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Abstract We introduce computable actions of computable groups and prove the fol-
lowing versions of effective Birkhoff’s ergodic theorem. Let Γ be a computable
amenable group, then there always exists a canonically computable tempered two-
sided Følner sequence (Fn)n≥1 in Γ . For a computable, measure-preserving, ergodic
action of Γ on a Cantor space {0, 1}N endowed with a computable probability mea-
sure μ, it is shown that for every bounded lower semicomputable function f on
{0, 1}N and for every Martin-Löf random ω ∈ {0, 1}N the equality

lim
n→∞

1

|Fn|
∑

g∈Fn

f (g · ω) =
∫

f dμ

holds, where the averages are taken with respect to a canonically computable tem-
pered two-sided Følner sequence (Fn)n≥1. We also prove the same identity for all
lower semicomputable f ’s in the special case when Γ is a computable group of poly-
nomial growth and Fn := B(n) is the Følner sequence of balls around the neutral
element of Γ .
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1 Introduction

A classical ergodic theorem of Birkhoff asserts that, if ϕ : X → X is an ergodic
measure-preserving transformation on a probability space (X, μ), then for every f ∈
L1(X) we have

lim
n→∞

1

n

n∑

i=1

f (ϕix) =
∫

f dμ (1.1)

for μ-a.e. x ∈ X. We refer, e.g., to [4, Chapter 11] for the proof. A celebrated result of
Lindenstrauss [9] gives a generalization of Birkhoff’s ergodic theorem for measure-
preserving actions of amenable groups and ergodic averages, taken along tempered
Følner sequences.

One may also wonder if the averages in (1.1) converge for every Martin-Löf ran-
dom x and every computable f . An affirmative answer was given by V’yugin in
[14] for computable f ’s. Later, it was proved in [2] that the ergodic averages in (1.1)
converge for every lower semi-computable f and every Martin-Löf random x.

In so far, the effective ergodic theorems have only been proved for actions of Z,
and it is a natural question if one can generalize effective Birkhoff’s ergodic theo-
rem for measure-preserving actions of more general groups (for instance, the groups
Z

d , groups of polynomial growth and so on). However, one must first define com-
putable actions of groups appropriately. In this article we define computable actions
of computable groups in a natural way in Section 2.5, which agrees with the ‘clas-
sical’ definition in the case of Z-actions, and obtain the following generalizations of
the results from [2]. First of all, we derive a generalization of Kučera’s theorem in
Section 3.1, which is the main technical tool of the article.

Theorem Let Γ be a computable amenable group and ({0, 1}N, μ, Γ ) be a com-
putable ergodic Γ -system. Let U ⊂ {0, 1}N be an effectively open subset such that
μ(U) < 1. Let

U∗ :=
⋂

g∈Γ

g−1U

be the set of all points ω ∈ {0, 1}N whose orbit remains in U . Then U∗ is an
effectively null set.

Using this generalization of Kučera’s theorem and the results of Lindenstrauss, we
derive the first main theorem in Section 3.2. To simplify the notation, we denote the
averages by Eg∈F := 1

|F |
∑
g∈F

.

Theorem Let Γ be a computable amenable group with a canonically computable
tempered two-sided Følner sequence (Fn)n≥1. Suppose that ({0, 1}N, μ, Γ ) is a com-
putable ergodic Γ -system. For every bounded lower semicomputable f and for every
Martin-Löf random ω ∈ {0, 1}N the equality

lim
n→∞Eg∈Fnf (g · ω) =

∫
f dμ

holds.
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In a special case, when Γ is a computable group of polynomial growth, we are
able to remove the boundedness assumption on f and prove the following version of
effective Birkhoff’s ergodic theorem.

Theorem Let Γ be a computable group of polynomial growth with the Følner
sequence of balls around e ∈ Γ given by

Fn := {g ∈ Γ : ‖g‖ ≤ n} for n ≥ 1.

Suppose that ({0, 1}N, μ, Γ ) is a computable ergodic Γ -system. For every lower
semicomputable f and for every Martin-Löf random ω ∈ {0, 1}N the equality

lim
n→∞Eg∈Fnf (g · ω) =

∫
f dμ

holds.

2 Preliminaries

2.1 Computable Amenable Groups

In this section we will remind the reader of the classical notion of amenability and
state some results from ergodic theory of amenable group actions. We stress that all
the groups that we consider are discrete and countably infinite.

Let Γ be a group with the counting measure |·|. A sequence of finite subsets
(Fn)n≥1 of Γ is called

1) a left Følner sequence (resp. right Følner sequence) if for every g ∈ Γ one has

|Fn
gFn|
|Fn| → 0

(
resp.

|Fn
Fng|
|Fn| → 0

)
;

2) a (C-)tempered sequence if there is a constant C such that for every j one has
∣∣∣∣∣∣

⋃

i<j

F−1
i Fj

∣∣∣∣∣∣
< C|Fj |.

A group is called amenable if it has a left Følner sequence. A sequence of finite
subsets (Fn)n≥1 of Γ is called a two-sided Følner sequence if it is a left and a right
Følner sequence simultaneously.

We refer the reader, e.g., to [13] for the standard notions of a computable function
and a computable/enumerable set, which will appear in this article. A sequence of
finite subsets (Fn)n≥1 of N is called canonically computable if there is an algorithm
that, given n, prints the set Fn and halts. Formally speaking, for a finite set A =
{x1, x2, . . . , xk} ⊂ N, we call the number I(A) :=

k∑
i=1

2xi the canonical index of
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A. Hence a sequence (Fn)n≥1 of finite subsets of N is canonically computable if and
only if the (total) function n �→ I(Fn) is computable.

A group Γ with the composition operation ◦ is called a computable group if,
as a set, Γ is a computable subset of N and the total function ◦ : Γ × Γ → Γ is
computable. It is easy to show that in a computable group Γ the inversion operation
g �→ g−1 is a total computable function. We refer the reader to [12] for more details.

Any discrete amenable group Γ admits a two-sided Følner sequence. Furthermore,
if the group is computable, then there exists a canonically computable two-sided
Følner sequence. To prove that we will need the following result.

Lemma 2.1 Given a discrete amenable group Γ , for any finite symmetric setK ⊂ Γ

such that e ∈ Γ and any ε > 0 there exists a finite subset F ⊂ Γ such that

|KFK| − |F | ≤ ε |F | . (2.1)

We refer the reader to [10, I.§1, Proposition 2] for the proof.

Lemma 2.2 Let Γ be a computable amenable group. Then there exists a canonically
computable two-sided Følner sequence (Fn)n≥1.

Proof First of all, observe that given K ⊂ Γ , ε > 0 as in Lemma 2.1 and a finite set
F ⊂ Γ satisfying (2.1), we have

|gF \ F |
|F | ≤ ε

and

|Fg \ F |
|F | ≤ ε

for all g ∈ K . Let Kn be the finite set of the first n elements of the computable group
Γ . Then, for every n = 1, 2, . . . we apply Lemma 2.1 to the set Kn ∪ K−1

n ∪ {e} and
εn := 1/n and find the finite set Fn with the smallest canonical index I(Fn) satisfying
(2.1). It is easy to see that (Fn)n≥1 is indeed a two-sided Følner sequence.

Every Følner sequence has a tempered Følner subsequence. Furthermore, the con-
struction of a tempered Følner subsequence from a given canonically computable
Følner sequence is ‘algorithmic’. The proof is essentially contained in [9, Proposition
1.4], but we provide it for reader’s convenience below.

Proposition 2.1 Let (Fn)n≥1 be a canonically computable Følner sequence in
a computable group Γ . Then there is a computable function i �→ ni s.t. the
subsequence (Fni

)i≥1 is a canonically computable tempered Følner subsequence.
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Proof We define ni inductively as follows. Let n1 := 1. If n1, . . . , ni have been
determined, we set F̃i := ⋃

j≤i

Fnj
. Take for ni+1 the first integer greater than i + 1

such that ∣∣∣Fni+1
F̃−1
i Fni+1

∣∣∣ ≤ 1∣∣F̃i

∣∣
The function i �→ ni is total computable. It follows that

∣∣∣∣∣∣

⋃

j≤i

F−1
nj

Fni+1

∣∣∣∣∣∣
≤ 2

∣∣Fni+1

∣∣ ,

hence the sequence (Fni
)i≥1 is 2-tempered. Since the Følner sequence (Fn)n≥1 is

canonically computable and the function i �→ ni is computable, the Følner sequence
(Fni

)i≥1 is canonically computable and tempered.

Let us state an immediate corollary.

Corollary 2.1 Let Γ be a computable amenable group. Then there exists a canoni-
cally computable, tempered two-sided Følner sequence (Fn)n≥1 in Γ .

The following result tells us that the lim sup of averages of bounded functions on
a group with a right Følner sequence is translation-invariant.

Lemma 2.3 (Limsup invariance) Let Γ be a discrete group with a right Følner
sequence (Fn)n≥1 and f ∈ �∞(Γ,R) be a bounded function on Γ . Then

lim sup
n→∞

Eg∈Fnf (g) = lim sup
n→∞

Eg∈Fnf (gh).

Proof A direct computation shows that for all n ≥ 1

1

|Fn|

∣∣∣∣∣∣

∑

g∈Fn

f (g) −
∑

g∈Fnh

f (g)

∣∣∣∣∣∣
≤ |Fn
Fnh| · ‖f ‖∞

|Fn| ,

and the statement of the lemma follows since (Fn)n≥1 is a right Følner sequence.

Remark 2.1 The statement of Lemma 2.3 does not hold for general amenable groups
and unbounded nonnegative functions. As a counterexample, take Γ := Z with the
tempered two-sided Følner sequence

Fn := [−2n, . . . , 2n] for n ≥ 1

and define f : Γ → N to be zero everywhere, except for points of the form 2k + 1,
where we let

f (2k + 1) := 2k for all k ≥ 0.

It is then easy to see that

lim sup
n→∞

Eg∈Fnf (g) �= lim sup
n→∞

Eg∈Fnf (g + 1).
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We will resolve this issue in the class of groups of polynomial growth in Lemma 2.5
in Section 2.2.

2.2 Computable Groups of Polynomial Growth

Let Γ be a finitely generated discrete group and {γ1, . . . , γk} be a fixed generating
set. Each element γ ∈ Γ can be written as a product γ

p1
i1

γ
p2
i2

. . . γ
pl

il
for some indices

i1, i2, . . . , il ∈ {1, . . . , k} and some integers p1, p2, . . . , pl ∈ Z. We define the norm
of an element γ ∈ Γ by

‖γ ‖ := inf

{
l∑

i=1

|pi | : γ = γ
p1
i1

γ
p2
i2

. . . γ
pl

il

}
,

where the infinum is taken over all representations of γ as a product of the generating
elements. The norm ‖ · ‖ on Γ can, in general, depend on the generating set, but it is
easy to show [3, Corollary 6.4.2] that two different generating sets produce equivalent
norms. We will always say what generating set is used in the definition of a norm,
but we will omit an explicit reference to the generating set later on. Using this norm,
we define unit balls in Γ as

B(n) := {g ∈ Γ : ‖g‖ ≤ n} for all n ≥ 0.

We say that the group Γ is of polynomial growth if there are constants C, d > 0
such that for all n ≥ 1 we have

|B(n)| ≤ Cnd.

Example 2.1 Consider the group Z
d for d ∈ N and let γ1, . . . , γd ∈ Z

d be the
standard basis elements of Zd . That is, γi is defined by

γi(j) := δ
j
i (j = 1, . . . , d)

for all i = 1, . . . , d . We consider the generating set given by elements
∑
k∈I

(−1)εk γk

for all subsets I ⊆ [1, d] and all functions ε· ∈ {0, 1}I . Then it is easy to see by
induction on dimension that B(n) = [−n, . . . , n]d , hence

|B(n)| = (2n + 1)d for all n ∈ N

with respect to this generating set, i.e., Zd is a group of polynomial growth.

Let d ∈ Z≥0. We say that the group Γ has polynomial growth of degree d if
there is a constant C > 0 such that

1

C
nd ≤ |B(n)| ≤ Cnd for all n ∈ N.

It was shown in [1] that, if Γ is a finitely generated nilpotent group, then Γ has poly-
nomial growth of some degree d ∈ Zp. Furthermore, one can show [3, Proposition
6.6.6] that if Γ is a group and Γ ′ ≤ Γ is a finite index, finitely generated nilpotent
subgroup, having polynomial growth of degree d ∈ Zp, then the group Γ has poly-
nomial growth of degree d. The converse is true as well: it was proved in [7] that, if
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Γ is a group of polynomial growth, then there exists a finite index, finitely generated
nilpotent subgroup Γ ′ ≤ Γ . It follows that if Γ is a group of polynomial growth, then
there is a constant C > 0 and an integer d ∈ Z≥0, called the degree of polynomial
growth, such that

1

C
nd ≤ |B(n)| ≤ Cnd for all n ∈ N.

An even stronger result was obtained in [11], where it is shown that, if Γ is a group
of polynomial growth of degree d ∈ Z≥0, then the limit

cΓ := lim
n→∞

|B(n)|
nd

(2.2)

exists.

Lemma 2.4 Let Γ be a group of polynomial growth. Then (B(n))n≥1 is a tempered
two-sided Følner sequence in Γ .

Proof We want to show that for every g ∈ Γ

lim
n→∞

|gB(n)
B(n)|
|B(n)| = 0.

Let m := ‖g‖ ∈ Z≥0. Then gB(n) ⊆ B(n + m) and g−1B(n) ⊆ B(n + m), hence

|gB(n)
B(n)|
|B(n)| ≤ 2 |B(n + m) \ B(n)|

|B|(n)
≤ 2(|B(n + m)| − |B(n)|)

|B(n)| → 0,

where we use the existence of the limit in (2.2). Similarly, we use the relation
B(n)g ⊆ B(n + m) to show that (B(n))n≥1 is a right Følner sequence. The sequence
(B(n))n≥1 is tempered, since

|B(n − 1) · B(n)| ≤ |B(2n)| ≤ C22d |B(n)|
for all n ≥ 1.

As promised in Remark 2.1, we prove now that the lim sup of averages of arbitrary
nonnegative functions on a group of polynomial growth Γ is translation invariant.

Lemma 2.5 (Limsup invariance) Let Γ be a group of polynomial growth and define
the Følner sequence of balls around e ∈ Γ by

Fn := {g ∈ Γ : ‖g‖ ≤ n} for n ≥ 1.

Let f : Γ → R≥0 be a nonnegative function on Γ . Then

lim sup
n→∞

Eg∈Fnf (g) = lim sup
n→∞

Eg∈Fnf (gh)

for all h ∈ Γ .
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Proof Let S ⊂ Γ be the finite generating set, which is used in the definition of the
norm ‖ · ‖ on Γ . Since the statement of the lemma is ‘symmetric’ and since the set S

generates Γ , it suffices to prove that

lim sup
n→∞

Eg∈Fnf (g) ≥ lim sup
n→∞

Eg∈Fnf (gh)

for all h ∈ S∪S−1. We fix an element h ∈ S∪S−1. It is clear that Fnh ⊆ Fn+1, hence

lim sup
n→∞

Eg∈Fnf (gh) ≤ lim sup
n→∞

1

|Fn|
∑

g∈Fn+1

f (g).

But

lim sup
n→∞

1

|Fn|
∑

g∈Fn+1

f (g) = lim sup
n→∞

|Fn+1|
|Fn| · Eg∈Fn+1f (g)

and |Fn+1| / |Fn| → 1 as n → ∞, which implies that

lim sup
n→∞

1

|Fn|
∑

g∈Fn+1

f (g) = lim sup
n→∞

Eg∈Fnf (g),

and the proof is complete.

Whenever discussing computable groups of polynomial growth, we will always
assume that the generating set is known and fixed. We state the following lemma.

Lemma 2.6 Let Γ be a finitely generated group with a distinguished set of
generators {γ1, . . . , γk}. Then the following assertions hold:
(a) The sequence of balls (B(n))n≥1 is a canonically computable sequence of finite

sets;
(b) The growth function n �→ |B(n)| ,Z≥0 → N is a total computable function;
(c) The norm ‖ · ‖ : Γ → Z≥0 is a total computable function.

The proof of the lemma is straightforward.

2.3 Ergodic Theory

Let X = (X,B, μ) be a probability space. A measurable transformation ϕ : X → X

is called measure-preserving if

μ(ϕ−1A) = μ(A) for all A ∈ B.

A measure-preserving transformation ϕ : X → X is called an automorphism if
there exists a measure-preserving transformation ψ : X → X such that

ϕ ◦ ψ = ψ ◦ ϕ = idX μ − a.e.

We denote by Aut(X) the group of all automorphisms of the probability space X.
Given a discrete group Γ , a measure-preserving Γ -system1 is a probability space

1To simplify the notation, the shorter term ‘Γ -system’ will also be used.
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X = (X,B, μ), endowed with an action of Γ on X by automorphisms from Aut(X).
We denote a measure-preserving Γ -system on a probability space (X,B, μ) by a
triple (X, μ, Γ ) and we write g ·x, where g ∈ Γ, x ∈ X, to denote the corresponding
action of Γ on elements of X.

Let X = (X, μ, Γ ) be a measure-preserving Γ -system on a probability space
(X,B, μ). We say that X is ergodic (or that the measure μ on X is ergodic) if, for all
A ∈ B, the condition

μ(γ −1A
A) = 0 for all γ ∈ Γ

implies that μ(A) = 0 or μ(A) = 1. That is, X is ergodic if only the trivial sets are
essentially invariant under Γ .

The simplest ergodic theorem for amenable group actions is the mean ergodic
theorem, which we state below. For the proof we refer the reader to [6, Theorem
3.33].

Theorem 2.1 Let (X, μ, Γ ) be a measure-preserving, ergodic Γ -system, where the
group Γ is amenable and (Fn)n≥1 is a left Følner sequence. Then for every f ∈
L2(X) we have

lim
n→∞Eg∈Fnf ◦ g =

∫
f dμ,

where the convergence is understood in L2(X)-sense.

Pointwise convergence of ergodic averages is much more tricky, in particular,
pointwise ergodic averages do not necessarily converge, unless the Følner sequence
satisfies some additional assumptions. The following important theorem was proved
by E. Lindenstrauss in [9].2

Theorem 2.2 Let X = (X, μ, Γ ) be an ergodic measure-preserving Γ -system,
where the group Γ is amenable and (Fn)n≥1 is a tempered left Følner sequence. Then
for every f ∈ L1(X)

lim
n→∞Eg∈Fnf (g · x) =

∫
f dμ

for μ-a.e. x ∈ X.

2.4 Computability on Cantor Space and Martin-Löf Randomness

In this section we remind the reader some standard notions of computability on Can-
tor space. All of these notions have analogs on computable metric spaces as well, and
we refer to [5, 8] for the details.

2In fact, a more general statement is proved there, but we only need the ergodic case in this work.
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Throughout the article we fix some enumeration of Q = {q1, q2, q2, . . . }. We
use the standard notions of a computable real number and of a lower/upper semi-
computable real number. A sequence of real numbers (an)n≥1 is called computable
uniformly in n if there exists an algorithm A : N × N → Q such that

|A(n, i) − an| < 2−i for all n, i ≥ 1.

We fix the lexicographic enumeration

{0, 1}∗ = {w1, w2, . . . }
of the set of all finite binary words, where, firstly, appears the block of all words of
length 1 ordered lexicographically, then the block of all words of length 2 ordered
lexicographically and so on. Let

[w] := {ω : ω = wω′ for some ω′ ∈ {0, 1}N} ⊂ {0, 1}N
be the cylinder set of all words that begin with a finite word w ∈ {0, 1}∗. A set
U ⊆ {0, 1}N is called effectively open if there is a recursively enumerable subset
E ⊆ N such that

U =
⋃

i∈E

[wi].

A sequence (Un)n≥1 of sets is called a uniformly effectively open sequence of sets
if there is a recursively enumerable set E ⊆ N × N such that

Ui =
⋃

(i,j)∈E

[wj ] for all i ≥ 1.

A mapping ϕ : {0, 1}N → {0, 1}N is called computable if (ϕ−1([wi]))i≥1 is
uniformly effectively open, that is, there is a recursively enumerable set Eϕ ⊆ N×N

such that

ϕ−1([wi]) =
⋃

(i,j)∈Eϕ

[wj ] for all i ≥ 1.

A function f : {0, 1}N → R≥0 is called lower semicomputable if the sequence of
sets (f −1((qn, +∞)))n≥1 is uniformly effectively open.

Let μ be a Borel probability measure on {0, 1}N. We say that μ is a computable
measure3 if

μ([wi1] ∪ [wi2 ] ∪ · · · ∪ [wik ])
is computable uniformly in i1, . . . , ik ≥ 1.

Suppose that μ is a computable probability measure on {0, 1}N. A Martin-Löf
μ-test is a uniformly effectively open sequence of sets (Un)n≥1 such that

μ(Un) < 2−n for all n ≥ 1.

3One can also restrict to the measures μ([w]) of the cylinder sets and require uniform computability of
these only.
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Any subset of
⋂
n≥1

Un is called an effectively μ-null set. A point ω ∈ {0, 1}N is called

Martin-Löf random if it is not contained in any effectively μ-null set.

2.5 Computable Dynamical Systems

Now, let Γ ⊆ N be a computable group, which acts on {0, 1}N by homeomorphisms.
We say that the action of Γ is computable if there is a recursively enumerable subset
E ⊆ Γ × N × N such that

γ −1([wi]) =
⋃

(γ,i,j)∈E

[wj ] for all i ≥ 1, γ ∈ Γ.

In general, checking the computability of the action of a computable group Γ

on {0, 1}N can be trickier than checking computability of a single transformation.
Imagine a Z-action on {0, 1}N with the generating element ϕ ∈ Z. Can it happen
that both ϕ and ϕ−1 act by computable transformations on {0, 1}N, while the action
of Z on {0, 1}N is not computable? Fortunately, the answer is ‘no’: the following
lemma tells us that for an action of a computable finitely generated group it suffices
to check computability of transformations in a finite symmetric generating set to
guarantee the computability of the action. The lemma also shows that the terminology
of computable group actions which we suggest in this article is compatible with the
classical case, when there is only one computable transformation.

Lemma 2.7 Let Γ be a finitely generated computable group with a finite symmetric
generating set S ⊂ Γ . Suppose that Γ acts on {0, 1}N by homeomorphisms, and,
furthermore, that for each γ ∈ S the transformation

γ : {0, 1}N → {0, 1}N

is computable. Then the action of Γ on {0, 1}N is computable.

Proof Given a fixed finite symmetric generating set S = {γ1, γ2, . . . , γN }, we will
denote by B(n) the corresponding balls around the neutral element e ∈ Γ with
respect to the norm determined by S. Since γ1, γ2, . . . , γN are computable endomor-
phisms of {0, 1}N, there are recursively enumerable subsets E1, E2, . . . , EN such
that

γ −1
k ([wi]) =

⋃

(i,j)∈Ek

[wj ] for all k = 1, . . . , N, i ≥ 1.

We will describe an algorithm, which enumerates the set E. At stage n, the algo-
rithm first computes the finite set B(n) ⊂ Γ by computing all products of the
elements of S of length at most n. For each word

γi1γi2 . . . γik = γ ∈ B(n)
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we have for all i ≥ 1

γ −1([wi]) = γ −1
ik

γ −1
ik−1

. . . γ −1
i1

([wi]) = γ −1
ik

γ −1
ik−1

. . . γ −1
i2

⋃

(i,j1)∈Ei1

[wj1]

= γ −1
ik

γ −1
ik−1

. . . γ −1
i3

⋃

(i,j1)∈Ei1

⋃

(j1,j2)∈Ei2

[wj2 ]

=
⋃

(i,j1)∈Ei1

⋃

(j1,j2)∈Ei2

⋃

(j2,j3)∈Ei3

. . .
⋃

(jk−1,jk)∈Eik

[wjk
].

We compute the first n pairs (i, j1) ∈ Ei1 , for each of these pairs we compute the
first n pairs (j1, j2) ∈ Ei2 and so on up to the first n pairs (jk−1, jk) ∈ Eik (where
jk−1 comes from the one but the last step). The algorithm prints all resulting triples
(γ, i, jk), and proceeds to the next word (or the next stage, if all words at the current
stage have been exhausted).

Since, at each stage n, we look through all products of length at most n, it is easy
to see that

γ −1([wi]) =
⋃

(γ,i,j)∈E

[wj ]

for all i ≥ 1, and, furthermore, the set E is recursively enumerable.

A computable Cantor Γ -system4 is a triple ({0, 1}N, μ, Γ ), where μ is a com-
putable measure on {0, 1}N and Γ acts computably on {0, 1}N by measure-preserving
transformations.

Remark 2.2 The notion of a computable action of a computable group which we sug-
gest directly translates to arbitrary computable metric spaces. Furthermore, Lemma
2.7 remains valid in the more general setting.

To finish this section, we give a basic example of a computable Cantor system.

Example 2.2 Consider the group Z
d and let ı : Zd → N be a computable bijection

s.t. Zd is a computable group when viewed as a set ı(Zd) = N. Zd acts on the
compact space {0, 1}N = {0, 1}ı(Zd ) by shift transformation:

(g · ω)(y) = ω(ı(g + ı−1(y))) for g ∈ Z
d , y ∈ N, ω ∈ {0, 1}N.

Fix a Bernoulli product measure on {0, 1}N. Since the action of Z
d on {0, 1}N

maps cylinder sets to cylinder sets with the same number of defining conditions, we
deduce that this action is measure-preserving. It remains to show that the action is
computable. Lemma 2.7 tells us that it is enough to show the computability of trans-
formations γi : ω �→ γi ·ω for some symmetric generating set γ1, . . . , γ2d of Zd . Fix

4Or a computable Γ -system for short, since we only consider dynamical systems on Cantor space in this
article.
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an arbitrary generator γ . We want to find recursively enumerable set Eγ ⊆ N × N

such that

γ −1([wi]) =
⋃

(i,j)∈Eγ

[wj ] for all i ≥ 1.

Preimage of a cylinder set

[w] = {x ∈ {0, 1}N : x1 = w1, x2 = w2, . . . , xk = wk}
is a cylinder set

γ −1[w] = {x ∈ {0, 1}N : xj1 = w1, xj2 = w2, . . . , xjk
= wk},

where the indexes j1, j2, . . . , jk can be computed from the index of the word w ∈
{0, 1}∗. Hence the set Eγ can be obtained as follows. At stage n ≥ 1, we test the first
n indexes i and the first n indexes j . For a given pair (i, j), we check if the word wj

belongs to the cylinder set γ −1[wi]. If it does, then the pair (i, j) is added to Eγ .

3 Effective Birkhoff’s Theorem

3.1 Kučera’s Theorem

In this section we generalize Kučera’s theorem for computable actions of amenable
groups. In the proof we follow roughly the approach from [2], although the technical
details do differ.

Theorem 3.1 Let Γ be a computable amenable group and ({0, 1}N, μ, Γ ) be a
computable ergodic Γ -system. Let U ⊂ X be an effectively open subset such that
μ(U) < 1. Let

U∗ :=
⋂

g∈Γ

g−1U

be the set of all points ω ∈ {0, 1}N whose orbit remains in U . Then U∗ is an
effectively null set.

Proof Let (Fn)n≥1 be a canonically computable two-sided Følner sequence in Γ and
μ(U) < q < 1 be some fixed rational number. Let (Ii)i≥1 be the basis of cylinder
sets in ({0, 1}N, μ). Let

(i, k) �→ n(i, k), N × N → N (3.1)

be some total computable function, which will be chosen later, and define a
computable function m by

m(i, k) := ∣∣Fn(i,k)

∣∣ for i, k ≥ 1.
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Since U0 := U is effectively open, there is a r.e. subset E0 ⊆ N such that U0 =⋃
i∈E0

Ii is a union of disjoint cylinder sets. Since the action of Γ is computable and

since (Fn)n≥1 is canonically computable, the sequence

i �→ Ii ∩
⋂

g∈Fn(i,1)

g−1(U0)

is a uniformly effectively open sequence of sets. Let

U1 :=
⋃

i∈E0

⎛

⎝Ii ∩
⋂

g∈Fn(i,1)

g−1(U0)

⎞

⎠ ,

then, clearly, U1 ⊆ U0 is an effectively open set and U∗ ⊆ U1. Since U1 is an
effectively open set, there is a r.e. subset E1 ⊆ N such that U1 = ⋃

i∈E1

Ii is a union of

disjoint cylinder sets. Suppose that

μ

⎛

⎝Ii ∩
⋂

g∈Fn(i,1)

g−1(U)

⎞

⎠ < qμ(Ii) + q · 2−i for all i ≥ 1. (3.2)

The cylinder sets (Ii)i∈E0 are pairwise disjoint, hence μ(U1) ≤ qμ(U0) + q.
We want to apply the same procedure to U1 and so on to obtain a sequence of

uniformly open sets with almost exponentially decaying measure. So, in general, let
k ≥ 1 and suppose that Uk−1 = ⋃

i∈Ek−1

Ii is a disjoint union of cylinder sets for an r.e.

subset Ek−1. We let

Uk :=
⋃

i∈Ek−1

⎛

⎝Ii ∩
⋂

g∈Fn(i,k)

g−1(Uk−1)

⎞

⎠=
⋃

i∈Ek−1

⎛

⎝Ii ∩
⋂

g∈Fn(i,k)

⋃

j∈Ek−1

g−1(Ij )

⎞

⎠

=
⋃

i∈Ek−1

⋃

j1,...,jm(i,k)∈Ek−1

⎛

⎝Ii ∩
m(i,k)⋂

s=1

g−1
i,s (Ijs )

⎞

⎠ ,

where gi,1, gi,2, . . . , gi,m(i,k) is the list of all distinct elements of Fn(i,k). The
sequence of sets

⎛

⎝Ii ∩
m(i,k)⋂

s=1

g−1
i,s (Ijs )

⎞

⎠

i,j1,...,jm(i,k)

is uniformly effectively open, so it follows that (Uk)k≥1 is uniformly effectively open.
Clearly, U∗ ⊆ Uk ⊆ Uk−1 for every k ≥ 1. If we show that

μ

⎛

⎝Ii ∩
⋂

g∈Fn(i,k)

g−1(Uk−1)

⎞

⎠ < qμ(Ii) + qk · 2−i for all i ≥ 1 (3.3)
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then μ(Uk) < qμ(Uk−1) + qk for every k, and so μ(Uk) < (k + 1)qk , which would
imply that U∗ is an effectively null set. Observe that

μ

⎛

⎝Ii ∩
⋂

g∈Fn(i,k)

g−1(Uk−1)

⎞

⎠ ≤ min
g∈Fn(i,k)

μ
(
Ii ∩ g−1(Uk−1)

)

≤ Eg∈Fn(i,k)
μ

(
Ii ∩ g−1(Uk−1)

)
= Eg∈Fn(i,k)

μ ((gIi) ∩ Uk−1)

=
∫ (

E
g∈F−1

n(i,k)
1Ii

(g · ω)
)

1Uk−1(ω)dμ.

If, for every i, k ≥ 1, we find effectively a number n(i, k) such that

‖E
g∈F−1

n(i,k)
1Ii

(g · ω) − μ(Ii)‖2 < qk · 2−i , (3.4)

then, due to Cauchy-Schwarz inequality, the computation above implies that

μ

⎛

⎝Ii ∩
⋂

g∈Fn(i,k)

g−1(Uk−1)

⎞

⎠ ≤ qμ(Ii) + qk · 2−i .

Mean ergodic theorem (Theorem 2.1) implies that a number n(i, k) satisfying (3.4)
always exists, since (F−1

n )n≥1 is a left Følner sequence. To find the number n(i, k)

effectively we argue as follows.5

First, (gIi)g∈Γ,i≥1 is a uniformly effectively open sequence of sets by definition
of computability of the action of Γ on {0, 1}N, so let E ⊆ Γ ×N×N be an r.e. subset
such that

g(Ii) =
⋃

(g,i,j)∈E

Ij for all g ∈ Γ, i ≥ 1

We claim that there exists a uniformly effectively open sequence of sets (Δk
g,i)g,i,k ,

where each Δk
g,i is the union of the first

∣∣∣Δk
g,i

∣∣∣ intervals in gIi , such that the function

(g, i, k) �→
∣∣∣Δk

g,i

∣∣∣ is total computable and that

μ
(
gIi \ Δk

g,i

)
<

q2k · 2−2i

64
for all g ∈ Γ and i, k ≥ 1. (3.5)

To do so, we use computability of the measure μ to find (uniformly in i, k and
effectively) a rational dk

i such that

|μ(Ii) − dk
i | <

q2k · 2−2i

256
for all i, k ≥ 1.

5It was pointed out by the reviewer that the rest of the proof can be shortened by noticing that the integral
of a computable, bounded function with respect to a computable measure is computable.
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The set Δk
g,i is constructed as follows. Let Δk

g,i = ∅. Take the first interval Ij1 such

that (g, i, j1) ∈ E, add it to the collection Δk
g,i and compute its measure m̃g,i with

precision q2k ·2−2i

256 . If

m̃g,i > dk
i − q2k · 2−2i

128
, (3.6)

then we are done. Otherwise, we add the next interval Ij2 such that (g, i, j2) ∈ E

to the collection Δk
g,i , compute the measure m̃g,i of the union of intervals in Δk

g,i

with precision q2k ·2−2i

256 and check the condition (3.6) once again and so on. The algo-
rithm eventually terminates, it is clear that it provides a uniformly effectively open
sequence of sets (Δk

g,i)g,i,k , and a direct computation shows that condition (3.5) is
satisfied as well.

The number n(i, k) is defined as the smallest nonnegative integer such that

‖Eg∈Fn(i,k)
1Δk

g,i
− dk

i ‖2 <
qk · 2−i

2
,

where the L2-norm is computed, say, with a q2k ·2−2i

256 -precision. Such n(i, k) exists due
to Mean Ergodic Theorem and our choice of the sets Δk

g,i . Furthermore, it is com-

putable, since the sequence of sets (Δk
g,i) is uniformly effectively open, the measure

μ is computable and (Fn)n≥1 is a computable Følner sequence.

3.2 Birkhoff’s Theorem

In this section we prove the main theorems of the article. Our main technical tools
are the generalization of Kučera’s theorem from the previous section, the result of
Lindenstrauss about pointwise convergence of ergodic averages and Lemmas 2.3,
2.5 about the invariance of limsup of averages. The strategy is in general similar to
[2]. First, we prove Birkhoff’s effective ergodic theorem for indicator functions of
effectively opens sets.

Lemma 3.1 Let Γ be a computable amenable group with a canonically computable
tempered two-sided Følner sequence (Fn)n≥1. Suppose that ({0, 1}N, μ, Γ ) is a com-
putable ergodic Cantor system and that U ⊆ {0, 1}N is an effectively open set. For
every Martin-Löf random ω ∈ {0, 1}N the equality

lim
n→∞Eg∈Fn1U(g · ω) = μ(U)

holds.

Proof First, let us show that

lim sup
n→∞

Eg∈Fn1U(g · ω) ≤ μ(U)

for every Martin-Löf random ω. Let

q > μ(U)
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be some fixed rational number. Let

Ak := {x ∈ {0, 1}N : sup
n≥k

Eg∈Fn1U(g · x) > q} for k ≥ 1,

which is an effectively open set. Pointwise ergodic theorem (Theorem 2.2) implies
that μ(

⋂
k≥1

Ak) = 0, hence there is some k ≥ 1 such that μ(Ak) < 1. Let ω ∈ {0, 1}N

be an arbitrary Martin-Löf random point. It follows from Theorem 3.1 that ω /∈ A∗
k ,

hence there exists g0 ∈ Γ such that g0 · ω /∈ Ak . Hence

lim sup
n≥1

Eg∈Fn1U(g · (g0 · ω)) ≤ q.

The function g �→ 1U(g ·ω) on Γ is bounded, thus we can use Lemma 2.3 to deduce
that

lim sup
n≥1

Eg∈Fn1U(g · ω) = lim sup
n≥1

Eg∈Fn1U(g · (g0 · ω)) ≤ q.

Since q > μ(U) is an arbitrary rational, this implies that lim sup
n≥1

Eg∈Fn1U(g · ω) ≤
μ(U).

Secondly, if U = ⋃
i∈E

Ii for an r.e. subset E ⊆ N, we let Δk ⊆ U be the union

Ii1 ∪· · ·∪ Iik of the first k intervals in U for every k ≥ 1. Then Δk is a clopen subset,
and its complement Δc

k is an effectively open set. The preceding argument, applied
to Δc

k , implies that

lim sup
n≥1

Eg∈Fn1Δc
k
(g · ω) ≤ μ(Δc

k) = 1 − μ

⎛

⎝
k⋃

j=1

Iij

⎞

⎠ .

Since k ≥ 1 is arbitrary, it follows easily that

μ(U) ≤ lim inf
n≥1

Eg∈Fn1U(g · ω)

and the proof is complete.

We proceed to the main theorems of the article.

Theorem 3.2 Let Γ be a computable amenable group with a canonically computable
tempered two-sided Følner sequence (Fn)n≥1. Suppose that ({0, 1}N, μ, Γ ) is a com-
putable ergodic Γ -system. For every bounded lower semicomputable f and for every
Martin-Löf random ω ∈ {0, 1}N the equality

lim
n→∞Eg∈Fnf (g · ω) =

∫
f dμ

holds.

Proof Firstly, the proof that

lim sup
n→∞

Eg∈Fnf (g · ω) ≤
∫

f dμ
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for every Martin-Löf random ω is completely analogous to the first part of the proof
of Lemma 3.1 above. In particular, the argument about the translation-invariance of

lim sup
n≥1

Eg∈Fnf (g · ω)

remains valid, since f is a bounded function and we can once again use Lemma 2.3.
Secondly, given an arbitrary ε > 0, let 0 ≤ h ≤ f be a finite linear combination

of indicator functions of effectively open sets such that

‖f − h‖1 ≤ ε.

An application of Lemma 3.1 yields that

lim inf
n≥1

Eg∈Fnf (g · ω) ≥ lim inf
n≥1

Eg∈Fnh(g · ω) ≥
∫

hdμ ≥
∫

f dμ − ε,

which completes the proof, since ε > 0 is arbitrary.

Remark 3.1 Compared to [2], we make an additional assumption in Theorem 3.2 that
the observable is bounded. The reason for that is that the invariance of lim sup is only
in general guaranteed by Lemma 2.3 for bounded functions.

In a special case, when Γ is a computable group of polynomial growth, we can
remove the additional assumption about the boundedness of f . The theorem below
is a generalization of [2, Theorem 8].

Theorem 3.3 Let Γ be a computable group of polynomial growth with the Følner
sequence of balls around e ∈ Γ given by

Fn := {g ∈ Γ : ‖g‖ ≤ n} for n ≥ 1.

Suppose that ({0, 1}N, μ, Γ ) is a computable ergodic Γ -system. For every lower
semicomputable f and for every Martin-Löf random ω ∈ {0, 1}N the equality

lim
n→∞Eg∈Fnf (g · ω) =

∫
f dμ

holds.

Proof The argument is identical to the reasoning in Theorem 3.2. We use Lemma 2.5
for the invariance of lim sup of averages, hence obtaining the proof for an arbitrary
lower semicomputable f .
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11. Pansu, P.: Croissance des boules et des géodésiques fermées dans les nilvariétés. Ergodic Theory
Dynam. Syst. 3(3), 415–445 (1983). https://doi.org/10.1017/S0143385700002054

12. Rabin, M.O.: Computable algebra, general theory and theory of computable fields. Trans. Amer. Math.
Soc. 95, 341–360 (1960)

13. Shen, A., Vereshchagin, N.: Computable Functions. Transl. from the Russian By V. N. Dubrovskii.
American Mathematical Society (AMS), Providence (2003)

14. V’yugin, V.: Effective convergence in probability and an ergodic theorem for individual random
sequences. Teor. Veroyatn. Primen. 42(1), 35–50 (1997). https://doi.org/10.4213/tvp1710

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.ic.2011.10.006
https://doi.org/10.1007/978-3-642-14034-1
https://doi.org/10.1007/978-3-319-16898-2
https://doi.org/10.1016/j.ic.2009.05.001
https://doi.org/10.1090/surv/101
https://mathscinet.ams.org/mathscinet-getitem?mr=623534
https://doi.org/10.1016/j.ic.2008.12.009
https://doi.org/10.1007/s002220100162
https://doi.org/10.1007/BF02790325
https://doi.org/10.1017/S0143385700002054
https://doi.org/10.4213/tvp1710

	On Effective Birkhoff's Ergodic Theorem for Computable Actions of Amenable Groups
	Abstract
	Introduction
	Preliminaries
	Computable Amenable Groups
	Computable Groups of Polynomial Growth
	Ergodic Theory
	Computability on Cantor Space and Martin-Löf Randomness
	Computable Dynamical Systems

	Effective Birkhoff's Theorem
	Kučera's Theorem
	Birkhoff's Theorem

	Acknowledgements
	Open Access
	References


