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Abstract. The airport terminals are complex sociotechnical systems, which are
difficult to understand and their behavior is hard to predict. Hence, an agent-based
model, the Agent-based Airport Terminal Operation Model (AATOM), has been
designed to represent and analyze diverse airport terminal processes, actors, their
behavior and interactions. The main issue with such models is the large computa-
tional requirements for simulating detailed processes, making it computationally
inefficient. Furthermore, the dynamics of such models are difficult to understand.
Therefore, the goal of this research is to approximate the dynamics of AATOM by
a surrogate model, while preserving the important system properties. A method-
ology is suggested for training and validating a surrogate model, based on the
Random Forest algorithm. The trained surrogate model is capable of approxi-
mating the AATOM simulation and identifying relative importance of the model
variables with respect to the model outputs. Firstly, the results obtained contain
an evaluation of the surrogate model accuracy performance, indicating that the
surrogate model can achieve an average accuracy of 93% in comparison to the
original agent-based simulation model. Nonetheless, one indicator, the number of
missed flights, has shown to be more difficult to predict, with an average accu-
racy of 83%. Secondly, the results show that the airport resource allocation has
an important impact on the efficiency of the airport terminal, with the two most
important variables being the number of desks at the check-in and the number
of lanes at the checkpoint. Last, the developed surrogate model was compared
with a second Artificial Neural Network-based surrogate model built for the same
agent-based model.

Keywords: Surrogate modeling · Agent-based model · Random forest

1 Introduction

The airport terminal plays a crucial role in the modern air transportation system. Previ-
ous studies have focused on modelling and simulating the airport terminal operations,
concentrating mainly on security analysis [1, 2]. For this purpose, An Agent-based Ter-
minal Operation Model (AATOM) has been developed for modelling and analysis of
complex sociotechnical airport systems with diverse interacting actors. The emergent
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in such complex systems is hard to understand [3]. Furthermore, AATOM has a high
computational complexity. One of the approaches to improve understanding of agent-
based models is surrogate modeling. In essence, it consists of generating a ‘model of the
model’, obtaining an approximation of the original model. Surrogate modeling is used
through various domains with the objective to emulate/surrogate an existing agent-based
model [4]. Subsequently, the surrogate models are used for calibration [5], validation
[6] or behavior space exploration [7].

Hence, two elements form the basis of the research, being the original AATOM
model and surrogate modelling to abstract this model, to decrease its high computational
complexity. Thus, the research objective is to obtain a computationally efficient AATOM
while preserving the important dynamic (emergent) properties of the model and getting
an insight into the underlying mechanisms of the model. The former underlines that
by applying the surrogate modelling method (Random Forest) on the AATOM model,
an approximation of the model can be obtained, preserving the system properties by
accurately predicting the model output under given conditions. The latter is the ability
of the approximation obtained from the original AATOM model to reveal the relations
between the model inputs and outputs, leading to a better understanding of the system
behavior. The main contributions of the study are the generation of a surrogate model
fromAATOM, the evaluation and validation of the surrogate model, and the comparison
of the developed surrogate model (the Random Forest model) with another surrogate
model (the ANN model) to gain better credibility in the obtained results.

In the following in this paper, background elements regardingAATOMand the surro-
gate model used for approximation are given in Sect. 2. Furthermore, the methodology
developed for generating the surrogate model based on the AATOM is described in
Sect. 3. Section 4 presents the results obtained by applying the methodology, focusing
on the performance of the surrogate model and the input-output relationships. Last, the
conclusions are drawn in Sect. 5.

2 Related Work

The AATOM is an agent-based simulation model used to represent the dynamics of
passengers and airport terminal staff in the context of airport terminal operations [2, 26–
28]. It comprises the agents with their properties, the environment and the interaction
between the agents and the environment. The agent has a three-layered architecture, with
each level adding a layer of abstraction. The three layers are: operational, tactical and
strategical. In essence, the three-layered architecture dictates how the agent observes the
environment and the other agents, and theway the agents interactswith both, based on the
observations. Ultimately the agent is able to make decisions based on the beliefs about
the environment and the other agents. For a more detailed description of the AATOM
architecture we refer to [2]. The environment is composed of three objects: the areas, the
flights and the physical objects. The first being two-dimensional polygons that delimit
the different terminal areas (check-in, checkpoint, entrance, gate and facility).

Surrogate modeling is the approach for generating an approximation of the model in
order to reduce its complexity while maintaining the dynamic properties of the original
model. A surrogate model can be constructed by using a learning algorithm to obtain an
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abstraction of the model. This study considers two types of surrogate models. The first
model is developed using the methodology described in Sect. 3. The second is used for
comparison purposes and a brief explanation of its elaboration is given. The algorithm
chosen for generating the first surrogate model, is the Random Forest. This learning
algorithm has been proven to be a reliable and efficient method for working with large
data-sets, achieving low computational costs [8]. In addition, the implementation of the
algorithm for surrogate modelling is relatively simple [9–11]. Furthermore, there are
classification and regression trees, differing on the nature of the target variable, being
qualitative or quantitative respectively. In this research only regression trees are consid-
ered as the AATOM output target variables are only continuous. The target variables,
represent different airport terminal indicatorsmeasuring processing times or counting the
passenger flux. In addition, the Random Forest method has a specific measure for rank-
ing the different parameters on their relative importance, called the variable importance
measure (VIM) [12]. Measuring the relative importance of the variables can identify
specific relations between the model variables and indicators. Giving additional insights
into the underlying relationships of the original (AATOM)model [13]. The secondmodel
is based on Artificial Neural Network (ANN). The key motivation to use ANN is the
low computational cost and the capability of approximation. ANNs have good gener-
alization properties, can deal with large datasets and are able to represent nonlinearity.
However, vanishing gradient is the main problem of ANN in the back propagation. In
order to measure the sensitivity of parameters, different algorithms, mainly focusing on
the connection weights in artificial neural networks, have been proposed. In [14] feature
selection is described as ‘the problem of choosing as small subset of features that ide-
ally is necessary and sufficient to describe the target concept’. The main issue with the
previous algorithm [15] was that when the training finished, it naturally assumed that
the higher the amount of weights, the more important a parameter while regularization
techniquesmakeweights to not increase and become smaller [16]. Themethodwhichwe
used to measure the relative importance of parameters is called variance-based feature
importance [17]. This is based on the principle that the more important is a parameter,
the more the weights, which are connected to the corresponding input neurons, vary
during the training of the model. To measure the relative importance of each parame-
ter, variances of each weight connected to the input layer is calculated in the training
time [18]. The algorithm that we used for computing these variances is an adaptation of
Welford’s online algorithm [17] for computing these variances.

3 Methodology

A step-wise systematic iterative procedure is defined in order to obtain an accurate
approximation of AATOM by surrogate modelling. The schematic representation is
given in Fig. 1. Configuring the AATOM model is the first step of the procedure. The
well-defined AATOM can subsequently be used for simulation in order to generate
simulation data for training and validating the surrogate model. The simulation data is
pre-processed with the result that the surrogate model can achieve better performance.
It consists of defining the relevant parameter values and re-sampling the simulation data
to better train the surrogate model. Pre-processing is performed after the first iteration of
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generating the surrogate model. The following step is training the Random Forest. The
training data-set is provided from the simulation data of the second step. The simulation
data is randomly divided into two thirds for training data-set and one third for validation
data-set [19]. The fifth step, the evaluation of the surrogate model, is subdivided into the
validation of the surrogate model and a scenario-based evaluation. The last step is the
comparison of the two surrogate models.

Fig. 1. The schematic representation of the methodology for obtaining a trained surrogate model
based on AATOM.

The AATOM has a modular architecture, which requires a specific configuration for
simulating airport terminal operations. In Fig. 2, the chosen configuration for conducting
the surrogate model generation is visually represented. The model consists of a check-in
and security checkpoint with each having a queuing system in place. Moreover, the gate
area is included in the model. The defined model parameters and indicators. Both are
given in Table 1. The input parameters in Table 1 represents a one hour flight schedule,
with the first time slot scheduled 400 s after the start of the hour and the last slot scheduled
3400 s after the start. Each slot is assigned either zero (if no flight is scheduled) or the
number of passengers for the scheduled flight. Furthermore, regarding the output given
in Table 1, both queuing time and throughput for security checkpoint and check-in are
included. For both the training and validation data-set, relatively large pool of sample
points is drawn from simulation using the Latin Hypercube sampling method [20].

The surrogate model, given a combination of input values, is required to predict the
values of the output variables. However, the accuracy of the surrogate model may differ
for the different target variables. It is possible that the surrogate is unable to achieve the
validity criteria for one or multiple target variables. There exist different strategies for
coping with it [21, 22]. The strategy used in this research is the utility-based regression
and re-sampling approach. The training data points consist of value combination of inputs
and outputs as defined in Table 1. For theRandomForestmodel, several hyperparameters
need to be determined prior to the training such as the number of trees and the number
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Fig. 2. The AATOM layout including the check-in, security, and gate ([Janssen 2020]).

Table 1. The model input parameters and output, according to the AATOM architecture, chosen
for simulation purpose.

Parameters Description Unit

nlanes Number of lanes at the security check-point –

ndropoff Number of luggage drop-off points –

ncollect Number of luggage collection points –

ndesks Number of check-in desks [s]

slot400 Schedule slot at time 400 (sec) [s]

slot1000 Schedule slot at time 1000 (sec) [s]

slot1600 Schedule slot at time 1600 (sec) [s]

slot2200 Schedule slot at time 2200 (sec) [s]

slot2800 Schedule slot at time 2800 (sec) [s]

slot3400 Schedule slot at time 3400 (sec) [s]

Output

scQueueavg Average security checkpoint queuing time [s]

checkinQueueavg Average check-in queuing time [s]

throughputcheckin Number of passengers that passed the check-in [s]

throughputsc Number of passengers that passed the checkpoint –

TimeToGateavg Average time to the gate [s]

nmissedFlights Number of missed flights –

of sample points drawn for each tree. For the purpose of the research, the Bayesian
optimization algorithmhas been chosen for tuning hyperparameters, proven to be reliable
and efficiently applied in previous studies [23, 24].

Lastly, subsequent to training the surrogate model, validating the model is required.
The output indicators of the AATOM on the validation set are compared with the out-
puts from the validation set using the Mean Absolute Percentage Error (MAPE). From
literature [19], Random Forest surrogate models often achieve accuracies of more than
90%. The scenario evaluation is based on a set of scenarios that represent real-world
airport terminal cases that are given in Table 2. The scenario is a combination of a set
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of resources, related to the check-in a checkpoint, and a given (one hour) flight sched-
ule. Three different scenarios in Table 2 represents three different levels of passenger
demand: low demand (LOW), medium demand (MED) and high demand (HIGH). The
levels are based on a regular flight schedule at Rotterdam-TheHagueAirport (RTHA). In
each scenario, the fixed resource allocation is based on prior research analyzing check-in
and checkpoint systems in the context of airport security [1, 25]. One security checkpoint
lane has an approximate capability of 160 passenger per hour and one check-in desk is
able to process on average 60 passengers per hour. The flight schedules are derived from
the flight schedule of RTHA, having on a peak hour an average of six flights scheduled.
The representation is an hour of time slots where the value indicates the number of
passengers scheduled for that time slot (empty if no flight is scheduled). Moreover, the
number of passengers correspond to the Boeing 737 and 738 that are common aircraft
at RTHA.

Table 2. The set of scenarios for fixed resource allocation for the different flight schedules, with
four resource variables (nlanes, ndrop, ncollect , ncheckin) and six time slots (from 400 to 3400).

ID Resource allocation Flight schedule

nlanes ndrop ncollect ncheckin 400 1000 1600 2200 2800 3400

LOW 3 3 3 7 186 186

MED 5 3 3 12 197 142 197 164

HIGH 7 3 3 19 186 197 186 142 197 197

The methodology proposed for analyzing the sensitivity of the agent-based model
using the surrogate neural network model, consists of two phases. In the first phase,
the security checkpoint parameters of the AATOM are used as an input for the neural
network. The influence of each parameter’s uncertainty on the output uncertainty is
determined through a series of forced perturbations on the parameters. The variation of
the six parameters of interest, and in the second phase, the result of changes with respect
to the variation of each parameter is considered for the output layer in the neural network.
The training and validation of the neural network for the prediction part are performed,
and eventually, the value of the weight from each input is considered as the importance
of that parameter. To measure the sensitivity of each parameter such as average queue
time in the security check-point, we have used the method proposed in [17].

The range of parameter values are based on standard values for RTHA are given
in Table 3. The nflights are divided into time of scheduling and number of passengers.
It can take the following values: [0, 142, 153, 164, 175, 186, 197]. Both time slots are
combined in an array, e.g. [[1600, 142], [3400, 142]]. The value ranges for the other
parameters are determined by the limitation of the simulation model.

4 Results

In this Section results are presented, using the methodology described in Sect. 3. The
evaluation results comprise validation using simulation data and scenarios, with the
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Table 3. Value ranges of the AATOM parameters for training.

AATOM parameter Range

nlanes [1, 2, 3, 4, 5, 6, 7, 8]

ndropoff [1, 2, 3]

ncollect [1, 2, 3]

ndesks [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

nflights [1, 2, 3, 4, 5, 6]

evaluation given in Table 4. It contains the time performance and accuracymeasurements
for both theRandomForestmodel and theANNmodel. FromTable 4, theRandomForest
model has a low training and execution time. Regarding the measured using MAPE
accuracy, the overall performance of the RandomForestmodel is attaining values of 90%
and above, with an average accuracy of 92.90%.Moreover, the most accurate prediction,
being the TimeToGate, is reaching 97.13%. It can be explained by considering that the
TimeToGate is the indicator based on the most information contained in the simulation
model. Nonetheless, the indicator for the number of missed flights is less accurately
predicted, only achieving 83.44% accuracy.

Table 4. Comparison of performances between the random forest surrogate model and the
artificial neural network surrogate model.

Performances indicator RF ANN

Training time [sec] 3.82 12.54

Execution time [sec] 0.12 0.91

Mean absolute percentage error

scQueueavg 96.02% 94.39%

checkinQueueavg 91.66% 93.71%

throughputcheckin 94.71% 91.29%

throughputsc 94.44% 95.61%

TimeToGateavg 97.13% 98.81%

nmissedFlights 83.41% 80.12%

Mean accuracy 92.90% 93.87%

Furthermore, comparing the Random Forest and ANNmodel, it can be seen that the
ANNmodel is slower on both the training and execution time. However, the ANNmodel
is still largely faster than the AATOM. On the accuracy, both models have similar perfor-
mances. The TimeToGate is also themost accurate prediction for the ANNmodel. Lastly,
the same difference between the accuracy of the nmissedFlights and the other indicators
is present in the ANN case, only reaching 80.12%. Successively, the second evaluation
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is given in Table 5. The accuracy of the surrogate model is given for each indicator at
every level of passenger demand. First, the model has on overall poor performance on
the LOW scenario compared to the two other scenarios, with the largest differences on
the accuracy for the two checkpoint indicators and the nmissedFlights. The most appar-
ent reason is the lack of training data sampled around the region of the variable values
defined in the LOW scenario. The TimeToGate performance is a direct consequence of
the poor performance on the checkpoint indicators, measuring the behavior.

Table 5. The prediction for different scenarios from the trained RF surrogate model.

ID checkinQueueavg scQueueavg TimeToGateavg nmissedFlights throughputcheckin throughputsc

LOW 89.13% 60.56% 80.01% 0% 94.1% 75.88%

MED 93.58% 88.62% 92.64% 8.81% 92.82% 98.21%

HIGH 88.17% 94.95% 95.38% 61.53% 91.45% 94.94%

Furthermore, the surrogate model’s low accuracy on the nmissedFlights is also visible
in the results of the two other scenarios. There is a visible increase in accuracy with
increasing passenger demand, growing from 0% to 61.53%. Moreover, the surrogate
model was trained on a wide range of cases with highly varying nmissedFlights values.
Additional insight is given into the underlying relationships between the parameters
and indicators of the original model (the AATOM). The first analysis is the measure of
importance of the different variables. The variable importance measure (VIM) is calcu-
lated for both surrogate models (Random Forest and ANN), given in Fig. 3. As can be
seen in Fig. 3(a), there are two distinct variables, identified by VIM as the most impor-
tant variables: the number of lanes of the security checkpoint and the number of desks
at the check-in. Both variables are regulating the processing capacity of passengers at
the two systems (checkpoint and check-in), therefore the indication from the VIM con-
forms with the representation of the two variables in the airport terminal operations.
Moreover, from Fig. 3(a), the four resource allocation variables (nlanes, ndropoff , ncollect ,
ndesks) are relatively more important than the flight schedule variables (time-slots). All
indicators, except for the nmissedFlights, are measuring time performance through queue-
ing or throughput. Hence, the resource allocation is more directly related to the time
performance of the terminal than the flight schedule, dictating the check-in and check-
point behavior. The last observation in Fig. 3(a) is the trend of the time-slot importance,
with the first and last slot being the least important slots. Presumably, the importance of
the middle slots stems from the effect of reducing the time between flights by adding
more slots in the scheduling hour. The VIM of the ANN model is given in Fig. 3(b) for
comparison purposes with the RF model. Multiple similarities are perceivable between
the two models, with the most recognizable that the same two most important variables
(ndesks and nlanes) are identified with the VIM. Additionally, the resource allocation
variables are prominently more important than the flight time-slots. Besides, there are
several differences between the RF model’s VIM and the ANN model’s VIM. First, the
importance measure difference between the two most important variables is lower. The
lower difference is possibly due to the use of a different surrogate model, hence both
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models are not using the variable information in exactly the same manner to make pre-
dictions on the different target variables. Second, the ranking of the collect and drop-off
location variables is reversed. Nonetheless, the order of magnitude is similar for both
variables in both models.

Fig. 3. The variable importance measure for the AATOM model parameters from the default RF
and the ANN surrogate model

Furthermore, an analysis of the surrogate model accuracy is given by systematically
adding variables to the model. At each addition the predictions made by the surrogate
model are compared with the validation data-set. The different mean accuracy levels
obtained for both models are given in Table 6. Figure 4 visualizes the accuracy change
by adding model variables. From Table 6 and Fig. 4, it can be seen that the four resource
variables are supporting the RF model to make predictions with an averaged accuracy
of 86.82%. Adding the remaining variables increases the mean accuracy by 6%. Hence,
clearly observable in Fig. 4, the resource allocation variables have the largest contribution
to the increase in prediction accuracy of the surrogate model. For the RF model, there is
the small reduction of accuracy after the addition of the first time-slot variable. However,
the difference is sufficiently small (0.07%) to be neglected. Furthermore, by comparing
the RF and ANN model in Table 6, several similarities can be observed. First, the
resource variables are sufficient for the ANNmodel to reach an accuracy of 89.77%. The
remaining variables, similar to the RF model, are only slightly increasing the prediction
accuracy by 4%. Second, the most important variable is the ndesks, related to similar
VIM. Nonetheless, there is an observable difference between the contribution of the
time-slot variables in the RF model and the ANN model. The differences coincide with
the VIM of the variables in Fig. 3. As mentioned earlier, the nmissedFlights is the one
target variable for which the surrogate model experiences difficulties to make accurate
predictions. The accuracy is lower for the specific scenarios than for an evaluation based
on the validation data. In essence, the nature of the nmissedFlights is different from all other
indicators of the AATOM simulation. All other indicators are measuring the efficiency in
timeor passenger count of the check-in and/or checkpoint. ThenmissedFlights is not directly
explained by the dynamics of either of the systems, i.e. check-in or security checkpoint.
This target variable is more evenly dependent on all the operational elements in the



Surrogate Modeling of Agent-Based Airport Terminal Operations 91

airport terminal. This can be observed in the VIM for predicting the nmissedFlights and the
incremental accuracy by variable addition, given in Fig. 5.

Table 6. The different mean accuracy levels obtained for RF and ANN surrogate models.

ID Parameters Included parameters RF ANN

1 nlanes [1] 62.53% 68.03%

2 ndropoff [1, 2] 65.50% 72.24%

3 ncollect [1, 2, 3] 70.97% 76.91%

4 ndesks [1, 2, 3, 4] 86.82% 89.77%

5 slot400 [1, 2, 3, 4, 5] 87.75% 90.01%

1 slot1000 [1, 2, 3, 4, 5, 6] 87.74% 90.80%

2 slot1600 [1, 2, 3, 4, 5, 6, 7] 89.89% 92.26%

3 slot2200 [1, 2, 3, 4, 5, 6, 7, 8] 91.32% 92.89%

4 slot2800 [1, 2, 3, 4, 5, 6, 7, 8, 9] 92.38% 93.15%

5 slot3400 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 92.88% 93.76%

According to Fig. 5(a), the nlanes is the most important variable. The average time
to check a passenger at a checkpoint lane is higher than for the check-in. Hence, the
number of lanes present at the checkpoint largely determine the number of passengers
that can arrive on time for the flight. Furthermore, from Fig. 5(a), the importance of all
remaining variables is approximately evenly distributed. Thus, it indicates the necessity
of all variable information to achieve adequate accuracy (above 80%) on the validation
data. The figure depicts the change in accuracy by step-wise addition of the variables.
In contrast with the same plot from Fig. 4, the accuracy is linearly increasing with every
variable addition.

Fig. 4. The model accuracy with addition of variables from the RF surrogate model.

Moreover, the surrogate model is predicting less accurately the smaller number
of missed flights. The chosen measure for accuracy (MAPE) determines the absolute
differences between the prediction of the surrogate model and the simulation result.
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Fig. 5. The variable importance and model accuracy with addition of variables from the RF
surrogate model for predicting the number of missed flights.

Hence, for smaller numbers of nmissedFlights the difference in percentage are larger, for
example predicting 4 instead of 6 reveals an inaccuracy of 40%. Second, the number
of missed flights occurring over the flight hour schedule is a rare event, especially rare
for the lower values. The infrequent occurrence complicates the task of training and
predicting this indicator. Last, the range of values for the nmissedFlights is wide, visualized
in Fig. 6. Hence, it is more complex for the surrogate model to achieve high accuracy on
the whole spectrum. However, utility-based regression and the method for re-sampling,
did not improve the accuracy of the surrogate model. The method has been applied on
re-sampling the data to under-sample the higher values of the number of missed flights.

Fig. 6. Distribution of the nmissedFlihgts from the dataset, with the number of missed flights over
the number of occurrences in the dataset.

5 Discussion and Conclusion

The research purpose was to study an approach for using an approximation of the
AATOM in order to make predictions on the behavior of airport terminal operations
in a computationally efficient manner. The study included two additional aspects: pre-
serving the properties of the original model and getting an insight in the underlying
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dynamics of the AATOM. The method consists of an iterative process in which the
AATOM generates simulation data for training and validation of the surrogate model.
The surrogate model used in the method is a random forest model. The trained surrogate
model was evaluated based on the absolute difference between the model predictions
and the simulations results from the validation data-set. An additional evaluation was
made on specific scenarios for different levels of passenger demands. Furthermore, an
additional surrogate model was developed for comparison, based on ANN. The ANN
model is also evaluated on the validation data-set and provided additional insight on the
underlying relationships in the AATOM. Regarding the approximation, the obtained the
RF-based surrogate model is able to make accurate predictions on all indicators except
one, the number of missed flights. It achieves an average accuracy of 93%. For the num-
ber of missed flights, the accuracy is reaching 83%. Further analysis highlights the wide
range of number of missed flights simulated and the difficulty for the surrogate to make
accurate predictions on the lower numbers. Moreover, the evaluation on the scenarios
has shown the generalization capability of the surrogate model, with the same difficulty
to make accurate predictions of the number of missed flights. The ANN model attains
similar accuracy on all indicators and encounters the same issue with the predictions on
the number of missed flights. In general, the results have shown through accuracy eval-
uation that the emergent properties, represented by the model indicators, are preserved
by achieving acceptable accuracy levels.
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