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On the optimal selection of generalized Nash equilibria in linearly coupled
aggregative games

Emilio Benenati, Wicak Ananduta, and Sergio Grammatico

Abstract— Monotone aggregative games may admit multiple
(variational) generalized Nash equilibria, yet currently there
is no algorithm able to provide an a-priori characterization
of the equilibrium solution actually computed. In this paper,
we formulate for the first time the problem of selecting a
specific variational equilibrium that is optimal with respect to a
given objective function. We then propose a semi-decentralized
algorithm for optimal equilibrium selection in linearly coupled
aggregative games and prove its convergence.

I. INTRODUCTION

Multiple decision makers (agents) are engaged in an
aggregative game when each agent aims at solving an
optimization problem that is coupled with the strategies of
the remaining agents through some aggregate effect, e.g. a
congestion effect [1, pp. 90–92]. Interestingly, aggregative
games effectively model various engineering problems, such
as bandwidth allocation [2], power distribution [3], and
vehicle traffic control [4]. In this context, a generalized Nash
equilibrium (GNE) is a particularly favourable and stable set
of strategies from which no agent has interest in unilaterally
deviating.

GNE problems are commonly studied under the monotone
operator theory framework, see [1] for a general overview.
When the game in consideration is monotone, i.e., it has
a jointly convex feasible set [5, Def. 3.6] and a monotone
pseudogradient mapping, the GNE seeking problem can
be solved via operator splitting techniques [6] in order to
compute a variational GNE (v-GNE) [5, Def. 3.10]. For
instance, [7] proposes multiple semi-decentralized methods,
where decision makers do not communicate among each
other but with a coordinator, for monotone aggregative
games. Meanwhile, some works consider a particular class,
namely strongly monotone aggregative games, which admit
a unique v-GNE, and propose algorithms with a semi-
decentralized [8] or distributed structure [9]–[11], where
agents exchange information with each other. Recently, fully
distributed algorithms have also been introduced for the class
of monotone aggregative games [12], [13].

Merely monotone games are of particular interest, as they
are more general than their strongly monotone counterpart
and monotonicity is one of the weakest conditions under
which globally convergent algorithmic solutions can be
obtained [5, Sec. 5]. Nonetheless, they present additional
hurdles to their solution. Among these complications, we
focus on the non-uniqueness of v-GNE solutions. To the
best of our knowledge, the existing GNE-seeking algorithms
for monotone games, e.g. [7], [12]–[14], solely guarantee
convergence to an arbitrary point in the v-GNE set, with no

characterization of the computed equilibrium. A noteworthy
exception is the Tikhonov method [15], [16] that is not based
on operator splitting techniques and finds a minimum norm
v-GNE. Therefore, an open challenge in the monotone game
literature concerns finding an equilibrium, among infinitely
many, with a desirable property, which is not necessarily the
minimum norm as in [15], [16]. This problem is crucial from
a practical standpoint as unpredictability of the computed
equilibrium might lead to arbitrarily inefficient performance
relatively to some system-level metrics, e.g. social welfare.

In order to address this deficiency for the class of linearly
coupled aggregative games, we pose the GNE selection prob-
lem, that is, the problem of computing a specific v-GNE such
that it is optimal with respect to a convex selection function.
The selection function encodes a preference criterion for
the GNEs and it can be defined on the basis of a system-
level performance metrics. For instance, in power distribution
systems, a preference criterion can be the deviation from an
operating set point desired by the system operator [17]. We
cast the GNE selection problem as a Variational Inequality
(VI) defined by the gradient of the selection function and the
v-GNE set of the game.

Next, we propose an algorithmic solution to solve the GNE
selection problem for the class of linearly coupled aggrega-
tive games. Our algorithm has a semi-decentralized structure
in order to exploit the aggregative feature of the games. It is
based on combining the preconditioned proximal point (PPP)
method [7], [12], which provides fast convergence under
the (non-strict) monotonicity assumption, with the hybrid
steepest descent method (HSDM) [18], which can solve
fixed-point selection problems. We guarantee convergence
to an optimal equilibrium by showing the equivalence of
the GNE selection problem to that of fixed-point selection
of the PPP operator. We then prove that the PPP operator
satisfies the conditions under which the HSDM converges to
a solution of the corresponding fixed-point selection problem,
which, in turn, is also a solution of the GNE selection
problem. Finally, we show the advantages of the proposed
algorithm by comparing the performance of an optimal v-
GNE computed by our proposed method with that of a
non-characterized v-GNE obtained using the standard PPP
algorithm in randomly generated numerical examples.

Notation: The set of (non-negative) real numbers is
denoted by R (R≥0). The Euclidean inner product and norm
are denoted respectively by ⟨x, y⟩ and ∥ · ∥. Nonlinear set-
valued operators are denoted in calligraphic letters, e.g.
T : Rn ⇒ Rn. For Q ≻ 0, we denote the Q-weighted
norm by ∥ · ∥Q = ⟨·, Q·⟩. For a matrix A, ∥A∥ denotes
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its largest singular value. We denote the vector of all 1 (0)
with dimension n by 1n (0n). The operator col(·) stacks
the arguments column-wise. The column concatenation of
the vectors xi indexed in i ∈ I is denoted in bold, i.e.,
x := col({xi}i∈I). The operator diag(·) denotes a (block)
diagonal matrix with the arguments on the diagonal. The
operator avg(·) returns the element-wise average of the
arguments, e.g., when xi ∈ Rn̄ for all i ∈ I, avg({xi}i∈I) =
1
|I|
∑

i∈I xi.
Operator theory: We denote by Id the identity operator.

For a closed convex set C ⊂ Rn, the normal cone operator
is denoted by NC(·) : Rn ⇒ Rn [6, Def. 6.38] and the
indicator function by ιC : Rn → R∪{+∞}. We then denote
the projection onto C by projC(x) = argminz∈C ∥x − z∥.
For a convex function f with subdifferential ∂f , we define
the operator prox∂f (x) := argminz f(z) +

1
2∥z − x∥2 [6,

Def. 12.23]. In particular, as ∂ιC = NC [6, Example 16.13],
proxNC

(x) = projC(x). For an operator T : Rn ⇒ Rn, we
denote its zero set by zer(T ) := {x ∈ dom(T ) | 0 ∈ T (x)}
and its fixed point set by fix(T ) := {x ∈ dom(T ) | x ∈
T (x)}. Finally, an operator T : C ⇒ Rn is:
Monotone: if, for any two pairs (x, y), (x′, y′) ∈ gph(T ) :=
{(x, y)|x ∈ C, y ∈ T (x)}, it holds that ⟨y− y′, x−x′⟩ ≥ 0;
Lipschitz continuous: if there exists L > 0, such that, for all
x, x′ ∈ C, ∥T (x)− T (x′)∥ ≤ L∥x− x′∥;
Nonexpansive: if Lipschitz continuous with L = 1;
Attracting nonexpansive: if nonexpansive with fix(T ) ̸= ∅
and ∥T (x)− z∥ < ∥x− z∥, for all z ∈ fix(T ), x /∈ fix(T );
α-averaged nonexpansive: if for α ∈ (0, 1) there exists
R : C → Rn nonexpansive such that T = (1− α)Id + αR;
Firmly nonexpansive: if for all x, x′ ∈ Rn, ∥Tx − Ty∥2 +
∥(Id− T )x− (Id− T )y∥2 ≤ ∥x− y∥2.

II. OPTIMAL GENERALIZED NASH EQUILIBRIUM
SELECTION PROBLEM IN LINEARLY COUPLED GAMES

We consider N agents, indexed by the set I :=
{1, 2, . . . , N}, which are engaged in a generalized game,
i.e., each agent aims at solving an optimization problem
which is coupled, both in the cost and in the constraints,
with the decision variables of the remaining agents. Let us
denote by xi ∈ Rni the decision variable of agent i and by
x−i = col({xj}j∈I\{i}) the concatenated decision variables
of all agents except agent i. Let us further denote the local
feasible set of each agent i by Xi ⊆ Rni and the cost function
by Ji : Rn → R. We focus on the class of linearly coupled
games, where the cost function of each agent i ∈ I takes
the form [7, Eq. (1)]:

Ji(xi,x−i) := ℓi(xi) + ⟨∑j∈I\{i} Cijxj , xi⟩, (1)

where ℓi denotes the local cost function of agent i. Fur-
thermore, the matrix Cij ∈ Rni×nj encodes the weight
of the influence of the decision variable of agent j with
respect to the cost function of agent i and is assumed to
be local information known only by agent i. Additionally,
we let the matrices Ai ∈ Rm×ni and the vectors bi ∈ Rm,
for all i ∈ I, encode a linear coupling constraint of the
form

∑
i∈I(Aixi − bi) ≤ 0. Therefore, the interdependent

optimization problems are given by:

∀i ∈ I :

 min
xi∈Xi

Ji(xi,x−i)

s. t.
∑

j∈I(Ajxj − bj) ≤ 0.

(2a)

(2b)

The collective feasible set of the game in (2) is defined as

Ω := X ∩
{
x |∑j∈I(Ajxj − bj) ≤ 0

}
, (3)

where X :=
∏

i∈I Xi. Let us consider the following:

Assumption 1. For each i ∈ I, the function ℓi(xi) in (1) is
convex and lower semicontinuous. For each i ∈ I, the set
Xi in (2a) is nonempty, compact, and convex. The set Ω in
(3) satisfies Slater’s constraint qualification condition.

Assumption 2. [12, Assm. 2] The matrices Cij ∈ Rni×nj

in (1), for all i, j ∈ I, satisfy Cij = C⊤
ji .

Assumption 1 is standard (see e.g., [7], [12], [14]), while
Assumption 2 is a technical assumption that implies that the
game is potential [12, Lem. 1]. This assumption is neces-
sary since our method relies on preconditioning [19]. This
technique requires convergence to be proven on the norm
induced by the preconditioning matrix, whose structure [12,
Sec. IVB] makes Assumption 2 a necessary condition for
such norm to be well-defined. The class of games described
in (2) along with Assumptions 1–2 includes linearly-coupled
aggregative games [7, Sec. IVB], obtained with Cij =

1
NC,

for all i, j ∈ I, and ℓi(xi) = ℓ̄i(xi) +
1
N x⊤

i Cxi, implying
that (1) can be written as

Ji(xi,x−i) = ℓ̄i(xi)+⟨C avg({xj}j∈I), xi⟩, ∀i ∈ I. (4)

The set of solutions to the game in (2) that we consider
is that of generalized Nash equilibria (GNE), i.e., a set
of decisions from which no agent finds an advantage in
unilaterally deviating, as formally defined next.

Definition 1. A set of strategies x∗ := col((x∗
i )i∈I) is a

generalized Nash equilibrium (GNE) of the game in (2) if
x∗ ∈ Ω and, for each i ∈ I,

Ji(x
∗) ≤ Ji(xi,x

∗
−i), (5)

for any xi ∈ Xi∩{y | Aiy−bi ≤ −∑j∈I\{i}(Aj(x
∗
j )−bj)}.

As in [7], [11]–[14] we focus on the computation of a
subset of the GNEs of the problem in (2), namely, variational
GNEs (v-GNEs), where, roughly speaking, each agent is
penalized equally in meeting the coupling constraints. Under
Assumption 1, a sufficient condition for the existence of a
v-GNE is the monotonicity of the pseudodifferential/game
mapping [20, Prop. 12.11], which is a standard assumption
in the GNE seeking literature (see [7, Assm. 2], [21, Assm.
2], [12, Assm. 3] among others), and we postulate next:

Assumption 3. The game mapping F : Rn ⇒ Rn

F (x) :=

 ∂x1
J1(x1,x−1)

...
∂xN

JN (xN ,x−N )

 = diag({∂xiℓi}i∈I) +C,

(6)
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where C ∈ Rn×n is a block matrix with 0ni×ni
on the i-th

block element of the diagonal, and Cij as defined in (1) on
the (i, j)-th block, is a maximally monotone operator.

A v-GNE of the game in (2) can be characterized as the
solution to a generalized variational inequality [20, Prop.
12.4] which, in turn, is solved by the pair (x, λ) =: ω ∈
Rn×Rm, where λ denotes the dual variable associated with
the coupling constraint (2b), that satisfies the Karush-Kuhn-
Tucker (KKT) optimality conditions [22, Thm. 3.1]:

ω ∈ zer(Te), (7)

Te(ω) :=

[∏
i∈I NXi

(xi) + F (x) + col({A⊤
i λ}i∈I)

NRm
≥0
(λ)−∑i∈I(Aixi − bi)

]
.

Assumptions 1 and 3 are not enough to guarantee the unique-
ness of the solution to the inclusion in (7). Furthermore, we
may want to select, among the potentially infinite equilibria
of the game in (2), a v-GNE with some desirable features.
Here, we propose to seek a v-GNE that optimizes a common
objective function, denoted by ϕ. As pointed out in [23],
[24], this objective function can be the distance from some
desired strategies, or a norm as in the Tikhonov method [15].
In engineering applications, such functions can represent
system-level objectives that the agents are willing to achieve,
provided that these objectives do not strongly interfere with
those of all agents. Thus, we formalize the GNE selection
problem as follows:{

argmin
ω

ϕ(ω)

s.t. ω ∈ zer(Te),
(8)

with Te as in (7) and the following assumption on the
objective function:

Assumption 4. The function ϕ in (8) is convex and differ-
entiable while its gradient is Lϕ-Lipschitz continuous.

We note that, by [7, Lemma 2], the operator Te in (8) is
maximally monotone, which implies that the set zer(Te) is
closed and convex [6, Prop. 23.39]. We conclude that under
Assumption 4 the optimization problem in (8) is convex.

III. OPTIMAL EQUILIBRIUM SELECTION ALGORITHM

In this section, we present a semi-decentralized algorithm
for selecting an optimal v-GNE of the game in (2). The
algorithm is semi-decentralized in the sense that the agents
locally compute the updates to their strategies and commu-
nicate them to an aggregator, which updates the dual and the
aggregative variables and broadcasts them to the agents.

A. Semi-decentralized optimal equilibrium selection
We propose Algorithm 1, whose derivation is deferred

to Section III-B, for solving (8). The iterated steps of the
algorithm are summarized as follows:
Communication 1: Each player i ∈ I receives the updated
dual variable λ(k) and the decision variables of the remaining
agents x

(k)
−i to compute the current estimate of the local

Lagrangian function

Λ(xi,x
(k)
−i , λ

(k)) = Ji(xi,x
(k)
−i ) + ⟨λ(k), Aixi⟩.

Algorithm 1 Optimal v-GNE selection for linearly coupled
games

Initialization. Set x(0)
i ∈ Xi and λ

(0)
i ∈ Rm

≥0, for all i ∈ I.
Iteration at stage k ∈ N:

1) Each agent i ∈ I receives x
(k)
j , for all j ∈ I, and λ(k)

from the aggregator.
2) Each agent i ∈ I updates in parallel:

◦
x
(k)
i =argmin

y∈Xi

Ji(y,x
(k)
−i )+⟨λ(k), Aiy⟩+ ρi

2
∥y − x

(k)
i ∥2. (9)

3) Each agent i ∈ I sends ◦
x
(k)
i to the aggregator.

4) The aggregator updates:
◦
λ(k) = projRm

≥0

(
λ(k) + τ

∑
i∈I

(
Ai

◦
x
(k)
i − bi

))
, (10)

λ(k+1) =
◦
λ(k) − β(k)∇λϕ(

◦
x(k),

◦
λ(k)). (11)

5) Each agent receives ∇xiϕ(
◦
x(k),

◦
λ(k)) from the aggregator.

6) Each agent updates:

x
(k+1)
i =

◦
x
(k)
i − β(k)∇xi

ϕ(
◦
x(k),

◦
λ(k)), (12)

and sends x
(k+1)
i to the aggregator.

Regularized optimal response: Each agent computes a
strategy ◦

x
(k)
i by finding the optimizer of Λ(xi,x

(k)
−i , λ

(k)),
with a quadratic penalization term on the deviation from the
current strategy weighted by the parameter ρi, as in (9).
Communication 2 and dual ascent: The proposed strategies
◦
x
(k)
i are gathered by an aggregator, which computes the

gradient ∇xiϕ(
◦
x(k),

◦
λ(k)) and updates the dual variable via

a dual ascent step as in (10) with step size τ . The results are
communicated back to the agents.
Step towards the optimal selection: The agents and the
aggregator update the primal and the dual variables by
performing a gradient descent step of ϕ with vanishing step
size β(k) as in (11) and (12), respectively.

Remark 1. If the matrices Cij are all equal, then the local
cost functions read as in (4), thus they depend on the remain-
ing agents only through the aggregate value avg({xj}j∈I).
In such case, the agents only suffice to receive avg({xj}j∈I)

and the gradient directions ∇xi
ϕ(

◦
x(k),

◦
λ(k)).

Remark 2. If the selection function is separable, that is,
ϕ(x) =

∑
i∈I ϕi(xi, λi), then the second round of communi-

cations is not needed, as the step in (12) can be immediately
computed using local information only.

Under a choice of step sizes that satisfies Assumptions
5 and 6, let us now present the main result of this paper
in Theorem 1, which states that the sequence (ω(k))k∈N
converges to the set of the optimal solutions to Problem (8),
implying that (x(k))k∈N converges to the optimal v-GNE set.

Assumption 5. The step sizes ρi and τ satisfy:

(i) ρi >
∑

j∈I\{i} ∥Cij∥+ ∥A⊤
i ∥, for all i ∈ I,

(ii) τ < (
∑

i∈I ∥Ai∥)−1.

Assumption 6. The sequence (β(k))k∈N ∈ R≥0 satisfies
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limk→∞β(k) = 0,
∑

k≥1β
(k) = ∞, and

∑
k≥1(β

(k))2 < ∞.

Remark 3. The sequence β(k) = β0/k
γ , for any β0 > 0

and γ ∈ (1/2, 1], satisfies Assumption 6.

Theorem 1. Let Assumptions 1–6 hold. Let Ω⋆ be the set of
solutions to Problem (8). Furthermore, let (ω(k))k∈N, where
ω(k) = (x(k), λ(k)) be the sequence generated by Algorithm
1. Then, we have

lim
k→∞

dist(ω(k),Ω⋆) = 0.

B. Algorithm derivation

As the first step towards obtaining Algorithm 1, let us
consider the preconditioned proximal point (PPP) method,
which was proposed in [7], [12] to solve the GNE seeking
problem for the class of linearly coupled aggregative games.
The PPP method can be compactly written as the iteration

ω(k+1) = TPPP(ω
(k)), (13)

where the operator TPPP is defined as

TPPP(ω) := (Id + Γ−1Te)−1(ω), (14)

with preconditioning matrix

Γ :=

[
ρ−C −A⊤

−A τ−1I

]
,

ρ := diag({ρiIni}i∈I) and A⊤ := col({A⊤
i }i∈I). The

operator TPPP enjoys the following property, which we
leverage for proving Theorem 1:

Lemma 1. If Assumptions 1, 2, 3, and 5 hold, then TPPP is
attracting nonexpansive in the Γ-induced norm ∥ · ∥Γ.

We note that Γ = Γ⊤ is a necessary condition for the Γ-
induced norm to be well-defined, which explains the need
for Assumption 2. Next, we transform Problem (8) into a
fixed-point selection problem:

Lemma 2. Let Assumptions 1–5 hold. Problem (8) is equiv-
alent to

find ω⋆ s.t. inf
ω∈fix(TPPP)

⟨ω − ω⋆,∇ϕ(ω⋆)⟩ ≥ 0. (15)

By finding a connection between Problem (8) and a class
of fixed-point selection problems that has been studied in
the literature, e.g., [25]–[27], we can then resort to the
algorithmic solutions available for the latter. Specifically, we
consider the hybrid steepest descent method (HSDM) [18].
As formally stated next, indeed Algorithm 1 is a particular
instance of the HSDM.

Lemma 3. Let Assumptions 1–6 hold. Then, Algorithm 1
and the HSDM iterations, for all k ∈ N,

ω(k+1) = TPPP(ω
(k))− β(k)∇ϕ(TPPP(ω

(k))), (16)

with TPPP as defined in (14), are equivalent.

IV. ILLUSTRATIVE EXAMPLE

We illustrate the advantages of the proposed methodology
on a numerical example. Let N = 6 agents compete over

the usage of 3 utilities, where the cost of each utility grows
linearly with its aggregate usage. This setting is modelled
by the game in (2) with local cost function given by (4)
and C diagonal, whose non-zero elements are randomly
sampled from the uniform distribution with support set [0, 1].
Let ℓi(xi) = q⊤xi represent the cost of agent i incurred
by employing the contended utilities, where q is randomly
sampled from the uniform distribution with support set
[−10, 0]. Let Xi = Π3

j=1[ai,j , 100], where ai,j is drawn from
the uniform distribution with support set [−1, 1]. The shared
constraints in (2b) are given by Ai = I3 and bi = 513 for all
i ∈ I, that is, the sum of each utility is less than 5. Finally,
the selection function ϕ is given by

ϕ(x) =
∑

i∈R ∥xi∥2Qi
+ q̃⊤i xi, (17)

where R ⊂ I is randomly generated with |R| = 2, Qi

is a diagonal matrix whose nonzero elements are randomly
drawn from the uniform distribution with support set [1, 2]
and the elements of q̃i are randomly drawn from the uniform
distribution with support set [−1, 1]. This choice for ϕ
includes the case where the equilibrium point is selected in
order to minimize a weighted distance from a reference point
for the decision variables of 2 randomly selected agents.
We sample 20 GNE selection problems. For each of the
problem, we compare the result obtained by Algorithm 1
with the outcome of the standard PPP method [7, Alg. 6],
which is obtained from Algorithm 1 by fixing β(k) = 0
in (11) and (12). On the other hand, for Algorithm 1, we
set β(k) = β0/k

γ , with β0 = 0.1 and γ selected from
the set {0.6, 0.8, 1} (see Remark 3). For each problem and
each value of γ, both algorithms are run 20 times from a
randomly generated initial condition. The results in Figure
1a show that the GNEs computed by the standard PPP are
most of the time suboptimal with respect to ϕ in (17) as the
values of the selection function are higher from those of the
GNEs computed by Algorithm 1. As can also be seen from
Figure 1a, the advantage gained by Algorithm 1 depends
on the primitives of the problem and the performance of the
standard PPP algorithm with respect to the selection function
are strongly dependent on the initial condition. Figure 1b
shows that the distance between the equilibrium points is
not correlated with the reduction in the value of ϕ. Figure 2
compares the convergence rates to the set of GNEs by means
of the residual r of the KKT conditions in (7) defined as

r(ω(k))=

∥∥∥∥∥∥ω(k)−

projX(x(k)−F (x(k))−col({A⊤
j λ}j∈I)

)
projRm

≥0

(
λ(k) +

∑
i∈I(Aix

(k)
i − bi)

) ∥∥∥∥∥∥
∞

.

Figure 2 shows that Algorithm 1 presents slower convergence
to the set of GNEs compared to PPP. This is expected
since, although the updates in (9) and (10) lead the decision
variables to the set of GNEs, the gradient step in (11) and
(12) may lead the decision variables away from it until
the step size β(k) is small enough; thus slowing down
the convergence. Such an observation hints, as possible
future research directions, the exploration of higher-order
or accelerated methods inspired by the HSDM to achieve
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Fig. 1: (a) Reduction in the selection function value for the GNEs
computed by Algorithm 1 (x⋆) using γ = 0.6 with respect to that
of the solution computed by the standard PPP algorithm (xPPP).
(b) Distance between the computed solutions.

a faster convergence to the optimal GNE. Moreover, we
observe from Figure 2 that a smaller value of γ results in a
slower convergence to the GNE set (the residual) (see the top
plot of Figure 2). This is due to the fact that a smaller value of
γ implies a slower convergence of the diminishing step size
β(k) to 0. This increases the weight of the gradient descent
steps in (11)–(12) during the transient, which further slows
the convergence down. On the other hand, it is observed that
a high value of γ, despite having a fast residual convergence,
might result in a slow convergence of the objective function
ϕ(x(k)) to the optimal value (see the bottom plot of Figure
2). This trade-off suggests that a careful choice of the step
size β(k) is crucial for the performance of the algorithm.

V. CONCLUSION

For linearly coupled aggregative games with multiple
equilibria, it is possible to select a particular solution that
optimizes a convex preference function. The equilibrium se-
lection can be achieved via a semi-decentralized computation

Fig. 2: Comparison of Algorithm 1 for various values of γ with the
standard PPP algorithm in terms of the convergence of the residual
r (top plot) and the objective function ϕ (bottom plot). Here, ϕ⋆ is
the optimal ϕ computed by Algorithm 1 for γ = 0.6 (which obtains
the minimum cost). Each line represents the average of simulation
results from all the 20 GNE selection problems with 20 randomly
sampled initial conditions.

by combining an instance of the preconditioned proximal
point algorithm with the hybrid steepest descent method.
This framework can be exploited to enforce a system-level
objective among the set of equilibrium strategies. We identify
as future work the extension of the results to more general
monotone games, the characterization of the convergence
rate, and the dependency of the latter on the design param-
eters.

APPENDIX

A. Proof of Lemma 1

The matrix Γ is positive definite under Assumptions 2 and
5, following the generalized Gerschgorin disc theorem [28,
Thm. 2] as in [7, Lemma 8]. It can be proven that this,
together with the maximal monotonicity of Te, implies that
Γ−1Te is maximally monotone in the Γ-induced norm ∥ ·∥Γ,
and the proof follows verbatim the one of [21, Lemma 7(ii)].
By noting that TPPP is the resolvent of the operator Γ−1Te
as defined in [6, Def. 23.1], it follows from [6, Prop. 23.8]
that TPPP is firmly nonexpansive. From the existence of a
v-GNE [20, Prop. 12.11], fix(TPPP) ̸= ∅ and, therefore, the
thesis follows immediately by applying [6, Remark 4.36]. ■

B. Proof of Lemma 2

By Assumption 5, Γ is positive definite and Γ−1Te is
maximally monotone (see Appendix A). Therefore, it holds
that [6, Prop. 23.38]:

ω ∈ zer(Te) ⇔ ω ∈ fix(TPPP). (18)

Since ϕ is differentiable by Assumption 4, the claim follows
immediately as (15) is the stationary point problem associ-
ated to (8) [29, Sec. 1.3.1] . ■
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C. Proof of Lemma 3
Let y := [p, d]⊤ = TPPP(ω

(k)). From (14), we obtain

Te(y) ∋ Γ(ω(k) − y).

Substituting the definition of Te, we obtain, for p,(∏
i∈I

NXi
+ F

)
(p) ∋ (ρ−C)(x(k) − p)−A⊤λ(k). (19)

By the definition of Ji in (1) and rearranging (19), we obtain

∀ i ∈ I : pi +
(
NXi

+ ρ−1
i ∂ℓi

)
(pi) ∋

x
(k)
i − ρ−1

i

(∑
j∈I\{i} Cijx

(k)
j +A⊤

i λ
(k)
)
.

Following NXi = ∂ιXi and [6, Prop. 16.44], then the update
in (13), for each agent i ∈ I, reads as

pi =prox
ιXi

+ρ−1
i ℓi

(
x
(k)
i − ρ−1

i (A⊤
i λ

(k) +
∑

j∈I\{i} Cijx
(k)
j )

)
,

which is equivalent to the update in (9) by the definition of
proximal operator; thus, p =

◦
x(k). We similarly prove that

the expression for d =
◦
λ(k) is equivalent to the update in

(10). We can then finally observe that (11) and (12), for all
i ∈ I, are an expanded form of (16). ■

D. Proof of Theorem 1
We note that Ω is bounded by Assumption 1. Thus, the

set of v-GNEs is bounded as it is a subset of Ω and it
is nonempty under Assumption 3 [20, Prop. 12.11]. Under
Assumption 1, the set of dual variables that solve (7) is
bounded [22, Prop. 3.3], thus zer(Te) (as well as fix(TPPP),
from (18)) is nonempty and bounded. From Lemma 1, TPPP

is attracting nonexpansive. Therefore, the iteration in (16),
which is equivalent to Algorithm 1 by Lemma 3, satisfies all
the assumptions of [30, Thm. 3] and the thesis follows. ■

REFERENCES

[1] G. Belgioioso, P. Yi, S. Grammatico, and L. Pavel, “Distributed gen-
eralized Nash equilibrium seeking: An operator-theoretic perspective,”
IEEE Control Systems Magazine, vol. 42, no. 4, pp. 87–102, 2022.

[2] P. Zhou, W. Wei, K. Bian, D. O. Wu, Y. Hu, and Q. Wang, “Private
and truthful aggregative game for large-scale spectrum sharing,” IEEE
Journal on Selected Areas in Communications, vol. 35, no. 2, pp. 463–
477, 2017.

[3] G. Belgioioso, W. Ananduta, S. Grammatico, and C. Ocampo-
Martinez, “Operationally-safe peer-to-peer energy trading in distri-
bution grids: A game-theoretic market-clearing mechanism,” IEEE
Transactions on Smart Grid, vol. 13, no. 4, pp. 2897–2907, 2022.

[4] Z. Liu, Q. Wu, S. Huang, L. Wang, M. Shahidehpour, and Y. Xue,
“Optimal day-ahead charging scheduling of electric vehicles through
an aggregative game model,” IEEE Transactions on Smart Grid, vol. 9,
pp. 5173–5184, 2018.

[5] F. Facchinei and C. Kanzow, “Generalized Nash equilibrium prob-
lems,” Annals of Operations Research, vol. 175, no. 1, pp. 177–211,
2010.

[6] H. H. Bauschke and P. L. Combettes, Convex analysis and monotone
operator theory in Hilbert spaces. Springer, 2011.

[7] G. Belgioioso and S. Grammatico, “Semi-decentralized general-
ized Nash equilibrium seeking in monotone aggregative games,”
IEEE Transactions on Automatic Control, 2021. available at
https://doi.org/10.1109/TAC.2021.3135360.

[8] G. Belgioioso and S. Grammatico, “Projected-gradient algorithms for
generalized equilibrium seeking in aggregative games are precondi-
tioned forward-backward methods,” pp. 2188–2193, 2018.
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