Impulse Based Substructuring Unravelled:

Simulation and coupling of structural dynamics in the time domain

Daniël D. van den Bosch

23 May 2014

Introduction

- Simulate coupled dynamics of a structure as a result of impact loading
 - Impact contains high frequency excitations

- Coupling techniques in the frequency domain exist
 - Not very efficient for this loadcase

- Simulate a coupled response in the time domain
 - Inherent to transient effects
 - Techniques are not mature yet

Contents

What do we need?

"Simulate the coupled dynamics of components in the time domain"

Structural Dynamics

How to describe a structure's dynamics?

Mass-, damping- and stiffness matrix

$$\mathbf{M}\ddot{\mathbf{u}}(t) + \mathbf{C}\dot{\mathbf{u}}(t) + \mathbf{K}\mathbf{u}(t) = \mathbf{f}(t)$$

- The frequency domain approach
 - Dynamic stiffness

$$\mathbf{Z}(\omega)\mathbf{u}(\omega) = \mathbf{f}(\omega)$$

• Receptance / admittance

$$\mathbf{u}(\omega) = \mathbf{Y}(\omega) \, \mathbf{f}(\omega)$$

Structural Dynamics

In the time domain!

Convolution Product or Duhamel's integral

$$\mathbf{u}(t) = \int_0^t \mathbf{H}(t - \tau) \,\mathbf{f}(\tau) \,\mathrm{d}\tau$$

- Impulse Response Functions $\mathbf{H}(t)$
 - A structure's response to a Dirac impulse

$$\mathbf{M}\,\ddot{\mathbf{u}}(t) + \mathbf{C}\,\dot{\mathbf{u}}(t) + \mathbf{K}\,\mathbf{u}(t) = \begin{bmatrix} \delta(t) \\ 0 \\ \vdots \\ 0 \end{bmatrix} \quad \overset{[a]}{\overset{[b]}{\overset{[b]}{\overset{[b]}{\overset{[c]}}{\overset{[c]}{\overset{$$

Towards building the impact load

Building the impact load

VS.

Using superposition...

Dirac impulses

Harmonic excitations

Convolution product explained

Discretisation

Dirac impulses

$$\mathbf{u}(t) = \int_0^t \mathbf{H}(t - \tau) \, \mathbf{f}(\tau) \, \mathrm{d}\tau$$

$$\mathbf{u}_n = \sum_{i=1}^n \mathbf{H}_{n-i} \, \mathbf{f}_i \, \Delta t$$

Contents

What do we need?

"Simulate the coupled dynamics of components in the time domain"

Contents

What do we need?

"Simulate the coupled dynamics of components in the time domain"

Impulse Response Functions

How to obtain them?

- Spatially discretised
 - Analytically
 - Numerically

- Spatially continuous
 - Experimentally
 - Analytically

Impulse Response Functions

How to obtain them?

- Spatially discretised
 - Analytically
 - Numerically

- Spatially continuous
 - Experimentally
 - Analytically

Single DoF

$$m \ddot{u}(t) + k u(t) = \delta(t)$$

$$m\,\Delta \dot{u} = \int_0^{t+} \delta(t)\,\mathrm{d}t = 1$$

• Jump in velocity at time 0.

Single DoF

$$m\,\Delta \dot{u} = \int_0^{t+} \delta(t)\,\mathrm{dt} = 1$$

• Jump in velocity at time 0.

Multiple DoF

• The response of each *mode* for an impulse on a *node*

of a 50 element bar

of a 50 element bar

Impulse Response Functions

How to obtain them?

- Spatially discretised
 - Analytically
 - Numerically

- Spatially continuous
 - Experimentally
 - Analytically

Measured IRF

Simulated using imperfect impulse

$$\tilde{h}(t) = \int_0^t h(t - \tau) \,\tilde{\delta}(\tau) \,d\tau$$

Convolution with this load gives us the measured IRF

Measured IRF

Simulated using imperfect impulse

Measured IRF

Comparison perfect and imperfect response

Response to a harmonic excitation

Simulation using imperfect Impulse

Contents

What do we need?

"Simulate the coupled dynamics of components in the time domain"

Contents

What do we need?

✓ Obtaining Impulse Response Functions

□ Coupling of structural dynamics

☐The concept

☐ The application

"Simulate the coupled dynamics of components in the time domain"

Coupling structural dynamic

Substructuring explained

• Compatibility condition:

$$\mathbf{B}\,\mathbf{u} = \begin{bmatrix} \mathbf{0} & -\mathbf{I} & \mathbf{I} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{u}_1^{\mathbf{A}} \\ \mathbf{u}_2^{\mathbf{A}} \\ \mathbf{u}_2^{\mathbf{B}} \\ \mathbf{u}_3^{\mathbf{B}} \end{bmatrix} = \mathbf{0}$$

• Equilibrium condition:

$$\mathbf{g} = -\mathbf{B}^T \boldsymbol{\lambda}$$

Coupling structural dynamic

Expanding the convolution product

Expanded convolution product:

$$\begin{cases} \mathbf{u}(t) = \int_0^t \mathbf{H}(t - \tau) \ \left(\mathbf{f}(\tau) - \mathbf{B}^T \boldsymbol{\lambda}(\tau) \right) \ \mathrm{d}\tau \\ \mathbf{B} \mathbf{u}(t) = \mathbf{0} \end{cases}$$

• And discretise:

and discretise:
$$\begin{cases} \mathbf{u}_n = \sum_{i=1}^n \mathbf{H}_{n-i} \left(\mathbf{f}_i - \mathbf{B}^T \boldsymbol{\lambda}_i \right) \Delta t \\ \mathbf{B} \mathbf{u}_n = 0 \end{cases}$$

IRF of a 5 node bar

To illustrate coupling phenomena

Consider the following model and IRF:

Behind the scenes

Couple two of these bars...

And see what happens!

$$\mathbf{u}_n = \sum_{i=1}^n \mathbf{H}_{n-i} \left(\mathbf{f}_i - \mathbf{B}^T \boldsymbol{\lambda}_i \right) \Delta t$$

Behind the scenes

Couple two of these bars...

And see what happens!

$$\mathbf{u}_n = \sum_{i=1}^n \mathbf{H}_{n-i} \left(\mathbf{f}_i - \mathbf{B}^T \, \boldsymbol{\lambda}_i \right) \Delta t$$

Behind the scenes

Couple two of these bars...

And see what happens!

Behind the scenes

_

$$\mathbf{u}_n = \sum_{i=1}^n \mathbf{H}_{n-i} \left(\mathbf{f}_i - \mathbf{B}^T \boldsymbol{\lambda}_i \right) \Delta t$$

Behind the scenes

$$\mathbf{u}_n = \sum_{i=1}^n \mathbf{H}_{n-i} \left(\mathbf{f}_i - \mathbf{B}^T \boldsymbol{\lambda}_i \right) \Delta t$$

Coupling phenomena

What can go wrong?

 What is required for stable and clean coupling?

Contents

What do we need?

✓ Obtaining Impulse Response Functions

□ Coupling of structural dynamics

☐The concept

☐ The application

"Simulate the coupled dynamics of components in the time domain"

Contents

What do we need?

✓ Obtaining Impulse Response Functions

□ Coupling of structural dynamics

√ The concept

☐ The application

"Simulate the coupled dynamics of components in the time domain"

Classical discrete method

Recall this slide

=

$$\mathbf{u}_n = \sum_{i=1}^n \mathbf{H}_{n-i} \left(\mathbf{f}_i - \mathbf{B}^T \boldsymbol{\lambda}_i \right) \Delta t$$

How to obtain the interface force?

$$\begin{cases} \mathbf{u}(t) = \mathbf{H}(t) * (\mathbf{f}(t) - \mathbf{B}^T \boldsymbol{\lambda}(t)) \\ \mathbf{B} \mathbf{u} = \mathbf{0} \end{cases}$$

$$\mathbf{B}\mathbf{H}(t)\mathbf{B}^{T} * \boldsymbol{\lambda}(t) = \mathbf{B}\mathbf{H}(t) * \mathbf{f}(t)$$

How to obtain the interface force?

• An inverse filter:

$$h(t) * h^{inv}(t) = \delta(t)$$

- Least squares approximation for the inverse filter
- Discrete → Dependancy on time step size

Comparison coupling methods

VS.

Classical discrete

Inverse IRF filter

Pro:

Ensures compatibility

Con:

Depends solely on H₀

Pro:

Depends on full IRF

Con:

 Does not ensure compatibility

Coupled simulation

Classical discrete method vs. Inverse IRF filter method

Substructure A Substructure B Classical discrete: Substructure I Inverse IRF filter:

Coupled simulation

With an imperfect IRF

Contents

What do we need?

✓ Obtaining Impulse Response Functions

□ Coupling of structural dynamics

√ The concept

☐ The application

"Simulate the coupled dynamics of components in the time domain"

Contents

What do we need?

✓ Obtaining Impulse Response Functions

□ Coupling of structural dynamics

√ The concept

√ The application

"Simulate the coupled dynamics of components in the time domain"

Contents

What do we need?

✓ Obtaining Impulse Response Functions

- ✓ Coupling of structural dynamics
 - √ The concept
 - √ The application

"Simulate the coupled dynamics of components in the time domain"

Conclusions

First...

 Obtain Impulse Response Functions analytically using Modal Super Position

- A structure's response can be obtained by convolving its IRF with the excitation
 - Discrete algorithms exist approximating the continuous convolution

Conclusions

Secondly..

- Coupling requires a causal IRF
 - For the bar, a counter impulse has to exist.
 - The measured bar → not causal

- Coupling using the classical discrete method
 - Guarantees interface compatibility
 - Prone to errors in the first time step
- Coupling using inverse the IRF filter
 - Allows incompatibility

Recommendations

For the future...

- IRF using travelling waves
 - Rather than standing waves (MSP)
 - Analytically for spacially continuous model

- Requirements description for IRF
 - Guaranteeing stable and clean coupling

 Combining multiple findings and techniques to successful coupling of experimentally obtained IRF's

Impulse Based Substructuring Unravelled:

Simulation and coupling of structural dynamics in the time domain

Daniël D. van den Bosch

23 May 2014

The big book of backup slides

Daniël D. van den Bosch

23 May 2014

Discretisation algorithms

$$\mathbf{u}_n = \sum_{i=0}^{n-1} \mathbf{H}_{n-i} \, \mathbf{f}_i \, \Delta t$$

$$\mathbf{u}_n = \sum_{i=0}^{n-1} \mathbf{H}_{n-i} \, \frac{\mathbf{f}_i + \mathbf{f}_{i+1}}{2} \, \Delta t$$

Discretisation algorithms

$$\mathbf{u}_n = \mathbf{H}_n \, \mathbf{f}_0 \, \frac{\Delta t}{2} + \left(\sum_{i=1}^{n-1} \mathbf{H}_{n-i} \, \mathbf{f}_i \, \Delta t \right) + \mathbf{H}_0 \, \mathbf{f}_n \, \frac{\Delta t}{2}$$

Discretisation algorithms

(c) Product of function averages, the result of $\chi = \frac{1}{2}$, $\psi = \frac{1}{2}$

(d) Product of piecewise linear functions, the result of $\chi=\frac{1}{2}, \ \psi=\frac{1}{2}$

$$\mathbf{u}_{n} = \frac{1-\chi}{2} \Delta t (\mathbf{H}_{0} \mathbf{f}_{n} + \mathbf{H}_{n} \mathbf{f}_{0}) + \sum_{i=1}^{n-1} (1-\chi) \Delta t \mathbf{H}_{n-i} \mathbf{f}_{i}$$
$$+ \sum_{i=1}^{n} \chi \Delta t (\psi \mathbf{H}_{n-i} \mathbf{f}_{i-1} + (1-\psi) \mathbf{H}_{n-i+1} \mathbf{f}_{i})$$

Courant's criterion

Involving the Courant's number

$$C = \frac{c' \, \Delta t}{\Delta x} \le C_{\text{max}}$$

$$C = \frac{\omega_{cr} \, \Delta t}{2} \le C_{\text{max}}$$

Analytical IRF

Single DoF damped system or mode

$$\dot{u}(t) = \hat{u} \cos(\omega_d t) e^{-\zeta \omega_n t}$$

$$u(t) = \hat{u} \frac{\sin(\omega_d t - \theta)}{\omega_n} e^{-\zeta \omega_n t}$$

$$\dot{u}(t) = \frac{\omega_n}{m \,\omega_d} \,\cos\left(\omega_d \,t + \theta\right) e^{-\zeta \,\omega_n \,t}$$

$$u(t) = \frac{\sin(\omega_d t)}{m \omega_d} e^{-\zeta \omega_n t}$$

The first peak explained

(a) Sample IRF with T = 1 [ms].

(b) Sample impulse using $T_{imp} = 1 [ms]$

Modal content impulse

Perfect vs. Imperfect

Energetic content

Perfect vs. Imperfect

Energetic content coupled structure

VS.

Perfect vs. Imperfect

Classical discrete

Inverse IRF filter

Truncating IRF

Enhancing computational performance

$$u(t) \simeq \int_{\max(0, t-t_c)}^t h(t-\tau) f(\tau) d\tau$$

Splitting modal content

Enhancing computational performance

$$\mathbf{x}_r \in \begin{cases} \mathbf{X}^{\mathrm{RB}} & \text{for } \omega_r = 0 \\ \mathbf{X}^{\mathrm{LF}} & \text{for } 0 < \omega_r < \omega_c \\ \mathbf{V} & \text{for } \omega_c \le \omega_r \end{cases}$$

$$\mathbf{r}(t) = \int_0^t \left(\mathbf{P} \mathbf{H}(t - \tau) \right) \mathbf{f}(\tau) d\tau = \int_0^t \mathbf{H}^{HF}(t - \tau) \mathbf{f}(\tau) d\tau$$

Matrix recurrence procedure

Enhancing computational performance

$$\begin{bmatrix}
\eta_{n+1} \\
\Delta t \,\dot{\eta}_{n+1}
\end{bmatrix} = \begin{bmatrix}
h^{(1)}(\Delta t) + 2\zeta\omega_n \,h^{(0)}(\Delta t) & \frac{h^{(0)}(\Delta t)}{\Delta t} \\
\Delta t \,h^{(2)}(\Delta t) + 2\zeta\omega_n \Delta t \,h^{(1)}(\Delta t) & h^{(1)}(\Delta t)
\end{bmatrix} \begin{bmatrix}
\eta_n \\
\Delta t \,\dot{\eta}_n
\end{bmatrix} \\
+ \begin{bmatrix}
h^{(-1)}(\Delta t) - \frac{h^{(-2)}(\Delta t)}{\Delta t} + \frac{c_2}{\Delta t} & c_1 + \frac{h^{(-2)}(\Delta t)}{\Delta t} - \frac{c_2}{\Delta t} \\
-h^{(-1)}(\Delta t) + \Delta t \,h^{(0)}(\Delta t) - c_1 & h^{(-1)}(\Delta t) + c_1
\end{bmatrix} \begin{bmatrix}
\phi_n \\
\phi_{n+1}
\end{bmatrix}$$

Toeplitz notation

$$h(t) * h^{inv}(t) = \delta(t)$$

$$H h^{inv} = \delta$$

$$H \triangleq \underbrace{\begin{bmatrix} h_1 & 0 & \cdots & 0 \\ \vdots & h_1 & & \vdots \\ h_N & \vdots & \ddots & 0 \\ 0 & h_N & & h_1 \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & 0 & h_N \end{bmatrix}}_{\text{M by Q=M-N+1}}, \quad h^{inv} \triangleq \underbrace{\begin{bmatrix} h^{inv}_1 \\ h^{inv}_2 \\ \vdots \\ h^{inv}_Q \end{bmatrix}}_{\text{Q by 1}} \quad \text{and} \quad \delta \triangleq \underbrace{\begin{bmatrix} \delta_1 \\ \delta_2 \\ \vdots \\ \delta_M \end{bmatrix}}_{\text{M by 1}}$$

Isolate the inverse IRF filter

$$h(t)*h^{inv}(t) = \delta(t)$$

$$H h^{inv} = \delta$$

$$H^T H h^{inv} = H^T \delta$$

$$h^{inv} = (H^T H)^{-1} H^T \delta$$

Causality

Time step dependency

Time step dependency

Two DoFs

$$\mathbf{H}_{BB}^{inv}(t) * \mathbf{H}_{BB}(t) = \begin{bmatrix} \delta(t) & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \delta(t) \end{bmatrix}$$

$$\mathbf{H}_{BB}^{inv}(t) * \mathbf{H}_{BB}(t) = \begin{bmatrix} \det^*(\mathbf{H}_{BB}(t)) \end{bmatrix}^{inv} * \begin{bmatrix} h_{22}(t) & -h_{12}(t) \\ -h_{21}(t) & h_{11}(t) \end{bmatrix} * \begin{bmatrix} h_{11}(t) & h_{12}(t) \\ h_{21}(t) & h_{22}(t) \end{bmatrix}$$

$$= \begin{bmatrix} \det^*(\mathbf{H}_{BB}(t)) \end{bmatrix}^{inv} * \begin{bmatrix} \det^*(\mathbf{H}_{BB}(t)) & 0 \\ 0 & \det^*(\mathbf{H}_{BB}(t)) \end{bmatrix}$$

$$= \begin{bmatrix} \delta(t) & 0 \\ 0 & \delta(t) \end{bmatrix}$$