
 
 

Delft University of Technology

Structural reliability updating on the basis of proof load testing and monitoring data

de Vries, R.; Lantsoght, E. O.L.; Steenbergen, R. D.J.M.; Hendriks, M. A.N.; Naaktgeboren, M.

DOI
10.1016/j.engstruct.2025.119863
Publication date
2025
Document Version
Final published version
Published in
Engineering Structures

Citation (APA)
de Vries, R., Lantsoght, E. O. L., Steenbergen, R. D. J. M., Hendriks, M. A. N., & Naaktgeboren, M. (2025).
Structural reliability updating on the basis of proof load testing and monitoring data. Engineering Structures,
330, Article 119863. https://doi.org/10.1016/j.engstruct.2025.119863

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.engstruct.2025.119863
https://doi.org/10.1016/j.engstruct.2025.119863


Engineering Structures 330 (2025) 119863

Available online 11 February 2025
0141-0296/© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Structural reliability updating on the basis of proof load testing and 
monitoring data

R. de Vries a,b,* , E.O.L. Lantsoght a,c , R.D.J.M. Steenbergen a,d, M.A.N. Hendriks a,e ,  
M. Naaktgeboren f

a Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands
b Reliable Structures, Netherlands Organization for Applied Scientific Research (TNO), Delft, the Netherlands
c College of Sciences and Engineering, Universidad San Francisco de Quito (USFQ), Quito, Ecuador
d Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium
e Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
f Rijkswaterstaat, Ministry of Infrastructure and Water Management, Utrecht, the Netherlands

A R T I C L E  I N F O

Keywords:
Bayesian updating
Laboratory testing
Load testing
Proof load
Reliability

A B S T R A C T

As infrastructure continues to age and traffic levels intensify, there is a growing need for efficient methods to 
verify the reliability of many existing structures. Field testing offers the possibility to assess the current condition 
of a structure. Specifically, in a proof load test, substantial loads are applied to evaluate the structure’s resistance 
to future loads that could compromise structural safety. However, to prevent excessive test loads and their po-
tential damage, it is desirable to assess structural reliability by monitoring the response under more moderate 
loads. This study merges laboratory and in-situ testing results through a Bayesian update of the structural reli-
ability after each successful load application. Two case studies are presented where laboratory testing on 
structurally similar elements and analytical modelling provide ample evidence to justify test load reductions of 
20 % and 25 %. The proposed method offers a systematic framework to link the structure’s response during 
testing to structural reliability and address the uncertainties in resistance, loads and measurements. Nonetheless, 
the representativeness of the data in terms of structural similarity and uncertainties related to measurements 
continue to be significant factors. Despite these challenges, incorporating monitoring data during proof load 
testing is expected to reduce target loads in most cases.

1. Introduction

Buildings and civil engineering works are expected to meet specific 
reliability requirements throughout their entire design life. Reliability 
assessment of an existing structure becomes relevant when the structure 
displays performance issues, the loads have significantly increased, or its 
original design life has passed. A design that may have been sufficient in 
the past may not be adequate today. Over time, degradation may have 
taken place, and the traffic loads have predominantly increased. Typi-
cally, assessing reliability requires in-depth information about the 
structural model, failure mechanisms, the description of loads and their 
combination. Moreover, for existing structures, assumptions regarding 
the uncertainties made in the past may no longer be true today as the 
knowledge about resistance and load models has evolved. Therefore, the 
original design reliability, based on prior knowledge, should be updated 

to reflect the current state of the structure. In addition, the reliability 
requirements for the design of new structures are higher than those used 
for the assessment of existing structures, following from an economic 
motive [1,2]. In this article, comparisons will be made of the required 
target loads at reliability levels suitable for the assessment of existing 
structures

Inspections, structural assessments, and maintenance are essential to 
ensure sufficiently reliable bridges and viaducts. As the infrastructure 
ages and endures increased traffic loads and environmental challenges, 
accurate reliability assessment methods are needed to address these 
evolving conditions. In case no signs of deterioration are present, the 
typical desk study may confirm sufficient reliability if there are no 
reasons to suspect internal damage. However, wear is often present, and 
it is difficult to tell if it impairs structural reliability. Fortunately, tests 
can be carried out on the structure to gather supplementary data. Tests 
on reinforced concrete structures commonly entail measuring the 
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geometry, drilling cores or scanning reinforcement. In some instances, 
elaborate setups that subject the structure to significant loads may be 
employed to test its resistance. The latter is referred to as proof load 
testing; by resisting a large load, the structure can prove to have suffi-
cient resistance. However, applying the often large loads is resource- 
intensive and imposes a risk on the structure, equipment and 
personnel. To avoid excessively large loads, all relevant information 
about the structure should be considered, even when uncertain. Given 
this uncertainty, employing probabilistic techniques is necessary. Uti-
lising all information, rather than often conservative design rules, can 
avoid excessive target loads. By rationally selecting the appropriate load 
level, proof load testing can effectively demonstrate the structure’s 
resistance to anticipated future traffic loads [3–7].

The current research on the probabilistic substantiation of proof load 
testing aims to develop a comprehensive structural reliability updating 
framework [8]. This article presents a novel reliability updating method 
that integrates information from two distinct sources: (1) the survival of 
the applied load during the proof load test and (2) the data following 
from monitoring relevant indicators during the test, coupled to labora-
tory experiments giving the uncertain relation between these indicators 
and structural resistance [9]. Highly representative tests can signifi-
cantly enhance the state of information, and thereby reduce resistance 
model uncertainty. Alternatively, tests on less representative specimens 
can be used, but will result in greater uncertainty. While the proof load is 
carefully increased in controlled increments to avoid unnecessary 
damage, the structural performance assessment may be based on in-
dicators such as displacements and crack widths. These indicators, while 
not immediately indicative of overall structural health, are interpreted 
in the light of structural behaviour observed in laboratory experiments 

on structural elements similar to those present in the proof loaded 
bridge. For example, strains may be interpreted via sectional analysis to 
identify a critical value. In this way, stop criteria can prevent unwanted 
damage [10], but the indicator value may also provide valuable infor-
mation on structural performance.

To probabilistically interpret the information from indicators, first 
the theoretical background on structural reliability, statistical inference, 
and their relation to proof load testing is described. Then, the reliability 
updating method on the basis of proof load testing and monitoring data 
is presented. To illustrate the method’s application, two case studies 
utilising laboratory measurements and analytical modelling are pro-
vided. The article rounds off with a discussion of the results, challenges, 
and conclusions.

2. Theoretical background

2.1. Structural reliability

The proposed method (Section 3) relies on the principle of structural 
reliability updating, which requires reliability assessment. A structural 
reliability assessment is based on a probabilistic model that includes a 
limit state function and the definition of random variables describing the 
load and resistance parameters and the modelling uncertainties. Reli-
ability methods are used to calculate the reliability (or failure proba-
bility) of a structure or a structural component. The limit state function 
plays a central role as it expresses the boundary between safe and unsafe 
combinations of resistance and load effect. Negative values of the limit 
state function indicate failure, irrespective of the magnitude. An 
example of a typical limit state function involving just two random 

Nomenclature

List of abbreviations
CDF Cumulative distribution function
COV Coefficient of variation
DIC Digital image correlation
FEM Finite element method
FORM First-order reliability method
LHS Latin hypercube sampling
LM1 Load model 1 (Eurocode)
MCMC Markov chain Monte Carlo
MCS Monte Carlo simulation
PLT Proof load test
SORM Second-order reliability method
WIM Weigh-in-motion

List of symbols
C0Q Time-independent variability of traffic load
E Load effect
EPL Load effect during proof load testing
Es Young’s modulus of reinforcing steel
fc Concrete compressive strength
fy Yield stress of reinforcement
FX(⋅) CDF of random variable X
GDL Dead load effect
GSDL Superimposed dead load effect
I Indicator of performance
mQ,PL Mean proof load effect
mX Mean of resistance ratio
M Moment, mean (sample)
MG Moment due to dead load
n Sample size
N Number of samples (MCS)

P Load of an individual axle in proof load test
pX(⋅) Probability density function of X
Pf Failure probability
Q Time-variant part of traffic load
Qk,WIM Characteristic traffic load following from WIM data
Qk,LM1 Characteristic traffic load following from Eurocode LM1
QPL Target load (proof load)
R Resistance
sX Standard deviation of resistance ratio
S Standard deviation (sample)
T Student’s t-distributed random variable
U Standard normally distributed random variable
Var(⋅) Variance (operator)
VX Coefficient of variation of resistance ratio
wmax Maximum nominal crack width
wmax,w Maximum weighted nominal crack width
x Data vector (Bayesian)
X Random variable, resistance ratio (R/EPL)
Z Limit state function
ZPL Limit state function for proof load testing
α Influence coefficients vector
β Reliability index
εs Steel strain
θ Model parameters vector (Bayesian)
θE Model uncertainty of the load effect
θE,PL Model uncertainty of the proof load effect
θR Model uncertainty of the resistance
μ Mean (population)
ν Degrees of freedom (Student’s t-distribution)
σ Standard deviation (population)
Φ(⋅) Standard normal CDF
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variables is: 

Z = g(X) = g(R,E) = R − E (1) 

where R is the resistance and E is the load effect. The load effect may 
comprise the bending moment, shear force, axial load, and so on. Often, 
the combined effects of multiple loads are considered [11–13]. The state 
of information concerning the resistance and load effect varies between 
structures. Various sources of information can be utilised, ranging from 
literature to in-situ material testing and site-specific traffic data [8]. The 
Eurocode standards also allow for design assisted by testing and guid-
ance is provided regarding the sampling process and statistical 
post-processing [14].

Commonly, the number of random variables is larger than just two, 
and the limit state function is more difficult to compute. There may be a 
very large number of random variables, and instead of having expres-
sions in closed or analytic form available, complex finite element 
method (FEM) models may be needed to evaluate the limit state func-
tions. For this reason, different reliability computation methods have 
been developed, and all have their pros and cons depending on the 
application. The calculation procedure for the proposed method 
(Section 3.5) makes use of the Markov chain Monte Carlo (MCMC) 
sampling [15], which in turn is based on Monte Carlo simulation (MCS). 
MCS is a straightforward method applicable to many reliability prob-
lems but is computationally expensive [16]. In an MCS, the random 
variables present in the problem formulation (X) are repeatedly sampled 
and may be used to evaluate the limit state function. The probability of 
failure is obtained by calculating the fraction of failures that occur: 

Pf =
1
N
∑N

i=1
1[g(xi) < 0] (2) 

where 1[⋅] denotes the indicator function; it is 1 when the condition 
within brackets is true and 0 otherwise. The number of samples is 
denoted by N, and the random vector containing the values of each 
sample is xi. The corresponding reliability index may be calculated via: 

β = Φ− 1( 1 − Pf
)
= − Φ− 1( Pf

)
(3) 

where Φ− 1(⋅) is the inverse of the standard normal cumulative distri-
bution function (CDF) (i.e., mean = 0, standard deviation = 1). Reli-
ability requirements are commonly formulated in terms of the reliability 
index and a reference period to account for the time-dependent nature of 
random processes. One way to unify reliability requirements for design 
and assessment is through the adoption of annual reliability targets [17, 
18].

When the failure probability is small, many samples are required to 
estimate the reliability index accurately. Improved sampling methods 
[19–23] or other reliability methods are beneficial in such circum-
stances. After simplification, common reliability methods can be used in 
the proposed reliability updating method (Section 3.5). For example, 
using the first-order reliability method (FORM), a computationally 
efficient method with easily understandable output: the reliability index 
(β) and influence coefficients (α), indicating the relative importance of 
the random variables [24,25]. Further improvement of the reliability 
index is possible with the second-order reliability method (SORM) [26, 
27] which utilises the second-order derivatives of the limit state function 
in the design point. After eigenvalue analysis or calculating de-
terminants [28], they yield a correction factor to the FORM failure 
probability. Slightly different versions of the same idea were introduced 
by various authors, offering a small increase in accuracy [29,30].

2.2. Statistical inference

2.2.1. Principles
Deriving the statistical descriptions of the random variables within 

the limit state function is necessary to enable the reliability assessment. 

These random variables represent uncertainties in material properties, 
loads, and modelling approaches. When tests are performed in the lab-
oratory, the number of specimens is usually limited due to cost, time, 
and material availability constraints. Therefore, the number of tests and 
resulting data points is usually small and cannot be expected to capture 
the inherent variability fully. This also applies to calculating the resis-
tance ratio distribution based on laboratory tests (Section 3.3.1). Both 
frequentist and Bayesian approaches can be used to infer the statistical 
descriptions and account for the limited number of tests. The frequentist 
approach solely uses the sample statistics of the observed data. The 
prediction distribution allows for the inclusion of statistical uncertainty 
due to small sample sizes and known and unknown standard deviations. 
On the other hand, the Bayesian approach also allows for incorporating 
prior knowledge to deliver posterior distributions that incorporate both 
data and subjective knowledge. The calculation of the posterior proba-
bility distributions typically requires numerical methods, such as Mar-
kov chain Monte Carlo (MCMC) sampling [15].

2.2.2. Prediction distribution
Given n observations of an unknown random variable X, the pre-

diction distribution describes the probability distribution of the next-to- 
be-observed value Xn+1. Generally, two situations are distinguished: one 
where the standard deviation is known, and the other where it must be 
estimated from the data. If the observations Xi come from the same 
normally distributed population, are independent and identically 
distributed (i.i.d.), it follows that [31,32]: 

U =
Xn+1 − M

σ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 1/n

√ ∼ N

(

0,1

)

(4) 

where U is a standard normally distributed random variable, M = (X1 +

X2 + ⋅⋅⋅ + Xn)/n is the sample mean, and σ is the population standard 
deviation. Only when data is observed, random variable M becomes a 
realisation of the sample mean (denoted with lowercase m). The nor-
malising term follows from considering the variance of the difference in 
the numerator, i.e. Var(Xn+1 − M) = Var(Xn+1) + Var(M) = σ2 + σ2/ 
n = σ2(1 + 1/n). Taking its square root gives the denominator in Eq. (4). 
Intuitively, it may be understood as the standard deviation following 
from random variable Xn+1 and the, typically smaller, standard devia-
tion of the sample mean of values 1 to n. Solving Eq. (4) for Xn+1 gives: 

Xn+1 = M+Uσ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 1/n

√
(5) 

where the right-hand side may be interpreted as the prediction distri-
bution of X and follows a normal distribution. It should be realised that 
Xn+1 will not actually follow the prediction distribution, but Eq. (5) al-
lows for incorporating the uncertainty about the mean, similar to the 
posterior predictive distribution in Bayesian inference (Section 2.2.3). 
The ‘penalty’ incurred by estimating the population mean with the 
sample mean is contained in the increased standard deviation and di-
minishes with an increasing number of observations n.

In case the standard deviation of X is not known and needs to be 
inferred from the data as well, Student’s t-distribution emerges [33]. The 
t-distribution is wider than the normal distribution, reflecting the more 
significant uncertainty when the standard deviation is unknown. If, once 
again, the i.i.d. observations Xi from the same normally distributed 
population are considered, it follows that [31]: 

T =
Xn+1 − M

S
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 1/n

√ ∼ tν=n− 1 (6) 

where T is a (standard) t-distributed random variable with ν = n – 1 
degrees of freedom and S is the sample standard deviation including 
Bessel’s bias correction for the variance: 
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S =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

n − 1
∑n

i=1
(Xi − M)

2

√

(7) 

The same normalisation consideration holds for the denominator in 
Eq. (6) as in Eq. (4). Solving Eq. (6) for Xn+1 gives: 

Xn+1 = M+TS
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 1/n

√
(8) 

where the right-hand side may be interpreted as the prediction distri-
bution of X and follows a shifted and scaled t-distribution. Compared to 
Eq. (5), another ‘penalty’ is introduced by using the random variable T 
instead of U, because the t-distribution is typically wider. In some cases, 
an intermediate approach is followed where n is artificially increased 
when (prior) information suggests a similar standard deviation as 
calculated from the dataset. In addition, knowledge about the type of 
distribution may also be incorporated. It is typical to assume a 
lognormal distribution for material properties and, thus, apply the above 
procedure to log-transformed values [14,34].

2.2.3. Bayesian inference
The Bayesian inference process enables the integration of prior 

knowledge to improve the statistical description of data. It is a system-
atic process in which prior beliefs are updated according to the available 
information (or evidence, or data), resulting in posterior beliefs. In a 
Bayesian inference context, usage of the t-distribution is equivalent to 
adopting a non-informative prior for the parameters of the normal dis-
tribution. However, in many cases, a non-informative prior is too 
generic and does not adequately represent prior knowledge or con-
straints known about the parameters, leading to overly conservative 
posterior estimates. In such scenarios, incorporating more informative 
priors by leveraging expert judgement and historical data leads to more 
realistic outcomes [35]. Bayesian inference can be used to update beliefs 
about important parameters in the structural reliability analysis. The 
reliability of the structure may be re-evaluated each time new infor-
mation becomes available, resulting in Bayesian reliability updating 
[36–38]. In a sequential updating, scheme the posterior distribution 
following from the previously acquired data is used as a prior for the 
next iteration [39,40].

In Bayesian inference, the distribution of a random variable X itself 
may be updated, or the parameters of its assumed model. In the latter 
hierarchical model, the distribution parameters are modelled as random 
variables with specific distributions as well. The prior distributions may 
then be specified by providing values for the hyperparameters, e.g. the 
mean and standard deviation of the mean of X. In this scenario, the 
model parameters are the mean and standard deviation of X, collected in 
θ = (μX, σX), and may be updated through Bayes’ theorem: 

p
(

θ|x) =
p(x|θ)p(θ)

∫
p(x|θ)p(θ) dθ

(9) 

where θ is a vector containing the model parameters (random variables), 
x is a vector containing the data, p(θ | x) is the posterior distribution, p 
(x | θ) is the likelihood of observing the data given the model parame-
ters, p(θ) is the prior distribution, and the denominator is called the 
marginal likelihood and acts a normalising constant. If prior information 
about the parameters to be inferred is not available, a non-informative 
prior may be used. In the typical case with the mean and the standard 
deviation as model parameters, the non-informative prior is obtained by 
the following (improper) probability density functions [41]: 

p(μX) = 1 (10a) 

p(σX) = 1/σX (10b) 

from which the prior distribution follows as p(θ) = p(μX) p(σX) = 1 / σX. 
Because the resulting prior distribution is improper, it cannot be 
sampled directly. Instead, a calculation procedure is required that draws 

its random values in a different way, such as Markov chain Monte Carlo 
(MCMC) [42,43] or Importance Sampling [19]. When the often multi-
dimensional posterior distribution p(θ | x) has been obtained, it can be 
used to update the probability distribution of X itself, i.e. the posterior 
predictive distribution or Bayes’ distribution [44]: 

pBayes
X (x) =

∫

pX(x|θ)p
(

θ|x) dθ (11a) 

FBayes
X (x) =

∫

FX(x|θ)p
(

θ|x) dθ (11b) 

where pX(⋅) denotes the probability density function and FX(⋅) the cu-
mulative distribution function of random variable X.

2.3. Reliability following from proof load testing

In proof load testing, the so-called target load plays a central role, as it 
is specifically chosen to simulate today’s and future usage conditions 
and account for a degree of uncertainty. The magnitude of the target 
load controls the desired reliability of the structure, as higher reliability 
demands require higher loads during testing. If a structure withstands 
the target load without signs of distress [45], it is deemed sufficiently 
reliable for continued operation after the test. Selecting the target load 
based on reliability considerations may be done in different ways, 
depending on how much information is available about the structure. 
For a reliability assessment of a bridge or viaduct, at minimum, a sta-
tistical description of expected traffic loads is required. By assuming that 
the resistance of the tested bridge or viaduct is at least equal to the 
permanent load effects and the target load effect (R ≥ G + QPL), the limit 
state function, including model uncertainties, may be written as [5]: 

Z = θE,PLQPL − θEC0QQ (12) 

where θE,PL is the model uncertainty of the load effect pertaining to the 
proof load testing situation (Section 3.2), QPL is the target load, θE is the 
model uncertainty of the load effect for the regular traffic load situation 
(correlated with θE,PL), C0Q accounts for the time-independent vari-
ability of the traffic load, and Q is the time-variant part of the traffic 
load. Evaluating the limit state function in Eq. (12) is referred to as the 
lower-bound approach, as it provides the most conservative estimate of 
the posterior resistance distribution [46]. A comparison with target 
loads obtained through this relatively straightforward method is pre-
sented in the case studies (Sections 4 and 5).

Alternatively, the distribution function of the resistance may be 
explicitly considered. This procedure effectively leads to truncating the 
left tail of the distribution to exclude the possibility that the resistance is 
lower than the load effect produced during the test [47]. However, this 
truncation is not abrupt but rather gradual, owing to some uncertainty 
about the actual load effect created by the applied load [48]. In prin-
ciple, this resistance relates to the specific loading position and method 
of application. On a structural level, the effect of the applied load on a 
particular component or cross-section is more valuable. Therefore, the 
limit state, in principle, considers a resistance and load effect, not the 
applied load itself. The update of the resistance distribution may also be 
achieved via the application of Bayes’ theorem, and an indicator like-
lihood function providing the value 0 for resistances lower than the 
target load and 1 otherwise. With the proof load effect described by a 
random variable, this procedure also results in an appropriate posterior 
distribution for the resistance. The prior distribution may then be 
formulated using a mean value based on the mean annual traffic load 
and a relatively large coefficient of variation to reflect the large degree 
of uncertainty about the resistance. When a resistance distribution is 
available, possibly updated by in-service proven strength, it is also 
possible to evaluate the reliability during the proof load testing situation 
[46].
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3. Reliability updating method

3.1. Reliability updating using two information sources

After each load increment in the proof load test, the estimation of the 
resistance on the basis of measurements forms the first source of infor-
mation (Fig. 1, point 1). The proposed method relates the observed in- 
situ response, through the use of indicator values, to the response 
observed in laboratory tests on similar structural elements or derived 
from suitable analytical models. The indicator value is measured in situ 
and on representative specimens in the lab. For example, strains derived 
from horizontal displacement measurements at the bottom of a beam or 
slab can serve as critical indicators for structural performance. By uti-
lising the same indicators in both laboratory and in-situ testing, it is 
possible to determine the mean and standard deviation of the structure’s 
resistance. Instead of a mean and standard deviation, the prediction 
distribution of R may be established via other statistical approaches, 
including Bayesian inference (Section 2.2).

If a structure can withstand a specific proof load, it also means that 
its resistance (R) is equal to or greater than the load effect during the test 
(Section 2.3). Considering the uncertainty of the proof load test, the 
gradual truncation of the resistance is the second source of information 
(Fig. 1, point 2). The information from the two sources is processed in 
the presented order and allows for variable load increments to deter-
mine the reliability of the structure. Generally, as the applied load in-
creases, the structural reliability also tends to increase. A flowchart 
outlining the steps in the proposed proof load testing assessment method 
is provided in Fig. 2.

3.2. Probabilistic model for reliability updating

Structural reliability may be assessed by evaluating a limit state 
function (Section 2.1). The primary limit state considers the situation in 
which the regular traffic loads act on the bridge. The proposed function 
aligns with the guidelines from the Probabilistic Model Code [34] and 
fib Bulletin 80 [49]: 

Z = θRR − θE(GDL +GSDL +C0QQ) (13) 

where θR is the uncertainty associated with resistance calculation, R is 
the resistance, θE is the model uncertainty of the load effect calculation, 
GDL is the dead load effect, GSDL is the superimposed dead load effect, 
C0Q is the time-invariant part of the live load effect, and Q is the time- 
variant part of the live load effect (i.e. traffic load effect). The reli-
ability of the bridge prior to proof load testing could be evaluated if 
distributions were assigned to all random variables, including R. 
Because of the low information state, the distribution of R would 
incorporate a large variability and thus result in low reliability. Instead 
of employing a conventional structural resistance model, the resistance 
R will be estimated by combining in-situ measurements with insights 
gained from laboratory experiments or analytical modelling. This also 
affects how the variability of θR, the uncertainty associated with 

resistance calculation, should be quantified (Section 3.4).
Instead of directly assigning a distribution to resistance R, it will be 

expressed as a function of the proof load effect via the factor X. Each 
time the structure withstands a new load level in a proof load test, the 
distribution function of R can be updated to reflect the information 
obtained via measurements, in addition to the truncation (Section 3.1). 
The revised distribution of R can be expressed as the product of a 
resistance ratio X and the load effect produced during the last successful 
load test cycle (R = X EPL). Given a certain observed indicator value I, the 
distribution of X may be obtained – as determined before proof load 
testing (Section 3.3). During a proof load test, the traffic load will be 
absent, and instead, the test load is present. Thus, the limit state function 
describing the proof load testing situation is: 

ZPL = θRXEPL − EPL = (θRX − 1)EPL∝θRX − 1 (14) 

where EPL = θE(GDL + GSDL) + θE,PLQPL with QPL denoting the load effect 
created by the proof load and θE,PL its corresponding model uncertainty. 
By assuming that the proof load is withstood, it directly follows that ZPL 
> 0 and thus θRX > 1. The conditionality can be satisfied in a Bayesian 
updating process by obtaining the joint posterior distribution of θ = (θR, 
X) as: 

p(θ|ZPL >0)∝p(ZPL >0|θ)p(θ) (15) 

where the likelihood p(ZPL > 0 | θ) acts as an indicator function, or 
potential [50,51], and p(θ) is the prior probability. In a Monte Carlo 
simulation, this process involves differentiating between samples that 
either withstand or fail the proof load test (Section 3.5). After this up-
date, the marginal distributions should not be sampled independently 
because the interdependence of variable combinations significantly in-
fluences the outcomes. Returning to the original traffic load situation, 
Eq. (13), with R = X EPL and denoting the updated variables as θR’ and X’ 
gives: 

Z = θ́ RX́
[
θE
(
GDL +GSDL

)
+ θE,PLQPL

]
–θE
(
GDL +GSDL +C0QQ

)
(16) 

and can be used to evaluate the structural reliability after a successful 
test cycle.

The chosen probabilistic formulation accounts for model un-
certainties in both the load effect caused by regular loads (θE) and the 
load effect specific to the load applied in the proof load test (θE,PL). The 
statistical characterisation of these uncertainties is specific to the 
application. In particular, the model uncertainty pertaining to the proof 
load can address various factors, such as the method of load application, 
the number and configuration of tested positions and lanes, and the 
considered failure mode. It should be realised that the model un-
certainties θE and θE,PL are likely correlated, given that the same math-
ematical principles and models are employed to calculate both load 
effects.

3.3. Distribution of the resistance ratio (X)

3.3.1. Using laboratory test data
When laboratory data are available, the relationship between mea-

surements or indicator values and the resistance ratio (X = R/E) can be 
inferred from these tests. The laboratory tests should be conducted on 
similar elements and in a configuration comparable to the in-situ proof 
load test. The laboratory measurements are processed for each load step 
to analyse the resistance ratio distribution as the indicator values in-
crease. Each specimen has a resistance (R) that corresponds to the load 
effect at the moment that the limit state is reached (failure). During each 
load step, the load effect (E) can be calculated, resulting in a corre-
sponding resistance ratio. Typically, an estimation of the self-weight is 
required to calculate the load effect from both permanent and applied 
loads (E). This procedure results in a resistance ratio versus indicator 
value (I) curve for each specimen (for example, see Fig. 5 in Section 4.2). 

Fig. 1. General principle of updating the resistance distribution from two 
sources of information.
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The resistance ratio is modelled as a random variable due to the inherent 
uncertainties in both the resistance and the indicator value at a given 
load level. Moreover, the uncertainty typically decreases as the in-
dicator’s value increases. To reduce noise and erratic responses, the 
maximum indicator value observed up to each load step is used. The 
same post-processing practice should be followed during in-situ tests for 
consistency. When the specimen has failed, the resistance ratio is 1, 
indicating that the resistance is at least equal to the current load effect 
but not higher.

Once the resistance ratio curves have been obtained for the labora-
tory tests, statistical post-processing may be performed to infer the 
statistical description for a range of indicator values. Given a certain 
indicator value, the data points (Xi) are obtained as the resistance ratios 
from each specimen. Interpolation of the resistance ratio curves is 
required to obtain intermediate values. Then, the data points can be 
analysed using established sample testing methodologies (Section 2.2). 
Because the prediction distribution of X is used, the actual variation is 
more significant than indicated by the standard deviation alone. 
Bayesian inference can also be employed instead of the prediction 
equation. However, this may be impractical since the inference process 
needs to be repeated for a range of indicator values. A better approach 
would also include the trend of model parameters with varying indicator 

values combined with a nuanced treatment of measurement error 
(Section 3.4). An application of the prediction equation and an expo-
nential model for the trend in the resistance ratio is provided in Section 
4.2.

3.3.2. Using an analytical model
In cases where laboratory measurements are unavailable, computer 

simulations can be utilised as an alternative. Instead of calculating the 
typical design resistance, the aim is to determine the resistance ratio 
distribution, which cannot be directly obtained through conventional 
methods. A regular resistance model is developed, but the parameters 
are random variables. To obtain the statistical distribution of the resis-
tance ratio, it is necessary to integrate over all random variables 
included in the resistance model. There are several methods to accom-
plish this integration. The most straightforward method is Monte Carlo 
simulation (MCS) [16]. However, often a complex numerical (FEM) 
model is used for the resistance calculation. In these cases, the appli-
cation of Latin hypercube sampling (LHS) can be beneficial as this 
method allows for a more efficient representation of the random space 
with fewer samples [23,52].

By using LHS, numerous resistance ratio versus measurement value 
(indicator) curves are generated. These curves may then be statistically 

Fig. 2. Flowchart outlining the steps in the proposed proof load testing assessment method.
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analysed for a range of indicator values. By assuming a normal distri-
bution, a mean and standard deviation curve of the resistance ratio 
versus indicator value can be produced. Because the random space is 
directly integrated, there is no need to account for statistical uncer-
tainty. Only if the number of simulations is small (e.g. fewer than 30) an 
approach similar to the post-processing of laboratory experiments 
should be followed (Section 3.3.1). The additional uncertainty inherent 
in analytical modelling, as compared to physical testing, can be reflected 
in a larger coefficient of variation for the resistance model uncertainty 
(θR; see Section 3.4). An application of this approach, in which analytical 
modelling of the bending resistance is performed, is presented in Section 
5.

3.4. Resistance model and measurement uncertainty

In the described probabilistic framework, θR accounts for uncertainty 
in the resistance calculation introduced by the proposed method. This 
uncertainty is small when the laboratory specimens closely resemble the 
actual structure or when the mechanical model has been validated for 
accuracy. Conversely, significant uncertainty is expected if the struc-
tures differ substantially, the mechanical model is overly simplistic, 
measurement errors are significant, or there are inconsistencies in data 
post-processing. Practical applications of the proposed method will 
provide valuable insights into appropriate model uncertainty values as 
the application in real-world scenarios can highlight the difference be-
tween laboratory and in-situ observations [53].

When dealing with a small number of laboratory tests, statistical 
methods like Student’s t-distribution or Bayesian inference effectively 
account for the inherent statistical uncertainty and variability in the 
data. The statistical uncertainty would be incorporated directly in the 
resistance R, thus separated from the modelling uncertainty θR. Stu-
dent’s t-distribution is particularly useful when the sample size is small, 
and the standard deviation is unknown. It is wider than the normal 
distribution, reflecting the increased uncertainty that comes with fewer 
laboratory measurements. Bayesian inference, on the other hand, offers 
a flexible way of incorporating prior knowledge and can account for 
measurement noise as well. To capture the noise, the data points may be 
viewed under an assumed distribution for the measurement error by 
adjusting the likelihood calculation. Assuming the likelihood model (X) 
and noise (ε) are both normally distributed and independent, their 
combined variance may be used to define a substitute random variable. 
The likelihood of observing the data points may then be calculated using 
the probability density function of the substitute random variable rather 
than X directly [54,55].

Measurement errors can significantly influence results, especially 
with small values, such as minor crack widths or small strains. As the 
magnitude of the values increases, the relative impact of measurement 
errors typically decreases. In addition, the error also depends on the 
parameter being measured and whether it can be directly measured or 
must be inferred. Typically, larger measurement errors are anticipated 
when estimating crack widths using digital image correlation (DIC) 
compared to direct strain measurements. Measuring strains on a con-
crete surface is more susceptible to errors than taking strain measure-
ments directly on the reinforcement. The moderate load values in the 
proposed method will typically result in small indicator values, and thus, 
the large uncertainty should be appropriately accounted for. While 
Bayesian methods are well-suited for treating noise, other analytical 
approaches can also enhance model accuracy by incorporating physi-
cally expected trends with increasing indicator values, thereby 
providing a nuanced understanding of the data (see, for instance, Sec-
tion 4.2).

3.5. Calculation procedure

In order to compute the structural reliability after a successful proof 
load test, the knowledge of surviving the applied load needs to be 

incorporated, see Eq. (15). To obtain the posterior distribution p(θ | ZPL 
> 0), several calculation methods can be employed. In the direct 
Bayesian Monte Carlo (BMC) method, the prior distributions are directly 
sampled. Each sample is used in the simulation to determine if the 
random values (θ) result in the survival of the proof load test (likelihood 
evaluation). During the simulation, all parameter sets that produce the 
desired outcome are stored and collectively describe the posterior dis-
tribution [56,57]. In Markov chain Monte Carlo (MCMC), a Markov 
chain is constructed to obtain samples from the posterior distribution. 
Algorithms like Metropolis-Hastings [42,43] and Gibbs sampling [58]
can generate such sequences (Section 2.2.3). In this work, the MCMC 
method is adopted because of its versatility. Owing to its Monte Carlo 
nature, the chain’s current state is directly used to evaluate the reli-
ability of the structure with the posterior distribution. For each chain 
state, θ = (θR, X), the sample is supplemented by random realizations of 
the remaining random variables to evaluate the limit state function, i.e. 
Eq. (16).

A computationally attractive alternative is using the SORM (Section 
2.1), which can account for the non-linearity present in the limit state 
function. Because the survival condition, ZPL > 0, cannot be incorpo-
rated directly, an approximation must be made. This is achieved by 
introducing a substitute random variable Y = θRX, which follows Stu-
dent’s t-distribution when X is described by a t-distribution and a 
lognormal distribution otherwise. The variances of the original random 
variables may be combined such that Var(Y) = Var(θR) + Var(X). Then, 
the distribution of Y is left-truncated to the set [1, ∞ ) to impose the 
survival of the proof load test. Applying this alternative procedure re-
sults in an error in the reliability index of approximately 0.1 within the 
range of common target values (as experienced in the case studies, 
Sections 4 and 5).

4. Shear resistance assessment supported by laboratory tests

4.1. Description

In order to illustrate the practical application of the method proposed 
in Section 3, the reliability of a hypothetical shear-critical reinforced 
concrete slab bridge is considered. The case exemplifies older Dutch slab 
bridges that lack shear reinforcement. For simplicity, the slab is 
designed to match the exact width of a single traffic lane (Fig. 3). Nor-
mally, a slab bridge would include several lanes, along with sidewalks 
and railings. The single-lane slab bridge, assumed to experience heavy 
traffic primarily from trucks, represents a relatively conservative 
scenario.

Deep beams representing sections of such a slab were tested in the 
laboratory to evaluate their shear resistance. The reliability of the bridge 
under consideration can be assessed using the resistance data and the 
measurements obtained from load tests. However, because the bridge is 
fictional and no actual in-situ measurements were performed, these 
values must be estimated to demonstrate the application of the proposed 
method. The laboratory measurements employed in this case study were 
initially designed to examine the shear behaviour of reinforced concrete 
beams lacking shear reinforcement [59]. The tests are a continuation of 
the study into the parameters that play a role in the transition between 
flexural and shear failure of reinforced concrete beams without rein-
forcement [60]. For this case study, H-variants (H121, H401, H403, 
H404, H602) from the test series were selected because their dimensions 
correspond to those of the studied concrete slab. The strips, or deep 
beams, tested in the laboratory had a length of 9 m, a width of 0.3 m and 
a height of 1.2 m. They were subjected to a load via a single jack posi-
tioned near the midpoint of the span, leading to shear failure near the 
supports (see Fig. 4). Given the specified lane width of 3.6 m, the slab 
comprises 3.6 / 0.3 = 12 strips.

Because the experiments have already been conducted, providing a 
resistance distribution based on the test results (i.e. five Vu values) 
would be directly possible. Supplemented by the knowledge that the 
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structure survives the proof load, this information would give an alter-
native strategy for reliability updating. However, this alternative pro-
cedure does not account for the in-situ observations. By using these 
observations, a distinction can be made between structures performing 
well, exhibiting small crack widths, and those performing poorly, 
showing larger crack widths. In addition, the use of a resistance ratio 
allows laboratory results from similar structural elements to be applied 
to other structures that are not entirely identical. However, the validity 
of this approach and the increase in resistance model uncertainty 
become relevant factors (Section 3.4).

4.2. Laboratory data post-processing

The digital image correlation (DIC) method was used to monitor and 
analyse the development of cracks in the concrete during the tests [62]. 
DIC allows for the determination of the nominal crack width at various 
locations. The nominal crack width results from the consolidation of 
several smaller cracks that are closely clustered, forming a single sig-
nificant crack. The concept of virtual gauge length which is used in DIC, 
requires the area captured in photographs to be sufficiently large to 
facilitate the nominal crack width calculations. In this study, the optimal 
gauge length was found to be 0.8 d, where d represents the depth from 
the top of the beam to the centre of the longitudinal reinforcement [63]. 
At each selected location, the nominal crack width is calculated at the 
level of the reinforcement. To assign greater importance to the cracks 
near the supports, a weighted crack width calculation is introduced, 
multiplying the nominal crack width by the factor Vd/M, where V and M 
refer to the shear force and bending moment at the specific location, 
respectively. Both the maximum nominal crack width (wmax) and the 
maximum weighted nominal crack width (wmax,w) are computed. These 
maximum values refer to the (weighted) crack widths occurring at any 
point along the beam’s length. Finally, the resistance ratio X = R/EPL 

= Vu/V for each indicator value was plotted against each load step 
(Fig. 5).

The data was post-processed to derive the sample mean and standard 
deviation for each indicator value (Fig. 6). It may be observed that the 
standard deviation is generally smaller for the maximum weighted 
nominal crack width indicator (wmax,w), suggesting it as the preferable 
metric for subsequent modelling and field testing. Data points where the 
weighted nominal crack is less than 0.08 mm displayed noticeably high 
mean and standard deviation values. The high values are likely due to 
noise affecting the DIC measurements at very small displacements. 
Generally, the mean and standard deviation exhibited some variability 
across different values of the indicator wmax,w. An exponential model 
was applied to the data to address the erratic behaviour (Fig. 6): 

mVu/V
(
wmax,w

)
= {

1.5exp
(
− 3wmax,w

)
+ 0.88 wmax,w < 0.85 mm

1 wmax,w ≥ 0.85 mm
(17a) 

sVu/V
(
wmax,w

)
= {

0.53exp
(
− 2.1wmax,w

)
− 0.05 wmax,w < 1.1 mm

0 wmax,w ≥ 1.1 mm
(17b) 

Eqs. (17a) and (17b) effectively capture the trend towards a mean 
value of 1 and a standard deviation of 0 as the load increases. It also 
becomes clear that for values of wmax,w ≥ 1.1 mm, the method offers no 
advantages compared to using the lower-bound approximation [5] as 
the resistance ratio becomes a deterministic value of 1. It should be 
noted that measurement uncertainty is not explicitly considered here 
(Section 3.4) since the possibly underestimated uncertainty (low stan-
dard deviation) is corrected by the adopted exponential model for small 
crack width values (Fig. 6). In addition, the use of Student’s t-distribu-
tion is equivalent to the assumption of a non-informative prior for the 
mean and standard deviation. If Bayesian inference was performed, 

Fig. 3. Hypothetical reinforced concrete slab used as a case study [9].

Fig. 4. Photos of (a) the test set-up and (b) the typical crack pattern at failure [61].
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low-informative priors would be used, leading to somewhat lower 
dispersion.

4.3. Assumed load testing results

The bridge considered in this case study is theoretical and has not 
been tested. However, indicator values that would normally be acquired 
during testing are needed to apply the proposed method. Meaningful 
target loads can be based on the characteristic value of the traffic load 
multiplied by a certain factor. Given a target load, the tests performed in 
the laboratory may also be used to estimate likely indicator values 
(Table 1). In real-world applications, this step would not be required. 
The discussion (Section 6) describes the sensitivity to the assumed load 
testing results. It should be noted that measurements performed on the 
in-situ structure will already include the superimposed dead load (GSDL) 

thus the measurements will begin from a different starting value. To 
compensate for this difference, the values should be increased by the 
crack widths provided in Table 1 for the case GDL + GSDL. Although the 
value is small in the current application, this step is important to align 
the measurements between the laboratory tests and the structure being 
monitored during the load test.

4.4. Probabilistic model and reliability analysis

To enable the update of structural reliability, a probabilistic model 
specific to the considered structure is required. The mean and coefficient 
of variation of the random variables in Table 2 are based on the Prob-
abilistic Model Code [34] and fib Bulletin 80 [49]. The coefficient of 
variation used for model uncertainty of the shear resistance (VθR = 0.15) 
is deemed appropriate for structures without shear reinforcement [64]. 

Fig. 5. Shear resistance ratio versus (a) the maximum nominal crack width and (b) the maximum weighted nominal crack width [9].

Fig. 6. Mean and standard deviation of the shear resistance ratio versus (a) the maximum nominal crack width and (b) the maximum weighted nominal crack width.

Table 1 
Expected indicator readings given a proof load.

Test load level Loads acting on structure Expected shear force [kN] Maximum crack width, weighted by position (wmax,w) [mm]

H121 H401 H403 H404 H602 Average

- GDL 30.0 0 0 0 0 0 0
- GDL + GSDL 34.9 0.004 0.002 0.002 0.002 0.010 0.004
1 G + 1.0 Qk 73.0 0.069 0.058 0.019 0.010 0.016 0.034
2 G + 1.2 Qk 80.6 0.069 0.058 0.023 0.010 0.029 0.038
3 G + 1.4 Qk 88.2 0.069 0.071 0.026 0.016 0.058 0.048
4 G + 1.6 Qk 95.9 0.069 0.135 0.158 0.032 0.087 0.096
5 G + 1.8 Qk 103 0.074 0.174 0.244 0.052 0.256 0.160
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The statistical description of the traffic load effect (Q) is based on 
weigh-in-motion (WIM, [65]) measurement data recorded in the 
Netherlands. This data was analysed to provide extreme value distri-
butions for the annual maximum bending moment at midspan and shear 
force near the supports of a single-span structure [5]. The corresponding 
1000-year characteristic load effect is obtained as Qk,WIM = FQ

− 1(0.999) 
according to the Eurocode where FQ

− 1(⋅) indicates the inverse CDF of Q. 
The mean test load levels (mQ,PL) are related to the characteristic load 
effect via a factor (1.0–1.8) in the following analyses. The mean and 
standard deviation of the resistance ratio for each load level is calculated 
using Eqs. (17a) and (17b) based on the average indicator values from 
Table 1. The corresponding coefficient of variation is obtained as VX 
= sX/mX (Table 3). Finally, by making use of the probabilistic model 
specified in Table 2, reliability calculations are performed using the 
method outlined in Section 3. The calculated reliability indices are 
provided in Table 4.

The results presented in Table 4 clearly show that the proposed 
method provides higher annual reliability values compared to the lower- 
bound approach, i.e. Eq. (12). This difference signifies the advantage of 
integrating additional information from indicators that reflect structural 
performance. The value of this additional information is particularly 
significant when the test loads are relatively low, illustrated by an in-
crease in the reliability index of about 1.5 with moderate loads. In 
addition, Table 4 provides the reliability during the proof load test, 
indicating the risk associated with applying the target load. A reliability 
index of 1.8, corresponding to a failure probability of approximately 
0.036, suggests the structure is indeed likely to survive the applied load. 
The reliability during testing is also updated with each increment in the 
load level, enabling continuous assessment of risk during the test 
(Section 6).

5. Bending resistance assessment supported by a calculation 
model

5.1. De Beek viaduct

In this case study, proof load levels relating to the bending resistance 
of the reinforced concrete slab viaduct De Beek in the Netherlands will 
be examined. The viaduct from 1963 passes over the A67 highway near 
Ommel, but the viaduct itself is part of the secondary road network. The 
highway traffic passes beneath the viaduct’s two central spans, each 
with a length of 15.4 m. Additional spans on either side have a length of 
10.8 m. The cross-section height varies parabolically along the longi-
tudinal direction from 0.47 m to 0.87 m, measured in the heart of the 
deck. The bridge is constructed as a continuous slab and thus experi-
ences support moments above its middle three supports (Fig. 7). The 
sidewalks, added during a later phase of construction, are assumed to 
offer no significant contribution to the structural resistance (but can 
influence the stiffness). A pilot proof load test of the first span has 
already been performed for both bending and shear mechanisms, but 
only bending will be considered in this case study. Thus, in contrast to 
the previous case study (Section 4), in-situ test results and measure-
ments are available [66]. A calculation model for the bending resistance 
will be used to interpret the measurements during testing because lab-
oratory tests on similar bridge decks are not available.

In 2015, an inspection and assessment of the bridge took place and it 
was concluded that the bridge had insufficient resistance [67]. During 
the inspection, cracks at the bottom of the concrete slab were found. 
Afterwards, the detected cracks were filled to prevent water ingress. 
Later that year, further investigation and a pilot proof load test were 
performed, confirming that the resistance of span 1 was sufficient for 
two traffic lanes, both calculated and tested. For span 2, the resistance 
was only deemed sufficient if plastic redistribution would be allowed to 
take place, but this typically results in unwanted cracking. The bridge 
inspection and assessment led to a traffic restriction that reduced the 
original two lanes to one central lane, only allowing traffic from one 
direction at a time [68].

5.2. Traffic load effect

The viaduct was designed for two lanes, with traffic in opposite di-
rections. The width of the carriageway is 7.44 m. After subtracting the 
width of the curbs, the remaining lane width is 3.5 m for each direction. 
To obtain the most accurate statistical description of the load effect, 
additional traffic simulations were performed using WIM data recorded 
in the Netherlands. In this way, the specific continuous slab configura-
tion with traffic moving in opposite directions can be taken into account. 
The viaduct crosses the A67 highway but is part of the secondary road 
network. However, only WIM data recorded at highway locations is 
available in the Netherlands. Using the highway measurements likely 
results in overestimating the true load effect for this particular location. 
However, because the viaduct is situated in a rural area, tractors and 
slurry tanks also make use of it. Although the number of heavy 

Table 2 
Overview of random variables in the limit state function.

Var. Description Distribution Mean COV

θR Model uncertainty of the resistance Lognormal 1 0.15
X Resistance to current load effect ratio Student’s t (varies) (varies)
θE Model uncertainty of the load effect Lognormal 1 0.10
GDL Dead load effect Normal 356 kN 0.05
GSDL Superimposed dead load effect Normal 59.3 kN 0.10
C0Q Time-independent uncertainty of the 

traffic load, including dynamic 
effects

Lognormal 1.1 0.10

Q Traffic load effect, annual maximum Gumbel 390 kN 0.035
θE,PL Model uncertainty of the proof load 

effect; correlation ρ(θE, θE,PL) = 0.7
Lognormal 1 0.10

QPL Load effect achieved by proof load Normal (varies) 0.02

Table 3 
Mean and coefficient of variation of the resistance ratio (X) for each load test 
cycle.

WIM 
char. 
load 
factor 
(mQ,PL/ 
Qk,WIM)

Mean PL 
effect, 
strip (mQ, 

PL,s) [kN]

Mean PL 
effect, 
lane (mQ, 

PL) [kN]

Indicator 
value 
(wmax,w) 
[mm]

Mean of 
resistance 
ratio (mX)

COV of 
resistance 
ratio (VX)

1.0 38.1 457 0.034 2.23 0.198
1.2 45.7 549 0.038 2.22 0.198
1.4 53.3 640 0.048 2.18 0.197
1.6 61.0 732 0.096 2.00 0.191
1.8 68.7 823 0.0160 1.81 0.182

Table 4 
Calculated reliability indices given different levels of loading, during and after 
proof load testing (PLT).

WIM 
characteristic load 
factor (mQ,PL/Qk, 

WIM)

LM1 characteristic 
load factor (mQ,PL/ 
Qk,LM1)

Reliability 
during PLT

Annual reliability after 
successful PLT

Proposed 
method

Lower- 
bound

1.0 0.78 1.80 2.99 0.53
1.2 0.93 1.79 3.77 1.89
1.4 1.09 1.78 4.55 3.04
1.6 1.24 1.71 5.23 4.03
1.8 1.40 1.61 5.83 4.85
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agricultural vehicles is small, they may exert relatively large axle loads 
on the viaduct. Therefore, no reduction of the traffic load effect 
following the highway WIM data was applied.

From the WIM measurements, only the first lane data was used in the 
traffic simulations (i.e. where the trucks predominantly drive). The 
simulation uses a time-discretisation method in which the vehicle axle 
loads are placed on the bridge according to the time they were originally 
recorded. The linear load effect, i.e. the bending moment, was calculated 
through the superposition of the load effects caused by each individual 
axle. This calculation may be effectively performed using influence 
lines, which express the load effect at a certain location, given a unity 
axle load (Fig. 8). The influence lines were derived using a 1D finite 
element analysis utilising many small Euler-Bernoulli beam elements to 
account for the varying deck height in the longitudinal direction.

By analysing the bending moment caused by permanent and traffic 
loads it follows that the maximum combined load effect can be expected 
around x = 4.5 m. To identify the difference in the bending moment 
following from one lane and two lanes in opposite directions, both sit-
uations were analysed. The load effect in the two-lane configuration is 
not simply the one-lane load effect multiplied by a factor 2 because it is 
very unlikely that, in both directions, a heavy truck is present at the 
same time. However, the variability in the load effect increases 
considerably, as shown by the more gradually descending right tail of 
the distribution in the two-lane configuration (Fig. 9). The Gumbel 

distribution for the weekly maxima was found by fitting the right tail of 
the weekly extremes for the WIM highway locations (A16L, A27L, A50L 
and A67L) directly. The yearly distributions we found by modifying the 
Gumbel distribution location parameter as μyr = μwk + ln(52) β where 
52 is the number of weeks in the year, and β is the scale parameter of the 
Gumbel distribution (which remains unchanged). The assessment of the 
first span will be performed for the two-lane configurations, for which 
the annual load effect is found to follow a Gumbel distribution with a 
mean value of 1301 kNm and a variation coefficient of 0.058.

5.3. Proof load test and measurements

In November 2015, proof load tests were performed on the first span 
of the viaduct De Beek using load levels described by relevant Dutch 
guidelines and standards [69–71]. The load was applied as the Eurocode 
LM1 tandem with two axles at a distance of 1.2 m with a wheelbase of 
2 m and a wheel print size of 0.4 m × 0.4 m. The axle load was varied to 
achieve a load effect corresponding to various load levels (Table 5). The 
corresponding load effects caused by the tandem axle loads are calcu-
lated using the influence lines derived in Section 5.2. The bending 
moment caused by the LM1 tandem is obtained as M = 3.75 P where P is 
the load of an individual axle. The load test situation mimics the situa-
tion in which a heavy vehicle passes the bridge in a two-lane configu-
ration. Due to the eccentric placement of the load, the bending moment 

Fig. 7. Schematic (a) side view and (b) cross-section of the De Beek viaduct with the bending proof load test location indicated by the arrows. Reinforcement 
diameters and spacings provided in mm, other measurements provided in m.

Fig. 8. Influence lines for the bending moment considering various cross-section locations, i.e., the moment for a cross-section located at x, resulting from a unit axle 
load (P = 1) positioned at xP.
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varies in the transverse direction of the deck. In this case study, the deck 
will be treated as a beam for simplicity, but the relative increase of 
strains near the edge will be taken into account (see Section 5.4.1).

During the test, various measurements were performed, including 
displacements, concrete surface strains and reinforcement strains. At a 
number of locations, the concrete cover was removed to inspect the 
reinforcement and attach strain gauges [68]. If the reinforcement cannot 
be accessed directly, stop-criteria expressed in concrete surface strains 
may prove beneficial [72]. In this case study, the maximum steel strain 
measured at 0.86 m from the edge of the deck (see Fig. 7) is of primary 
interest since yielding of the reinforcement is undesired for durability 
reasons. In the longitudinal direction, the strains are measured at a 
distance of 4.05 m from the support and are considered representative of 
the section between the axle loads (3.7–4.9 m), as the moment remains 
nearly constant throughout this range.

5.4. Analytical resistance model

5.4.1. Modified sectional analysis
If no tests have been performed on representative specimens, it is 

possible to use an analytical model to interpret measurements during the 
test. The resistance model may range from simple to complex, e.g. cross- 
sectional analysis [73,74], strip model [75,76], linear finite element 
model, non-linear finite element model [77,78]. In the considered case, 
the proof load test has already been performed, and therefore, the 
measurements can be used to correct a relatively simple sectional 
analysis model. This calculation is performed by gradually incrementing 
the strains across the section according to a linear strain distribution and 
finding the compression zone depth for which the axial force and 
bending moments in the section are in balance. The result is often pre-
sented as a moment-curvature (M-κ) diagram. In this case study, the 
bottom steel strain (εs) is utilised instead of the curvature (κ) because the 
steel strain was measured during testing.

For the sectional analysis of the De Beek bridge deck, a width of b 
= 9.4 m is used, along with an equivalent deck height of h = 0.47 m at 

the location where the maximum moment is deemed to occur 
(x = 4.5 m, Section 5.2). The reinforcement, as schematically presented 
in Fig. 7, listed from bottom to top, corresponds to the longitudinal 
reinforcement areas As,bot,1 = 3506 mm2/m, As,bot,2 = 1753 mm2/m and 
As,top = 1753 mm2/m. Thorenfeldt’s model [79] is used for the concrete 
compressive stress-strain curve, and no concrete tensile strength 
contribution is assumed. The analysis is first performed using mean 
values for the geometry and material properties (Table 6) to establish 
the model correction.

Analysis of the measurement data reveals that the recorded strains 
must be adjusted to compare the numerically obtained response with the 
observed measurements. If a linear response up to and between load 
cycles 1 and 2 is assumed, the microstrain increment corresponding to 
1875 − 1125 = 750 kNm is 340 – 165 = 175 (Table 5). Then, a micro-
strain of 1125/750 ⋅ 175 = 263 would be expected for the first cycle, 
which is about 100 higher than recorded. However, the corrected model 
is non-linear, as a result of Eq. (18), and the required adjustment has 
been determined as 85 iteratively.

The moment caused by the self-weight of the deck and the super-
imposed loads is estimated as MG = 747 kNm [66]. The corrected 
cross-sectional analysis model results in a corresponding bottom steel 
strain εsG = 154 ⋅ 10− 6. The calculated steel strains need to be lowered 
compared to the original model to align with the measured response 
(Fig. 10). This increase in stiffness could be caused by the contribution of 
the sidewalks. In addition, the measurements show a gradual decrease in 
stiffness that is not present in the modelled response. Therefore, a power 
law is included to increase the steel strain proportionally to the re-
inforcement’s yield strain (εy; mean value εym = fym / Esm = 1417 ⋅ 10− 6). 
The adopted expression for the modified steel strain is: 

ε∗s =
[
c1 + c2

(
εs
/

εy
)c3
]

εs (18) 

Fig. 9. Extreme value distributions of the maximum load effect in the first span for the (a) one-lane and (b) two-lane configurations.

Table 5 
Overview of test loads, load effects and measured steel strains.

Cycle Description Ptot [kN] P [kN] M [kNm] εs [10− 6]

1 Unfactored tandem 600 300 1125 165
2 Service level 1000 500 1875 340
3 RBK usage 1400 700 2625 570
4 Intermediate 1700 850 3188 790
5 Eurocode design 1750 875 3281 830

Table 6 
Overview of the random variables in the mechanical model.

Var. Description Distribution Mean COV

c Concrete cover thickness Gamma 30 mm 0.17
h Height of the cross-section Lognormal 470 mm 0.10
Es Young’s modulus of reinforcing 

steel
Lognormal 205 GPa 0.02

fc Concrete compressive strength Log-t (n = 6) 57.5 MPaa 0.10a

fy Yield stress of the reinforcement Log-t (n = 3) 290.5 MPaa 0.034a

c2 Non-linearity of moment-strain 
relation

Lognormal 0.41 0.10

a Sample statistics are reported. The log-t prediction distribution accounts for 
the small number of samples and will effectively lead to higher variability.
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where c1 accounts for the difference in stiffness, c2 controls the degree of 
non-linearity and c3 specifies the shape of the curve. An optimal fit for 
this case study is obtained with c1 = 0.75, c2 = 0.41 and c3 = 4.1. As a 
result, the modified model predicts a lower (local) yield moment, but the 
ultimate resistance remains the same. In this way, the model accounts 
for eccentric loading with increased strains towards the side of the 
bridge deck where the load is applied.

5.4.2. Sampling of the mechanical model
Since no laboratory measurements are available, the uncertainty 

regarding the structural response must be included in an alternative 
manner. To this end, the mechanical model can be set up using random 
variables for the parameters (Table 6). The distribution types and co-
efficients of variation (COV) follow fib [49] and JCSS [34]. A larger COV 
value is adopted for the height of the cross-section since it is an equiv-
alent value for the actual height, which varies along the longitudinal and 
transverse directions. The steel area of the reinforcement is not included 
because its variability is minimal. Material testing was performed on the 
concrete and the reinforcing steel [67]. It is expected that concrete 
compressive strength and yield stress of the reinforcement would follow 
a lognormal distribution when many measurements are available. 
Therefore, the prediction distribution, Eq. (8), is used to describe the 
logarithm of these material properties. The resulting log-t distributed 
random variables for the concrete compressive strength (fc) and the 
yield stress of the reinforcement (fy) are: 

fc = exp
(

4.05+0.106 Tν=6− 1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 1/6

√ )
[MPa] (19a) 

fy = exp
(

5.76+0.0346 Tν=3− 1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 1/3

√ )
[MPa] (19b) 

where random variable Tν follows Student’s t-distribution with ν degrees 
of freedom. The sample mean and standard deviation values have been 
calculated from the log-transformed measurement data (i.e. taking the 
natural logarithm of each value). The uncertainty about the non- 
linearity of the modified sectional analysis model is included in the 
probabilistic description by using a lognormal distribution for the 
parameter c2 in Eq. (18), which controls the degree of non-linearity.

Latin hypercube sampling [23,52] was used to simulate responses 
according to the probabilistic model (Table 6). Compared to the more 
common Monte Carlo simulation [16], Latin hypercube sampling better 
represents the output distribution when using a small number of sam-
ples. Although the mechanical model is not computationally demanding 
in this case study, a more complex (FEM) model will require consider-
able computation time. The calculated moment-strain curves and the 
resistance ratios for 100 samples are displayed in Fig. 11. Because the 
yielding of reinforcement is undesired, the yield moment resistance (My) 
is used instead of the ultimate bending resistance (Mu) to calculate the 
ratio X = My/M. The sample yield moment is obtained by calculating the 
sample yield stress (εy = fy / Es) and subsequently interpolating the 
moment-strain curve to find the corresponding moment. In Fig. 12, the 
calculated mean and standard deviation of the resistance ratio are 
plotted against the bottom steel strain. In contrast to the approach in 
Section 4.2, the statistics of the resistance ratio X can be directly ob-
tained from the curves. The mean and standard deviation relations are 
discretised using a strain interval of 50 ⋅ 10− 6 and can be linearly 
interpolated in the subsequent reliability analysis.

Fig. 10. Comparison of the moment-strain diagram following from modelling 
and measurements.

Fig. 11. Simulation result displayed as moment-strain (a) and resistance ratio-strain curves (b).

Fig. 12. Mean and standard deviation of the simulated resistance ratio.
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5.5. Probabilistic model and reliability analysis

The probabilistic model described in Section 3.2 is now employed to 
perform the reliability analysis. The mean values and variation co-
efficients of the random variables are specified in Table 7 and are based 
on the Probabilistic Model Code [34] and fib Bulletin 80 [49]. A sta-
tistical description of the traffic load effect was obtained in Section 5.2. 
The statistics for the resistance ratio depend on the indicator value – as 
discussed in Section 5.4.2. In this case, the indicator is the steel strain in 
the bottom reinforcement near the edge of the deck (εs). In contrast to 
the previous case study (Section 4), the resistance ratio (X) follows a 
normal distribution, not Student’s t-distribution, because the resistance 
model is based on a stochastic model. The coefficient of variation used 
for the model uncertainty of the resistance (VθR = 0.15) is twice the 
value generally used for bending [64]. This increased value reflects the 
greater uncertainty associated with the use of a basic sectional analysis 
model for a bridge deck subjected to eccentric loading (Section 5.4.1).

For each of the load levels used in the proof load test, the mean and 
coefficient of variation of the resistance ratio are calculated (Table 8). 
The load levels may also be related to the WIM and LM1 characteristic 
traffic load effects to enable comparisons with the previous case study 
(Section 4). For each of these load levels, the reliability during and after 
surviving the proof load test has been calculated (Table 9). Similar to the 
previous case study, using the indicator data results in markedly higher 
reliability indices at low load levels than the lower-bound method, i.e. 
Eq. (12). The reliability during testing is relatively high but decreases 
rapidly with higher test loads, underlining the need for risk assessment 
during the proof load test between load steps (Section 6).

6. Discussion

In the data post-processing of the shear resistance case study (Section 
4.2), the model deviates from the calculated values for wmax,w 
< 0.08 mm. This region is important for the subsequent reliability cal-
culations and greatly influences the outcomes. As described in Section 
3.4, measurement errors play a significant role with small indicator 
values and various strategies are discussed to account for them. The 
power-law model was chosen because analytical resistance models show 
a similar decreasing trend (Section 5.4). Further data inspection reveals 
very high resistance ratios in the small-value region with a positive 
distribution skew. Thus, the adoption of a conservative model in this 
region effectively mitigates measurement-error issues. Additional cal-
culations using Bayesian inference to statistically describe the resistance 
ratio resulted in higher reliability indices (up to 0.5), thereby confirming 
the effectiveness of the chosen approach.

Attention must be given to ensuring the similarity between the in- 

situ tested structure and the results from laboratory tests or analytical 
models. In the shear resistance case study, it is assumed that the 
response of the bridge slab is similar to the response of the strips tested 
in the laboratory. However, still a relatively large coefficient of variation 
was assigned to the model uncertainty to account for the remaining 
differences (e.g., transverse load distribution, boundary conditions, edge 
and size effects). With analytical models, it is crucial to evaluate whether 
they can reliably provide correct indicator values (such as crack widths, 
strains, etc.), as these models often primarily consider the resistance of 
structural members. Experience with the proposed method in practice 
can establish suitable model uncertainty values.

In reality, the tested structure may exhibit a very different response 
than assumed in both case studies. If the structure’s condition is above 
average, smaller indicator values are anticipated and therefore the 
reliability increases. Conversely, for structures that show large indicator 
values under small loads, lower reliability is expected. The results 
include reliability indices that will likely be observed in practical ap-
plications, but may differ from case to case. The same holds for the 
relation between the target load, the statistical description of the traffic 
load effect and the load effect calculated from standards. For example, 
the required target load for the bending resistance assessment of the 
viaduct is relatively low when expressed by the unfactored LM1 char-
acteristic load (Section 5.5). This result stems from the detailed statis-
tical analysis of the traffic load effect, indicating that the LM1 
characteristic load may be rather conservative for the two-lane situation 
with opposite driving directions.

The proposed method also provides the opportunity to calculate the 
reliability during the proof load test. Although no standards or guide-
lines specify minimum reliability levels for load testing, case-specific 
risk analysis can help determine optimal values. Such an analysis can 
take into account the load-testing conditions (e.g., absence of traffic, 
restricted areas), allowing for informed decisions on whether to 
continue with higher load levels or stop the test. This approach offers a 
risk-optimal alternative to pre-determined stop criteria but requires 
additional analysis and calculation effort.

The value of the current study lies in the proposed method for proof 
load testing rather than the calculated reliability values and target loads. 
Future research and practical applications can further refine the 

Table 7 
Overview of random variables in the limit state functions.

Var. Description Distribution Mean COV

θR Model uncertainty of the 
resistance

Lognormal 1 0.15

X Resistance to current load effect 
ratio

Normal (varies) (varies)

θE Model uncertainty of the load 
effect

Lognormal 1 0.10

GDL Dead load effect Normal 604 kNm 0.05
GSDL Superimposed dead load effect Normal 143 kNm 0.10
C0Q Time-independent uncertainty of 

the traffic load, including dynamic 
effects

Lognormal 1.1 0.10

Q Traffic load effect, annual 
maximum

Gumbel 1301 kNm 0.058

θE,PL Model uncertainty of the proof 
load effect; correlation ρ(θE, θE,PL) 
= 0.7

Lognormal 1 0.10

QPL Load effect achieved by proof load Normal (varies) 0.02

Table 8 
Mean and coefficient of variation of the resistance ratio (X) for each load test 
cycle.

Cycle Description Measured 
steel strain 
[10− 6]

Indicator 
value (εs) 
[10− 6]

Mean of 
ratio 
(mX)

COV of 
ratio 
(VX)

1 Unfactored 
tandem

165 419 2.42 0.090

2 Service level 340 594 1.76 0.082
3 RBK usage 570 824 1.36 0.068
4 Intermediate 790 1044 1.17 0.056
5 Eurocode 

design
830 1084 1.15 0.054

Table 9 
Calculated reliability indices given different levels of loading, during and after 
proof load testing (PLT).

WIM 
characteristic load 
factor (mQ,PL/Qk, 

WIM)

LM1 characteristic 
load factor (mQ,PL/ 
Qk,LM1)

Reliability 
during PLT

Annual reliability after 
successful PLT

Proposed 
method

Lower- 
bound

0.67 0.46 4.78 3.58 − 1.70
1.12 0.76 3.18 3.99 1.95
1.57 1.06 1.79 5.00 4.12
1.91 1.29 0.91 5.78 5.27
1.96 1.33 0.80 5.92 5.40
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framework, providing valuable insights into model uncertainties and 
measurement techniques. Real-world validation is recommended to 
establish the robustness of the adopted models and data post-processing 
procedures. Large-scale implementation would benefit from research 
into generally applicable indicators, resistance ratio curves, identifica-
tion of application criteria and possibly (FEM) modelling guidelines.

7. Conclusions

The proposed proof load testing method involves updating the 
resistance distribution using two sources of information: (1) the 
observed in-situ response, which is related to the resistance via indicator 
values and associated resistance ratios, and (2) the survival of the 
applied load during the proof load test. Although the prediction of the 
resistance on the basis of the in-situ response is associated with 
considerable uncertainty, this information is still valuable and can be 
accounted for probabilistically. A Bayesian procedure for updating the 
resistance distribution given the two information sources is presented, 
along with a method for calculating the posterior reliability using the 
Markov chain Monte Carlo (MCMC) technique. In addition, the proba-
bility of failure during the test is calculated using the most current data, 
offering a risk-optimal alternative to pre-determined stop criteria.

The application of the proposed method was demonstrated through 
two case studies. The first case study considered a hypothetical shear- 
critical concrete bridge using laboratory data, while the second exam-
ined the bending resistance of an existing viaduct in the Netherlands 
using an analytical model. These case studies illustrated how the 
framework could be applied in real-world scenarios, and the potential 
gains in reliability when monitoring data is included in the assessment. 
The two case studies in which in-situ measurement data was included 
allowed for test load reductions of 20 % and 25 %. The proposed 
method’s versatility was highlighted by using laboratory experiments in 
the first case study and an analytical model in the second to establish the 
relationship between indicator values and resistance ratios. In cases with 
complex mechanical behaviour where tests or analytical models are less 
representative of the in-situ structure, smaller test load reductions 
should be expected due to the increased uncertainty.

Advanced probabilistic models and calculation techniques were 
utilised to account for uncertainties in resistance, material properties, 
load effects, and measurement errors. Laboratory data post-processing, 
including the consideration of weighted crack widths, provided insight 
into the resistance ratios for different target loads. The impact of model 
uncertainty and measurement errors was addressed, particularly for 
small indicator values. Alternatively, analytical models can be used to 
derive similar insights, ensuring the model closely matches the in-situ 
conditions.

The suggested method offers a more comprehensive and accurate 
approach to evaluating existing infrastructure using proof load testing. 
Using in-situ measurements, the procedure also enables the calculation 
of failure probability during the test, allowing for risk-based decisions 
on whether to proceed or stop. Practical applications of the method can 
determine whether similar reductions in test loads, as found in the 
current study, are feasible. If so, proof load testing can become more 
economically attractive and less time-consuming, minimising the traffic 
disruption involved in bridge testing.
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[4] Casas JR, Gómez JD. Load rating of highway bridges by proof-loading. KSCE J Civ 
Eng 2013;17(3):556–67.

[5] De Vries R, et al. Proof load testing method by the American association of state 
highway and transportation officials and suggestions for improvement. Transp Res 
Rec 2023.

[6] Frangopol DM, et al. Reliability-based analysis and lifecycle management of load tests. 
Book chapter. In: Lantsoght EOL, editor. Load testing of bridges: Proof load testing 
and the future of load testing; 2019. p. 263–92.

[7] Lantsoght EOL. Load testing of bridges: Proof load testing and the future of load 
testing. In: Frangopol DM, editor. Structures and Infrastructures. London, UK: CRC 
Press / Balkema - Taylor & Francis Group; 2019.

[8] De Vries R., Reliability assessment of existing reinforced concrete bridges and 
viaducts through proof load testing Proceedings of the 11ᵗʰ International 
Conference on Bridge Maintenance, Safety and Management (IABMAS), Barcelona, 
Spain; 2022.

[9] De Vries R., Structural reliability updating using monitoring data from in-situ load 
testing and laboratory test results. Proceedings of the 13ᵗʰ International Conference 
on Bridge Maintenance, Safety and Management (IABMAS), Copenhagen, 
Denmark; 2024. p. 409-417..

[10] Zarate Garnica GI, Lantsoght EOL. Stop criteria for proof load testing of reinforced 
concrete structures. Proc 2021 Sess 13ᵗʰ fib Int PhD Symp Civ Eng 2021:195–202.

[11] Ditlevsen O, Madsen HO. Book. Structural reliability methods. John Wiley & Sons; 
1996.

[12] Madsen HO, Krenk S, Lind NC. Methods of structural safety. Englewood Cliffs, New 
Jersey: Prentice Hall; 1986. p. 403.

[13] Der Kiureghian A. Structural and system reliability. Cambridge University Press; 
2022.

[14] CEN, Eurocode 0: Basis of structural design. Standard, EN 1990+A1+A1/C2:2019, 
European Committee for Standardization (CEN), Brussels, Belgium; 2019.

[15] Wasserman L. All of statistics: A concise course in statistical inference. Book, 
Springer; 2004.

[16] Metropolis N, Ulam S. The Monte Carlo method. J Am Stat Assoc 1949;44(247): 
335–41.

[17] De Vries R, Steenbergen RDJM, Maljaars J. Annual reliability requirements for 
bridges and viaducts. Heron 2023;68(2).

[18] Melhem M.M., Caprani C.C., Stewart M.G., Zhang S. Bridge Assessment Beyond the 
AS 5100 Deterministic Methodology Research Report AP-R617-20, Austroads, 
Sydney, Australia; 2020.

[19] Kloek T, Van Dijk HK. Bayesian estimates of equation system parameters: an 
application of integration by Monte Carlo. Econometrica 1978;46(1):1–19.

[20] Bjerager P. Probabilistic integration by directional simulation. J Eng Mech 1988; 
114(8):1285–302.

[21] Waarts PH. Structural reliability using finite element analysis - An appraisal of 
DARS: Directional Adaptive Response surface Sampling. Delft University of 
Technology; 2000.

[22] Moustapha M, Marelli S, Sudret B. Active learning for structural reliability: survey, 
general framework and benchmark. Struct Saf 2022;96:102174.

R. de Vries et al.                                                                                                                                                                                                                                

http://refhub.elsevier.com/S0141-0296(25)00253-6/sbref1
http://refhub.elsevier.com/S0141-0296(25)00253-6/sbref1
http://refhub.elsevier.com/S0141-0296(25)00253-6/sbref1
http://refhub.elsevier.com/S0141-0296(25)00253-6/sbref2
http://refhub.elsevier.com/S0141-0296(25)00253-6/sbref2
http://refhub.elsevier.com/S0141-0296(25)00253-6/sbref3
http://refhub.elsevier.com/S0141-0296(25)00253-6/sbref3
http://refhub.elsevier.com/S0141-0296(25)00253-6/sbref4
http://refhub.elsevier.com/S0141-0296(25)00253-6/sbref4
http://refhub.elsevier.com/S0141-0296(25)00253-6/sbref5
http://refhub.elsevier.com/S0141-0296(25)00253-6/sbref5
http://refhub.elsevier.com/S0141-0296(25)00253-6/sbref5
http://refhub.elsevier.com/S0141-0296(25)00253-6/sbref6
http://refhub.elsevier.com/S0141-0296(25)00253-6/sbref6
http://refhub.elsevier.com/S0141-0296(25)00253-6/sbref6
http://refhub.elsevier.com/S0141-0296(25)00253-6/sbref7
http://refhub.elsevier.com/S0141-0296(25)00253-6/sbref7
http://refhub.elsevier.com/S0141-0296(25)00253-6/sbref7
http://refhub.elsevier.com/S0141-0296(25)00253-6/sbref8
http://refhub.elsevier.com/S0141-0296(25)00253-6/sbref8
http://refhub.elsevier.com/S0141-0296(25)00253-6/sbref9
http://refhub.elsevier.com/S0141-0296(25)00253-6/sbref9
http://refhub.elsevier.com/S0141-0296(25)00253-6/sbref10
http://refhub.elsevier.com/S0141-0296(25)00253-6/sbref10
http://refhub.elsevier.com/S0141-0296(25)00253-6/sbref11
http://refhub.elsevier.com/S0141-0296(25)00253-6/sbref11
http://refhub.elsevier.com/S0141-0296(25)00253-6/sbref12
http://refhub.elsevier.com/S0141-0296(25)00253-6/sbref12
http://refhub.elsevier.com/S0141-0296(25)00253-6/sbref13
http://refhub.elsevier.com/S0141-0296(25)00253-6/sbref13
http://refhub.elsevier.com/S0141-0296(25)00253-6/sbref14
http://refhub.elsevier.com/S0141-0296(25)00253-6/sbref14
http://refhub.elsevier.com/S0141-0296(25)00253-6/sbref15
http://refhub.elsevier.com/S0141-0296(25)00253-6/sbref15
http://refhub.elsevier.com/S0141-0296(25)00253-6/sbref16
http://refhub.elsevier.com/S0141-0296(25)00253-6/sbref16
http://refhub.elsevier.com/S0141-0296(25)00253-6/sbref17
http://refhub.elsevier.com/S0141-0296(25)00253-6/sbref17
http://refhub.elsevier.com/S0141-0296(25)00253-6/sbref17
http://refhub.elsevier.com/S0141-0296(25)00253-6/sbref18
http://refhub.elsevier.com/S0141-0296(25)00253-6/sbref18


Engineering Structures 330 (2025) 119863

16

[23] McKay MD, Beckman RJ, Conover WJ. A comparison of three methods for selecting 
values of input variables in the analysis of output from a computer code. 
Technometrics 1979;21(1):239–45.

[24] Hasofer AM, Lind NC. Exact and invariant second-moment code format. J Eng 
Mech Div 1974;100(1):111–21.

[25] Rackwitz R, Fiessler B. Structural reliability under combined random load 
sequences. Comput Struct 1978;9. 498-494.

[26] Fiessler B, Neumann HJ, Rackwitz R. Quadratic limit states in structural reliability. 
Eng Mech 1979;105(4):661–76.

[27] Breitung K. Asymptotic approximations for multinormal integrals. Eng Mech 1984; 
110(3):357–66.

[28] Phoon KK. Numerical recipes for reliability analysis – a primer. in Reliability-Based 
Design in Geotechnical Engineering: Computations and Applications. Taylor & 
Francis; 2008. p. 75.

[29] Hohenbichler M, et al. New light on first- and second-order reliability methods. 
Struct Saf 1987;4:267–84.

[30] Tvedt, L., Two second order approximations to the failure probability. Technical 
report, RDIV/20-004-83, Det Norske Veritas; 1983.

[31] Geisser S. Predictive inference: An introduction. New York: Chapman & Hall; 1993.
[32] Box GE, Hunter JS, Hunter WG. Statistics for Experimenters: Design, Innovation, 

And Discovery. 2nd edition. Hoboken, New Jersey, USA: Wiley-Interscience; 2005.
[33] Gosset WS. The probable error of a mean. Biometrika 1908;6(1):1–25.
[34] JCSS ; 2015, Available from: 〈https://www.jcss-lc.org/jcss-probabilistic-model- 

code/〉.Probabilistic model code〈https://wwwjcss-lc.org/jcss-probabilistic-model- 
code/〉..

[35] Ditlevsen O, Vrouwenvelder A. "Objective" low informative priors for Bayesian 
inference from totally censored Gaussian data. Struct Saf 1994;16:175–88.

[36] Straub D, Papaioannou I. Bayesian updating with structural reliability methods. 
Eng Mech 2015;141(3).

[37] Ghose MK, Rajagopalan S. Bayesian reliability assessment for discrete data—a case 
study. Reliab Eng 1985:27–36.

[38] Peterka V. Bayesian system identification. Automatica 1981;17(1):41–53.
[39] Lauritzen SL. Sequential Bayesian updating – BS2 statistical inference, lectures 14 

and 15. Lect Notes, Univ Oxf 2009.
[40] Alam J, et al. Sequential Bayesian updating for time-variant reliability analysis of 

ageing structures. Mech Syst Signal Process 2023;204(110774).
[41] Jeffreys H. Theory of probability, 3rd ed Book, Oxford University Press; 1961.
[42] Metropolis N, et al. Equations of state calculations by fast computing machines. 

Chem Phys 1953;21(6):1087–91.
[43] Hastings WK. Monte Carlo sampling methods using Markov Chains and their 

applications. Biometrika 1970;57(1):97–109.
[44] Benjamin JR, Cornell CA. Probability, statistics, and decision for civil engineers. 

Book, McGraw-Hill; 1970.
[45] AASHTO The manual for bridge evaluation Standard, 3rd Edition. Washington, D. 

C., USA; 2018.
[46] De Vries R, et al. Time-dependent reliability assessment of existing concrete 

bridges with varying knowledge levels by proof load testing. Struct Infrastruct Eng 
2023;20(7-8):1053–67.

[47] Lin TS, Nowak AS. Proof loading and structural reliability. Reliab Eng 1984;8: 
85–100.

[48] Brüske H.Structural test design with value of information PhD Thesis (Report 401), 
DTU, Kongens Lyngby, Denmark; 2018.

[49] fib Partial factor methods for existing concrete structures. Bulletin 80, 
Recommendation, Task Group 3.1, Fédération internationale du béton, Lausanne, 
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