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1. Introduction

The advancements in healthcare data enabled 
technologies, such as data sensing and mining techniques, 
data analysis, and visualisations have made possible that 
relevant healthcare data becomes accessible to all 
stakeholders in the healthcare ecosystem. Health 
researchers can benefit from this data to generate 
populational knowledge, to predict illness, to detect early 
symptoms, and ultimately prevent the development of 
chronic diseases [1,8]. Health practitioners can benefit by 
providing personalized care and support extramural and 
telecare [26,27]. Government can benefit by developing 
effective policies for prevention as well management of 
outburst or epidemics. Patients and general public can 
benefit by increasing their health literacy and owning 
more responsibility of their own health condition [12,16]. 

Solutions are being developed with special attention to 
technology advances in data algorithms such as deep 
learning and soft computing [13,18,22], innovative 
sensing techniques [10,20,30], decentralised and 
standardised data management platforms [2,24,25], 
among others. This is bringing crucial knowledge and 
understanding on how technologies can innovate 
healthcare practices. Data collection becomes more 
accessible, accurate and valuable by innovation in 
medical and commercial body sensors and therefore 
enlarging data collection to wider healthy and not healthy 
population. Data management becomes decentralized 
providing innovations to privacy and security. Data 

algorithms become more efficient and effective in using 
imperfect data sources and providing trustful description 
and predictions of health conditions. Cross platform data 
are emerging to provide standardization for sharing and 
using data from different healthcare systems and 
infrastructures.  

An important aspect to these technological efforts is 
understanding that these innovations are ultimately used 
by humans in the different roles and contexts they are 
involved within the healthcare system . The success of 
these solutions are in practice determined by humans 
needs, preferences and ability to use them when and in the 
intended way they have been designed and developed for 
[5,11].  Understanding human’s needs, concerns and 
values they associate to data and the interactions they 
engage with data should be a central concerned when 
designing these technologies [29]. In this way, key issues 
regarding acceptability of technology innovations, long 
term adoption of technologies in daily health 
management, appropriation of innovative health practices 
in which existing roles are redefined will be addressed 
[17,19]. 

2. Human data interactions in healthcare

Human data interactions (HDI) is a recent discipline that 
has emerged in the last 5 years to respond to the 
increasing available volume of (personal) data, the power 
of analytical tools and the complex practices to 
manipulate, exchange and manage such large datasets. 
These advancements have resulted in humans being 
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constantly producting and revealing data in various ways. 
Crabtree and Mortier [9] emphasize the distinction 
between three types of data:  data that is consciously 
created, data that is collected from behavioural 
monitoring and data that is inferred from related data 
(created by others). The authors identify three key 
principles underline HDI as a discipline involving 
computer science, design, sociology, psychology, 
behavioural economy and data analysis community:  

• Legibility: make collection and processing of data
transparent and comprehensible to ordinary people.
The questions at stake are: what data is being
discloed? What inferences are made? What’s the
implication of this new data on me?

• Agency: giving people the ability to control and
interact with data related to them. The core questions
are: how to opt in or out on data been collected? how
to correct and update collected data?

• Negotiability: giving people the ability to change
their preferences of data management. The questions
to be addressed are: how to change preferred settings
for specific or future scenarios?

Considering these principiles from a human centered 
perspectives, aims to balance the power that collectors 
and aggregators of personal data execute on private 
individuals. From a design perspective, the interactions or 
data practices that are needed to enforce the above 
principles need to be carefully designed to fulfil people 
abilities, needs and preferences of data management. 

HDI finds applications in the design and development 
of complex healthcare systems that aim to support the 
complex social arrangements and interactions that occur 
in the healthcare domain. This complexity is characterized 
by unstructured and spontaneous processes instead of 
rule-based workflows, where multiple actors and physical 
locations are involved [14,23]. A socio-technical 
perspective in the design of healthcare systems, addresses 
this complexity by integrating both technical functionality 
and social interactions between people in their various 
roles and activities. This integration should be informed 
by the values and interests of the actors in the medical 
system in order to support the distribution of competences 
and functions between humans and technologies [6,15]. 
For example, the role of technology in automating 
processes should be investigated with regards to the need 
for control, overview and decision-making by humans. 

Acknowledging the variety of logics and needs from 
different actors as well as the changing nature of people’s 
interests and values and their roles, there is a need for 
designing a flexible and dynamic system to provide a 
resilient care systems[3,14]. 

3. Future Prospective

Technology advances on data capturing (e.g. sensing 
networks), data processing (e.g. machine learning) and 

data interactions (e.g. digital and physical displays) offer 
a variety of possibilities for integrating health-care and 
non-healthcare data of patients in the care process. 
Whether new forms of care could be supported by data 
with the goal to increase quality of care, there are several 
considerations to take such as privacy and trust from 
patients [3], and non-adoption or resistance to use from 
care professionals [4,21,31].  

From the field of Human-Data Interaction [9] the focus 
is on delivering personalized, context-aware, and 
meaningful data from large datasets while enabling user 
control over the use of ‘my data’. From the field of 
Human-Computer Interaction [7] it is suggested to work 
with an iterative design process that a) enables user 
adoption and system adaptation and b) identifies the 
driving forces and responsible roles to introduce and 
advocate a sociotechnical healthcare system, in which 
data issues are addressed from a social perspective [28]. 
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