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Abstract
Motivation: Imbalances in the human gut microbiome have been linked to various conditions, including inflammatory
bowel disease (IBD), diabetes, and mental health disorders. While metagenomics and amplicon sequencing are the
most commonly used technologies to characterize microbial communities, they do not capture all layers of functional
activity of the microbiome. Unfortunately, data from other meta-omics modalities is generally difficult to obtain, due
to high costs and error-prone technologies, among other issues. The growing availability of paired meta-omics data
offers an opportunity to develop machine learning models that can infer connections between metagenomics data
and other forms of meta-omics data. The aim is to enable the prediction of these other forms of meta-omics data
from metagenomics data. To that end, we evaluated several machine learning model architectures on the task of
predicting meta-omics features from various meta-omics inputs, and analyzed the robustness of these models, as well
as potential use cases of artificially generated microbiome data.

Results: Machine learning models, in particular simpler architectures such as elastic net regression models and
random forests, generated reliable predictions of transcript and metabolite abundances, with correlations of up to
0.77 and 0.74, respectively, but predicting protein profiles proved more difficult, with correlations of at most 0.42. We
also identified a core set of well-predicted features for each meta-omics output type, and showed that multi-output
regression neural networks performed similarly when trained using fewer output features. Lastly, our experiments
demonstrated that predicted features can be used for the downstream task of inflammatory bowel disease prediction.
For instance, accuracy obtained using predicted metabolite abundances was 77%, compared to the 80% accuracy
achieved using real metabolomics data.

Code availability: The scripts used for model design, training and benchmarking are available on GitHub.

https://github.com/biancamcosma/artificial_microbiome_scripts
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1. Introduction
The human microbiome directly and indirectly engages with various physiological subsystems, including the nervous,
gastrointestinal, cardiovascular, and immune systems. Research has proven that imbalances in the human microbiome,
commonly referred to as dysbiosis, are associated with the onset and progression of various health conditions. For
instance, the composition of the gut microbiome, along with its associated metabolites, was found to be significantly
different between healthy individuals and those suffering from inflammatory bowel disease (IBD), type I and II
diabetes, cardiovascular disease, as well as mental health disorders such as depression and anxiety [1]–[3]. Dysbiosis
in the vaginal microbiome has been linked to cervical cancer, as it can affect the development and advancement
of HPV (human papillomavirus) infection [4]. Beyond the human microbiome, recent literature also highlights the
importance of investigating microbial communities in non-clinical sectors, with applications ranging from surveillance
of antibiotic resistance genes [5] to the study of greenhouse gases [6].

Microbial communities can be characterized across various layers of functional activity, with state-of-the-art meta-
omics technologies such as metagenomics, metatranscriptomics, metaproteomics, and metabolomics. To obtain a
complete picture of the microbiome, each sample should be characterized using all of these meta-omics modalities.
Although the metagenome encodes the functional potential of a microbial community, the presence of genes is not
synonymous with that of messenger RNA (mRNA), and the latter is not always translated into active proteins.
Additionally, even though some associations between microbes and metabolites are known, these can be ambiguous
and inconclusive [7], due to the fact that two microbes may produce the same metabolite, or that some metabolites
may only be produced under certain conditions. The importance of data accessibility across diverse meta-omics layers
is not only emphasized in experimental research [8]–[11], but also in the development of machine learning models
capable of performing a wide range of predictive tasks, including disease detection [12], [13].

However, measuring meta-omics data comes with many challenges, including significant costs and reliability issues
[14]. DNA sequencing data, whether in the form of amplicon or shotgun metagenome sequencing, is currently the
most accessible option, due to its lower cost and the higher reliability provided by next-generation sequencing. At the
same time, paired multi-meta-omics data is becoming increasingly available, through initiatives such as the Integrative
Human Microbiome Project [15]. This availability of microbiome data across multiple meta-omics layers presents an
opportunity to develop machine learning models capable of inferring connections between metagenomics data and
other forms of meta-omics data, with the eventual goal of predicting the latter from the former.

Several studies have already described the use of machine learning to predict metabolite abundances in microbiome
samples, starting with features derived from metagenomics data. Some model architectures that have been
proposed include MelonnPan (elastic net regression) [16], SparseNED (sparse neural encoder-decoder) [17],
MiMeNet (multilayer perceptron) [18], mNODE (neural ordinary differential equations) [19], MMINP (two-way
orthogonal partial least squares (O2-PLS)) [20] and LOCATE (neural network) [21]. However, the prediction of
other meta-omics modalities, in addition to metabolomics, has not been investigated.

Consequently, this study addresses three main research questions:

1. To what extent can model architectures such as the ones previously mentioned be applied to the prediction of
other meta-omics data, in addition to metabolomics? We benchmark these cross-omics prediction models on
several input-output combinations of single- and multi-omics data modalities. Due to the nature of
compositional microbiome data, which is shared across meta-omics modalities, we hypothesize that
generalization should be achievable.

2. How can predictions of meta-omics features be improved? We hypothesize that it is possible to optimize model
training for a small set of features (transcripts, proteins, or metabolites).

3. What is a potential use case of predicted meta-omics data? Our hypothesis is that predicted data can be useful
in phenotype classification. We evaluate models on the task of IBD classification using predicted features.

This thesis is structured as follows. In Section 2, we begin with a brief overview of the biological context of this
problem, outlining the main characteristics of meta-omics analysis. We describe our experimental pipeline in detail
in Section 3, and present and discuss our results in Section 4. This report ends with a conclusion (Section 5), a short
glossary of terms and a list of acronyms.
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2. Meta-omics and the microbiome

Figure 1: Visual summary of the four main types of meta-omics technologies used to study the microbiome. (A) The central dogma of
biology, modified to include metabolomics. (B) Characterization of meta-omics technologies in parallel to the central dogma of biology,
including their strengths and drawbacks, as well as common post-processing methods used for downstream analysis.
The following images were modified and integrated in this figure: DNA and RNA icons (original on Vecteezy), protein icon (original on
Wikimedia Commons).
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The central dogma of biology (Figure 1A), introduced by Francis Crick during his famous lecture of September 1957
[22], states that genetic information encoded by the genes on our DNA is first transcribed into messenger RNA,
which ultimately gets translated into protein. For the purposes of this study, this diagram can be slightly modified to
also account for the existence of small molecules, such as metabolites. Upon synthesis, proteins may act as enzymes
or structural components that drive metabolic reactions, therefore leading to the production of metabolites.

This simplified view of molecular biology makes up the foundation for our understanding of the microbiome, mainly
driven by four meta-omics technologies: metagenomics, metatranscriptomics, metaproteomics, and metabolomics
(Figure 1B). In this section, we give a brief account of these four technologies, their strengths and weaknesses, as
well as some post-processing data formats relevant to this thesis. For an even more condensed explanation of these
biological concepts, please consult the Glossary at the end of this thesis.

2.1. Amplicon sequencing and metagenomics
Sequencing techniques for microbial DNA belong to one of two broad categories: amplicon sequencing and whole
metagenome sequencing (WMS), also known as shotgun metagenomics. Amplicon sequencing involves a polymerase
chain reaction (PCR) that amplifies the production of selected marker genes within a microbial community. Commonly
used marker genes include the 16S ribosomal DNA (rDNA) for prokaryotes, and 18S rDNA or internal transcribed
spacers (ITS) for eukaryotic genomes [23]. Such marker genes are chosen because they are highly conserved between
bacterial species, while still retaining a degree of variation that enables the identification of bacterial taxa [24]. To
that end, the sequenced DNA fragments are queried against a reference database, generating the taxonomic profile
of a microbial community.

The advantage of WMS over amplicon sequencing is that it generates sequencing data from the full bacterial genomes
present in a sample, rather than just isolated genes. This allows for more fine-grained taxonomic profiling, at the
species- or strain-level [23], [25], and it can also be used to determine the functional potential of the microbial
community, by mapping reads to references that are functionally annotated, or through ORF (open-reading frame)
mining [26]. It is also possible to assemble the genomes of the organisms present in a sample, either through reference-
based methods or with de novo metagenomic assemblers [5], [27]. However, due to their higher cost and relatively
time-consuming analysis [23], [28], WMS technologies are not always the better alternative to amplicon sequencing.
As a consequence of the higher volume of data, in addition to the challenges posed by host DNA contamination,
shotgun metagenomics requires greater sequencing depth in order to capture the presence of less abundant taxa [29].

2.2. Metatranscriptomics
A shortcoming of standalone metagenomics analysis is that genes encoded by microbial DNA are not always
expressed, or may originate from dead and inactive organisms within the microbiome [8]. The microbial
metatranscriptome describes the genes from the metagenome that are actively transcribed, under varying
conditions, providing insight beyond functional potential and advancing our understanding of host-microbiome
interactions. In addition, while several studies confirm that the microbiome metagenome varies significantly
between individuals, metatranscriptomic data may also be useful in longitudinal studies of disease progression,
because it highlights higher levels of intraindividual variation compared to its metagenomic counterpart [30].

State-of-the-art metatranscriptomics research is now dominated by RNA sequencing (RNA-seq) technologies. Similar
to metagenomic samples, RNA-seq is usually performed through NGS (next-generation sequencing) technologies [14].
These approaches involve the isolation of messenger RNA (mRNA) during artificially induced reverse transcription,
also known as complementary DNA (cDNA) synthesis. The sequenced cDNA reads can then be used for downstream
analysis, which often includes alignments to reference genomes to identify the active functional profile of a community.

Selection of mRNA is more easily achievable for eukaryotes than for prokaryotes, due to the presence of a poly-A tail
on eukaryotic mRNA [8]. As a result, it is challenging to separate microbial mRNA from other, non-protein-coding
RNA types, and methods that have been devised for this purpose require much greater sequencing depth and are
therefore not cost-effective [31]. This is only further complicated by the high amounts of host contamination present
in many human microbiome samples [32]–[34], as well as the difficulties involved in preserving microbial transcriptome
samples, which tend to suffer from fast degradation [9].
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2.3. Metaproteomics
Because the presence of mRNA does not always imply the presence of translated active protein, a quantification of the
metaproteome is necessary to provide a more fine-grained view of the functional activity in a microbial community [8].
Metaproteomics can be used to construct a taxonomic profile of the active members of a microbial community, and it
also enables the identification of interaction networks in the microbiome [35]. As a consequence, several studies rely
on metaproteomics data to find relevant pathways that characterize specific microbial systems, in disease progression
[36], [37], but also beyond the human microbiome, for instance, in aerobic communities where it is important to
assess the involvement of bacterial communities in the production of harmful greenhouse gases [6].

Unlike metagenomics and metatranscriptomics analysis, which is made more accessible by recent developments in
next-generation sequencing, the presence, quantification, and annotation of multiple proteins in a sample are generally
studied using a bottom-up approach, because direct sequencing of intact proteins in a microbiome setting is not yet
technically feasible [35]. This entails that proteins are first digested into peptides (short protein fragments), which are
then separated using liquid chromatography (LC). Lastly, peptide masses are analyzed through high-resolution mass
spectrometry (MS), producing experimental mass spectra that are then matched against theoretical mass spectra
from a protein sequence database, such as UniProt [11]. Among current challenges in metaproteomics, we point out
the lack of standardized practices across research facilities [35], difficulties in proper sample preservation to avoid
protein degradation [11], reduced protein yields, MS signal mapping, noise removal and database gaps, particularly
for the identification of peptides that originate from homologous protein sequences in different organisms [14].

2.4. Metabolomics
As a complementary approach to the previously described meta-omics techniques, metabolomics does not directly
measure the (active) composition of the microbiome, focusing instead on the products of its metabolism. In the
human gut microbiome, the presence and quantity of various microbial metabolites have been linked to chronic diseases
[1]. It has also been shown that the microbial metabolome is closely linked to the host’s metabolism and immune
system, and some host metabolites are only produced when certain gut microbes are present [38]. Metabolomics can
therefore reveal the pathways involved in such correlations, for instance through the analysis of metabolic networks
[39], especially as the conservation of metabolic pathways across species opens up many possibilities for research on
microbial communities beyond the human body [40].

The metabolome can be studied in a global setting, through the use of untargeted approaches, but individual
metabolites can also be measured, as in the case of targeted metabolomics. The latter approach is generally
preferred when the goal is to isolate metabolites known to be associated with specific conditions [7]. As in the case
of metaproteomics, the metabolites produced by the microbiome can be identified through the use of mass
spectrometry, although another common approach is nuclear magnetic resonance spectroscopy (NMR) [14].
MS-based metabolomics shares many of the shortcomings of metaproteomics, including the difficulties involved in
matching observed signals of metabolic mass spectra to annotated metabolites, and post-processing steps such as
data denoising [41]. Another active area of research in metabolomics is finding associations between microbes and
metabolites. Even in the presence of other omics data, it remains challenging to determine which microbes produce
specific metabolites, particularly since it is possible for two microorganisms to produce the same metabolite [7].
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3. Materials and methods
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Figure 2: Overview of our experimental set-up. We use pre-processed gut microbiome data (A) to train regression models as cross-
omics predictors (B), and subsequently evaluated these predictions for the downstream task of IBD prediction (C). Abbreviations: The
Inflammatory Bowel Disease Multi’omics Database (IBDMDB), genes derived from metagenomics (mGx), metatranscriptomics (mTx),
metaproteomics (mPx), metabolomics (mBx), enzyme commission numbers (ECs), liquid chromatography-mass spectrometry (LC-MS),
centered log-ratio (CLR), inflammatory bowel disease (IBD).
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3.1. Preliminary experiments
3.1.1. Datasets

We performed preliminary benchmarking of our experimental approach on three datasets containing paired
metagenomics and metabolomics data (Supplementary Table S1): Franzosa, Sirota-Madi, Avila-Pacheco, et al. [12]
(inflammatory bowel disease), Wang, Yang, Li, et al. [42] (end-stage renal disease) and Yachida, Mizutani,
Shiroma, et al. [43] (colorectal cancer). The latter two datasets were downloaded from The Curated Gut
Microbiome Metabolome Data Resource [44], release v2.1.0, while the IBD dataset was downloaded from the
paper’s supplement. We ran MelonnPan [16] on all three datasets, with default settings, to predict metabolite
abundances from metagenomics data. The IBD dataset contains metagenomics data in the form of gene families,
while the other two contain taxonomic profiles at the species level. We note that MelonnPan [16] was originally
trained and tested on the same IBD dataset.

3.1.2. Feature filtering

We tested two approaches for filtering out low-abundance features (species, genes, transcripts, proteins and
metabolites):

• strict filtering: similarly to Mallick, Franzosa, Mclver, et al. [16], we retained only those features with at least
0.01% abundance in more than 10% of samples. For all datasets, with the exception of taxonomic profiles and
metaproteomics, we additionally filtered out features with less than 0.0001% abundance in more than 10% of
samples. Features with more than 95% zeros were also filtered out across all feature types.

• lenient filtering: we retained only features with at least 0.005% abundance in more than 10% of samples.
Features with more than 95% zeros were filtered out.

3.1.3. Prediction of inflammatory bowel disease

The data collected by Franzosa, Sirota-Madi, Avila-Pacheco, et al. [12] included an independently sampled validation
cohort, which we used as a test set. We split the two remaining datasets into a training set and a test set, with
a ratio of 80% to 20%. We subsequently trained 10 random forest classifiers, initialized with different random
seeds (the same ones shown in Supplementary Table S3) to predict phenotypes specific to each dataset. We used
scikit-learn’s RandomForestClassifier (v1.4.1.post1), with default parameters.

3.2. Main experimental pipeline
Our experimental pipeline and setup are summarized in Figure 2. We divided our workflow into three main steps. We
first processed gut microbiome data, created paired datasets for cross-omics prediction, and applied feature filtering
(Figure 2(A)). We then trained several regression models to predict one type of meta-omics data from another,
and subsequently evaluated them on independent test samples (Figure 2(B)). Lastly, we used predicted data for the
downstream task of IBD prediction (Figure 2(C)).

3.2.1. Data processing

Gut microbiome meta-omics data

We downloaded pre-processed metagenomics, metatranscriptomics, metaproteomics and metabolomics data from
IBDMDB (Inflammatory Bowel Disease Multi’omics Database) [45], which was assembled as part of the Integrative
Human Microbiome Project. The dataset contains longitudinal samples from 132 subjects, including a control group,
as well as patients diagnosed with ulcerative colitis (UC) or Crohn’s disease (CD). Download links and dates are
recorded in Supplementary Table S2. Before feature filtering, all meta-omics abundance profiles were normalized,
such that feature values per sample sum up to 1.

Metagenomics (mGx), metatranscriptomics (mTx) and metaproteomics (mPx). We used gene, transcript and
protein abundance profiles annotated using Enzyme Commission numbers (ECs). As this data was originally stratified,
we summed up ECs across taxonomic groupings to reduce dimensionality and sparsity. Additional experiments
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supporting all of our main results were performed using pathways and species abundances derived from mGx data,
as shown in some of the supplementary results (see Supplementary Tables S3 and S7).

Metabolomics (mBx). We retained mBx data for one LC-MS technology, namely C18 negative (C18-neg).

Imputation of zeros

To enable log transformation of features at a later stage in our pipeline, we also generated versions of these datasets
with imputed zeros. For mGx and mTx data, we added ϵ = 1e-6 to all abundances, which is less than all other non-zero
values in the matrices, while for mPx and mBx, which were available as count data, we added a pseudocount.

Paired meta-omics datasets

We generated paired meta-omics datasets for multiple input-output combinations of meta-omics modalities (Figure
2A). Experiments were set up as follows:

• predicting transcripts (mTx) from genes (mGx);

• predicting proteins (mPx) from genes (mGx) and transcripts (mTx);

• and, lastly, predicting metabolites (mBx) from genes (mGx), transcripts (mTx) and proteins (mPx).

In addition, we also predicted mPx and mBx data from multi-omics input, obtained as combinations of single-omics
input, constructed using standard feature concatenation. In total, we analyzed results from 11 different input-
output combinations of meta-omics modalities. Supplementary experiments were performed for a total of 32 models,
including input data types represented as taxonomic profiles and pathways extracted from metagenomics data. A full
overview of all paired datasets is provided in Supplementary Table S3.

Feature filtering

Across all datasets, we applied the lenient feature filtering approach previously described in Section 3.1.2.

Data transformations

Following feature filtering, each sample was normalized and the data was transformed using common practices to
handle compositionality, sparsity, and feature scaling (Figure 2A). To that end, we compared two standard
transformations for compositional data, namely the centered log-ratio (CLR) transformation, which requires the
imputation of zeros, and the arcsin square root transformation, which also works on non-imputed data. The CLR
transformation of a sample x ∈ RD, with sum of elements

∑D
i=1 xi = 1, xi > 0,∀i ∈ 1, ..., D, and g(x) defined as

the geometric mean of x, is given by:

clr(x) =

[
log

xi

g(x)

]
i∈1,...,D

. (1)

For x ∈ RD, with sum of elements
∑D

i=1 xi = 1 and 0 ≤ xi ≤ 1,∀i ∈ 1, ..., D, the arcsin transformation is as
follows:

a(x) = [arcsin
√
xi]i∈1,...,D . (2)

As initial experiments showed that MelonnPan [16] performed best among all benchmarked models, we also tested the
quantile transformation, which maps normalized features to the quantiles of a normal distribution. This transformation
was shown to improve the predictive power of standard regression models and neural networks [46], [47]. Although
Mallick, Franzosa, Mclver, et al. [16] only apply this transformation to the input features, we transformed the output
features as well, to preserve consistency with other transformations that we benchmarked. This was done using
scikit-learn’s QuantileTransformer (v1.4.1post1), with the output distribution set to “normal”.
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3.2.2. Training and evaluation of cross-omics regression models

Training and testing partitions

To make up for the lack of an independently sampled test set and provide a fair evaluation, we generated 10 train/test
splits of each paired dataset, based on a fixed set of random seeds, with a ratio of 80% to 20% (Supplementary Table
S3). To reduce overfitting, we performed each split on patients instead of samples, such that samples belonging to
the same patient would not be present in both the training and test sets. Each partition was stratified, preserving
the proportion of classes (UC, CD, and healthy control (HC)) between the training and test samples. Aside from
the paired datasets, we applied the same procedure for the full datasets containing metatranscriptomics (mTx),
metaproteomics (mPx) and metabolomics (mBx) data (Figure 2B, Supplementary Table S4), which are later used in
benchmarking IBD classifiers (see Section 3.2.3).

Benchmarking of cross-omics regression models

We benchmarked four models and a baseline on several cross-omics prediction tasks. From the literature, we selected
MelonnPan [16] (elastic net regression), SparseNED [17] (sparse neural encoder-decoder) and MiMeNet [18] (feed-
forward neural network). These architectures were all originally designed to predict metabolite abundances from
metagenomics. All models were run with default parameters, except for MiMeNet, where some parameters were
changed to reduce runtime (see Supplementary Listing 1). Each model was trained and tested using different
data transformations (see Supplementary Table S5). We also trained a deep neural network (Deep NN), with data
augmentation (Supplementary Section A.1.1), and a RandomForestRegressor baseline (scikit-learn v1.4.1.post1),
initialized with default parameters and a random seed equal to 42. For more details regarding the network architecture,
as well as the loss used for training, see Section A.1 of the Supplementary Methods, particularly Subsections A.1.2
and A.1.3. Hyperparameter tuning for the neural network is also recorded in Supplementary Table S9.

Model evaluation

We evaluated all models on each independent test set by comparing predicted features (transcripts, proteins, and
metabolites) with the ground truth data. Consistent with methods reported in the literature [16], [18], [19], [21], we
used Spearman’s rank correlation coefficient to compare a predicted feature vector ŷ ∈ RN with the ground truth
y ∈ RN , transformed to ranks R(ŷ) and R(y):

r(ŷ, y) =
cov(R(ŷ), R(y))

σR(ŷ)σR(y)
, (3)

where cov(R(ŷ), R(y)) is the covariance of the rank variables, and σR(ŷ), σR(y) are the standard deviations.

To compute scores across the 10 test partitions, we first computed the mean Spearman’s rank correlation coefficient
per individual feature. We then reported the average for the top predicted features. The error was calculated as the
mean standard deviation across features.

3.2.3. Predicting inflammatory bowel disease

To evaluate the applicability of cross-omics regression models, we used the predicted features for the downstream
task of inflammatory bowel disease (IBD) prediction (Figure 2C). All classification tasks were performed using
scikit-learn’s RandomForestClassifier (v1.4.1.post1), trained using random search cross-validation
(Supplementary Table S6) with 50 iterations and a random state equal to the seed corresponding to each train/test
partition (all random seeds are listed in Supplementary Table S3). We used 5 stratified cross-validation folds,
divided based on study participants.

For each paired dataset, we compared the performance of IBD classifiers trained on the predicted data to that of
classifiers trained on the input data used to generate the corresponding predictions. We additionally benchmarked
these results against classifiers trained on ground-truth datasets of metatranscriptomics (mTx), metaproteomics
(mPx), and metabolomics (mBx) data. The training and test partitions were kept as the same ones used to train
the cross-omics regression models (Figure 2B). To provide a fair comparison, for each meta-omics output type (mTx,
mPx, mBx), we downsampled the classifier training sets to the size of the smallest paired meta-omics dataset. In
addition, each train and test set was downsampled to equal class proportions (IBD and healthy control).
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4. Results and discussion
4.1. Preliminary experiments confirm the accuracy and robustness of our

pipeline, in accordance with the established literature
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Figure 3: (A) Spearman’s rank correlations obtained by training MelonnPan [16] using our processed data (x-axis) and the data processed
by the authors (y-axis). Correlations were computed during training across 10 folds of cross-validation. We include two feature filtering
alternatives: less restrictive (left) and more restrictive (right). The original dataset was published by Franzosa, Sirota-Madi, Avila-Pacheco,
et al. [12] (see also Supplementary Table S1). (B) On the left, a confusion matrix for the result highlighted in sub-figure (C). On the right,
a confusion matrix taken from Figure 6 in the study published by Franzosa, Sirota-Madi, Avila-Pacheco, et al. [12]. (C) Performance of
random forest classifiers for three different classification tasks, corresponding to the datasets [12], [42], [43] in Supplementary Table S1.
Top mBx features were determined by MelonnPan during cross-validation, with a correlation cut-off equal to 0.3. Abbreviations: Crohn’s
disease (CD), ulcerative colitis (UC), healthy control (HC), end-stage renal disease (ESRD), genes derived from metagenomics (mGx),
metabolomics (mBx).

To validate the steps in our experimental pipeline, we first reproduced a selection of results from the literature (Figure
3(A) and (B)). To that end, we trained MelonnPan [16] on the dataset provided on GitHub as part of the model’s
package, as well as our processed version of the dataset, originally published by Franzosa, Sirota-Madi, Avila-Pacheco,
et al. [12]. The processed and predicted data were subsequently used to classify IBD sub-types and healthy patients.

We found that MelonnPan’s performance in predicting metabolite abundances from metagenomics data was robust
to the data processing and filtering approach that was used (Figure 3(A)). Metabolite correlations measured during
cross-validation were mostly consistent for each of the two experiments, with some variations likely occurring as a
result of the randomness involved in MelonnPan’s training procedure, which includes cross-validation.
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However, the filtering procedure did have an impact on classification performance. Figure 3(B) shows that our lenient
feature filtering approach resulted in classification accuracy comparable to the one obtained by the authors of the
study containing the original dataset [12]. This result is also highlighted in Figure 3(C), which includes results for
two other datasets (see Supplementary Table S1), and two filtering approaches. Across all three datasets, we noticed
a significant drop in performance for classifiers trained on real metabolomics data, with the strict filtering approach.
This suggests that features important for distinguishing phenotype were discarded during filtering, so we opted for
the more lenient filtering approach for our main experimental pipeline.

4.2. Machine learning models can reliably predict a subset of meta-omics
features
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Figure 4: (A) Mean test performance results of cross-omics regression models on several prediction tasks, calculated across 10 different
dataset partitions. The average Spearman’s rank correlation coefficient was calculated for the 50 best predicted features for each output
type. (B) For metatranscriptomics (mTx) and metaproteomics (mPx) predictions generated by MelonnPan [16], we also plot kernel
density estimates comparing correlations between the input data and the ground-truth mTx/mPx data with those computed between the
predicted data and the ground truth data. We perform this analysis on the 50 best predicted features for each output type, as well as
all predicted features. Input types are represented through different colors, while cross-omics models are represented using different color
intensities. Abbreviations: neural network (NN), genes derived from metagenomics (mGx), metatranscriptomics (mTx), metaproteomics
(mPx), metabolomics (mBx).
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To assess the generalization performance of machine learning pipelines designed for metabolite prediction, we first
trained and evaluated several models from the literature on the task of predicting transcript and protein abundances,
in addition to metabolite abundances. Average scores across 10 different train/test partitions were computed for 6
single-omics input-output combinations and 3 models from the literature (MelonnPan [16], MiMeNet [17], SparseNED
[18]), along with a deep neural network (Deep NN) and a random forest regressor baseline (Figure 4). Following a
pattern established in the literature [16], [18], [19], [21], we plotted the performance of cross-omics regression models
for the 50 best predicted features (Figure 4A).

Considering the top predictions, cross-omics regression models performed similarly in predicting metatranscriptomics
and metabolomics (Figure 4A). Protein abundances (mPx) were the most challenging to predict. This is expected,
given the fact that metaproteomics was characterized by the highest sparsity and that paired data available to train
models that predict metaproteomics was most scarce (Supplementary Table S3). Good performance for
metatranscriptomics prediction is also not surprising, given the similarities between metagenomics and
metatranscriptomics as next-generation sequencing technologies. Lastly, we note that architectures like elastic nets
[16] and random forests were more robust across input-output combinations and generally performed best.

To investigate whether machine learning models provide more accurate estimations of transcript and protein
abundances compared to the “gene-to-transcript-to-protein” assumption, we generated density plots comparing the
distributions of correlations between different types of meta-omics data (Figure 4B). Top predicted transcript and
protein abundances were significantly more highly correlated with the ground-truth data, when compared to the
distribution of correlations between the input data and the ground-truth. This suggests that a subset of features
(transcripts or proteins) can be more reliably predicted using machine learning approaches, rather than relying on
the assumption that genes encoded in the metagenome will be transcribed into mRNA and subsequently translated
into protein. When plotting correlations for all features, this was still the case, but to a much lesser extent,
ultimately indicating that only a subset of features can be reliably predicted. One explanation for this result is that
machine learning becomes challenging when the number of features is high relative to the number of samples. This
phenomenon, known as the curse of dimensionality, is particularly problematic for multi-output regression tasks
such as cross-omics prediction.

4.3. Multi-omics integration does not improve the prediction accuracy of
machine learning models
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Figure 5: Performance comparison of MelonnPan [16] using multi-omics and single-omics input data. Single-omics input types are shown
as lines, using different colors, while model performance on multi-omics data is indicated with the corresponding two- and three-color
combination, with diagonally spliced bars. Improvements or downgrades in performance are indicated with arrows. Abbreviations: genes
derived from metagenomics (mGx), metatranscriptomics (mTx), metaproteomics (mPx), metabolomics (mBx).
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To determine whether using a combination of different types of input features leads to better predictions of protein
and metabolite abundances, we additionally trained MelonnPan, the overall best performing model identified in the
previous section, on multi-omics input. Figure 5 shows a comparison between single-omics and multi-omics input in
predicting metaproteomics and metabolomics. Results for other input types, such as taxonomic profiles and pathways
derived from metagenomics, are recorded in Supplementary Table S7.

While metaproteomics predictions slightly improved when combining metagenomics and metatranscriptomics,
combining single-omics modalities did not lead to more accurate predictions of metabolite abundances. High
variances in model performance also suggest that the increased input dimensionality made learning more difficult
and less robust across training sets. We also note that the number of samples available for training decreased with
the amount of meta-omics modalities involved (Supplementary Table S3), and that likely also had an influence on
these results. Comparable performance was obtained when using metagenomics data processed in the form of
pathways or species-level taxonomic profiles (Supplementary Table S7).

We also designed a more elaborate multi-omics integration scheme, using an autoencoder trained with a joint
reconstruction and regression loss (Supplementary Section A.2 and Supplementary Figure S3), but preliminary
experiments did not show promising results. Therefore, we did not pursue this line of research further.
Supplementary Table S8 shows the performance of MelonnPan [16] trained on concatenated multi-omics, compared
to the embeddings learned by the autoencoder architecture. Although we observed a decline in prediction accuracy,
the models trained on latent features were more robust, as suggested by the very low variation in model
performance across test partitions. These results imply that such a dimensionality reduction approach leads to more
stable predictions, and that more extensive research and benchmarking may lead to a more reliable
multi-meta-omics integration architecture.

4.4. There is a core set of well-predicted features that are robust to changes
in input types and dataset partitions

We evaluated the robustness of cross-omics models through an analysis of well-predicted features across dataset
partitions and input types (Figure 6(A), (B) and (C)). We limited this analysis to results produced by MelonnPan
[16], as we found this model performed best overall for the task of cross-omics prediction (Section 4.2). However,
additional experiments were performed with a deep neural network model (Supplementary Section A.1), to study the
effect of feature selection on model performance (Figure 6(D)).

A pairwise comparison of the top 25% well-predicted features across train/test partitions showed that these subsets
share a selection of features, with some features being well-predicted across all test splits. While Figure 6(A) only
shows predictions generated from mGx data, we found this to be the case for all single-omics input types (see
Supplementary Figure S1). For each output type, a small set of features was found to be consistently well predicted
across dataset partitions. For metaproteomics, this number was especially low (2.5% of the feature union). Glutamate
dehydrogenase (1.4.1.3) and DNA-directed RNA polymerase (2.7.7.6) were the two enzymes included in this subset.
Low abundance levels for these two enzymes have been associated with IBD diagnosis [48]–[50], with glutamate
dehydrogenase being linked to Clostridium difficile infections in IBD patients.

Some well-predicted features were also shared across single-omics and multi-omics input types (Figure 6(B) and
(C)). In total, 25 proteins were well-predicted from both metagenomics and metatranscriptomics data, while 401
metabolites were well-predicted from metagenomics, metatranscriptomics and metaproteomics data. We also note
that we did not find significant correlations between feature variance and prediction quality (Supplementary Figure
S2). The characterization of well-predicted features remains a largely unanswered question, requiring more in-depth
analysis.

However, regardless of what makes features easy to predict, these results imply that there is a core subset of features,
for each output type, that can be reliably predicted. Consequently, we hypothesized that training a model on just
a subset of features would lead to better predictions, as the trade-off between data dimensionality and the number
of samples would be more balanced in that case. To that end, we ran a pre-training iteration which consisted of
training 10 random forest models on different cross-validation splits, averaging feature correlations and retaining only
a proportion of the top features (Supplementary Section A.3 and Supplementary Figure S4). We then trained a
deep neural network (Supplementary Section A.1), restricting the output to subsets containing 50%, 25% and 10%

12



of features based on individual correlations obtained during pre-training (Figure 6(D)). As opposed to elastic net
architectures such as MelonnPan [16], which combine multiple single-output regression models [51], neural networks
can exploit dependencies between output variables in multi-output regression. In addition, deep architectures were
shown to be better at bypassing the curse of dimensionality, particularly when modelling compositional functions
[52]. The results included in Figure 6D do not fully support our hypothesis, as we did not find that training on a
smaller set of features improved network performance. However, in many cases, performance also did not decline
when using fewer output features to train the network. One possible cause could be that important dependencies
between features are preserved, to an extent, during feature selection, and that is worth further investigation.

(A)

(B) (C)

Predicting mTx (from mGx) Predicting mPx (from mGx) Predicting mBx (from mGx)

Intersection: 44 | Union: 438 Intersection: 2 | Union: 80 Intersection: 133 | Union: 1674

From mGx From mTx From mPx

All 50% 25% 10% All 50% 25% 10% All 50% 25% 10%

Predict mTx 0.69 (± 0.07) 0.70 (± 0.05) 0.67 (± 0.07) 0.64 (± 0.06) - - - - - - - -

Predict mPx 0.36 (± 0.11) 0.36 (± 0.11) 0.36 (± 0.10) 0.35 (± 0.09) 0.38 (± 0.13) 0.36 (± 0.12) 0.36 (± 0.11) 0.35 (± 0.09) - - - -

Predict mBx 0.69 (± 0.06) 0.69 (± 0.06) 0.68 (± 0.06) 0.69 (± 0.06) 0.70 (± 0.08) 0.70 (± 0.08) 0.70 (± 0.08) 0.70 (± 0.07) 0.58 (± 0.09) 0.60 (± 0.09) 0.59 (± 0.08) 0.59 (± 0.08)

(D)

Figure 6: (A) Jaccard similarities between the sets of the 25% best predicted features by MelonnPan [16] for each output type (mTx,
mPx, mBx), compared across 10 different train/test partitions. All predictions were generated from mGx data. (B) Jaccard similarities
and Venn diagram of the sets of the 25% best predicted proteins, compared across input types. (C) Jaccard similarities and Venn
diagram of the sets of the 25% best predicted metabolites, compared across input types. (D) Performance of a deep neural network
model (Supplementary Section A.1) trained on different feature subsets, based on a pre-training step for feature selection (Supplementary
Section A.3). The best results for each input-output combination are highlighted. Abbreviations: genes derived from metagenomics
(mGx), metatranscriptomics (mTx), metaproteomics (mPx), metabolomics (mBx).
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4.5. Predicted meta-omics data can be used to classify phenotypes, with
performance comparable to that of real data

random guessing
real mTx data

real mGx data

real mPx data
predicted data

real mBx data

or

or
What kind of data 
was used for predictions?

Training: 242 samples | Testing: 48 samples Training: 88 samples | Testing: 14 samples

Training: 66 samples | Testing: 12 samples

Figure 7: Accuracy of random forest classifiers on the binary task of inflammatory bowel disease prediction, averaged across 10 test
partitions. Left bars indicate input types, while right, striped bars, indicate the output predicted from these inputs. Predicted data was
generated with MelonnPan [16]. Abbreviations: genes derived from metagenomics (mGx), metatranscriptomics (mTx), metaproteomics
(mPx), metabolomics (mBx).

Lastly, to demonstrate an application of cross-omics regression models, we tested whether predictions generated
by cross-omics prediction models could be used for the downstream task of IBD prediction. We compared the
classification performance of random forest classifiers trained on input and predicted data, as well as real data of the
same modality as the predictions (Figure 7).

Overall, predicted features could be used to distinguish between IBD and the healthy control, with accuracies
comparable to those obtained with real data. Metabolomics was identified as the best predictor of IBD, with a
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mean accuracy of almost 80%. Metabolite abundances predicted from metatranscriptomics almost matched this
performance. In the majority of cases, predicted features were better predictors of inflammatory bowel disease
compared to the input data from which they were generated. Using input data as opposed to predicted data was
only preferred in multi-omics settings.

Notably, classification performance was quite low across all datasets, but this outcome was not surprising. We did
not expect IBD classifiers to perform particularly well on this dataset, especially due to the limited number of training
samples. This is a result of downsampling to equal class proportions, on top of downsampling to the size of the
smallest paired dataset for each output type. Additionally, the IBD samples in IBDMDB [45] were not all collected
from patients with active disease, making it harder to distinguish between the two classes of samples. Our initial
experiments on other datasets (Section 4.1) also provided evidence that this issue is dataset-related, as random forest
classifiers with no hyperparameter tuning were able to achieve good performance with real metabolomics data, even
for more challenging classification tasks. Ultimately, more extensive benchmarking on other datasets is required to
gain a deeper understanding on the uses of predicted meta-omics data for phenotype identification.
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5. Conclusion
As an answer to our first research question, regarding the generalization performance of microbe-to-metabolite models
on other meta-omics types, we conclude that regression models for cross-omics prediction are able to accurately
predict a subset of features, whether those features are transcripts, proteins or metabolites. This confirms our initial
hypothesis, to a certain extent. Although metaproteomics prediction was challenging, our experiments showed that
metatranscriptomics and metabolomics features were reliably predicted. Therefore, we were able to validate similar
results from the literature on metabolomics prediction [16]–[18].

In addition, we showed that machine learning models provide reliable insights into metatranscriptomics and
metaproteomics. Feature correlations between ground-truth and predicted data were generally higher than those
obtained between genes and transcripts, or transcripts and proteins.

In relation to our second research objective, we hypothesized that a smaller set of meta-omics features should be easier
to predict. Although our results did not fully support this hypothesis, we found that it is possible to achieve similar
prediction accuracy when using fewer output features to train a model. This suggests that essential dependencies
between predicted features were preserved during the feature selection process.

Finally, we proposed that predicted meta-omics features could be used to distinguish between different phenotypes.
For the binary task of IBD classification, this hypothesis was confirmed. Some predicted datasets lead to classification
performance similar to that obtained using real data, and generally better than that obtained using the input data
at the basis of those predictions.

5.1. Future work
First of all, we propose that future research should focus on the creation of curated datasets of paired meta-omics
data. Although the Integrative Human Microbiome Project achieves this to a much appreciated extent, this database
is still characterized by heterogeneous data, generally available in large volumes and unprocessed. One improvement
to such initiatives is the availability of homogeneous, pre-processed data, which would further streamline and improve
the performance of machine learning models and deep learning architectures for cross-omics prediction.

Secondly, it is worthwhile to perform more extensive benchmarking on multi-omics integration approaches. In addition
to naive feature concatenation, we only analyzed results from one autoencoder architecture, and those results were
not very encouraging, at least not performance-wise. While out-of-scope for the timeline of this project, we believe
that further hyperparameter tuning, particularly focused on the loss function, could lead to higher prediction accuracy.

Lastly, there is considerable potential in improving cross-omics prediction models. Although our experiments on
feature selection were not fully successful, our results show that trying to learn fewer output features leads to similar
performance as using the full set of output features. This implies that an essential set of dependencies between
output features was captured with just those selected features. To that end, further investigation should focus on a
more in-depth characterization of well-predicted transcripts, proteins or metabolites, and, consequently, strategies to
improve the robustness of prediction models.
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Glossary
cross-omics We use this term to refer to the prediction of one type of meta-omics from another, for instance,

predicting protein abundances (metaproteomics) from transcript abundances (metatranscriptomics). This is
done through the use of machine learning architectures that can perform regression tasks.

meta-omics Umbrella term for omics technologies used to study the microbiome, including metagenomics,
metatranscriptomics, metaproteomics and metabolomics. Note the use of the prefix “meta”, which
differentiates meta-omics from standard omics technologies. While “omics” refers to the study of a single
organism, “meta-omics” implies the study of multiple microorganisms (the microbiome). One exception to the
rule is “metabolomics”, for which the double use of the prefix would have made an awkward noun.

metabolomics Meta-omics technologies used to study the metabolites produced as part of microbial metabolism.
As metaproteomics, metabolomics relies on mass spectrometry approaches.

metagenomics Meta-omics technologies used to study the DNA of microbial communities. Metagenomics is
nowadays usually done through next-generation sequencing, and can be used to identify the microorganisms
present in a microbial sample, and quantify their functional potential based on the genes found on the
metagenome.

metaproteomics Meta-omics technologies used to study the proteins produced by a microbial community. Unlike in
the case of metagenomics and metatranscriptomics, it is not currently possible to sequence the metaproteome,
and we rely instead on mass spectrometry to identify the proteins in a microbial sample. Protein identification
enables functional profiling at a higher level compared to metatranscriptomics and metagenomics.

metatranscriptomics Meta-omics technologies used to study the transcripts (RNA fragments) of microbial
communities. Metatranscriptomics is nowadays achieved using next-generation sequencing, and it is generally
used to quantify the functional potential of microbial communities, through the analysis of gene expression
levels.

microbiome A community of microorganisms, including bacteria, viruses, fungi and archaea, that are found in a
particular environment. For example, the gut microbiome generally refers to the microorganisms that populate
the human gut.

Acronyms
CD Crohn’s disease.

cDNA complementary DNA.

CLR centered log-ratio.

ECs enzyme commission numbers.

ESRD end-stage renal disease.

HC healthy control.

IBD inflammatory bowel disease.

IBDMDB The Inflammatory Bowel Disease Multi’omics Database.

ITS internal transcribed spacers.
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LC liquid chromatography.

LC-MS liquid chromatography-mass spectrometry.

mBx metabolomics.

mGx genes derived from metagenomics.

mGx_pa pathways derived from metagenomics.

mGx_taxa taxonomic profile derived from metagenomics.

mPx metaproteomics.

mRNA messenger RNA.

MS mass spectrometry.

mTx metatranscriptomics.

NGS next-generation sequencing.

NMR nuclear magnetic resonance.

NN neural network.

ORF open-reading frame.

PCR polymerase chain reaction.

rDNA ribosomal DNA.

UC ulcerative colitis.

WMS whole-metagenome sequencing.
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A. Supplementary methods
A.1. Deep fully-connected neural network
We trained 36 deep neural network (Deep NN) architectures, with various numbers of hidden layers, different data
augmentation factors and loss functions. In the end, the architecture that was used throughout our experiments
included 3 fully connected hidden layers and a loss function including equal proportions of Pearson’s correlation
and the mean-squared error (MSE). Additionally, training was performed without any data augmentation. For a
comprehensive benchmark of different architectures and augmentation factors, see Supplementary Table S9.

A.1.1. Data augmentation

We augmented the paired cross-omics datasets using an approach inspired by the Aitchison mixup described by
Gordon-Rodriguez, Quinn, and Cunningham [53]. However, one important distinction is that the authors describe
augmentation of compositional data in the simplex, before transformations are applied, but we apply augmentation
on the transformed data. Data was transformed using the quantile transformation, as described in Section 3.2.1.

Let xi and xj ∈ RD be two input samples, with corresponding output samples yi and yj ∈ RM . We construct
augmented data points x′ and y′ using a linear combination:

x′ = λ · xi + (1− λ) · xj ,

y′ = λ · yi + (1− λ) · yj ,

where λ ∈ [0, 1] and i, j ∈ {1, ..., N}. To generate multiple data points, i and j are chosen randomly, and λ is
sampled from a uniform distribution.

A.1.2. Architecture

Layer dimensions were chosen based on input size. To that end, we constructed architectures of the form:
input_size − ⌊1.25 · input_size⌋ − ... − ⌊1.25 · input_size⌋ − ⌊2.5 · input_size⌋ − output_size. Layer
norm and ReLU were applied after each layer, excluding the output layer.

A.1.3. Loss function

We defined a loss function based on a combination of Pearson’s correlation and the mean squared error, between the
ground truth Y ∈ RN×M and the prediction Ŷ ∈ RN×M :

L(Y, Ŷ ) = αMSE ·MSE(Y, Ŷ ) + αcorr · (1− ρ(Y, Ŷ )), (4)

where ρ(Y, Ŷ ) represents the average Pearson correlation coefficient between ground-truth and predicted features,
MSE(Y, Ŷ ) is the mean squared error between the ground truth and the prediction, and αMSE and αcorr ∈ [0, 1].

To compute the mean squared error, we used torch’s (2.1.2.post300) MSE loss, from the nn.functional module,
with “mean” reduction. To determine Pearson’s correlation coefficient, we applied the CosineEmbeddingLoss from
the same module. Prior to this, each feature was centered around its mean, and the data batch was transposed.

A.1.4. Training procedure

All network models (Supplementary Table S9) were constructed using the Pytorch Lightning API, version 2.2.1, with
a random seed equal to 42. Training and validation sets were split based on study participants, as described in Section
3, using a shuffled split, with a random seed equal to 42. We used a batch size of 16 and the Adam optimizer, with
a learning rate equal to 1e-4, a patience of 3 for early stopping, and a maximum of 35 epochs.
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A.2. Multi-omics autoencoder
As an alternative to naive feature concatenation, we trained an autoencoder model for multi-omics integration. A
diagram of the architecture and loss function is included in Supplementary Figure S3. After training the network, we
used the latent features to train the best-performing model in our benchmark, MelonnPan [16]. Below we provide
details on the network architecture and the loss function used during training.

A.2.1. Architecture

As shown in Supplementary Figure S3, we divided the model architecture into two main parts: the autoencoder and
a multi-layer perceptron, which takes as input the latent features of the autoencoder, and then predicts a meta-
omics output. The autoencoder was organized using a symmetric architecture, with a hidden layer of dimension
⌊0.75 ·input_size⌋, and a latent space of dimension ⌊0.5 ·input_size⌋. The multi-layer perceptron included one
hidden layer, of dimension ⌊0.25·input_size⌋. Following a similar approach as described previously (Supplementary
Section A.1.3), we applied layer norm and a ReLU activation after each layer, excluding the output layers.

A.2.2. Loss function

We constructed an architecture to enable learning of embeddings for the task of cross-omics prediction. To that
end, we trained an autoencoder wth a combined loss, integrating the reconstruction loss with a regression loss. This
was inspired by the approach described by Hira, Razzaque, Angione, et al. [54], who jointly trained a variational
autoencoder and classifier for ovarian cancer, using a combined loss.

Let X ∈ RN×D be the input multi-meta-omics feature matrix, and let Y ∈ RN×M be the output meta-omics feature
matrix. In addition, let X̂ ∈ RN×D be the prediction produced by the autoencoder, and let Ŷ ∈ RN×M be the
prediction produced by the multi-layer perceptron. We computed the following loss:

L(X, X̂, Y, Ŷ ) = L(X, X̂) + L(Y, Ŷ ), (5)

where L(X, X̂) and L(Y, Ŷ ) are defined as in equation 4.

A.2.3. Training procedure

We followed the same procedure as described in Supplementary Section A.1.4, with the exception that the maximum
number of epochs was set to 50.

A.3. Feature selection
We designed a pre-training step to select a small set features to be used later during model training (Supplementary
Figure S4). To that end, we split each training set into 10 training/validation partitions, and trained a random
forest regressors on each partition. Feature correlations were subsequently calculated on the validation set, and each
feature was assigned a score, equal to the mean across validation sets. Based on these scores, we retained a fraction
of features to be later used for cross-omics model training.
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B. Supplementary tables
Table S1: Description of paired metagenomics and metabolomics datasets used for experimental validation and reproducibility testing.

Lenient filtering Strict Filtering No filtering

Dataset name Study # train samples # test samples Input dim. Output dim. Input dim. Output dim. Input dim. Output dim.

CD, UC and HC Franzosa et al. [12] 102 60 1231 4541 722 1415 2113 8848

ESRD and HC Wang et al. [42] 106 28 1401 274 795 94 56961 276

Cancer and HC Yachida et al. [43] 202 52 1462 269 698 76 57702 450

Table S2: Datasets downloaded from the Inflammatory Bowel Disease Multi’omics Database (IBDMB), used for training and testing
machine learning models in our experiments.

Data description Download link Download date

Metaproteomics ECs https://www.ibdmdb.org/downloads/products/HMP2/MPX/2017-03-20/HMP2_proteomics_ecs.tsv.gz 16.11.2023

Metagenomics ECs https://www.ibdmdb.org/downloads/products/HMP2/MGX/2018-05-04/ecs_relab.tsv.gz 16.11.2023

Metabolomics https://www.ibdmdb.org/downloads/products/HMP2/MBX/HMP2_metabolomics.biom 16.11.2023

Metatranscriptomics ECs https://www.ibdmdb.org/downloads/products/HMP2/MTX/2017-12-14/ecs_relab.tsv.gz 16.11.2023

Taxonomic profile https://www.ibdmdb.org/downloads/products/HMP2/MGX/2018-05-04/taxonomic_profiles.tsv.gz 16.11.2023

Patient metadata https://ibdmdb.org/downloads/metadata/hmp2_metadata_2018-08-20.csv 17.01.2024

Table S3: Metadata for the paired-omics datasets used in our experiments. Input-output pairs used for the results of the main manuscript
are highlighted. Results for the other datasets are only reported as part of the supplementary material.

Input/output dim. after filtering Train/test # samples per seed

Output Input # samples Non-imputed data Imputed data Train/test mean # samples 2 3 5 7 11 13 17 23 29 31

mTx mGx 733 983 851 992 851 584,5 148,5 577 156 587 146 619 114 600 133 569 164 589 144 570 163 582 151 597 136 555 178

mTx mGx_taxa 731 130 850 130 850 582,8 148,2 575 156 586 145 618 113 599 132 567 164 587 144 568 163 580 151 595 136 553 178

mTx mGx_pa 732 323 850 323 851 583,6 148,4 576 156 587 145 618 114 599 133 568 164 588 144 569 163 581 151 596 136 554 178

mTx mGx+mGx_taxa 731 1113 850 1117 850 582,8 148,2 575 156 586 145 618 113 599 132 567 164 587 144 568 163 580 151 595 136 553 178

mTx mGx+mGx_pa 732 1306 850 1315 851 583,6 148,4 576 156 587 145 618 114 599 133 568 164 588 144 569 163 581 151 596 136 554 178

mTx mGx_pa+mGx_taxa 731 453 850 453 850 582,8 148,2 575 156 586 145 618 113 599 132 567 164 587 144 568 163 580 151 595 136 553 178

mPx mGx 280 1000 281 1004 909 222,2 57,8 217 63 223 57 218 62 221 59 223 57 223 57 222 58 226 54 223 57 226 54

mPx mGx_taxa 278 135 281 135 909 220,4 57,6 215 63 222 56 216 62 220 58 221 57 221 57 220 58 224 54 221 57 224 54

mPx mGx_taxa+mTx 185 1009 274 1010 909 146,7 38,3 150 35 146 39 150 35 136 49 145 40 147 38 145 40 153 32 150 35 145 40

mPx mTx 186 874 274 875 909 147,6 38,4 151 35 146 40 151 35 137 49 146 40 148 38 146 40 154 32 151 35 146 40

mPx mGx+mGx_pa 278 1339 281 1329 909 220,4 57,6 215 63 222 56 216 62 220 58 221 57 221 57 220 58 224 54 221 57 224 54

mPx mGx_pa 278 323 281 325 909 220,4 57,6 215 63 222 56 216 62 220 58 221 57 221 57 220 58 224 54 221 57 224 54

mPx mGx+mGx_taxa 278 1151 281 1154 909 220,4 57,6 215 63 222 56 216 62 220 58 221 57 221 57 220 58 224 54 221 57 224 54

mPx mGx+mTx 186 1902 274 1903 909 147,6 38,4 151 35 146 40 151 35 137 49 146 40 148 38 146 40 154 32 151 35 146 40

mPx mGx_pa+mGx_taxa 278 458 281 458 909 220,4 57,6 215 63 222 56 216 62 220 58 221 57 221 57 220 58 224 54 221 57 224 54

mPx mGx_pa+mTx 185 1194 274 1201 909 146,7 38,3 150 35 146 39 150 35 136 49 145 40 147 38 145 40 153 32 150 35 145 40

mBx mGx 388 1038 3247 1040 3247 311,7 76,3 314 74 315 73 311 77 316 72 309 79 316 72 321 67 307 81 307 81 301 87

mBx mGx+mPx 203 1277 3345 1912 3345 161,3 41,7 161 42 163 40 160 43 158 45 162 41 164 39 167 36 157 46 162 41 159 44

mBx mGx+mPx+mTx 154 2196 3373 2830 3373 121,2 32,8 124 30 118 36 116 38 118 36 121 33 123 31 116 38 128 26 125 29 123 31

mBx mGx_taxa 386 129 3240 129 3240 310,1 75,9 313 73 315 71 309 77 314 72 307 79 314 72 319 67 305 81 306 80 299 87

mBx mGx_taxa+mTx 298 1002 3246 1002 3246 238,2 59,8 240 58 239 59 243 55 239 59 243 55 240 58 248 50 235 63 231 67 224 74

mBx mTx 299 870 3252 871 3252 239,1 59,9 241 58 239 60 244 55 240 59 244 55 241 58 249 50 236 63 232 67 225 74

mBx mGx+mGx_pa 386 1360 3240 1363 3247 310,1 75,9 313 73 315 71 309 77 314 72 307 79 314 72 319 67 305 81 306 80 299 87

mBx mGx_pa 386 322 3240 323 3247 310,1 75,9 313 73 315 71 309 77 314 72 307 79 314 72 319 67 305 81 306 80 299 87

mBx mGx+mGx_taxa 386 1167 3240 1169 3240 310,1 75,9 313 73 315 71 309 77 314 72 307 79 314 72 319 67 305 81 306 80 299 87

mBx mPx+mTx 154 1158 3373 1792 3373 121,2 32,8 124 30 118 36 116 38 118 36 121 33 123 31 116 38 128 26 125 29 123 31

mBx mGx+mTx 299 1922 3252 1925 3252 239,1 59,9 241 58 239 60 244 55 240 59 244 55 241 58 249 50 236 63 232 67 225 74

mBx mGx_pa+mPx 202 602 3339 1233 3345 160,4 41,6 160 42 163 39 159 43 157 45 161 41 163 39 166 36 156 46 161 41 158 44

mBx mGx_pa+mGx_taxa 386 451 3240 451 3240 310,1 75,9 313 73 315 71 309 77 314 72 307 79 314 72 319 67 305 81 306 80 299 87

mBx mPx 307 282 3298 909 3298 242,4 64,6 242 65 241 66 249 58 241 66 239 68 247 60 238 69 243 64 242 65 242 65

mBx mGx_pa+mTx 298 1190 3246 1194 3252 238,2 59,8 240 58 239 59 243 55 239 59 243 55 240 58 248 50 235 63 231 67 224 74

mBx mGx_taxa+mPx 202 410 3339 1041 3339 160,4 41,6 160 42 163 39 159 43 157 45 161 41 163 39 166 36 156 46 161 41 158 44
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Table S4: Metadata for the full meta-omics datasets used for IBD classification, before downsampling.

Dimensionality after filtering Train/test # samples per seed

Data type # samples Non-imputed data Imputed data Train/test mean # samples 2 3 5 7 11 13 17 23 29 31

mTx 735 851 851 586,1 148,9 578 157 589 146 620 115 602 133 570 165 590 145 572 163 584 151 599 136 557 178

mPx 449 283 909 358 91 350 99 356 93 359 90 360 89 356 93 358 91 361 88 364 85 353 96 363 86

mBx 546 3183 3183 433,5 112,5 439 107 430 116 434 112 433 113 438 108 430 116 435 111 430 116 434 112 432 114

Table S5: Comparison of data processing methods for three “metagenomics-to-metabolomics” models: MelonnPan [16], MiMeNet [18]
and SparseNED [17]. We use the word “default” to refer to the data processing approach applied internally by the model, on normalized
data. Some experiments were not performed. For example, MelonnPan already uses an arcsine and quantile transformation in its default
pipeline, so we omitted that comparison. For each model, we highlight the data processing approach selected to report results for the
model. Performance was measured using the average Spearman’s rank correlation coefficient for the 50 best predicted features.

Predict mTx Predict mPx Predict mBx

From mGx From mGx From mTx From mGx From mPx From mTx

MelonnPan

Normalized 0.72 (± 0.07) 0.35 (± 0.08) 0.29 (± 0.06) 0.64 (± 0.07) 0.49 (± 0.06) 0.61 (± 0.10)

ArcSin - - - - - -

CLR 0.76 (± 0.05) 0.42 (± 0.09) 0.47 (± 0.07) 0.72 (± 0.06) 0.58 (± 0.08) 0.72 (± 0.08)

Quantile transform - - - - - -

Model default 0.77 (± 0.05) 0.40 (± 0.11) 0.40 (± 0.11) 0.74 (± 0.05) 0.57 (± 0.09) 0.72 (± 0.08)

SparseNED

Normalized 0.53 (± 0.12) 0.30 (± 0.12) 0.26 (± 0.13) 0.52 (± 0.13) 0.40 (± 0.13) 0.50 (± 0.13)

ArcSin 0.64 (± 0.09) 0.34 (± 0.12) 0.30 (± 0.13) 0.65 (± 0.07) 0.51 (± 0.09) 0.59 (± 0.11)

CLR 0.64 (± 0.10) 0.32 (± 0.12) 0.31 (± 0.12) 0.54 (± 0.12) 0.45 (± 0.07) 0.61 (± 0.10)

Quantile transform 0.66 (± 0.09) 0.31 (± 0.13) 0.32 (± 0.14) 0.68 (± 0.07) 0.53 (± 0.07) 0.62 (± 0.11)

Model default - - - - - -

MiMeNet

Normalized 0.24 (± 0.11) 0.20 (± 0.09) 0.23 (± 0.08) 0.29 (± 0.09) 0.27 (± 0.08) 0.28 (± 0.09)

ArcSin 0.24 (± 0.10) 0.21 (± 0.10) 0.24 (± 0.11) 0.30 (± 0.11) 0.25 (± 0.10) 0.31 (± 0.12)

CLR - - - - - -

Quantile transform 0.23 (± 0.10) 0.19 (± 0.10) 0.22 (± 0.10) 0.28 (± 0.10) 0.32 (± 0.11) 0.31 (± 0.10)

Model default 0.23 (± 0.08) 0.22 (± 0.12) 0.26 (± 0.10) 0.28 (± 0.09) 0.31 (± 0.11) 0.30 (± 0.11)

Table S6: Grid values for hyperparameter tuning of random forest classifiers for IBD prediction.
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Table S7: Average Spearman’s rank correlation coefficient of MelonnPan [16] predictions (top 50) for multiple single-omics and multi-
omics input data types, including pathways (mGx_pa) and taxonomic profiles (mGx_taxa). The best results for each output type are
highlighted.

Output type

Input type mTx mPx mBx

mGx 0.77 (± 0.05) 0.40 (± 0.11) 0.74 (± 0.05)

mGx+mGx_pa 0.77 (± 0.05) 0.41 (± 0.10) 0.74 (± 0.05)

mGx+mGx_taxa 0.78 (± 0.05) 0.42 (± 0.10) 0.75 (± 0.05)

mGx+mPx - - 0.67 (± 0.10)

mGx+mPx+mTx - - 0.70 (± 0.11)

mGx+mTx - 0.42 (± 0.12) 0.74 (± 0.07)

mGx_pa 0.72 (± 0.06) 0.40 (± 0.10) 0.71 (± 0.05)

mGx_pa+mGx_taxa 0.76 (± 0.06) 0.41 (± 0.11) 0.74 (± 0.05)

mGx_pa+mPx - - 0.66 (± 0.10)

mGx_pa+mTx - 0.41 (± 0.12) 0.74 (± 0.07)

mGx_taxa 0.75 (± 0.06) 0.38 (± 0.11) 0.72 (± 0.06)

mGx_taxa+mPx - - 0.66 (± 0.09)

mGx_taxa+mTx - 0.41 (± 0.11) 0.75 (± 0.07)

mPx - - 0.57 (± 0.09)

mPx+mTx - - 0.69 (± 0.09)

mTx - 0.40 (± 0.11) 0.72 (± 0.08)

Table S8: Average Spearman’s rank correlation coefficient of MelonnPan [16] predictions (top 50) for multi-omics input, comparing the
model trained on a latent space, using the autoencoder in section A.2, to the model trained on naively concatenated multi-omics.

Prediction task MelonnPan trained on latent features MelonnPan trained on concatenated multi-omics

mGx+mTx -> mPx 0.16 (± 0.01) 0.42 (± 0.12)

mGx+mPx -> mBx 0.35 (± 0.01) 0.67 (± 0.10)

mGx+mPx+mTx -> mBx 0.40 (± 0.00) 0.70 (± 0.11)

mGx+mTx -> mBx 0.34 (± 0.01) 0.74 (± 0.07)

mPx+mTx -> mBx 0.40 (± 0.00) 0.69 (± 0.09)
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Table S9: Spearman’s rank correlation coefficient of the 50 best predicted features, for multiple combinations of network hyperparameters
and input-output combinations, for a deep neural network model. Performance was computed on a validation set, separate from the test
sets described in Section 3.2. An augmentation factor equal to 1 indicates that no augmentation was applied, while an augmentation
factor equal to n > 1 indicates that the final number of data points is equal to the initial size of the dataset multiplied by n. The best
result for each input-output combination is highlighted.

Predict mTx Predict mPx Predict mBx

Model architecture From mGx From mGx From mTx From mGx From mPx From mTx

Num. layers: 3 Aug. factor: 1 Loss: corr 0.62 (± 0.07) 0.32 (± 0.12) 0.32 (± 0.15) 0.61 (± 0.08) 0.46 (± 0.11) 0.59 (± 0.10)

Num. layers: 3 Aug. factor: 4 Loss: corr 0.63 (± 0.07) 0.30 (± 0.13) 0.32 (± 0.14) 0.61 (± 0.08) 0.47 (± 0.12) 0.59 (± 0.09)

Num. layers: 3 Aug. factor: 16 Loss: corr 0.62 (± 0.07) 0.32 (± 0.12) 0.35 (± 0.14) 0.59 (± 0.08) 0.45 (± 0.13) 0.56 (± 0.10)

Num. layers: 3 Aug. factor: 32 Loss: corr 0.64 (± 0.07) 0.32 (± 0.12) 0.36 (± 0.14) 0.61 (± 0.09) 0.40 (± 0.11) 0.59 (± 0.09)

Num. layers: 3 Aug. factor: 1 Loss: mse + corr 0.67 (± 0.06) 0.40 (± 0.11) 0.43 (± 0.15) 0.68 (± 0.07) 0.53 (± 0.10) 0.65 (± 0.06)

Num. layers: 3 Aug. factor: 4 Loss: mse + corr 0.67 (± 0.06) 0.35 (± 0.12) 0.40 (± 0.15) 0.66 (± 0.07) 0.50 (± 0.11) 0.65 (± 0.07)

Num. layers: 3 Aug. factor: 16 Loss: mse + corr 0.64 (± 0.06) 0.32 (± 0.12) 0.37 (± 0.14) 0.62 (± 0.08) 0.48 (± 0.10) 0.60 (± 0.09)

Num. layers: 3 Aug. factor: 32 Loss: mse + corr 0.62 (± 0.07) 0.32 (± 0.13) 0.37 (± 0.14) 0.62 (± 0.07) 0.44 (± 0.10) 0.61 (± 0.09)

Num. layers: 3 Aug. factor: 1 Loss: mse 0.67 (± 0.06) 0.40 (± 0.12) 0.42 (± 0.15) 0.68 (± 0.07) 0.53 (± 0.10) 0.67 (± 0.08)

Num. layers: 3 Aug. factor: 4 Loss: mse 0.67 (± 0.06) 0.36 (± 0.12) 0.40 (± 0.15) 0.67 (± 0.07) 0.53 (± 0.10) 0.66 (± 0.07)

Num. layers: 3 Aug. factor: 16 Loss: mse 0.64 (± 0.06) 0.33 (± 0.12) 0.37 (± 0.14) 0.61 (± 0.08) 0.48 (± 0.12) 0.60 (± 0.08)

Num. layers: 3 Aug. factor: 32 Loss: mse 0.63 (± 0.06) 0.33 (± 0.12) 0.37 (± 0.14) 0.61 (± 0.09) 0.44 (± 0.11) 0.61 (± 0.09)

Num. layers: 4 Aug. factor: 1 Loss: corr 0.62 (± 0.07) 0.31 (± 0.12) 0.31 (± 0.14) 0.62 (± 0.08) 0.44 (± 0.12) 0.59 (± 0.09)

Num. layers: 4 Aug. factor: 4 Loss: corr 0.64 (± 0.07) 0.30 (± 0.12) 0.33 (± 0.14) 0.64 (± 0.08) 0.49 (± 0.11) 0.60 (± 0.08)

Num. layers: 4 Aug. factor: 16 Loss: corr 0.63 (± 0.07) 0.32 (± 0.12) 0.35 (± 0.14) 0.62 (± 0.08) 0.42 (± 0.11) 0.58 (± 0.09)

Num. layers: 4 Aug. factor: 32 Loss: corr 0.66 (± 0.06) 0.34 (± 0.12) 0.36 (± 0.14) 0.62 (± 0.08) 0.42 (± 0.11) 0.59 (± 0.09)

Num. layers: 4 Aug. factor: 1 Loss: mse + corr 0.66 (± 0.07) 0.36 (± 0.12) 0.40 (± 0.15) 0.65 (± 0.07) 0.53 (± 0.12) 0.70 (± 0.06)

Num. layers: 4 Aug. factor: 4 Loss: mse + corr 0.67 (± 0.06) 0.35 (± 0.11) 0.39 (± 0.16) 0.66 (± 0.07) 0.50 (± 0.11) 0.66 (± 0.07)

Num. layers: 4 Aug. factor: 16 Loss: mse + corr 0.65 (± 0.06) 0.34 (± 0.12) 0.39 (± 0.14) 0.63 (± 0.09) 0.47 (± 0.12) 0.60 (± 0.08)

Num. layers: 4 Aug. factor: 32 Loss: mse + corr 0.65 (± 0.06) 0.34 (± 0.12) 0.36 (± 0.14) 0.65 (± 0.07) 0.44 (± 0.11) 0.61 (± 0.08)

Num. layers: 4 Aug. factor: 1 Loss: mse 0.66 (± 0.07) 0.37 (± 0.12) 0.39 (± 0.15) 0.65 (± 0.09) 0.53 (± 0.10) 0.67 (± 0.07)

Num. layers: 4 Aug. factor: 4 Loss: mse 0.67 (± 0.06) 0.37 (± 0.13) 0.40 (± 0.14) 0.67 (± 0.07) 0.52 (± 0.12) 0.67 (± 0.06)

Num. layers: 4 Aug. factor: 16 Loss: mse 0.65 (± 0.06) 0.35 (± 0.12) 0.39 (± 0.14) 0.63 (± 0.08) 0.48 (± 0.11) 0.62 (± 0.08)

Num. layers: 4 Aug. factor: 32 Loss: mse 0.65 (± 0.06) 0.35 (± 0.12) 0.38 (± 0.14) 0.64 (± 0.08) 0.43 (± 0.11) 0.63 (± 0.08)

Num. layers: 5 Aug. factor: 1 Loss: corr 0.62 (± 0.08) 0.29 (± 0.13) 0.33 (± 0.15) 0.64 (± 0.07) 0.45 (± 0.12) 0.59 (± 0.08)

Num. layers: 5 Aug. factor: 4 Loss: corr 0.64 (± 0.07) 0.30 (± 0.13) 0.33 (± 0.15) 0.63 (± 0.08) 0.48 (± 0.12) 0.61 (± 0.08)

Num. layers: 5 Aug. factor: 16 Loss: corr 0.64 (± 0.07) 0.32 (± 0.12) 0.36 (± 0.14) 0.62 (± 0.08) 0.43 (± 0.11) 0.60 (± 0.09)

Num. layers: 5 Aug. factor: 32 Loss: corr 0.67 (± 0.06) 0.35 (± 0.13) 0.35 (± 0.14) 0.63 (± 0.09) 0.42 (± 0.12) 0.59 (± 0.09)

Num. layers: 5 Aug. factor: 1 Loss: mse + corr 0.66 (± 0.07) 0.36 (± 0.12) 0.42 (± 0.15) 0.68 (± 0.08) 0.53 (± 0.10) 0.65 (± 0.08)

Num. layers: 5 Aug. factor: 4 Loss: mse + corr 0.67 (± 0.06) 0.37 (± 0.13) 0.40 (± 0.15) 0.65 (± 0.07) 0.51 (± 0.10) 0.66 (± 0.06)

Num. layers: 5 Aug. factor: 16 Loss: mse + corr 0.66 (± 0.06) 0.34 (± 0.12) 0.37 (± 0.14) 0.63 (± 0.08) 0.47 (± 0.11) 0.63 (± 0.08)

Num. layers: 5 Aug. factor: 32 Loss: mse + corr 0.66 (± 0.06) 0.35 (± 0.12) 0.38 (± 0.14) 0.64 (± 0.08) 0.45 (± 0.11) 0.64 (± 0.08)

Num. layers: 5 Aug. factor: 1 Loss: mse 0.66 (± 0.07) 0.37 (± 0.12) 0.41 (± 0.15) 0.66 (± 0.07) 0.55 (± 0.11) 0.68 (± 0.08)

Num. layers: 5 Aug. factor: 4 Loss: mse 0.67 (± 0.06) 0.38 (± 0.11) 0.41 (± 0.14) 0.67 (± 0.07) 0.52 (± 0.11) 0.67 (± 0.07)

Num. layers: 5 Aug. factor: 16 Loss: mse 0.66 (± 0.06) 0.36 (± 0.12) 0.39 (± 0.15) 0.65 (± 0.08) 0.48 (± 0.11) 0.64 (± 0.07)

Num. layers: 5 Aug. factor: 32 Loss: mse 0.66 (± 0.06) 0.36 (± 0.12) 0.38 (± 0.14) 0.65 (± 0.07) 0.45 (± 0.11) 0.64 (± 0.07)
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C. Supplementary figures
Predicting mTx (from mGx) Predicting mPx (from mGx)

Predicting mPx (from mTx)

Predicting mBx (from mGx)

Predicting mBx (from mTx)

Predicting mBx (from mPx)

Figure S1: Jaccard similarities computed between sets of the top 25% well-predicted features across 10 train/test partitions. Predictions
were generated with MelonnPan [16].
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Predicting mTx

Predicting mPx

Predicting mBx

Figure S2: Feature variance plotted against feature correlation, for the three output data types. Correlation was computed between
predicted features and the ground-truth. Variance and correlation were both computed on test sets, and averaged across dataset partitions
and single- and multi-omics input types.
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Figure S3: Training a multi-omics autoencoder (Supplementary Section A.2) with a combined loss, followed by training an elastic net
model (MelonnPan [16]) on the latent features.
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Figure S4: Pre-training for feature selection, performed on cross-validation folds. Selected features are subsequently used to train a
neural network, as the one described in SectionA.1.
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D. Code listings
1 # MelonnPan
2 # Training
3 Rscript train_metabolites.R -i [path_to_input_data] -g [path_to_output_data] -p 20 -o [

path_to_output_folder]
4 # Making predictions with the re -trained model
5 Rscript predict_metabolites.R -w [path_to_trained_weights] -i [path_to_input_test_data] -o [

path_to_output_folder]
6

7

8 # SparseNED
9 python3 main_cv_1dir.py --model BiomeAESnip --sparse 0.06 --learning_rate 0.01 --batch_size 20

--latent_size 70 --activation "tanh_tanh" --data_type [dataset_name] --data_root [
path_to_data_folder] --nonneg_weight --normalize_input

10

11 # MiMeNet
12 python3 MiMeNet_train.py -micro [path_to_input_data] -metab [path_to_output_data] -micro_norm

None -metab_norm None -net_params None -external_micro + [path_to_input_test_data] -
external_metab [path_to_output_test_data] -num_background 10 -num_run 5 -num_cv 5

Listing 1: Commands used to run “metagenomics-to-metabolomics” tools: MelonnPan [16], SparseNED[17] and MiMeNet [18].
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