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Abstract

Each violin generates a unique sound with a distinct set of acoustic properties. In particular, the Stradivarius
violins are said to have a very unique sound. The ultimate goal of this thesis is to aid in recreating the unique
sound of the Stradivarius. Though, the field of research surrounding the violin and its acoustic properties is
very broad and many aspects of this research, such as subtle structural differences between violins, fall beyond
the scope of this thesis. Rather, the goal of this thesis is to provide the tools to find the differences between
different violins.

This thesis is split into two parts. In the first part, a literature review, describing the different parts of the
violin, is presented along with an overview of different experiments and finite element models, describing the
plate dynamics of the violin. In the second part, a model of the violin is devised, with modelling cycles based
on consecutive simplification, and implemented in Python using finite difference equations and the method of
lines. This model is made with the goal to provide a framework for creating a realistic model of the violin where
differences in timbre between violins can shown.

In the literature review, four subjects are addressed. First, an explanation on timbre is given with an illus-
tration of its perception. Additionally the timbre of historical and contemporary violins is compared. Second,
the radiated sound of the violin is discussed. In specific, the problem with directivity of radiation is brought
to attention. Third, an overview of the bridge is given with a strong emphasis on the influence of the bridge
admittance on the radiated sound. Last, the corpus is dissected into different parts which are investigated with
optical sensors and modelled with the software packages Comsol and Abaqus.

The model in the second part of the thesis is based on principle of consecutive simplification. To set the ground-
work for further iterations of the model, the most important assumptions are kept track off. The method of
lines is then used to simulate the vibrations of a wooden square plate using the flexural wave equation as the
governing equation of motion. In this simulation, the forward Euler method is used for the numerical time
integration.

The steady state solutions of the numerical model are coherent with the analytical solutions to the flexural wave
equation. However, the time dependent results diverge from the results shown in the literature study. This is
either due numerical time integration method being unstable or due to the physical properties of the wood not
being translated by the Stiffness matrix in the model.
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1 Introduction

Either through actively listening or by having music play in the background; everywhere we go, the chances are
that music is playing. We might even say that constantly listening to music has become mainstream. This is no
coincidence, as people have many different reasons for listening to music. People of all ages, ranging from 8 to
85 years of age, have reported listening to music for a number of reasons: for mood regulation, for self awareness
and even to distract themselves from boredom|2, 3]. One may find similar results in their own experience. How-
ever, the psychological effects from (background) music reach further than we might realise. An example is the
background music in advertisements and stores, which have been shown to influence the consumers cognitive
processes, behaviour and ultimately the perception of product brands[4, 5]. These findings are coherent with
more general research[6, 7, 8] which suggests that changes in concentration, short term memory and emotions,
can be observed when people are exposed to different styles of music.

In specific, when the effects of classical music and modern music were investigated, a discord was found be-
tween the two types of music where modern music proves to be significantly more disruptive[9, 10, 11]. The
level disruption from hearing music, in these studies, while working or studying is higher when participants of
studies listen to music that they particularly like or dislike. Additionally, the level of disruption also increased
when vocals were present in the music. Thus, it is apparent that the styles of music influence ones behaviour
and cognitive processes differently from one another. There are many more papers on the effects on different
styles of music. Though, hardly any papers on the relation between music and cognitive processes consider the
harmony in an ensemble caused by the more subtle yet one of the most important characteristics of the sound;
the timbre or the ’colour’ of the sound produced by different instruments.

Given an ensemble, its timbre will be classified by the timbre of each instrument in the ensemble. However, the
effects of timbre and the contrast between different instruments with specific sound colours is largely unknown.
To this end, we have to investigate the timbre of each individual instrument. In this thesis, we will focus on the
string family, and on the violin in particular, as this is one of the major parts in an orchestra. One specific kind
of violin is said to stand out in the string family for its unique sound: the Stradivarius violin. The Stradivarius
violins, made by Antonio Stradivarius in the late 17th century and the beginning of the 18th century, are often
cited being the best violins obtainable for its extreme timbre and pristine sound. The reputation of the instru-
ment is thus far also reflected in its market value.

Beyond music, understanding the impact of the environment on the properties of waves and their respective
harmonics has many applications such as music recognition[12], acoustics in buildings such as theatres[13] and
it could even be used for underwater acoustics[14]. Yet, the range of applications does not stop at phonons and
can be used for many forms of signal practises.

Timbre provides a good starting point for acoustic interferometry since music is a well known and studied
subject of signal transmitting and receiving. On top of this, timbre offers an intuitive look into the physics of
waves which other disciplines in the field might not have or might have in lesser degree.

Therefore, keeping both the advances into acoustic interferometry and the cognitive processes as a consequence
of background music in mind, the ultimate goal of this research will be to inspect the timbre of the Stradivarius
in comparison to the timbre of other violins. This is a vast field of study with many points of interest, so we
will narrow the focus down to the corpus (the body) of the violin.

This thesis focuses on the following topics:
o Can listeners distinguish between Stradivari and non-Stradivari violins?
o Can we describe the differences between Stradivari violins and non-Stradivari violins?
e What is the function of the bridge on the perceived sound?
e How is the corpus described in literature?

¢ We construct a model and a modelling cycle to gradually increase the accuracy of the model in comparison
to actual violins.

e How does our model compare to other models and measurements in literature?



To answer the research questions and address the modelling cycle, a literature study is done considering multiple
perspectives with respect to the violin. Thereafter, the model is introduced; the the first iteration of the model
is implemented and the results are compared with the literature.

We start with a Literature study describing previous models, experiments and meta-analyses. This will be a
vast portion of the paper, showcasing previously found results and answering most of the research questions.
Based on the literature, we provide the The model and its modelling cycles and numerical implementation
given in the Finite Differences and method of lines. Afterwards, the findings are presented and examined in the
Results and Discussion and a summary of the literature, results and discussion is given in the Conclusion and
outlook. Lastly, extra information and additional derivations are given in the Appendix.

This graduation thesis for the Double bachelor Applied Mathematics Applied Physics is done at the Delft Uni-
versity of Technology under supervision from Dr. B. Meulenbroek and Dr.ir. D.J. Verschuur at the departments
of Mathematical Physics and Imaging Physics, respectively.
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2 Literature study

In this section, we give an overview of important acoustic properties and tools needed to determine the differ-
ences between violins. We begin with a characterisation of the colour of the violin, timbre, and how the timbre
is characterised. This also includes whether listeners can distinguish different styles of violins from one another.

After the introduction to tone colour, the following topics are discussed:

1. The radiated sound
2. The bridge
3. The corpus

4. The internal modes, or cavity modes

In the sections below, we examine the purpose of each of the categories, showcase how the different categories
intertwine with one another and relate to the tone colour.

2.1 Timbre and character of the violin

When listening to music, we experience a shift in attention and behaviour[15]. For music with more dynamics
and higher beats per minute, there is more attention drainage in comparison to slower and calmer music. At
face value, or to the untrained ear, this is all there is. However, there is much more to be explored in a listeners
perception of the music and the amount of disruption in concentration a listener experiences.

In the context of the violin, the most prevalent feature of the music/sound effect is a combination of the skill,
technique and understanding of the music the violinist has. The differences between players is immense and will
often overshadow any other properties of the music or instrument. Though, we must not confuse this with the
absence of other properties to investigate. Namely, if one violinist plays two different instruments with roughly
the same technique, skill and emotion, the music will still sound slightly different. Of course, it is not possible
to use the exact same technique twice, but very experienced players are able to keep their performances up to
high standard. Having said that, the other reasons for the differences in sound are therefore composed of two
different systems: the violin itself and its environment.

Now suppose the violins are played in the same room with the same temperature, humidity, air pressure,
etc., essentially ruling out the environment as a potential factor for different behaviours of the sound. The only
cause for the difference in the music will then be the violin itself. The characteristics of these differences is
unique to the violin and is constant across violinists as these differences rise from the material properties of the
violin. We call this timbre. Timbre, in layman’s terms, is characterised by a number of things: the colour of
the sound, the warmth of the sound and the roundness of the sound. It can be described in many more ways
since there is not an exact definition of timbre. In music, timbre is sometimes even referred to as the soul of the
instrument. In fact, there are many more ways to describe timbre. Though, trends do appear when listeners
are asked to describe sounds.

Before we can make an analysis of the sounds of different violins, it is important to know how different terms
used to describe music relate to one another. Especially given the subjectivity of timbre and ambiguity in the
meaning of words describing the feeling of music. Fritz et al. has investigated this in a small sample size study
in which the relation between terms often used for timbre, in English, is sought. The results describe antonyms
and synonyms, which would not be found in pure semantics and are used coherently by the sample group. The
study used sixty-one words, given as descriptions of timbre by nineteen native English speaking violinists and by
selecting words found in a violin magazine, The Strad, by frequency. These words were then grouped by fourteen
other violinists. This data was then shown in two Multi dimensional scaling (MDS) maps. The first one describes
the overall sound quality and the second one describes ease of playing. Both MDS maps can be found in Figure 1.

Figure 1la describes the overall sound quality. The axes of the plot are dimensionless and do not show a clear
indication of which property is measured. However, we do have a good indication when looking at the grouping
of words. First note that the vertical axes has brilliant and dead at the opposite of the spectrum. This is
supported with muted and dull at the high end of the spectrum and bright and strident at the low end of the



spectrum. We see that the low end of the spectrum describes music where the dynamics and articulation of
the music are prevalent whereas the high end of the spectrum describes music in an attenuated manner. The
horizontal axis has warm, rich and mellow at the high end of the spectrum and cold, harsh and metallic at
the low end of the spectrum. In musical terms, this indicates a music rich in harmony at the high end of the
spectrum and subtle discords at the low end of the spectrum.

Figure 1b describes the ease of playing. On the horizontal axis, the spectrum goes from unbalanced, dead and
unresponsive to balanced, clear and alive, indicating enhanced musicality near the higher end of the spectrum.
The vertical axis is less evident as the musical interest seems to mitigate near the higher end of the spectrum.
However, the spectrum of semantics on the vertical axis shows more ambiguity when translated to musical
jargon.
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(a) The overall sound quality in the MDS plot with the (b) The ease of playing in the MDS plot with the hori-

vertical axes having dead and brilliant at the outer ends zontal axes having clear and dead at the outer ends of the
of the spectrum and with the horizontal axes having cold spectrum and with a vertical axis which mitigates musical
and mellow at the ends of the spectrum. expressiveness near the higher end of the spectrum.

Figure 1: Two multi dimensional scaling (MDS) plots of different descriptors for timbre in violins, after Fritz
et al.

Stepanek yields similar results in the sense that violinists will use terms coherently to describe the different
sounds. In the paper, five different notes were listened to by eleven violinist in an an-echoic room. Each note
was listened to five different times to rank different attributes on a scale of zero to ten. The attributes included
sharp, dark, clear, narrow and perceived sound quality, in this order. Using Kendall’s coefficient of concor-
dance, a coeflicient to measure agreement in a sample size experiment, this resulted in very coherent rankings
for the terms dark and narrow specifically. Additionally, dark and sharp were found to be strongly negatively
correlated with one another. The paper also mentions that the quality of the violin can somewhat be deduced
from the collection of words used to describe the violin. This result was to be expected as the timbre of a
violin is largely intertwined with the quality of the violin. This is the case since our sense of quality for a vio-
lin is largely based on our perception of the sound it makes, which has a direct relation to the timbre of the violin.

Having said that, all the aforementioned ways to describe timbre in English terms are quite ambiguous. But to
describe timbre in an effective way is quite difficult since it is up to interpretation of the individual. In turn,
the translation from the English dictionary to a mathematical description is up for discussion, if one can even
be found, since we cannot get a general consensus for the timbre of an instrument. After all, it is heavily based
on the subjectivity of the listener. However, as Fritz et al. and Stepanek have shown, violinist or experienced
listeners tend to gravitate towards the same words, which could very well be part of a deep rooted convention
in the musical community or among musicians.



2.2 Distinguishing between violins

The interpretation of timbre is subjective to each listener. However, as shown before, the descriptors for timbre
are coherent and can describe musical and acoustic properties. Consequently, a number of attempts has been
made to statistically categorise timbre in relation to its descriptors. One of these attempts are the Diinnwald’s
timbre parameters and simplified versions of these parameters [18]. Each separate parameter describes a type
of sound which is affiliated with this parameter. Application of these parameters boils down to, for example, a
sound pressure graph compared to specifically defined frequency bands. The radiated sound of the violin is split
into several different parts, as illustrated in Figure 2a. The long time average spectrum of a del Gesu violin is
divided into sections A-F'. The Diinnwald’s parameters, along with its timbre descriptors, are then defined as
shown in Table 1.

Table 1: Table of the Diinnwald’s parameters and their timbre descriptors, after Buen. The L value is the the
first air resonance level compared to the top level in the frequency region of 649H 2 to 1090H 2, L., is the sound
pressure level as measured in a certain frequency region and L4, is the maximum sound pressure level in a
certain frequency region.

Diinnwald’s parameter (dB) | Description of timbre
Bass: L = Lpya.(244 to 325H2) — L6, (649 | high values if the violin contains a rich bass.
to 1090H z)

Nasality: L = L¢,(190 to 650H z and 1300 to | high values if the violin is non-nasal
2580H 2) — Leq(650 to 1300H 2)
Clarity: L = L.4(4200 to 6879H z) — L.,(4200 | high values if the violin is clear, low values if
to 6879H 2) the violin is harsh

Buen compares the average-long time average sound pressure of 15 Stradivari violins to the average-long time
average sound pressure of 15 Guarneri del Gesu violins, shown in Figure 2b. (Both of these violin makers
lived in Italy in roughly the same time period. Both instrument makers are known for the quality of their
instruments). The paper finds that although quite similar, the average sound pressure graphs contain only
slight differences, which might be picked up by attentive listeners. If Figure 2b is compared to Figure 2a, we
see that the differences of the long time average spectra of the Stradivarius en del Gesu violins could be noticed
with differences in the sonority and in the brilliance of the sound; creating a first step in relating the long time
average spectra or power spectra of the violins to their timbre.
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(a) The long time average spectrum of a del Gesu violin, (b) The long time average spectra of the average Stradi-
separated into different sections. The L-parameter as used varius violin and the average Del Gesu violins. For each
in Table 1 is shown per example. Additionally, a relation be- type of violin, fifteen violins were used to calculate the
tween the frequency regions and timbre descriptors is shown. average. The errorbars show one standard deviation.

Figure 2: Two long time average spectra of historic violins which are considered to be of quality, showcasing
the Diinnwald’s parameters and the differences between Stradivarius and Del Gesu violins; after Buen.

Setragno et al. has also done an experimental study into the differences in the acoustic of "quality" and "lesser
quality" violins. In this study, fifty violins were chosen; thirteen of which were historical violins, twenty-eight of
which were high quality contemporary violin and the rest was made by a violin school (and its students). For
each violin in the study, fifteen different excerpts were taken: four on open strings, four with different notes



on a string and seven were parts from several pieces. To start and stop the notes, a root mean square (RMS)
energy threshold was used. The remaining audio excerpt was then split into two parts. Parts where the energy
is larger than the RMS energy and parts where the energy is lower and decays. This was done because the two
different parts contain have different behaviour and contain different information. Especially the decaying part
of the sound is notable for historic violins as the paper found that the lowest harmonics retain their power for
the first couple seconds after the note started vibrating, losing only about 3dB with respect to the note attack
(initialisation of the note), whereas contemporary violins lost more than 30dB in the same time frame. This
coincides with a higher variability in power spectrum (the Z-transform of the auto-correlation function[20]), or
in a higher spectral flux as can be seen in Figure 3. As it turns out, spectral flux is at least partially responsible
for the violins timbre.
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Figure 3: The spectral flux of the A note (on the left) and E note (on the right), both on open strings. The
spectral flux is a measure for the rate at which the power spectrum can change. This property makes the
historical violins distinguishable from contemporary ones. H are the historical violins, C' the contemporary
ones and S the contemporary ones made by the violin school, after Setragno et al.

Rozzi et al. did another such study, wherein 70 expert participants, whence the majority was selected no to
have prior experience in music, were asked to rate 4 violins (labelled "A", "B"; "C", "D") in respect to a reference
violin, labelled "X", in 4 set dimensions (openness, brightness, nasality, pleasantness). There were two modern
violin (made after 1900), which were A and C. Violin B and the reference violin X were Stradivari violins. Violin
D was a cheaper violin of around 300 euros and was crafted by a violin industry. For each participant, a part
of the G major scale was first played violin ’X’ as reference and then on another violin, for all violins ’A’,’B’,
'C’ and 'D’. Then the reliability of the participants was tested with eight trials if the listener gave the same
answer for the same scale on the same violin. The results of each participant with a consistency above the 95,
percentile were used in the study.

Using a statistical analysis the paper finds results as shown in Figure 4. This can be used in reference to Figure 5
to further decipher the relation between timbre descriptors and the frequency response function of violins. This
is also largely coherent with the Diinnwald’s parameters. This can be seen in violin ’'D’ which is very nasal and
its frequency response function has a is larger than the Stradivarius violins around 1000H z. Similarly, violin
"B’ is very open, bright and very pleasant, all of which are closely related to brilliant. For open and bright, this
is shown in Figure la. In Figure 5, there is a distinctive peak around 1800H z and another around 2900H z,
agreeing with Dinnwald’s parameters. However, violin ’A’ seems to oppose this as it also has a peak around
3000H z, yet is not described as very open or bright. This could, in part, be explained by the peak around
1000H z, making the sound nasal and the peak around 6500H z, making the sound sharp or harsh. Nevertheless,

10



the prevalence of nasality in violin ’A’ does hamper accuracy of the Diinnwald’s clarity parameter, without
assuming nasality or harshness could be dominant over brilliance.

Violin 8 AH8 B HE C # D

Openness Brightness
o @
* * ‘ L ,
Bt
Nasality Pleasantness
A B c D A B c D
Violin

Figure 4: Four violins represented in a box plot for four dimensions as a statistical analysis by 70 listeners. A
and C are modern violins, B the Stradivari and D an industry crafted one. A G major scale was played on all
instruments with one separate instrument 'X’; which is not indicated in the box plot, used as reference, after
Rozzi et al.
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Figure 5: Five frequency response functions, calculated by the root mean square of the sound pressure sampled
over intervals of 30ms at 48k H z, of violins. A and C are modern violins, B the Stradivari and D an industry
crafted one, after Rozzi et al.

Having seen the differences between violins, both in long time average spectra, power spectra and in statistical
analyses, we will now study the cause of these differences and which factors are most important in the uniqueness
of the sound we hear.
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2.3 Properties of the violin

The differences in timbre and its relation to the power spectrum is not caused by a single part of the violin.
However, when studying the violin, we need not examine every part. Bissinger proposes that there are three
main systems which can have normal modes. Namely; the corpus (top plate, back plate and ribs), the substruc-
tures and the internal cavity modes. Note that no radiation caused by modes of the substructures has been
found below a frequency of 4K Hz. In line with this argument, most papers do not even consider the option of
other kinds of radiation by the violin. However, this does not mean that the other parts of the violin are not
important and we will not yet argue anything else.

Now, when inspecting the corpus as a whole, there are four main different aspects to consider: the radiated
sound, bridge, the body of the violin itself (the plates and ribs) and internal modes. Many papers adhere to
this concept as they specifically study only one of the four aspects. We will showcase each of the four different
aspects and display the key relations between the interwoven systems.

2.3.1 Radiation

On a surface level, the sound we hear is radiated by the violin and we can measure this radiated sound for
further analysis. Yet, this is not all there is to sound radiation. Namely, we must be careful when using the term
"radiation" as the term is often used to refer to spherical radiation caused by a point source or, more formally,
isotropic omnidirectional radiation. However, the acoustic radiation of the violin is by no means spherical and
thus forms a problem for comparative research.

2.3.1.a Measured directivity patterns

To investigate the directivity of the radiation, Otcenasek and Stepanek have done an experiment to find the
directivity of timbre. Their method describes a violin player, surrounded by microphones in circles with a
diameter of 3.2m or 1.6m with the violin player at its centre. There are 7 circles of microphones, named "A1",
"A2" "A3", "A4", "A5", "B1" and "B2". Each circle consists of 16 microphones named "M1" all the up to "M16".
See Figure 6a for the layout of the microphones. One of the results yielded in the paper is set of sorted terms
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(a) The layout of microphones to detect directivity (b) A schematic of terms used in the sound sorting for
patterns of sound radiation when playing the violin. each microphone.

Figure 6: The layout of microphones described by the method (a) and one of the results to describe violin
timbre directivity (b), after Otcenasek and Stepanek.

used to describe the timbre of the sound measured by each microphone of a circle for each sample measured. An
example, in this case Dy and circle A2, are shown in Figure 6b. We see that the descriptors of sound pressure
and timbre are not spherically constant over ring A2. Therefore, the place where the sound is recorded or heard
plays an important role for the timbre.
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Another, major factor for the timbre is the distance from the violin from which the sound is measured. Perry
shows this in his thesis, where he researches the sound radiation from string instruments. Though the paper
predominantly focuses on guitars, a number of interesting experiments were done for the violin. One of which
is the measurement of radiation efficiency against frequency, near the treble side of the bridge. The plot for
monopole, dipole and the total radiation efficiency is shown in Figure 7.
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Figure 7: Radiation efficiency measured near the treble side of bridge on a violin for the monopole, dipole and
total radiation [24].

There are two notable remarks to made when looking at Figure 7:

1. The monopole radiation dominates the dipole radiation for frequencies of 1kHz and lower. However, the
dipole efficiency becomes dominant for frequencies higher than 1kH z.

2. The total radiation efficiency is clearly larger than the monopole radiation efficiency, but adding the monopole
and dipole efficiency yields a result which is very close to the total radiation efficiency. This leads us to
believe that, for frequencies below 2K H z, the radiation is predominantly described by monopole and dipole
radiation.

2.3.1.b Describing directivity patterns

Now, we have seen that the sound radiation when playing the violin is neither isotropic nor can be solely de-
scribed by a monopole. Though, the monopole radiation is significant in more ways than one. Namely, besides
the overarching prevalence of the monopole radiation at low frequencies, < 1kHz, the omnidirectional point
source radiation can serve as "the norm" or "the standard". It follows that, measuring the directivity of the
acoustic radiation, yields a description of the directivity patterns expressed in deviation from the norm[25].

The sound radiation of the violin can be largely described by isotropic means at low frequencies < 1kH z, [26].
This is supported by Figure 7. Though in general, the sound radiation is influenced by many independent
factors. This causes a problem in measuring radiated sound. Many models have been made to give a solu-
tion to describe the radiation in specific situation, most of which have the violin mounted to a setup without
interaction from a player. Though the posture of the player has been shown to influence directivity patterns[25].

The problem of inconsistent measurements can be fixed by creating conventions for measuring or creating a
mathematical measures to evaluate the radiation. One such initiative has been taken by Pezzoli et al.. In the
paper, a comprehensive study on the radiation of violins is given and the paper proposes a set of metrics which
can be used to compare directivity of sound radiation.

Now it suffices to study the separate parts of the violin with respect to radiation. Cremer argues that the
radiation of the string will be overshadowed by the radiation of the corpus. In addition, Bissinger notes that
any substructures, such as the bridge, pegs, and ornaments, have not been proven to radiate sound in a sig-
nificant matter. Although Bissinger does not say that the bridge, pegs and ornaments have been proven not
to radiate significantly, we shall assume this to be the case. Therefore, we assume that the corpus is the most
prevalent radiator of the violin. Hence, describing the radiation and its directivity patterns of the corpus should
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suffice in describing the radiation of the violin as a whole.

There is one other matter to be addressed in terms of radiation. The majority of papers comparing differ-
ent violins to each other do not consider directivity patterns. Yet, as shown before, Distinguishing between
violins (2.2) does not seem a problem for most listeners as they coherently use similar sets of terms to describe
violins and were able to distinguish between contemporary violins and historical violins. We only give two
examples of studies distinguishing the sounds of violins. However, the Stradivari violins are known to be some-
what distinguishable from other violins, though never specifying the place of the listener in respect to the violin.
Even though shown not to be the case, assuming that the listeners are always at some random point around
the source of radiation may lead one to believe that the exact directivity patterns are of negligible influence to
the sound of the violin when comparing two violins.

We want to note that, through the rest of this paper, the term radiation will be used as an average taken over
spherical shells at a certain radius from the violin unless otherwise specified. In other words, we assume the
violin to be a point source with isotropic radiation. This is solely done to combat ambiguity introduced by
papers which neglect to specify any terms of direction.

2.3.2 The bridge

The radiated sound of the violin is arguably the most important part of the violin. However, the vibrations
in the string have to be radiated somehow. This is not done by the string itself and is mainly done by the
corpus[27]. That being said, the string is not directly connected to the corpus and the vibrations have to travel
to the corpus first.

Hence, without any prior knowledge, we can deduct two ways in which the system can propagate the vi-
brations from the string to the corpus. Either through the fluidum surrounding the string, or through parts of
the violin the string comes in contact with. Neville H. Fletcher notes that Savart (1840) described that a solid,
non-carved piece of wood glued to a violin at the place of the bridge will produce almost no sound when the violin
is played. If the wood is carved to create feet, the sound gets a little better. Then, when the lateral slots of the
bridge are made, only then will the violin produce a decent sound. A schematic of the bridge is given in Figure 8.

This implies that the fluidum around the string, in most cases air, will not suffice to propagate create any
vibrations to the corpus. It also follows that the pegs do not propagate the vibrations to the corpus. Only
rightly carved bridges will propagate the waves to the corpus. This makes the bridge one of the most important
parts of the violin.

force rocks

¥ bridge

bowing
direction

Helmholtz
air resonance

bass

bar sound

post

Figure 8: Schematic of the bridge of a violin, after[29]. The schematic shows the bridge placed on top of the
top plate, which is connected with the ribs, the back plate. The bass bar and the soundpost are also connected
to the top plate and break the symmetry of the violin.

Now, we know that the bridge is important and that the shape of the bridge matters. However, the shape of
the bridge seems quite arbitrary at first. By Neville H. Fletcher, we know that feet and two lateral slots in the
bridge are needed. The reason for the rest of the topology of the bridge is still unknown. Yu et al. has derived
the equations behind the vibrations of the bridge and has numerically created a topological optimised version
of the bridge, shown in Figure 9. For the optimisation, the structural response was given by

IU +CU + KU = §, (2.1)
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where I, C, K and f are the mass matrix, dampening matrix, the stiffness matrix and the vector representing
external force respectively. Additionally, U is the generalised displacement vector. Then, the optimisation
problem

Maximise Sp+ Sg—Sc — SF

Subject to fiTul- <C;
is posed along with three extra constraints which are beyond the scope of this thesis. Here, C; is the material
compliance, the inverse of stiffness, in the i—direction. Additionally, the notation S; refers to the band average
frequency response in frequency domain A to F'. These frequency domains coincide with the frequency domains
of Dinnwald’s parameters describing sonority, nasality, brilliance and harshness as shown in Figure 2a. The
second plot in Figure 9 thus shows the optimal design of a bridge to enhance brilliance and attenuate nasality
and harshness in the radiated sound of the violin.

(2.2)
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Figure 9: On the left is a typical bridge as seen in modern and historic violins. On the right is a numerical
topologically optimised version of the bridge, after Yu et al. This bridge is shown as placed on top of the corpus,
normal to the plane of the top plate.

The shapes in Figure 9 are subjectively quite close to one another and at least have some resemblance. This
only goes to show the importance of the bridge and its current shape on most violins. Namely, it acts as good,
and even near ideal, propagator of waves (made of wood) to the corpus and its separate components.

2.3.2.a Bridge admittance

The topology of the bridge is important for similar, indirect, reason. It is indeed true the current bridges
resemble a bridge where the band average frequency response of the bridge hill, regions D and F in Figure 2a,
to the corpus is optimised. Analogously, the reason why we require this to be optimised is because the measure
in which the bridge conducts the vibrations to the corpus, or bridge admittance, is highly correlated to the
radiated sound. Both Figure 11a and Figure 11b show the bridge admittance and radiation of a violin plotted
against the frequency on a logarithmic scale. In both cases, it is very apparent that a strong correlation does
indeed exist between the bridge admittance and the radiated sound. This is in agreement with the idea that
only the bridge is directly coupled to the corpus and only the corpus is radiates significantly to the surrounding
fluidum. The coupling between the bridge and corpus the is showcased in Figure 10.

bowing force

Py

soundpost

Figure 10: Schematic of coupling between modes localised on different parts of the violin [31]
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Figure 11: Bridge admittances and sound pressure levels of two violins plotted against the frequency.

Notice that the frequency responses of the two violins in Figure 11a and Figure 11b are remarkably similar.
Another simple example of frequency responses is given in Figure 12, where the bridge admittances of two
different violins are given. One of which is an expensive and a high quality violin: "del Gesu" by Giuseppe
Guarneri, the other is a violin of low value. The bridge admittance, is plotted against a range of frequencies
in the hearing bandwidth. It is important to note that the two lines (continuous and dashed) are remarkably
similar but are plotted using data from two entirely different quality instruments. We cannot make a clear
distinction between the two lines, neither (judiciously) guess which bridge admittance belongs to which violin
a priori. Therefore a rough analysis or indication of modes, frequency responses, or sound radiation will not
suffice to investigate differences between specific instruments [26], but a thorough analysis is needed.

Bridge admittance (dB re 1m/s/N)
&
i

200 500 1000 2000 5000 10000
Frequency (Hz)

Figure 12: Drive point admittance at the bridge of an anonymous violin of low value (red) and at the bridge of
the ’del Gesu’ violin by Giuseppe Guarneri (blue) [26].

Though we cannot distinguish the two violins beforehand, we can obtain useful information from this graph. If
we look at low frequencies, roughly up to 1K Hz in magnitude, distinct peaks or spikes are visible. However,
from 1K Hz onward, the spikes become less separable from one another as the frequency increases. This means
that describing the radiated sound in terms of modes, while strictly all that is needed mathematically, becomes
more difficult and less useful in practice.
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2.3.2.b Validity of the bridge admittance’s behaviour

However, there is a matter of importance before diving deeper into analysing Figure 12. The paper does not
describe how it was sampled or how the timbre is described. Hence, there is a lot of missing information which
is needed for the plot to provide us with further insight into the timbre. Namely, any string instrument player
may tell you that the bowing of the string can be done in a number of ways. For example, the ’heaviness’
of the elbow, the direction of the bowing and the place on the bow being played with are important factors
influencing the radiated sound. Even the note being played can create a different timbre from other notes.
Further information on material properties and the mathematical equation behind bowing the string and its
effects on the bridge and radiated sound are investigated by Askenfelt, Young and Gough but fall outside the
scope of this thesis. Namely, due to the absence of information on the obtained data, and possibly the lack of
awareness considering the influence of such parameters on radiated sound, we must assume that both violins
in Figure 12 were played by the same violinist with as much of the same technique as possible, nullifying any
differences made by external factors such as technique and the material properties of the string.

There is one more thing to consider in the acquisition of the data in Figure 12. What did the violins sound like?
Is it coincidence that the plots are alike or did the cheap violin have a relatively high sound quality? No audio
files nor description of the timbres is given. So we are left to guess what the difference between violins was.
Fortunately, Woodhouse also shows Figure 13, plotting the bridge admittances five different ’typical’ violins.
All of these plots share a similar shape, not too different from the shape of the bridge admittances found in
Figure 12. Considering that picking at least five instruments with the same timbre is unprecedented, we can
quite reasonably assume that the bridge admittances of any randomly chosen violin will probably follow the
same pattern.
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Figure 13: Bridge admittance of five (classical) violins as a function of frequency. The vertical axis is the
impedance ratio divided by 0.3425 [26].

The number of instruments is nowhere near large enough to construct any form of confidence interval with a
statistic if the instruments where randomly chosen, neither do we have any information on the chosen violins to
give an indication on the quality or timbre of the instruments. However, to Woodhouse’s credit, we can check
our hunch in some form. The shape of a guitar’s corpus, in very low order approximation of any kind, roughly
resembles the shape of the violin’s corpus. Therefore, if we find the same kind of impedance ratios for the
guitar, our hunch is disproved. However if we find another shape of impedance ratios for the guitar, though our
suspicion concerning violin bridge admittance patterns is not necessarily proved, we can make the assumption
with more conviction than before. The impedance ratios for guitars is shown Figure 14.
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Figure 14: Bridge admittance of five (flamenco) guitars as a function of frequency. The vertical axis is the
impedance ratio divided by 0.702% [26].

The impedance ratio for guitars is shown to be entirely different than those found in the violins. So we are
inclined to make the argument that the bridge admittance shape is either unique to violins or is common in all
violins.

Now we must note that guitars have another kind of bridge and are played very differently than violins. There-
fore, if both instruments were struck similarly on an open string, in addition to our low order approximation
in corpus shape, we could argue that this serves as supporting evidence to the importance of the bridge on the
radiated sound.

2.3.2.c Changes in behaviour of the frequency response

As mentioned before, the behaviour of the admittance changes around 1kH z. This is because the bandwidth of
each mode will go up as frequency increases. However, the distance between each mode does not increase at the
same rate. As a result, the modes will become less distinguishable as the frequency increases. This similarity
between the bridge and the radiated sound is also present in this perspective. The average sound pressure level
of 5 different Stradivari violins is shown in Figure 15. In the plot, the signature modes are shown below 1kH z.
Around 1kH z, the peaks become less distinguishable whereafter the bridge hill is formed around 2kH z. In this
plot, it is very clearly visible how the language of modes ceases to be useful when analysing higher frequencies.
This shows a lot of similarity to Figure 12. Therefore, we can be fairly certain that having a useful language
for the bridge admittance will be key to describe the radiated sound.

Like most physical phenomena, this is change of behaviour not a sudden change. Rather, it changes gradu-
ally over differences in frequency. Thus, also in a similar fashion to most physical phenomena, we define a
dimensionless constants as a(n) (informal) measure for the practicality of the language of modes. Using these
dimensionless constants, though not yet defined without loss of generality, will serve us as indicators and will
ideally sketch a domain or domains where certain mathematical tools will be accurate within a margin.

Having said that, there are two reoccurring dimensionless constants in literature:
e The modal overlap factor
o The statistical overlap factor

The modal overlap factor and the statistical overlap factor can be defined alongside one another. The constants

are described to be the factors relating all respectable violins in a single model[36]. The modal overlap factor[37]
is defined by:
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M= bandwidth of r.nodes. (2.3)
modal spacing

In the case of the violin, the modal spacing stays roughly constant while the damping bandwidth of the modes
increases[36]. Thus, the modal overlap factor increases. Though, the modal overlap factor does not suffice
in explaining the whole picture. For example, when modelling a subsystem with p mass per unit length as
p = po(l+ €U) for U a random Gaussian and e arbitrary, then the modal overlap factor depends only weakly
on the arbitrary constant and thus does not account for its random nature. The statistical overlap factor[37]
does take this into account. It is defined as:

20,
<Wn+1 - Wn> '
Here, w11 and w,, are the n+ 1’th and the n’th natural frequencies respectively with o,, the standard deviation
of the n’th natural frequency. Manohar and Keane show that the statistical overlap factor can be related
to the frequency region where oscillations in statistics disappear. Though, to further characterise the bridge
admittance for high frequencies > 1kH z using the modal overlap factor, statistical overlap factor and maybe
even the statistical energy analysis framework[26] are necessary, more in depth research needs to be done on
this topic in regard to the violin to reach any significant results.

S, = (2.4)
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Figure 15: The plot of the average sound pressure level across 5 different Stradivari violins [38].
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2.4 Bending plates

As shown before, the bridge and the radiated sound caused by a violin are strongly correlated. But, the corpus
still plays an important role in the radiation of the sound. As shown in Figure 51, the corpus of the violin
consists mainly of the top plate, bottom plate, ribs, sound post and bass bar. By the logic Cremer uses for
strings in respect to radiation, the top and bottom plates of the corpus will be the predominant radiators.
Deconstructing the corpus yields us a bare coupled system. The plates are coupled to each other by the ribs.
However, before searching the intertwined equations of a coupled system, we shall first consider the bending
wave equation on a thin plate and other possible theories to describe bending plates.

In the first section, we will discuss the equations of motion for isotropic bending plates which are derived by
using the bending moment with generalised boundary conditions and initial conditions. Then, we will show
three specific kinds of boundary conditions which are applicable to the corpus of the violin.

In the second section, we show other feasible theories for thin plates and skim over the principles of their dy-
namics. Additionally, we take a closer look at the Classical Kirchhoff theory and an application thereof: Chladni
patterns.

For the Chladni patterns, we showcase differences between violins of different quality and a theoretical nodal
lines in compared to measurements. For the thin plate theory (Classical Kirchhoff theory), the equations of
motion are described whereafter a the numerical results for some plates with astounding detail. Namely, the
plates are not only guitar shaped plates, a comparison is made to guitar plates with f-holes and with a sound
post, making it the most realistic results we have seen so far.

2.4.1 Equations of motions

A priori, suppose we have some plate Q with thickness h and lies in the (z,y)-plane. Neville H. Fletcher gives
the derivation for a bending bar, which it extends to the equations for a bending plate. Now, Neville H. Fletcher
states that a stiff membrane can behave plate like. In a sense, this is logical as reducing the bending stiffness
from a bending plate yields a membrane. However, Neville H. Fletcher does state a different equation for the
wave equation of a membrane than for the flexural wave equation on a thin plate, or bending plate. First, the
bending wave equation on a thin bending plate and on a membrane are given by

U ERh? .
57+ 3V U =0 (2.5)
and PU T Eh?
- - 2 et v 4 _
o =gV Ut gV U =0 (2.6)

respectively. Here, U is the displacement along the z-axis (out of the (z,y)-plane), T is the tension, h the
thickness, F the Young’s Modulus, p the density, ¥ Poisson’s ratio and o the mass per unit area. Second, the
generalised boundary conditions are given by

[Z DY (U(w,y, t))} = fi(zaq, yoo, t) (2.7)

ieN (z,y)=(zo0,y00)

and

= f2(za0, Yo, t), (2.8)
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where Dg) is the 7’th directional derivative with respect to 7, ; € R and (zgq,ysq) € 9 where the directional
derivatives exist. Additionally, the boundary conditions require that f; and fo are sufficiently smooth functions.
Note that each boundary needs two boundary conditions since there exists a second order derivative, with respect
to time, of the displacement U. Finally, the initial conditions are given by

U(0) = v(z,y) (2.9)
and
oU
E(O) =w(x,y), (2.10)



where v(z,y) and w(z,y) are also required to be sufficiently smooth functions.

Generally, the boundary conditions can depend on many factors, however in the case of a plate, we can con-
sider three specific kinds of boundary conditions at the boundary 9€). This is especially important for different
geometries of the plate.

We consider three kinds of ends[39]; namely the free end, the supported end and the clamped end. Let 7

be the normal vector at 0€). Then, the free end describes gzi =0, % = Ofor all(x,y, z) € 0. Similarly, the

supported end is described by z = 0, g% = 0 and the clamped end is described by z = 0, g—z = 0. In both the
latter cases, (z,y,z) € 0.

In the case of a violin, there is one clamped edge, since one edge is held at the chin while playing, for each plate
and the rest are free edges (or actually coupled with the other plate). Therefore, the cantilever plate should
give an interesting perspective on the bending of a plate.

2.4.2 Other feasible theories for analysing thin plates

Classical Kirchhoff theory is arguably one of the most mainstream theories for bending plates. However other
theories for the bending of plates do exist, three of which are the Reissner plate theory, the Mindlin plate theory
and the Kirchhoff-Love plate theory.

Reissner and Mindlin plate theories

Wang et al. explains and inspects the relationship between the Reissner and and Mindlin plate theories. The
paper shows that the stress resultants of the theories are different. Though for cantilever plates with the exact
same shear forces result in coherent in stress resultants in both theories. Therefore this might be a viable option
for the violin plates which, as mentioned before, strongly resembles two coupled cantilever plates.

The biggest difference in Reissner and Mindlin plate theories is the bending moment in the i-direction caused by
forces in the i-direction, M;, in plates and the resulting difference between the Mindlin sum and the Reissner

sum, which is used to derive a bending wave equation.

Using a superscript R for Reissner plate theory and a superscript M for Mindlin plate theory, we get

OPR vy vh?
WwE— pf 9% Y 2.11
i <8x+ 3y)+10(1y)q (2.11)
and v oyt
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where phi; is the change of slope with respect to the normal, D is the flexural plate rigidity, v is Poisson’s ratio
and h the plate thickness. Using these bending moments for the bending wave equation, we yield

2 (005 06y _ 10 (9% 09y
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and
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where k is a constant introduced in Mindlin plate theory. From these bending wave equations, we see that
setting k2 = % yields the similar results for the bending wave equation.

Kirchhoff-Love plate theory
Asakura et al. derives the nonlinear boundary conditions for Kirchhoff-Love plate theory. The bending wave
equation is presented in the paper as a set of three equilibrium equations which are given by

9] ou. 02U
DV4U, + ¢(D=V*U, z z = 2.1
ViU, + ¢ atVU+ph,u 5 + ph BT q, (2.15)
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and
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— = 2.1
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where ¢ and p are coefficients for dampening characteristics, p is the density, E is Young’s modulus, and G is
the elastic shear modulus. Note that Kirchhoff-Love theory takes dampening into account and could therefore
produce more realistic results in a model without making assumptions for the load q.

Chladni plates

Another option to describe the waves on the plate is using symmetry and nodal lines caused by the symmetry
of the plates. The symmetry properties and observations are condensed into a set of "laws" for nodal lines as
a result of the flexural wave equation on the plate [42]. The patterns on Chladni plates are often showcased
by distributing a bit of sand or other small material made of small crystals. Some crystals gather on the nodal
line, and other crystals gather on the anti-nodal regions to do localised low air pressures[42]. However, this
should not be used to find nodal and anti nodal lines. Rather, it should only be used as demonstration since
the equations of motion for the grains is heavily influenced by statistics and can result in less accurate nodal lines.

Hutchins attempts to explain the acoustics of the violin by using the Chladni plates. It even does so to the
extent that the eigenmodes and the Chladni patterns compare. The paper also notices that the Chladni patterns
of violins can be an indicator of the quality of the violin. Figure 16a showcases the difference between violins.
There are three back plates shown with two different modes each. The upper Chladni pattern corresponds to
the second mode and the lower Chladni pattern corresponds to the fifth mode. Only the left violin is of high
quality. The middle one has a broadened nodal line in the upper middle part, which indicates that the plate
is stiffer in that area. The right one has a slightly lower nodal line, caused by similar stiffness, and has nodal
lines which do not connect into an arch. This means that the plate is thicker in that area.

(a) Three different back plates from violins and their
second (upper) and fifth(lower) modes. In the second

mode, it is clearly visible that the nodal line is thicker (b) Three different measured eigenmodes at different fre-
in the middle and right violin. This indicates a lo- quencies (1% row) and their respective theoretical coun-
calised increased stiffness in the plate. In the fifth terparts using Chladni plate theory (2" row.) The eigen-
mode, the right violin has nodal lines which do not modes are laser interferograms and the method does not
connect to create an arch. This indicates an increased only show nodal, but also anti nodal lines in the form of
thickness of the plate. thin black lines.

Figure 16: Two results[43] using Chladni plates to compare between violins(a) and to compare between experi-
mental results and theoretical results(b)

Figure 16b shows the back plate of one violin. There are three eigenmodes showcased for different frequencies.
Each eigenmode is accompanied by it’s theoretical Chladni plate counterpart. From this image, it is clear that
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the nodal lines do resemble their theory counterpart but will not be accurate enough to display thinner nodal
lines. This may be due to the inherent curvature of the plate, giving the random movement of the particles an
extra bias on top of the differences in air pressure.

From Figure 16a and Figure 16b, it is quite obvious that the theory and practice surrounding Chladni plates is
an eligible tool to create an overview of modal lines in violin plates. However, modal analyses are to detailed
for this technique to work.

An-isotropic thin plate theory

Gough (2007) offers a look at an-isotropic thin plates. The paper begins with a showcase of Chladni plates and
moves on to the classical Kirchhoff theory. The equations of motion are quite different than Equation 2.5 and
Equation 2.6. The paper states that

0%z 0%z 0%z 0%z
h—— + Byy—— + 2By —=——= + Byy=— =0 2.18
Phgm * Beegua T 2Py 055 T Pwg g (2.18)
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; and v, ; are constants that describe the an-isotropic elasticity of the wood and h is the local thickness of
the plate Tfle frequency on a thin plate away from localised boundary conditions is also shown to be
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where a = gm and k; , are the wave vectors in the z- and y-direction respectively. Using Equation 2.18 and

Equation 2. 22 the paper then showcases different modal results, using a finite element approach, with a colour
scheme convention where both dark red and dark blue are maximal displacements but of opposite phase. light
green means that there is little to no displacement whereas yellow is a small displacement which is in phase

with red.
680 594 889 880

Figure 17: The selected modes of guitar shaped thin isotropic plates. There are two plates, each with a different
frequency. For each plate, the modes are calculated with and without slots, representing f-holes[44].
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Figure 18: The selected modes of guitar shaped thin isotropic plates. The two plates have different frequencies
and for each plate, the modes are calculated with and without a soundpost [44].
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Figure 17 and Figure 18 show some of many results published Gough (2007). The paper includes calculated
modes on an-isotropic plates and a bass bar. It is very clear from these results that the flexural wave equation
for bending plates this paper uses is a good contender to analyse modes on violin plates. In later papers, the
author goes into more detail on the method used and the result of the finite element analysis.

For further reading, Norris has compared the Classical Kirchhoff theory, the Kirchhoff-Rayleigh theory and two
variants of the Mindlin theory with each other and has derived the dispersion relations for each of them. Besides
all the aforementioned theories for bending plates, another theory also stands out: shear deformation theory.
There are several different branches of the theory which could be useful. First order shear deformation theory
accounts for in-plane displacements of the linear kind while third order shear deformation theory accounts for
cubic variations of in-plane displacements[46].

2.5 Assembling the corpus in a finite element analysis

Up until now, we have only considered single plates. We will now show the coupling of the plates, as it contains
interesting dynamics. Namely, the different plates and the matter in which the plates are connected provide an
intricate relations between modes and frequency.

We will first look at how the finite element grid is constructed and show the normal modes of two coupled
plates. These are the reoccurring modes which form the basis for every other mode.

Then, we will show the results from a finite element analysis using different coupling models in conjunction
with the classical Kirchhoff theory. This includes results for the variable rib-strength and effect of the f-holes.
We compare the results, using the rib-strength and the effect of the f-holes to measurements.

After the comparison from the results of the finite element method and the measurement, the finite element
model is made more realistic by considering the ribs as spring with two corresponding spring constants. The
effect of increasing both spring constants is then shown.

We then discuss the two remaining parts of the corpus: The soundpost and the bass bar. The influence of both
parts is then shown. This concludes the results of the finite element model using the classical Kirchhoff theory
as shown by Gough and Stoppani.

Lastly, two additional numerical models on of the corpus are shown. Both use a slightly different method. The
grid we show in the latter will be used as inspiration for our model in the second part of this thesis.

2.5.1 Finite element model and Cavity modes

Gough (2013, 2015a, 2015b) uses the thin plate theory to set up his numerical model in Comsol, using its
structural mechanics module[50]. He describes this Finite Element Analysis (FEA) in detail. The geometry of
his model is based on the internal rib outlining from a Stradivarius violin, as shown in Figure 19.

Figure 19: Internal Rib Outlining from the Titian Stradivarius[48].

This grid shows that the top and bottom plate of the violin are coupled via the ribs. When the plates of
the corpus are coupled and vibrating, they can generally create twelve different kinds of modes for the corpus
itself[38] for normal rib strengths. Figure 20 shows these twelve computed modes for a violin body.
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Figure 20 shows an important term, Breathing. Breathing can be described as the net volume change of the
corpus over time. The breathing of modes is important as it primarily determines the radiation for low frequency

modes[26].
* d t

breathing CBR - rotation LD - Longitudinal dipole  anticlastic bending

B674Hz 721 Hz

ITd -transverse dipole 1Td-utwist /i lower island bounce iR —island rock

L3 (c4) T3

uTd -transverse dipole

uiD

Figure 20: Twelve computed modes for an empty violin body, colour indicating the displacement with colour[38].

Another thing to notice is that the modes are always symmetric or anti-symmetric with respect to the longi-
tudinal axis of the violin. Notice though, that almost none to no breathing at all takes place if the mode is at
least anti-symmetric along one of the axes. These are called bending modes. The breathing and bending modes
can always be used as orthogonal characteristics to describe the modes[26]. Using these breathing and bending
modes as a basis, any latter results can be compared to this principle to check for validity.

The upper left mode is often referred to as the A0 mode and the upper second to left mode is often referred to
as Centre Bout Rotation (CBR). These two modes are very common in vibrational violin plate analyses and we
will find that these twelve modes form the basis for almost every other mode we can find by changing the type
and strength of coupling between different parts of the corpus.

2.5.2 Coupling, the sound post and the bass bar

Gough (2015a) describes the influence of rib coupling on the modes in respect to frequency. In the same paper,
the influence of cutting f-holes into the wood of the top plate on the modes is described. To analyse the ribs,
the Young’s modulus and the density are increased by several orders of magnitude. This is done to preserve
longitudinal bending modes on the plates at high frequencies. The ribs, as a result, act as springs which atten-
uate the displacement of the plates.

The f-holes serve two important causes. The first one pertains to the openings in the wood. The two holes
allow for breathing. This breathing or volume change creates a Helmholtz resonator. The second effect of the
f-holes is the area between them. The wood between the f-holes has more flexibility than the rest of the top
plate. This area between the f-holes is often referred to as the island area. The bridge is located on the island
area which causes the island area to enhance the transmission of waves to the corpus.

The modes are plotted against the rib coupling strength and the f-hole area strength in Figure 21a and Figure 21b
respectively.
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Figure 21: Two results[48] where the transformation of the cavity modes in terms of frequency is shown against
the coupling strengths of the ribs and f-holes.

Even though the relation between the rib coupling strength and the modes is quite complicated, the amplitudes
from the modes become larger whenever the coupling strength of the ribs is increased. We also notice that
the modes on the top and bottom plates are either in phase or in anti-phase for stronger rib coupling whereas
this is not necessarily the case for weaker rib coupling. Additionally, the frequency increases if the rib coupling
strength increases. This is the case since the frequency is \/Kyip/Myip, where K is the effective linear rib
coupling strength and M,.;; is the effective mass of the rib. We must also note that modes in anti-phase with one
another experience a lot of attenuation due to the extensional spring like ribs near the edges of the plates while
modes in phase with one another do not experience this attenuation nearly as much. The attenuation of the
displacements gets stronger if the rib coupling gets stronger and causes the frequency to increase slower than
the in-phase modes. The difference between in-phase modes and anti-phase modes is clearly visible in Figure 21a.

As the rib coupling strength is increased, six new modes form on Figure 21a, these are the modes which start
at the bottom of the plot. These modes are created by combinations of the twelve Assembling the corpus in a
finite element analysis.

If the flexibility of the f-hole area is increased, or the flexibility of the island area is decreased, the breathing and
bending components of the plate modes are barely changed. However, the f-hole area strength does decrease
the frequency of the modes. Furthermore, the cavity, which is being considered as a Helmholtz resonator,
couples the air inside the corpus to the plates. The coupling of the breathing modes to the air increases as the
surrounding air pressure increases. Gough shows that with increasing ambient air pressure, the frequency of
the breathing mode can be increased from 280H z in vacuo to about 400H z.

The numerical solution is then compared to the average modes of six modern violins, shown in Figure 22,
for four of the most important modes. Note that the measurements of the violin modes were made before
the fingerboard and the soundpost were added, therefore a comparison between the numerical model and the
measurements can be made. Figure 22 uses two different colour schemes. The first one is for measured modes,
on the left side, where white indicates little to no displacement, light red indicates the maximum displacement
and light blue indicates the maximum displacement in opposite phase to red. Similar to the previous finite
element model results, dark red and dark blue indicate displacement in the opposite direction whereas green
indicates little to no displacement.
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Figure 22: The results of the numerical model including the rib coupling and f-holes compared to measurements
of the same modes. For each of the four modes, the top and back plate of both the measurement and of the
finite element model are shown. The measurements were taken using the average mode shape of six modern
violins.[48]

We see that the shape of the modes is fairly similar. However, the measured mode shapes are slightly off centre
and are not completely symmetrical. This often accomplished using the sound post and the bass bar. There
are still some factors which have not been incorporated into the model on top of the bass bar and soundpost.
Namely, the coupling of the ribs creates bending at the edges of the plates, which can be modelled with ex-
tensional and torsional spring constants. Furthermore, an-isotropic properties are yet to be taken into account.
The difference in frequency in the modes as seen in Figure 22 may be explained by the absence of the soundpost,
bass bar, bending near the edges or by lack of an-isotropic properties being included.

The effects of the soundpost, bass bar, bending due to rib coupling and an-isotropic properties are also shown by
Gough. Namely, Gough (2013) investigates the effect of the sound post and its placement on the modes while
Gough (2015b) investigates the effects of the bass bar, an-isotropic properties and extensional and torsional
spring constants. These spring constants are the effect of the plates bending near the edges due to rib coupling
and may be considered an-isotropic effects. The paper also models an-isotropic effects by laying strips with the
same density but with varying Young’s modulus along materials to mimic elastic properties of wood.

We will start with the bending near the edges of the plates due to rib coupling, shown in Figure 23a and
Figure 23b in the form of extensional and rotational spring constants. Then, the effect of the soundpost and its
placement are visible in Figure 24b and Figure 24a. Lastly, the effect of the bass bar is shown in Figure 25.

Figure 23a shows the behaviour of only in plane mode plates with respect to the extensional spring constant.
The extensional spring constant essentially pins together the plates for high enough rib strengths. However,
the rib strength is never high enough. Therefore, the displacement at the edge of the plates is not attenuated
completely. In addition to the normal modes being raised in frequency, three new "bouncing' modes are created
if the extensional spring constant is high enough.
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Figure 23: The effect of the rib coupling and bending of the ribs of the plates on certain frequencies[49].

Figure 23b shows in-phase and anti-phase modes. At higher torsional spring constants, the effect of increas-
ing the spring constant lessens. This is the case since the potential energy is increasingly determined by the
bending of the whole plate instead of by the edge solely. Note that the torsional spring constant clamps the
plates together to the rib plane if the rib strength is great enough. However, the plates are still free to move
perpendicular to the plane of the ribs.

The soundpost is squeezed between the top and bottom plate of the corpus. Therefore, the two plates are
coupled in yet another way. It translates the forces exerted on it by one plate almost directly to the other one.
For high enough sound post strengths, the force on the soundpost on top must equal the force on the soundpost
at the back plate. The soundpost also attenuates out-of-phase movements from the top and back plates. As
a result, the displacements around the soundpost are significantly smaller than on the rest of the plates. As
mentioned before, the bridge is located on the violin. But the soundpost, when located near the island area,
attenuates the displacement extensively. It functions as a gate like structure for the bending waves.
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Figure 24: The effect of the soundpost and moving the soundpost away from the centre[49].

Moving the soundpost away has two effects. First, the gate like effect of the sound post is reduced and it allows
the displacement of the plate to permeate through the rest of the plate. Second, it creates asymmetry in the
displacement on the plate. Horizontally bowing will then result in rocking the bridge asymmetrically, resulting
in strong coupling to the modes. This radiates strongly. Figure 24a shows the effect of the soundpost when it
is moved across the island area (parallel to the width of the violin; along the central axis). This allows us to
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identify different modes for the upper-and lower bout of the violin, without modes interacting with each other
causing a phenomenon called veering.

Figure 24b shows a centrally placed soundpost which, like the ribs, is varied in elastic constant and in its
density. The asymmetrical modes are not present as a centrally placed mode will only allow modes which are
symmetrical about the central axis. From Figure 24b, it is shown that the most important function of the
soundpost, when placed in the centre, is to increase the frequency of the breathing mode.

Figure 25 shows effect of the bass bar on three of the cavity modes. The upper row displays modes with a bass
bar and the lower row displays the same modes without a bass bar. It is shown that the bass bar decreases the
vibrations in amplitude a little bit and increases the frequency, for the breathing mode, by about 6%. This is
because the bass bar strengthens the coupling across the island area. This effect increases for modes of higher
frequency. Increased thickness of the plate will have a similar effect on modes locally. The colour scheme used in
Figure 25 is that of the previous finite element methods, using dark red and dark blue as opposite displacements.

CULETTT

292 Hz 367 Hz 460 Hz

Figure 25: The influence of the bass bar on three arched top plate of a violin with f-holes.

2.5.3 Other finite element models for bending plates

Lomte uses a similar approach to Gough. However, the paper investigates the an-isotropic material properties
of the wood and uses this, together with a mesh grid, to create a bending violin plate in Comsol. Figure 26a
and Figure 26b show the mesh grid of a top plate and show one of the results respectively. The equation of
motion Lomte uses is very similar equation of motion used for the optimisation of the bridge, in section 2.3.2,
and is given by

IU +CU + KU = f, (2.23)

where, I, C, K are the mass matrix, the damping matrix and the stiffness matrix. Moreover, f represents the
external force applied to each grid element.

The results are shown in Figure 26b. Note that the plot shown is does not resemble on of the twelve cavity
modes found by Gough. However, it does resemble the displacements found in Figure 18.
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Figure 26: The mesh grid (a) and the numerically calculated result (b) for the top plate of a violin using the
an-isotropic properties[51].

Bretos et al. shows another numerical implementation using a software called Abaqus. The paper does not
go into detail of the numerical method and the equations used. However, it does state that the mechanical
properties of spruce wood were used in the parameters of the model. Nevertheless, the paper clearly showcases
its grid. The grid, shown in Figure 27, is detailed but also attainable. Therefore, the attempts in our paper
to recreate the shape of a violin will be heavily influenced by the grid used by Bretos et al.. The grid used by
Lomte in Figure 26a, although detailed, is not suitable for a manual implementation. Similarly, the model used
by Gough is not suitable since it is based on strips, as shown in Figure 19, and the real grid used in Comsol
is not shown. However, since the paper performs its calculations in Comsol, it is likely that the internal mesh
grid looks similar to Figure 26a and is too complex to manually implement.

Figure 27: The grid used by Bretos et al. to create a finite element model of the corpus of a violin

2.6 Experimental findings

We have now seen three different finite element models, two have used Comsol and one Abaqus to calculate
the displacement of each grid element in their respective models. Gough has compared one coupled mode to
measurements to the average of a hollow corpus but we have not seen any modes on an actual violin.

Jansson et al. uses holographic interferometry. In the paper, the method used to create holographic images is
discussed in detail and the violin is constructed with ready made parts such as the ribs, finger board, etc. In
order to see the fringes of the interferograms, The neck and fingerboard were covered in white tape. For the
holographic interferometry of the whole violin, a method called double exposure was used. In this method,
the reconstruction consists of double images which are coherent with one another. Therefore, they can inter-
fere and the deformation of the plates is then shown using the interference fringes. One of the measurements
is shown in Figure 28 where the G string is held and the deformations of the violin can be seen in terms of fringes.
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Figure 28: Deformation of the top and bottom plate of a violin while the violin is held in place. The deformation
is shown using double image holographic interferometry[53].

As we can see, the mode is highly asymmetric, indicating a significant sound post strength or highly off centre
bass bar. Another possibility is adding the breathing mode and centre bout rotation mode, a result likewise to
Figure 28 is obtained. This shows that the finite element analysis presented by Gough is viable to model the
violin. Still, Figure 28 contains many ripples whereas the every model presented by Gough describes monopole
or dipole up to octupole radiation.

Another experiment with optical sensors is done by Luke. However, in this case, the experiment is made as
realistic as possible since a chin rest was added and the instrument was supported at the chin rest and the
neck. In addition to this, a piece of felt was put on top of the strings to dampen them slightly. Then a coil was
attached to the bridge which was electromagnetically vibrated with a sinusoidal pattern. Then optical sensors
with a peak sensitivity of 1um were used to measure the deformation of the plates. Several measurements were
made near resonance peaks of the corpus, resulting in standing modes. Two of these measurements are shown
in Figure 29 where the light gray area indicates in phase modes and the dark gray area indicates in anti-phase
modes.

Figure 29: Two measurements of the top and back plate on a violin, made with optical sensors, at different
frequency near resonance peaks. The standing wave motion is shown for frequencies of 204H z (left) and 630H z
at the right. Light gray indicates in-phase motion and dark gray indicates anti-phase motion[54].
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Now Figure 28 and Figure 29 both show vibrational patterns we have already seen in the numerical model
described by Gough (2013, 2015a, 2015b, 2018). Namely, in both standing waves, we can see resemblance to
the cavity modes shown in Figure 20. Figure 28 strongly resembles a slightly asymmetric form of centre bout
rotation (CBR) and Figure 29 strongly resembles a breathing mode on the bottom plates and a transverse
dipole on the top plates. This, once again, shows us that thin plate theory comes a long way in describing the
modes of the violin.

2.7 Cantilever plate

As mentioned before, the violin resembles two coupled cantilever plates when played on an open string. So in-
terest dictates that studying the cantilever plate and its bending behaviour may offer a look into the behaviour
of a violin held at its chin rest. The first iteration of our model does exactly that and will contain a cantilever
plate with its displacement induced by a spring mass system located on the plate. The paper by Chiba and
Sugimoto is therefore used as a reference to check the results of the numerical implementation of the model,
given in the second part of the thesis.

Chiba and Sugimoto derives the flexural wave equation on a cantilever plate with a harmonic driving source
using the Lagrangian, solving the flexural wave equation afterwards. In specific, the paper discusses a thin
isotropic cantilever plate with free ends. The plate has a length L, a thickness h and a width H. At some
arbitrarily chosen point (xg,yo), on the interior of the domain in the (z,y)-plane, the plate is coupled with a
mass spring system of mass m. and has a spring constant k.. The deviation on the plate is given by W (x, y,t)
and the spring mass system is driven by z(¢). The paper makes two assumptions:

o W(z,y,t) =w(w,y)e

o 2(t) = zpe™¥

In other words, the paper assumes that all waves in the system are constructed by harmonics of the same
frequency.

Z(t)
Wix, y, 1)

T4
|

Figure 30: Schematic of a thin and isotropic cantilever plate, coupled with a spring mass system[55].

Chiba and Sugimoto first derive the Lagrangian L. To solve the spring mass system coupled to a cantilever
plate, a version of eigenfunction expansion is used by making the following assumption:

()= (amn@m\lfn), (2.24)

m,n
where ( = £, = % w = %. Then classical mechanics to derive the mass matrix M and spring-constant matrix
K in a simplified version of Equation 2.23 where C' and F' are zero. To understand the numerical solution offered

by the paper, three constants must first be defined. The aspect ratio A = %, the stiffness ratio age = k‘e% and
the mass ratio ay,e = p}?ﬁ, where p is the density of the plate.

For an uncoupled system the natural frequency wq of the plate changes as the aspect ratio changes, as shown in
Figure 31a. Another result of the paper is shown in Figure 31b, where the vibrational modes are displayed for

32



a coupled system. In our paper we will try to reach similar results in our numerical model of a cantilever plate.
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Figure 31: Two results[55], (a) showing the growing natural frequency wy with respect to the aspect ratio, A,
for an uncoupled cantilever plate and (b) showing the first five vibrational modes for in a contour diagram for

various mass ratios.

In Figure 31b, we see both symmetric modes and anti-symmetric modes. We also see the existence of quadrupole
radiators (5¢p mode for o, = 0.01). Additionally, the progression of the natural frequency is plotted against
the aspect ratio A\, which can be tested against the results of our own model.

33



3 The model and its modelling cycles

In the Literature study, different models of the violin have been presented and tested using numerical packages;
including COMSOL, ABAQUS and other programs. In this chapter, a create a model of the violin using the
ideas, equations and methods provided by Chapter 2. The idea of the model is to start simple by dissecting the
violin and consecutively simplifying the governing equations for the dynamics of the system. Through modelling
cycles, increasing the realism and complexity in every iteration, we aim to get a model which will ultimately be
able to point out differences between violins in relation to their radiated sound.

The violin consists of many different parts which are tightly bound or glued together; resulting in a tangled web
of vibrations. As one can imagine, the components of the violin contribute in different ways to the radiated
sound. Consequently, considering the most prevalent radiators solely and making the necessary assumptions,
the model boils down to a relatively small selection of parts whose dynamics are governed by an adequate
system of equations. This idea is coherent with most research on the radiation of the violin, which addresses
one specific aspect of the violin in relation to the sound and timbre.

To construct the first iteration of the model, we will follow the following procedure:

Procedure for constructing a model of the violin

1. Introduction to the model and overview

2. Identifying parts and intertwining structures, defining the system and its subsystems
Making a selection of the parts, based on their individual effect on the radiated sound
Investigating the relation between all adjacent subsystems separately

Simplify the relevant subsystems and their relations to one another

@ 8 > 89

Construct a model of the system using the simplifications

The rest of this section contains the introduction to the model and a general overview of the modelling cycle
used to enhance the realism of the model. In section 3.1, the system is described with all its relevant subsys-
tems which interact with each other. Steps 2,3 and 4 in the modelling procedure overlap and intertwine. Hence
they are discussed together, in section 3.2. The first iteration of the model is then constructed in the section 3.3.

As mentioned before, the idea is to start with an elementary model, gradually increasing the realism of the
model in modelling cycles until satisfactory results are found. Doing so allows for a simple starting point which
can be built upon, featuring corrections and adjustments in later versions of the model.

For the simplification of the violins’ system and its subsystems (such as the corpus and the string), we make
a number of assumptions for the relations between each pair of adjacent, hence coupled, subsystems and for
the equations of motion. The model is made more realistic by removing the assumptions one by one in a new
iteration of the model. As a result the governing equations become increasingly complex. Hence, this chapter
provides a starting point, or first iteration of the model which can be built upon in later revisions of the model.

The aforementioned system contains several subsystems. Therefore, solving the equations of motions and assem-
bling the subsystems should give us all the information needed. However, the system is more complex than meets
the eye. Each "solution" to a subsystem is a variable or parameter to another subsystem due to the coupling
between components. As a result, both feedback loops and intrinsic filters can exist in the system. Additionally,
almost all of the governing equations for the dynamics of the individual subsystems are not analytically solvable.

Consequently, we will discuss a one dimensional form of the model, a beam, which can be used as test in the

numerical model. Subsequently, we will attempt to find solutions for a bending plate numerically using the
simplest version of the model in Chapter 4.
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3.1 The system

The system of the violin is the collection of all its material components including its direct surroundings. Thus,
the subsystems can be identified by travelling along with the signal, separating components of the violin with
different vibrational behaviour.

Initially, the player bows the string, creating a signal which travels through the system where certain fre-
quencies are amplified or damped. This can happen in several ways as the signal has multiple "ways" to reach
the corpus and to eventually be turned into radiated sound.

Note that, for brevity, the far field radiated sound is reduced to a spherical symmetric plane wave. This
shall be elaborated in the dissection of the subsystems

Firstly, the vibrations in the string cause differences in air pressure in the direct environment. These dif-
ferences in air pressure travel radially outward and act as a source of longitudinal pressure waves (acoustic
waves), as a response to the string, onto the top plate of the violin and into the corpus of the violin where the
waves collide with the back plate. This causes the corpus to vibrate and consequently amplify or attenuate
certain frequencies due to resonance and interference respectively. The resulting amplified acoustic waves in the
corpus travel outside through the f-holes.

Secondly, the waves on the string cause tensions in the ends of the string where it is tied to the body of
the violin. These tensions and the corresponding displacements on the string are then conducted to the bridge
and pegs where the string is directly clamped and coiled respectively. The mechanical impedances of the bridge
and pegs are dependent on the frequency. Hence, the bridge and pegs also act as a frequency filters; amplifying
and attenuating the signal accordingly. The resulting vibrations will cause the corpus to vibrate and subse-
quently create sound waves with further amplification and attenuation.

Note that in both of these cases, the top plate, ribs and bottom plate are also connected to the environ-
ment and thus will cause acoustic waves themselves. On top of that, the acoustic waves inside the corpus
continue to collide with the plates, ribs, bass bar and soundpost until they find their way out through the
f-holes. In the same manner, the pegs and the bridge will also vibrate as a response to the corpus.

It follows that the system of a violin consists of five subsystems, four of which are pairwise coupled to one
another. The different subsystems can be classified by their physical components and the resulting waves in the
material. We denote the displacement of a material due to the transversal component of a wave as U. Similarly,
the pressure in a medium due to the longitudinal component of a wave is denoted as P. The system of the
violin can then be summarised as follows:

System of the violin described in materials, displacements and pressures

e The string with U;(l‘, t) being the displacement of the string with length L where z-axis is chosen
along the unperturbed string.

o The air in a small ball encapsulating the violin at its origin, with Py, st (7, t) being the air pressure
in the ball as a consequence of the vibrations in the string and corpus.

o The bridge, the pegs, (ja,o(t) and (ja’L(t) ,describing the displacement of the string at = 0 and
x = L (the boundaries of the string) as a result of tension in the string.

e The corpus with the displacement vectors ﬁbp, l?tp, ljm-bs(f', t) of the bottom plate, the top plate
and the ribs of the violin respectively.

o The far field with air pressure Py rqq(7,t) "far away from the violin".

\. J

Every subsystem in the system interacts with any other subsystem directly adjacent or connected to it. The
interaction is always reciprocal. Hence, feedback loops are created.

Every subsystem amplifies and attenuates the signal based on the frequencies present in the signal. We construct

the signal from the string with a superposition of sines. The subsystem transforming the superposition of sines
is denoted by W(f). The output of a system W (f) can also be decomposed by a superposition of sines, if the
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input is a superposition of sines.

First, the signal is initialised on the string, whereafter it travels through systems Wi (f) and Wa(f) as they are
the direct surroundings of the string. W7 (f) represents the boundaries of the string (the bridge and the pegs),
connecting it to the corpus of the violin, W3(f). It follows that, Wi (f) describes the mechanical impedance of
the pegs and the bridge. Similarly, W5(f) is the name given to the fluidum in which the string is submersed.
It serves no purpose other than to radiate the acoustic waves created by the string, boundary conditions and
the corpus. A schematic of the system, showcasing the signal transfer between each subsystem, can be found
in Figure 32.

walf)

string Ws(f)

N

walf)

N\

radiated sound

Figure 32: A schematic for the system of the violin, f is the frequency of the signal. The signal is initialised on
the string. Wy (f) represents the boundary conditions of the string, filtering the given frequencies of the input
signal. Wa(f) represents the air surrounding the string. Wa(f) depends on the frequency weakly, rather it’s
main purpose is to radiate sound through the f-holes, into the environment of the violin. W3(f) represents the
corpus of the violin. This subsystem also serves as a filter and it transforms the vibrational waves into acoustic
waves.

Each subsystem is described by several equations based on the assumptions made, the coupling to other subsys-
tems and its surroundings. Describing the systems equations and the relations between them at once will create
a complicated structure of partial differential equations. Hence, describing the equations for the subsystems
separately should allow us to find suitable tools for combining the subsystems and build the system in parts
afterwards.

Each subsystem has an important role in the radiated sound. In theory, every ornament on the violin has an
impact on the radiated sound. To simplify the system of partial differential equations describing the radiated
sound, many ornaments and parts of the system are removed from the first iterations of the model. Despite
the first version of the model being rather simplistic, the results should differ from the observed vibrational
patterns shown in Chapter 2 too much.
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3.2 Parts of interest and simplification of the system

As aforementioned, there is an important distinction to be made between the Components of the violin, to find
out which are of interest and which are not. To make this distinction, we will take a look at the uniqueness
of the individual violin. Namely, many components are not unique to the string family, let alone to the violin
itself. An example of this is the string of the violin. Needless to say, the string of the violin is one of the most
important and arguably the most important part of the violin. However, its material properties are not uniquely
of importance in the timbre. The string can be replaced by a string with similar, but not the same, material
properties without much alteration to the sound.

Similarly, there are many ways to induce waves on a string. One of which is to pluck the string. For the
violin, this is called pizzicato (lit. pinched). When we pluck the string of a violin, this produces a sound. This
sound is vastly different than the 'normal’ sound of the violin. Therefore, vibrations in the string definitely have
a significant effect of on the radiated sound. However, the aforementioned different techniques result in similar
effects on different violins. Thus, whether the string should be included in the first model is still debatable.
Before the decision is made, some other components must be discussed first.

We simplify the system of the violin in the following steps:

1. Argue that the air around the violin is not coupled to the violin itself and rather acts as a radiator of
pressure waves only.

2. Argue that the air surrounding the violin and the far field can be merged into a single subsystem, carrying
sound waves from the violin.

3. Argue that the Corpus is the main radiator of the violin.

4. Argue that the radiation can be approximated by the radiation of a point source.
5. Argue that the system does not contain feedback loops.

6. Argue that the bridge is the only conductor of waves from the string to the corpus.

Following these steps, Figure 32 is simplified to Figure 35.

1: To argue that the air around acts as a radiator of sound waves only, we note that the air surrounding the
violin is also an important subsystem and it mainly serves two purposes. Firstly, it radiates the differences
in air pressure, caused by vibrations in every material component of the violin directionally. This causes the
directivity of the radiation mentioned in Chapter 2. Secondly, the vibrations in the material components are
attenuated. Technically, the governing equation for the air pressure is coupled to the governing equations for
the vibrations in the adjacent materials. However, when waves with different wave numbers interact with each
other, energy is transferred and energy dissipation takes place. For a gases, such as air, the Reynolds number
near vibrating plates is typically around Re = 3300 — 17500[56], being in the range of turbulent flow[57]. Hence,
the pressure and drag force on the material is very small[58]. It follows that the coupling between the air and
the plates is very weak. Thus the internal forces from the materials dominate with respect to the drag force
caused by the air. In conclusion, the main purpose of the air directly surrounding the violin is to propagate the
sound waves away from the vibrating subsystems.

2: Similarly, the medium around the violin can be merged with the far field since the coupling of the air with
the material components of the violin is weak and the radiation of different subsystems do not influence other
subsystems. As shown in Cremer, the string will not radiate sound strongly as its diameter is much smaller
than the wavelength of the waves on the string. Therefore, the sound radiated by the string causes negligible
vibrations in the corpus, since the internal morphological stresses of the wood dominate. Additionally, the
radiated sound, caused by directly by the string, is also negligible. A similar argument can be made with
respect to the bridge and the pegs. Furthermore, the bridge and pegs are directly coupled to the corpus, having
the same filtering effect but strongly coupled. Hence, the medium around the violin does not propagate the
radiated sound of subsystems to one another. Rather, it only radiates sound waves away from the violin and
can therefore be merged with the far acoustic wave field.

3: We can consider the corpus the main radiator of the violin since the radiation caused by the string, bridge
and pegs is not the only part of the system that can be removed from the system. The bridge is directly
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connected to a surface which is much larger in comparison to the wavelength of the string. Thus the waves on
the corpus of the violin will radiate the acoustic waves much more strongly. While not explicitly stated, the
logic Cremer uses to consider radiation of the string can also be applied to most other details and ornaments
on the violin. A supporting statement describing that: "’substructures’ are not proven to radiate significantly
below a frequency of 4K Hz" is given by Bissinger. It follows that, in our model, the only radiation considered is
now directly caused by the corpus of the violin. This means that W5(f) can be removed in the schematic of the
system and the radiation can be directly connected to W3(f) without loss of generality. The revised schematic
of the system, using the new assumptions and simplifications, can be found in Figure 33.
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Figure 33: Schematic of the system of the violin when the air around the string and violin (W2(f)) is removed
as a subsystem. Wi (f) is the subsystem representing the bridge and the pegs. W3(f) represents the corpus of
the system.

4: As mentioned before, we must be careful when using the term "radiation". However, in the first iteration of
the model, we will consider monopole radiation only. Namely, at first glance the monopole sound radiation only
approximates the actual radiation taking place. This causes a problem in measuring radiated sound. However,
this does not affect our system since we have argued that the corpus is the sole radiator of the violin. For plates,
the most prevalent radiators at low frequency (< 1kHz)[26]: monopoles, dipoles and quadrapoles, tend to ex-
hibit a similar behaviour. Namely, the pressure of the sound decays linearly with net distance to the sources in
all three cases[59]. The only differences are the amplitude and the directivity of the dipole and quadrupole. As
shown in Figure 7, the amplitude of the monopole radiation is much larger for frequencies below < 1kH z. Hence,
in this iteration of the model, the directivity of sound waves is neglected. This reduces the radiation of the
violin to the radiation of a point source. In later iterations of the model, the dipoles could be taken into account.

We must note that approximating the radiation with a monopole or dipole in the first versions of the model
simulates most of the radiation pressure and neatly describes the radiation in modes. However, as shown in
Chapter 2, (2.3.2.¢), using modes to describe the perceived sound becomes less useful at higher frequencies.
Namely, the radiated field cannot be described by simple poles anymore since the different acoustic wave fields
will start to interfere with one another[26]. As a response, the directivity of the radiated waves cannot be
approximated with methods commonly used for low frequencies. In later iterations of the model, the directivity
of radiation, the statistical overlap factor and the modal overlap factor should be taken into account. However
the analysis pertaining the interference of different fields is considered to be beyond the scope of this thesis.

5: Now we can argue that the system does not contain any feedback loops. Namely, Figure 33 gives a schematic
of the reduced system of a violin. But it can be reduced even further. Namely, Wi (f) acts as a filter for
frequencies. Therefore, any allowed signal (any superposition of sine waves) that travels from W (f) to W3(f)
and back will only contain certain frequencies with amplified or attenuated amplitude. Note that this can only
be true under the assumption that Wi (f) and W5(f) do not alter the frequency band as a whole and only
amplify or dampen the given frequencies. Another assumption is made: the mechanical impedances of the
bridge and pegs are symmetrical with respect to the direction of the signal. It follows that, under the two
aforementioned assumptions, the string will only receive the already filtered frequencies. Using superposition
of waves on the string, the same frequencies will then be conducted back to Wi(z) by the string, which pass
through the filter again, with similar attenuation or amplification. Thus, it is safe to say the the feedback loops
between the string, Wi (z) and W3(z) as given in Figure 33 will only impact the amplitude of the already filtered
frequencies but will not change the frequency band drastically. If it is assumed that the amplitudes returned by
the string after coupling with the bridge and pegs are similar to the initial wave, the system can be represented
without feedback loops. This is shown in Figure 34.
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o |——| w0 || [

Figure 34: Schematic of the system of the violin with the feedback loops removed. Wi(f) is the subsystem
representing the bridge and the pegs. W3(f) represents the corpus of the system. The feedback loops can be
removed using three assumptions: W1 (f) and W3(f) do not alter the frequency bands, Wi (f) works symmetrical
and the amplitudes of waves on the string after the feedback loops are of similar magnitudes to the initial signal.
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6: The last step is to remove the string and translate all the vibrations of the string directly to vibrations in the
bridge, which acts as the dominant source, of bending waves, for the corpus. Because there are no feedback loops
in the system, the vibrations in the string can be directly translated to vibrations in the boundary conditions.
Additionally, the boundary of the vibrating string is not just given by the pegs and the bridge. At the far end
from the violinist, the string is coiled around the pegs, but is also pressed against (not tied to) the fingerboard
(the synthetic surface on top of the neck) due to the geometry of the violin. This means that most vibrations
are transferred to the fingerboard as well as the pegs. Though, the indirect coupling of the corpus with the
far end boundary of the string can be assumed to be small. Meaning that the amplitudes of the transversal
waves in the string are of lesser amplitude near the far end of the string than near the bridge. Furthermore,
even if the string was to be bowed or plucked near the far end, the vibrations are assumed to be attenuated
enough due to the nature of the coupling with the corpus such that the vibrations through the bridge dominate.
This assumption is made because the neck and fingerboard are connected to the ribs, and not to the bottom
or top plates. Moreover this is coherent with the idea that the position of the bridge and the geometry of the
bridge, allowing bending in the bridge itself as described in Chapter 2, cause the impedance to be smaller for
certain frequencies. Hence, we assume that the vibrations conducted through bridge dominate with respect to
the vibrations conducted through the pegs, which leads to the notion that, in low order approximations, the
bridge is the only conductor of waves from the string to the corpus. The final schematic of the reduced system
is shown in Figure 35. Note that Wi (f) now only represents the bridge.

Wi () W () radiation

Figure 35: Schematic of the system of the violin with the feedback loops removed. Wi(f) is the subsystem
representing the bridge. Wi3(f) represents the corpus of the system. The string has been removed in the
subsystems

We want to note that all assumptions made do influence the outcome for the acoustic waves. The most impor-
tant assumptions made in the simplification process of the model are listed in Appendix B. With the current
list of assumptions, we wouldn’t be able to distinguish any two instruments from one another, as illustrated in
Chapter 2. Even so, the model provides a construct to slowly but surely decrease the number of assumptions
made and gradually increase the realism of the problem again, to the degree that two different instruments yield
two distinguishable different results.

There are also many small parts which serve purposes such as tuning, making the violin playable, holding
the violin together or are purely ornamental. Though these parts do certainly have an impact on the sound
of the violin in question, they will not be considered of interest as the effect they have on the sound is rather
negligible and often ambiguous.

Hence, the number of components in which we are interested is greatly reduced. These components mainly
comprise the corpus and its boundary.

e the Bridge

e the Top plate

o the Back plate

e the Ribs

o the Bass bar

e the Sound post

A schematic of the components of the violin is shown in Appendix A.

Thus, we assume that the aforementioned components are the most important ones for the difference in sound.
Therefore, these will parts will be the main focus when searching for the difference between a normal violin
and a Stradivarius violin. Though, we must be careful. Since many parts with different contributions to the
sound are not taken into account, there might be differences between the inspected instruments which we fail
to observe.
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3.3 Constructing the model

The most parts of the violin and the system used to describe the radiated sound have been determined. In this
part, a number of decisions is made pertaining the precision of the first iteration of the model and the governing
equations describing the dynamics of the violin. The previously made assumptions to simplify the model will
assist in constructing the model as they provide a guideline for the vibrations.

After the signal has been initialised on the string, it is conducted to the corpus (Ansatz B.1.1). We already
concluded that the bridge, described by Wi(z) in Figure 35, is the most prevalent carrier of vibrations to the
corpus (Ansatz B.3.1).

Since the wave on the string is solely comprised of harmonics (Ansatz B.2.1), bridge and consequently the corpus
will also radiate solely with harmonics (Ansatz B.1.3). Specifically, for the first iteration of the model, we will
consider a bridge which conducts a single harmonic to the corpus. The equation of motion for the bridge can
be described by the bending of wood (Ansatz B.1.2). However, a better picture of its function is also described
in the literature where the bridge acts as a filter and its admittance corresponds strongly to the radiated sound.
To this extent, we propose that the bridge acts as either an sine wave, pressing on the top plate, or as a double
mass spring system. We choose a double mass spring system because the bridge has two feet and the geometry
of the ’side holes’ in a bridge allow for movement with spring mass like behaviour. In both cases, the bridge is
considered to have a single driving frequency which can be varied from 191H z up to about 3500H z, which are
the lowest and highest frequencies that can be played respectively.

The corpus receives a direct harmonic oscillatory pattern on the top plate. As described by the Literature study,
thin plate theory is a good candidate to model a bending plate. There are two versions of the thin plate theory
we have seen: isotropic plates and an-isotropic plates, where the latter is arguably a generalised version of the
former. Note that the differences between Equation 2.18 and Equation 2.18 can be explained by an-isotropic
except for a constant p, which is the density. We will touch upon this later. In the case of bending wood, it
is very important to include an-isotropic properties due to the structure of wood. For this reason, we will use
the adjusted version of egs. (2.18) to (2.21) to model our plates. We will try to replicate the results shown by
Gough (2013, 2015a, 2015b).

First, we will consider a rectangular plate without any attachments. Secondly, we will rectify the original shapes
of the plates. Thirdly, the plates are connected using ribs. Lastly, other parts and ornaments will be added.
Another result we try to replicate is are the results on the Cantilever plate (2.7). Though not entirely replicable,
due to the differences in the methods used to determine a numerical solution, we will attempt to recreate the
shape of the modes shown in Figure 31b.

Another result we will try to reproduce is a description of the grid for the whole body of a violin. In spe-
cific, we will try to mimic Figure 27 in an Euclidean space.

3.3.1 The bending wave equation

Suppose there exists some surface 2 in the (z,y)-plane with some function U : Q@ x R — R. U denotes the
displacement in the z-direction on the surface over time. As aforementioned, the bending wave equation, or
flexural wave equation, is given by

0*U otU oU otU
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were, h is the thickness of the plate and B, By, and B,, are given by egs. (2.19) to (2.21) and represent
directional flexural rigidness. In a homogeneous plate, By, = Byy = Byy. If this is the case, the flexural wave
equation is given by

=0, (3.1)
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where E is Young’s Modulus, h is the thickness, p is the density and v is Poisson’s ratio.

ViU =0, (3.2)
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3.3.2 The Initial Value Problem

We have a partial differential equation. However, the initial value problem includes boundary conditions, initial
conditions and external forces. Utility wise, a solution to the partial differential equation can generally be made
unique by applying boundary conditions and initial conditions. We consider three different types of boundary
conditions[28] for some 7o € IQ and t € RT:

1. A clamped end, where U(75q,t) = 0 and DzU(7aq,t) =0
2. A supported end, where U(7sq,t) = 0 and D%Q)U(Fag, t)=0
3. A free end, where Dg)U(Fag, t) =0 and DS)U(FQQ, t) =0,

where Dgi:)U('F(‘)Q, t) is the kyj, directional derivative of U(7q,t) with respect to i € R2. The vector 7 is always
lies in the (z,y)-plane and is perpendicular to 9 at the point rsq. The different types of boundary conditions
are shown in Figure 36.

Freeend [—— d%y/ox? = 0,d%/ox® =0

Supported end F y=0,038%y/0x* =0
Clamped end %: y=0,0y/0x =0

Figure 36: A schematic of the three boundary conditions used for bending bars and bending plates with the
appropriate conditions imposed on the displacement y, after Neville H. Fletcher.

To avoid more complicated boundary conditions, we assume the violin to be played on an open string. Namely
when considering the individual plates of the corpus, The free end and the clamped end are the most realistic
for a violin played at an open string. However, the condition imposed by the hand on the fingerboard on the
equation of motion is less straightforward when the violin is not being played at an open string. Since the non
bowing hand does not grasp the fingerboard tightly, it cannot be described as a clamped end. The fingerboard
could be said to be a supported end, however the direction of the support is dependent on the position of the
hand. Even more, the corpus is directly held at the chin rest, but the non-bowing hand does not form a direct
boundary condition for the corpus as the fingerboard connects the two. Thus, to prevent this ambiguity, we
assume the violin to be played at an open string. This results in a free part of the boundary.

Note that the clamped end is also only true in some order of approximation since the head, shoulder and the
non-bowing hand should be seen as coupled to the corpus. However, this leads to little or to no difference as
opposed to the "analytically clamped" case since the mass of the head and the mass of the arm are many times
greater than the mass of the total violin. Therefore, we assume that the vibrations are attenuated enough such
that the coupling is not of interest.

For the initial conditions, suppose that the plate is in equilibrium at ¢ = 0. This means that 2 {%1 ( 7,0) =
every i € Nand 7 € mt(Q). For a plate in the (z, y)-plane without external forces, we must also have U (7, 0)

,_.5

If we allow for external force, such as gravity. The main governing equation is adjusted slightly. It becomes

0*U U orU U
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The derivation is analogous to the one given by Horchens for bending waves in a bar. The equation of motion is

based on the bending moment M over a small area with length Az and width Ay. Therefore, when the whole

equation is divided by the mass of the small area hpAxzAy. All of the gravity which remains is the gravitational

acceleration g. A better motivated version of the derivation is given in Appendix D. This result, where only
the acceleration remains, can be generalised any external force.

+hg=0. (3.3)

If, instead, an oscillatory harmonic source, with Amplitude A,, frequency w, and phase ¢, is present at some
(zs,ys) € Q, the following condition is imposed on the equation of motion:

U(zs,ys,t) = Agsin(wst + ¢s). (3.4)
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As mentioned before, the bridge can also function as a double mass spring system. Using the linear schematic
of the system given by Figure 35, the mass spring system only drives the top plate. In that case, we have two
sources. Each with slightly different amplitude, phase and frequency, denoted with an extra subscript 1 or 2 for
each spring mass system respectively. The sources are then given by

2
w = Ay 1sin(ws it + o) (3.5)
and
GQU(J:S,% Ys,2, t)
ot2
respectively. This completes the initial value problem for a single plate. Consequently, we can now connect two
plates to one another.

= A;2sin(ws ot + ¢s2) (3.6)

3.3.3 Coupled rectangular plates

Connecting two plates through the ribs, the soundpost and other smaller parts means that equations of motion
for both plates become coupled. This coupling can happen in a multitude of ways. For example, the ribs could
be incompressible. Another example is to assume the ribs have spring like behaviour, as suggested by Gough
(2015a). We will will use the former option. We consider two separate plates Q) and . 4y is the surface of
the top plate and )y, is surface of the bottom plate. In order to keep the first iteration relatively simple, we try
to neglect to coupling by choosing a leading plate and a reacting plate. The leading plate vibrates freely with
the reacting plate being tied to it at the boundary by means of an incompressible material. Physically, this
could mean that the top plate is magnitudes heavier than the bottom plate, causing this behaviour. Naturally,
this is not the case in a violin. However, examining the behaviour of the reacting plate might give useful insight
into coupling for further iterations of the model.

Using the idea of the leading and reacting plate, the top plate can be modelled with free ends. Let Uy, be
the solution to the flexural wave equation on the top plate. The bottom plate then has clamped boundary
conditions, with solution Up,. The clamped boundary condition of the bottom plate, at some point 7n € 052,
is then given by

Upp(Taq, t) = Up(Taq, t) DUy (Taq,t) = DUy (Taq, t). (3.7)

For other parts of the violin, a similar condition can be imposed using the idea of a following and reacting plate.
This manifolds as an external force in the bottom plate. If all the parts connecting the plates are viewed as
incompressible, the bottom plate experiences a set deflection at places where the plates are connected according
to the deflection of the top plate. Suppose the soundpost is set at position rj, € int(€2). The bottom plate can
then be modelled with an extra source

Upp(T5p, t) = Upp(rsp, t). (3.8)
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3.4 Simplification to a Thin bending rod

When creating the finite difference model in Chapter 4, a one dimensional rod is considered first since the one
dimensional flexural wave equation can be solved analytically in specific scenarios. The solutions found on the
thin rod will be used to check whether the finite difference model of square plates yield a similar results.

Let a thin rod lay along the z-direction with length L € R™, Young’s modulus £ € R™, radius a € R,
radius of gyration K = § for a thin rod[28] and density p € R*. The equation of motion for a bending rod is
very similar to the equation of motion of a thin bending plate. It reads as follows[28]:

ot p Oxt’
Where U is the displacement along the z-axis. The boundary conditions are also very similar. We assume that
one end is clamped and one end is free, as is the will help us in the boundary conditions for more complex
problems. To specify, at x = 0, there is a clamped end and at = L, there is a free end. The boundary
conditions thus read[28]:

2 2 g4
o°U _ EK°0U (3.9)

U(0) =0, (3.10)
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If we consider the steady state solution, meaning %—l{ = 0, we obtain
A ~ 2 A
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4 Finite Differences and method of lines

The goal of this chapter is to use the finite difference equations, as provided in Appendix F, to simulate the
dynamics of the corpus.

The numerical model is constructed in steps. This is the case to make sure that mistakes in the implementation
can be traced back more easily. First, we consider a thin bending rod with length L as described by Equation 3.9
in steady state, meaning %—g = 0. Including gravity as the external force yields

EK?9'U
p Oxt
with a clamped boundary at z = 0 and a free boundary at x = L, as shown in Figure 37. This gives us the tools

to check how the one dimensional time independent case compares to the analytical result. Second we consider
Equation 3.3 in steady state. We obtain

=9, (41)
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The schematic corresponding to the two dimensional plate is given by Figure 38, where a totally clamped plate

is shown. Other configurations of the boundary conditions including free ends can also be implemented in a
similar manner to Figure 37.

B —hyg. (4.2)

After both steady state solutions are shown to be accurate, we move on to the time dependent flexural wave
equations. For the rod, the flexural wave equation is given by

0*U N EK?9*U
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where ¢ > 0 is some damping constant to disperse energy from the system if needed and f is the unit force.
Similarly, the bending wave equation on the plate is given by
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with £ a similar dampening constant and f the unit force on the plate.

In both cases, we two different unit forces. The first one caused by gravity, to inspect if the rod and plate
converge to their equilibrium state. The second one caused by a source of the form

— As i s s 7_’: _;a
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for some source point on the grid r;, amplitude A, frequency ws and phase ¢,. This is the simplest case of the
model discussed in Chapter 3, where the bridge is assumed to conduct a perfectly harmonic signal to the top
plate. The top plate is a square without f-holes and is not connected to the ribs.

4.1 Stationary cantilever beam
4.1.1 Designing the grid

To model this problem, we will use the central differences and numerical methods as described by C. Vuik and
Vuik. A summary of the difference equations we needed for the model can be found in Appendix F. We divide
the rod into n € N parts. At each end of a part exists a node. It follows that there are n + 1 nodes to describe
the rod, forming a one dimensional grid. The idea is to apply Equation 3.9 to each node. We can visualise the
nodes as points along the x-axis where the rod exists and the rod is described by Equation 3.9 at these points.
Of course, the equation of motion also holds in between the points. Therefore, in an ideal case, we should have
an infinite number of points between and including z = 0 and « = L. But this is not numerically possible. For
this model, we will assume each point on the grid z; € [0, L] to be equally spaced with some distance Az = %
It follows that x; = iAx for i € {0,1,2,...,n — 1,n}. A schematic of the rod is shown in Figure 37.
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Figure 37: A schematic of the rod with its boundary conditions with the numerical grid shown beneath.

If we want to apply the central difference equation to our grid, we must be careful at the boundaries as the
4, order central difference equation contains f(z + Ax), f(z + 2Ax), f(z — Az), f(z — 2Az), translating to
Tpt2,Tnt1,L—1 and z_o. These points do not exist in the grid and are therefore called ghost points. If we try
to directly apply the bending wave equation at the boundaries, we would either need to create new points, or
we would get ambiguous results. However, this problem is solved by using the boundary conditions given by
Equation 3.10.

4.1.2 The Stiffness matrix

We will loosely follow a method called "method of lines", described by van Kan. It describes how the problem

T 4g=0 4.6
+ 5z Ta=0, (4.6)

where ¢ is some sufficiently smooth function, can be described written down as

0w

==

ot

with I the mass matrix, S the stiffness matrix, & the numerical approximation of y and f the approximation

of q. Note that the stiffness matrix is determined by the partial differential equations, expressed in difference
equations.

+ 835+ f=0, (4.7)

We rewrite Equation 4.1 to

ST+ f=0, (4.8)

where & = [Ug, Uy, .., Un—1,Un) T, f = [90,q15 s Gn—1,qn]T and S is the stiffness matrix. Each row in the matrix
vector equation describes the numerical equation for one grid point. However, we do not have a description
for every grid point yet. At both ends of the rod, the fourth order central difference equation contains points
outside of the grid, ghost points. These points can be removed with using the boundary conditions to create a
linear combination for points outside the grid of points in the grid. The derivation of S is given in Appendix G.
For a cantilever beam, having a clamped end at x = 0 and a free end at x = L, we obtain

0 O 0 0 0 0 0 0 0
0o 7 -4 1 0 0 0 0 0
0 —4 © —4 1 0 0 0 0
0 1 —4 6 —4 1 0 0 0
1 0 0 1 —4 6 —4 1 0 0
5= o |: : : 0 (4.9)
0 0 0 1 —4 6 —4 1 0
0 0 0 0 1 —4 6 —4 1
0 0 0 0 0 1 —4 5 -2
0 O 0 0 0 1 0o -3 2

Using this stiffness matrix, we obtain a force f; = £5%, where g is the constant gravitational acceleration.
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4.2 Formulating the two dimensional method

We have seen a one dimensional rod in equilibrium. We are now going to consider the flexural wave equation,
as given in Equation 4.2, on a thin plate. On a plate without any external forces, the flexural wave equation
would be separable. Though, this implies that the displacement of the plate is zero everywhere (except in very
specific cases).

The numerical implementation we have seen before does not directly apply to the two dimensional plate. For a
plate, there are two spatial indices as opposed to one in the case of a one dimensional rod. This poses a problem
for the matrix S as it does not allow for more than one spatial index. van Kan fixes this problem by combining
the two spatial indices into one.

Let the plate be described by the surface Q2 = {(z,y) € [0, L] x [0, H]} with its normal vector, in vacuo, parallel
to the z-axis. The numerical grid is a constructed of equally spaced lines in the z-direction and equally spaced
lines in the y-direction. The intersection of the lines are the grid points, or nodes. Let n + 1 be the number of

lines in the 2-direction and m+ 1 the distance number of lines in the y-direction. Let Az = £ and let Ay = %
We obtain (z;,y;) = (1Az, jAy) for (i,k) € ({0,1,...,n —1,n} x {0,1,...,m — 1,m}). The grid is shown in

Figure 38. In this specific case, every boundary is clamped.
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Figure 38: A schematic of the plate with clamped boundaries on the numerical grid for a plate.

Then, we renumber the grid points such that we only have one spatial index «. In essence, this can be done
using any bijective map ao : N> — N. This is the case since the index o € N should represent a unique
combination (i,7) € N2. For a finite grid, since we do not have to account for the cardinality of sets, we can
construct a bijective function: « : Qum — N with @ = i+ j(n+1). This is called horizontal numbering[63]. We
can interpret v as walking along the path of ¢, then jumping to the row above it and once again, starting from
the beginning and walking along the path of i. It follows that the a(i, j) —a(i—1,j) = 1, for (i,j) € {1,2,...,n—
1,n} x {0,1,....,m — 1,m} and a(4,j) — a(i,j — 1) = n+1 for(s,5) € {0,1,...,n —1,n} x {1,2,...,m — 1,m}.
With the numbering of the grid points accounted for, the two dimensional method problem is similar to the
method for a one dimensional problem. The coefficients for the stiffness matrix are calculated in Appendix H
in terms of the ¢, j-indices. The translation to « is done in the implementation of the numerical model.

4.3 Time-dependent numerical approximations

Now we are ready to implement the time dependent part of the equation. Since we have generalised the indices
of the two dimensional problem to a single index, the following integration methods can be used for both the
rod and the plate. Also notice that the time dependent equation contains a second order time derivative. We
propose the use forward Euler integration scheme. The numerical equation is given by

0% oW
I— - C—-+ 54 =0 4.10
5z~ Cg t83+f=0, (4.10)
where C' is the dampening matrix. We can write this to
g -C + ST+ f=0 (4.11)
Lo 8t e ’

If we let 7 = % we can split the expression into two parts with

t
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— =V (4.12)
and

) o
(Iat - C)l/ =-S3d— f. (4.13)

We divide the time domain into steps with a duration of At. Thus we get t; = kAt +ty. We let to = 0. We
denote the kg, time step with a superscript. Using the forward Euler method[61], we can rewrite Equation 4.12
and Equation 4.13 to

(D'k+1 (Ij'k "
=2 4y 4.14
At AtV (4.14)
and -
% I
I (= k_ Sk — k. 4.1
A (At+c>u Sk — f (4.15)

To solve this system of equations, we need two initial conditions for w and v. Suppose the rod begins without
any deviation from its central axis. Then the initial displacement is zero and the initial velocity is zero. Hence
% = 0 and #® = 0 respectively.
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5 Results and Discussion

Using the finite difference equations and the method of lines shown in section 4, we have generated the displace-
ment for several plates and for a bending rod. First, the results for the steady state cantilever beam are shown.
Then the results for the steady state cantilever plate and totally clamped plate are shown. Next, the time
dependent results for the cantilever beam are shown whereafter the time dependent results for the cantilever
plate are shown.

For the whole results and discussion, two different colour maps are used. The first colour map ranges from dark
purple to green and finally to yellow, and is solely used to indicate curvature in the plot. The second colour
map ranges from black to red and also to yellow. This colour map indicates displacement. The displacement is
Om near black and reaches 5.6 - 10~°m, indicated by yellow.

5.1 Results for a cantilever beam in equilibrium

We consider a one dimensional and time independent rod. We compare the analytical solution and the numerical
solution in Figure 39. In both solutions, E = 11 - 109Pa[64], p = 500kg/m3[65], r = 0.1m, K = 0.05m and
L = 1m were used. For the numerical solution, a step size of Ax = 0.0002m was used.
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Figure 39: A plot of a cantilever beam modelled as a one dimensional rod with only gravity as an external force.
The analytical solution is plotted against the numerical solution.

The numerical solution largely agrees with the analytical solution. However, the accuracy of the numerical model
is dependent on a number of components. Therefore, we analyse the absolute error, Ugnaiytic — Unumerical, and

Uanatytic—Unumerical

the relative error, f Uumaturss |, of the numerical model in comparison to the analytical solution. Fig-
ure 40 shows the absolute error and the relative error. The left most plot shows the absolute error, the middle
plot shows the relative error and the right plot shows the relative error with the first five points removed. As
Figure 40 shows, the absolute error increases if we approach the free end. This is the case since the finite differ-
ence model sets the edge at 0 for a clamped end. Namely, wg = 0 is set without any further calculation. Thus,
the absolute error at wy is exactly equal to Uy, which is zero. For other nodes, the more we spatially move away
from the clamped boundary, more calculations are needed. This suggests that the absolute error increases when
moving away from x = 0 since the truncation errors of each difference equation add up with each calculation.
This depends on the algorithm used to used to solve the matrix vector equation. For solving our numerical
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model, we have used the linear algebra package of the NUMPY[66] library which uses the LAPACK routine[67].

. . .. . . U, fo— v
The relative error is very large for ws, w4 and ws. This is the case since it is calculated by e, = ’ “”“’yfj“ ; :”’fme”c“l
analytic

where U is the displacement with respect to the x — axis. The points x3, 4 and x5 are very close to zero, thus
we divide by a number which is very close to zero, causing a spike near the clamped end. In the right plot of
Figure 40, the first five nodes are removed to avoid this behaviour. It shows that, except for nodes near the
clamped boundary, the relative error is smaller than 0.01.
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Figure 40: Plots of the absolute error (left), relative error(middle) and sliced relative error(right) for the one
dimensional cantilever beam. The sliced relative error is the same as the normal relative error, but with the
first five nodes removed.

The error of the numerical model is caused by several factors. In specific, there are two major factors. First and
foremost, the step size of the grid, which directly impacts the accuracy of the numerical model. Figure 41 shows
the evolution of the relative error along the cantilever beam over step size. Note that the smallest number of
steps is four. Namely, below four, the boundary conditions cross over one another in the finite difference model
and the matrix vector equation cannot always be solved.
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Figure 41: A plot of the step size against the relative error along the one dimensional rod. Note that the colour
scheme is solely used to enhance the visibility of the curvature in the plot.

We see that, the step size is positively correlated to the relative error. This can be explained by the fact that
the truncation error is O((Az)?). Since the elastic properties of wood do not allow for large displacements in
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the wood, as we have seen by the scale in Figure 39, a step size of Az = 0.01 yields a larger truncation error,
being O(10~%), than analytical displacement, being O(10~%). This can be seen in Figure 41 at a step size of
0.1m with a relative error e, &~ 0.65. This means that the results of the model can be up to 65 percent larger or
smaller than the actual value. However for a step size of 0.001m, the results fall within a one percent margin
of the analytical solution.

We have inspected a rather small problem. For problems on a (spatially) larger scale, the ratio Az = % in-
creases, causing the relative error to increase accordingly. To decrease this error, we can increase the number
of grid points linearly with the spatial expansion. However, there is a second way to decrease the error, which
is using difference formulas with a smaller truncation error, which is the second major factor in determining
the error. This may be of advantage as computers do not always cannot always allocate enough memory for a
larger number of steps. This can be especially seen since the stiffness matrix, in our dimensional problem, has
size (n+ 1) X (n+ 1), but the stiffness matrix of a two dimensional problem with grid size (m + 1,n+ 1) has a
stiffness matrix of size (m+1)(n+1) x (m+1)(n+1). Therefore, if we take one hundred steps in both directions,
which is necessary to get within a relative error of one percent, we obtain a matrix with 10% elements. All of
these elements are 64 bit floating point numbers, our double precision floating points, as this is automatically
the case in Python. This already results in a data structure of at around 0.77 gigabytes, depending on the way
the data is saved. This does not seem that large as most computers can allocate multiple gigabytes in memory
if needed, but it scales with a factor 10* every time the grid size is decreased by a factor 10. For example, a grid
with a thousand points in each direction would takes up roughly 7.41 terabytes using numpy arrays. Though,
this number can decrease drastically if, for example, Sparse matrices are used to save the data.

Another reason why increasing the number of steps to decrease the error must be used with caution is that the
time complexity of the LAPACK algorithm is O(k?) for a k x k matrix. However, the matrix to be solved for a
two dimensional model of a plate is (n+1)(m+1) x (n+1)(m+1). Thus the time complexity of the LAPACK
algorithm becomes O(nS) for n ~ m.

5.2 Results for a two dimensional plate in equilibrium

For a plate in equilibrium, we discuss three different scenarios: a totally free plate, a cantilever plate and a
totally clamped plate. In all three different cases, gravity is the sole force causing a displacement at any point
on the plate. For the numerical simulation of steady state plates, E = 11 - 10° Pa, p = 500kg/m?3, v = 0.31[68]
and h = 0.01m were used. Additionally, L = H = 1m and Az = Ay = 0.01.

The totally free plate yields the trivial solution, which tells us that there are no unexpected forces in the system.
The numerical model has no solution to the matrix vector equation.

A cantilever plate was considered with the only free end being located at x = 0. As predicted beforehand,
without in homogeneous forces in the y-direction, %—U = 0 everywhere on the plate. This is shown in Figure 42.

Both plots show the same result. The left plot has an emphasis on the curvature of the plate and the right plot
shows the displacement in terms of colour differences.
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Figure 42: Numerically found displacement of a cantilever plate in a gravitational field. In the left figure, the
curvature is shown and in the right figure, the displacement is shown.
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9U — 0 at x = 0. It follows that, if no in-homogeneous force is applied to the plate

For the cantilever plate, By
and no in-homogeneous initial condition is set, %—Z = 0 everywhere. When the external force consist solely of

gravity, the plate will behave like a two dimensional extension of the one dimensional beam; one where multiple
cantilever beams are glued together along the y-direction. In Figure 43, the result displacement is plotted
against the z-axis. This is plotted against the analytic solution, ignoring the y-axis, and the numerical solution
of the cantilever beam. The numerical solution from the rod is scaled with 3(1 — v?) to fit the parameters in

the bending wave equation.
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Figure 43: The numerical solution of the cantilever beam plotted against the analytic solution when the y-axis
is ignored and against the solution of the cantilever beam which was scaled with 3(1 — v?).

As we can see, both the curvature and the magnitude of the numerical solution to the cantilever plate match up
with the analytical solution. However, the error of the cantilever plate with respect to the analytical solution
is slightly larger than the error of the scaled cantilever beam with respect to the analytical solution. This error

is shown in Figure 44.
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Figure 44: The absolute error and relative of the cantilever plate solution with respect to the analytical solution,
disregarding the y-direction. The left plot shows the absolute error and both the middle and the right plot show
the relative error. The right plot, however, has the first five points removed to increase visibility.
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Once again, the error is quite small. Though, the relative error is larger than 1 percentage everywhere. Hence,
there is room for improvement. This is especially the case since the spatial grid has steps of 1e¢m, corresponding
to a hundred steps. As shown in Figure 41, the step size makes a huge difference in error. Since the stiffness
matrix was implemented using difference equations of the same truncation order error, we can quite reasonably
assume that a similar relation exists for the cantilever plate. However we cannot plot this as this would take
up too much space and would take a long time. To get the same plot, we would need a grid with ten times
as many steps in each direction. Using the LAPACK algorithm, this would take 10° times as long. Therefore,
using higher order difference equations is advised for further iterations of the model.

For the totally clamped plate, we expect the middle to have a larger displacement towards the middle. The
numerical solution is shown in Figure 45.
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Figure 45: Numerically found displacement of a totally clamped plate in a gravitational field. The left plot
indicates the curvature while the right plot shows the displacement in its colour map.

It is notable that the clamped plate shows a displacement which is a bit smaller than half of the cantilever
plate. From a physical perspective, this is logical as the curve down and up in one direction are dictated, by
symmetry, to take use exactly half of the plates length or width. Additionally, the plate cannot curve down
completely as the derivatives with respect to the z- and y-direction of the solution are required to be continuous
everywhere except for the boundary.

The steady state solutions we have seen up until now are coherent with the theory and with steady state
solutions found in literature. Due to the nature of the force, the totally clamped plate resembles the breathing
mode. If this force was switched in side ever so often, the breathing mode would be obtained.

5.3 Time-dependent results

There are two different versions of numerical solutions. The first kind only incorporates gravity as external
force. We can compare the results to the steady state solutions. The second kind only incorporates a source in
the middle of the plate. This source drives the plate with Uy (7s) = A sin(wst + ¢s).

For the first time dependent analysis, g = 9.81m/s? was used and for the second time dependent analysis,
Ay = 1m/s?, ws = 440Hz and ¢, = 0 were used. The dampening constants ¢ and ¢ were only included to
prevent divergence.

The results for the cantilever beam and cantilever plate are shown in Figure 46. The left plot shows the results
for the cantilever beam. Once again, the cantilever plate is independent from the y-direction, hence only the
progression at z = 0 is plotted.

Two things are immediately noticeable. The first is that both displacements are stretched far beyond their
equilibrium solutions. Especially the cantilever plate. After only 0.1 second, it has reached 25m in its displace-
ment. This shows us that the elasticity of the wood is not properly modelled. This can only be explained by a
mistake in the stiffness matrices or by the integration method not being stable. The second thing to notice is
that the the curves are different. The displacement of the beam starts to increase a lot, even near x = 0, while
the displacement of the plate seems to hold in place and become steeper near the free end. This may either be a
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Figure 46: Numerically found displacement progressed in time of a cantilever beam (left) and cantilever plate
(right). The cantilever plate yields results independent from the y-axis hence only the line at z = 0 is plotted.
EK?

The dampening constants are given by ¢ = = and £ = By,.

result of the difference in step size or may show another mistake in either the implementation of the boundary
conditions or the interior of the stiffness matrix itself. Additionally, to experiment, the dampening coefficients
were increased to inhibit the diverging behaviour. However, this did not help as (, > 1OOETK2, and &, > 100B,,,
had little to no impact on the curvature and amplitude of the displacement.

Now, we take a look at the totally clamped plate in gravity. The results look promising in the beginning.
However, it is clear that the behaviour in the beginning, as shown in Figure 47 is not the correct behaviour.
Namely, there is an oscillatory pattern in the which is never damped and keeps "building’ a higher displacement
with each iteration. This is the case even though the damping constant, £, is taken a hundred times larger
than B,,. Another important note is the fact that the wave keeps propagating after a second. This is way to
long and the plate should have resolved into a standing wave orders of magnitude quicker. It follows that we

are, once again, lead to believe that the elasticity of the wood is not properly represented in the implemented
model.
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Figure 47: The time dependent results for a clamped plate experiencing gravity only at ¢ = 1.650s.

A similar conclusion can be drawn from Figure 48. Namely, the wave propagation is much too slow and the
displacement is much too large for a realistic model of a vibrating clamped plate. However, we must note
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that the lengths of the displacement vector, while ignoring the oscillatory behaviour, does resemble that of the
equilibrium solution.
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Displacement at t = 3.400
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Figure 48: The time dependent results for a clamped plate experiencing gravity only at ¢ = 3.400s.

The clamped plate with the sine driven source wave fairs no different. Though the Chladni patterns are visible
in the numerical solution, this is not necessarily an effect of the bending wave equation. Namely, the wave
propagates too slow and the displacement is too large to have any resemblance to the physical vibrations in a
wooden plate. There is also still the possibility that the time integration method is unstable. However, this
should not be the case as the stability criteria are met[61]. Though, we cannot rule this out without an in depth
analysis on the forward Euler method in conjunction with the bending wave equation, which is outside of the
scope of this thesis.
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Figure 49: The time dependent results for a clamped plate with a source at (x,y) = (L/2, H/2).
It is clearly visible in the simulation that nodal lines and anti-nodal lines do exist. However, they are the result

of the oscillating behaviour previously shown. Similarly, the one dimensional clamped string with a source
experiences standing waves with similar oscillatory behaviour, as shown in Figure 50.
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1e—26 Displacement at t = 0.018 seconds
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Figure 50: The time dependent results for a clamped beam with a source at x = L/2.

Figure 50 does show a standing mode. The oscillatory behaviour does not necessarily exclude this. However,
we are led to believe that the displacement shown is not a standing mode since it does still propagate and its
amplitude diverges after enough time steps.

Having seen the results of the time dependent numerical model, the time dependent part do not agree with
the literature. Even though some patterns are visible, it is not clear if they are by chance or not. Only the
time dependent cantilever beam and plate resemble their steady state counterparts. Unfortunately, due to the
results of our own model not resembling the physics of vibrating plates, no correlation can be seen between the
modes shown in the finite element models by [49] and our own finite element model.

The model can be improved using more accurate difference equations or using more grid spaces. However, this
has shown to be very space and time inefficient. On top of this, the physical properties of a wooden plate differ
immensely from the results in the displacements we have seen. Therefore, more research on the finite difference
implementation of the bending wave equation, using the method of lines, must be done to improve the results.
Only if the first iteration of the model yields results resembling the physical properties of vibrating wood, can
we start another iteration of the model.
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6 Conclusion and outlook

In conclusion, listeners can distinguish between Stradivari violins and non-Stradivari violins. In specific, the
quality and colour can be distinguished from one another. Additionally, the semantics used to describe the
timbre of a violin is coherent across listeners and can be used to describe the differences between Stradivarius
and non-Stradivarius violins. The differences between violins can also be described mathematically. This can be
done using the Diinnwald’s timbre parameters, spectral flux and average sound pressure graphs. Investigations
into spectral flux of violins shows a clear difference between historical violins, contemporary violins and violins
of lower quality. The average sound pressure graphs of Stradivari violins and violins of the same period contain
only slight differences, which might be picked up by attentive listeners.

The bridge is a key feature of the violin. The bridge functions as the main conductor of vibrations from
the string to the corpus of the violin and vice versa. Therefore, since the corpus is the main radiator of the
violin, the admittance of the bridge has a great impact on the radiated sound. This is supported by remarkable
resemblance of the radiation and the admittance of the bridge shows when plotted against frequency.

The corpus and its function are described mainly in two ways. First, many forms of modal analysis are per-
formed on the corpus. These range from theoretical Chladni patterns to experimental results using holographic
interferometry. Second, numerical packages are often used to simulate the flexural wave equation. The different
simulations largely have similar results and conform with the modal analyses.

The model we have constructed does agree with the numerical models found in literature in steady state.
However, when using finite difference methods, a stable numerical time integration method is vital for proper
results. Either the time integration method used in our numerical implementation was proven not to stable or
the stiffness matrix fails to retain the physical properties of wood. As a consequence, the results do not conform
with the numerical models found in literature nor resemble vibrations in a wooden plate. Therefore, further
studies in numerical bending waves must repair the numerical integration schemes first and correct the first
iteration of the model before adding more details.
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Appendix
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Figure 51: Schematic of the parts of a violin [1]
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B A list of notable assumptions for simplifica-
tion of the system

Ansatz B.1 (Assumptions for the subsystems and their relations)
B.1.1 Fach subsystem is directly coupled to its neighbours only.

B.1.2 Each subsystem can be classified by its material components and the resulting behaviour of vibrations.
B.1.8 Each subsystem where the input is a superposition sines yields a superposition of sines in the output.

Ansatz B.2 (Assumptions for the string and the conductance of waves)
B.2.1 FEvery form of initialising a vibration in the string results in a superposition of sines in the string.

B.2.2 Vibrations initialised in the string do not dampen over time.
B.2.8 The dynamics of the string can be directly translated to the dynamics of the bridge.

B.2.4 The vibrations conducted to the string as the effect of coupling are of similar amplitude to the initial
wave on the string.

Ansatz B.3 (Assumptions for the environment, bridge and corpus)
B.3.1 Vibrations conducted through the bridge to the corpus dominate with respect to the vibrations con-
ducted through the fingerboard, neck or the pegs.

B.3.2 The coupling between the air and the material components of the violin is very weak.
B.3.3 The mechanical impedance of the bridge is symmetrical.

B.3.4 The bridge and corpus do not alter the frequency band of the signal.

B.3.5 Only the corpus radiates sound significantly.

Ansatz B.4 (Assumptions for the radiated sound)
B.4.1 The sound radiation is given by monopole, dipole and quadrapole sources.

B.4.2 The far field radiation is assumed to be a spherically symmetric plane wave with directional variation
in the amplitude only.
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C Defining a surface and deriving properties of
the boundary conditions

This section contains four related topics, in order:

1. A definition of a surface
2. A validation that every point on the surface of a boundary is part of a simple closed curve
3. A description of the closed contour[69]

4. Generalised boundary conditions.

We determine the unit normal vector for on the boundary of a surface in R? and the corresponding boundary
conditions. We do this by showing that the boundaries of a closed and bounded set, which forms a pathwise
connected metric space with the norm as its metric, can be described by a union of the ranges of simple closed
contour in R?. From the contours, we can directly determine the unit normal vector using a vector field which
is always tangent to the curve. We then use directional derivatives to impose conditions on the boundary.

C.1 Definitions

To define a surface, we will first need to look two other concepts: multiply pathwise connected and interior
pathwise connected, both being stronger forms of pathwise connectedness, pathwise connected meaning that,
between every two points pi,p> in a metric space 2, there exists a continuous curve C : [0,1] — Q such that
C(0) = pi and C(1) = B[70].

A metric space being multiply pathwise connected makes sure that there exist at least two paths between
every two points.

Definition C.1 (Multiply pathwise connected)
Let A be a metric space. We say A is multiply pathwise connected if at least two continuous curves
C1,Cy : [0,1] = A such that C1(0) = C(0) = pi, C1(1) = Co(1) = Py and C1((1,2)) N C2((1,2)) = @,
exist.

Interior pathwise connected is even stronger, and makes sure that, between every two points in the interior
of a metric space, there exists a sequence of paths that does not intersect with the boundary that uniformly
converges to the shortest path.

Definition C.2 (Interior pathwise connected)
Let A be a metric space. Let pi,p5 € int(A) = (A\OA) arbitrary. Suppose Cp 2) is the set of continuous
curves between pi and pz, Cp2) = {C’ :[0,1] = A | C(0) = p1, C(1) = p_é}. Define the shortest path

from p1 to p3: Cpin = c rgin (fc V' (t)2 4 y/(t)2dt). Then define the set of "interior" paths from pi
€Cp(1,2)

to p_é n znt(A), Cp(l,Q),int = {C S Cp(1’2) | CNoA = @}

We say A is interior pathwise connected if a sequence of functions (Cn)CeCp(l,z),mt converges uniformly[70]

to Crnin. That is, for every e > 0, there exists an N > 1 such that sup,c(o 1 (d(Cn(t), Cinin(t))) < € for
n>N.

We can now define a surface. The definition is based on the idea of a infinitely thin plate with as much realism
as possible. However, we do assume the plate to be infinitely thin in order for our definition to match up with
the thin plate theories we consider. The definition of a surface can be extended to three dimensions, however,
it would cause some of the properties we derive to be extended to two dimensions.

Definition C.3 (Surface)
We call a set Q in R? a surface if it is closed, bounded, non-empty, has a non-empty open subset which
is dense[70] in Q and is interior pathwise connected.

In addition to a surface, we will also define encircling and interlocking sequences:
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Definition C.4 (Encircling)
Let a set A be convex (meaning straight line between two points in A is fully contained by A). A is said
to be encircled by set B if 0A C 0B.

For a non-convez set A and a pathwise connected set B, A is encircled by B if for every a € A, there
exist b1,b2 € B and 0,¢ > 0 such that B.(bl) N B5;(b2) = @, B.(b1) N A # &, Bs(b2) N A # & and
a € Cy1,p2 where C : [0,1] — (D) is a straight line from bl to b2, and D is the convex cover of A and B.

Definition C.5 (Interlocking sequences)
A pair of sequences ((Tn)neN, (Yn)nen) is interlocking on a metric (A,d) if for any i,7 € N, z; €
Crminl0,1), where Cryin = [0,1] = A, is the shortest curve such that Co = y; and Cy = yj41.

A pair of non-interlocking sequences is a pair of sequences which are not interlocked. Note that this definition
does allow for two non interlocking sequences to converge to the same point.

C.2 The boundary; a union of simple closed contours
In this part, we will prove that a surface has a boundary which is composed of disjoint simple closed contours.

Theorem C.6 (Boundary of simple closed curves)
Let A be a surface and h € N, then 0A = U {C’Z C; is simple closed} such that C; N C; = @ for

i# -

Proof: Let © C R? be a closed set in the (z,y)-plane such that Q C [—a,a] x [—a,a] for some arbitrary
a < oo € R. Define d(@,b) = ||@ — b|| to be the distance between @,b € Q. Then we have a metric space
(€, 11), or © in shorter notation. Let the metric space £ be multiply pathwise connected. Pathwise connected
meaning that, between every two points pi,ps € €, there exists a continuous curve C : [0,1] — € such that
C(0) = pi and C(1) = P,[70]. We say a set is multiply pathwise connected if at least two continuous curves
C1,Cy : [0,1] — € such that C1(0) = C(0) = pi, C1(1) = C2(1) = P, and C1((1,2)) N C2((1,2)) = @, exist.
Hence, €2 cannot be empty, cannot contain isolated points and cannot contain lines which are not part of a simple
closed contour. In addition, £ cannot be split into two non empty disjointed sets which do not share a boundary.

Since €2 is closed and bounded, €2¢ can be written as the union of & € N disjoint open sets: Q¢ = Q§U( Uh ! (95)),
such that Qf encloses 2 and 2 encloses every Qf for i € {1,2,...,h —2,h — 1}. Thus 9 can also be ertten as
the union of disjoint closed sets: 02 = 0y U (Uh 1(89 )), where 99 is enclosed by Qf and 0€2; enclose Qf
respectively. Hence, each of the aforementioned disjoint closed subsets of 02 can be described as a continuous
curve Caq ; : [0,1] — R? such that Caq,;(0) = Caa (1) for i € (NU{0}), which is a closed contour.

Furthermore, €2 must have non-empty open subset Oq which is dense in Q. The closure of Ogq is ¢l(Oq) =
({G : G is closed and Og C G}. Oq being dense in  means that cl(Ogq) = Ogq. It follows that € cannot be
the empty set, cannot contain isolated points and cannot contain any lines or line segments.

Therefore, we let  be interior pathwise connected, directly implying that for every x € Q, card(0(0Q\{z})) =
That is, the cardinal number (the number that denotes the amount of elements in a set[70]) of the boundary of
the boundary of Q without {x} is exactly equal to two. This is the case for three reasons:

1. © cannot contain any isolated points, lines or line segments.
2. if € (Chpin, N ON) then card(O(ON\{z})) > 2 since the boundary consists of at least one closed contour.

3. If for any p1,p2 € Q, there exists € (Cpyin, N IN) with card(O(ON\{z})) > 2, there exist p3,p1 € 2 and
€ > 0 such that for every Cint € Cp(3.4) int; SUPie(0,1] ([[Cmin — Cintll) > € since (Be,open(x) Nint(§2)) contains
a disconnection[70], (A4, B). As a direct result of the disconnection, we cannot create a continuous curve
C:10,1] = (AUB) with C(0) = a € A and C(1) = b € B. Therefore, there exist two points such that every
curve between the two points, that does not intersect the boundary, has to go around a ball with a radius
of at least € > 0.

(A disconnection (A,B) of a set G is a pair of disjoint non-trivial open sets such that AU B = G.)

(to be exact, card(9(0N\{x})) =2+ 2] for | € N, 99 being the union of continuous closed contours)
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Moreover, 0f) cannot cross itself since, if x € 92, at a crossing of the boundary, is defined by a set S, of pairwise
non-interlocking sequences which converge to x with card(S) > 2. As a direct result, card(9(0Q\{z})) > 2
for z € Q at a crossing of the boundary. Therefore, x € 0 at a crossing of the boundary means that
cannot be interior pathwise connected. Hence, by the contrapositive, since ) is interior pathwise connected, the
boundary may not cross itself. For every x € 99, card(S;) < 2 since 912 is the union of closed contours. Hence
card(S;) = 2. We will now refer to €2 as a surface.

Combining the fact that € is a closed, bounded, interior pathwise connected and contains a non-empty open
set Oq which is dense in §2, we can derive the following properties for 2 and 0f2:

If Q encircles a subset H C Q€, then it encircles an open set Oqe such that H C Ogqe C Q¢ (Density of Og C 2).
09 can be described by the union of the images of disjoint bijective continuous curves C' : [0,1] — 9(closed,
bounded and multiply connected (for bijectivity)). 02 = Uie(Nm[o,h—l]) (Cagyi([o, 1])) where Caq,i(t1) = Caq.i(t2)
for i € (NU{0}) if and only if ¢; = 0 and t; = 1. Which is to say that 91, is a union of the ranges of disjoint
continuous simple closed contours (closed, bounded, density of Oq C 2 and interior pathwise connected).

Note that the geometry of {2 is necessary to determine 0f2. When the geometry of 2 is not analytically
available, but is graphically available, we are able to determine the curves describing 992 with Fourier series.

C.3 Closed contours and boundary conditions

Leti € ({0,1,2,...,h—2,h}), then suppose Caq ; : [0,1] — R? with a tangent unit vector 7. Let 7(¢) = (x(t), y(t))
for ¢t € [0,1] be a parametrization of Cpq ;. It follows that the normal unit vector 7 at 9 is defined by

(7i(t), 7(t)) = 0. Thus 7i(t) = i(l\_ﬁégl)\’ Hi:gg\l)’ depending on the orientation of the Cpq ;. As a convention, we

take a parametrization of the form

(1) = (D Arg 08(@ajt + 02 g), D Ayjsin(@yit + 6y.5)), (C.1)
JEN JEN
rotating counter clockwise for A, ;, Ay j, &z j,@y; > 0 and ¢4 j, ¢y ; € [0,27], or any other analytical counter
clockwise rotation, which agrees with the orientation, for Cpn . Similarly, we take clockwise rotations for
Coq, with i € (NN [1,h —1]).

In conclusion, 7(t) L (t) and points away from Q with 7i(t) = (”2/8” ) H_f t)tH) for Caq o and 7i(t) = (I\T’(gl)\ , Hf gg\l)

for Cpq,; where i € (NN [1,h — 1]).

As mentioned earlier, in Equations of motions (2.4.1), each part of the boundary needs to have two boundary
conditions. Let U :  — R be the solution to Equation 2.5, then let the Q2 be described by the ranges of h € N
simple closed contours. Let ¢ € {0,1,2,...,h —2,h — 1}. It follows that every tsq,; € 0%; needs two conditions,
using directional derivatives (at the points where the directional derivatives exist), of the following form:

Z i ton.. D (tBQ int) = ftan,i (t: Ttoq, Yton), (C.2)

jEN

where s, , € R, for j € N, Dg)U(taQ) is the jy directional derivative of U with respect to 71, at tgq € 012,
and f,,, is sufficiently smooth. Also note that z is the solution to Equation 2.5, and must therefore be
sufficiently smooth such that the ji;, directional derivative, with o s, , # 0, of U with respect to 7 is defined
locally at tpq, ; for every tpq,; € 0€). Note that, if the directional derivatives do not exist at some point tgq ;,
there must be two directional derivatives which approach from both sides on 9€2;. In that case, tsq ; needs two
boundary conditions for each of the two directional derivatives.
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D Derivation of the flexural wave equation

The derivation of the flexural wave equation is based on two fundamental assumptions[71]:
1. Plane sections remain plane during deformation.
2. Stresses in the normal direction of deformations in the plate, along the z-axis, are small.

Using these assumptions, we can use a schematic to derive forces and stress resultants. The first step is to
find the stresses if cylindrical bending takes place in a single direction, whether it be in the z- or y- direction.
Then, we extend the problem to include more general plate kinematics. This is done by using pure bending in
conjunction with Cauchy bending theory for linear isotropic media.

D.1 Bending moment for cylindrical bending of a plate

Consider an isotropic plate being wrapped around a cylinder with some radius, » € R, big enough such that
the deflection of the plate is small. We can then divide the plate into small segments along the curvature of the
plate. In each segment, a number of stresses arise as a result from the bending.

Figure 52: A schematic for the cylindrical bending of a plate[71]. M, P, and @, are stress the resultants, A
denotes the original position of the edges of the plate, A’ denotes the same position after bending, ¢ is the angle
of rotation, ¢, is the transverse load, u is the deformation and w is the mid-plane displacement.

Figure 52 shows the (z, z)-slice of a plate segment with the directions of stress resultants. Firstly, M., Q. and
P, are the bending moment, transverse shear force and axial force respectively. Secondly, ¢, is a lateral load,
or a force exerted on the plate normal to the (z,y)-plane. ¢, is the rotation with respect to the (z,y)-plane.
Lastly, the deformation U is indicated as u with z-component U, = w. Often w is referred to as the mid-plane
displacement. Note that the subscript does not a derivative with respect to z.

To derive the displacement, consider some square cell with height Az and width Az. When bending takes
place, we assume that the square is deformed to a symmetric trapezium, or a isosceles trapezium. The di-
agonals of the trapezium make a (locally constant) angle of ‘b—gz with the z-axis. Note that we assume the
angle to increase linearly with the distance from the centre of the square. If we were to draw lines along the
angle of rotation, we obtain a fan wave. Additionally, if z = 0 in the middle of the square, then the diagonals
of the trapezium intersect the square at z = 0 exactly. If z # 0, then the trapezium is stretched, or com-
pressed, in the z-direction. If the middle of the square is located at z = 0, the maximum extra distance on
both sides of the trapezium is dx,. The extra distance due to the stretching is dx,. at both sides of the trapezium.

Now suppose we have two squares directly adjacent to one another with the centres at z = 0. The point of
rotation is denoted by P.(z,, z,). When bending occurs, let Py(zg,29) be located at the centre of the left box.
Then suppose there is some point Py (21, z1) exists somewhere in the two boxes such that x1 > xg. A schematic
of this scenario, such that P; is in the centre of the right box specifically, is given by Figure 53. In this schematic,
the stretching in the z-direction is also shown with the direction of being indicated with the bending moment M.

Due to the fan wave assumption, z; and x, change, even if 1 < x¢ + % Therefore, we denote the original
position of P and P, as Py eq(@req; 2req). Hence, if 21 <z + %, we have

(xl,e - xO) Dz
1 = (X1,eq — To) + 02, = (T1,eq — To) + 2 tan (Aqx/2 5 (D.1)
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AX + 20%:
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.P:(m. z1}=P1'(x1", z1)

Figure 53: A schematic of the (x,z)-plane of a bending plate. Each box represents a small segment of the
plate, bent with an angle ¢,, causing a displacement dz, at the edge of each segment. The bending moment
is indicated with M. After bending, the new coordinates are denoted with (z’,y’, 2’). If the segment is located
far from z = 0, the segment is also stretched in the z-direction with dx,.

Ifzy > a0+ %, we perform a rotational transformation using dz7) = dz’ cos(¢) and we can express dz,, with

Tl,eq — Tre (bwz
6-13; = (xl,eq - -Tr,eq) + ztan (Z(E/Q = B ) (D2)
for 1 eq — Treq € [0, Az/2] and
o, Tl,eq — (Treq + Az/2) ¢
02, = (X1,cq — Treq) + 2 tan < ;Z + 2z —= A;}E ;Z (D.3)
for 21 cq — Treq € [Ax/2, Ax]. Thus, if we place Py such that z1 .4 = z,q + Az/2, we get
o), = Az/2 + ztan <¢;z). (D.4)

We can now calculate z;. taking ¢,, small, we get

1 —xo = +Az/2 + ztan <¢;z) + co8(Pe=) [Ax/Q 4 ztan <¢;z>:|

~ AT+ 2¢,,.

(D.5)

The derivation of the flexural wave equation for cylindrical bending of a plate, after Zienkiewicz et al., is
analogous to the derivation of a bending bar[60]. We have not yet made the assumption that the plate is thin,
thus we must redefine U temporarily. U becomes U : Q x [—h/2,h/2] x R — R. Hence, using U(zo,y, 20,t) as
a reference point to calculate the displacement in the x-direction U, (z,y, z,t). We get

Ux(x7yaz7t) = (‘T - 'TO) - (xeq - 33'0) + Ux(ﬂfo,y,ZO,t)

D.6
I~ (Z — ZO)¢$z + Ua:(x07y7 ZOat)' ( )
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Notice that zy is assumed to be 0, so the reference point is on the z-axis. Additionally phi,, is only constant
locally and is generally given by a function ¢,.(x,y, z,t). This means that the approximation of U will have a
larger error the larger z — 2y becomes and that there is no strain due to stretching in the x-axis.

Let ¥ € Q x [=h/2,h/2] and 7o € Q. It follows that U, (7,t) = Uy(z0,y,0,t) — 2¢2.(Fq,0,t). ¢, is assumed
constant normal to the mid-plane section, which is taken to be the z- direction for cylindrical bending.

By definition, the strain in the x-direction is given by

aUg, 6¢LZ —
= . D.
€z Oz ('xOvyaOat) +z oz (TQa07t) ( 7)
Similarly, the strain in the y-direction is given by
v, O0dyz ,
€y = 7{9; (7,90,0,t) + 2 a; (Ta,0,t). (D.8)

Then let i,j € {x,y} with i # j. The normal stresses in the i-direction are given by

E

= mfi, (Dg)

0

where v is Poisson’s ratio and E is Young’s elasticity modulus[71]. Calculating the bending momentum for a
plate, with cross section A = [-W/2,W/2] x [Az/2,Az/2] in direction i, yields

Ay/2 Az/2 B a¢
Mi:/oiédA:/ cr,-Zdédj_B( > (D.10)
A —Ay/2J—-Az/2 o1

where B = LAVZ) is the bending rigidity. For thin plates specifically, we can neglect shear deformation,

12(1—
therefore, we must have %—2] = tan(¢;) ~ ¢;|71]. Thus, for the bending moments for a thin strip, in direction ¢
on the plate with width W, we have

2
M; = B(%ig) (D.11)

Then, we can derive the equilibrium solution for a small segment of the plate. The overview of forces is shown
in Figure 54

M ( de j M + %d.;:

o AR
F+ 5-dx

Figure 54: A schematic of the forces and the bending moment of a small plate segment with width dz, after
Horchens.

With the equilibrium equation given by

M-%— <M'§<+ 8(M'X)dz>(ﬁ.fc)dxo. (D.12)

We integrate over a small segment. Since definite integrals equating to zero, we obtain a zero-valued integrand.
— 2
Then, using F = hpAzAy2 Y= we get

8$2 )

2 4 2
Eh 8U+8U:0 (D.13)
12p(1 — v2) 9zt~ Ot?
Having obtained the bending moment for cylindrical bending, we want to generalise this bending behaviour.
The first case to consider is a isotropic plate with pure bending. Pure bending makes sure that the cross strains
are null. Therefore, we can use a principle of superposition to obtain the flexural wave equation for isotropic
plates.
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D.2 Bending moments for linear isotropic media

For more general forms of bending, the strain in the z-direction also has effect on the bending in x- and
y-directions. The strain is given by

v (0¢s by

t —=(7,t D.14

(G + ). (D.11)
where v is Poisson’s ratio. We use Cauchy elasticity theory[72], in which couple stresses are zero and the tensile

stresses are symmetric. In terms of tensor components this becomes p;; = 0 and 035 = 0j;.

€, =

For linear isotropic media, meaning that the material is homogeneous and the elastic moduli are the same in
every direction, the tensile stress can be given in terms of the Lamé constants[72]. Let G and A be the shear
modulus and the Lamé’s first constant respectively. The tensile stress becomes

Jij = )\Gzz(sij + QGQJ‘, (D15)

for i,j € {x,y} and ¢;; is the Kronecker Delta function for the components of the unit tensor. Additionally, the
Lamé constants are related to Young’s modulus of elasticity, E/, and Poisson’s ratio v with

vE
A= —n—————— D.1
L+ 0)(1—2) (D-16)
and
E
G=——. D.17
2(1+v) ( )
Using pure bending, meaning that cross strains ¢;; = 0 for i # j, Hadjesfandiari et al. finds
E
Ore =13 (em + yeyy> z, (D.18)
E
Oyy = 71 - <eyy + uem> z (D.19)
and
Oy = Oyz =0 (D.20)

Thus, for the bending moments, in direction ¢ on the thin plate with width W, we have

Ay/2 Az/2 B ) ) 2 2
A —Ay/2J)-nz)2 0 9j di dj
where B’ = GG(}{S_AV]) = 15(}{3)_%) is the bending rigidity[72]. Then taking Equation D.13 in two dimensions and
combining them yields the bi-harmonic equation with external force:
En? 4 0%U,
— VU, =0. D.22
- Vet e (D-22)

However, the bending of wood behaves differently depending on the direction and location of the force. Thus,
the bending cannot totally be described by pure bending and the plate is not linear isotropic anymore. This is
the case since the boundary conditions, though linear, are not independent of the deformation[73]. Hence, we
must find another way to calculate the bending moment in other forms of bending, such as a saddle.

Though, if bending takes place in direction ¢ only, we can use cylindrical bending without loss of generality.

This can be seen by setting ‘?;jgf = 0 in Equation D.21.
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D.3 Bending moments for thin orthotropic plates

For orthotropic materials, there exists a point such that the material properties are symmetric with respect to
three orthogonal axes. This is not necessarily isotropic however is the closest we come to violin plates, approx-
imating them as thin plates.

For a solid body, we assume that all deformations are small. Then, we can define a new strain tensor: the
Green-Lagrange strain tensor (or Greens strain tensor)[73]. It is given by

B - %[vmﬁ (V)T + (Vo) - (VD). (D.23)

Notice that the notation V,, refers to the material coordinates. In this case, since only orthotropic plates are
considered, we can choose the spatial Cartesian coordinate system in a such a way that it lines up with the
material Cartesian coordinate system. Hence V,nU = VU. Note that this statement may not hold true for all
orthotropic shells. Those with curvature in equilibrium position have mid plane sections which do not align
with the z-axis. Therefore, U, # w; as opposed to Figure 52.

Expanding Greens strain tensor gives normal strains €;; and shear strains F;; for i, € {z,y, 2}, i # j. We get
ou; 1[[ou,\* [(8U,\> [oU.\"

Ey;=—"14= Z = 2 D.24

i 8i+2[(8x)+(8x)+(3x>] (D-24)

1/0U0; 0oU; 0U,0U, 0oU,0U, 0U,JdU,
E;; = - - — + ; —+ ="+ - — |-

2\ 0j i 0i 0j di 0j 01 0j
To simplify this, we work with the infinitesimal strain tensor €. Hence, neglecting the multiplied partial deriva-
tives and using tan(¢) ~ ¢, we get

and

(D.25)

oU;
€5 — i (D26)
and
1/0U; U
€ij = 2( a; + i ) (D.27)

This can be expressed in terms of the small angles, ¢;; : Q x [=h/2,h/2] x R — [—m, 7], on an infinitesimal
segment. Similar to the cylindrical bending, the directional deflection is dependent on the bending with respect
to the z-axis. However, longitudinal stretching and bending in the x,y plane around the z-axis must also be
accounted for in the bending for orthotropic plates. We describe the deformation function U(7,t) as a function
which relates the deformation of (7,t) and (7,%p) in three dimensions, obtaining

Ui(T,t) = [7(770715) A+ (@ — 20) i (T t) + (Y — Y0)diy (T 1) + (2 — 20) iz (7 ). (D.28)
In this notation, ¢;; with 7 # j, is the angle of bending with the j-axis in the (¢, j)-plane. In addition, ¢;; is

defined to represent the fan wave stretching in the i-direction shown in Figure 53; |‘TA;‘7/03‘ ¢i; ~ tan (‘Z;?gl bii) =

5i/2
Rif2
small, §7 < i. Otherwise, the domain of ¢;; is not a subset of [—, 7].

for some deflection di € R in the i-direction. However, we must use the fact that the deflection is very

For brevity, denote ¢;;(7,t) = ¢;;. Notice that ¢,; and ¢;; describe the same bending however are oppositely

defined. Hence ¢;; = —¢;;. The components of the infinitesimal strain tensor become
€ii ~ (v — x0) gz + Giz + (Y — Yo) gzy + (2 — 20) g@ + Gii (D.29)
and
1 09iz  0djy 09y | Odjy 09iz | 0¢;.
iR = — — : — D.
€~ [(m mo)( 9 + =5 > + (y yo)( 3] +t )t (2 — 20) 9 + = (D.30)
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Then, to obtain the stresses in the plate, an elasticity modulus is needed. For this, we use the fourth order
elasticity tensor C[73], not to be confused with the right Cauchy-Green deformation tensor. The stress and
strain can bed related using

o =C¢ (O'ij = Cijklekl), (D.31)

where ,7,k,1 € {z,y,z}. The tensor components Cj;i; are the stiffness coefficients and are symmetric with
respect to i and ki, i.e. Cyjp = Crii;. Even more, since Cauchy’s theory of bending is used, the shear stresses
are symmetric. Therefore, C is a 6 x 6 matrix, and not a 9 x 9 matrix. For orthotropic materials, we find

o1 Ci1 Ci2 Ciz O 0 0 €1
lop) Cia Cyp Co3 0 0 0 €2
o3| _ [Ciz Caz C33 0 0 0 €3
04 - 0 0 0 044 0 0 €4 (D.32)
05 O 0 0 O 055 0 €5
06 0 0 0 0 0 066 €6,

using the Voigt-Kelvin notation[73] (for example, 0, — 01,0yy — 02,0, — 03,0y, — 04,055 — 05,04y —
06). Again, using the Lamé constants, relating stress and strain between different directions, we obtain

o1 [ go (1 Vyzl/zy) %(Vya: + Vszz:p) %(Vzaj + Vyajl/yz) 0 0 0 i €1
02 %0( Yy + Vszz:c) Fz(l - szVza:) J(Vyz + szyxy) 0 0 0 €2
o3\ _ %( ot Vyalyz) G (Vyz + Vialay) %(1 — VayVy) 0 0 0 €3 (D.33)
o4 0 0 0 Gy. 0 0]
05 0 0 0 0 Gy 0 €5
o) | 0 0 0 0 0 Gy Lo

where Co = 1 — VgyVye — VyaVay — VarVap — 2WyaVayVe:|73]. E; and v;; are the Young’s modulus and Poisson’s
ratio in the respective directions. Gj; is the shear modulus in the (7,j)-plane. Then, we can calculate the

bending moment. We define M, to be the bending moment caused by stresses perpendicular to the z-axis. It
follows that M = M, + M, + M, with

—

M; = / ((j] + kk) x (0uii + 0§ + oirk) ) dA. (D-34)
A

Considering a plate with Length L, width W and thickness h, we can now calculate the bending moment. In
cylindrical bending, the plate is wrapped around a cylinder. Therefore, ¢;; is approximately constant throughout
the plate. However, in the case of more general bending, the rotation is not constant along any axis. Therefore,
we take a small segment with length Az, width Ay and height Az. Over this segment, we assume ¢;; is
constant. Additionally, we generally assume that h is small enough such that ¢;; is also constant with respect
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to the normal of the mid-plane section. In the x-direction, we have
Ay/2 Az/2 T
/Ay/Q / Az/2 L
Ay/2 Az/2 T
/Ay/2 / Az/2 L

Ay/2 Az/2 T

/Ay/2

(Cllezm + C’12Eyy + Cldﬁzz) - 20666myX:| dZdy

Ay/2 Az/2
S ACE
—Ay/2J—-Az/2

(35 4 2) X (000 + 0259 + 0,28) [0
— YO + YOu3X + 20225 — éang(} dzdy

- g(011693x + ClZny + 013622)2 + gcfﬁfxiﬁ

—Az/2 L

PN a¢zx 8¢zy ~ ¢zz

+ (25 — §2)C1a (xag’;”” + yag’:’y + 2 a%z + ¢yy>

+ (39— g2)013< ag? + gagfy %“ >

n ﬂf(2055 {:z: <a§gz n 3;;:,;) 7 g<3¢xg 3¢zy) 43 (agzz 3;:) }
0, (e ) (%4 5) (2522

}dzdg.

(D.35)

Then, using symmetry, we can remove any odd functions in y and z. Additionally, we assume that the angles
of bending do not change over a small segment, with length Az, width Ay and height Az. We obtain

Ay/2 Az/2 8¢ a(b ) a¢ a¢~~ a¢
~~2 Tz 552 Yy A ~2 Gz _ 5~2Y%Pgy ” 2 35 B
/Ay/Z/Az/Q [CH( or 2y or ) +012( B zy i ) +C’13( 9z

N 72%Css (3%@ N 3¢zg) ~ 2%Cgg (‘%wy n 89{)172)} dzdy

2 0z ox 2 a7y ox
and
Vi CssX (O¢uy | 002y O¢ay a¢yy 5’¢zy Ay/2 [5%] dg
M;C: — A
{ 2 <8z t on Cu—, TCn Ay z Z Am 1dg
Az/2
+ Cll a¢zz +C a(byz +C13 a¢zz }A’* C66X 8¢xy ad)yz A dé
Ox dy 0z 2 oy AZ /2

_ 055§( 8¢wy 8¢zu _ a¢xu
_{2<8z+8x G, +00
8¢zz a(byz 8¢ZZ S
+ { (011 . + Ci2 oy + Ci3 Ep )y

Similarly, for the y- and z- direction, we have

8¢yy 8¢2y> } 2(
dy 2

CeeX aqba:y a¢yz Ay
2 8y

v AZ(ALE)B 8¢m 0¢yz a¢zx ~ 044 a¢ym aQSzz N
M, = 12 { (Cl Ox O Oy + Cs a: )% 2 o - Oy Y
Am Az 3 Cs6 [ Oy ﬁqbyz o 0P Oy 0022\ .
{ < 2y ox )Y C12 g + Cao By + Ca3 2, )X
and
_' AI Ay 3 ad)a:y a¢yy a¢zy N 055 ad’zy 8¢xy
{ ( > "oy G a: ) 2 ox * 0z 2
Ay ASE 3 044 8¢zm a¢yz 8¢mz a¢y:c a(bz:v A~
{2< oy 0z C1s oz + Cas Jy + Cas a: )Y
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(D.37)

(D.38)
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—

Using M = M, + My + Mz, we get

vl (Ay)s 8¢xy a¢yy aQi)zy o a¢my a‘Zsyy 8¢zy R
M = 15 Ci3 e + Cas By + C33 9z Axx Ch1 E + Cha ay + Ci3 Ep AzZ

2 W + (92) (AZX — AJJZ)}

12 ox 8 3702 2 o 5‘ 3702

% a¢z2 a¢yz N ~
+ 5 (8y + o (Azy — Ayx)

(Az)? 0Pz Oy 022\ A Odza 0dya 000\ A
+ 12 C12a + Cos By + Cos o Ayz Cis o + Cos By + Cos % Azy

% 8¢zz a¢yz 5 ~
5 (ay + ER (Ayz — Azy) ;.

For thin plates and small transverse angles, ¢;; with ¢ # j, the stretching of a small segment d§i; < Ai.
Therefore, ¢;; = 0. We have a transverse shear force

(D.40)

kG AzAy (OU. 0 0
Qzz = Aaxsz = arz2y( 8; — Yo g;ry — 20 g:cz +¢xz> (D41)
with x ~ 2[71]. For thin plates, G;; o m — 00[74], the angle does not change over z and zy = 0.
Therefore, ag;j = 0. Thus for i € {z,y}, we have
ouU,
5 = i (D.42)

For a vibrating plate, we assume that there are no the external forces in the z- and y-direction. Additionally,
we assume that the internal forces throughout the plate are symmetric in both plane directions for transverse
vibrations. Therefore, ¢,y = ¢y = 0. Hence Equation D.40 becomes

- (A2)3 02U, 0%U, 0%U, 0%U, N 0%U,
M :( 2) {<Clz +Ca >A X <011 +Ci2 >Ayy +G (Ayx — A»’CY)}

12 0z 0y? Ox? 0y? ™ drdy

Ga:(Ay)? 829(5] Gy:(Ax)? a’jU ’ (B-43)
Tz z 5 N Yz z & ~

o1 owoy (Azz — Azx) + ~ 21 0zy (Azy — Ayz).

We see that, if we consider an isotropic plate, C1; = Co2 = E and G, = Gy, = Gy = G. Then consider pure
bending, meaning G = 0, and an incompressible material in the (z, y)-direction, meaning v,, = vy, = 0. Take
Az = h for a thin plate and we obtain the bending moment found in Equation D.21.

Analogous to the derivation given by Neville H. Fletcher, we can find the governing partial differential equation
by setting the bending moment to be the cross product of the position vector ¥ = (dzX + dyy + dz2) with some
net force F. Though, we have already assumed the force in the z- and y-directions to be zero. Therefore the net
force can be given by F,z. The bending moment is then given by M= (dex+dyy+dzz2)x F.2 = dyF.x—daF.y.
Taking the inner product with X and ¥y gives two separate equations:

M -% = dyF, (D.44)

and

M-y = —dzF,. (D.45)

We can express this as a derivative and combine the two equations to obtain

Fz:xaﬁ.x_aﬂ-y)

Jy or
(Az)? U, U, O3U, o3,
= Y AyCu a 3 +Al‘(012 +G$y)a 28 —|—Ay(012—|—ny)a 8 2 —|—A 022 8y3 (D46)
Az »BU. 5 03U,

48{G“( V) peaye T O (A1) g ap |-
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Then split F, into the terms depending on Az and Ay respectively. We write AF, = AF, aop + AF, ay.

Notice that the net shear force F, o; is not constant over j. Therefore, we can write AF, A; = <6F5JA’ Aj

Additionally, we write AF, = —prAyAza;t{. To obtain the flexural wave equation for thin plates, we take

Az = h. Additionally, to simplify the equation, we take Ax ~ Ay ~ Az = h. It follows that

ph (D.47)

02U, h? U, 0*U, 0*U,

+ —|Ci1—=— +2(C Goy + G /A+ Gy J4) ——— + —F 1| =0
otz 24| M 9at (Ciz + Gy + G /A4 G/ )8x28y2 22 oyt

We have now obtained the bending wave equation for orthotropic plates without external force. For the flexural
wave equation used in subsection 3.3, we consider a form of pure bending; hence G;; = 0. Also, we consider the
material of the plate to be symmetric with respect to Poisson’s ratio, or v;; = v;;. Then we assume that the
materials properties adhere to the relation

Vpy & 1 — 205,10, (D.48)

Finally, we account for the external force ﬁem, as the bending moment only describes the stresses caused by
deformation in the material. Similar to the net force, the external force can be written as ﬁmt = pArAyAza,
where & is the acceleration vector. It follows that the z-component is given by Fe.: . = pAzAyAza,. Now we
have found the flexural wave equation in the following form:

U, BT, U o 91U,
ph 12 + ﬂ Cn 83347 + 2C12 8.732(9?/2 + Coq 8y4 + phaz =0, (D49)

with C1o = 1/C11C%. We find the flexural wave equation as given by Equation 3.1 if and only if Cy can be
written as

Co = %(1 —v)(1—-v.). (D.50)

Note that Equation D.49 is irreducible if Equation D.50 does not hold. Additionally, if Equation D.48 does not
hold, Ci5 = g—g(yw + vy:V.g). Though, if both relations hold, and therefore impose physical properties on the
wooden plates, we find the required form of the flexural wave equation, given by

02U, 04U, 0*U, 04U,
2 + B o7t +23128x28y2 + Baa g +a, =0, (D.51)

with Bj; = g2y and Bay = \/Bya By,
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E The flexural wave equation on a square plate

For a rectangular plate, we know that Q = {(z,y) | € [0, L],y € [0, W]}. To demonstrate the free and clamped
end, we showcase three different plates:

1. A rectangular plate with solely clamped edges
2. A rectangular plate with solely free edges

3. A rectangular cantilever plate with one clamped edge and three free edges

First, consider a homogeneous rectangular plate with only clamped edges and without external forces. This
means the partial differential equation[28] looks as follows:

%Qg + 12p(b;h_2 ) ViU +g9=0 (E.1)
U@,y,t)=0 Z—Z(O,yﬂf) =0 (E.2)
U(L,y,t) =0 Z—Z(L, y,t) =0 (E.3)
Ulz,0,t) = 0 ‘Z—Iy](%o,t) —0 (E.4)

Uz, W,t) = 0 %[y](”:’ W,t) =0 (E.5)
UGe0,0) = o(9) 5 (,9,0) = wle,v), (56)

where U is the displacement along the z-direction, F is Young’s Modulus, h is the thickness, p is the density
and v is Poisson’s ratio. g is the gravitational acceleration and v, w(z,y) are sufficiently smooth functions such
that all partial derivatives shown in egs. (E.1) to (E.5) exist. Note that, even though the plate has a thickness
in the model, the set O C R? and the function U : Q — R are still sufficient to solve the initial value problem
described by egs. (E.1) to (E.5) as long as we assume the top and bottom plates to be completely flat; without
curvature of the plates in equilibrium. If this was not the case, we would need Q C R? and U defined accordingly
on the domain Q.

If a cantilever plate is considered, three ends are free. Additionally, we assume that the plate is not neces-
sarily homogeneous. This means the partial differential equation is as follows:

U otU U oU
"ot Bagur ¥ 2By ag s T B T9=0 =
ou
U,y,t) =0 —(0,y,t) =0 E.8
(0,9,t) 5 (0 9:t) (E.8)
0?U BU
—(L,y,t) = ——(L,y,t) = E.9
52 Ly t) =0 =5 (L,yt) =0 (E.9)
02U o3U
—(2,0,t) =0 —5(2,0,t)=0 E.10
G @00 =0 o0 (E.10)
82—U(x W,t) =0 az))—U(x W,t) =0 (E.11)
82/2 9 9 - 6:1/3 9 ) - .
ou
Ulz,y,0) =v(z,y) —-(2,9,0) = w(z,y), (E.12)
where h is the thickness, g the gravitational acceleration, Byy, Bey, Bys, Byy are constants given by egs. (2.19)

to (2.21) for directivity and v(z,y), w(z,y) are sufficiently smooth functions.

76



In the case of solely free edges, the governing equation of motion is the same as Equation E.7. However the
boundary conditions become

‘2272(0, y,t) =0 ZP’TZ(O, y,t) =0 (E.13)
82—U(L, y,t) =0 aS—U(L, y,t) =0 (E.14)
Ox? Ox3
8;7(2](3:, 0,¢) =0 (237[?{(3:, 0,¢) =0 (E.15)
82—U(:v, W,t) =0 a?)—U(x, W,t) =0. (E.16)
0y? oy3

In a similar fashion to two plates with generalised surfaces, we can also couple two rectangular plates. A
schematic of the plates by means of ribs is shown in Figure 55.

1216 Hz

Figure 55: A schematic of two rectangular plates coupled by ribs. Additionally, some possible normal modes
on the structure are shown[44].
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F Difference equations

To describe an equation of motion numerically, we will descretise it. For this descretisation, we use difference
equations Qf(h). The idea of a difference equation is that, if you take the limit of the distance between points
on the grid h € R to zero, we will obtain the derivative. For example:

. fle+h)—fl=)
| h)=lim ————= = F.1
lim Qy () = Jim T 7(x), (F1)
for h > 0. However, in reality, h cannot be infinitesimally small. Therefore, w has a truncation error.
We can calculate this error by using a Taylor expansion about x. This shows that the truncation error is given
by R(h) = S f"(¢) for ¢ € (z, 2+ h). This error is largely due to the linearity of the step forward we take. We
can attempt a similar difference equation with a step backward:

. _ o f@) = fle—h)

lim @ () = Jim J =TI g (F.2)
for h > 0. In this case, we have a similar truncation error R(h) = —=2f"(¢) for ¢ € (z — h,z). We can reduce
the truncation error by combining both difference equations to obtain:

h) — —h
lim Qu(h) = lim LEFM =@ =0 gy (F.3)

h—0 h—0 2h

for h > 0. In this equation, we evaluate the node at the centre of two other points. The resulting truncation
2

error is given by = f(¢) for ( € (x—h,z+h). We can visualise this as the forward step and the backward step

somewhat compensate their errors. However, %2 £7(¢) is still quite large, the importance of which will become
evident later on.

Equation F.3 is referred to as the central difference equation. Though, in Equation 3.9, we have got a fourth
order derivative. To derive this, we will apply the central difference equation we have just found to itself three
more times. We obtain:

f(z+2h) —2f(x) + f(z — 2h)

Qco = CE (F.4)
Qc73:f(a:+3h)—3f(m+h)+§f(x—h)—f(a:—3h) (F.5)
(2h)
and
Qus — flx+4h) —4f(x+2h) +6f(x) —4f(x —2h) + f(x — 4h). (F.6)

(2h)*

The equations of motions apply to the whole rod, thus to reduce the form of the 4;, order differences equation
in complexity, we will create invisible grid points. Namely, between every two grid points ¢ and i + 1, for i €
([1,n] NZ), we will create a new grid point ¢ + 0.5 such that the distance the between original two grid points
and the new grid point is equal. We will then evaluate the 2,4 and 44, order central difference equation on grid
point i, but we will take into account the invisible grid points to obtain:

fle+h)—2f(x) + f(z —h)
h2

Qep = (F.7)

and e+ 2h) — Af(z + B) + 6£(x) — 4f(x — h) + f(z — 2h)
QCA - h4

Unfortunately, we cannot not do this for the 3,4 order central difference equation as it contains f(x + h) and
f(xz — h). Namely, we can provide values for prior known functions at some point x + %h, but not f itself. If
we try this, we would need to evaluate f at the invisible grid points which causes them to become visible.

(F.8)
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G Stiffness matrix for a bending rod

Equation 4.8 describes the numerical model for the bending rod. For example, the third row reads:

82W3 Wy — 40.)4 + 60.)1 — 4w2 —+ w1

5 = i + fs. (G.1)

This result is obtained by using the fourth order central difference equation, found in Equation F.8.

In the case of a stationary bending rod with an external driving force, I % = 0. This yields a simple matrix

vector equation:

SG=—f (G.2)

Note that f is the collection of all non-linear terms in the difference equations and often stands for both the
external driving force and the non-linear parts of boundary conditions.

We can now describe all points on the grid to which the difference equation does not exceed the boundary,
or internal grid points in S. Thus, we can fill in the whole matrix S except the first two and the bottom two
rows. We obtain:

(72 ? ? ? il
?7 07 ? ? ? ?
1 —4 —4 0 0 0
0O 1 -4 6 -4 1 0 0
S = s z 0| (G23)
0 0 1 -4 6 -4 1 0
0 0 0 1 -4 6 -4 1
? ? ? ? ? ?
? ? ? ? ?

G.1 Boundary conditions for a clamped end

To determine the boundary conditions in finite difference form, we will first state the finite difference equations
on the grid points, then discretise the boundary conditions and use them appropriately to get rid of non-existing
points. The difference equations for the first two nodes read as follows:

w3 — 4wy + 6wy — dwo + w_1

o =—f (G4)
and wy — 4wz + 6wy — 4wy + wo
X = —fo. (G.5)
The first boundary condition at 2 = 0, y(0) = 0 gives us that wy = 0 directly. The second boundary condition
at x =01is %‘ = 0. Technically, using central differences, this is a condition for the first node relating a
ghost point, wg, with the existing node ws. We obtain:
Wy — Wo
o = 0. (G.6)

We can simply deduce that ws = wpy. Additionally, wy = 0 still holds. Plugging these results into the equation
for the second node yields:

wy — dws — 4wy

i = —fo. (G.7)
This difference equation does not contain any ghost points, thus can be fully described in the matrix S.
The first node still contains w_;. Remember that we have used a trick with invisible grid points. We will
now use the same logic but in reverse. The central difference equation is evaluated with a certain step size a

on both sides of the node. But if we take a = 2h, the central difference equation still holds. Using this for the
boundary condition yield:
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w3 —wW-1
4h
Note that the ng, order central difference equation with a = h and the ny, order central difference equation
with a = 2h appropriately approximate the n;, derivatives . The truncation errors are even of the same order
of magnitude. This turns out to be O(h™) and O((2h)™) respectively[61]. This, by definition[75], is of the same
order since the factor 2 is constant for any order central difference equation. Therefore, we can use the difference
equations with any (reasonable) step size.

—0. (G.8)

Thus the difference equation for the first node is as follows:

2ws + 6w

= —hi (G.9)

G.2 Boundary conditions for a free end

Having seen the boundary conditions for the clamped end at z = 0, we will attempt a similar method for the
boundary conditions at x = L.

The difference equations for the ny, and (n + 1), nodes read as follows:

Wn+42 — 4wn+1 + 6wn+ B 4wn—1 + Wp—2

W =—fn (G.10)
and Qs +6 A, +
Wnas — 4wy, Wn+1 — 4Wn T Wp—
= = 7a = b = —fog1 (G.11)
The boundary conditions for a free end at * = L are % =0 and g%’ = 0. In difference equations,
=L z=L
this yields:
Wn42 — 2wn+1 + wn
% =0 (G.12)
and 3 +3
Wn 44 Wn 42 Wn, Wn—2 —0. (Gl?))

(2h)?

This will not fix the problem that the equation pertaining grid point ¢ = n,n + 1 contains a term w, 3 and

Equation G.13 contains a term w, 4. We can, however, fix this by using the backward difference equation, as
3

shown in Equation F.1 once, to approximate % = 0, and then applying the central difference equation

o=
twice to obtain this term. Note that this is a valid way to approximate the 3,4 order derivative. Though the
order of the truncation error is higher[61]. We start with the forward difference equation on the (n + 1), node:

Qy = % (G.14)

Then, applying the central difference equation twice yields the following;:

o Wn42 — Wpt1 — Wh + Wn—1

e = 1
@ i (G.15)
and 5 + 9w 4
_ Wn43 — Wpy2 — 2Wnid Wn T Wn—1 — Wn—-2
chc - e . (GIG)
The resulting boundary condition looks as follows:
Wn4+3 — Wn42 — 2Wn-i—l + 2wn + Wp—1 — Wn—2
=0. G.17
Using Equation G.11, Equation G.12 and Equation G.17 gives us:
2Wpa1 — Wy + Wh—
1 2 = fui (G.18)

13
Now, moving on to the last unknown row of S, for the ny, node, we find that w49 — 2w,11 = w, by Equa-
tion G.12. Using this, the difference equation becomes as follows:
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Wn42 — 4wn+1 + 6wn - 4wn—1 + Wp—2
= = fu. (G.19)

We can plug the boundary condition in to find:

_2wn+1 + 5wn - 4wn71 + Wn—2
h4

= —fa. (G.20)

We now have the entire matrix vector equation for a stationary bending rod without external force ( f =0):

6 0 2 0 0 0 0 0
-4 0 -4 1 0 0 0 0
-4 6 -4 1 0 0 0
0 1 -4 6 -4 1 0 0
: ; 0 |w=0 (G.21)
0 0 1 -4 6 -4 1 0
0 0 0 1 -4 6 -4 1
0 0 0 O 1 -4 5 =2
| 0 0O 0 O 10 -3 2]
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G.3 The bending rod

To consider external forces, such as gravity, we need to take a better look at the equation of motion. The
equation of motion from which Equation 3.9 is derived, is as follows[28]:

OF 02U
dF = <%>dx = (pAda) S, (G.22)

where F' is the net force perpendicular to the axis of the bar and A the cross sectional area. In the case of a
bending rod, the net force is described by bending moment and other external forces between two points x(
and zg + dr on the axis of the rod:

oM B 2 0°U
F = Sz + F..=—-FAK e pAa(z,t)dz, (G.23)

with Fi,; the external force applied to the rod and a(z,t) the acceleration. Combining Equation G.22 and
Equation G.23 yields:

0*U n EK?0*U n
ot? p Ox*

The analytical solution to Equation 4.1 for the stationary case is follows from a dummy case (using £ as a
variable):

a(z,t) = 0. (G.24)

U
== = R. 2
Ozl £, £¢e (G.25)
So
U=¢*+Ba*+Ca?+Dx+E, B,C,D,E€R. (G.26)

Then we use the boundary conditions: $(0) = 0 yields E = 0, ,4(0) = 0 yields D = 0, 92,,9(L) = 0 gives
B = —4L¢ and 92,9(L) = 0 gives C' = 6L%¢. For z € [0,1], it follows that:

U= _(24291(2)334 + (62@?2>I3 - (46521,0?2)”32' (G27)

Consequently, this results in a constant in the difference equations which makes every equation of motion for
each specific node nonlinear with —g, except for node 1 as this node is clamped. Hence the new matrix-vector
equation for the stationary rod will look as follows:

(6 0 2 0 0 0 0 0] 0
-4 0 -4 1 0 0 0 0 Fire
1 -4 6 -4 1 0 0 0 — B
0 1 -4 6 -4 1 0 0 — i
: ; ; o |@=n*| : (G.28)
S L
DR - - — 5
0 .. 0 0 0 1 —4 5 -2 e
0O ... 0 0 0 2 -2 -3 0 _ ey
- - L EKZ2
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H The stationary two dimensional fi-
nite element method
The stationary equation of motion for a thin plate using classical Kirchhoff theory reads:

otU otU otU

Boo ot 2By 0x20y? + Buy oyt

+pg = 0. (H.1)

For some (3, 7) € Qpum, this is discretised to:

p Witz —Awit1j 4 6wi; —dwioyj +wioay
Trr

4
1oB,, Wit1,j4+1 — QWZiH Jrhwi—l,ﬂ—l
+2B,, —2wi41,5 + ch;li,j — 2wi—1,5 (H.2)
e Awijy1 + GZ’ZJ' —Awijor F Wiz —fij-

Suppose the plate is clamped at = 0 and free everywhere else on the boundary. The following conditions are
then, also completely analogous to the one dimensional problem, given by:

W2,j —Wo,j

wo,; =0, o o0 (1Y)

Wn42,5 — 2wn+17j + Wy, j -0 —Wn+3,j T Wnt2,5 + 2wn+1,j - 2wn,j — Wn—1,j + Wn-2;j -0 (H 4)
B2 - 4h? o .

Wi — 2:;,1 twio Wi—1 — Wi,0 — 2wi,£1”; 2wip + Wi T Wi g (H.5)

Wim+2 — 2@;;2,m+1 +Wim _ 0 and —Wim+3 T Wim+2 T 2w¢,m1}1lg— 2wWim — Wim—1 + Wi,m—2 —0, (H.6)

for (i,7) € Quum. Note that, for the free boundaries at x = n and y = m, the backwards difference equation
is applied once whereafter the central difference equation is used twice. For the free end at y = 0, the forward
difference equation is used once, then the central difference equation is used twice.

At 0Qpum, we use Equation H.3-H.6 to obtain:

2w3,j + bwy, Wiitl | gp Wi

h4 h4 ops

wij4+2 — dw i1 +0wrj —wi o1+ wij—2
h4

Wi,5—-1
h (H.7)
= _fl,ja

— 4By,

+Byy

where i =1 and j € {3,4,...,m —2,m — 1},

wy,j — 4wz — dwy;
h4
W3,j4+1 T Wi 41
4
h (H.8)
72&137]' — 2w17j
h4
ws,j—1 Wi -1
h4

B,’.EI
+2B,,
+2B,,

+23zy = _f2,ja

where i =2 and j € {3,4,...,m —2,m — 1},

83



_2wn+1,j + 5wn,j - 4wn—1,j + Wn—2,5
h4
Wnt1,j4+1 — 2Wn j41 + Wno1,41
h4
—2wn+1’j + 4wn1j - 20.)“,1’]'
h4
Wntl,j—1 — 2Wn j—1 + Wn_1j-1
h4
—2wn,j+1 + Swn,j - 4wn,j,1 + Wn,j—2
h4

B(EIE

+2B,,

128, (H.9)

+2B,,

+Byy = _fn,jv

where j € {3,4,....,m —2,m — 1},

2Wn 1,5 = 3Wn,j + Wn-2,;
1A
—2Wn 41,41 + OWnt1,; — dWnt1j—1 + Wnt1,j—2

+ By, x = —fa+14>

B(EIE

(H.10)

where j € {3,4,....,m —2,m — 1},

wit2,1 —4wig1,1 6w —4wi11 +wi—o1
7a

= _fi,la

BZE{E

Wi 4 — 35(4}1',2 + 20.)1"1 (Hll)

+Byy h4

where i € {3,4,...,n—2,n — 1}

Wit2,2 —4wiyr12 +6w; o —4wi_190 +wi—22
ha

Wit1,3 — 2w; 3 +wi—1,3

ha
—2wit12 +4wi 2 — 2wi_1 2

7a

Wit1,1 — 2w 1+ wi—1,1

7a
wi 4 — 4w; 3 + dw; 2 — 2w; 1

+Byy h4 = 7fi,27

BZL’I

+2B,,

+2B,,

where i € {3,4,....,n—2,n — 1}

—2W; m41 + Wi m — AW 1 + Wm—2,j
ha

Wit1,m4+1 — 2Wit1,m + Wit1,m—1

X
—2W;i m41 + Wi m — 205 m—1

B

Wi—1,m+1 — 2Wi—1,m + Wi—1,m—1

ha
Wit2,m — 4wit1,m + 6w; m — Wi 1 m + Wi—om

+Byy ha = 7fi,m-a

BCEiE

+2By

+2B,, (H.13)

+2B,,

for i € {3,4,...,n—2,n — 1},
2W; 41 — 3Wim + Wi m—2
1
h (H.14)

B Wit2ml — dwit1me1 +6Wimt1 — 4w 1 mi1 T Wicomye1
+Dyy B = fi,m+1,

B:l)il?

where i € {3,4,...,n—2,n — 1},

2ws3.1 + 6w 1
7a

w14 — 3&)172 + 2w1,1

+ Byy =—fi1, (H.15)

where (i,7) = (1,1),
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2w3 9 + 6w
B , 1,2 w
st —4Bwﬁ+8Bwy%—4B et i}
Ty Ty
LB, WA~ 4wy 3+ dwio — 2w 1 "
B Yy nA — = —f1,2,
where (i) = (1,2),
2w3 g + 6w
wa ,m 1,m Wi,m
nA —4Bay h4+1 + 8B,y S — 4B, L
—2w o oo
+B,, 1Lm+1 + 9Wi m — Wi,m—1 + Wim—2
| h4 - = _fl,m7
where (4,7) = (1,m),
B.. 2w3 m+1 + 6W1,m+1
ha
B, 2W1,m 41 = 3Wim + Wim—2 _ _f
B h4 1,m+1,
where (i,7) = (1,m + 1),
B,. wg1 — 4wz — 4w
B h4 - _fi,lv
for (,5) = (2,1),
B, Wy — 4dws a2 — 4wy o
nA
+2B'Ey 23,3 + 1.3
hA
+23$y —2LU3,2 — 2(.4}172
ha
w31+ w11
N +2BzyT =—fi2,
where (4,7) = (2,2),
wa W4m — 4w3,m - 4W1,m
nA
12B,, W3 m+1 + Wi,m+1
hA
—2w -2
9B 3,m W1,m
+2Byy—— :
W3,m—1+ Wi,m—
+QB:MI ! 4 L ! = _f2
) o h K%
where (Za.]) - (25m)7
B,. Wa,mt1 — 4wz mp1 — 401 mt1
A = —fo,m+1,

where (4,7) = (2,m + 1),

—2wp11,1 +5wp1 —4wn_11 +wn_21
h4 7
Wn 4 — 3wn,2 + 2Wn,l

B
+D5yy 1A = _fn,h

where (i, ) = (n, 1),

85

(H.16)

(H.17)

(H.18)

(H.19)

(H.20)

(H.21)

(H.22)

(H.23)



—2wp 11,2 +5wn2 — 4w 12 + Wnp_22
ha
Wn+1,3 — 2Wn 3 + Wn—1,3
7a
—2Wn41,2 +4wn 2 — 2wp_12
A
Wnt1,1 — 2Wn1 +Wn_11
[
Wn,4 — 4wn73 + 5wn,2 - 2Wn,l
1A

B$$

+2B,,

2B, (H.24)

+2B,,

+Byy = fn,27

where (i, ) = (n,2),

_2wn+1,m + 5wn,m - 4wn—1,m + Wn—2,m
h4
wn+1,m+1 - 2wn,m+1 + wnfl,mjtl
h4
*2wn+1,m + 4wn,m - 2Wn—l,m
h4
Wn+1,m—1 — 2Wn,m—l + Wn—1,m—1
h4
_2wn,m+1 + 5wn,m - 4Wn,ﬂ%fl + Wn,m—2
h4

B(EIE

+2B,,

+2B,, (H.25)

+2B,,

+Byy

= fn,m>
where (i,7) = (n,m),

_2wn+1,m+1 + 5wn,m+1 - 4Wn—l,n%-i—l + wn—2,m+1
h4

B 2wn’m+1 — 30Jn’m + Wnom—2

+ vy h4 - fn,m+1a

BII
(H.26)

where (4,7) = (n,m + 1),

2Wn41,1 — dWn,1 + Wp—2,1
7a
Wnt1,4 — SWnt1,2 + 2Wn41,1

+Byy h4 = 7fn+1,17

BII
(H.27)

where (i,7) = (n+1,1),
2Wnt1,2 — 3wn2 + Wp—22

ha
H.28
Wnt1,4 —4Wnp13 +05wni12 — 2Wng11 ( )
+Byy h4 - 7fn+1,27

BII

where (4,7) = (n+ 1,2)

2wn+1,m - 3wn,m + Wn—2,m

7A

H.29
—2Wn41,m+1 + OWnt1,m — dWnt1,m—1 + Wnt1,m—2 ( )
+By,y B = —fnt1,m;

Bmm

where (4,j) = (n 4+ 1, m) and

2wn+1,m+1 - 3wn,m+1 + Wn—Z,m—Q—l

h4
H.30)
2wn+1,m+1 - 3wn+1,m + Wn41,m—2 (
+Byy ha = _fn+1,j7

Bacx

where (4,7) = (n+ 1,m + 1). Now, we transform this to a single digit index . An example for all the interior
nodes is given below:
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Wat2 — dwat1 + 6wa — 4wa—1 + Wa—2

Bua -
S e
1o, —Hat1 T ::"“ ~ Wa-t (H.31)
+2Byy oL 2w;4_n T anot
+B,, Waton — dwWetn + 6;;04 —4dwoy—n + Wa—2n _ 5

However, translating all the boundary conditions with two indices to boundary conditions with one index is
unnecessary as the notation gets increasingly more difficult. Instead, in the implementation of the method of
lines, looping over all a’s to implement the correct difference equations for each grid point yields exactly the
same as looping over all i’s and j’s in a nested loop. The implementation only needs to account for that the
difference between any two grid points «(i,7) — a(i,j + 1) =n + 1.

As in the one dimensional case, the non-linear terms are collected in f,. It follows that f, = pg for all
a€{l,2,..,(n+1)(m+1)}. We can now compare the results to those we found analytically.
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