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Abstract

In spite of the widespread use of coding standards and tools

enforcing their rules, there is little empirical evidence sup-

porting the intuition that they prevent the introduction of

faults in software. In previous work, we performed a pi-

lot study to assess the relation between rule violations and

actual faults, using the MISRA C 2004 standard on an in-

dustrial case. In this paper, we investigate three different

aspects of the relation between violations and faults on a

larger case study, and compare the results across the two

projects. We find that 10 rules in the standard are signifi-

cant predictors of fault location.

1. Introduction

Coding standards have become increasingly popular as a

means to ensure software quality throughout the develop-

ment process. They typically ensure a common style of pro-

gramming, which increases maintainability, and prevent the

use of potentially problematic constructs, thereby increasing

reliability. The rules in such standards are usually based on

expert opinion, gained by years of experience with a certain

language in various contexts. Over the years various tools

have become available that automate the checking of rules

in a standard, helping developers locate potentially difficult

or problematic areas in the code. These include commercial

offerings (e.g., QA-C,1 K7,2 CodeSonar3) as well as aca-

demic solutions (e.g., [12, 5, 7]). Such tools generally come

with their own sets of rules, but can often be adapted so

also custom standards can be checked automatically. In a

recent investigation of bug characteristics, Li et al. argued

∗ This work has been carried out in the Software Evolution Research

Lab at Delft University of Technology as part of the TRADER project un-

der the responsibility of the Embedded Systems Institute. This project is

partially supported by the Netherlands Ministry of Economic Affairs under

the BSIK03021 program.
1www.programmingresearch.com
2www.klocwork.com
3www.grammatech.com

that early automated checking has contributed to the sharp

decline in memory errors present in software [18]. However,

in spite of the availability of appropriate standards and tools,

there are several issues hindering adoption.

Automated inspection tools are notorious for producing

an overload of non-conformancewarnings (referred to as vi-

olations in this paper). For instance, 30% of the lines of the

project used in this study contained such a violation. Viola-

tions may be by-products of the underlying static analysis,

which cannot always determine whether code violates a cer-

tain check or not. Kremenek et al. observed that all tools

suffer from such false positives, with rates ranging from

30-100% [17]. Furthermore, rules may not always be ap-

propriate for all contexts, so that many of their violations

can be considered false positives. Again using our current

case as an example, we find that one single rule is reponsi-

ble for 83% of all violations, unlikely to only point out true

problems. As a result, manual inspection of violating loca-

tions adds a significant overhead without clear benefit. But

there is an even more ironic aspect to enforcing such noisy,

ineffective, rules. Any modification of the software has a

non-zero probability of introducing a new fault, and if this

probability exceeds the reduction achieved by fixing the vi-

olation, the net result is an increased probability of faults in

the software [1].

Clearly, it is of great interest to investigate if there is em-

pirical evidence for the relation between rule violations and

actual faults. Knowledge of this relation will aid developers

in selecting the most ‘promising’ violations from the myr-

iad of possibilities. In previous work, we presented a pi-

lot study on a small industrial case and the MISRA C 2004

standard, where we found that this relation changes with dif-

ferent parts of the history and different rules [3, 4]. The

MISRA standard is a widely adopted industrial standard for

C, making it an interesting candidate for study. In this pa-

per, we chose to repeat and expand the previous study for

a large and mature product line from industry. We aim to

answer more questions and use the same standard, to assess

consistency of results across the two cases.
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We discuss research questions plus measurement setup

in Section 2, and the particular project and standard under

study in Section 3. The resulting empirical data is presented

in Section 4. We evaluate the results and answer the research

questions in Section 5. Finally, we compare with related

work in Section 6 and summarize our findings in Section 7.

2. Study Design

This paper aims to answer three research questions with re-

gard to the relation between violations and observed faults.

All three are meant to test the idea that violations can be con-

sidered potential faults, and that they will truthfully point

out problem areas at least some of the time. We discuss the

questions and outline our approach, after which we explain

some important measures and the data collection process.

2.1. Research Questions

A first intuition as to the relation between violations and

faults might deal with absolute numbers: more violations

in a certain file should indicate more faults, and more viola-

tions in a new release means more faults than in the previous

one. However, larger codebases probably contain more vi-

olations as well as more faults than smaller ones. Since we

are not interested in the relation between size and violations

or faults, we will use fault and violations densities, i.e., the

number of faults or violations per line of code. Concretely,

consider two files, one of size n with v violations and f
faults, and another of size 2n. If the second file has 2v vio-

lations and 2f faults, we do not want to attribute the increase

in faults to the increase in violations, but rather the increase

in size. On the other hand, if there are 3v violations and 3f
faults, the extra addition may be related to the increase in

violations, aptly expressed using densities.

RQ1 Are releases with a higher violation density

more fault-prone?

To answer this question, we record the densities of viola-

tions and faults over time (sequence of releases) for the com-

plete project. As part of the changes between two releases

are related to fixing faults, this should also cause a change in

the observed violations. If consistent, this shows by a cor-

relation between both measures. Although this investigation

treats the project as a whole, it is also important to take the

location of faults into account, which we will do next.

RQ2 Are files or modules with a higher violation

density more fault-prone?

Here we measure the fault and violation densities for every

file or module within a single release. These measures are

subsequently used to create two rankings (based on either

fault or violation density) and compute a correlation. We

Release
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(1) Source
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(5) Issue

DB

(2) Config

Extraction

(3) Code 

Inspection

(6) Line
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(4) Other
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Figure 1: Measurement process overview

test two different levels of granularity to find out whether

there are any differences in the prediction accuracy; file and

module, the latter one in our case being a small number of

functionally-related files. These levels are rather coarse-

grained, whereas violations are usually concerned with a

single line of code. This motivates our third question:

RQ3 Are lines with violations more likely to point

to faults than lines without?

Answering this in a similar fashion as the previous question

is infeasible. After all, it will almost be a binary classifi-

cation: some lines will have a violation, some others will

not, and only very few may have more than one. Instead,

we compute the ratio with which violations correctly predict

faulty lines. This is accomplished by tracking the violations

over the history of the project, finding out whether the line

was involved in a bugfix at some point. By doing this for ev-

ery violation we can obtain a true positive rate, an indication

of the predictive strength of violations on a line level.

These questions are stated using ‘violations’ in general,

but individual rules may behave very differently indeed. We

therefore differentiate these questions per rule. In particu-

lar, we investigate which rules are most effective in fault-

prediction as per the three questions. In the following, we

refer to the approaches used to answer these questions by

the number of the corresponding question, for instance, A1

is the approach used to solve RQ1.

2.2. Data collection

We analyze a Software Configuraton Management (SCM)

system and its accompanying issue database to link viola-

tions to faults. This impacts the definition of our measures:

we define a violation to be a signal of non-conformance of a

source code location to any of the rules in a coding standard;

and a fault to be an issue in the database for which corrective

modifications have been made to the source code. The cor-

responding densities are the number of violations or faults

divided by the number of lines of code of the correspond-

ing unit (be it project, module or file). We opt for physical

lines of code rather than the number of statements, as not

2
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Figure 2: File-version and annotation graphs

all rules in a standard need be concerned with statements,

but can also involve comments or preprocessor directives.

To compute correlations we chose a non-parametric statis-

tic, Spearman’s ρ, instead of Pearson’s r, to minimize issues

with the distribution of the input populations.

2.2.1. Measuring densities

For RQ1, we need the number of violations, the number of

faults, and the size (LoC) for every release. Figure 1 illus-

trates the steps involved in the measurement process. First

we select the range of releases relevant to the study, i.e., the

ones part of the selected project. We iterate over all the re-

leases, retrieved from the source repository (1), performing

a number of operations for each. From a release, we extract

the configuration information (2) necessary to run the auto-

matic code inspection (3), which in turn measures the num-

ber of violations. This configuration information includes

the set of files that are to be part of the measurements, de-

termined by the project’s build target. We record this set of

files and take some additional measurements (4), including

the number of lines of code in the release. Once we have

these measures for every release, we can determine a corre-

lation between violation density and fault density.

2.2.2. Matching faults and violations

Answering the two other research questions also requires

location information. We start gathering this information

by checking which file versions are associated with faults

present in the issue database (5). We proceed to compute a

differencewith previous revisions, indicatingwhich changes

were made in order to solve the issue, and marking the mod-

ified lines. When all issues have been processed, and all

lines are marked accordingly, the complete file history of

the project is traversed to propagate violations and deter-

mine which ones were removed with a fix. All this takes

place in the Line Tagger (6), described below.

Using the set of files recorded in (2) the Line Tagger con-

structs a file version graph, retrieving missing intermediate

file versions where necessary. For every file-version node

in the graph, we record the difference with its neighbors

as annotation graphs. An example is displayed in Figure

2. The round nodes denote file versions, each edge in that

graph contains an annotation graph, representing the differ-

ence between the two adjoining nodes. Lines in the annota-

tion graph can be either new (light grey), deleted (black) or

modified (dark grey, pair of deleted and new line).

Consequently, we can trace the lines involved in a fault-

fix, designated as faulty lines, to their origin. We use this to

estimate the number of (latent) faults in a file or module in a

particular release. Combinedwith the other measures, viola-

tions and LoC, we can determine a correlation between fault

and violation density. Using the file-version graph, match-

ing faulty and violating lines becomes straightforward. To

compute the true positive ratio, we also need the total num-

ber of lines, defined as the number of unique lines over the

whole project history. What we understand by unique lines

is also illustrated in Figure 2: if a line is modified, it is con-

sidered a whole new line. This makes sense, as it can be

considered a new candidate for the code inspection. In ad-

dition, it means that violations on a line present in multiple

versions of a file are only counted once. Our line tagging is

similar to the tracking of fault-fixing lines in [14], although

we track violations instead.

2.2.3. Determining significance of matchings

Dividing the number of hits (violations on faulty lines) by

the total number of violations results in the desired true pos-

itive rate. But it does not give us a means to assess its sig-

nificance. After all, if the code inspection flags a violation

on every line of the project, it would certainly result in a

true positive rate greater than zero, but would not be very

worthwhile. In fact, any random predictor, marking random

lines as faulty, will, with a sufficient number of attempts,

end up around the ratio of faulty lines in the project. There-

fore, assessing significance of the true positive rate means

determining whether this rate is significantly higher than the

faulty line ratio. Modeling this proceeds as follows. The

project is viewed as a large repository of lines, with a certain

percentage p of those lines being fault-related. A rule analy-

sis marksn lines as violating, or in other words, selects these

lines from the repository. A certain number of these (r) is a
succesful fault-prediction. This is compared with a random

predictor, which selects n lines randomly from the reposi-

tory. Since the number of lines in the history is sufficiently

large and the number of violations comparably small, p re-

mains constant after selection, and we canmodel the random

predictor as a Bernoulli process (with p=p and n trials). The

number of correctly predicted lines r has a binomial distri-

bution; using the cumulative distribution function (CDF) we

can compute the significance of a true positive rate (r/n).
Another way to assess true positive rates is by compari-

son with the fault injection rate, or the ratio of fault-related

newly-written lines. Since every modification has a non-

zero probability of introducing a fault, fixing violations with
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Figure 3: Project fault and violation development

a low fault probability might have an adverse effect on the

software. The fault injection rate can provide us with a

safety threshold. Computing this number is fairly straight-

forward using the file-version and annotation graphs; we

simply propagate the fault-related lines backwards through

the history, marking each related line. After completion of

the marking step, we extract the total number of inserted

lines as well as the number of new lines marked faulty.

3. Case Description

Project For this study, we selected a software compo-

nent of the NXP TV platform (referred to here as TVC, for

TV component). The project was selected because of its

size, maturity and high quality of the data in the repository.

No coding standard or inspection tool was actively used.

This allows us to actually relate rule violations to fault-

fixing changes; if the developers would have conformed to

the standard we are trying to assess, they would have been

forced to remove all these violations right away.

The TVC project is part of a larger archive, structured as

a product line, primarily containing embedded C code. This

product line has been under development for a number of

years and most of the code to be reused in new projects

is quite mature. We selected from this archive the develop-

ment for one particular TV platform, from the first complete

release in June 2006, until the last one in April 2007. The

sequence comprises approximately 40 releases. In addition,

we selected issues from the issue database that fulfilled the

following conditions: (1) classified as ‘problem’ (thus ex-

cluding feature implementation); (2) involved with C code;

and (3) had status ‘concluded’ by the end date of the project.

Coding standard The standard we chose for this study is

the MISRA standard, first defined by a consortium of auto-

motive companies (The Motor Industry Software Reliability

Association) in 1998. Acknowledging the widespread use

of C in safety-related systems, the intent was to promote the

use of a safe subset of C, given the unsafe nature of some of

its constructs [8]. The standard became quite popular, and

was also widely adopted outside the automotive industry. In

2004 a revised version was published, attempting to prune

unnecessary rules and to strengthen existing ones.

Implementation The study was implemented using Qmore

and CMSynergy. Qmore is NXPs own front-end to QA-C

version 7, using the latter to detect MISRA rule violations.

Configuration information required by Qmore (e.g., prepro-

cessor directives, include directories) is extracted from the

configuration files (Makefiles) driving the daily build that

also reside in the source tree. For the measurements, all C

and header files that were part of the daily build were taken

into account. The SCM system in use at NXP is CMSyn-

ergy, featuring a built-in issue database. All modifications in

the SCM are grouped using tasks, which in turn are linked

to issues. This mechanism enables precise extraction of the

source lines involved in a fix.

4. Results

In this section, we present the results of our study, as well as

some interesting observations and how they impact the ap-

proaches we used. We first consider some characteristics of

the software that may impact our analyses. Figure 3a illus-

trates the evolution of faults and violations over time. The

number of faults fluctuates between 20 and 40 per release

for most of the history, and later decreases rapidly. From

discussions with the development team, we learned that this

is typical behavior for this kind of project, where at first the

focus is on feature implementation, fixing only the most se-

vere faults, and near the end of the project all open issues

are solved. Figure 3b plots the overall relation between fault

and violation density, but no relation becomes apparent here,

nor does it highlight different phases of the project.

However, one salient detail is that in TVC only 17% of

the involved files is modified during the project. This is
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Figure 4: Illustration of impact of change distribution

clearly visible in the distribution of changes, depicted in Fig-

ure 4a. It can be explained by the fact that the TVC devel-

opment is based on a product line, which includes a large

amount of mature code, used in different settings over time.

Since our approaches determine the relation between vio-

lations and faults based on changes, we need to determine

how this impacts their results, for presentation in this paper

as well as comparisonwith our earlier study. We discuss this

point as we discuss results for each of the three approaches.

In this discussion, we consider both the project as a whole

(all files, marked ‘all’), and the set of files part of the new de-

velopment (the aforementioned 17%, marked ND for short).

4.1. A1: Cross-release analysis

This approach is not influenced by the distribution of

changes throughout the project, as it treats the project as

a whole, looking at changes in violations and faults with

no regard for location. As is shown in Figure 3b, there

is no overall relation between fault and violation density

across releases. However, a relation could be discerned for

some individual rules. We have summarized the rules in

three classes, having either a positive, negative or no cor-

relation. An overview of the data for every rule, class and

the complete body of violations is provided in Table 1. The

first column for each aspect holds the data for the complete

project, the second for ND only. The first four columns con-

tain data relevant to this approach: the total number of vi-

olations found and the strength of the cross-release relation

(R2) with the classification obtained by manual inspection

of scatter plots between parentheses.

4.2. A2: In-release analysis

Figures 4b and 4c illustrate the differences for A2 between

the complete set of files (all) and the set of changed files

(ND). Clearly visible is the large band of points on the bot-

tom of Figure 4b, representing the set of non-faulty (and

largely unchanged) files, which is absent in the other Figure.

Again, in these cases both graphs show no relation at all. For

a practical application of A2 (i.e., finding the most faulty lo-

cations) it makes little sense to include files that we know are

probably not faulty. Therefore, in Figures 5a-5c we choose

to illustrate ND files only. They show the relation for a se-

lected set of rules, i.e., the ones performing consistently well

in the related approach, A3. The figures show the rankings

for each file, in violation density on the horizontal axis, and

fault density in the vertical axis, where fault density is mea-

sured as number of faulty lines/loc. We see in the leftmost

figure that there are some files for which no violations were

found, resulting in the vertical ‘bar’ of points. If we zoom

in on the set of files for which we have found violations

(middle figure), we can observe a positive, significant rank

correlation, albeit small (R2 = 0.05, p = 0.04). The picture
changes later on in the release history, as we find more files

with no known faults present (the rightmost figure). The re-

lation continues to exist (R2 = 0.11, p = 0.004), although
more flawed, as now we have a horizontal ‘bar’ of mispre-

dictions on the bottom. Note that the discussion in these

sections focuses on the file level, for the module-level re-

sults were similar.

4.3. A3: Line-based analysis

For A3, the skewed change distribution makes a comparison

with a random predictor over the whole project to determine

significance awkward, since we have more prior knowledge

about the distribution of faults. To be fair, we would have to

compare to a random predictor choosing only from the set of

changed files. To understand the impact of the change dis-

tribution, we have computed two different precision rates,

one for the complete project, and one for the set of ND files.

Both have been displayed in columns 6-7 (absolute) and 8-

9 (ratio) of Table 1, with an asterisk marking those rules

that perform significantly better than random (α = 0.05).
Using the ND results, we can filter out 18 rules that would
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Figure 5: Illustration of in-release relation for selected rules

otherwise have been considered as outperforming a random

predictor; 10 remain that perform consistently well. Specif-

ically, these are 3.4, 5.1, 8.1, 10.1, 10.2, 10.6, 11.3, 12.5,

12.13, and 19.5 (rows marked in bold in the table).

5. Discussion

In this section, we discuss the meaning of the results in light

of our research questions, as well as some validity threats.

For each of the questions, we include a comparison with our

previous case study, TVoM [4].

5.1. RQ1: Cross-release analysis

A number of observations can be made as to the cross-

release relation between violations and faults. First of all,

only for a subset of the rules (10/88) we witness a positive

correlation. This in itself is similar to our previous study, but

the rules themselves are different this time. Second, looking

at different phases of the project did not yield a consistent

image; we tried investigating the correlation for the first and

second part (dominated by either feature implementation or

fault-fixing) but to no avail. This is different from our pre-

vious study, where those two phases were also clearly dis-

tinguishable in the scatter plot between fault and violation

density. Finally, for 15 rules we observe a negative correla-

tion, which is very counter-intuitive.

To understand this, recall that correlations are merely an

indication of a causal relation. Specifically, there could be

underlying factors influencing both measures, resulting in

a correlation. For instance, suppose that, whenever a de-

veloper fixes a fault in the code, he adds a few lines of com-

ments to describe what the fault was and how it is now fixed.

Instead of using regular C comments he uses C++ style com-

ments, which is forbidden by rule 2.1 of the MISRA stan-

dard. This would cause a consistent increase in violations

with a decrease in faults, and could lead us to observe a neg-

ative correlation. Apart from this issue, there is the influ-

ence of other modifications than fault-fixes on the violation

density, which may also impact the correlation. This issue

is not present in the other two approaches used, and is likely

to be responsible for the limited agreement between A1 and

A2/A3 on the rules that are positively correlated.

5.2. RQ2: In-release analysis

In this analysis, we assess the relation between the location

of faults and violations on a file or module level, and it raises

some interesting issues. First, in TVCmany files were never

part of active development, thus unlikely to be involved in

fault-fixing at any point during the project. This shows by

the horizontal bar in Figure 4b; A2 can only be reliably used

on the set of modified files as in Figure 4c. In other words, if

we were to use A2 to predict fault-proneness, we would have

to couple it with an approach to predict change intensity.

Interestingly, this does not appear to be very hard in this

case. For instance, the set of changed files between the first

two releases that we analyzed comprises 85% of the total set

of files changed at some point in the project history.

Second, since there is no overall relation between fault

and violation density, we use a subset of rules to create a

ranking. However, this results in a set of files for which there

are no violations, as can be observed in Figure 5a. Instead

of treating a lack of violations as a vote of confidence, this

graph suggests it is better to see it as a lack of inspection.

In other words, no predictive value can be attached to files

without violations.

5.3. RQ3: Line-based analysis

As approaches A2 and A3 are based on the same technique

of tracking faults and violations throughout the history, their

results are similar. However, the results for A3 do not en-

tirely correspond with A1. Although again, there is a subset

of rules that indicate a relation between violations and faults,

the two methods agree on only two rules (3.4 and 10.6). As

a general principle, A3 is more strict than A1, as it has an
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1 Environment 13.3 29 11 0.01 (o) 0.08 (o) 0 0 0.00 0.00

1.1 120 5 0.00 (o) 0.04 (o) 1 1 0.01 0.20* 13.5 31 0.20 (o) 0 0.00

1.2 5K 733 0.02 (o) 0.07 (o) 6 6 0.00 0.01 13.6 33 3 0.05 (o) 0.07 (o) 0 0 0.00 0.00

2 Language extensions 13.7 154 32 0.29 (-) 0.03 (o) 1 1 0.01 0.03

2.2 183K 33K 0.01 (o) 0.02 (o) 755 755 0.00 0.02 14 Control flow

3 Documentation 14.1 859 171 0.28 (-) 0.05 (o) 1 1 0.00 0.01

3.1 145 97 0.10 (+) 0.00 (o) 0 0 0.00 0.00 14.2 2K 770 0.02 (o) 0.07 (o) 18 18 0.01 0.02

3.4 45 22 0.21 (+) 0.02 (o) 4 4 0.09* 0.18* 14.3 4K 779 0.18 (+) 0.01 (o) 30 30 0.01 0.04

5 Identifiers 14.4 6 0.23 (o) 0 0.00

5.1 477 65 0.17 (o) 0.09 (o) 25 25 0.05* 0.38* 14.5 15 3 0.06 (o) 0.00 (o) 0 0 0.00 0.00

5.2 16 1 0.31 (-) 0.33 (+) 0 0 0.00 0.00 14.6 20 10 0.20 (+) 0.04 (o) 0 0 0.00 0.00

5.3 41 14 0.11 (+) 0.04 (o) 0 0 0.00 0.00 14.7 591 50 0.09 (-) 0.00 (o) 0 0 0.00 0.00

5.4 4 0.04 (o) 0 0.00* 14.8 665 88 0.19 (-) 0.09 (o) 10 10 0.02 0.11*

5.6 2K 852 0.13 (o) 0.02 (o) 23 23 0.01 0.03 14.10 125 59 0.28 (+) 0.02 (o) 6 6 0.05* 0.10

6 Types 15 Switch statements

6.1 7 0.18 (-) 0 0.00 15.2 14 11 0.10 (o) 0.01 (o) 0 0 0.00 0.00

6.2 22 0.19 (o) 0 0.00 15.3 29 22 0.06 (o) 0.03 (o) 0 0 0.00 0.00

6.3 5K 824 0.29 (-) 0.00 (o) 31 31 0.01 0.04 15.4 36 15 0.02 (o) 0.01 (o) 0 0 0.00 0.00

6.4 1 0.20 (+) 0 0.00* 16 Functions

7 Constants 16.1 11 3 0.08 (o) 0.19 (o) 0 0 0.00 0.00

7.1 3 0.20 (+) 0 0.00* 16.2 18 5 0.00 (o) 0.04 (o) 0 0 0.00 0.00

8 Declarations and definitions 16.4 863 180 0.02 (o) 0.29 (-) 4 4 0.00 0.02

8.1 233 35 0.01 (o) 0.00 (o) 5 5 0.02* 0.14* 16.5 75 9 0.08 (o) 0.00 (o) 0 0 0.00 0.00

8.4 4 1 0.05 (o) 0.33 (+) 0 0 0.00* 0.00 16.7 2K 381 0.24 (-) 0.05 (o) 8 8 0.00 0.02

8.5 49 14 0.12 (o) 0.01 (o) 0 0 0.00 0.00 16.9 344 172 0.23 (-) 0.17 (+) 2 2 0.01 0.01

8.6 14 7 0.34 (o) 0.09 (o) 1 1 0.07* 0.14 16.10 14K 2K 0.04 (o) 0.07 (o) 78 78 0.01 0.04

8.7 547 71 0.08 (o) 0.06 (o) 2 2 0.00 0.03 17 Pointers and arrays

8.8 820 114 0.10 (o) 0.02 (o) 4 4 0.00 0.04 17.4 5K 609 0.01 (o) 0.04 (o) 16 16 0.00 0.03

8.10 383 69 0.02 (o) 0.02 (o) 1 1 0.00 0.01 17.6 1 1 0.11 (+) 0.01 (o) 0 0 0.00* 0.00

8.11 123 54 0.33 (-) 0.09 (o) 0 0 0.00 0.00 18 Structures and unions

8.12 35 5 0.20 (+) 0.06 (o) 0 0 0.00 0.00 18.1 110 11 0.01 (o) 0.00 (o) 0 0 0.00 0.00

9 Initialisation 18.4 275 25 0.19 (+) 0.06 (o) 0 0 0.00 0.00

9.1 38 23 0.20 (-) 0.01 (o) 0 0 0.00 0.00 19 Preprocessing directives

9.2 129 41 0.14 (o) 0.00 (o) 0 0 0.00 0.00 19.1 11 2 0.01 (o) 0.01 (o) 0 0 0.00 0.00

9.3 106 3 0.21 (o) 0.07 (o) 0 0 0.00 0.00 19.2 2 1 0.31 (o) 0.01 (o) 0 0 0.00* 0.00

10 Arithmetic type conversions 19.4 382 28 0.02 (o) 0.27 (+) 1 1 0.00 0.04

10.1 3K 1K 0.00 (o) 0.01 (o) 157 157 0.04* 0.15* 19.5 55 25 0.00 (o) 0.04 (o) 4 4 0.07* 0.16*

10.2 27 15 0.00 (o) 0.01 (o) 6 6 0.22* 0.40* 19.6 84 40 0.13 (o) 0.00 (o) 0 0 0.00 0.00

10.6 226 64 0.12 (+) 0.01 (o) 7 7 0.03* 0.11* 19.7 1K 104 0.02 (o) 0.00 (o) 7 7 0.01 0.07

11 Pointer type conversions 19.8 11 1 0.20 (+) 0.08 (o) 0 0 0.00 0.00

11.1 463 127 0.00 (o) 0.04 (o) 2 2 0.00 0.02 19.10 574 47 0.18 (+) 0.01 (o) 0 0 0.00 0.00

11.3 1K 516 0.05 (o) 0.15 (+) 52 52 0.03* 0.10* 19.11 150 35 0.10 (o) 0.02 (o) 0 0 0.00 0.00

11.4 7K 1K 0.02 (o) 0.02 (o) 21 21 0.00 0.02 19.12 27 6 0.00 (o) 0.16 (+) 0 0 0.00 0.00

11.5 5K 592 0.01 (o) 0.05 (o) 13 13 0.00 0.02 19.13 208 9 0.01 (o) 0.05 (o) 0 0 0.00 0.00

12 Expressions 19.14 4 0.02 (o) 0 0.00*

12.1 2K 941 0.11 (-) 0.02 (o) 64 64 0.02* 0.07 20 Standard libraries

12.4 83 18 0.01 (o) 0.03 (o) 0 0 0.00 0.00 20.2 477 9 0.01 (o) 0.06 (o) 1 1 0.00 0.11

12.5 790 143 0.00 (o) 0.21 (o) 17 17 0.02* 0.12* 20.4 100 23 0.05 (o) 0.01 (o) 0 0 0.00 0.00

12.6 252 57 0.11 (-) 0.00 (o) 6 6 0.02* 0.11 20.9 167 14 0.21 (-) 0.10 (-) 0 0 0.00 0.00

12.7 5K 734 0.00 (o) 0.05 (o) 44 44 0.01 0.06 20.10 6 1 0.20 (+) 0.21 (o) 0 0 0.00 0.00

12.8 1 0.19 (o) 0 0.00* 21 Runtime failures

12.10 865 512 0.01 (o) 0.04 (o) 3 3 0.00 0.01 21.1 544 191 0.02 (o) 0.01 (o) 2 2 0.00 0.01

12.13 51 15 0.00 (o) 0.02 (o) 4 4 0.08* 0.27* neg 16K 194 0.29 (o) 0.32 (o) 165 4 0.01 0.02

13 Control statement expressions none 248K 49K 0.03 (o) 0.01 (o) 1K 1K 0.01 0.03

13.1 10 0.01 (o) 0 0.00 pos 5K 724 0.25 (o) 0.15 (o) 47 55 0.01 0.08*

13.2 2K 1K 0.40 (-) 0.07 (o) 42 42 0.02* 0.04

Table 1: Relation between violations and faults per rule
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extra requirement (location). Thus, the difference in results

can be tracked back to this requirement, in two ways: (1)

the otherwise positive relation is obscured by changes other

than fault-fixes (relation in A1, no relation in A3); and (2)

the relation is inadvertedly read in changes other than fault-

fixes (relation in A1, no relation in A3).

In addition, the set of well-performing rules found here

does not correspondwith the set found in our previous study,

they agree only on one rule (8.1). Apparently, the differ-

ence in domain (from SD-card driver to TV sofware com-

ponent) is still large enough to cause such changes. The

question remains why these rules in particular feature so

prominently. Three of those rules involve arithmetic type

conversions (chapter 10 in MISRA C). Also in an informal

discussion with an architect of the TVC project, those were

identified as potentially related to known faults. In fact, the

development team was making an effort to study and cor-

rect these violations for the current release. However, the

other rules selected by our analysis were less harmful in his

experience. Summarizing, the set of rules found to be per-

forming well can identify more fault-prone lines (RQ3) or

files (RQ2, to a lesser extent). The significance tests rule out

the possibility of a chance occurence, but it may still not be

easy to find a direct causal relation between the violations

and the faults they are matched with. Such a causal relation

is difficult to determine, even in case of manual inspection

of all fault-violation matchings by a domain expert.

The results suggest the importance of tailoring a cod-

ing standard to a specific domain, as the observed viola-

tion severity differs between projects. They also show that,

within one project, it is possible to identify rules that are

good fault predictors. As such, the approaches in our study

can assist in tailoring a coding standard, by providing con-

tinuous monitoring of rule violation severities (i.e., true pos-

itive rates) over the course of a project. In other words, one

can start a project with a minimal set of rules, deemed useful

for that specific domain, then gradually add rules that have

proven to be good predictors of faults. While less appropri-

ate for small projects, it is useful for long-running projects

or product lines. Also, when a coding standard is introduced

on an existing codebase, the approaches can assist develop-

ers in prioritizing the multitude of violations.

5.4. Threats to validity

Internal validity With regard to the validity of the mea-

surements themselves, we can make a few remarks. First,

the correlations in A1 are sensitive to changes other than

fault-fixes; they may obscure an otherwise positive relation

or even inadvertedly signal one (as mentioned in the discus-

sion before). Although we analyzed different phases of the

project seperately, this did not result in a consistent picture.

Second, the number of faults per release in A1 is inaccu-

rate, as only the number of open issues is considered. This

excludes dormant faults, which is partly alleviated in the two

other methods as they propagate faults through the history.

Some faults may be present in the software at the end of de-

velopment; these remain invisible to all approaches. How-

ever, given the heavy testing before shipping the TV soft-

ware we expect this number to be minimal. The develop-

ment only ends after the product has been integrated into

the clients products, and therefore all major issues will have

been removed. Also, it is possible that some violations,

removed in non-fix modifications, pointed to latent faults.

However, this category contains only 3% of the total num-

ber of violations (in the ND files), and is therefore unlikely

to change the existing results significantly.

Finally, the matching between violations and faults may

be an underestimation: some fault-fixes only introduce new

code, such as the addition of a previously forgotten check

on parameter values. Overestimation is less likely, although

not all lines that are part of a fault-fix may be directly related

to the fault (for instance, moving a piece of code). Even so,

violations on such lines still point out the area in which the

fault occurred. In addition, by computing significance rates

we eliminated rules with coincidental matchings.

External validity Generalizing our results appears diffi-

cult if even a comparison with a previous case from the

same company does not yield consistent results. They are

consistent in the sense that there is a small subset of rules

performing well, while no such relation exists for the other

rules. However, the rules themselves differ. There are two

important differences between both projects that could im-

pact the way in which code is written: (1) TVC is a prod-

uct line, with more mature code than TVoM; and (2) TVC

contains a significant number of domain-specific algorithms

and procedures, requiring specialized developers. An inter-

esting question remains whether multiple projects based on

the same product line will exhibit similar behavior. In ad-

dition, note that the set of rules analyzed in this study is a

subset (88/141) of all the rules in the MISRA standard, as

no violations were found for all rules. However, the ana-

lyzed rules cover almost all of the topics (i.e., chapters) of

the standard. Only chapters 4 (two rules on character sets)

and 7 (one rule on constants) are not present.

There are two requirements for the used approaches that

should be considered when replicating this study. The first is

that of the strict definition of which files are part of the anal-

ysis as well as what build parameters are used, as both may

influence the lines included in the subsequent analysis, and

thus the number of faults and violations measured. The sec-

ond requirement is a linked software version repository and

issue database, which may not always be defined as strictly

as in our case, but which many studies have succesfully used

before [18, 21, 16, 24, 15, 25, 20].
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6. Related Work

In recent years, many approaches have been proposed that

benefit from the combination of data present in SCM sys-

tems and issue databases. Applications range from an ex-

amination of bug characteristics [18], techniques for auto-

matic identification of bug-introducing changes [21, 16],

bug-solving effort estimation [24], prioritizing software in-

spection warnings [13, 14], prediction of fault-prone loca-

tions in the source [15], and identification of project-specific

bug-patterns, to be used in static bug detection tools [25, 20].

Software inspection (or defect detection) tools have also

been studied widely. Rutar et al. studied the correlation

and overlap between warnings generated by the ESC/Java,

FindBugs, JLint, and PMD static analysis tools [19]. They

did not evaluate individual warnings nor did they try to re-

late them to actual faults. Zitser et al. evaluated several

open source static analyzers with respect to their ability to

find known exploitable buffer overflows in open source code

[26]. Engler et al. evaluate the warnings of their defect de-

tection technique in [6]. Heckman et al. proposed a bench-

mark and procedures for the evaluation of software inspec-

tion prioritization and classification techniques [11]. Unfor-

tunately, the benchmark is focused at Java programs.

Wagner et al. compared results of defect detection tools

with those of code reviews and software testing [23]. Their

main finding was that bug detection tools mostly find differ-

ent types of defects than testing, but find a subset of the types

found by code reviews. Warning types detected by a tool

are analyzed more thoroughly than in code reviews. Li et al.

analyze and classify fault characteristics in two large, rep-

resentative open-source projects based on the data in their

SCM systems [18]. Rather than using software inspection

results they interpret log messages in the SCM.

More similar to the work presented in this paper is the

study of Basalaj [2]. While our study focuses on a sequence

of releases from a single project, Basalaj takes an alterna-

tive viewpoint and studies single versions from 18 differ-

ent projects. These are used to compute two rankings, one

based on warnings generated by QA C++, and one based on

known fault data. For 12 warning types, a positive rank cor-

relation between the two can be observed (reportedly, nearly

900 warning types were involved in the study). Wagner et

al. evaluated two Java defect detection tools on two differ-

ent software projects [22]. Similar to our study, they in-

vestigated whether inspection tools were able to detect de-

fects occurring in the field. Their study could not confirm

this possibility for their two projects. Apart from these two

studies, we are not aware of any other work that reports on

measured relations between coding rules and actual faults.

There is little work published that evaluates the validity of

defects identified by automated software inspection tools,

especially for commercial tools. One reason is that some li-

cense agreements explicitly forbid such evaluations, another

may be the high costs associated with those tools.

The idea of a safer subset of a language, the precept on

which the MISRA coding standard is based, was promoted

by Hatton [8]. In [9] he assesses a number of coding stan-

dards, introducing the signal to noise ratio for coding stan-

dards, based on the difference between measured violation

rates and known average fault rates. He assessed MISRA C

2004 in [10], arguing that the update was no real improve-

ment over the original standard, and “both versions of the

MISRA C standard are too noisy to be of any real use”. This

study complements these assessments by providing new em-

pirical data and by investigating opportunities for selecting

an effective non-noisy subset of the standard.

7. Conclusions

In this paper, we have discussed three analyses of the rela-

tion between coding standard violations and observed faults,

and presented relevant empirical data for an industrial soft-

ware project. Summarizing the discussion and the results,

we arrive at the following conclusions for our case study:

RQ1 Are releases with a higher violation density

more fault-prone?

Overall we did not find such a relation, only for some indi-

vidual rules. Also, we did not find any phases in the project

for a which a relation does exist, contrary to our previous

experience [4]. The results from the approach used for this

question did not agree with the other two, and must consid-

ered less reliable due to the less precise measuring of the

number of faults. Future work is to employ the same fault-

tracking approach to arrive at more consistent results.

RQ2 Are files or modules with a higher violation

density more fault-prone?

This holds for 10 rules in the standard, with some reserva-

tions. There is no reliable prediction for files without ac-

tive development (no changes) nor for files without viola-

tions. Also, the observed relation becomes less pronounced

in time, as the number of registered open faults decreases.

RQ3 Are lines with violations more likely to point

to faults than lines without?

As with RQ2, we cannot make this claim overall. For the

same set of rules as in RQ2 this did appear to be the case

(significant with α = 0.05). Also this set differs from the

one found in our previous study [4], indicating that a change

of domain, even within the same organization with similar

processes, can have a large impact on these measurements.

Apart from answering our three research questions, this

study also indicates that making an effort to adhere to all
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rules in a standard should not be considered erring on the

safe side of caution. On the contrary: we reiterate the find-

ings of our previous study, where we found that adherence

to a complete coding standard without customization may

increase, rather than decrease, the probability of faults [4].

Only 10 out of 88 rules significantly surpassed the measured

fault injection rate. Even if fixing violations (be it immedi-

ately or later on an existing codebase) would be less fault-

prone than an average modification, we are still left with a

true positive rate of zero for half of the rules. In addition, we

conclude that the particular rules that perform well for one

project may not hold for another, even in a similar context.

To test this aspect further, we intend to repeat this study for

multiple projects within the same product line. In any event,

both conclusions argue for careful selection of rules from a

coding standard, taking into account the context at hand.
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