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Abstract

Color Invariant Convolution (CIConv) is a learn-
able Convolutional Neural Network (CNN) layer
that reduces the distribution shift between the
source and target set in the CNN under an
illumination-based domain shift [13]. We explore
the semantic segmentation performance for day-
night domain adaptation when using CIConv. We
will test this on two settings: one with only labeled
train data available and one with access to both
labeled training data and unlabeled test data. In
both settings, we will cast an invariant edge de-
tector as a trainable CIConv layer in the CNN to
transform the daytime dataset to a domain invari-
ant representation. We will execute day-night do-
main adaptation and evaluate the mean Intersec-
tion over Union over the results. We compare this
result to the vanilla version of the same code with-
out using the invariant edge detector as a trainable
layer. We will discuss the results obtained from our
experiments and show that the trainable CIConv
layer does not always result in better outcomes for
day-night domain adaptation.

1 Introduction
Deep image recognition methods are sensitive to illumination
shifts and illumination changes caused by, for example, day
of time or weather [1; 7; 15]. Robustness to such record-
ing conditions is essential for safety-critical computer vision
applications, such as autonomous driving. However, adding
extra test data is often challenging as it may be expensive
and time-consuming to obtain. Furthermore, it would be im-
possible to collect training data for all possible scenarios in
advance [13].

Semantic segmentation aims to assign a label to every pixel
in an image. We can use a Convolutional Neural Network
(CNN) to adapt semantic segmentation data to other domains,
for instance, adapting from daytime data to nighttime data
(see Figure 1). However, this trained model may not gener-
alize well to unseen images, especially when there is a do-
main gap between the training (source) and test (target) im-
ages [19].

Figure 1: Representation of domain adaptation for a large domain
gap in appearance.

Although color is often used to determine the distinction
between objects, albeit a decisive clue, it may not always be
the most efficient or coherent tool to use when adapting from
domain. We can use color invariant edge detectors as these
measure object properties independent of the imaging condi-
tions derived from the measured color values [11].

In figure 1 you can see a simple representation of domain
adaptation. Even if images from the two domains appear
very different (especially in color), their segmentation out-
puts share a significant amount of similarities. Recent work
has introduced Color Invariant Convolution (CIConv) [13],
which incorporates color invariant edge detectors into a CNN
to improve their robustness to day-night-related illumination
changes without the need for any nighttime data.

In this paper, we will test and examine CIConv in two dif-
ferent settings. One setting which is used as a baseline uses a
zero-shot setting. Another setting uses an approach called un-
supervised domain adaptation. This setting performs feature
learning, domain adaptation, and classifier learning jointly
in a unified architecture, using a single learning algorithm
(backpropagation). This can be trained on labeled data from
the source domain and unlabeled data from the target domain
[9].

This paper will evaluate the effectiveness of CIConv for un-
supervised domain adaptation methods for semantic segmen-
tation. We ask ourselves the following research question:
What is the effectiveness of CIConv for unsuper-
vised domain adaptation for semantic segmentation?
With this research question, we ask ourselves the following
sub-questions:
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• What is the effect of CIConv for unsupervised domain
adaptation compared to not using CIConv?

• How usable is semantic segmentation used on unsuper-
vised domain adaptation with CIConv?

We have the following contributions: (i) we evaluate two
different settings, zero-shot domain adaptation and an unsu-
pervised domain adaptation; (ii) we evaluate these two dif-
ferent settings with and without a CIConv layer; (iii) we will
show and discuss the results on the contributions above and
will give elaborations on why the results turned out this way.
All code will be made available on our GitLab page.1

2 Related Works
Color Invariants Although color is an often used at-
tribute to use in the distinction between objects [11],
physics-based reflection models to improve invariance to
illumination changes is also a well-researched topic in
computer vision [4]. We consider the determination of
material changes independent of the illumination color and
intensity. Meaning we lose the features that we would
gain from the color illumination but gain features based
on material changes [11]. Early work includes invariants
derived from the Kubelka-Munk reflection model [10;
16]. Since then, methods have been proposed for shadow
removal or intrinsic image decomposition with (street)
image segmentation applications [20]. Recent works have
shown improved segmentation performance by applying a
color invariant transformation as a preprocessing step [2;
3]. Our work further explores the results of using a
classical color invariant as a trainable CNN layer.

Semantic Segmentation Semantic segmentation is a
crucial component in image understanding. The goal of se-
mantic segmentation is to assign a unique label (or category)
to every single pixel in the image, which can be considered
a dense classification problem [14]. The interpretations
of these label images can then be used for many critical
applications, such as autonomous driving, robotic navigation,
localization, and scene understanding [21]. This paper will
use two different architectures of semantic segmentation:
RefineNet and Deeplab.

Refinenet is a generic refinement model that makes use of
all the information available along the down-sampling pro-
cess to enable high-resolution prediction using long-range
residual connections. The individual components of Re-
fineNet employ residual connections following the identity
mapping mindset, which allows for effective training [14].

Deeplab is a semantic segmentation model that achieves
prediction by up-sampling the output of the last convo-
lution layer and computing pixel-wise loss [17]. The
Deeplab applies atrous spatial pyramid pooling (ASPP)
for up-sampling. ASPP examines an incoming CNN fea-
ture layer with filters at multiple sampling rates and ef-
fective fields-of-views. Therefore, ASPP captures ob-
jects and image context at various scales [5].

1https://gitlab.tudelft.nl/attilalengyel/brp-ciconv/-
/tree/master/Nicky%20Ju

Unsupervised Domain Adaptation Learning classifiers and
features in the presence of a shift between training and test
distributions is known as domain adaptation [9]. However,
this classifier or feature may not adapt well to unseen images,
especially when there is a domain gap between the training
(source) and test (target) images. That is where unsuper-
vised domain adaptation will play a relevant role. When there
are labeled train data and non-labeled test data available, the
unsupervised domain adaptation will give labeled test data
as a result. This is important because relying on the super-
vised model where every pixel of an image requires manually
classifying by a human would entail prohibitively high labor
costs. This approach requires no additional data sources and
thus avoids expensive data gathering costs.

3 Method
Our color invariant layers make use of an invariant edge de-
tector from [10]. A CIConv layer is a learnable color invari-
ant CNN layer that reduces the activation distribution shift in
a CNN under an illumination-based domain shift such as the
domain shift of going from daytime to nighttime [13]. The
CIConv can be used with different kinds of color invariants,
where some invariants yield better results than others. In this
paper, we will only work with one specific invariant:
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The Gaussian color model [24] is used to estimate E,
Eλ and Eλλ from the RGB camera responses as

[
E(x, y)
Eλ(x, y)
Eλλ(x, y)

]
=

[
0.06 0.63 0.27
0.3 0.04 −0.35
0.34 −0.6 0.17

][
R(x, y)
G(x, y)
B(x, y)

]
(2)

where x, y are the pixel locations in the image. Spatial
derivatives Ex and Ey are calculated by convolving E with a
Gaussian derivative kernel g with standard deviation σ, i.e.

Ex(x, y, σ) =
∑

t∈Z E(t, y)∂g(x−t,σ)
∂x

(3)

and similarly for Ey , Eλx, Eλλx, Eλy and Eλλy .
CIConv is described as:

CIConv(x, y) = log(CI2(x,y,σ=2s)+ϵ)−µS

σS
(4)

with CI the color invariant W from equation 1, µS and σS the
sample mean and standard deviation over log (CI2 + ϵ), and
ϵ a small term added for numerical stability [13].

In [13] it has been tested and verified that this invariant
works best based on mIoU compared to other invariants and
that is the reason why this invariant will be the only invariant
further explored and tested in this paper.

Given the source data set with segmentation labels and the
target data set with no labels, we want to train a network for
semantic segmentation, which is finally tested on the same
target data set.



We decided to test this with a zero-shot setting as a base-
line. This [13] code base will be used for this, with CIConv
implemented in one run, and without CIConv implemented
in a different run. This will be compared to an unsupervised
domain adaptation setting. AdaptSegNet [19] will be used
for this; one run with CIConv implemented and one without
CIConv implemented.

For determining the performance, we will utilize the Inter-
section over Union (IoU) score. This approach is significantly
better than pixel accuracy since our images often have a prob-
lem called class imbalance, which means that a portion of our
classes dominate the image while some other classes make up
for only a small portion of the screen [18].

This problem is solved when using IoU.

IoU =
AreaofOverlap

AreaofUnion
(5)

In formula 5 you can see the formula used for computing the
IoU. The AreaofOverlap is equal to tp (true positive) since
this is where the predicted labels and the source labels are the
same. AreaofUnion is equal to tp + fp (false positive) +
fn (false negative). This is the union of all the predicted and
source labels.

We can now rewrite the equation as:

IoU =
tp

tp+ fp+ fn
(6)

Our goal is to determine the change in IoU by using CI-
Conv compared to not using CIConv.

4 Experiments
We investigate to what degree CIConv improves a CNN’s per-
formance for semantic segmentation in the domain adaptation
from day to night setting.

4.1 Experimental Setup
We have selected a subset of the Cityscapes [6] dataset for
the source dataset. Since Cityscapes is a rather large dataset
(3000 images), we instead opted for a smaller dataset, where
we selected 200 images from the Cityscapes dataset, which
we call: Minicity. Although using to fewer data led to sub-
optimal results, it was still crucial for us to operate this way,
so the training time was feasible for us to work with. For the
target dataset, we will be testing it on the Nighttime Driving
dataset [7]. The chosen datasets represent a day-night domain
adaptation scenario.

The experiment will be run in two different settings and
with two experiments per setting.
Zero Shot Setting This will be used for our baseline. The
[13] codebase will be used using the RefineNet architecture
with ResNet-101 [12] feature extractors pre-trained on the
ImageNet [8] dataset. We perform training with 175 epochs
using SGD with momentum 0.9, weight decay 1e-4, and
an initial learning rate of 0.1, which is step-wise reduced
by a factor of 0.1 after every 30 epochs. All input images
are resized to 1024x512 pixels and randomly cropped to
768x384 pixels, allowing a batch size of 3 on a NVIDIA
GeForce GTX 1080 Ti GPU. Data augmentation is applied

by random scaling, brightness-, contrast- and hue-shifting,
and horizontal flipping. Inference is done on 1024x512
samples without cropping [13]. This setting is run once
with a CIConv layer and once without a CIConv layer.

Unsupervised Domain Adaptation Setting This [19]
codebase will be used using the DeepLab-v2 [5] framework
with ResNet-101 [12] model pre-trained on ImageNet [8]
as the segmentation baseline network. We perform training
with 175 epochs using SGD with momentum 0.9, weight
decay 5e-4, and a learning rate of 2.5e-4. All input images
are resized to 1280x720 pixels, and all target images are
resized to 1024x512 pixels, allowing for a batch size of 1 on
a NVIDIA GeForce GTX 1080 Ti GPU. This batch size is
also called stochastic mode: with this, the gradient and the
neural network parameters are updated after each sample.
We remove the last classification layer and modify the stride
of the last two convolution layers from 2 to 1, making the
resolution of the output feature maps effectively 1/8 times
the input image size. To enlarge the receptive field, we apply
dilated convolution layers in conv4 and conv5 layers with a
stride of 2 and 4, respectively. After the last layer, we use the
ASPP as the final classifier. Finally, we apply an up-sampling
layer along with the softmax output to match the size of the
input image [19]. This setting is run once with a CIConv
layer and once without a CIConv layer.

4.2 Results
Results are shown in 1 as Intersection-over-Union. All the
IoU’s that have performed best in their specific label have
been highlighted. With a mIoU of 0.303, regular AdaptSeg-
Net significantly outperforms all the other trained models, in-
cluding AdaptSegNet with a CIConv layer builtin.

Qualitative segmentation results are shown in figure 2.
Most notable here is that (f) W-AdaptSegNet loses a lot of
different features compared to (e) AdaptSegNet. Furthermore

In figure 3 you can see the graph of the obtained mIoU
for the different number of epochs. Notable here is that all
of the methods do not substantially increase in performance
after 40 epochs.

5 Discussion
As can be seen in table 1, from all tested methods, AdaptSeg-
Net without a CIConv layer has performed the best from all
tested methods. The IoU calculated for sky is remarkable for
this because AdaptSegNet has performed astonishingly high
in this label compared to the other methods. The sky in the
daytime tends to have a blueish/whitish color which is a very
different appearance than in nighttime, where the sky usually
has a blackish color. AdaptSegNet probably performed better
than RefineNet for sky because AdaptSegNet also has trained
on the target dataset. Therefore AdaptSegNet was already ex-
posed to the fact that the sky has a very different color. How-
ever, W-AdaptSegNet in contrast, has not performed better
like regular AdaptSegNet. This is because the color invari-
ant edge detector ignores the color property. Therefore the
change in color does not provide any significant learning re-
sult for sky.
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mIoU

Trained on source data only

RefineNet 0.83 0.42 0.77 0.10 0.00 0.23 0.00 0.17 0.29 0.00 0.22 0.42 0.00 0.57 0.00 0.00 0.05 0.00 0.19 0.237

W-RefineNet 0.87 0.52 0.78 0.09 0.00 0.36 0.00 0.16 0.37 0.00 0.29 0.35 0.00 0.63 0.00 0.00 0.04 0.00 0.23 0.246

Trained on source and target data

AdaptSegNet 0.77 0.44 0.81 0.05 0.00 0.35 0.14 0.47 0.53 0.00 0.73 0.46 0.02 0.51 0.00 0.06 0.01 0.00 0.40 0.303

W-AdaptSegNet 0.81 0.35 0.70 0.06 0.00 0.29 0.04 0.35 0.35 0.00 0.26 0.40 0.07 0.46 0.00 0.00 0.00 0.00 0.21 0.228

Table 1: Results of adapting Minicity to the Nighttime Driving dataset expressed in IoU for every possible outcome label.

(a) Target Image (b) Ground Truth

(c) RefineNet (d) W-RefineNet (e) AdaptSegnet (f) W-AdaptSegNet

Figure 2: Example results of adapted segmentation for Minicity to Nighttime Driving. For each target image, we show RefineNet and
AdaptSegNet with both with (d, f) and without (c, e) a CIConv layer.

Unlike [13], our results do not show any reliable or signifi-
cant benefit from the CIConv layers. This may have multiple
causes, such as using too small of a dataset for the model to
learn with or having unoptimized hyper-parameters used to
train. Having used a relatively small dataset might have led
to a lack of generalization and difficulty in optimization, but
it was necessary to use this smaller dataset due to time con-

straints.
Furthermore, most of the hyper-parameters used in our ex-

periment have not differed from the original source code. An
example of this is using random cropping and jitter in the
zero shot setting, but not in the unsupervised domain adap-
tation setting. Another example is the difference in learning
rate and weight decay between both of the settings. This may



Figure 3: Calculated mIoU vs Epoch

have led to sub-optimal results, which have caused a lower
mIoU, especially for experiments with CIConv. A handful of
hyper-parameters have been changed from the original source
code. These include settings like batch size and image size.
These have been changed in order to properly run the code on
the amount of memory that was made available.

More unlike [13], The mIoU for all experiments except
for the vanilla AdaptSegNet have performed very similarly.
In [13] W-Refinenet has performed better than AdaptSegNet,
whereas in our results, the opposite is the case. Again, this
is most likely due to adjusting the source dataset to a smaller
one while keeping the same target dataset. This might have
impacted the zero-shot approach more than the unsupervised
domain adaptation approach since the unsupervised domain
adaptation still has the same target data to train on.

6 Concluding Remarks and Future Work
This paper has analyzed the effectiveness of CIConv in an
unsupervised domain adaptation setting and compared it to a
zero-shot setting. In section 4 you can see the results of CI-
Conv in these settings. CIConv has not led to a higher mIoU
in the tested settings, and this may have several causes, such
as having used a too small dataset or having used incorrect
hyper-parameters during training.

Furthermore, CIConv is not immediately usable for unsu-
pervised domain adaptation. This means that simply imple-
menting a trainable CIConv layer into CNN is not sufficient
for training might happen unoptimally. Therefore tweaking
the hyper-parameters needs to be done before optimal con-
clusions can be derived from the tests.

As for future work, the same experiment could be executed
but with different larger data sets. For example, Cityscapes
can be used as source data instead of Minicity. The hyper-
parameters can also be adjusted in future experiments as these
likely resulted in sub-optimal results in our work. Other work
that could be executed in the future is the implementation of
CIConv in multiple different codebases, as we currently only
have done in one single code base.

7 Responsible Research
This research does not involve any ethical aspects as no sen-
sitive data is involved. However, everything that has been
used is based on repositories and datasets from other authors.
Therefore it is essential to credit all the previously done work.
All the data used for this research is already publicly avail-
able and has been adequately referenced. All code used for
this research from other repositories has also been credited
and referenced.

If this research is going to be used in the real world (e.g.,
for self-driving cars), then ethical aspects have to be dis-
cussed. When utilizing the current code for the real world,
further tweaking and testing will be needed. Since the model
does not work 100% accurately, it is likely that vehicles will
not execute optimally with the results, and therefore lives may
be at risk.

7.1 Reproducibility
All the datasets used in this research will not be made avail-
able on our GitLab. This is because all the datasets are al-
ready publicly available for anyone to use. A simple search
on the internet should give enough information for the user
to download the used datasets. All the used code is available
on GitLab. To ensure the reproducibility of the code, we rec-
ommend reading through section 4 as certain settings such as
hyper-parameters have been specified in these sections. Since
all code used is based on other repositories, we also recom-
mend looking through these repositories if anything does not
work as intended.

References
[1] M. Afifi and M. S. Brown. What else can fool deep

learning. 2019 IEEE/CVF International Conference on
Computer Vision (ICCV), pages 243–252.

[2] N. Alshammari, S. Akcay, and T. P. Breckon. On the im-
pact of illumination-invariant image pre-transformation



for contemporary automotive semantic scene under-
standing. 2018 IEEE Intelligent Vehicles Symposium
(IV), pages 1027–1032, 2018.

[3] N. Alshammari, S. Akcay, and T. P. Breckon. Multi-
task learning for automotive foggy scene understanding
via domain adaptation to an illumination-invariant rep-
resentation. ArXiv, abs/1909.07697, 2019.

[4] Gertjan J Burghouts and Jan-Mark Geusebroek. Perfor-
mance evaluation of local colour invariants. Computer
Vision and Image Understanding, 2009.

[5] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy,
and A. L. Yuille. Deeplab: Semantic image segmen-
tation with deep convolutional nets, atrous convolution,
and fully connected crfs. CoRR, abs/1606.00915, 2016.

[6] Marius Cordts, Mohamed Omran, Sebastian Ramos,
Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson,
Uwe Franke, Stefan Roth, and Bernt Schiele. The
cityscapes dataset for semantic urban scene understand-
ing. In Proc. of the IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2016.

[7] Dai D. and Gool L. V. Dark model adaptation: Semantic
image segmentation from daytime to nighttime. ITSC,
pages 3819–3824.

[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei. Imagenet: A large-scale hierarchical image
database. CVPR, 2009.

[9] Yaroslav Ganin and Victor Lempitsky. Unsupervised
domain adaptation by backpropagation. Skolkovo Insti-
tute of Science and Technology (Skoltech), 2015.

[10] J. M. Geusebroek, R. van den Boomgaard, A. W. M.
Smeulders, and H. Geerts. Color invariance. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 23(12):1338–1350, 2001.

[11] Jan-Mark Geusebroek, Anuj Dev, Rein van den
Boomhaard, Arnold W.M. Smeulders, Frans Cornelis-
sen, and Hugo Geerts. Color invariant edge detection.
Scale Space Theories in Computer Vision, LNCS 1682,
pp. 459-464, 1999.

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. CVPR, 2016.

[13] Attila Lengyel, Sourav Garg, Michael Milford, and
Jan C. van Gemert. Zero-shot day-night domain adap-
tation with a physics prior.

[14] Guosheng Lin, Anton Milan, Chunhua Shen, and Ian
Reid. Refinenet: Multi-path refinement networks for
high-resolution semantic segmentation. 2016.

[15] Wulfmeier M. and Posner I. Bewley. Addressing ap-
pearance change in outdoor robotics with adversarial
domain adaptation. 2017 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pages
1551–1558.

[16] P.Kubelka and F. Munk. Ein beitrag zur optik der far-
banstrichen. Zeitung fur Technische Physik volume 12,
page 593, 1999.

[17] B. Sahu. The evolution of deeplab for semantic segmen-
tation. https://towardsdatascience.com/the-evolution-o
f-deeplab-for-semantic-segmentation-95082b025571,
2019.

[18] E Tiu. Metrics to evaluate your semantic segmentation
model. https://towardsdatascience.com/metrics-to-eval
uate-your-semantic-segmentation-model-6bcb99639a
a2, 2019.

[19] YiHsuan Tsai, Wei-Chih Hung, Samuel Schulter, Ki-
hyuk Sohn, Ming-Hsuan Yang, and Manmohan Chan-
draker. Learning to adapt structured output space for
semantic segmentation. 2020.

[20] Ben Upcroft, Colin McManus, Winston Churchill,
William P. Maddern, and Paul Newman. Lighting in
invariant urban street classification. 2014 IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
pages 1712–1718, 2014.
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