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Case Study

Volumetric Pothole Detection from UAV-Based Imagery
Siyuan Chen1; Debra F. Laefer, M.ASCE2; Xiangding Zeng3;

Linh Truong-Hong, Ph.D.4; and Eleni Mangina5

Abstract: Road networks are essential elements of a community’s infrastructure and need regular inspection. Present practice requires traffic
interruptions and safety risks for inspectors. The road detection system based on vehicle-mounted lasers is also quite mature, offering
advantages such as high-precision defect detection, high automation, and fast detection speed. However, it does have drawbacks such as high
equipment procurement and maintenance costs, limited flexibility, and insufficient coverage range. Therefore, this paper proposes a low-cost
unmanned aerial vehicle (UAV)-based alternative using imagery for automatic road pavement inspection focusing on pothole detection and
classification. A slicing-based method, entitled the Pavement Pothole Detection Algorithm, is applied to the imagery after it is converted into a
three-dimensional point cloud. When compared with manually extracted results, the proposed UAV-structure-from-motion (SfM) method and
the associated algorithm achieved 0.01 m level accuracy for pothole depth detection and maximum errors of 0.0053 m3 in volume evaluation
for cases studies of both a road and a bridge deck. DOI: 10.1061/JSUED2.SUENG-1458. © 2024 American Society of Civil Engineers.

Author keywords: Unmanned aerial vehicle (UAV); Photogrammetry; Structure from motion (SfM); Point cloud; Pavement evaluation.

Introduction

The safety of a community’s road network is fundamental to an
efficient transportation system and a functioning economy (Frisoni
et al. 2014). Therefore, such networks must be inspected and
maintained on a regular basis. In the US, road and bridge inspection
and maintenance standards were developed largely following
the collapse of the Silver Bridge in 1967. Specifically, in 1971, the
National Bridge Inspection Standards (NBIS) were implemented as
a result of the Federal-Aid Highway Act of 1968 (Schnebele et al.
2015). In Europe, the European Parliament Council on Road
Infrastructure Safety Management issued European Directive 2008/
96/EC as the legal basis for road safety inspection (Frisoni et al.
2014). In response, 4,852,242 km of road across 28 EU countries
are monitored accompanied by 20 billion Euros in annual road
maintenance (Nicodème et al. 2017).

At present, road damage detection is still mainly through
manual detection, despite it being labor-intensive, time-consuming,
subjective, requiring road closures, and putting inspectors in harms
way (Varadharajan et al. 2014). For the road detection system based

on a vehicle laser, which is not widely used, it has a great improve-
ment in efficiency and detection accuracy compared with manual
detection, and has strong application value. For example, the cur-
rent mature commercial road detection system XROE XR-3D can
achieve 4-m measurement coverage, and the absolute accuracy of
the generated point cloud reaches the 0.01-m level. However, the
vehicle-based radar road detection system usually faces difficulties
in providing a full range of views and data for all parts of the road
(including lanes, sidewalks, and slopes), the deployment flexibility
is not enough to be limited by road traffic, and it is not safe and
economical.

At present, some methods (Zeybek and Bicici 2020) based on
structure from motion (SfM) use the SfM algorithm to generate
point clouds from the road images and Global Mapper software
to calculate the size of road pothole. These methods often have
problems such as too much noise in the point cloud, incomplete
pothole extraction, and large error in calculation of pothole size.
Therefore, in order to overcome some of the shortcomings of the
existing methods, the data acquisition stage and the damage treat-
ment stage must achieve higher automation, cost effectiveness, and
detection accuracy.

Related Works

With the development of new measurement sensors and data
collection platforms, various technological solutions have been ap-
plied to detect and characterize pavement distress to plan pavement
maintenance and repair tasks. An automated inspection effort typ-
ically consists of a two-stage data collection and analysis process.
In both, there has been a general trend to evolve documentation
and analysis from two-dimensional (2D) to more comprehensive
three-dimensional (3D), and will be summarized in the following
subsections.

Image-Based Two-Dimensional Inspection

As early as the 1990s, 2D images from satellites, airplanes, and
road-based vehicles were employed for road pavement inspection
(Chambon and Moliard 2011), along with accompanying data
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analysis methods. For example, Ma et al. (2013) identified geomet-
ric features for road damage segmentation from high-resolution
satellite images. Subsequently, Coulibaly et al. (2015) adopted
spectral and texture features to extract damaged road sections for
postdisaster road inspection. With images captured from a moving
vehicle, Varadharajan et al. (2014) proposed a method relying
on superpixel and machine learning. In that study, texture, color,
and geometric information were used for distress detection. More
recently, Siriborvornratanakul (2018) proposed a method using
single grayscale images and a 2D contour detection algorithm for
pothole evaluation. However, in that case, the image were usually
taken from a fixed view angle, and the analysis was affected by
camera orientation and shadows. Notably, a single image of a scene
can only provide 2D information, which contains insufficient infor-
mation for depth evaluation or volume calculation.

Laser Scanning–Based Three-Dimensional Inspection

Over the last decade, aerial laser scanning (ALS), mobile laser scan-
ning (MLS), and terrestrial laser scanning (TLS) have also been de-
ployed for pavement inspection. In response, several researchers
have undertaken automated damage detection algorithm develop-
ment. For example, at the macroscale, Soilán et al. (2018) intro-
duced a procedure to extract pavement and road markings from
laser scanning point clouds based on an unsupervised learning
method, and Vo et al. (2015a) used a fused imagery-ALS data
set and a supervised machine learning approach for overall road
extraction. At the microscale, Ouyang and Xu (2013) used a truck-
mounted MLS for pavement cracking measurement. The achieved
longitudinal resolution was 3 mm at a vehicle speed of 54 km=h. As
part of that, a grid-based depth detection algorithm was designed for
crack detection in the longitudinal and transverse directions, and the
Haar transform (HT) was applied for edge detection of cracks
by tracking the high-frequency depth changes. Subsequently, Gui
et al. (2018) designed a frequency-based method for multidistress
identification that included ruts, cracks, and grooves. This method
was able to identify potholes and other damage from extremely
high-resolution (1 million points=m2) MLS point clouds.

Compared with traditional 2D, visual-based methods, and
manual surveying methods, the 3D laser scanning–based methods
demonstrated clear advantages in accuracy and comprehensiveness
but have yet to be widely adopted in practice, possibly because of
the cost of the laser scanners and the challenge in the management
of large-scale data sets, which can rapidly reach the multiterabyte
level (Laefer et al. 2017).

UAV-Photogrammetry Inspection and 3D
Reconstruction

Both image-based and laser scanning–based inspection rely upon
an acquisition platform (e.g., satellites, airplane, or on-road ve-
hicle), and each platform has its own limitations in detecting ranges,
fields of view, and vantage points. For example, an airplane can only
collect from a distance between 1 and 20 km. Even high-end air-
borne LiDAR systems, when used with a helicopter at 3,000 m,
typically have a spatial resolution no better than 0.1 m (Vo et al.
2015b), which is insufficient for small damage detection.

In recent years, developments in the fields of UAV design and
computer vision have made the prospect of using a low-cost com-
mercial UAV combined with a high-resolution digital camera a
more viable strategy to meet the aforementioned challenges. UAV
platforms in this context have many advantages. Foremost is
economy. Specifically, according to a 2016 study on the popular
commercial UAV platforms and on-board sensors, a quadrotor

UAV equipped with a 4K (4096×2160 resolution) camera, and
mechanical gimbal system in the price range of about $3,000 is avail-
able as a highly suitable platform for infrastructure inspections (Chen
et al. 2016). An efficiency and cost comparison analysis by Tahar
(2015) ranked UAV-based surveys as twice as fast and five times
cheaper than traditional field survey methods (i.e., satellite imagery,
airborne laser scanner, and crewed aircraft). Additionally, a UAV
platform is more agile with respect to both inspection distance
and view angles in ranges that cannot be provided by aircraft, satellite
systems, or on-road vehicles.

Despite the numerous aforementioned advantages, UAVs still
face certain limitations. For instance, in scenarios where tall trees
or buildings are present along the route, it is often necessary to
adjust the flight altitude based on the specific circumstances.
Furthermore, there are restricted zones where flying is prohibited
in certain specialized areas.

In some cases, UAV-based images have been used directly for
visual inspection. For example, Eschmann et al. (2012) used UAVs
for close-range building inspection and monitoring. In that work,
images were collected fromwithin meters of the building envelop for
crack detection at the millimeter range. Seo et al. (2018) used UAV-
based images for timber bridge inspection. They exploited multiple
view angles for a bridge safety evaluation and compared the results
with a standard Department of Transportation (DOT) manual inspec-
tion where spalling measurements were conducted at the centimeter
level. They reported that multiple damage types (e.g., cracking, spall-
ing, corrosion, and moisture) were detectable at levels equivalent
to manual visual inspection. Pan et al. (2018) also applied UAV
imagery in road inspection. By using the color information for feature
extraction, potholes and cracks were automatically detected in 2D
images. Machine learning algorithms including support vector ma-
chine (SVM), artificial neural networks, and random forest were then
applied. Because of the 2D nature of the input data, although damage
was reliably detected, volumetric quantification was not possible.

A more sophisticated solution using imagery involves the cre-
ation of a 3D reconstruction from 2D images. This derived 3D point
cloud is then used for the damage evaluation. The most common
method for generating the 3D reconstruction is structure from
motion (SfM) (e.g., Micheletti et al. 2015; Bianco 2018; Azevedo
et al. 2009). This method works by applying feature extraction
and matching on multiple images taken from different perspective
(the section “Related Works” provides a full description). Com-
pared with traditional laser scanning, SfM-generated point clouds
are economical because the data can be collected with any digital
cameras, instead of heavier and more specialized equipment. When
hosted on an UAV platform, data collection times and coverage rate
can be highly controlled.

However, according to Caroti et al. (2015), output quality is
highly related to data capturing strategies, the data collection instru-
ment, and processing methodologies. Additionally, SfM-generated
point clouds are generally less homogeneous and have more noise
than those produced directly from laser scanners (Chen et al. 2019).
Thus, identification and extraction of relatively small features
(which would be representative of damage on the surface of infra-
structure) has been especially challenging with UAV-SfM point
clouds. A robust method has yet to be developed for 3D pavement
damage detection and characterization from imagery data. This is
the subject of this paper.

Research Scope and Methodology

This paper provides road pothole detection and volume loss esti-
mation algorithm entitled the Pavement Pothole Detection (PPD)

© ASCE 05024001-2 J. Surv. Eng.
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algorithm. As shown in Fig. 1, the PPD workflow involves five
steps: (1) data acquisition, (2) 3D reconstruction, (3) data filtering,
(4) pothole extraction, and (5) benchmarking. Because Steps 1–3
employ existing techniques, they are only introduced briefly in this
section.

Step 1: Data Acquisition

In a 2019 study, the impact of flight path, overlap rate, and flight
altitude on the quality of point clouds generated by SfM was in-
vestigated (Chen et al. 2019). Specifically, bad camera positions
will induce or aggravate problems like poor accuracy, incomplete-
ness, and nonuniform data distribution. Using multiple parallel
flight paths with an 80% overlap collected within 30 m of the road
surface can minimize these effects.

Step 2: 3D Reconstruction

For the PPD algorithm, the 3D reconstruction procedure was
achieved with a commonly used commercial SfM software pack-
age, Agisoft Photoscan (Agisoft version 1.11.4.0 build 5650). That
software has three phases: (1) image alignment, (2) generation of a
sparse 3D point cloud, and (3) generation of a dense 3D point
cloud. To accelerate the alignment process, the Global Positioning
System (GPS) information of each image was utilized, and the
maximum key points number was limited to 40,000. The accuracy
level and the dense reconstruction quality were set in the program
as high.

Step 3: Data Filtering

A reconstructed point cloud typically contains significant outlier
noise and redundant information, such as plants or obstacles around
the road, which negatively impact the accuracy of further analysis.
Therefore, a filtering procedure is required to (1) remove noise, and
(2) segment the road section from the background environment.
The first step is achieved herein by applying the statistical method
to the point cloud (Chen et al. 2018). In this work, the commonly
used statistical filter and geometry-based filter are compared. The
Statistical Outlier Removal (SOR) filter was applied to calculate the
average distance of each data point to its neighbors. In that process,
a point will be marked as noise and removed if the distance to its
closest neighbor exceeded the average distance derived from all
points in the data set plus a standard deviation of that distance.
The geometric-based filter takes into account the distance between
a specific point and the surface of the object. The algorithm fits a
plane locally through each point in the data set, utilizing neighbor-
ing points obtained either through a k-nearest neighbor (k-NN)
search or a range search method.

Next, if the distance of the point to a fitting plane is larger than
the threshold known as the max error rate (r), the point is consid-
ered as an outlier noise point. By comparing the false negatives of
the two filtering algorithms [false positive rate (FPR) = number of
normal points classified as noise/total normal points number], false
positive [false negative rate (FNR) = number of noise classified as
normal points/total noise points number] selects the statistical out-
lier removal with better effect (SOR) filter. This is represented by
the following formula:

Aerial-Image

3D Reconstruction

Flight Path plan

UAV-Image Acquisition

SfM point cloud

Cleaned SfM point
cloud

Noise Reduction

Segmented SFM
point cloud

Pavement Segmentation

Scanning plan

Laser Scanning

TLS point cloud

Cleaned TLS point
cloud

Segmented TLS
point cloud

Automatic Pothole 
Extraction Manual Pothole Extraction

Auto-SFM
Result

Manual SFM
Result

Manual TLS
Result

Auto-TLS
Result

Accuracy Comparison

1

2

1

3

4

5

Data acquisition

3D reconstruction

Data filtering

Pothole Extraction

Benchmarking

Data
acquisition

SfM Procedure TLS Procedure

Fig. 1. (Color) Methodology for pothole detection and volume loss estimation.

© ASCE 05024001-3 J. Surv. Eng.

 J. Surv. Eng., 2024, 150(2): 05024001 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

T
ec

hn
is

ch
e 

U
ni

ve
rs

ite
it 

D
el

ft
 o

n 
02

/1
6/

24
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



dmax ¼ μþ σ ð1Þ

Pi; : : : if · meanjPi − k-NNðPiÞj < dmax ð2Þ
where μ = mean of the average distance of all points to the nearest
point; σ = standard deviation of the average distance of all points to
the nearest point; and k-NN = k-nearest neighbor algorithm, and the
parameter set in this experiment is k ¼ 1 (i.e., the nearest point).

Once the noise-removal step is completed, road segmentation
occurs (Step 2). In that procedure, the cell-based region growing
segmentation method introduced by Truong-Hong et al. (2018)
was applied. That process uses a quadtree structure to separate
the point cloud into small cells, after which the normal and residual
value of each cell is compared with those of the neighboring cells.
If the differences are smaller than the threshold, they are merged.
The algorithm can adaptively select the growing conditions and
parameters according to the characteristics of the actual point cloud
data. For example, it can dynamically adjust the growing threshold
according to the density, color, and other characteristics of the point
cloud to achieve more accurate segmentation. In addition, by set-
ting the growth conditions and restrictions, it can effectively sup-
press the growth of noise points so as to improve the accuracy and
robustness of segmentation. In this way, the pavement surface is
extracted for subsequent damage identification and extraction.

Step 4: Pothole Extraction

The first goal of this step is to identify road surface damage in the
form of potholes. Areas are considered as potholes if the elevations
of the section of the point cloud differs from the larger undamaged
surface beyond a predesignated threshold. To identify those pot-
holes, a 2D slicing method was designed to use a curve-fitting
method to discriminate between damaged and undamaged areas.
With the extracted damaged area, Delaunay triangulation was then
applied to connect each point for volume calculation. Details of the
procedure are described in Substeps A–F.

Substep A: Align the Point Cloud
The road was manually sliced as the input data, and a set of points
P ¼ fP1;P2;P3; : : : ;Pi; : : : ;Pmg ∈ R3 is stored with their x-y-z
coordinates. To make the slicing procedure more efficient, singular
value decomposition (SVD) has been applied to calculate the ro-
tation matrix V to project the road section fit to the x-y plane, make

the road extending along the x-axis, and the elevation along the
z-direction, as shown in Fig. 2(a).

Substep B: 2D Slicing
To achieve the slicing, the data set was separated into multiple
slices along the x-axis direction, as shown in Fig. 2(b). Each slice
is a cross section of the road with a thickness of N, as was previ-
ously done by Zolanvari and Laefer (2016). To choose a proper N,
a few points are randomly selected. For each point Pi, the distance
to their nearest neighbor Pi 0 are calculated using Eq. (3). Then, the
average distance from point to point (dave) is calculated by Eq. (4).
The term N ¼ 5 × dave to ensure sufficient points in each slice for
further curve fitting (the thickness N is derived empirically five
times of dave)

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxpi

− xpi 0 Þ2 þ ðypi
− ypi 0 Þ2 þ ðzpi

− zpi 0 Þ2
q

ð3Þ

dave ¼
1

n

Xn
i¼1

di ð4Þ

Substep C: 2D Curve Fitting
Within each slice of data, because the N is sufficiently small
enough, each slice can be treated as a cross section in the y-z plane
(Fig. 3). In this plane, a 2D polynomial curve can be generated to
imitate the original undamaged surface. To eliminate the effect of
damaged areas and the overfitting problem, the Random Sample
Consensus (RANSAC) algorithm (Fischler and Bolles 1981) was
applied. Points with a large displacement were marked as outlier
points and ignored during the curve-fitting process.

Substep D: Neighborhood Adjustment
If damage dominates a slice, an overfitting problem will result.
Specifically, the 2D curve would be fitted to the pothole profile
instead of the undamaged surface. Because of that, a discontinuous
border will exist between each slice, as shown in Fig. 4(a). To over-
come this problem, the parameters of each fitting curve were ad-
justed with respect to their neighbor slices that are within the range
of 1 m on each side of the slice under consideration. To achieve
that, a moving median filter and a moving mean filter were applied
on the polynomial parameters to remove the abnormal section and
to smooth the boundaries. For any slice i, within a 1-m neighbor-
hood, there are n intervals on each side. Each interval has its
own fitted parameters P, after curve fitting. For section i, a new

(a) (b)

Fig. 2. (Color) Aligning and slicing process: (a) aligned point cloud in x-y plane; and (b) sliced point loud along x-direction.
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parameter PMi was assigned through Eq. (5) by calculating the
median of all P values in the neighborhood. Similarly, through
Eq. (6), the PAi is calculated by computing the mean valve of
the all PAi in the neighborhood

PMi ¼ medianfPi−n; : : : ;Pi; : : : ;Piþng ð5Þ

PAi ¼ meanfPMi−n; : : : ;PMi; : : : ;PMiþng ð6Þ

After the application of the two filtering process, the adjusted
results and parameter changes along the road longitudinal direction
are shown in Figs. 4(b) and 5.

Substep E: Pothole Extraction
With the adjusted fitted curve in each slice, the residual distance
δj of each point can be calculated [Eq. (7)]. The term δj is defined
as the distance of each point from its own position Yj to its pro-
jection position in the fitted curve bYj. Herein, for each point, if the
residual is smaller than the selected threshold, those points will be
marked as part of the regular surface. Choosing an appropriate
threshold is an essential step in the PPD algorithm. Considering
the road roughness, the mean value of the absolute residuals plus
and minus two times of standard deviation are applied as the
threshold. Points outside of this threshold are classified as defects
[Eq. (8)]

δj ¼ Ŷj − Yj ð7Þ

fðδjÞ ¼

8><
>:

if δj > meanðδ1; : : : ; δj; : : : ; δnÞ þ 2 × stdðδ1; : : : ; δj; : : : ; δnÞ∶Depression
else if δj < meanðδ1; : : : ; δj; : : : ; δnÞ − 2 × stdðδ1; : : : ; δj; : : : ; δnÞ∶Projection
Otherwise: normal surface

ð8Þ

The classification is illustrated in Fig. 6.

Change in Y (m)

C
ha

ng
e

in
Z

(m
)

Fig. 3. (Color) Curve fitting in the y-z plane.

(a) (b)

Fig. 4. (Color) Neighborhood adjustment: (a) discontinuous fitting; and (b) adjusted fitting.
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Substep F: Mesh-Based Measurement
As shown in Fig. 7, by projecting the identified damage points P to
the fitted curve, the group of points in the original surface could be
restored (red points in the figure). That point set is noted as Ps,
which represents the original undamaged surface. Therefore, the
space enclosed by points P and Ps is the volume Vp missing inside
the pothole. To calculate the value of Vp, a mesh is generated
among the P and Ps points. The process is achieved by applying
the built-in function AlphaShape in MATLAB software (Higham
and Higham 2016). With this function, a mesh will be generated by
the Delaunay triangulation method between points for volume and
area calculation. The edge length is set as equal to or smaller than
the maximum distance didi from Substep B. An example is shown
in Fig. 8. By setting a small volume threshold (e.g., 0.0005 m3),

noise, in the form of tiny holes caused by normal surface texture,
can be removed. Similarly to 3D volume calculation, the area of
the hole’s missing surface could be calculated by applying an
AlphaShape on projected points Ps.

Step 5: Benchmarking

To estimate the accuracy of the proposed UAV-SfM data capturing
method and related damage-extraction algorithm, TLS data were
collected for benchmarking. These data were collected with a Leica
P20 Scan Station (Wetzlar, Germany) and postprocessed with Leica’s
proprietary software Cyclone (V9.1). Potholes were manually
extracted from the TLS data as a reference set to compare the per-
formance of the algorithm on both the TLS data set and UAV-SfM
data set.

Field Trials

To benchmark the proposed PPD algorithm against a manual ex-
traction from TLS data, two field trials were undertaken in Dublin,
Ireland. The image collection process was conducted by a DJI
Phantom 4 quadrotor (Shenzhen, China), equipped an independ-
ently controlled three-axis gimbal system and a digital camera
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Fig. 5. (Color) Adjusting for polynomial curve parameters.

Regular Surface

DepressionArea
ProjectionArea

Fig. 6. (Color) Classification of the pavement.

P

Ps

Fig. 7. (Color) Projection of undamaged surface.
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(12.4 million effective pixels). In accordance with Irish Aviation
Authority regulations, flying was conducted manually by a trained
operator with the help of on-board GPS and obstacle detection
sensors.

Field Trial 1: UCD Road

Field trial 1 was for a 140-m-long by 5-m-wide asphalt road section
at the University College Dublin (UCD) campus. The road was par-
tially covered by tree canopy (near left and far right in Fig. 9),
which caused shadows and obstructed the fight path at some points,
and it had evidence of a few previous repairs (Fig. 10). There were
no prominent obstacles (such as rocks, tree branches, and so on) on
this stretch of road. The primary concern is to identify road damage.
In future research, our focus will be on addressing the challenge of
distinguishing between road obstacles and road damage.

A pair of UAV flights was undertaken. Depending upon the
presence of trees, the first was 8–10 m above the ground and col-
lected 58 aerial images. The second was 20 m and collected
39 images. All 97 images were used as input for the 3D reconstruction.
A point cloud of 57 million points was generated. Accompanying
this was the TLS data set, which was comprised of about 34 million
points collected in 20 min from five scan stations from single side
of the road. The resolution setting was 6.3 mm at 10 m. In this data
set, three potholes (I–III) were manually extracted, as shown in
Fig. 11.

Field Trial 2: Wicklow Bridge Deck

The second field trial was of an asphalt bridge deck located in
County Wicklow in south Dublin. At this site, there were no ob-
stacles around the bridge and no objects casting shadows. At 150 m
long and 4.8 m wide, the pavement size was similar to that in Field
trial 1. The Field trial 1 flight path was repeated, resulting in
91 aerial images in 12 min (60 from 10 m above and 31 from 20 m
above). A total of 4 images containing vehicles were manually re-
moved. The remaining 87 images were used as the input for the 3D
reconstruction, resulting in a point cloud of 43 million points. The
accompanying TLS data set had 270 million points and was col-
lected in 180 min from 10 scan stations. The resolution setting was
5 mm at 10 m. From both data sets, six potholes were manually
extracted (shown as B-I to B-VI in Fig. 12).

Results and Error Source Analysis

Automatic pothole extraction was applied in both the SfM and TLS
point clouds. The manual extraction results of each data set are also
presented (Tables 1–6 and Fig. 13). By comparing each result with
the average result, the maximum discrepancy in the two data sets
was found to occur in Pothole A-III in the UCD road study. A pos-
sible reason is that previous repairs posed a challenge for the curve
fitting because the final road surface was neither flat nor sloped in a
consistent manner. Specifically, Fig. 14 shows the three repaired
patches (marked with A, B, and C) causing a different and uneven

(a) (b)

Fig. 8. (Color) (a) Mesh generation for volume and area measurement; and (b) close-up.

Fig. 9. (Color) Leica P20 Scan Station at the data collection site.
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elevation compared with the original road surface. These factors
affected the surface fitting process, and the accuracy of the extrac-
tion process, irrespective of whether the extraction was automatic
or manual.

In the automatic extraction process, the algorithm use the re-
paired patches as the original surface, even though they had a
higher elevation. Thus, over extraction issues happened, with more
points that did not belong to the potholes being extracted. During
the manual extraction process, the lower unrepaired surface was
considered as the original surface. This difference caused the errors,
though the neighborhood adjustment process minimized the situa-
tion. As a result, at Pothole A-III, the maximum volume difference

was 31% (0.3802 m2) from the TLS autoextraction result, the area
difference was 25% (0.1352 m2), and the depth difference was 38%
(0.0187 m). Except for that area, most volume detection errors did
not exceed the millimeter level (�30%), and the automatic method
had relatively smaller errors for most of the potholes.

Discussion

In this automatic pothole inspection pipeline, both TLS and
SfM data sets were tested, and potholes were readily identified
in each approach. Arguably, the SfM data sets had advantages

Repairs

Scan stations Flight path

Fig. 10. (Color) Flight path and scanner arrangement.

A-I

A-III

A-II

SfM Dataset

TLS Dataset

M-I M-II

M-I M-II

A-I

A-III

A-II

Fig. 11. (Color) Manually extracted potholes in UCD data sets (damage shown in red squares).
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during processing. The color information in the SfM data sets is
better presented than TLS data set (Fig. 15). The color assists in
manual extraction, but also could be used as a feature in an au-
tosegmentation process. Conversely, the TLS data can provide in-
tensity information, which is not available from a UAV-SfM data

set and has been used for material classification in some studies
(Andrews et al. 2013).

Another advantage of the SfM data sets are their relatively uni-
form densities, achieved by the UAV images being collected from
multiple well-distributed viewpoints. Conversely, the TLS data

B-I

B-IIIB-II B-VIB-VB-IV

B-I

B-IIIB-II B-VIB-VB-IV

TLS

SfM

Fig. 12. (Color) Location of target potholes in SfM and TLS bridge data sets.

Table 1. Volume comparison (cm3)

Pothole No. SfM-Auto TLS-Auto SfM-Manual TLS-Manual Mean

A-I 25,686 27,869 24,888 26,036 26,120
A-II 938 1,109 535 780 841
A-III 14,137 15,712 9,068 8,801 11,929
B-I 20,315 18,080 19,825 17,448 18,917
B-II 2,392 1,609 1,821 2,134 1,989
B-III 4,150 3,149 4,497 5,006 4,200
B-IV 5,394 3,260 4,810 4,396 4,465
B-V 925 1,055 901 1,384 1,066
B-VI 2,065 2,500 2,432 2,434 2,358

Table 2. Volume errors

Pothole No.

SfM-Auto TLS-Auto SfM-Manual TLS-Manual

Volume error
(cm3) Percentage

Volume error
(cm3) Percentage

Volume error
(cm3) Percentage

Volume error
(cm3) Percentage

A-I −434 −2 1,749 7 −1,232 −5 −84 0
A-II 97 12 269 32 −306 −36 −60 −7
A-III 1,970 16 3,545 29 −1,713 −14 −3,802 −31
B-I 1,398 7 −837 −4 908 5 −1,469 −8
B-II 403 20 −380 −19 −168 −8 145 7
B-III −50 −1 −1,052 −25 296 7 806 19
B-IV 929 21 −1,205 −27 345 8 −69 −2
B-V −141 −13 −11 −1 −165 −16 318 30
B-VI −292 −12 142 6 74 3 76 3

© ASCE 05024001-9 J. Surv. Eng.
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Table 3. Area comparison (cm2)

Pothole No. SfM-Auto TLS-Auto SfM-Manual TLS-Manual Mean

A-I 10,992 11,613 11,368 11,153 11,281
A-II 529 644 579 794 636
A-III 6,025 6,093 4,904 5,258 5,570
B-I 11,139 11,394 12,621 11,268 11,605
B-II 1,274 1,145 748 940 1,027
B-III 2,176 2,026 2,306 2,984 2,373
B-IV 3,383 3,299 5,056 4,616 4,088
B-V 764 1,039 711 833 837
B-VI 2,798 2,357 2,289 1,691 2,284

Table 6. Maximum height errors

Pothole No.

SfM-Auto TLS-Auto SfM-Manual TLS-Manual

Height error
(cm) Percentage

Height error
(cm) Percentage

Height error
(cm) Percentage

Height error
(cm) Percentage

A-I −0.17 −6 0.14 5 −0.26 −9 0.29 10
A-II 0.21 10 0.62 28 −0.57 −26 −0.27 −12
A-III 0.34 7 0.38 8 1.15 23 −1.87 −38
B-I 0.32 9 −0.23 −7 0.17 5 −0.25 −7
B-II −0.02 −1 −0.25 −10 0.19 7 0.09 3
B-III −0.26 −10 −0.16 −6 0.11 4 0.31 12
B-IV −0.08 −3 0.14 5 −0.20 −8 0.15 6
B-V −0.29 −12 0.26 10 −0.21 −8 0.24 10
B-VI 0.32 15 0.07 3 −0.29 −14 −0.09 −4

Table 4. Area errors

Pothole No.

SfM-Auto TLS-Auto SfM-Manual TLS-Manual

Area error
(cm2) Percentage

Area error
(cm2) Percentage

Area error
(cm2) Percentage

Area error
(cm2) Percentage

A-I −290 −3 331 3 87 1 −128 −1
A-II −108 −17 8 1 −57 −9 157 25
A-III 548 10 616 11 189 3 −1,352 −25
B-I −467 −4 −211 −2 1,016 9 −337 −3
B-II 247 24 118 12 −279 −27 −87 −8
B-III −197 −8 −347 −15 −67 −3 611 26
B-IV −705 −17 −790 −19 968 24 527 13
B-V −73 −9 202 24 −126 −15 −4 0
B-VI 514 23 73 3 6 0 −593 −26

Table 5. Maximum height comparison (cm)

Pothole No. SfM-Auto TLS-Auto SfM-Manual TLS-Manual Mean

A-I 2.64 2.94 2.55 3.10 2.81
A-II 2.39 2.81 1.62 1.92 2.19
A-III 5.28 5.32 4.32 3.75 4.67
B-I 3.84 3.28 3.68 3.26 3.51
B-II 2.49 2.27 2.70 2.60 2.51
B-III 2.32 2.42 2.69 2.89 2.58
B-IV 2.54 2.76 2.42 2.77 2.62
B-V 2.24 2.79 2.33 2.78 2.54
B-VI 2.48 2.24 1.87 2.07 2.16

© ASCE 05024001-10 J. Surv. Eng.
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Image Manual-Extraction of SfM

A-I

A-III

A-II

Patch-A

Patch-B
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Auto-Extraction of SfM

A-I

A-III

A-II

Manual-Extraction of TLS

A-I

A-III

A-II

Auto-Extraction of TLS

A-I

A-III

A-II

Fig. 14. (Color) Visual check of inspection results.

0

5,000

10,000

15,000

20,000

25,000

30,000

A-I A-II A-III B-I B-II B-III B-IV B-V B-VI

Volume Comparison (cm3)

SfM-Auto TLS-Auto SfM-Manual TLS-manual

0
2,000

4,000

6,000

8,000

10,000

12,000

14,000

A-I A-II A-III B-I B-II B-III B-IV B-V B-VI

Area Comparison (cm2)

SfM-Auto TLS-Auto SfM-Manual TLS-manual

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00

A-I A-II A-III B-I B-II B-III B-IV B-V B-VI

Maximum Height Comparison (cm)

SfM-Auto TLS-Auto SfM-Manual TLS-manual

-6,000

-4,000

-2,000

0

2,000

4,000

A-I A-II A-III B-I B-II B-III B-IV B-V B-VI

Volume Errors (cm3)

SfM-Auto TLS-Auto SfM-Manual TLS-manual

-1,500

-1,000

-500

0

500

1,000

1,500

A-I A-II A-III B-I B-II B-III B-IV B-V B-VI

Area Errors (cm2)

SfM-Auto TLS-Auto SfM-Manual TLS-manual

-2.50
-2.00
-1.50
-1.00
-0.50
0.00
0.50
1.00
1.50

A-I A-II A-III B-I B-II B-III B-IV B-V B-VI

Maximum Height Errors (cm)

SfM-Auto TLS-Auto SfM-Manual TLS-manual

Fig. 13. (Color) Error analysis.
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sets have serious radial distribution biases. Thus, data collection
from one side of the road have much denser points than the other
side, which introduces errors in the curve-fitting process proposed
herein. For the cross section shown in Fig. 16, the fitted curve will
be skewed to the right side surface, whereas points on the left will
be ignored due to the much higher density on the right. In this
case, it causes a problem for the pothole extraction in TLS data
set. Additionally, due to the points density drops and radial distri-
bution, the TLS data set contains some empty gaps, which look like
white strips (Fig. 17). The missing points along these strips will
cause subsequent problems for detailed extraction and mesh gen-
eration. The SfM data set does not have this kind of problem.

Although MLS would arguably have been a more competitive
technology against which to benchmark the SfM method, such
equipment was not available. Thus, only TLS data were compared

in this study. Instead of surveying a site with a static scanner, the
MLS can inherently capture data from multiple viewpoints, which
can significantly reduce the nonuniform density problem.

Conclusions

As a supplement to traditional road inspection methods, this
work proposed a novel workflow using UAV images and a 3D
reconstruction method for road inspection (currently applied in
the most extensive range of ordinary roads, excluding special sec-
tions such as transition curves and superelevated roads). The main
steps are image acquisition, 3D reconstruction, noise reduction, and
damage extraction. Focusing on damage extraction, an automatic
pothole detection and evaluation algorithm has been proposed.

SfM-RGB

TLS-Intensity

TLS-RGB

Fig. 15. (Color) Visual comparison of SfM and TLS data sets.
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Fig. 16. (Color) Effect of nonuniform distribution.
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Using a slicing method and 2D curve-fitting tool, this algorithm
could extract potholes and calculate related geometric information,
such as volume, area, and depth.

To evaluate the accuracy of the data acquisition method and the
extraction algorithm, case studies have been conducted in UCD
Road and Wicklow Bridge. These proved that the proposed inspec-
tion method could successfully detect all potholes and extract the
contour. For the geometry evaluation, the depth evaluation errors
were less than 0.0034 m when comparing the autoextraction result
with manual extraction results. In the last, when comparing the
UAV-SfM points with the TLS point cloud, some advantages in-
cluded more uniform density distribution and better color rendition.

Overall, this study has primary explored the new direction of
using UAV for road evaluation. As a relatively new method, the
validation of this approach for engineering inspection is still in
its infancy and faces both technical and cultural challenges prior
to widespread adoption being likely. In the future, with the develop-
ment of more advanced algorithms, the accuracy of the UAV-SfM
method for road inspection could be further improved.
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