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A model is suggested for the structure of an adsorbed layer of a highly charged semi-flexible
polyelectrolyte on a weakly charged surface of opposite charge sign. The adsorbed phase is thin,
owing to the effective reversal of the charge sign of the surface upon adsorption, and ordered, owing
to the high surface density of polyelectrolyte strands caused by the generally strong binding between
polyelectrolyte and surface. The Poisson–Boltzmann equation for the electrostatic interaction
between the array of adsorbed polyelectrolytes and the charged surface is solved for a cylindrical
geometry, both numerically, using a finite element method, and analytically within the weak
curvature limit under the assumption of excess monovalent salt. For small separations, repulsive
surface polarization and counterion osmotic pressure effects dominate over the electrostatic
attraction and the resulting electrostatic interaction curve shows a minimum at nonzero separations
on the Ångstrom scale. The equilibrium density of the adsorbed phase is obtained by minimizing the
total free energy under the condition of equality of chemical potential and osmotic pressure of the
polyelectrolyte in solution and in the adsorbed phase. For a wide range of ionic conditions and
charge densities of the charged surface, the interstrand separation as predicted by the Poisson–
Boltzmann model and the analytical theory closely agree. For low to moderate charge densities of
the adsorbing surface, the interstrand spacing decreases as a function of the charge density of the
charged surface. Above about 0.1 M excess monovalent salt, it is only weakly dependent on the
ionic strength. At high charge densities of the adsorbing surface, the interstrand spacing increases
with increasing ionic strength, in line with the experiments by Fang and Yang@J. Phys. Chem. B
101, 441 ~1997!#. © 2004 American Institute of Physics.@DOI: 10.1063/1.1647048#

INTRODUCTION

Adsorption or binding of polyelectrolytes to oppositely
charged surfaces is a phenomenon which is of great signifi-
cance both for biological systems and in various physico-
chemical applications. One can, for instance, think of the
complex coacervation of anionic polysaccharides with posi-
tively charged proteins,1,2 charged micelles3 or emulsion
interfaces,4 the interaction of DNA with cationic
membranes,5,6 the formation of Langmuir–Blodgett type
monolayers of stiff polyelectrolytes on charged interfaces7 or
the adsorption of alternating layers of positively and nega-
tively charged polyelectrolytes on a charged substrate.8–12 In
all these cases, electrostatic interactions are at least partially
responsible for the stability and structure of the complexes
formed.

The theory of the adsorption of flexible polyelectrolytes
has received abundant attention during the last decades, gen-
erating a large body of literature.13–21 However, many poly-
electrolytes, including most ionic biopolymers, are semi-
flexible rather than flexible. Because a persistence-length

segment is highly anisometric, we expect the adsorption be-
havior of semi-flexible polyelectrolytes to differ qualitatively
from that of flexible polyelectrolytes. In particular, in the
case of polyelectrolytes strongly interacting with the charged
surface, ordered phases of adsorbed polyelectrolytes will be
formed in order to maximize the surface density of polyelec-
trolyte chains and thereby the attractive free energy of ad-
sorption.

Recently, the adsorption of semi-flexible and rodlike
polyelectrolytes has attracted theoretical attention.22–27 The
problems encountered, in particular, in formulating a suffi-
ciently rigorous theory of the charge-induced adsorption of
semi-flexible polyelectrolytes are formidable.

One theoretical obstacle is the often intractable math-
ematics of the semi-flexible chain, another is that the often
high charge density of the polyelectrolyte excludes Debye–
Hückel type approximations in the treatment of the electro-
static interactions. The Debye–Hu¨ckel approximation is used
in modeling the adsorption behavior of semi-flexible
polyelectrolytes24,26because of its straightforward mathemat-
ics, but application to highly charged polyelectrolytes like
DNA is of course excluded.

In recent years, the theory of the semi-flexible chain has
advanced considerably, leading, in particular, to a basic un-
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derstanding of the effects of confinement on the statistics of
the semi-flexible chain.28–34 This enables us to deal in an
approximate way with the entropy a semi-flexible chain con-
fined within an ordered surface phase.

It is the objective of the present article to combine the
statistics of the semi-flexible chain and the electrostatics at
the Poisson–Boltzmann level in a theory of the charge-
induced adsorption of polyelectrolytes. Although at the small
separations relevant to adsorption, other interactions, like
van der Waals forces, ion-ion correlation forces, and hydra-
tion forces, could be comparable in magnitude to the
screened electrostatic interaction, we restrict ourselves to the
latter.

The electrostatic interactions in the adsorbed complex of
polyelectrolytes are assumed to be screened by an excess of
monovalent salt. We consider the case where the attractive
interaction is strong enough to enforce complete adsorption
of the polyelectrolyte chain. We furthermore assume that the
polyelectrolyte is long, i.e., its contour length is much longer
than the persistence length. Consequently, end effects may be
neglected. As the polymer chain is semi-flexible, excursions
away from the surface are energetically costly so that the
chain remains parallel to the surface when adsorbed.

The adsorbed layer is thin, consisting of a single layer of
polymer, as reversal of the effective charge sign of the sur-
face upon adsorption will hamper the buildup of a thicker
layer ~for some recent theoretical work on the charge rever-
sal on adsorption of charged polymers or colloidal bodies,
see, e.g., Refs. 24–27!.

Already at low charge-densities of the adsorbing surface
the surface density of the adsorbed polyelectrolyte will be
high, even for a highly dilute polyelectrolyte solution. The
surface density is so high, in fact, that excluded volume in-
teractions between adsorbed polyelectrolytes enforce a two-
dimensionally ordered phase in which the polyelectrolyte
strands are aligned more or less in parallel at a well-defined
spacinga ~Fig. 1!. The statistics of the semi-flexible chain
confined near the adsorbing surface is then governed by a
deflection lengthl5P1/3a2/3, which replaces the persistence

lengthP as the relevant statistical length scale.29

The electrostatic interaction between the charged sur-
face, assumed to be perfectly flat, uniformly charged and of
low dielectric constant, and the polyelectrolyte strand, which
we view as a uniformly charged cylinder of low dielectric
constant, is taken into account using the Poisson–Boltzmann
equation. The use of a cylinder model to calculate the elec-
trostatic field around a semi-flexible polyelectrolyte is justi-
fied as long as the local radius of curvature of the polyelec-
trolyte, induced either by bending or by thermal fluctuations,
is much larger than the Debye length. This was argued before
for the analogous case of the electrostatic interaction in lyo-
tropic polyelectrolyte liquid crystals.33,35,36For the cylinder
model to be applicable, we therefore require the deflection
length to be much larger than the Debye screening length.

As uniformly valid analytical approximations are not ob-
vious for the present geometry, we start by numerically solv-
ing the Poisson–Boltzmann equation for an array of ad-
sorbed cylindrical polyelectrolytes near a charged surface
using a finite element method. The integrated electrostatic
free energy is subsequently used for a numerical minimiza-
tion of the free energy of an adsorbed polyelectrolyte com-
plex.

Afterwards, an approximate theory for the charge-
induced adsorption is introduced. We start by deriving a con-
venient approximate expression for the Poisson–Boltzmann
potential between a highly charged and a weakly charged
surface. The cylindrical geometry of the polyelectrolyte sur-
face is taken into account in the weak curvature limit via a
Derjaguin approximation and the free energy of interaction is
calculated numerically.

The polyelectrolyte strands on the surface interact via an
electrostatic excluded volume, for which we introduce a
simple analytical expression. The equilibrium state is calcu-
lated by minimizing the total free energy of the system tak-
ing into account the coexistence relations. Numerical results
are obtained for the adsorption of DNA on a positively
charged surface of varying charge density and for a number
of concentrations of excess monovalent salt.

At high charge densities of the positively charged sur-
face or at very small separations between the surface and the
cylinder the electrostatic adsorption free energy may become
very high, of order 100– 1000kBT per persistence length. In
this case, the statistical-physical description of the structure
and properties of the adsorbed layer could become invalid.
Even in this case our approach is of value, however, as the
strength of the electrostatic binding between polyelectrolyte
and surface is a quantity of experimental interest.

FREE ENERGY OF ADSORPTION AND ADSORPTION
EQUILIBRIUM

The adsorption of polyelectrolytes with a contour length
L much longer than the persistence lengthP is considered. In
our simplified picture, the structure of the adsorbed layer is
characterized completely by the interstrand spacinga, the
polyelectrolyte radiusr and the separation between surface
and polyelectrolyted. ~Figs. 1 and 2!.

For adsorbed semi-flexible polyelectrolytes in the or-
dered phase depicted in Fig. 1, the free energy per unit length

FIG. 1. The adsorbed phase of semi-flexible polyelectrolytes. The average
spacing between the adsorbed strands is denoted bya. l5P1/3a2/3 is the
deflection length governing the statistics of the semi-flexible chain undulat-
ing parallel to the adsorbing surface andP is the persistence length.
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of adsorbed strand may generally be written as

F5Fel1Fcon f , ~1!

where Fel is the electrostatic free energy of the adsorbed
complex andFcon f is the free energy of entropic confinement
of the semi-flexible chain in the adsorbed layer. The free
energy contributions are functions of the interstrand spacing
a and the distance to the adsorbing surfaced.

In order to arrive at the equilibrium structure and pack-
ing density of the adsorbed layer, two conditions need to be
fulfilled. First, the osmotic pressure should be equal in the
adsorbed phase and in the polyelectrolyte solution:

Pa5Ps . ~2!

The subscriptsa and s refer to the adsorbed and solution
phases, respectively. Second, we require the equality of the
chemical potential of the polyelectrolyte in both phases:

ma5ms . ~3!

The osmotic pressure of the adsorbed polyelectrolyte
phase in equilibrium with an excess monovalent salt solution
is defined as37

Pp5S ]F

]VD
T,N

5
1

a

]F
]d

, ~4!

whereF is the total free energy of the adsorbed polyelectro-
lyte phase,V is its volume andN is the number of persis-
tence length segments in the adsorbed phase.

As the polyelectrolyte concentration in the solution is
assumed to be low, osmotic effects of the polyelectrolyte in
solution may be neglected, i.e., we setPp50. It should be
noted at this point that we always consider polyelectrolyte
solutions containing excess monovalent salt. Stability of the
adsorbed phase with respect to the separation with the sur-
face is therefore given by the following condition:

]F
]d

50. ~5!

It needs to be verified that the free energy is indeed a mini-
mum:

]2F
]d2>0. ~6!

In effect, we will find that the polyelectrolyte chains are
undulating around the minimum of a steep potential energy
well so that even a slight solution osmotic pressure of the
polyelectrolytes will not significantly perturb the equilibrium
value ford.

At constant temperature and volume, the chemical po-
tential of the adsorbed phase takes the following form:38

ma5S ]F

]ND
T,V

5PF2Pa
]F
]a

. ~7!

Here and in the following, we take the chemical potential per
persistence length of polyelectrolyte, assuming that the con-
centration of excess monovalent salt is high enough to ensure
that electrostatic stiffening effects are small.

The polyelectrolyte solution is a very large reservoir, so
that the polyelectrolyte concentration remains virtually con-
stant under variations in density of the adsorbed phase.
Hence, the second condition for coexistence may be written

]F
]a

5
F
a

2
ms

Pa
. ~8!

In Eq. ~8!, the second term on the right hand side is virtually
always negligible as the chemical potential of a semi-flexible
chain is of the order ofkBT per persistence length whereas
the free energy of an electrostatically adsorbed chain is often
of the order of 10 to 1000kBT per persistence length. The
equilibrium state of the system is obtained by minimizing the
free energy equation~1! following Eqs.~5! and ~8!.

In a convenient, albeit more restricted formulation of the
free energy of adsorption we may split the free energy of the
adsorbed polyelectrolytes in a part containing only the free
energy of a single adsorbed chain and a free energy of inter-
action of adsorbed chains:

F5Fads1F2 , ~9!

whereFads is the free energy of adsorption of a single chain
and F2 is the free energy taking into account the excluded
volume interactions between strands adsorbed on the surface.
Both free energy contributions are per unit length of poly-
electrolyte. The division of the free energy in these two con-
tributions is convenient becauseFads depends only ond and
F2 is a function ofa only.

The condition for phase coexistence Eq.~8! is then sim-
ply

]F2

]a
5

F
a

. ~10!

Both Fads and F2 contain a free energy contribution
taking into account the confinement of the semi-flexible
chain close to the surface and an electrostatic contribution to
the free energy:

Fads~d!5Fint~d!1F con f
' ~d!, ~11!

F2~a!5Fel~a!1F con f
i

~a!, ~12!

Fint is the free energy of electrostatic interaction between the
polyelectrolyte cylinder and the charged surface,Fel is the
free energy of electrostatic interaction between the adsorbed
strands andF con f

' and F con f
i are the free energy contribu-

tions due to the entropic confinement of the strand close to
the charged surface and within the two-dimensional array of
adsorbed polyelectrolytes, respectively.

For a semi-flexible chain confined independently in two
dimensions it can be shown that the confinement free energy

FIG. 2. Cross-sectional view of the charged substrate and the adsorbed layer
of polyelectrolyte cylinders.
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partitions into two independent terms, like in Eqs.~11! and
~12!.31,34 Following Refs. 30, 31, and 34, the free energy of
confinement may therefore be expressed as

F con f
'

kBT
5

c'

P1/3d2/3, ~13!

F con f
i

kBT
5

ci

P1/3a0
2/3, ~14!

wherea05a2d. The form of Eq.~13! is presumably inde-
pendent of the precise form of the mean field theory.28,30–34

The value of the coefficientsc' andci is dependent on the
form of the confining potential, in the case of confinement by
a quadratic potential of a worm undulating in one dimension
c53/28/3.32–34 Here, we will use the same value.

A discussion ofFel is the subject of the next section.

ELECTROSTATIC FREE ENERGY

We consider the case where the electrostatic interactions
both between the adsorbed polyelectrolytes and between a
polyelectrolyte strand and the charged surface are screened
by monovalent ions only. The ions originate from the poly-
electrolytes, the surface as well as excess monovalent salt.

The surface, considered smooth, is variably charged but
the primary focus is here on surfaces of a charge density
lower than the surface charge density of the polyelectrolyte.
The charge density of the surface is uniform. The discrete
nature of the charges, though important especially at low
surface charge densities and when close to the surface, is
neglected here. The polyelectrolyte, which we model as a
uniformly charged dielectric cylinder, is highly charged, so
that its electrostatics have to be evaluated within the nonlin-
ear Poisson–Boltzmann approximation.39,40 The approxima-
tion of the electrostatic field around a semi-flexible polyelec-
trolyte by the electrostatcs of a cylinder is justified as long as
the deflection length is much larger than the Debye length.
Both the surface and the polyelectrolyte cylinder are consid-
ered to be ideally polarizable and of low dielectric permittiv-
ity. Consequently, image charge effects are important.

The problem of the electrostatics is difficult as it stands.
In principle, we not only have to consider the interaction of
one polyelectrolyte strand with the charged surface, but also
the electrostatic interaction between two polyelectrolytes ad-
sorbed on the surface~Fig. 3!. As no quantitative analytical
approximation is immediately obvious, apart from lineariz-
ing the Poisson–Boltzmann equation, we initially opt for the

following numerical approach. The Poisson–Boltzmann
equation is numerically solved for the appropriate geometry
and boundary conditions on a discrete grid spanned by the
independent variablesa and d. The equilibrium conditions
following Eqs.~1!, ~5! and~8! are obtained using the numeri-
cally integrated electrostatic free energy.

The merits of the analytical approach which is intro-
duced later in the article, and whch is based on a free energy
division as in Eq.~9!, can then be evaluated within the rel-
evant parameter space.

The Poisson–Boltzmann equation for a solution contain-
ing monovalent salt is given by

¹2f5sinh~f!. ~15!

The electrostatic potentialc is rendered dimensionless
asf5qc/(kBT). All geometric length scales are scaled by
the Debye lengthk21: R5kr , A5ka, A05ka0 and D0

5kd0 . In a solution containing excess monovalent salt, the
Debye length is defined by k258pQBns . QB

5q2/(4pekBT) is the Bjerrum length withq the elementary
charge,e is the dielectric permittivity,kB is Boltzmann’s
constant andT is the absolute temperature. Expressed in
(nm23), the number concentration of monovalent salt is re-
lated to the molar concentrationc1:1 by ns'0.602c1:1.

The assumption of constant charge density of the surface
of both polyelectrolyte and surface provides two of the
boundary conditions:

]f

]r U
r5A

524pSp , ~16!

wherer is the radial coordinate from the cylinder axis, and

]f

]Y U
Y50

524pSw , ~17!

whereY denotes the coordinate perpendicular to the charged
surface~Fig. 4!. The dimensionless surface charge densities
are determined bySp[QBsp /(kq) and Sw[QBsw /(kq)
wheresp andsw are the signed surface charge densities of,
respectively, polyelectrolyte and surface, measured in el-
ementary charges per unit surface area. By the boundary con-
ditions Eqs.~16! and ~17! we assume the dielectric permit-

FIG. 3. Electrostatic far field between adsorbed polyelectrolytes.

FIG. 4. The Derjaguin approximation.
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tivities of both surfaces,ep for the polyelectrolyte cylinder
andes for the charged substrate~Fig. 2!, to be negligible to
the one of the aqueous solution.

A number of additional boundary conditions comple-
ment the set of equations. First, we require that the electro-
static potential vanishes into the solution:

f~Y→`!→0. ~18!

Second, the potential is symmetric with respect to the plane
perpendicular to the surface which runs through the center of
the adsorbed polyelectrolyte:

]f

]X U
X50

50, ~19!

whereX denotes the coordinate parallel to the charged sur-
face ~Fig. 4!. Third, the potential is symmetric with respect
to the plane perpendicular to the surface which divides the
space between two adsorbed polyelectrolytes into two:

]f

]X U
X5A/2

50. ~20!

The set of equations~15!–~20! is solved numerically us-
ing a finite element method~see the Appendix for details!.
The total electrostatic free energy associated with unit length
of adsorbed polyelectrolyte is then calculated via a numerical
integration over the electric field and the entropy of the small
ions:41

Fel,tot

kBT
5

k

8pQB
E

S
dSF ~¹f!21n1S ln

n1

ns
21D

1n2S ln
n2

ns
21D12nsG , ~21!

where the domain of integration extends fromX52A/2 to
X5A/2 and fromY50 to Y→`. The distributions of posi-
tive and negative small ions are given byn15ns exp(2f)
and n25ns exp(f), wherens is the concentration of small
ions in the solution outside of the slit.

We obtain the free energy of double layer interaction by
subtracting the free energies of the isolated double layers of
polyelectrolyte cylinderFel,p

0 and charged surfaceFel
0 ~see

the Appendix!:

Fel5Fel,tot2Fel,p
0 2aFel

0 . ~22!

The free energy per unit surface area of an isolated double
layer is given by.41,42

Fel
0

kBT
5

2kS

QB
@ ln~sinh~ uf i~0!u/2!

1~sinh2~ uf i~0!u/2!11!1/2!1sinh21~ uf i~0!u/2!

3@12~sinh2~ uf i~0!u/2!11!1/2##. ~23!

As a fully numerical approach towards the electrostatic free
energy of highly charged polyelectrolytes in adsorbed states
is rather inconvenient, in particular when further free energy
contributions are to be taken into account in the minimiza-
tion of the free energy, we forward here an approximate ana-
lytical method based on the Poisson–Boltzmann equation.

First, we focus on the electrostatic interaction between two
polyelectrolytes adsorbed on the charged surface.

As two adsorbed strands will generally strongly repel
one another, we anticipate that, in prevailing cases, the clos-
est distance between the surfaces of the strands in the ad-
sorbed state will remain relatively large, i.e., larger than
about two times the Debye length~Fig. 3!. For two isolated
polyelectrolytes, the inner double layers, which are nonlin-
early screened, are then left unperturbed by the interaction
between the polyelectrolytes~for some additional justifica-
tion, see also Ref. 25!. The effective charge density of the
polyelectrolytes, for which the far field of the electrostatic
potential matches the Poisson–Boltzmann potential, is sub-
sequently calculated following the procedure by Stroobants
et al.37 The free energy of electrostatic interaction of two
strands may then simply be calculated by multiplying the
electrostatic field of one of the polyelectrolytes by the effec-
tive charge of the other one:37,43

Fel

kBT
5

j2

QB
S 2p

ka D 1/2

exp@2ka#. ~24!

j is an effective charge parameter, which is most conve-
niently evaluated using Philip and Wooding’s solution to the
cylindrical Poisson–Boltzmann equation.37,44 In Table I, val-
ues of j for an idealized DNA cylinder are collected for
various concentrations of monovalent salt. In Eq.~24!, a fac-
tor 1

2, to avoid double counting, and a factor 2, because of the
presence of two nearest neighbors in the adsorbed polyelec-
trolyte lattice, mutually cancel.

As a first approximation, we assume thatk is not influ-
enced by the presence of the surface. At low charge density
of the charged surface and at moderate to high concentra-
tions of excess salt, this seems plausible, but its ultimate
validity is to be determined from a comparison with the nu-
merical results. In fact, an analogous assumption was made
long ago in a famous paper by Onsager and Samaras.45

In the second place, we need to derive an expression for
the electrostatic potential between a cylinder and a surface
based on the Poisson–Boltzmann equation. We start with the
one-dimensional Poisson–Boltzmann equation, which, in
terms of the scaled variablesf andY[ky, becomes

d2f

dY2 5sinhf. ~25!

TABLE I. Poisson–Boltzmann parameterj as calculated following Ref. 37.
DNA hardcore radius r 51.0 nm, DNA linear charge densityn5
25.9 q/nm.j has been computed with the help of the analytical solution to
the cylindrical Poisson–Boltzmann equation listed in Ref. 44.

c ~M! k21 ~nm! j

0.001 9.61 0.647
0.01 3.04 1.34
0.1 0.961 4.07
0.2 0.680 6.38
0.5 0.430 14.8
0.75 0.351 24.5

1 0.304 37.3
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For two interacting surfaces of dimensionless surface charge
densitiesSp andSw the boundary conditions

df

dYU
Y5D

524pSp ,
df

dYU
Y50

524pSw ~26!

have to be satisfied.
Equation~25! may be integrated to give the potentialf,

but, for two interacting surfaces, the potential can be ex-
pressed in terms of elliptic integrals only.42 We can substan-
tially simplify the problem, however, by recognizing that of
principal relevance here is a highly charged polyelectrolyte
interacting with a fairly weakly charged surface, at small
separations~Fig. 2!. For the corresponding problem of two
interacting surfaces the restriction toSp@Sw and a slit width
D!1 means that the potential is negative everywhere in the
slit. Due to the strongly negative Boltzmann weighting, the
slit is essentially depleted of the co-ions of the negatively
charged surface, which are the counter-ions of the positively
charged surface. We therefore approximate:

sinhf'2 1
2 exp~2f!. ~27!

Using d2f/dY251/2d/df(df/dY)2, Eq. ~25! is readily in-
tegrated one time:

df

dY
56@exp~f!1C#1/2, ~28!

where the approximation Eq.~27! has been used. In our case,
the minus sign holds asdf/dY,0 everywhere. The second
integration can be written as

Y52E df
1

@exp~f!1C#1/2. ~29!

Depending on the value of the integration constantC, this
may be integrated to give

f5 lnF 1

C
sinh2F1

2
C1/2~B2Y! D G , 0,C,16p2Sw

2 ,

~30!

f52 lnF2CFcos2F1

2
~2C!1/2@B2Y#G G G , C,0. ~31!

The integration constantsB and C are determined by the
boundary conditions Eq.~26! and the slit widthD. For a
given value ofD, C has to be determined from the implicit
relations

D5
2

C1/2FarctanhS 2
4pSp

C1/2 D2arctanhS 2
4pSw

C1/2 D G ,
0,C,16p2Sw

2 , ~32!

D5
2

~2C!1/2F1

2
lnS 24pSp

1/21C1/2

24pSp
1/22C1/2D

2 lnS 24pSw
1/21C1/2

24pSw
1/22C1/2D G , C,0. ~33!

B is given by

B5
2

C1/2arctanhS 2
4pSp

C1/2 D , 0,C,16p2Sw
2 , ~34!

B52
2

~2C!1/2arctanS 2
4pSp

~2C!1/2D , C,0. ~35!

Again, we obtain the total electrostatic free energy of the
double layer from the energy of the electric field in the
double layer and the entropy of the small ions:

Fel~D !

kBT
5

k

8pQB
E

0

D

dYF S df

dYD 2

1n1S ln
n1

n0
21D

1n2S ln
n2

n0
21D12n0G . ~36!

We obtain the free energy of interaction of the double
layers by subtracting the free energies of the isolated double
layers:

Fel5Fel,tot2Fel,p
0 2Fel,w

0 . ~37!

Fel,2
0 andFel,1

0 are the electrostatic free energies of the iso-
lated double layers.

We next consider the free energy of electrostatic interac-
tion of the charged polyelectrolyte cylinder and the charged
surface, typically at separations smaller than a Debye length.
We take the curvature of the cylinder surface into account via
a Derjaguin approximation.42 The potential exerted by the
curved surface is viewed as a superposition of potentials ex-
erted by infinitesimally small parallel surfaces at separations
corresponding to their position along the cylinder surface. In
effect, we thus neglect the effect of curvature on the distri-
bution of small ions in the diffusive double layer. For these
corrections to be small, the radius of cylinder should be
larger than approximately one Debye length.

The separation between a point on the cylinder surface
and the surface may be written~Fig. 4!

Dw~X!5D1R2@R21X2#1/2'D1
X2

2R
, ~38!

where we anticipate that forX nearR the contribution to the
total free energy is small.

The electrostatic free energy of interaction of cylinder
and surface may be written

Fint~d!

kBT
5

2

k E
0

R

dXFel~D !. ~39!

The free energy is per unit length of polyelectrolyte cylinder.
In the subsequent analysis we will use the electrostatic free
energy of interaction, calculated either via the depletion and
Derjaguin approximations@Eq. ~39!#, or via the numerical
solution of the Poisson–Boltzmann equation@Eq. ~15!#
supplemented by the boundary conditions Eqs.~16!–~20! on
the appropriate grid~Fig. 8!. The various approximations
made in the derivation of the analytical theory are summa-
rized in Table II.
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DISCUSSION

Electrostatic interaction

We investigate the properties of the electrostatic free en-
ergy of interaction between polyelectrolyte cylinder and
charged surface by numerical examples. The parameters
characterizing the polyelectrolyte are chosen to mimic
double-helical DNA in the B-form, i.e., we set the surface
charge density of the polyelectrolyte equal tosp5
21.0 q/nm2, which corresponds to the unhydrated DNA ra-
dius of about 1.0 nm and the charge density of two negative
phosphate charges per base pair of 0.34 nm axial length.

The free energy of interaction is negative at large sepa-
rations, due to the electrostatic attraction between the oppo-
sitely charged surfaces, but, owing to the dielectric polariza-
tion of the polyelectrolyte cylinder and the charged surface—
both assumed to have a dielectric permittivity of zero—and
the osmotic pressure of the small ions in the slit, the free
energy becomes positive at very small separations, giving
rise to an effective repulsion between polyelectrolyte and
surface. The electrostatic free energy curves therefore dis-
play a minimum as function of the separation between
charged surface and polyelectrolyte because of image charge
effects.

At the given charge density of the polyelectrolyte sur-
face, this minimum occurs at polyelectrolyte-charged surface
separations on the A˚ ngstrom scale for charge densities of the
adsorbing surface which are not too high~i.e., around
0.1 q/nm2). In the establishment of a binding equilibrium, it
is therefore the minimum of the electrostatic free energy as a
function of d which is of importance. An adsorbed strand is
in effect undulating around the minimum of this potential
energy well. A complete quenching of the adsorbed layer of
polyelectrolyte is prohibited by this minimum and the rela-
tive flatness of its slopes. For charge densities of the adsorb-
ing surface which are very high~around 1 q/nm2), the mini-
mum shifts to values ofd which are much smaller than the
typical molecular or ionic dimensions. In these cases, a cut-
off length d0 has to be set in the free energy minimization
~see below!.

For charge densitiessw lower than a critical value, the
free energy of interaction increases continuously with de-
creasing separation, the effective force thus being repulsive
at all separations. For strands to remain adsorbed, the mini-
mum in the interaction free energy should of course be
lower, in order to overcome the thermal energy of the semi-
flexible chains.

In Table III~a! and ~b!, we compare the electrostatic

binding energy of an isolated polyelectrolyte adsorbed on the
charged surface. In the second column of both tables, the
electrostatic free energy minimum of the polyelectrolyte-
charged surface as calculated using the finite element method
is given at infinite separation of adsorbed polyelectrolytes.
This equals the electrostatic binding free energy of an iso-
lated polyelectrolyte and can directly be compared with the
electrostatic free energy calculated via the analytical ap-
proximation, which is given in the last column of Table III~a!
and ~b!.

From Table III~a!, it is seen that the agreement between
the electrostatic binding free energy calculated numerically
and analytically is fairly good. As anticipated, this agreee-
ment is good in particular at lower charge densities of the
charged surface. For the whole range of charge densities of
the adsorbing surface, the difference between the numerical
and analytical values is smaller than a factor 2. The electro-
static binding free energy within the fully numerical analysis
is higher than with the analytical analysis, which can be un-
derstood as the electric field extends beyond that part of the
surface which is directly covered by the adsorbed polyelec-
trolyte.

The electrostatic binding free energy varies strongly as a
function of the concentration of excess monovalent salt
~Table IIIb!. Whereas the electrostatic binding free energy is
about 740kBT per persistence length at an ionic concentra-
tion of 0.001 M, it decreases to 12kBT per persistence length
at 1 M excess monovalent salt. The analytical route leads to
an underestimate of the binding free energy at lower ionic
strengths, but, as expected, provides rather accurate values at
higher salt concentrations. It is clear that by ‘‘salting-out,’’

TABLE II. Approximations inherent in the analytical theory.

Ordered phase of parallel polyelectrolytes a!P
Long polyelectrolytes L@P
Cylindrical geometry for electrostatic potential of
semi-flexible polyelectrolytes

kl@1

Derjaguin approximation kr>1
Depletion approximation kd<1
Depletion approximation uspu@uswu
Electrostatic far field between polyelectrolytes a>2r 12k21

Electrostatic superposition cq/kBT<1

TABLE III. ~a! Minimum of the electrostatic free energy of interaction at
infinite separation of adsorbed polyelectrolytes as function of the charge
density of the positively charged surface.sp521 q/nm2, concentration of
monovalent saltc1:150.1 M, polyelectrolyte radiusr 51.0 nm, persistence
length P550 nm, QB50.715 nm. ~b! Minimum of the electrostatic free
energy of interaction at infinite separation of adsorbed polyelectrolytes as
function of the concentration of monovalent salt.sp521 q/nm2, sw

50.2 q/nm2, polyelectrolyte radiusr 51.0 nm, persistence lengthP
550 nm, QB50.715 nm.

~a!
sw (q/nm2)

min(Fel(A5`))
(kBT/nm)

min(Fel,anal)
(kBT/nm)

0.05 20.116 20.108
0.1 20.402 20.212
0.2 21.34 20.660
0.3 22.58 21.37
0.4 23.98 22.28
0.5 25.38 23.35
0.75 29.31 26.43

1 212.0 26.24

~b!
c ~M!

min(Fel(A5`))
(kBT/nm)

min(Fel,anal)
(kBT/nm)

0.001 214.8 23.12
0.01 25.39 21.64
0.1 21.34 20.660
0.2 20.810 20.502
0.5 20.411 20.384
1 20.238 20.330
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the adsorbed polyelectrolytes can in principle be made to
desorb from the charged surface.

The electrostatic interaction of an adsorbed polyelectro-
lyte is influenced by the presence of nearest neighbors in the
array of adsorbed polyelectrolytes. In Figs. 5~a! and 5~b!, we
plot the variation in the minimum of the free energy of in-

teraction between an adsorbed polyelectrolyte and the
charged surface as function of the separation between neigh-
boring polyelectrolytes in the polyelectrolyte-charged sur-
face complex. It is seen that the effective electrostatic inter-
action diminishes strongly when the adsorbed
polyelectrolytes approach one another to within about 3 De-
bye lengths. These nonlinear effects are pronounced in par-
ticular when the ionic concentration is low and the charge
density of the adsorbing surface is high and limit the appli-
cability of the analytical theory.

In addition, in the analytical theory, it is assumed that the
electrostatic interaction between adsorbed polyelectrolyte
chains is not influenced by the presence of the surface. This
is likely to be a good approximation at low charge densities
of the charged surface, but its validity is uncertain otherwise.
We do not provide graphical results on the effect of the
charged surface on the electrostatic interaction between the
adsorbed polyelectrolytes, but, instead, in Table IV, the fit-
ting coefficients for the effective interaction is given. As it
turns out that, for salt concentrations above about 0.01 M,
the functional form of the effective interaction between ad-
sorbed polyelectrolytes is close to the form of Eq.~24!, we
may represent the electrostatic interaction by two param-
eters: an effective linear charge densityjeff and an effective
~local! Debye screening lengthk21. From Table IV, we ob-
serve that, for the conditions of interest to our study, the
effective Debye length is very close to the Debye length in
the bulk solution, provided that the ionic concentration is
about 0.1 M or higher and the dimensionless separation be-
tween surface and adsorbed polyelectrolytes larger than
about 0.01. At low ionic strengths and very close to the
charged surface, we find that the effective Debye length be-
comes somewhat shorter than the bulk one. The fitted values
for the effective linear charge densityje f f are close to the
values derived for an isolated polyelectrolyte~Table I!, but at
high salt concentrations they remain somewhat lower.

Our results confirm and extend the findings of Ospeck
and Fraden,46 who studied the effects of confinement by two
surfaces on the electrostatic interaction between parallel cyl-
inders. However, in our case, the reduction of the effective
screening length at separations down to about 0.1 Debye
length is much weaker than in their study. This is in part the
case because the confinement by two surfaces or by a pore is
much stronger than the confinement effected by a single sur-

FIG. 5. Minimum of the free energy of electrostatic interaction between
polyelectrolyte and surface as function of the distance of closest approach
between adsorbed polyelectrolytes, plotted as the ratio with the minimum of
the free energy at infinite separation.sp521 q/nm2; r 51.0 nm, QB

50.715 nm.~a! Variation in charge density of the positively charged sur-
face; curves from bottom to top:sw50.05 q/nm2, 0.1 q/nm2; 0.2 q/nm2;
0.3 q/nm2; 0.4 q/nm2; 0.5 q/nm2; 0.75 q/nm2; 1 q/nm2. ~b! Variation in salt
concentration; upper dashed curve:c1:150.001 M; lower dashed curve:
c1:150.01 M; solid curves from bottom to top:c1:150.1 M; 0.2 M; 0.5 M,
1 M.

TABLE IV. Free energy of electrostatic interaction between adsorbed polyelectrolytes from the finite-element calculations. The data are represented by an
effective charge parameterjeff and an effective screening lengthkeff

21 as fitted to Eq.~24!. sp521 q/nm2, sw50.2 q/nm2, polyelectrolyte radiusr
51.0 nm, persistence lengthP550 nm,QB50.715 nm. Data forc1:150.001 M are not given as the interaction curve can not well be represented using a fit
to Eq. ~24!.

D

0.01 M 0.1 M 0.2 M 0.5 M 1 M

jeff keff (nm21) jeff keff (nm21) jeff keff (nm21) jeff keff (nm21) jeff keff (nm21)

0.01 2.75 0.415 3.85 1.01 5.07 1.38 9.05 2.12 20.3 1.34
0.05 2.80 0.415 4.13 1.03 5.16 1.39 9.23 2.13 20.1 1.33
0.1 2.82 0.414 4.02 1.02 5.16 1.39 9.59 2.16 19.7 1.29
0.5 2.53 0.389 3.92 1.02 5.25 1.41 9.56 2.17 20.4 1.32
1 2.07 0.362 3.54 1.00 4.67 1.38 9.33 2.17 20.5 1.30
5 1.35 0.306 2.84 0.97 4.16 1.37 9.21 2.19 21.0 1.29
10 1.28 0.298 2.79 0.96 4.16 1.37 9.11 2.18 21.1 1.29
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face. In addition, from an electrostatic point of view, we
focus here on a regime which is the opposite from the one
studied in Ref. 46, namely a strongly charged polyelectrolyte
cylinder and a weakly charged surface. Because of its high
charge density, the polyelectrolyte remains the dominating
factor in the electric double layer and the effective screening
length is only weakly perturbed from the solution one, in
particular for concentrations of excess monovalent salt above
0.01 M.

Concomitant with the decrease in screening length, the
effective charge density of the polyelectrolyte increases with
decreasing separationd. This effect, which is pronounced in
particular at low salt concentrations, shows the influence of
the approaching surface on the surface potential of the poly-
electrolyte.

For separations between surface and cylindrical poly-
electrolyte which are smaller than about 0.1 Debye length,
we find that both the effective screening length and the ef-
fective charge density decrease slightly with decreasingd.
This is caused by the dielectric discontinuity at the adsorbing
surface, which is now very nearby.

Adsorption equilibrium

The equilibrium structure of the adsorbed phase is ob-
tained by minimizing the total free energy following Eq.~5!
and Eq.~8! or Eq. ~10! for, respectively, the full Poisson–
Boltzmann model and the analytical theory. The parameter
characterizing the system which is of main experimental in-
terest is a, the average separation between the adsorbed
strands.

At this point, we emphasize again that coexistence of the
adsorbed phase with the polyelectrolyte solution is essential
to determine the equilibrium density of the adsorbed poly-
electrolytes, even if any realistic value of the chemical po-
tential of the polyelectrolyte in solution does only weakly
influence the interstrand spacing. In effect, the pecise value
of chemical potential of the polyelectrolyte in solution does
not matter that much, but polyelectrolyte molecules must be
able to adsorb from the solution onto the surface, or desorb
from the surface into the solution in order to establish the
equilibrium adsorbed state. In coexistence with the polyelec-
trolyte solution, it is then the~attractive! interaction between
polyelectrolyte and surface, the~repulsive! interaction be-
tween two adsorbed polyelectrolytes and the free energy of
confinement of the semi-flexible chains which control the
interstrand spacing.

We investigate the properties of the model by way of
numerical predictions for the adsorption of DNA in the
B-form. The surface charge density of DNA is approximately
1 negative phosphate charge per nm2 and the DNA hardcore
radius is about 1.0 nm. The DNA persistence lengthP is
taken to be 50 nm, independent of the ionic conditions. The
chemical potential of the polyelectrolyte in solution is ne-
glected, since, as argued above, the density of the adsorbed
phase is only very weakly dependent on the chemical poten-
tial of the polyelectrolytes in solution and, consequently, in
the dilute regime, on the bulk concentration of polyelectro-
lyte.

In Table V~a!, values for the interstrand spacinga and

the polyelectrolyte-surface spacingd are given for a range of
values of the charge density of the positively charged sur-
face, from both the full Poisson–Boltzmann model and the
analytical theory. As expected, the average spacing between
the adsorbed polyelectrolytes decreases continuously with
increasing charge density of the charged surface, from about
7 nm at 0.1 q/nm2 to about almost close packing at 1 q/nm2.
Below a critical charge density of the charged surface, the
polyelectrolytes do not adsorb. This critical value for the
surface charge density is about 0.07 q/nm2 according to the
full Poisson–Boltzmann model and about 0.03 q/nm2 ac-
cording to the analytical theory. The excellent agreement be-
tween the full Poisson–Boltzmann model and the analytical
theory@Table V~a!, Fig. 6# is somewhat fortuitous, as several
of the basic assumptions of the analytical theory~Table II!,
most importantly the additivity of the electrostatic potentials
for two adsorbed polyelectrolytes and the depletion of
counter ions from the spacing between surface and polyelec-
trolyte, are clearly violated at high values of the charge den-
sity of the adsorbing surface~see, e.g., the last entry of Table
IIIa!. The values ford agree well between both versions of
the theory.

In Table V~b!, we have collected a range of values of the
interstrand spacinga as a function of the concentration ex-
cess salt. Again, we observe that the predictions from the
Poisson–Boltzmann theory are close to those of the analyti-

TABLE V. ~a! Interstrand spacing and separation between polyelectrolyte
and surface as a function of the charge density of the charged surface cal-
culated using the Poisson–Boltzmann equation and the analytical approxi-
mation following Eqs.~24! and~39!. PB: Poisson–Boltzmann theory; Anal.:
Analytical theory.sp521 q/nm2, c1:150.1 M, polyelectrolyte hardcore di-
ameter r 51.0 nm, polyelectrolyte persistence lengthP550 nm, QB

50.715 nm.~b! Interstrand spacing and separation between polyelectrolyte
and surface as a function of the excess monovalent salt concentration cal-
culated using the Poisson–Boltzmann equation and the analytical approxi-
mation following Eqs.~24! and~39!. PB: Poisson–Boltzmann theory; Anal.:
Analytical theory.sp521 q/nm2, sw50.2 q/nm2, polyelectrolyte hardcore
diameter r 51.0 nm, polyelectrolyte persistence lengthP550 nm, QB

50.715 nm. Numbers in italics refer to conditions outside the range of
validity of the analytical theory.

~a!
sw (q/nm2) ~M!

a ~nm! d ~nm!

PB Anal. PB Anal.

0.05 a 9.86 a 2.09
0.1 6.52 7.38 1.01 1.45
0.2 4.78 5.58 0.58 0.75
0.3 3.92 4.67 0.34 0.47
0.4 3.39 4.08 0.23 0.40
0.5 2.68 3.66 0.17 0.21
0.75 2.34 2.94 0.10 0.10

1 2.07 2.58 0.05 0.02

~b!
c ~M!

a ~nm! d ~nm!

PB Anal. PB Anal.

0.001 6.90 1.31 0.58 0.87
0.01 5.95 6.20 0.61 0.85
0.1 4.78 5.58 0.58 0.78
0.2 4.46 4.95 0.48 0.68
0.5 4.47 4.27 0.43 0.53
1 a 4.29 a 0.37

aNo adsorbed state.
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cal theory for ionic concentrations above about 0.01 M. The
quantitative agreement between both versions of the theory
is a priori expected only at higher salt concentrations. Most
likely by some coincidental cancellation of electrostatic ef-
fects, the agreement between the Poisson–Boltzmann theory
and the analytical theory holds down to fairly low ionic
strengths. The collapse witnessed in the interstrand spacing
at very low salt concentrations~see the entry fora at 0.001
M for the analytical theory in Table Vb! is probably an arti-
fact of the analytical theory, although some reduction of in-
terstrand spacing with decreasing salt concentration is also
observed for the full Poisson–Boltzmann model. An impor-
tant and nontrivial observation from Table V~b! is that the
interstrand spacing is only a very weak function of the salt
concentration above about 0.1 M of excess monovalent salt.
Note that from the results presented in Table V~a! and ~b! it
can be seen that the approximations made in deriving the
theory are fulfilled~Table II!.

As stated in the previous section, desorption of the ad-
sorbed strands can be achieved by increasing the concentra-
tion of monovalent salt. Based on the Poisson–Boltzmann
calculations, we expect the salt-induced desorption of DNA
to occur at salt concentrations around 1 M, for charge den-
sities of the positively charged surface which are less than
about 0.2 q/nm2. In Fig. 7, the phase diagram depicting the
stability of the adsorbed phase of ordered polyelectrolytes is
shown for the case of the idealized DNA cylinder.

An issue of final interest is the effective charge of the
surface with adsorbed polyelectrolytes. A rough estimate of
the onset charge reversal is straightforward:27

2prsp

asw
'1. ~40!

As can immediately be inferred from Tables V and VI, re-
versal of the effective charge of the surface occurs for vir-
tualy all values of the surface charge density in the case of
adsorption of a highly charged polyelectrolyte like DNA.
How the electrostatic potential of the polyelectrolyte-covered
surface is probed in experiment, for instance by zeta-

potential or streaming-potential measurements47 or by func-
tionalized tips in atomic force microscopy~AFM!,48 is en-
tirely another matter, however.

Experimental situation

During the last decade, a significant number of experi-
mental studies were directed towards the electrostatic ad-
sorption of polyelectrolytes~see, e.g., Refs. 8, 16 and 49!.
The general conclusion is that, in contrast with the adsorp-
tion of neutral polymers, polyelectrolytes form a dense, thin
layer on adsorption, the effective thickness of which is often
only of the order of the diameter of the polyelectrolyte chain.
The reversal of the charge sign of the surface upon adsorp-
tion effectively blocks the building up of a thicker layer.
Only for very weakly charged flexible polyelectrolytes one
expects a more loose, spatially extended structure of the ad-
sorbed layer.

Ordered phases of adsorbed charged species have been
witnessed for DNA5,6 and virus particles.50 The experiments
by Fang and Yang5 turn out to be most useful for a first
qualitative assessment of our theory. Using AFM they have
visualized the structure of relatively short fragments of DNA
adsorbed on supported cationic membranes. The surface
charge density of the surface was estimated to be about 2.5
elementary charges per square nanometer, which is about one
order of magnitude higher than the surface charge densities
we are aiming at. Therefore, a quantitative comparison of our

FIG. 6. Equilibrium strand spacinga as function of the charge density of the
charged surface,k2150.96 nm ~0.1 M 1:1 salt!. sp521 q/nm2, P
550 nm, r 51.0 nm, QB50.715 nm. Line: analytical theory; symbols:
Poisson–Boltzmann theory.

FIG. 7. Phase diagram of the two-dimensionally ordered state of adsorbed
semi-flexible polyelectrolytes.sp521 q/nm2, P550 nm, r 51.0 nm. QB

50.715 nm.

TABLE VI. Interstrand spacing as a function of the excess monovalent salt
concentration. The electrostatic interaction is calculated using the Poisson–
Boltzmann equation and the total free energy is minimized using the set
value of the cut-off lengthd0 . sp521 q/nm2, sw51 q/nm2, polyelectro-
lyte hardcore diameterr 51.0 nm, polyelectrolyte persistence lengthP
550 nm, QB50.715 nm.

c ~M!

a ~nm!

d050.3 nm d050.5 nm d050.7 nm

0.1 2.20 2.48 2.80
0.2 2.34 2.70 3.01
0.5 2.54 3.08 3.33
1 2.68 3.37 3.64
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theoretical results with the data of Fang and Yang is not
feasible. A number of important qualitative conclusions can
be drawn, nevertheless.

Fang and Yang have found that under conditions where
the lipid surface layer exhibited two-dimensional fluidlike
behavior, the DNA adsorbed in ordered domains in which the
strands were oriented more-or-less in parallel. The regularity
of the ordering was such, that, upon Fourier transforming the
AFM image, well-defined Bragg peaks were observed. From
these Bragg peaks, the average interstrand spacing of the
adsorbed phase was determined as a function of the concen-
tration excess NaCl in the bulk solution. Interestingly, the
spacing was found to increase with increasing bulk salt con-
centration. At 20 mM NaCl, the spacing was approximately
4.2 nm, within the margins of experimental error increasing
almost linearly to 5.8 nm at 1 M NaCl. Although we are
principally aiming at charge densities of the adsorbing sur-
face which are about an order of magnitude lower than those
in the experiments by Fang and Yang, it still is of interest to
see what occurs when the surface charge density is strongly
increased. In Table VI, the lattice spacinga, calculated using
the Poisson–Boltzmann equation, is given as function of the
concentration of excess monovalent salt, at a charge density
of the adsorbing surface of 1 q/nm2. As under these condi-
tions, no physically realistic minimum is observed in the
total free energy as function ofd, we minimize the free
energy of the system under the conditiond5d0 , whered0 is
a fixed separation between surface and polyelectrolyte cylin-
der determined by the molecular detail of surface and poly-
electrolyte. In Table VI, values of the interstrand spacing are
calculated by setting the minimum distance of approachd0

to 0.3, 0.5 and 0.7 nm. Interestingly, in line with the obser-
vations of Fang and Yang, we find thata indeed increases
with the ionic strength at these higher values of the charge
density of the charged surface.

CONCLUDING REMARKS

In the current paper, an analytical theory based on a
two-dimensional model is forwarded to describe the electro-
static adsorption of semi-flexible polyelectrolytes. The
theory incorporates three principal physical effects: the en-
tropy of the adsorbed polyelectrolytes adsorbed into the two-
dimensional lattice, the electrostatic interaction between
charged surface and adsorbed polyelectrolyte and the electro-
static interaction between the adsorbed polyelectrolytes. We
stress again the limited scope of the theory. In Table II, the
principal approximations made in its derivation are listed. It
is clear that, in specific cases, additional factors could be-
come important, like those related to the state of hydration of
the surface. The satisfying agreement of our predictions on
the ionic strength dependence of the interstrand spacing of
DNA adsorbed on supported cationic membranes with the
experimental data5 might be fortuitous. However, we note
that recent experimental work on the characterization of the
interactions in DNA-cationic lipid complexes51 supports the
notion that the interactions in such systems are indeed pre-
dominantly electrostatic. A Poisson–Boltzmann theory of the
charge-induced adsorption is therefore of value.

The electrostatics of adsorption are addressed analyti-
cally within the Poisson–Boltzmann approximation. Various
approximations made in deriving the analytical theory have
been corroborated by more elaborate numerical calculations
based on the full Poisson–Boltzmann equation. The analyti-
cal theory gives virtually quantitative results for charge den-
sities of the positively charged surface of about 0.2 q/nm2

and lower and salt concentrations between about 0.01 M and
1M. A main conclusion arising from this work is that the
balancing of the electrostatic forces in the charged-induced
formation of adsorbed complexes is of a subtle nature, but
some of the effects associated with the numerical solution of
the Poisson–Boltzmann equation for geometry of an array of
adsorbed polyelectrolytes in fact cancel and a simple analyti-
cal model works rather well.

In the present work, we have neglected the consequences
of the dimensionality of the system for the formation of or-
dered structures. Order in two dimensions is in general of a
different nature than order in three. Long-range order may
exist in specific cases but in many others the order is essen-
tially local as the total displacements of the two-
dimensionally ordered particles diverge logarithmically even
if the root-mean-square amplitude of the undulations remains
finite.52 This should not significantly affect the local packing
of adsorbed strands, however.

One general consequence of order in two dimensions is
that the defect density is high. Indeed, one qualitative obser-
vation from the experiments on the adsorption of DNA on
supported cationic membranes5,6 is that the defect density of
the two-dimensionally structured layer is high, although the
interstrand separation is well-defined. Another explanation
for this could be that, although the adsorbed DNA strands
may have sufficient time to find their equilibrium position
locally, the system is not in equilibrium since some of the
complex entanglements and defect-like structures formed in
the initial phase of the adsorption process may have relax-
ation times much longer than the time frame of the experi-
ment.

These remarks are not more than speculations at present;
moreover, given the complex phenomena witnessed, further
study into the nature of these two-dimensionally ordered sys-
tems and their electrostatics is required.

APPENDIX: NUMERICAL EVALUATION OF THE
ADSORPTION EQUILIBRIUM

The Poisson–Boltzmann equation@Eq. ~15!# is imple-
mented in the finite-element software package FlexPDE ver-
sion 3.01~Ref. 53! and is numerically solved on the domain
shown in Fig. 8 subject to the boundary conditions Eqs.
~16!–~20!. The electrostatic free energy is obtained by inte-
grating the electrostatic potential over the domain following
the discretized version of Eq.~21!.

FlexPDE employs an adaptive routine to mesh the finite
element grid according to the gradients in the dependent
variable and the desired accuracy. An estimated error of at
maximum 0.1% in the integrated free energy is ensured by
setting the tolerated estimated error over any individual cell
to 331025. A sufficiently accurate representation of the
polyelectrolyte surface is obtained by setting the maximum
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tolerated angle spanned by a cell at the cylinder surface to
6°. The integration domain extends into the solution always
10 Debye lengths beyond the polyelectrolyte@Ly510 ~Fig.
8!#. Depending on the size of the domain and the steepness
of the electric field gradients, between 1500 and 20 000 cells
are employed to represent the electrostatic potential over the
grid with the desired accuracy.

The accuracy of the finite element calculations is inde-
pendently verified by comparing its numerical values for the
potential of a charged surface with the analytical solution of
the Poisson–Boltzmann equation for a range of values of the
surface charge density and Debye length. In all cases tested,
the error with respect to the analytical solution is of the order
of 1024 to 1025. In addition, the error in the numerically
integrated free energy is smaller than 0.1%.

In order to obtain the free energy of electrostatic inter-
action, the self energies of the surface@Eq. ~23!# and the
cylinder at given salt concentration and surface charge den-
sity are subtracted. The electrostatic self energy of the cylin-
der is numerically determined by subtracting the electrostatic
self energy from the integrated total electrostatic free energy
for A520 andD510. For the domain in Fig. 8, the free
energy of electrostatic interaction is obtained by multiplying
the resulting free energy by a factor 2.

The equilibrium adsorbed state is determined by first cal-
culating the electrostatic free energy on an approximately
exponentially spaced grid spanning the two-dimensional pa-
rameter space (A,D), with A varying between 0.2 and 20
andD between 0.01 and 10. The relevant roots are bracketed
using successive refinements in the spacing of the grid in the
region where

DF
DD

5
F~Di 11!2F~Di 21!

2~Di 112Di 21!•DD
~A1!

and

1

P
ma5

F~Xi 11!2F~Xi 21!

2~Ai 112Ai 21!•DA
2

F~Ai !

Xi
~A2!

change sign. In Eqs.~A1! and~A2!, it is the total free energy
per unit length of polyelectrolyte@Eq. ~1!# which is of inter-
est.Ai andDi count along the grid parallel respectively per-

pendicular to the charged surface andDA andDD denote the
local spacing of the grid inA andD. The reported values of
A andD are determined by linear interpolation between the
two closest values after the final refinement of the grid spac-
ing. The inaccuracy in the equilibrium values ofA andD is
estimated to be about 0.01.
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