models used in image recognition and natural language processing tend to be quite large (e.g., VG-
GNet) and contain a high amount of trainable parameters (138 million parameters), where the training
time can span multiple weeks for one single model even with high resources. However, models used
in the SCA domain tend to be relatively small; hence, the choice of a large filter size is less impactful
in terms of performance relative to other domains.

5.3.2 Amount of convolutional layers and amount of filters
The typical idea behind the number of filters and layers in CNN models is to detect local features in the
first convolutional layers and higher, more abstract features in the deeper layers of the convolutional

48 5. Attribution methods

network. In this section, we investigate the effect of an increase in the number of layers in the SCA
domain concerning the choice of dataset.

We start by looking at the initial 𝐴𝑆𝐶𝐴𝐷 𝑁 = 0 dataset, which only contains synchronized traces.
When adding layers to our model choice, there is no apparent increase in performance when no desyn-
chronization is present. This observation is expected as the first convolutional layer successfully detects
the POI that the SNR identified for this dataset. We can observe the effect of adding more layers to the
model in table 5.2, which shows that deeper models do not have a significant impact on this particular
scenario. We think that the difference in performance for models containing 8 or more layers in this
particular scenario can be attributed to the reduction of input dimension, as opposed to the level of
abstraction introduced by adding more layers. This is because the increase is only marginal, and we
do not observe any increase when adding the first 6 layers.

Amount of Layers 1 2 3 4 5 6 7 8 9

Ntge 269 279 270 257 280 233 262 189 191

Table 5.2: The effect of adding layers for synchronized traces, when adding more layers we ensure the model’s validity by
adjusting pooling size accross all layers. Here we only notice a difference in the models containing 8 or 9 layers.

When desynchronization is present, information is spread differently across different traces. When
this is the case, we can see that the model does not perform at the same level as it does on the
synchronized traces, as shown in figure 5.19. We see that the model does not converge w.r.t. the
guessing entropy, and when investigating the training process of the model more closely in figure 5.19a,
we also see that it just remembers the traces it has seen before (over-fitting) and fails to learn any
specific pattern from the traces and hence is unable to generalize to any new or unseen traces.

(a) Model performance on the attack traces (Guessing entropy). (b) Evaluation of the model’s training process.

Figure 5.19: Performance of the model used for synchronized traces on a dataset with the desynchronization counter-measure.

Looking more closely at this counter-measure, depicted in figure 5.20, we can see why the model
fails to detect the leakage indicated by the SNR. This particular counter-measure shifts the intermediate
values by suspending the calculation of intermediate values by a random amount of time. The random
amount of delay in desynchronization is usually drawn from a specific range between 0 and a max-
value 𝑚. Because the desynchronization is drawn and applied to each trace individually, the leakages
are spread out differently for each trace.

5.3. Tuning and assessing convolutional layers 49

Figure 5.20: desynchronizing traces, where r is randomly drawn from the interval (0,𝑚), for each trace individually, where 𝑚 is
a pre-defined fixed-number that indicates the maximum shift-value each trace can be shifted.

To circumvent this counter-measure, we need to extract features regardless of their location in the
input. To achieve this effect, we propose taking advantage of the pooling operation, which can facilitate
the detection of spread-out information over the input. Pooling decreases the input size by averaging
input features within a specific window size. Hence we can eliminate this effect by ensuring that our
network focuses on abstract rather than local features. However, if we set the pooling size window to
be too large, we expose the network to be prone to information loss due to including too much irrelevant
information (noise) in the output. To eliminate the possibility, we hypothesize that using a small window
size for pooling with multiple repetitions can eliminate any level of desynchronization. We assume that
a deep enough network will result in an output containing the correct POI by applying a convolution
operation (hence extracting features) after every small squeeze, gradually compressing the leakages
while extracting the relevant information between two consecutive compressions.

As discussed in section 4.4.2, average pooling is preferred over max-pooling because average
pooling retains the information from nearby neighbors and allows the next convolutional layer to decide
which compressed value may be of more relevance. In contrast, max-pooling only retains the maximum
value compared to its neighbors and throws away the lesser values, consequently making the feature
extraction in sequential layers less effective.

To test this hypothesis, we decrease the average pooling to a minimal size of 2 and increase the
number of layers in the convolutional part to 7. Note that this does not significantly increase the number
of trainable parameters because the filter size is minimal.

Figure 5.21: performance of deeper models for the extraction of abstract features. Because the filter size is small for each layer,
it results in a meager amount of 267, 700 trainable parameters and can be trained within minutes.

50 5. Attribution methods

In figure 5.21, we can observe the consequence of repeatedly squeezing information while re-
extracting features after every squeeze through a follow-up convolutional layer. It shows that the effect
of the desynchronization counter-measure is completely eliminated as the model performs similarly on
all the datasets regardless of the counter-measures present, which in turn, confirms our hypotheses.

The saliency maps of this model indicate a clear shift in the peaks when desynchronization is intro-
duced which indicates that the model is appropriately identifying the leakages even though the leakage
is shifted differently over the time interval for every trace.

Increasing the number of filters also allowed the models to converge better. We assumed this is
because adding filters allows for more unique feature maps as each filter learns a different feature,
which, in turn, can help detect higher levels of desynchronization or traces where information is spread
out and that are generally noisy. The effect of increasing the number of filters seemed to benefit 𝐴𝑆𝐶𝐴𝐷
𝑁 = 50 and 𝐴𝑆𝐶𝐴𝐷 𝑁 = 100 more than it did 𝐴𝑆𝐶𝐴𝐷 𝑁 = 0.

5.4 Discussion
In this chapter, we see that saliency maps and Grad-CAMs can be valuable tools to identify which part
of the network is performing poorly and may require adjustment for proper POI detection when com-
bined with other leakage area assessment tools (e.g., SNR). Furthermore, we analyzed the different
aspects of the convolutional network that determine the shape of the Grad-CAMs, saliency maps, and
its ability to detect leakages in general, such as filter size, pooling size, and amount of convolutional
layers. When side-channel-specific counter-measures are present, we see that pooling layers are ad-
equate to bypass these counter-measures; especially when using deeper models, we can see that by
using small filter sizes for pooling, we can gradually eliminate any level of desynchronization. We also
observe that filter size does not seem to affect model performance (in terms of the 𝑁𝑇𝐺𝐸) as much as
other hyperparameters such as pooling. However, it does seem to affect the number of resources re-
quired to train a model because larger filters can cause a significant increase in trainable parameters.
However, because models in the side-channel analysis domain are relatively small compared to the
models used in other domains such as image recognition, filter-size selection for SCA is less critical
for model construction. In the case of SCA, we are faced with the fact that other than the SNR, which
can give insights into leakage areas, there are currently not many feature properties that have been
properly identified from a human-interpretability standpoint as opposed to, for example, the field of im-
age recognition where one could have edge detection, object shape, etc. One of the main reasons for
this is that there is no active attempt to conceal input structure from visual inspection in these other
domains. Hence known POI is still the primary trait used in SCA techniques to assess relevant input
locations; hence we are currently still focused on the POI identified by other leakage assessment tools
(such as SNR) as our main facet when assessing the dataset.

5.4. Discussion 51

InputLayer

Conv1D
Filters
Size

Activation

BatchNormilization

AveragePooling1D Size

Flatten

Dense Neurons: 300

Softmax

12
5

selu

18

Dense Neurons: 300

Dense Neurons: 300

Figure 5.22: unaltered model used on 𝐴𝑆𝐶𝐴𝐷𝑁 = 0.

Chapter 6

New methodology

Due to the high amount of radically different models that work well on side-channel datasets and the
high combinations of hyper-parameters that work well with our structural constraints, the construction
of a methodology for building a CNN is not trivial. The high number of hyper-parameter value com-
binations that may result in good models indicate that there may be a high number of undiscovered
possible methodologies.

However, we did manage to gain usefull insights in chapters 4 and 5; we build on these specific
insights in this chapter. We use the architectural constraints from chapter 4 and the hyper-parameter
constraints. We argue that attribution methods are currently also a method to constrain things further
as it constraints the focus on either the convolutional or the classification part. Here we further intro-
duce constraints by limiting the hyper-parameter selection in a step-by-step fashion, and we attempt to
construct a new methodology that can be used to build a convolutional neural network that performs
well on SCA datasets and can compete with both state-of-the-art [59] [56] [60] methodologies, as well
as other recently presented methodologies [41].

We present the methodology as a sequence of steps to apply to an existing side channel data set.
Our methodology can be applied to any unseen side channel data set for CNN construction. We assess
the performance of the produced models in terms of guessing entropy and trainable parameters (often
referred to as complexity) only for unseen data sets.

6.1 Considerations
The empirical observations from chapters 4 and 5 show that the models that can detect leakage on the
ASCAD dataset do not necessarily have to share any close similarities (as a matter of fact, they can be
highly different) in terms of their hyperparameter combination when using our architectural constraints.
Based on these observations, we developed several intuitions and hypotheses surrounding their con-
struction. These hypotheses were specifically developed for models using our architectural constraints
and hyper-parameter ranges.

The first hypothesis wemade was that for every two hyper-parameter values drawn from our ranges,
there exists at least one set of hyper-parameter values for all other hyper-parameters that allow the
convolutional architecture to converge toward a guessing entropy of 1. We tested our hypothesis by
varying two hyper-parameters while freezing all other hyper-parameter values. We did this for both
convolutional architectures that were already able to exploit the leakage and retrieve cipher-key as
well as architectures that were not.

Our first experiment varied the learning rate and mini-batch size values. For this experiment, we
did not observe multiple value combinations leading to any converging models. Even in models that
were already able to retrieve the cipher-key, the slight variations for these hyperparameters resulted
in a drastic decrease in model efficiency. Hence finding a different learning rate did not seem trivial.

53

54 6. New methodology

We assume this is because the learning rate hyper-parameter can arguably be considered the most
significant value for most CNN architectures. This significance is because the learning rate determines
how we approach local or global minima of the loss function for our specific architecture. Hence, small
or significant changes in the learning rate can either cause the learning algorithm to miss any minima
completely or not reach them. On a side note, when taking the mini-batch by itself, most models gave
a similar performance as those prior to the adjustments.

For our hypothesis, the convolutional and filter pooling size were the other two hyper-parameters
we varied for different models. Contrary to the experiments done for the combination of learning rate
and mini-batch, we found multiple combinations of pooling and convolutional filter sizes that gave simi-
lar results. For these combinations, the models exhibited the same behavior (sometimes either slightly
better or worse) for different convolutional and pooling filter sizes (both individually and collectively)
even when we varied them with a large step size. This behavior is similar to what we observed in
chapters 4 and 5. We assume this is because the convolutional filter can detect (more or less) the
same features with different sizes, and different pooling filter sizes can still allow the detection of the
significant shift-invariant features. Which combinations of filter-sizes result in the same features is
something that, at least with the current tools, has to be verified empirically. Another issue to point out
is that due to the high amount of filters in the convolutional part, it is currently still impractical to analyze
each feature individually. We also stress that if we only use the current tools, we still do not know what
these features represent, making them even more challenging to analyze. Nevertheless, we know that
a convolutional architecture has multiple combinations of convolutional filters possible that will result
in the same performance level, which confirms our hypotheses, at least for these two hyper-parameters.

The last two hyper-parameters we varied were the number of dense layers and the number of neu-
rons for dense layers. For this particular case, we found that the classification part had different effects
depending on the model’s classification part. There was no clear pattern concerning the classification
part other than that more dense layers with less (50 or less) performed better than fewer dense layers
with more neurons on a few occasions.

Concerning the number of convolutional layers, we saw both in chapters 4 and 5 that it can be
beneficial to use deeper models for distinct scenarios. In chapter 5, we saw that the benefit of deeper
models is essentially dataset-dependent. We saw that if a dataset has a desynchronization (or random
delay) countermeasure, deeper models can be highly beneficial, whereas, for datasets with no such
countermeasures, there was almost no benefit to using deeper models. Hence this particular parame-
ter is dataset dependent.

These were the most relevant observations we took into account when building our methodology.

6.2 Methodology
Based on the previous considerations and observations, we constructed the following methodology as
a sequence of simple steps that allow us to create an efficient CNN architecture for virtually any SCA
dataset.

Because the learning rate can be considered the most critical hyper-parameter and arguably the
most difficult to tune: we recommend using an adaptive learning rate. Granted, in our experiments in
chapter 4, the one-cycle learning rate was not valuable as we did not find more models, primarily due
to the minor computational drawback. However, in the case of our methodology, we will constantly be
tweaking the same model, so it would be nice to have as few hyper-parameters as possible to tweak.
The adaptive learning rate allows us to focus on other hyper-parameters as it actively attempts to pre-
vent overshooting or slowly approaching local or global minima. For the adaptive learning rate we use
0.001 as the starting factor as experiments in chapter 4 give good results for this setting.

Our methodology distinguishes between datasets with a random-delay countermeasure and those
that do not. However, our starting approach will be the same for both cases.

6.3. Results 55

We start with determining the number of convolutional layers. For this step, we choose an arbitrary
small starting filter size of 5 (although 2 is also acceptable) because we found no particular evidence of
choosing one filter size over the other. The convolutional filter size of 5 is an appropriate starting value
as it takes only a few neighboring values into account and can always be adjusted if our methodology
requires us to do so. For the pooling filter, we start with the smallest possible value of 2. For this step,
we choose a base classification part of 3 dense layers, each containing 100 neurons. We chose this
base model because both our experiments as well as previous literature show that dense layers do
not require many neurons to detect leakages for SCA datasets, and hence 100 neurons are more than
enough capacity to represent the underlying distribution function for SCA datasets.

We keep the number of filters for any convolutional layer fixed at 12, as previous experiments
showed that we do not need to increase the filters as the models grow deeper as long as the total
amount of filters are sufficiently able to extract relevant features.

First, train the model with one single convolutional layer and then continue training a new model by
gradually convolutional layers. Inspect the convergence for each model. At this point, it should be clear
how many layers our model would need when using a pooling size of 2. If the traces are significant in
length, we recommend starting with a larger pooling size. When a random delay is present, we can
decrease the number of convolutional layers needed by gradually increasing the pooling size. If there
is no random delay present this step should confirm that only a low number of convolutional layers is
needed.

If the traces are significant in length and the dataset contains a random delay, we recommend
starting with a larger pooling size. When a random delay is present, we can decrease the number of
convolutional layers needed by gradually increasing the pooling size.

At this point, we can start tuning the convolutional filter size; however, before we do so, we first
calculate the SNR for the dataset and use attribution methods first to see whether it is the convolutional
part or the classification part that needs the most tweaking.

Tweaking the filter size: As we have seen many times throughout this thesis, the filter size can
have different values across all layers, and the architecture can still achieve the same performance
level. In this methodology, we decided that this specific hyper-parameter can be adjusted empirically
(using any method) as there is no specific preference for the convolutional filter. We start with a small
convolutional filter and can gradually increase the size and observe the effect this has on the perfor-
mance. We note that larger filter sizes can detect more global features, and smaller filter sizes can
detect more local features (where there is also a significant overlap in the features both can detect).
This note means that for datasets with a random delay, it may sometimes be beneficial to choose a
larger filter; however, it is currently still something that has to be decided empirically.

Tweaking the classification part: As discussed in chapter 4, we did not notice any specific preference
for the classification part. However, in almost all cases, any classification part that employs neurons
in the 100 range seemed to have sufficient capacity for SCA datasets. In order to further improve the
classification, we propose to gradually explore adding more dense layers with fewer neurons, as this
was shown in [52] [53] to be more beneficial in certain scenarios as opposed to adding more neurons
to the existing hidden layers.

Although not necessary for our methodology, we mention the optional step of optimizing the number
of trainable parameters. We do not think this step is necessary because of the relative size of models
used in the side-channel domain and because the step is relatively trivial. We also do not actively
perform this step in our methodology assessment.

6.3 Results

56 6. New methodology

6.3.1 DPA V4

This dataset has amasking countermeasure and does not incorporate any form of random delay; hence
we know beforehand that we do not require high pooling or a high amount of convolutional layers.
We observe in this step of our methodology that one layer is sufficient for obtaining state-of-the-art
performance (in terms of methodology). The results of these experiments can be observed in figure
6.1.

Figure 6.1: Applying our methodology to the DPA v4 dataset. Here we see that this dataset is more trivial than others as it only
has a first order counter-measure, were the traces contain almost no noise.

We also observe the ill effect that adding more layers can have on a dataset without desynchro-
nization; the more layers are added after the second one, the less efficient the model performs on this
specific dataset. For models with 1 to 4 convolutional layers, we observe similar performance, whereas
starting from models with 5 layers and onward, we notice a tremendous drop in efficiency. We obtain
an 𝑁𝑇𝑔𝑒 of 1, and further improvement is not needed as this is already state-of-the-art performance.
Although not needed by our methodology, we can also decrease the number of parameters required
by reducing the number of filters from 12 to 1, without any signs of performance decrease. We as-
sume this is because this particular dataset has a known mask value; hence, feature extraction is not
a necessity. The model selected through this methodology is depicted in figure C.1.

6.3.2 AES RD

This dataset has a random delay countermeasure; hence we increase the number of convolutional
layers, and after each one, we add a pooling layer with a small pooling size to eliminate this counter-
measure. We tested our methodology on this dataset and found that we get state-of-the-art results
starting from layer 8, depending on the pooling filter size used. We stress that the amount of layers
does not affect the number of parameters present in the model because we are using small convolu-
tional filter sizes while decreasing the input size. We can decrease the number of layers by gradually
increasing the pooling size until no further improvement is observed. The results of these experiments
can be observed in figure 6.2.

6.3. Results 57

Figure 6.2: Performance obtained trough our methodology on the AES RD dataset which contains a random delay countermea-
sure.

From these results, we can see that a top-bottom approach might be better than a bottom-up one
as we can start with high-performing architectures until we come across an architecture that does not
perform well. Also, note that the models have a low amount of trainable parameters because we keep
the number of filters low. From our previous experiments, we know that we do not need to follow the
standard paradigm of increasing the number of filters as the network grows deeper; hence we use
the same amount of filters throughout all convolutional layers for these experiments, which makes it
easier to control the number of parameters our models exhibit. We observe how the sequential pooling
can completely eliminate the desynchronization counter-measure and how deeper models reach good
results where the more shallow models struggle. We find multiple models to select from when we use
our methodology. We also observe that as we gradually increase the pooling size (resulting in fewer
layers), we reach a point where the pooling size is too large. For this dataset, the model selected
through our methodology is depicted in figure C.2.

6.3.3 AES HD

The AES HD dataset sets itself apart from other SCA datasets as it contains a property that this thesis
has not yet encountered, namely, the property of extremely noisy features/traces. It is also considered
one of the more difficult public datasets in the SCA domain. We initially find no converging models
when we apply our methodology for this specific dataset during the first stage (as depicted in figure
6.3). However, as we gradually increase the pooling-filter size (resulting in fewer layers), we detect
that the model consisting of only two layers starts to show more convergence relative to the other
architectures (figure 6.3); however, we are still unable to retrieve the cipher key. Here things become
interesting as it gives us an adequate opportunity

58 6. New methodology

Figure 6.3: AES HD: Initially during the first stage of our methodology no models are found for the AES HD dataset. During the
first stage of our methodology, we gradually increase the pooling size. When reaching a pooling-filter size of 5, the methodology
shows that selecting an architecture with only two convolutional layers may be beneficial.

to use attribution methods. When using the GRAD-CAM and saliency map, we notice that the
convolutional part can detect the leakage adequately and that the fault lies in the classification part,
which requires more tuning.

Figure 6.4: AES HD: To figure out which part of the network needs to be tuned we use the attribution methods: GRAD CAM and
saliency map. The GRAD CAM in this scenario is pulled together over an input size of different dimensions than the original trace
because we use the output of the last convolutional layer at which the input has already been pooled several times; however, if
we super impose the GRAD CAM over the original input trace dimensions, we see that it is in-line with the SNR value for this
specific dataset (as displayed in figure 6.5).

6.3. Results 59

Figure 6.5: SNR for the AES HD dataset.

After figuring out which part of the model most likely needs adjusting, we move toward the step of
adjusting the classification part (which consisted of a base of 3 dense layers with 100 neurons). From
our expirements in chapter 4, we know that often times more dense layers with less neurons can give
better performance, which is in-line with [18]. Hence, we decide to use 10 dense layers instead of 3
and start of with 10 neurons per layer. Here we notice a great improvement but not quite enough to
retrieve cypher key, we gradually increase the amount of neurons per layer by a factor of 3 and find that
30 gives extremely good results. Note that for this part of the methodology any method can be used
as we are only dealing with two hyper-parameters: amount of dense layers, and amount of neurons.

Figure 6.6: AES HD: There is a large improvement going from a shallow classification part toward a deeper classification part.

To tune this part of the architecture, we use our observation from the previous section and use more
layers with fewer neurons. As we can see from figure 6.6, this significantly increased our model’s effi-
ciency, and we can now retrieve the cipher-key with 𝑁𝑡𝑔𝑒 = 1000, which is state-of-the-art performance
(in terms of methodolgy). As we had previously observed, the non-trivial datasets work well with larger
minibatch sizes; hence we also use a larger minibatch size in this scenario.

Figure 6.7: Doubling the number of filters for this model resulted in a further performance increase.

60 6. New methodology

Altough it is not needed we found that the model converges even better when doubling the amount
of filters from 12 to 24 as depicted in figure 6.7. The final model for this particular scenario is depicted
in figure C.3.

6.3.4 Comparison with random search
In order to further assess the effectiveness of our methodology we did a comparison with random
search, where we ran a search algorithm for 7 days on an HPC cluster that employed a 1080 TI video-
card. The results show that random search can be used on more trivial datasets such as AES RD,
however not on AES HD as the algorithm did not find any converging model for this particular dataset.
In order to make a fair comparison we only did a random search using our architectural constraints and
hyper-parameter ranges instead of a fully random search (as this is more likely to fail).

For 𝐴𝐸𝑆 𝑅𝐷 we found 125 models that converged toward a guessing entropy of 1. Out of these
models we found 30 where able to reach this with only 2 traces. Similarly we found multiple models
for DPA V4 as it is more trivial. This shows that random search is a viable option for these specific
datasets; however, we argue that this may not always work for an attacker because of time constraints.
We also stress that random search may often require considerable resources, espacially if the dataset
is non-trivial.

For 𝐴𝐸𝑆 𝐻𝐷 we did not find any models that were able to converge toward a guessing entropy of
1. Furthermore we also found only few models that were able to pass a guessing entropy of 50, which
is an indication of the difficulty of this dataset and also clearly shows the extend of the methodology’s
efficiency.

We also run random search for the ASCAD 𝑁 = 100 dataset, which is one of the least trivial from
the ASCAD collection. For 𝐴𝑆𝐶𝐴𝐷 𝑁 = 100 we find only 13 models that converge toward a guessing
entropy of 1. However, looking more closely at the performance of these models, we see that these
models require anywhere between 579 and 898 traces to reach a guessing entropy of 1; hence, for
this scenario, the best model requires almost 3 times more traces than the models generated by our
methodology.

6.4 Discussion
Note that we cannot use blind Random search or Bayesian optimization as these methods will not
produce good results when a dataset is difficult (e.g., contains desynchronized traces or noisy features).
Our method differs because we combine what we have learned in chapters 4 and 5. We have learned
that the proper assessment and identification of the ranges is more insightful as it shows that different
values for the same hyper-parameter can lead to the same performance level. We also learned that
as opposed to the suggestions that were given by Zaid et al. regarding the concept of “entanglement”,
it is virtually non-existent in the field of side-channel analysis when taking kernel size into account.
We want to use attribution methods to gain insights into how specific hyper-parameters need to be
adjusted based on the data set used; however, as we have seen in chapter 5, this is currently (at the
time of writing) not possible with the attribution methods we explored so far. The extent of the use of
attribution methods is in the evaluation of a network’s ability to detect leakage points, which often can
also be misleading because these attribution methods are based on the accuracy metric and not on
the guessing-entropy metric (which is preferred in the SCA domain as it was shown in [39]). Hence
the black-box method is still an issue with these attribution methods. This is also why no existing
methodology currently uses attribution methods and dataset features in constructing a network. These
methods have currently only been used to show that the model works and succeeds, attributing high
saliency to SNR peaks (as was done by Zaid et al.) and not for the selection of hyper-parameters.
Showing that a model succeeds in detecting leakage does not help us determine hyper-parameter
values. Combining this with the fact that the assessment of the individual features found by a CNN
for SCA datasets can currently only be beneficial if we know what these features mean makes the
construction of a methodology for CNNs thus the more challenging. Hence these observations make

6.4. Discussion 61

it clear that when it comes to selecting hyper-parameters values such as kernel size for a new and
unseen dataset, this still has to be done empirically.

The only proper consistency when assessing datasets concerning specific countermeasures and
how we can tackle them. If we have a desynchronization countermeasure, we can take this counter-
measure by either adjusting the pooling size or gradually pooling with an extremely small pooling size
whilst doing our feature extraction in between these pooling operations. Hence our methodology builds
on this fact. When there is no such countermeasure (or when it is eliminated by pooling), we are left
with the detection of helpful features with many combinations we currently can not select a priori with
the current tools at hand. However, we did manage to identify the constraints for the architecture of
CNNs that work well with our identified ranges; we build on these specific insights in this chapter. We
use the architectural constraints from chapter 4 and the hyper-parameter constraints. We argue that
attribution methods are currently also a method to constrain things further as it constraints the focus
on either the convolutional or the classification part. Here we further introduce constraints by limiting
the hyper-parameter selection in a step-by-step fashion. This construction is based on the observa-
tion that multiple values for a single hyper-parameter are possible. Hence we theorize that for every
partial combination of hyper-parameters of one part of the network, there exists at least a significantly
large set of combinations in the other part of the network that significantly improves the overall perfor-
mance. Hence for a combination of mini-batch and learning rate selected from our ranges, there exists
a combination of convolutional-filter size and pooling size, which is the idea that our methodology builds
on.

Assessing deep learning models with attribution methods for the purpose of explain-ability is cur-
rently (at the time of writing) still a non-trivial task, as even though we can visualize the parts of the
input that had the most influence on the decision-making process of the network, we are currently still
not at a point where we can say that the features that were detected by the network represent a certain
aspect of the feature trace with regard to their meaning. However, this is not an issue for our method-
ology, as we still are able to leverage the fact that by depicting the areas of the trace that are most
influential according to a certain part of the network and comparing them to SNR values, we are able to
gain insights into which parts of the model may require more adjustments. By taking dataset features
and properties (e.g. countermeasures) into account we are able to build a methodology that can be
applied to any unseen dataset.

The results show that the proposed methodology outperforms any existing methodology for deep
learning architectures in the side channel analysis domain concerning the architectures it produces.
Even though it is outside of the scope of this thesis, It would be interesting to see how other interpreta-
tion ability methods could be applied to improve the methodology concerning other hyper-parameters,
particularly those involving the classification part, such as dense layers and amount of neurons. An-
other interesting research question for future work would be to investigate whether we could leverage
the saliency map to guide the training algorithm. A possible way to do this could be by introducing
some form of penalty when the saliency map is not in sync with the SNR for the training set or, in the
case of reinforcement learning, introducing a reward when the saliency map and SNR values are more
aligned. It would also be interesting to see how other automated feature extraction methods such as
copy-to-input auto-encoders compare to convolutional layers. The last suggestion is particularly in-
teresting because when using copy-to-input auto-encoders, we can say something about the feature
relevance because we can observe whether they are required to reconstruct the input, allowing us to
assess them before actually adding an auto-encoder to the network.

Chapter 7

Conclusions

7.1 Research questions

Research question 1
Canwe identify structural constraints and hyper-parameter ranges that produce high-performing
CNNs and aid in the design and construction of CNNs in the field of side-channel analysis?

Answer: Yes, we can; in chapter 4, we showed that by selecting ranges through research and ex-
perimentation, we were able to produce a list of hyper-parameter ranges and architectural constraints,
resulting in a helpful design paradigm for the design and construction of CNNs that perform well on
side-channel data. When comparing current existing methodologies to our design paradigm, we also
observed that this method compares exceptionally well to current existing methodologies. We find sev-
eral high-performing models within a relatively short time, whereas other methodologies such as rein-
forcement learning require days to weeks to find models without much guarantee of their reproducibility
(due to, for example, covariant shift and undesired randomness). We also see that it outperforms other
existing methods such as Bayesian optimization and genetic algorithms in both model robustness and
performance of generated models.

Research question 2
Can attribution methods from other domains be used to aid in the design of deep learning mod-
els for SCA?

In chapter 5, we showed that attribution methods such as saliency-maps and GRAD-CAMS can be
instrumental in the design of CNNs because when combining these methods with leakage assessment
tools such as SNR, we can identify the faulty part of the network, which can further aid in the elimination
of which hyper-parameters may need adjustment. We also showed that deeper models effectively re-
duce the effect of common hiding counter-measures such as desynchronization but did not show much
performance gains in the absence of such counter-measures. Furthermore, the attribution methods
also allowed us to observe the effect of convolutional filter size for the SCA domain, which showed little
importance compared to other hyper-parameters such as pooling and amount of filters when consid-
ering side channel datasets. We also showed that large filter sizes could work quite well in the SCA
domain and because the SCA architectures tend to be relatively small compared to other domains,
this is a viable option for constructing and designing CNNs in the side channel analysis domain when
necessary.

Research question 3
Can we derive a new methodology for the construction of CNNs that gives good results and is
easy to follow?

Yes. In chapter 6, we provided a methodology in the form of a sequence of steps that help construct
Convolutional neural networks and can be applied easily to a side-channel dataset. We assessed this
methodology by applying these steps to a new and unseen dataset, which resulted in constructing a

63

64 7. Conclusions

convolutional network that performs better than those provided by current state-of-the-art methodolo-
gies, making our proposed methodology the new state-of-art.

7.2 Summary of Contributions
• We have provided a combination of suitable hyper-parameter ranges and constraints on the ar-
chitectural design for CNNs for SCA. This combination is a compelling and feasible approach
for the side-channel analysis domain, primarily because side-channel data does not require im-
mense models as opposed to other domains such as image recognition and natural language
processing.

• Furthermore, we have shown that combining this strategy with attributionmethods such asGRAD-
CAMs and saliency maps allows us to further reduce model-design time by identifying the faulty
part of the deep learning architecture, which allows us to eliminate further hyper-parameters that
may require adjusting.

• We have provided a methodology that is easy to follow and aids in the construction and design
of CNNs for the SCA domain. Our suggested methodology is currently the most robust in terms
of the number of models it can construct and the reproducibility (robustness) of the performance
of generated models, as opposed to other methods such as reinforcement learning and genetic
algorithms. As far as we know, at the time of writing, the proposed methodology outperforms all
other SCA methodologies and can be considered state-of-the-art in the SCA domain.

7.3 Limitations and Future work
Although we can often identify which part of the network is faulty by using attribution methods, it has not
yet shown the ability to give further detail on which hyper-parameter of this faulty needs adjusting. This
flaw is especially the case with the classification part of a network. If the classification part is identified
as faulty, attribution methods do not show whether neurons need to be added or removed (and from
which layer) and if layers need to be added to improve the model. In the case of the convolutional
part, this is currently also true; however, through observed characteristics of the dataset (e.g., hiding
counter-measures), we can still gain some intuition on which hyper-parameters of the convolutional
part may increase performance; however, these present intuitions have not yet completely eliminated
the need for empirical experimentation of trial-and-error in order to identify the correct values for these
parameters and to obtain an optimal model.

It would be interesting to see how other methods, such as reinforcement learning and genetic algo-
rithms, would perform if we restrain the reward function toward structures that employ our constraints
and hyper-parameter ranges and how their efficiency would compare to our methodology. Another
interesting research question for future work would be to see if we could somehow introduce a penalty
on the cost function of the learning algorithm based on the SNR of the dataset and the saliency map
of the model in order to ensure that the saliency map contributes high saliency to the areas that show
high leakage and low values to the areas that do not.

Bibliography

[1] Nadhem J. Al Fardan and Kenneth G. Paterson. “Lucky Thirteen: Breaking the TLS and DTLS
Record Protocols”. In: 2013 IEEE Symposium on Security and Privacy. 2013, pp. 526–540. DOI:
10.1109/SP.2013.42.

[2] Bowen Baker et al. “Designing Neural Network Architectures using Reinforcement Learning”. In:
CoRR abs/1611.02167 (2016). arXiv: 1611.02167. URL: http://arxiv.org/abs/1611.
02167.

[3] Ryad Benadjila et al. “Deep learning for side-channel analysis and introduction to ASCADdatabase”.
In: Journal of Cryptographic Engineering 10 (June 2020). DOI: 10.1007/s13389-019-00220-
8.

[4] James Bergstra and Yoshua Bengio. “Random Search for Hyper-Parameter Optimization”. In: J.
Mach. Learn. Res. 13.1 (Feb. 2012), pp. 281–305. ISSN: 1532-4435.

[5] Shivam Bhasin et al. “Analysis and Improvements of the DPA Contest v4 Implementation”. In: Se-
curity, Privacy, and Applied Cryptography Engineering. Ed. by Rajat Subhra Chakraborty, Vashek
Matyas, and Patrick Schaumont. Cham: Springer International Publishing, 2014, pp. 201–218.
ISBN: 978-3-319-12060-7.

[6] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. “Convolutional Neural Networks with Data
Augmentation against Jitter-Based Countermeasures.” In: Cryptographic Hardware and Embed-
ded Systems - CHES 2017 - 19th International Conference. Taipei, Taiwan, Sept. 2017. URL:
https://hal.archives-ouvertes.fr/hal-01661212.

[7] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. “Template Attacks”. In: Cryptographic Hard-
ware and Embedded Systems - CHES 2002. Ed. by Burton S. Kaliski, çetin K. Koç, and Christof
Paar. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 13–28. ISBN: 978-3-540-36400-9.

[8] François Chollet et al. Keras. https://keras.io. 2015.
[9] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and Accurate Deep Network

Learning by Exponential Linear Units (ELUs). 2015. DOI: 10.48550/ARXIV.1511.07289.
URL: https://arxiv.org/abs/1511.07289.

[10] Jean-Sébastien Coron and Ilya Kizhvatov. “An Efficient Method for Random Delay Generation in
Embedded Software”. In:Cryptographic Hardware and Embedded Systems - CHES 2009. Ed. by
Christophe Clavier and Kris Gaj. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 156–
170. ISBN: 978-3-642-04138-9.

[11] Jean-Sébastien Coron and Ilya Kizhvatov. “An Efficient Method for Random Delay Generation in
Embedded Software”. In: Cryptographic Hardware and Embedded Systems - CHES 2009, 11th
International Workshop, Lausanne, Switzerland, September 6-9, 2009, Proceedings. Vol. 5747.
Lecture Notes in Computer Science. Springer, 2009, pp. 156–170. DOI: 10.1007/978-3-
642-04138-9_12. URL: https://www.iacr.org/archive/ches2009/57470156/
57470156.pdf.

[12] Jean-Sébastien Coron and Ilya Kizhvatov. “Analysis and Improvement of the Random Delay
Countermeasure of CHES 2009”. In: Cryptographic Hardware and Embedded Systems, CHES
2010. Ed. by Stefan Mangard and François-Xavier Standaert. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 95–109. ISBN: 978-3-642-15031-9.

[13] Joan Daemen and Vincent Rijmen. “The Design of Rijndael: AES - The Advanced Encryption
Standard”. In: 2002.

65

https://doi.org/10.1109/SP.2013.42
https://arxiv.org/abs/1611.02167
http://arxiv.org/abs/1611.02167
http://arxiv.org/abs/1611.02167
https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/s13389-019-00220-8
https://hal.archives-ouvertes.fr/hal-01661212
https://keras.io
https://doi.org/10.48550/ARXIV.1511.07289
https://arxiv.org/abs/1511.07289
https://doi.org/10.1007/978-3-642-04138-9_12
https://doi.org/10.1007/978-3-642-04138-9_12
https://www.iacr.org/archive/ches2009/57470156/57470156.pdf
https://www.iacr.org/archive/ches2009/57470156/57470156.pdf

66 Bibliography

[14] A. Eiben and Jim Smith. Introduction To Evolutionary Computing. Vol. 45. Jan. 2003. ISBN: 978-
3-642-07285-7. DOI: 10.1007/978-3-662-05094-1.

[15] IanGoodfellow, Yoshua Bengio, and AaronCourville.Deep Learning. http://www.deeplearningbook.
org. MIT Press, 2016.

[16] Benjamin Hettwer, Stefan Gehrer, and Tim Güneysu. “Deep Neural Network Attribution Methods
for Leakage Analysis and Symmetric Key Recovery”. In: Selected Areas in Cryptography – SAC
2019. Ed. by Kenneth G. Paterson and Douglas Stebila. Cham: Springer International Publishing,
2020, pp. 645–666. ISBN: 978-3-030-38471-5.

[17] Geoffrey E. Hinton. “A Practical Guide to Training Restricted Boltzmann Machines”. In: Neural
Networks: Tricks of the Trade: Second Edition. Ed. by Grégoire Montavon, Geneviève B. Orr, and
Klaus-Robert Müller. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 599–619. ISBN:
978-3-642-35289-8. DOI: 10.1007/978-3-642-35289-8_32. URL: https://doi.org/
10.1007/978-3-642-35289-8_32.

[18] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedforward networks are uni-
versal approximators”. In: Neural Networks 2.5 (1989), pp. 359–366. ISSN: 0893-6080. DOI:
https://doi.org/10.1016/0893-6080(89)90020-8. URL: https://www.sciencedirect.
com/science/article/pii/0893608089900208.

[19] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift”. In: Proceedings of the 32nd International Conference on
International Conference on Machine Learning - Volume 37. ICML’15. Lille, France: JMLR.org,
2015, pp. 448–456.

[20] Maikel Kerkhof et al. Focus is Key to Success: A Focal Loss Function for Deep Learning-based
Side-channel Analysis. Cryptology ePrint Archive, Report 2021/1408. https://ia.cr/2021/
1408. 2021.

[21] Nitish Keskar et al. “On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
Minima”. In: (Sept. 2016).

[22] Nitish Shirish Keskar et al. “On Large-Batch Training for Deep Learning: Generalization Gap and
Sharp Minima”. In: CoRR abs/1609.04836 (2016). arXiv: 1609.04836. URL: http://arxiv.
org/abs/1609.04836.

[23] Jaehun Kim et al. “Make Some Noise. Unleashing the Power of Convolutional Neural Networks
for Profiled Side-channel Analysis”. In: IACR Transactions on Cryptographic Hardware and Em-
bedded Systems (May 2019), pp. 148–179. DOI: 10.46586/tches.v2019.i3.148-179.

[24] Günter Klambauer et al. “Self-Normalizing Neural Networks”. In: (2017). DOI: 10.48550/ARXIV.
1706.02515. URL: https://arxiv.org/abs/1706.02515.

[25] Paul Kocher et al. “Spectre Attacks: Exploiting Speculative Execution”. In: 2019 IEEE Symposium
on Security and Privacy (SP). 2019, pp. 1–19. DOI: 10.1109/SP.2019.00002.

[26] Paul C. Kocher. “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other
Systems”. In: Advances in Cryptology — CRYPTO ’96. Ed. by Neal Koblitz. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1996, pp. 104–113. ISBN: 978-3-540-68697-2.

[27] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. “Differential Power Analysis”. In: Proceedings
of the 19th Annual International Cryptology Conference on Advances in Cryptology. CRYPTO
’99. Berlin, Heidelberg: Springer-Verlag, 1999, pp. 388–397. ISBN: 3540663479.

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classification with Deep Con-
volutional Neural Networks”. In: Advances in Neural Information Processing Systems. Ed. by F.
Pereira et al. Vol. 25. Curran Associates, Inc., 2012. URL: https://proceedings.neurips.
cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[29] Hugo Larochelle et al. “An Empirical Evaluation of Deep Architectures on Problems with Many
Factors of Variation”. In: Proceedings of the 24th International Conference on Machine Learning.
ICML ’07. Corvalis, Oregon, USA: Association for Computing Machinery, 2007, pp. 473–480.
ISBN: 9781595937933. DOI: 10.1145/1273496.1273556. URL: https://doi.org/10.
1145/1273496.1273556.

https://doi.org/10.1007/978-3-662-05094-1
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1007/978-3-642-35289-8_32
https://doi.org/10.1007/978-3-642-35289-8_32
https://doi.org/10.1007/978-3-642-35289-8_32
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://ia.cr/2021/1408
https://ia.cr/2021/1408
https://arxiv.org/abs/1609.04836
http://arxiv.org/abs/1609.04836
http://arxiv.org/abs/1609.04836
https://doi.org/10.46586/tches.v2019.i3.148-179
https://doi.org/10.48550/ARXIV.1706.02515
https://doi.org/10.48550/ARXIV.1706.02515
https://arxiv.org/abs/1706.02515
https://doi.org/10.1109/SP.2019.00002
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.1145/1273496.1273556
https://doi.org/10.1145/1273496.1273556
https://doi.org/10.1145/1273496.1273556

Bibliography 67

[30] Huimin Li, Marina Krček, and Guilherme Perin. “A Comparison of Weight Initializers in Deep
Learning-Based Side-Channel Analysis”. In: Applied Cryptography and Network Security Work-
shops. Ed. by Jianying Zhou et al. Cham: Springer International Publishing, 2020, pp. 126–143.
ISBN: 978-3-030-61638-0.

[31] Min Lin, Qiang Chen, and Shuicheng Yan. “Network In Network”. In:CoRR abs/1312.4400 (2014).
[32] Moritz Lipp et al. “Meltdown: Reading Kernel Memory from User Space”. In: Commun. ACM 63.6

(May 2020), pp. 46–56. ISSN: 0001-0782. DOI: 10.1145/3357033. URL: https://doi.
org/10.1145/3357033.

[33] Xiangjun Lu et al. “Pay Attention to Raw Traces: A Deep Learning Architecture for End-to-End
Profiling Attacks”. In: IACR Transactions on Cryptographic Hardware and Embedded Systems
2021, Issue 3 (2021), pp. 235–274. DOI: 10.46586/tches.v2021.i3.235- 274. URL:
https://tches.iacr.org/index.php/TCHES/article/view/8974.

[34] StefanMangard, Maria Elisabeth Oswald, and Thomas Popp.Power Analysis Attacks - Revealing
the Secrets of Smart Cards. English. 1st ed. XXIII, 337 S. Springer, 2007. ISBN: 0-387-30857-1.

[35] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Soft-
ware available from tensorflow.org. 2015. URL: https://www.tensorflow.org/.

[36] Loïc Masure, Cécile Dumas, and Emmanuel Prouff. “Gradient Visualization for General Charac-
terization in Profiling Attacks”. In: Constructive Side-Channel Analysis and Secure Design. Ed.
by Ilia Polian and Marc Stöttinger. Cham: Springer International Publishing, 2019, pp. 145–167.
ISBN: 978-3-030-16350-1.

[37] Loïc Masure and Rémi Strullu. Side Channel Analysis against the ANSSI’s protected AES imple-
mentation on ARM. Cryptology ePrint Archive, Report 2021/592. https://ia.cr/2021/592.
2021.

[38] Guilherme Perin, Lichao Wu, and Stjepan Picek. Gambling for Success: The Lottery Ticket Hy-
pothesis in Deep Learning-based SCA. Cryptology ePrint Archive, Report 2021/197. https:
//ia.cr/2021/197. 2021.

[39] Stjepan Picek et al. “The Curse of Class Imbalance and Conflicting Metrics with Machine Learn-
ing for Side-channel Evaluations”. In: Transactions on Cryptographic Hardware and Embedded
Systems 2019 (Nov. 2018). DOI: 10.13154/tches.v2019.i1.209-237.

[40] Bastian Richter, Alexander Wild, and Amir Moradi. Automated Probe Repositioning for On-Die
EM Measurements. Cryptology ePrint Archive, Report 2019/923. https://ia.cr/2019/923.
2019.

[41] Jorai Rijsdijk et al. “Reinforcement Learning for Hyperparameter Tuning in Deep Learning-based
Side-channel Analysis”. In: IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems 2021, Issue 3 (2021), pp. 677–707. DOI: 10.46586/tches.v2021.i3.677-707. URL:
https://tches.iacr.org/index.php/TCHES/article/view/8989.

[42] Sebastian Risi, Joel Lehman, and Kenneth O. Stanley. “Evolving the Placement and Density of
Neurons in the Hyperneat Substrate”. In: Proceedings of the 12th Annual Conference on Genetic
and Evolutionary Computation. GECCO ’10. Portland, Oregon, USA: Association for Computing
Machinery, 2010, pp. 563–570. ISBN: 9781450300728. DOI: 10.1145/1830483.1830589.
URL: https://doi.org/10.1145/1830483.1830589.

[43] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolutional Networks for Biomed-
ical Image Segmentation”. In: ArXiv abs/1505.04597 (2015).

[44] Florian Schroff, Dmitry Kalenichenko, and James Philbin. “FaceNet: A unified embedding for
face recognition and clustering”. In: 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2015), pp. 815–823.

[45] Ramprasaath R. Selvaraju et al. “Grad-CAM: Why did you say that? Visual Explanations from
DeepNetworks viaGradient-based Localization”. In:CoRR abs/1610.02391 (2016). arXiv: 1610.
02391. URL: http://arxiv.org/abs/1610.02391.

https://doi.org/10.1145/3357033
https://doi.org/10.1145/3357033
https://doi.org/10.1145/3357033
https://doi.org/10.46586/tches.v2021.i3.235-274
https://tches.iacr.org/index.php/TCHES/article/view/8974
https://www.tensorflow.org/
https://ia.cr/2021/592
https://ia.cr/2021/197
https://ia.cr/2021/197
https://doi.org/10.13154/tches.v2019.i1.209-237
https://ia.cr/2019/923
https://doi.org/10.46586/tches.v2021.i3.677-707
https://tches.iacr.org/index.php/TCHES/article/view/8989
https://doi.org/10.1145/1830483.1830589
https://doi.org/10.1145/1830483.1830589
https://arxiv.org/abs/1610.02391
https://arxiv.org/abs/1610.02391
http://arxiv.org/abs/1610.02391

68 Bibliography

[46] P.Y. Simard, D. Steinkraus, and J.C. Platt. “Best practices for convolutional neural networks ap-
plied to visual document analysis”. In: Seventh International Conference on Document Analy-
sis and Recognition, 2003. Proceedings. 2003, pp. 958–963. DOI: 10.1109/ICDAR.2003.
1227801.

[47] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Networks for Large-Scale
Image Recognition”. In: CoRR abs/1409.1556 (2015).

[48] François-Xavier Standaert, Tal G. Malkin, and Moti Yung. “A Unified Framework for the Analysis
of Side-Channel Key Recovery Attacks”. In: Advances in Cryptology - EUROCRYPT 2009. Ed. by
Antoine Joux. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 443–461. ISBN: 978-3-
642-01001-9.

[49] Kenneth Stanley, David D’Ambrosio, and Jason Gauci. “A Hypercube-Based Encoding for Evolv-
ing Large-Scale Neural Networks”. In: Artificial life 15 (Feb. 2009), pp. 185–212. DOI: 10.1162/
artl.2009.15.2.15202.

[50] Kenneth O. Stanley and Risto Miikkulainen. “Evolving Neural Networks through Augmenting
Topologies”. In: Evol. Comput. 10.2 (June 2002), pp. 99–127. ISSN: 1063-6560. DOI: 10.1162/
106365602320169811. URL: https://doi.org/10.1162/106365602320169811.

[51] Biaoshuai Tao and Hongjun Wu. “Improving the Biclique Cryptanalysis of AES”. In: Information
Security and Privacy. Ed. by Ernest Foo and Douglas Stebila. Cham: Springer International Pub-
lishing, 2015, pp. 39–56. ISBN: 978-3-319-19962-7.

[52] Matus Telgarsky. “Benefits of Depth in Neural Networks”. In: COLT. 2016.
[53] Matus Telgarsky. “Representation Benefits of Deep Feedforward Networks”. In:ArXiv abs/1509.08101

(2015).
[54] Phillip Verbancsics and Josh Harguess. Generative NeuroEvolution for Deep Learning. 2013.

DOI: 10.48550/ARXIV.1312.5355. URL: https://arxiv.org/abs/1312.5355.
[55] Ronald J. Williams. “Simple statistical gradient-following algorithms for connectionist reinforce-

ment learning”. In: Machine Learning. 1992, pp. 229–256.
[56] Lennert Wouters et al. “Revisiting a Methodology for Efficient CNN Architectures in Profiling At-

tacks”. In: IACR Transactions on Cryptographic Hardware and Embedded Systems 2020, Is-
sue 3 (2020), pp. 147–168. DOI: 10.13154/tches.v2020.i3.147-168. URL: https:
//tches.iacr.org/index.php/TCHES/article/view/8586.

[57] Lichao Wu and Guilherme Perin. “On the Importance of Pooling Layer Tuning for Profiling Side-
Channel Analysis”. In: Applied Cryptography and Network Security Workshops. Ed. by Jianying
Zhou et al. Cham: Springer International Publishing, 2021, pp. 114–132. ISBN: 978-3-030-81645-
2.

[58] LichaoWu, Guilherme Perin, and Stjepan Picek. I Choose You: Automated Hyperparameter Tun-
ing for Deep Learning-based Side-channel Analysis. Cryptology ePrint Archive, Report 2020/1293.
https://ia.cr/2020/1293. 2020.

[59] Gabriel Zaid et al. Methodology for Efficient CNN Architectures in Profiling Attacks – Extended
Version. Cryptology ePrint Archive, Report 2019/803. https://ia.cr/2019/803. 2019.

[60] Gabriel Zaid et al. Understanding Methodology for Efficient CNN Architectures in Profiling At-
tacks. Cryptology ePrint Archive, Report 2020/757. https://ia.cr/2020/757. 2020.

https://doi.org/10.1109/ICDAR.2003.1227801
https://doi.org/10.1109/ICDAR.2003.1227801
https://doi.org/10.1162/artl.2009.15.2.15202
https://doi.org/10.1162/artl.2009.15.2.15202
https://doi.org/10.1162/106365602320169811
https://doi.org/10.1162/106365602320169811
https://doi.org/10.1162/106365602320169811
https://doi.org/10.48550/ARXIV.1312.5355
https://arxiv.org/abs/1312.5355
https://doi.org/10.13154/tches.v2020.i3.147-168
https://tches.iacr.org/index.php/TCHES/article/view/8586
https://tches.iacr.org/index.php/TCHES/article/view/8586
https://ia.cr/2020/1293
https://ia.cr/2019/803
https://ia.cr/2020/757

Appendix A

Methodology comparison

69

70 A. Methodology comparison

Ranking in [41] 𝐴𝑆𝐶𝐴𝐷 𝑁 = 50 𝑅𝑆 Value CNN Architecture 𝑁̄𝑇𝐺𝐸 according to[41] parameters

1 [C(4,50,1), P(50,4), C(2,50,1), P(2,2), C(2,50,1), P(50,50),
GAP(1), FC(4), SM(256)] 313 2, 100

2 [C(16,25,1), P(50,4), C(2,2,1), P(4,2), C(8,25,1), P(4,2),
C(4,25,1), P(25,25), GAP(1), FC(2), SM(256)] 333 2, 472

3 [C(4,50,1), P(50,4), C(2,50,1), P(2,2), C(2,50,1), P(50,50),
FLAT(50), FC(15), FC(15), SM(256)] 372 5, 189

4
[C(8,25,1), P(50,4), C(16,50,1), BN, P(50,7), C(8,3,1), BN,
P(4,4), C(128,2,1), P(2,2), C(32,1,1), GAP(32), FC(15),
FC(4), SM(256)]

335 15, 207

5 [C(4,50,1), P(25,2), C(4,3,1), P(50,7), C(8,25,1), P(2,2),
C(16,3,1), P(7,4), C(8,3,1), GAP(8), FC(4), SM(256)] 403 3, 172

6 [C(8,2,1), P(50,4), C(2,50,1), P(2,2), C(2,50,1), P(50,50),
FLAT(50), FC(20), FC(20), FC(2), SM(256)] 548 2, 318

7 [C(2,3,1), P(50,4), C(64,3,1), P(2,2), C(8,50,1), P(25,7),
FLAT(63), FC(2), FC(2), FC(2), SM(256)] 480 26, 990

8 [C(4,50,1), P(50,4), C(2,50,1), P(2,2), C(2,50,1), P(50,50),
FLAT(50), FC(2), SM(256)] 734 1, 582

9
[C(8,25,1), P(50,2), C(16,2,1), P(50,25), C(2,1,1), P(2,2),
C(32,3,1), P(2,2), C(8,2,1), GAP(8), FC(10), FC(10), FC(4),
SM(256)]

705 2, 782

10 [C(4,25,1), P(50,4), C(2,1,1), P(25,25), C(8,2,1), P(2,2),
C(64,2,1), P(2,2), FLAT(2), FC(4), FC(2), FC(2), SM(256)] 704 2, 286

Table A.1: Jorai Rijsdijk’s[41] results using the Reinforcement-learning Methodology from [41].

Ranking in [41] 𝑁̄𝑇𝐺𝐸 over 10 trials 𝐺𝐸 reached over 10 trials 𝑀𝐺 𝑀𝑁

1 [-,-,-,-,-,-,-,-,-,-] [127.17, 114.95, 123.61, 131.95, 117.94,
121.89, 4.3, 107.03, 124.42, 118.79] 109.24 -

2 [-,-,-,-,-,923,-,282,244,-] [90.46, 4.24, 0.0, 125.0, 117.77,
0.83, 16.23, 0.0, 0.0, 54.31] 40, 884 483

3 [-,-,-,-,-,-,-,-,-,-] [85.15, 101.3, 112.32, 37.52, 27.67,
68.04, 30.24, 26.98, 108.59, 102.94] 70.075 -

4 [219, 213, 353, 221, 210, 206, 219, 205, -,-] [0.0,0.0,0.0,0.0,0.0,
0.0,0.0,0.0,25.99,27.08] 5.307 230, 75

5 [441,-,-,726,177,-,330,373,341,-] [0.02,35.36,8.83,0.44,0.0,
2.17,0.0,0.0,0.0,3.77] 5.059 398

6 [-,-,-,-,-,-,-,-,-,-] [49.86,122.18,124.62,120.01,62.77,
95.29,115.52,108.21,28.97,120.24] 94, 767 -

7 [744,-,-,-,-,-,-,-,-,-] [0.36,118.92,126.33,124.86,125.47,
129.87,29.89,110.39,108.44,117.55] 99, 208 -

8 [-,-,-,-,-,-,-,-,-,-] [131.19,40.42,105.16,24.36,102.63,
119.78,125.5,111.15,21.09,41.22] 82.25 -

9 [-,-,-,-,-,-,-,-,-,-] [25.6,75.01,27.53,24.61,12.21,
24.26,22.94,29.6,27.82,28.52] 29.81 -

10 [-,-,-,-,-,-,-,-,-,-] [95.18,89.33,124.02,65.02,84.68,
118.36,73.91,124.64,102.02,95.5] 97, 266 -

Table A.2: Reproducing Jorai Rijsdijk’s[41] results, from table A.1, with the environment-setting from [41].

Appendix B

Increased filter sizes

(a) selu. (b) relu.

(c) elu.

Figure B.1: Good candidates: Assessing the convolutional filter sizes: ranges [20, 40].

71

72 B. Increased filter sizes

(a) selu. (b) relu.

(c) elu.

Figure B.2: Good candidates: Assessing the convolutional filter sizes: ranges [40, 65].

73

(a) selu (b) elu

Figure B.3: Good candidates with single layer: pooling-filter ranges [20, 35].

74 B. Increased filter sizes

(a) selu.

(b) relu.

(c) elu.

Figure B.4: Good candidates with single layer: pooling-filter ranges [10, 65].

Appendix C

Model comparison

C.1 DPA v4

Figure C.1: 𝐷𝑃𝐴𝑣4 dataset model (produced by our methodology), parameters: 246, 163, 𝑁𝑇𝐺𝐸 = 1.

75

76 C. Model comparison

C.2 AES RD

Figure C.2: 𝐴𝐸𝑆 𝑅𝐷 dataset model (produced by our methodology), parameters: 52, 156, 𝑁𝑇𝐺𝐸 = 2.

C.3. AES HD 77

C.3 AES HD

Figure C.3: 𝐴𝐸𝑆 𝐻𝐷 dataset model (produced by our methodology), parameters: 18, 286, 𝑁𝑇𝐺𝐸 = 690.

	Introduction
	Background
	Machine learning
	Deep learning
	Neuron
	The importance of non-linearity
	Regularizing Layer types
	Multilayer perceptron
	Convolutional neural networks
	Evaluation metrics

	AES
	Counter-measures
	Side-channel databases
	ASCAD
	AES HD
	DPA V4
	AES Random delay

	SNR

	Related work
	Deep learning
	Deep learning in SCA
	Research questions

	Ranges and constraints
	Motivation
	Approach
	Architectural design

	Experimental setup
	Results
	Architectures for Hyper-parameter injection
	Max-pooling vs Average-pooling
	Learning rate and mini-batch
	Activation function
	Range assessment
	Deeper networks

	Discussion

	Attribution methods
	Motivation
	Exploitable trace properties
	Tuning and assessing convolutional layers
	Filter size and pooling size
	Amount of convolutional layers and amount of filters

	Discussion

	New methodology
	Considerations
	Methodology
	Results
	DPA V4
	AES RD
	AES HD
	Comparison with random search

	Discussion

	Conclusions
	Research questions
	Summary of Contributions
	Limitations and Future work

	Methodology comparison
	Increased filter sizes
	Model comparison
	DPA v4
	AES RD
	AES HD

