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Abstract. The need to assess security and take protection decisions is
at least as old as our civilisation. However, the complexity and develop-
ment speed of our interconnected technical systems have surpassed our
capacity to imagine and evaluate risk scenarios. This holds in particular
for risks that are caused by the strategic behaviour of adversaries. There-
fore, technology-supported methods are needed to help us identify and
manage these risks. In this paper, we describe the attack navigator: a
graph-based approach to security risk assessment inspired by navigation
systems. Based on maps of a socio-technical system, the attack navigator
identifies routes to an attacker goal. Specific attacker properties such as
skill or resources can be included through attacker profiles. This enables
defenders to explore attack scenarios and the effectiveness of defense
alternatives under different threat conditions.

1 Introduction

The need to assess security and take protection decisions is as old as our civil-
isation, and maybe even older. Looking around in nature, we see that animals
try to build their lairs in safe places and that some plants grow prickles. These
kinds of decisions are not taken in a conscious way, but are rather a result of a
long evolutionary trial and error process.

What differentiates humans from other species is the highly complex techni-
cal environment we operate in. The speed of development of this environment
exceeds the capabilities of natural evolution by several orders of magnitude,
which means we cannot rely on evolution to develop safeguards. Instead, we
need security assessment methods to identify potential threats, and to allow us
to cope with the highly sophisticated attacks being enabled by our environment.

On the other hand, our perception of surroundings is still very much limited
by what evolution has provided for us. Humans are averagely good at perceiving
visual images, sounds, and smells, but not so much at grasping all the small
details and implications of large infrastructures. Yet, in order to utilize such
infrastructures efficiently, we need such abilities in one way or another.
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Even if humans manage to collect adequate environmental data, their risk
comprehension may be severely biased due to educational, cultural, psycholog-
ical, political, and other reasons [1–3]. Hence, there is a clear need for tools
that provide a visual, easy to comprehend overview of the environment, but at
the same time being rational and unambiguous. The target of the TRESPASS
project [4] is to achieve exactly that – assist humans in taking security decisions
about large, complex infrastructures in a way that is easy to perceive given our
limited capabilities.

In security risks, we deal with strategic attackers who plan their actions.
This means that we must be able to “think thief”, and predict possible attack
scenarios by imagining attacker behaviour. The central innovation to achieve
this goal is the introduction of the notion of attack navigator map. It can be
seen as an effort to bridge the gap between complexity of real systems and limits
of human perception by utilising a concept familiar to all of us, namely spatial
navigation. This approach gives us several benefits:

– Moving towards an attacker’s goal corresponds intuitively well to navigating
through complex terrain, together with the need to take decisions, achieve
subgoals, etc.

– Navigation optimisation is rather well studied and understood, as opposed
to complex system security.

– Navigation can be handled on different levels of abstraction. There can be
a bird-eye version for executive-level, grass-root version for technical level,
and an arbitrary number of intermediate levels as needed.

All these aspects make navigation a good metaphor for studying security assess-
ment of complex infrastructures and for communicating assessment results.

The remainder of this paper is organised as follows. In Section 2 we outline the
main steps of the TRESPASS process that provides analysts with the toolset and
methodology forming the basis of the attack navigator, which then is described
in Section 3. Sections 4 and 5 explain how to move from a high-level abstract
view of the environment (the satellite view) to a fine-grained system model (the
map) and how to find routes (the attacks). Finally, Section 6 discusses how to
select countermeasures based on TRESPASS analysis, and Section 7 draws some
conclusions.

2 The TRESPASS Process

Of course it takes more than just a good metaphor to build a usable risk as-
sessment system. In practice, the analyst needs a working toolset and method-
ology that would be able to support the navigation approach on various levels
of abstraction. The main result of the TRESPASS project are the toolset and
methodology that together support the TRESPASS process, which we describe
in this section.

In order to achieve the navigation effect, one needs an analogue of a map to
navigate on. In the real world, maps represent cities and streets, and to a certain



extent artefacts such as points of interest. These maps are produced by geogra-
phers based on satellite images and inspection of the terrain under consideration.
In the TRESPASS approach, the role of a map is played by the system model, a
formal representation of the socio-technical environment to be analysed. System
models contain a number of components from such environments:

– Actors represent human players or processes involved in the system;
– Assets can be either items or data;
– Locations represent where actors or items may be situated either physically

or digitally;
– Edges describe possible relocation paths between locations;
– Policies describe access control and specify allowed actions, e.g., get some

data item from a location or move between locations; and
– Processes formalize certain state transition mechanisms, e.g., computer

programs or virtual machines.

Unlike in the real world, there is no satellite to provide pictures of the envi-
ronment. The model creation is instead the result of a collection of processes that
resemble the combination of satellite and geographer. Before the actual model
creation can start, information about the system needs to be gathered. This
happens in several parallel processes, both via a specially crafted user interface
and automated data acquisition, e.g., in case of large IT infrastructures.

When using a real map for navigation, the goal is to reach a certain location
under certain constraints, e.g., as fast as possible, as economical as possible, or
without using freeways. Once a system model is built, the attack navigator needs
an attacker goal to explore the ways to achieve this goal by moving through the
model. The goal itself is stated as a policy violation, e.g., illegitimate access to
a data asset, and as such can serve as a trigger for an automated navigation
procedure.

At this point, navigation through a system model and orienteering across a
terrain start to differ. As mentioned above, finding one’s way in nature or urban
environment usually has a well-set optimisation goal, typically path length or
time that it would take to follow this path.

Navigation through a system model is relatively less understood and the
methods of along-the-path optimisation are much less mature than shortest path
algorithms on terrain graphs. Hence, the output of an attack navigator, in terms
of possible attack scenarios, has to contain more information and optimisation
itself has to happen at a later stage.

In case of the current toolset implementation of TRESPASS, this output
contains formal attack vector descriptions in the form of attack trees [5]. This
is not the only possible option, but attack trees were chosen since they are
rather well established and accepted in the risk assessment community [6]. Also,
computational methods have been developed for various optimisation targets
that can be stated for attack trees [7–10].

After the analysis of the attack trees has been finished, the results are dis-
played to the end user on a visual front-end. The user can then take decisions



concerning overall security level, required additional controls and possible model
updates. After the model has been updated, the analysis can be run again to
study the effects of the changes on the security level.

3 The Attack Navigator

We will now look closer at the attack navigator itself. Car navigation systems
are independent of the car they are used in, i.e., properties of the car are often
ignored since they typically are the same for each car. The navigator may have
options to avoid, for example, unpaved roads in non-4WD cars but these options
are not explicitly linked to types of cars.

In the attack navigator, the important properties that influence the possible
attacks are properties of the attacker. Just as in car navigation systems, in many
current models of security risk, these attacker properties are implicit. The risks
and identified attacks by such methods are annotated with probability, time,
and cost values, which are based on assumptions on the attacker that tries to
perform the attack.

Threat agent modelling [11–13] aims at specifying explicit threat agents as
a basis for security risk assessment, with properties such as skill, resources, and
objectives. This may lead to profiles such as activists, terrorists, or spies all with
specific properties.

The TRESPASS attack navigator concept takes an important step beyond
current models of security risk by leveraging threat agents as attacker profiles.
The attack navigator analysis uses a combination of a navigator map and an
attacker profile to derive

– suitable goals for the attacker based on attacker motivation, and
– feasible routes to that goal and properties of these routes based on skill and

resources from the attacker profile.

The attacker profiles also imply a link between attack navigators and security
economics [14]. Both attackers and defenders have costs for their actions, and
utility functions associated with the possible outcomes, but only a limited bud-
get. The utility of attackers may be different based on their motivation, and this
can be used in the analysis of attack trees [15]. The attack navigator aims at
optimising defender investments, assuming that

– attackers optimise their investments as well,
– the defender moves before the attacker, and
– the attacker knows what the defender has done.

This amounts to a simple two-step game with minimax optimisation [16]. One
can also consider attacker behaviour over time in order to get frequency metrics
for risk analysis [17].

The similarity with economic models also means that there is quite a bit
of uncertainty in the results of computations. The assumptions made may not
always hold, and the available data is fragile. The claim of attack navigators is



therefore not a precise prediction of what will happen, but rather a prediction
of what is possible or likely, and to what extent countermeasures improve the
situation. Even if results are not the exact numbers we would like to have, they
can be useful for comparing options, or even as thinking tools for imagining
possible attacks.

4 From Satellite View to Maps

An essential component of a navigator is the underlying map, on which routes are
computed. As such they also form an important component of the attack navi-
gator. Maps of the real world are created based on satellite images and the work
by geographers. This approach is only partly feasible for creating maps of organ-
isations: while the overall building structure can be assessed from the outside,
elements such as access control policies or network and social structures can-
not. These elements, however, form an essential part of attack navigator maps,
since they can be enabling factors of attacks, i.e., routes through the navigator
map. Satellites are not the right tool for another reason: the organisations under
scrutiny are typically rather small and consequently also only cover a limited
area. If the attack navigator map covers a bigger area, this part of reality can
usually be represented by parts of a real map.

4.1 Models of Reality

When creating maps as models of reality, one needs to abstract the real world by
a concept that is suited for automated detection of routes. For real navigation
systems, maps are stored as graphs with nodes connected by edges; both nodes
and edges can have properties, e.g., size of a city, size of a street, or whether it
is open for traffic or not.

Models for attack navigators follow the same approach: organisations are
abstracted to graphs, nodes in the graph represent locations in the organisation,
and edges between nodes represent connectivity between these locations. The

Table 1. An overview of components in the attack navigator map and the tools and
processes to identify them.

Real world Model component Tool

Relevant area Locations and edges Maps

Computer networks Assets and edges Network exploration tools such as nmap to
explore network infrastructure.

Human actors Actors Demographic surveys, personnel profiles

Physical access
control

Policies and processes Documents and interviews

Computer access
control

Policies and processes Documents, extraction tools, interviews

Software processes Processes Documents, extraction tools, interviews



construction of attack navigator maps follows a different approach than for real
maps, though. As mentioned above, satellites are not really applicable. They
can, however, serve as a metaphor. Where satellite pictures give a view of the
real world that needs to be interpreted to create a map, tools can be used to
obtain a similar view of organisations.

For creating attack navigator maps, a collection of tools or processes are
required to collect information about the different parts of an organisation and
its surroundings as necessary for the map. Table 1 shows components of attack
navigator maps and tools and processes to collect them. In general, whenever
adding a new category to be represented in attack navigator maps, one will also
need to add a new tool or process to collect the necessary information.

As shown in Table 1, quite a number of components are obtained through
interviews or by running tools. This is where the modeller, the attack navigator
map’s equivalent of the geographer, becomes important. Like the geographer is
in charge of assembling the map, and interpreting parts of the satellite image,
the modeller is in charge of integrating the bits and pieces of infrastructure and
data. Especially the interview parts require special attention, since extracting
and interpreting the information obtained through interviews is difficult.

In the TRESPASS project, a set of tools for physical modelling have been
developed [18] to structure the interview process; physical modelling enables em-
ployees to contribute to the map creation as domain experts with inside knowl-
edge of their organisation and its policies, assets and values. Physical modelling
provides a way to engage employees into the map creation, and to give them a
creative process to provide input.

The attack navigator map is constructed around the mapping of locations
together. The locations in the different infrastructures establish the connection
points between the different layers of the organisation. Access control policies are
associated with locations in the building layer and assets in the network layer.
Locations in the network layer can coincide with locations in the building layer.
Assets are located at other assets or at locations of the network or building layer.
Attack navigator maps are structured using these co-locations.

Figure 1 shows a small example for a navigator map with different locations,
actors, and assets. In the office there is a safe with a secret in it, and Bob has
a key to open the safe. There is another key on the shelf in the reception. Alice
wants to obtain the secret from the safe, but the safe has a policy that requires
actors to have the matching key in order to open the safe and access its content.
Accessing content is represented as input in system models.

4.2 Policies

Policies play an important role in attack navigator maps, since they describe
how access to certain nodes is restricted, and what an actor in the model needs
to fullfil to access the annotated location or asset. Examples include key cards
or keys that are required to access a door. Besides these local policies, there also
exist system-wide or global policies [19]. Global policies identify the assets of
an organisation that should be protected against attackers. For example, they
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Fig. 1. Example for a small system model with several actors, locations, and assets.

might specify that a certain file type is not allowed to leave the organisation,
or that a certain location may only be entered at certain times or with a set of
credentials. Section 5 discusses how these global policies guide the computation
of attacker routes.

4.3 Model Patterns

Like real maps, attack navigator maps tend to contain components that are
similar to each other; they share the same structure, but might be different with
respect to some properties. For creating maps, there exist standards of such
patterns used by map editors.

For attack navigator maps, patterns are equally important since many ele-
ments occur repeatedly. To ease the modeller’s task, model patterns are provided
in a library. Model patterns are sub-graphs that can be put into the attack nav-
igator map. When such a pattern is put into the map, it is instantiated and can
be configured to match the element of the real world it represents.

Model patterns also include policies and processes, which represent access
control restrictions and functionality at nodes in the model. For access control
or for modelling, e.g., network infrastructure, policies and processes can be com-
bined to model quite complex scenarios. For example, role-based access control
can be modelled by allowing different roles to output different messages to a
location, where each message triggers a process that implements the assigned
functionality.

5 From Maps to Routes

Once an organisation has been represented using a graphical model, the attack
navigator can identify possible routes on the map for the attacker to reach a
goal [20, 21]. In this section we discuss the different steps in doing so. After
introducing the representation of attacker routes in the next part, we discuss



the actual attack navigation and attack patterns, which can be used to extend
identified attack in a similar way as the model patterns discussed in the previous
section.

Like real navigation, attack navigation is white-box testing of a map. We as-
sume that the attacker has perfect knowledge of the organisation and knows, e.g.,
where assets are located, what the layout of the organisation is, or how employees
can be social engineered. Scenarios with incomplete knowledge can be consid-
ered as well, i.e., an attacker who needs to explore the organisation, but then the
impact of attacks can be expected to be lower than for an attacker with perfect
knowledge.

5.1 Attacker Routes

Before presenting the actual routing mechanism on attack navigator maps, we
briefly discuss the representation of routes. In a navigation system, routes are
series of coordinates, often with information about potential congestion on that
part of the route. A navigation system assumes that its user is rational and will
follow the suggested route. Only once deviations from that route are observed,
it will start to recalculate a new route from the position where the user is at this
point.

Attacker routes are computed slightly differently, and consequently need an-
other representation. For attacker routes, we are interested in all possible attacks.
As described above, the result of the attack navigator is the set of all attacks that
are possible in the model, quantified by some property, and ranked accordingly.
This is similar to the regular navigator: for navigation, only the shortest, fastest,
or most economic route is displayed. Due the complexity of attacks, this selec-
tion is far from easy for the attack navigator; the result is therefore presented
to a human defender who will dismiss impossible or negligible attacks.

To enable this selection process, attack trees [5,6] are the ideal representation,
since they combine different possible attacks that lead to the same goal. The root
of an attack tree represents this goal, and the subtrees represent sub-attacks that
either need all to be fulfilled, or where one is sufficient to reach the goal. For
representing attacker routes, the former would represent that several steps need
to be taken, and the latter would represent different possible routes. We present
examples for attack trees in Figure 5.

5.2 Attack Identification

Attack identification is the actual navigation on the attack navigator map. Like
real navigation, it takes an attacker location and identifies a possible route from
this location to the desired goal.

For the attack navigator map shown in Figure 1, the goal is clear: Alice wants
to obtain the secret from the safe. Once the goal is identified, the paths to the
goal (only one in the example) and the missing assets are identified. Alice lacks
the key, which is available from Bob or from the Shelf. The upper part of Figure 5
shows part of the attack tree generated for this scenario.



Goal Identification: As discussed above, the goal in attack navigator maps is
identified based on global policies of the modelled organisation. These policies
represent a goal of the organisation that should not be violated. Examples include
that employees should not send secret files by email, that in general secret files
should not leave the organisation, or that the password file on a computer may
not be read. In the attacker route, this goal would be the root node, and its
children would represent different attacks that enable an attacker to reach this
goal.

The result of the goal identification is an action, which the attacker tries
to perform, or an asset, which the attacker tries to possess. An important ob-
servation is that the latter is a variant of the former; to possess an asset, the
attacker needs to perform an action to obtain it. In the attack navigator, this is
represented as inputting the asset.

Attack Paths: For each of the identified attacker goals, there may exist numer-
ous paths to reach the goal location, where the goal action can be performed, or
where the goal asset can be obtained. The attack navigation considers all these
paths, since they may result in different impact or may otherwise have different
properties that the defender deems important.

This property is essentially different from standard navigation, where it is
a safe assumption that one can ignore routes that are too slow compared to
the optimal routes at any given point during routing. Attacker routes are only
evaluated in the next step and a defender might use different criteria for eval-
uating trees; as a result, there is no decision basis for ignoring attack routes or
for evaluating them on the fly. One important evaluation criteria is an attack
route’s impact, which does not increase continuously, but may have discontinu-
ous changes based, e.g., on the assets obtained.

Every step in an attack path consists of a step in the model, be it moving
from one location to another, or be it obtaining some asset—either the final one,
or one that is needed to perform some other action. For example, if the attacker
goal is to read the password file on a central server, then the root password of
that machine is an asset that needs to be obtained.

Required Resources: These required resources are acquired on the fly. When-
ever the attacker encounters an action in an attack path that requires an asset
such as the password for the server machine, a new attack is spawned, at the end
of which the attacker has obtained that asset. It is important to note that the
routes always assume success, even though an attack might be prohibited. From
the attacker’s viewpoint the asset has been obtained, and the original attack
can continue as planned. This should also be the defender’s point of view—the
interesting case is not a defeated attack, but a successful one.

Moving Assets: Finally, attacker routes can differ significantly from normal
routes through the fact that the goal asset in attacker models can move or be



moved, resulting in novel attacks. In a regular navigation system this would
mean that the goal could be moved, resulting in a shorter, faster, or longer trip.

While this is not possible for real goals, it is a common attack strategy in
attacker maps: The attack consists in making the asset move, and then finding
attacks to all those locations that the asset can reach. The means of making an
asset move differ depending on the kind of asset. Data usually moves through
processes, which are triggered by the attacker; assets usually move with actors,
which an attacker must social engineer.

An example for an attack that made the data move is a cloud service admin-
istrator who attached a network sniffer to the local network in the server room,
and then made a virtual machine migrate from one server to another; as a result,
the administrator had a copy of the network traffic that he could playback to
obtain a copy of the virtual machine.

5.3 Detailedness of Models

One general issue with maps and routes, both for real maps and attack navigator
maps, is the level of detail in the maps. In both cases, if the maps are too detailed,
it is very difficult to identify a close-to-optimal route; if the maps however are too
imprecise, the routes are not realistic either, and may lack important information
needed to follow the route.

In attack navigator maps, the level of detail relates to how detailed the iden-
tified attacks are. Coming back to the cloud administrator example, modelling
the bits and bytes of the virtual machine and the OSI network stack is likely too
much detail. On the other hand, in a system that models only the two servers
not including the network infrastructure, it will not be possible to identify the
attack at all.

The level of detail is therefore an important design criteria when designing
(attack navigator) maps. A good guiding principle is to include only those ele-
ments that are essential for the functionality of the overall system, but exclude
internal workings of the system. The modelling work in the TRESPASS project
has shown that it is better to exclude some details and to rely on attack patterns
to add possible attack steps to the generated attack route.

5.4 Attack Patterns

To deal with detailedness of models, and the resulting detailedness of attacks,
we introduce attack patterns, which are similar to the model patterns discussed
in the previous section. For too detailed models it is difficult to deal with the
resulting overly detailed attack trees. For models with too few details, this is
equally difficult. However, it is easier to add “standard” attack pattens to an
attack tree, than it is to remove superfluous nodes.

Attack patterns identify typical approaches to performing an attack. Since
they are used to extend the attacker routes or attack trees introduced earlier,
attack patterns are represented as subtrees as well.



1 label match {

2 case IN attacker item container:

3 // get type attacker from attacker profile

4 // get type item from knowledge base

5 // get type container from knowledge base

6 // insert APL attacks that allow to extract item from container

7 case MAKE attacker actor action:

8 // get type attacker from attacker profile

9 // get type actor from attacker profile

10 // insert APL attacks based on types and action

11 //...

12 }

Fig. 2. Code for the expansion of general attack trees in a context-unaware fashion. The
expansion algorithm iterates over all leaf nodes and matches leaf node labels against
the known cases. If a leaf node label matches a pattern in the attack pattern library,
it is inserted into the general attack tree. Figure 5 illustrates this process.

Attack patterns are applied by inspecting the actions in an attack tree, and
by exploring whether a certain action realisations of this action are known. The
overall structure of this exploration is shown in Figure 2: The expansion algo-
rithm iterates over all leaf nodes and matches the action at this leaf (represented
as leaf node labels) against the known cases. If a leaf node label matches a pat-
tern in the attack pattern library, it is inserted into the general attack tree.

This approach has a number of benefits beyond it contributing to clearing out
models and keeping them free of clutter. Attack pattern libraries can be shared
between organisations to disseminate findings about possible attacks. Once an
attack pattern is available in the attack navigator, whenever a matching action
working on matching types of assets or actors is found, the pattern will be
instantiated.

Two attack patterns are shown in Figure 3 and 4. The pattern in Figure 3
replaces obtaining an item from an actor with either stealing the item or social
engineering the actor to give it to the attacker. The root of the pattern specifies
the action and the types of the arguments for the actor A obtaining an item I
from an actor C, represented as A inputing I from C:

IN A item : I actor : C

This information is crucial for applying the pattern, also because these arguments
A (attacker), I (item), and C (actor) occur again in the attack pattern, and must
be replaced with the matching values from the attack tree.

The pattern in Figure 4 is a bit more complicated; it describes that A makes
B perform some action for him. As before, the root of the pattern is replaced
with nodes that represent different alternatives in the attack. It should be noted
that later phases may discard some of the generated attacks since they might be
infeasible.



IN A item:I actor:C 

A steals I from C
A social 

engineers C to 
give I 

Fig. 3. An attack pattern that replaces the action of obtaining (inputting) an item
from an actor with two attacks, one stealing the item from the actor, and the other
one social engineering the actor to hand over the item.

MAKE A B IN B item:I actor:C

A threatens B to 
execute IN B I C

A blackmails B to 
execute IN B I C

A bribes B to execute 
IN B I C A social engineers B

A impersonates 
authority

A orders B to execute 
IN B I C

A blackmails B

A collects intel about B

Fig. 4. An attack pattern that replaces social engineering an actor A to obtain (input)
an item from another actor B. The alternatives inserted are threatening, blackmailing,
bribing, and social engineering actor A to perform the action.

Social Engineering: A typical example for attack steps that should be added
through attack patterns, not through adding more details to the model, is social
engineering. Social engineering is an important factor of attacking organisations
through exploiting the knowledge and the access rights of employees or insid-
ers [22–24]. Social engineering usually requires creating a pretext, which is part
of bringing the victim into a situation where it either is not aware of contributing
to an attack, or where it has sufficient reason to believe to do the right thing.

Due to its dependency on human behaviour, social engineering is difficult to
deal with in formal methods. Since the choice of pretext, for example applying
authority, depends heavily on the victim, this kind of attack is best dealt with
through attack patterns. The patterns shown in Figures 3 and 4 introduce social
engineering nodes, where the attacker social engineers another actor to perform
an action.

5.5 Attacker and Actor Profiles

The success of both attackers and defenders depends on the type of actor and
the skills considered. In the attack navigator, different profiles are considered
based on threat agent modelling [11–13], which provides skills, resources, and
objectives of actors. The attack navigator analysis uses these profiles to identify
attacks and countermeasures on a system model, and to predict the likelihood
of success and impact of the attack.

Actor profiles separate the planning of a route from its assessment: routes in
the attack navigator are all possible attacks with respect to the model. Not all
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Fig. 5. The expansion of a part of a general attack tree. The patterns (Figure 3 and 4)
may have holes, which are filled with attributes from the leaf node that is expanded.
For conjunctive nodes, the outgoing edges are connected with an arc, indicating that
all child nodes are required to be executed to reach the goal.



of these attacks are feasible for all attackers, but they are still attacks. For car
navigation this would mean to show all possible paths from the starting point to
the goal, but routes that require a 4WD car would not be feasible for all cars.

Real navigation cannot consider all routes, since it requires the driver to
decide, which of the many possible routes is the best with respect to an opti-
mization goal. For attack navigation it is the reverse: a single route or attack
out of many is not useful; considering all attacks enables the tools to identify
countermeasures that disable as many attacks as possible with a certain effort,
and it also enables analysis of which kind of attacker to watch out for.

6 Countermeasures

A risk assessment would be useless if it would not come with a way to incor-
porate countermeasure effect analysis. There are two major ways in which the
TRESPASS methodology supports this.

The first approach is generic and can in principle be applied to any risk
assessment framework. It uses the framework as a black box which takes some
inputs (in the case of TRESPASS, the system model) and gives some output (in
our case, prioritized attack vectors). Assuming the end user is able to change
the model and run the analysis again, we obtain a full operational loop with
human involvement, where the user is expected to interpret the analysis results
and actively participate in the model development.

Even though TRESPASS aims at automating the risk analysis process, we
do not think that full automation is possible or even needed. Again coming back
to the terrain navigation analogue – the human is not expected to follow GPS
blindly. In fact, several cases have been reported when people being overconfident
in the GPS reading have ended up in serious accidents [25, 26]. And even if the
model, i.e., the map, used by the GPS device is correct, the user may still have
optimization preferences the device is unaware of.

In some sense, the situation is even better with the attack navigator. Here
the user has more options than just selecting between the routes offered by a
machine. The user can actually change the map by implementing additional
controls, increasing efficiency of the existing ones, etc. All these changes would
hopefully change the risk landscape, and running the analysis tool again on an
updated map is the prime way of verifying this.

As mentioned in Section 2, attack trees are not the only possible attack
description language that can be used in TRESPASS. Attack-defence trees by
Kordy et al. [27] are an alternative approach to countermeasure selection. In
principle, this formalism allows for integrating countermeasures into the risk
assessment process on a lower level than the generic model update approach
described above. It is possible already at the attack generation stage to also
generate certain defence nodes into the tree or to obtain those from standard
libraries. The option of changing the model and running the analysis again of
course remains, so the attack-defence tree approach is potentially more flexible
than the one based on classical attack trees. However, since attack-defence trees



are considerably more recent and accordingly less studied, the current version of
the TRESPASS toolset (as of 2015) does not yet support this.

7 Conclusions

The navigation metaphor is a new approach to security assessment of complex
systems that aims at being more accessible to a human end user than other
computer-assisted frameworks. However, no metaphor can make the inherent
challenges of risk assessment to go away, it can only try to present them on the
level where human decisions can be made more intuitively.

The TRESPASS project has been building a toolset supporting such a work-
flow. We have published key innovations in for example the attack navigation
metaphor [14], making attacker profiles explicit [28], attack generation [20, 21],
quantitative analysis [29, 30], and visualisation of maps and paths [31, 32]. Our
practical and theoretical developments open up for many new and interesting
research questions in the area of attack navigation and graphical models for
security, for example:

– What is the correct abstraction level for a system models and maps that
would be humanly comprehensible and at the same time would allow formal
analysis?

– Are there additional opportunities for using the properties of attacker profiles
in security analysis? Can we use more advanced calculations or statistics?

– Are the current TRESPASS model components generalisable enough to per-
form realistic security assessments on a wide class of systems, or are exten-
sions needed for different types of systems?

– How can we share attack patterns and what are the requirements on the
pattern sharing authorisation infrastructure?
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