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Abstract—The power generation and consumption of dis-
tributed energy resources (DERs) offer significant flexibility
potential, which can be utilized to provide services such as peak
and frequency regulation. DERs introduce a vast number of
variables and constraints, making it complicated to directly inte-
grate them into upper-level dispatch. To address this challenge,
virtual power plants (VPPs) emerge, which treat diverse DERs
as a collective entity and use aggregated flexibility envelopes
to reduce the variable and constraint scale, facilitating upper-
level optimization. In VPPs, unified DER modeling and efficient
DER aggregation play a crucial role but are challenging. This
paper first introduces a novel unified polytope model to represent
heterogenous DERs’ flexibility region. A coordination transfor-
mation is utilized to eliminate redundant variable dimensions
and maintain DERs’ interface characteristics. A sample-based
projection method is then developed, further removing all state
variables, resulting in a unified flexibility region. This method
is then utilized to calculate the Minkowski sums of individual
flexibility polytopes for aggregation. The results of numerical
tests demonstrate a considerable reduction in computation time
and maintain satisfactory accuracy when the proposed modeling
and aggregation approach is adopted.

Index Terms—Virtual power plant, distributed energy re-
sources, polytope, load aggregation.

I. INTRODUCTION

The rise in the penetration rate of renewable energy poses

significant challenges to the operation of the system, high-

lighting the shortage of flexibility. Meanwhile, the massive

amount of distributed energy resources (DERs) has come into

the horizon and has tremendous flexibility potential. In tradi-

tional system operation, electricity demand is considered rigid

and must be balanced in real-time by generators. However,

many electricity demands have a certain flexibility, which

can work together to provide multiple services such as peak

and frequency regulation. These flexible resources are often

small-scale, distributed, and heterogeneous. A typical distri-

bution system may access up to 106 DERs [1], making their

management difficult. Virtual power plants (VPPs) provide a

practical approach to managing DERs as a whole to interact

with the power grid [2]. The core of the VPP lies in the unified

modeling and efficient aggregating of heterogeneous DERs.

This work was supported by the International (NSFC-NWO) Joint Re-
search Project of National Natural Science Foundation of China under Grant
52161135201, the National Natural Science Foundation of China under Grant
52307103, and the Major Smart Grid Joint Project of the National Natural
Science Foundation of China and State Grid under Grant U2066205.

For DER modeling, it includes a large variety of re-

sources, such as distributed generators (DGs) and energy

storage systems (ESSs). Traditionally, the models of these

resources are established based on their operational charac-

teristics. However, directly establishing these models results

in highly heterogeneous mathematical forms that are difficult

to aggregate. Therefore, one focus of research lies in how to

develop unified models. Barot et al. first introduced polytope

modeling [1]. They take the flexibility model described by a

set of linear inequalities as a polytope in a high-dimensional

space and unify heterogeneous polytopes into the interface

variable space. This polytope modeling method has since

been widely applied [3], [4], [5]. However, in these studies,

input and output power are separately treated, and equality

constraints are directly converted into inequalities. These prac-

tices significantly increase the dimensionality of the resulting

polytope and hinder its integration into higher-level network

optimization.

For DER aggregation, including all DERs’ constraints di-

rectly into the upper-level optimization would result in an

excessively large problem that cannot be efficiently solved.

Therefore, aggregation has become another widely studied

problem. The mathematical essence of aggregating polytopes

is the Minkowski sum of sets. However, for polytopes rep-

resented by the intersection of half-spaces (H-representation),

solving the Minkowski sum exactly requires vertex enumer-

ation, which is NP-hard [6]. Barot et al. proposed a relaxed

algorithm for aggregation and proved that it provided an outer

approximation of the exact result [1]. Outer approximation

tends to be over-optimistic in estimating the flexibility of

the VPP. Therefore, subsequent research proposed a series of

conservative inner approximation algorithms, such as box [7],

ellipse [8], and zonotope approximation [3]. However, these

methods pre-assumed the shape of the aggregated polytope

in advance, which can accumulate significant errors in high

dimensions.

Against the background, this paper proposes a novel unified

polytope modeling and aggregation approach. For the model-

ing of DERs, net power instead of separate input and output

power is adopted as interface variables, and a coordinate trans-

formation method to handle variable redundancy caused by

equality constraints is also introduced, significantly reducing

the dimension of the polytope and making the model easier
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to be embedded in higher-level optimization problems. For

DER aggregation, the Minkowski sum of polytope aggregation

is transformed into a projection problem. By combining the

proposed coordinate transformation method and the Monte

Carlo (MC) method, an approximation of the aggregated

result is obtained, avoiding error accumulation caused by pre-

assumed shapes.

II. POLYTOPE MODELING OF DERS

A DER is usually modeled via linear constraints concerning

its state variables. The constraints can be given by its corre-

sponding difference state equations and upper/lower bounds.

This is naturally a polytope of H-representation:{[
X inner

XIF

] ∣∣∣∣[ AinnerAIF
] [ X inner

XIF

]
≤ b

}
(1)

where A, b, and X represent the coefficient matrix, the

right-hand side vector, and the variable vector; the superscript

IF and inner correspond to DER’s interface and inner state

variables, respectively. The two-tuple
([

AinnerAIF
]
, b
)

is

chosen to uniquely represent this polytope.

Heterogeneous DERs correspond to different state equations

and bound constraints, resulting in polytopes in different

geometric spaces. A projection process is adopted to unify

them in the interface variable space:

(1)
Project
=⇒

{
XIF

∣∣∣ΠIFXIF ≤ πIF
}

(2)

The two-tuple
(
ΠIF,πIF

)
represents the polytope in the

unified space and is given through projection to the interface.

In the following subsections, DGs and ESSs are given as

examples to illustrate this modeling and projection process.

A. DERs Without State Variables

Some DERs have no inner state variables and only one

operating variable, the output power, such as DGs. Considering

the power limit and ramping limit, DG can be modeled as

follows:

PDG ≤ PDG
t ≤ P

DG
(3a)

− δDG ≤ PDG
t−1 − PDG

t ≤ δ
DG

(3b)

where P is the interface output power; δ is the ramping

rate; overline and underline represent the upper and lower

boundaries; t is the time index.

Polytope described by (3) does not have inner state vari-

ables. Thus, it can be naturally transformed into a polytope in

the interface space, represented as
(
ΠDG,πDG

)
.

B. DERs With State Variables

Some DERs are more complicated, such as ESSs, which

have an inner state variable state-of-charge (SOC). ESSs also

have two operation modes: charging and discharging. These

variables must be eliminated when projecting to the interface

space. ESS can be modeled as follows [9]:

PESS
t = PESS,out

t − PESS,in
t (4a)

PESS,in/out ≤ P
ESS,in/out
t ≤ P

ESS,in/out
(4b)

− δESS,in/out ≤ P
ESS,in/out
t−1 − P

ESS,in/out
t ≤ δ

ESS,in/out

(4c)

EESS
t = ηESSEESS

t−1

+ΔT
(
αESS,inPESS,in

t − αESS,outPESS,out
t

)
(4d)

EESS ≤ EESS
t (t) ≤ E

ESS
(4e)

where P , E, and δ are the interface power, the residual

energy, and the ramping rate; η and α represent the efficiencies

of charging and discharging power; overline and underline

represent the upper and lower boundaries; superscript in and

out stand for charging and discharging operation mode of the

ESS, respectively; ΔT is the time interval; t is the time index.
Since model (4) has two operation modes and inner state

variables EESS
n,t , one possible method is to replace each equal-

ity with two opposite inequalities and take (4) directly as a

high-dimensional polytope and then apply a projection algo-

rithm. This results in more facets and dimensions of the orig-

inal polytope. Unfortunately, accurate projection algorithms,

such as Fourier–Motzkin Elimination (FME), have a double

exponential time complexity of O((n/4)2
d

), where n and d
represent the number of facets and the dimensions in which

the projection is reduced. In high-dimensional cases, reducing

the number of facets and dimensions of the original polytope is

the priority. To improve efficiency, a coordinate transformation

method is proposed to treat equalities separately. Rewrite (4)

in compact form:

Aieq
1

[
P in

P out

]
≤ bieq1 (5a)

Aieq
2 E ≤ bieq2 (5b)

[
Aeq

1 Aeq
2

]
⎡
⎣ E

P in

P out

⎤
⎦ = 0 (5c)

[
I −I I

]
⎡
⎣ P in

P out

P

⎤
⎦ = 0 (5d)

For (5c),
[
Aeq

1 Aeq
2

]
has full row rank, and:

(5c) ⇔ E = − (Aeq
1 )

−1
Aeq

2

[
P in

P out

]
(6)

Substitute (6) into (5b) to eliminate E:

−Aieq
2 (Aeq

1 )
−1

Aeq
2

[
P in

P out

]
≤ bieq2 (7)

Similarly, we want to eliminate inner state variables P in

and P out using equality (5d). However,
[
I −I

]
is not

invertible. To perform elimination, we propose the following

proposition:

Proposition 1. For the following two regions:

Ω1 =

⎧⎨
⎩y

∣∣∣∣∣∣
[
Aeq I

] [ x
y

]
= beq

Aieqx ≤ bieq

⎫⎬
⎭
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and

Ω2 =

{
y

∣∣∣∣AieqT−1

[
x′

y

]
≤ bieq +AieqT−1

[
0
beq

]}

where Aeq has full row rank; T is a maximal linearly

independent group of
[

I
−Aeq

]
that contains −Aeq;

[
x′

y

]

is the reduced state variables. The following holds:

Ω1 = Ω2,

dim(x)− dim(x′) = rank(Aeq)

The proof of this proposition is given in Appendix A.

Considering that region (5) has been reformed as con-

strained by (5a), (7), and (5d), which has the form expressed

by Propositon 1. Thus, the region described by (5) equals to:

[
Aieq

1

−Aieq
2 (Aeq

1 )
−1

Aeq
2

]
T−1

[
x′

P

]
≤

[
bieq1

bieq2

]
(8)

where T can be obtained as described in Appendix A.

The equalities in the original model (4) are thus eliminated,

and the corresponding polytope is transformed into a lower-

dimensional one (reduces rank(Aeq) dimensions) with fewer

facets (reduces 2 · rank(Aeq) facets). To further obtain the

polytope in interface variable space, inner variables x′ must

be eliminated through a projection process, which is further

discussed in later sections. The ESS polytope in the unified

space is represented as
(
ΠESS,πESS

)
.

III. AGGREGATION AND PROJECTION APPROACH

A. Aggregation Method

As mentioned in Section I, the number of DERs can

be substantial within a typical VPP. Each DER necessitates

the definition and establishment of a series of variables and

constraints to portray its flexibility. Aggregation serves as the

approach to approximate the VPP as a whole by disregarding

redundant and less critical model details while preserving es-

sential information needed to reconstruct the overall flexibility.

This approach effectively controls the variable and constraint

scale to a manageable level.

In the previous section, a polytope modeling method that

represents various DERs as polytopes in a unified space is

introduced. Based on this formulation, aggregation becomes a

Minkowski sum problem. For the subsequent two polytopes

(A1, b1) and (A2, b2):

Ω1 = {x1 |A1x1 ≤ b1 } ,Ω2 = {x2 |A2x2 ≤ b2 } (9)

Their Minkowski sum is defined as:

{x3 |x3 = x1 + x2,x1 ∈ Ω1,x2 ∈ Ω2 } (10)

Intuitively, the aggregated region (10) can also be equiva-

lently represented by a two-tuple (A3, b3). However, precisely

calculating this two-tuple can be quite challenging, especially

in high-dimensional cases [1]. To address this problem, trans-

form (10) as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
x3

∣∣∣∣∣∣∣∣∣∣

[
I I −I

]
⎡
⎣ x1

x2

x3

⎤
⎦ = 0

[
A1 0
0 A2

] [
x1

x2

]
≤

[
b1
b2

]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(11)

which has the form in Propositon 1. Thus (11) equals to:[
A1 0
0 A2

]
T−1

[
x′

x3

]
≤

[
b1
b2

]
(12)

Subsequently, the two-tuple that represents the aggregated

region can be derived through a projection:

(12)
Project
=⇒ A3x3 ≤ b3 (13)

B. Sample-based Projection Method

As discussed in Section II-B and Section III-A, both uni-

fying diverse polytopes into a common space and aggregation

necessitate a projection process. Despite efforts to minimize

dimensionality and the number of constraints, the projection

remains challenging due to its exponential time complexity.

Projecting a polytope of H-representation involves calcu-

lating its vertices from a set of hyperplanes, which can be

a complex task. To address this challenge, an MC sampling

method based on a hit-and-run algorithm is employed [10].

This method allows for the random sampling of points from

a uniform distribution within the polytope, which can then be

easily projected to the desired lower-dimensional space. The

region in which these projected sample points are distributed

serves as an approximation of the original polytope’s projec-

tion.

However, quantifying this region requires calculating the

convex hull of the projected point set, which can also be a

challenging task. To simplify the problem, a set of hyperplanes

with predefined normal vectors is utilized to encompass all

points. In the case of a projected space with N dimensions, the

normal vectors of these hyperplanes are provided as follows:

Γ =
[
G −G

]
(14)

where

G =

⎡
⎢⎢⎢⎣

1 1 . . . 1
1 . . . 1 1 . . . 1

. . .
...

. . .
... . . .

1 1 1

⎤
⎥⎥⎥⎦ ∈ R

N× (1+N)N
2

(15)

The ith normal vector is denoted as Γi. This set of hyper-

planes is generated from the zonotope proposed in [3], which

has been discussed to be well suited to approximate high-

dimensional polytopes.

The intercepts of this set of hyperplanes are then determined

by solving a series of linear programming problems:

min
β

1� · β (16)
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TABLE I
PARAMENTER SPECIFICATIONS OF DG AND ESS

DG ESS

P in/P
in

(kW) - 0 / 10

P out/P
out

(kW) 5 / 10 0 / 10

δin/δ
in

(kW/h) - 5 / 5

δout/δ
out

(kW/h) 3 / 3 5 / 5

E/E (kWh) - 0 / 20

η/αin/αout - 0.9 / 0.9 / 1.11

s.t. : XProj · Γi ≤ β, i = 1, . . . , N(N + 1)

where β is the intercept vector; row vectors of XProj are the

projected sample point coordinates. Linear programming (16)

gives the smallest polytope containing all sampling points

under the predefined facet orientation. Thus, the two-tuple

(Γ�,β) is used as the approximated projection result.

IV. CASE STUDY

In this section, numerical tests are devised to evaluate the

proposed modeling and aggregating approach. A 3-interval

case is first considered. In this case, polytopes representing

different DERs are 3-dimensional, making visual interpretation

possible. Then, the analysis is extended to more time intervals

to evaluate the high-dimensional performance. The algorithm

proposed in [1] is adopted as a baseline for comparison, while

the volume error rate (VER) and the F-score are chosen as

metrics. Volumes are computed based on the Quickhull algo-

rithm [11], offering a rough illustration of scenario coverage.

F-score, treating the polytope as a classification boundary,

provides a more precise evaluation. Note that our proposed

method efficiently handles cases up to 24 dimensions, but both

metrics rely on exact results, which can only be computed for

dimensions lower than 6 [1].

In both cases, a DG and an ESS model are implemented

with the parameters detailed in Table I, and their aggregation

is computed. The time interval is chosen to be 1 hour. These

models are implemented in MATLAB and executed on a

computer with an Intel i5 CPU and 16 GB of memory.

A. Analysis of 3-interval Coupled Case

In Fig. 1, a DG polytope, an ESS polytopes derived using

exact vertex enumeration, and an ESS polytope derived using

the proposed approximate projection are visualized respec-

tively. The DG polytope has fewer facets (12 facets), while

the ESS polytope is more irregular (28 facets). This indicates

that the coordinate transformation and projection process com-

plicates the polytope. For the implementation of the proposed

projection, 3000 points are sampled, as depicted in Fig. 1.

The VER and F-score of the approximated polytope are 4.06%

and 0.91, respectively. The number of facets is reduced to 12,

with a 57.14% decrease, significantly reducing the problem

Fig. 1. Visualization of 3-interval coupled polytope modeling.

Fig. 2. Visualization of 3-interval coupled polytope aggregation.

TABLE II
ERROR EVALUATION

Dimensions 3 4 5

ESS
Polytope

VER / % 4.06 0.78 8.99

F-score 0.91 0.89 0.84

Aggregation
(Method in [1])

VER / % 3.02 8.51 14.21

F-score 0.86 0.80 0.72

Aggregation
(Proposed)

VER / % 5.06 6.01 13.14

F-score 0.84 0.81 0.75

scale. Fig. 2 provides a visualization of an exact aggregation,

and an aggregation adopting the proposed method. These two

polytopes have 39 and 12 facets, with a VER of 5.06% and

an F-score of 0.84.

B. More Time Interval Coupled Cases

More coupled time intervals lead to polytopes in higher di-

mensions, exponentially complicating the calculation process.

Table II summarizes the error evaluation of 3, 4, and 5 dimen-

sions. The results indicate that as the dimension increases, a

higher error is expected, and the proposed aggregation method

outperforms the method in [1].

Fig. 3 compares the number of facets and computation

time. As illustrated in the figure, the accurate methods, both

in modeling and aggregation, encounter numerical challenges

when addressing more than 5 coupled time intervals. In

contrast, the proposed method exhibits a polynomial increase

in the number of generated facets and the computation time

as the number of coupled time intervals rises. More precisely,

in the case of 5 coupled time intervals, when the VER for

both the approximated modeling and the proposed aggregation

Authorized licensed use limited to: TU Delft Library. Downloaded on November 04,2024 at 07:45:08 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3. Comparison of the number of facets and computation time.

methods are satisfactorily controlled under 15%, computation

time are significantly reduced by 89.04% and 99.32%.

V. CONCLUSION

This paper introduces a unified modeling and aggregation

method for characterizing the flexibility of DERs. DERs

are first individually represented as diverse polytopes and

subsequently mapped into a unified target space. These unified

polytopes are then aggregated. A coordinate transform and

a projection method are developed to facilitate the process.

Numerical tests are conducted. The results illustrate that

the proposed modeling and aggregation approach reduces

computation time by 89.04% and 99.32% while controlling

the VER under 15%. This confirms the effectiveness of the

proposed approach. In future research, network constraints will

be studied and integrated into the current approach, providing

a more thorough characterization of the flexibility across the

entire distribution system.

APPENDIX A

PROOF OF PROPOSITION 1

Lemma 1. The following two equalities are equivalent:
[
Aeq I

] [ x
y

]
= beq (A.1a)

⇔
[

x′

y

]
= Tx+

[
0
beq

]
(A.1b)

Proof. ⇒: From (A.1a):[
x
y

]
=

[
x

−Aeqx+ beq

]
=

[
I

−Aeq

]
x+

[
0
beq

]

Since matrix

[
I

−Aeq

]
has full column rank, there exists

a maximal linearly independent group among its row vector.

Since Aeq has full row rank, this group can be chosen to

contain −Aeq, denoted as T . Then:[
x′

y

]
= Tx+

[
0
beq

]

T can be calculated through Gauss-Jordan Elimination.

⇐: Since T is a maximal linearly independent group that

contains −Aeq, which can be denoted as:

T =
[
. . . e(k) . . . − (Aeq)

�
]�

There exists a matrix M to linearly combine vectors that

gives:

M�T =
[
I − (Aeq)

�
]�

where M =

[
m11 0
m21 I

]
. Thus from (A.1b):

M�
[

x′

y

]
=

[
I

−Aeq

]
x+M�

[
0
beq

]

Extract lower blocks to get:

y = −Aeqx+ beq ⇔ (A.1a)

According to Lemma 1:

Ω1 =

⎧⎨
⎩y

∣∣∣∣∣∣

[
x′

y

]
= Tx+

[
0
beq

]

Aieqx ≤ bieq

⎫⎬
⎭

Since T is inversible:

Aieqx ≤ bieq

⇔ AieqT−1

([
x′

y

]
−

[
0
beq

])
≤ bieq

⇔ AieqT−1

[
x′

y

]
≤ bieq +AieqT−1

[
0
beq

]

Thus Ω1 = Ω2.

Meanwhile, also from Lemma 1:

rank(T ) = dim(x′) + dim(y) = dim(x)

⇒ dim(x)− dim(x′) = dim(y) = rank(Aeq)
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