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and Miro Zeman1

Abstract

We demonstrate an analytical method to optimize the stoichiometry and thickness of multilayer silicon oxide films in
order to achieve the highest density of non-touching and closely spaced silicon nanocrystals after annealing. The
probability of a nanocrystal nearest-neighbor distance within a limited range is calculated using the stoichiometry of
the as-deposited film and the crystallinity of the annealed film as input parameters. Multiplying this probability with
the nanocrystal density results in the density of non-touching and closely spaced silicon nanocrystals. This method
can be used to estimate the best as-deposited stoichiometry in order to achieve optimal nanocrystal density and
spacing after a subsequent annealing step.

Keywords: Silicon nanocrystal, Silicon oxide, Inter-particle distance, Stoichiometry, Spacing

Background
Silicon nanocrystals embedded in a high band gap silicon
alloy are interesting candidates for top cells of multi-
junction solar cells of which the band gap can be tuned
by the nanocrystal size [1]. The ability to tune the mate-
rial’s band gap allows us to minimize thermalization losses
and thereby increase the solar cell efficiency. The mean
nanocrystal size and size distribution are crucial parame-
ters in determining the optical properties of the material
[2, 3] and electronic transport properties in photovoltaic
devices [4].
Embedded silicon nanocrystals can be made by anneal-

ing silicon-rich silicon alloy films, and this is typically per-
formed using a tube furnace or rapid thermal annealing
furnace [5]. Upon annealing at temperatures between 600
and 900 °C, phase separation of the excess silicon occurs,
creating amorphous silicon nanoparticles surrounded by
an amorphous silicon oxide matrix. Annealing at temper-
atures in excess of 900 °C leads to crystallization of these
amorphous nanoparticles [6].
Using films containing alternating layers of stoichiomet-

ric and silicon-rich silicon alloys allows for the control
over the nanocrystal size, limited by the silicon-rich layer
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thickness [7, 8]. Various charge transport mechanisms
for embedded silicon nanocrystal have been suggested,
including direct tunneling [9], trap-assisted tunneling
[10], and hopping [11]. No clear consensus exists con-
cerning the exact mechanisms, especially concerning the
role of defects in the matrix and at the nanocrystal inter-
face [10–14]. Nonetheless, the total charge transport is
expected to be highly dependent on the nanocrystal spac-
ing and the choice of dielectric material [15].
For SiO2 films, inter-particle spacing up to 2 nm

is acceptable, which provides a minimum mobility of
10−1 cm2 V−1s, as calculated by Green et al. [1].
The nanocrystal density in the silicon-rich layers can be

controlled by tuning the composition of these layers dur-
ing deposition. A low silicon content leads to relatively few
isolated nanocrystals, and increasing the excess silicon
content will eventually lead to clustering of nanocrystals,
shown schematically in Fig. 1.
When the nanocrystal density is too low, the probabil-

ity of nearest-neighbor nanocrystal within 2 nm is too low.
In contrast, when the excess silicon content is too high,
nanocrystals are so closely spaced that they start clus-
tering, which reduces the quantum confinement in these
crystals. This means there is an optimal composition to
achieve a limited nanocrystal spacing, while limiting clus-
tering. In this letter, we demonstrate an analytical method
to optimize the composition and thickness of multilayer
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a b c

Fig. 1 Nanocrystal spacing and clustering. Nanocrystals formed in silicon-rich layers with relatively low (a), medium (b), and high (c) excess silicon,
separated by stoichiometric buffer layers

silicon oxide films in order to achieve the highest density
of non-touching and closely spaced silicon nanocrystals
after annealing.

Methods
Wedeposited approximately 100-nm-thick a-SiOx:H films
on Spectrosil 2000 quartz substrates in a radio frequency
plasma-enhanced chemical vapor deposition (PECVD)
reactor, operating at 13.56MHz. The following deposi-
tion parameters were used: a power density of 2.1 ×
10−2 Wcm−2, a deposition pressure of 1.4mbar, and a
substrate temperature of 95 °C. The film composition was
varied by changing the SiH4 over CO2 flow ratio from
0.07 to 0.37. A H2 flow rate of 200 sccm was used for all
depositions. n- and p-type films were fabricated by includ-
ing PH3 and B2H6 flows, respectively. The dopant over
SiH4 flow rate ratio was 2.0 × 10−3. The atomic composi-
tions of the silicon-rich and buffer layers were determined
using x-ray photoelectron spectroscopy measurements,
using a Thermo Scientific K-Alpha setup. The film sur-
face was etched with an ion gun prior to measurements to
remove surface contamination. Annealing was carried out
using a Tempress horizontal tube stack or a Solaris 100
RTA furnace for 1 h and 3 min, respectively. All samples
were annealed at 1000 °C, at atmospheric pressure and
in pure nitrogen gas. The composition of the buffer layer
used in these experiments is SiO1.3. Measurements show
that this stoichiometry is sufficiently high to prevent crys-
tallization for the annealing conditions used (not shown
here). Raman spectra were measured to determine the
crystallinity, using a Renishaw inVia setup in backscatter-
ing geometry, with a 25-mW Ar laser as excitation source
with a wavelength of 514 nm and focused on a spot of
approximately 1 μm. The crystallinity XC is the ratio of
the Si–Si bonds in crystalline phase over the Si–Si bonds
in amorphous and crystalline phase [16] and is calculated
as follows:

XC = ITO,c-Si
σ ITO,a-Si + ITO,c-Si

, (1)

where ITO,c-Si and ITO,a-Si are the integrated TO phonon
modes of crystalline and amorphous silicon, respectively.

σ is a factor to correct for the difference in scattering cross
section between these modes and is set to 0.8 [16].
Imaging the silicon crystals in the amorphous silicon

layer was done using a FEI Tecnai F20ST/STEM trans-
mission electron microscope (TEM) operated at 200 kV.
Thin samples for TEM were prepared in cross section fol-
lowing a standard procedure after gluing the two samples
together face to face: a 500-μm-thick lamella was cut out
using a diamond saw, subsequently thinned to approxi-
mately 15-μm thickness by mechanical polishing, glued
on a copper support ring, and argon ion-milled to elec-
tron transparency. The silicon nanocrystals were marked
using the freehand selection tool in ImageJ [17]. The sur-
face area was then determined, and an effective diameter
was recorded.

Results and Discussion
Figure 2 illustrates nanocrystals with radius r in a mul-
tilayer structure, including their parameters needed to
determine the inter-particle distance d.

Fig. 2 Nanocrystals in a multilayer structure shown schematically.
Nanocrystals in a multilayer structure shown schematically, including
the nanocrystal radius r, buffer layer thickness t, and inter-particle
distance d. The enclosing box around a nanocrystal is shown for the
right-hand nanocrystal
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We assume that the mean nanocrystal diameter equals
the silicon-rich layer thickness. In order to validate this
assumption, a multilayer sample with silicon-rich and
buffer layer thicknesses of 3 and 1 nm, respectively,
has been measured with high-resolution TEM, shown in
Fig. 3a.
The histogram of the obtained nanocrystal diameters

is shown in Fig. 3b. The mean nanocrystal diameter
obtained from TEM is 2.4 nm. Figure 4 shows the mean
nanocrystal diameter as a function of its silicon-rich layer
thickness of this sample, as well as data obtained by
Gutsch et al. [18].
For thin silicon-rich layer thicknesses, the deviation

between the mean nanocrystal diameter and the sample’s
silicon-rich layer thickness is reasonable. For thicker lay-
ers, the deviation increases. However, we should note that

a

b

Fig. 3 TEM image of a multilayer sample and its nanocrystal diameter
histogram. a Cross-sectional high-resolution TEM image of an
annealed multilayer sample with silicon-rich and buffer layer
thicknesses of 3 and 1 nm, respectively. b The histogram of the
sample’s nanocrystal diameters. Approximately 250 nanocrystals were
measured. The histogram is fitted with a log-normal probability
density function with μ = 0.83 nm and σ = 0.27 nm

Fig. 4 Nanocrystal diameter in a multilayer sample as a function of
the silicon-rich layer thickness. The mean nanocrystal diameter D̄
(solid symbols) and the mean equivalent diameter D̄equiv (open
symbols) for samples with varying silicon-rich layer thicknesses. The
black data points are obtained from Gutsch et al. [18]. The dashed line
represents the equality between the nanocrystal diameter and the
silicon-rich layer thickness

instead of being interested in nanocrystal diameters, we
are interested in the volume these nanocrystals occupy,
since that allows us to predict the nanocrystal density and
their inter-particle distance for varying stoichiometries
and crystallinities. The size distribution of such multi-
layer samples is log-normally shaped, as was observed by
Gutsch et al. [18] and can be seen from Fig. 3b. Since the
volume of the nanoparticles depends on the third power
of their radius, the larger nanocrystals have a greater
contribution to the mean volume V̄ . This is given by

V̄ =
∑ 4

3πr
3

nNC
, (2)

where r and nNC are the nanocrystal radius and the num-
ber of nanocrystals obtained from TEM, respectively. The
equivalent diameter of the mean nanocrystal D̄equiv can be
expressed by

D̄equiv = 2 3

√
V̄
4
3π

. (3)

Combining Eqs. (2) and (3) results in

D̄equiv = 2 3
√〈

r3
〉
, (4)

where 〈r3〉 represents the mean value of r3. The equiva-
lent diameter of the sample shown in Fig. 3 is 2.6 nm and
is shown in Fig. 4 along with the equivalent diameters of
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the data obtained by Gutsch et al. [18]. Because of the
asymmetrical, log-normally shaped nanocrystal size dis-
tributions, all equivalent diameters are greater than their
corresponding mean diameters. In general, the equiva-
lent diameters are very close to the assumed equality
between the nanocrystal diameter and the silicon-rich
layer thickness. This result implies that our assumption
is reasonable, at least up to silicon-rich layer thicknesses
up to 4.5 nm. Fortunately, this range is most interest-
ing for photovoltaic purposes because of their increased
confinement.
Note that we do not include a core/shell structure in

this approach. An amorphous sub-oxide shell is likely to
form around silicon nanocrystals [7, 19]. Iacona et al. mea-
sured a shell to be approximately 1 nm thick [20]. This
thickness corresponds with theoretical calculations and
experimental measurements by Daldosso et al. [21]. How-
ever, Queeney et al. determined the shell thickness to be
less than 6 Å [22]. Zimina et al. measured shell thicknesses
of 2 to 5 Å and suggested a dependence on nanocrystal
size [23]. These disagreeing results complicate the incor-
poration of a core/shell structure in our method. Since the
aim of this publication is to provide a simple method to
predict the inter-nanocrystal distance, we do not include
the core/shell structure.
In order to optimize the density of non-touching and

closely spaced silicon nanocrystals, the nanocrystal den-
sity in the silicon-rich layers should be determined first.
This depends on the excess silicon in these layers and can
be calculated from its composition as follows:

SiOx → x
2
SiO2 +

(
1 − x

2

)
Si. (5)

The excess silicon can be in amorphous or crystalline
phase, so the total atomic density in the layer ρlayer is given
by

ρlayer = �c-Siρc-Si + �a-Siρa-Si + �SiO2ρSiO2 , (6)

where ρc-Si and ρa-Si are the atomic densities of c-Si and
a-Si, respectively; ρSiO2 is the molecular density of SiO2;
and �c-Si, �a-Si, and �SiO2 are their respective atomic
and molecular percentages. Using the definition of crys-
tallinity and Eq. (5), the atomic percentages of c-Si, a-Si,
and SiO2 can be written as

�c-Si = XC
(
1 − x

2

)
· 100% (7)

�a-Si = (1 − XC)
(
1 − x

2

)
· 100% (8)

�SiO2 = x
2

· 100% (9)

The atomic density of c-Si in the layer can then be deter-
mined by

ρc-Si,layer = �c-Siρlayer. (10)

The number of atoms in a nanocrystal is NNC =
4
3πr

3ρc-Si, which can be used to calculate the 2D
nanocrystal density n2D in a silicon-rich layer with thick-
ness 2r

n2D = ρc-Si,layer

NNC
2r. (11)

Figure 5a shows the 2D nanocrystal density for a sam-
ple with silicon-rich and buffer layer thicknesses of 3 and
1 nm, respectively, using ρc-Si, ρa-Si, and ρSiO2 5.0 × 1028,
5.0 × 1028, and 2.2 × 1028 m−3, respectively [24–27].

a

b

c

Fig. 5 Nanocrystal density, NN probability, and NN density. The 2D
nanocrystal (NC) density (a), the probability of finding a nearest
neighbor (NN) within 2 nm (b), and the density of nanocrystals with a
NN within 2 nm (c) as a function of the silicon-rich layer composition
and crystallinity for a sample with silicon-rich and buffer layer
thicknesses of 3 and 1 nm, respectively. The black diamonds represent
tube furnace annealed intrinsic samples. The red,magenta, and blue
squares show intrinsic, p-type and n-type samples annealed using RTA
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The 2D nanocrystal density is highest for silicon-rich
layers with high crystallinity and low stoichiometry. How-
ever, in that case, the nanocrystal density can be so high
that crystals cluster together as illustrated in Fig. 1c. To
find the fraction of nanocrystals that are properly spaced,
we use the probability density function F of finding a
nearest neighbor at distance d for a nanocrystal in a mul-
tilayer sample. For randomly distributed point particles,
this is given by [28]

F (d) = (
4j + 2

)
n2Dπd exp

[− (
2j + 1

)
n2Dπd2

] ×

exp
[
n2Dπ t2j

(
j + 1

) (
2j + 1

)
3

]
, (12)

where t is the buffer layer thickness and j = �r/t�. Note
that this probability density function describes center-
to-center distances. Integrating this equation from 2r to
2r+2 nm provides the edge-to-edge probability of finding
a nearest neighbor within 2 nm for a multilayer structure
with silicon-rich layer thickness of 3 nm. This is shown in
Fig. 5b and confirms that the optimal probability of find-
ing the nearest neighbor between 0 to 2 nm is very low
in the range where the 2D nanocrystal density is highest,
caused by clustering of the nanocrystals. We can find an
optimum stoichiometry for a given crystallinity using the
result shown in Fig. 5b, but aside from proper spacing of
nanocrystals, we are also interested in a high nanocrystal
density. Integrating Eq. (12) and multiplying with the 2D
nanocrystal density provides the non-touching nanocrys-
tal density with a nearest neighbor within d

nNN (d) = n2D
∫ 2r+d

2r
F (d) dd. (13)

The nanocrystal density with a nearest neighbor within
2 nm for a sample with silicon-rich layer thickness of 3 nm
is shown in Fig. 5c. The highest non-touching nanocrys-
tal density for this structure can be achieved by tuning the
silicon-rich layer’s composition from pure Si to approxi-
mately SiO1.5, with crystallinity values of 0.15 to 1, respec-
tively. A too high crystallinity for layers with relatively low
stoichiometry will lead to clustering, while too low crys-
tallinity in layers with high stoichiometry will result in
separated but too isolated nanocrystals.
We deposited multilayer films with silicon-rich layer

and buffer layer thicknesses of 3 and 1 nm, respectively,
and varied the silicon-rich layer’s compositions and dop-
ing. The films were annealed in a tube furnace or rapid
thermal annealing furnace. The crystallinity of these films
after annealing are shown in Fig. 5.1 The crystallinity

in our films does not exceed 0.4. We expect that this
is caused by incomplete phase separation prior to crys-
tallization, as observed before for silicon oxide films
deposited using PECVD [29]. This means that only part of
all excess silicon (see Eq. (5)) clusters into silicon nanopar-
ticles, which can subsequently crystallize. The rest of the
excess silicon remains in the surrounding matrix, which
will not be SiO2, but has a lower stoichiometry. This in
turn will lower its energy barrier, increasing the tunneling
probability and possibly enlarge the inter-particle distance
at which the mobility remains sufficiently high [30]. How-
ever, for simplicity, we will keep an inter-particle distance
range from 0 to 2 nm. Assuming a maximum achievable
crystallinity of 0.4 for PECVD films, an optimal stoi-
chiometry to achieve the highest density of non-touching,
closely spaced nanocrystals can be found. This optimal
stoichiometry is SiO0.84. In contrast, films deposited using
magnetron sputtering are reported to lead to complete
phase separation [29]. Assuming all silicon clusters crys-
tallize upon annealing, this will lead to a crystallinity
equal to unity. In reality, the sub-oxide shell around the
nanocrystal core will limit complete crystallization [31],
but for simplicity, we assume a crystallinity equal to unity.
In that case, the optimal stoichiometry of the silicon-
rich layers is approximately SiO1.4 for this structure. Note
that in both cases, the 2D nanocrystal density with near-
est neighbor within 2 nm is 1.3 × 1012 cm−2. This value
corresponds well with results obtained experimentally
by Laube et al. for single 4.5-nm-thick layers [32] and
is slightly lower than experimental results obtained by
Gutsch et al. for single 3.5-nm-thick layers [18]. How-
ever, we should note that these reported values are the
total nanocrystal density, while we estimated the iso-
lated nanocrystal density with nearest neighbor within
2 nm. This excludes clustered nanocrystals and too iso-
lated nanocrystals, which inevitably leaves out a portion of
the total nanocrystal density. Furthermore, the thickness
of the silicon-rich layer affects the estimated nanocrystal
density, with lower values for thicker layers.
The optimal stoichiometry decreases for increasing

silicon-rich layer thicknesses, as shown in Fig. 6.
Note that the model’s accuracy decreases for greater

silicon-rich layers thicknesses, as shown in Fig. 4.
Nonetheless, from a theoretical perspective, the observed
trend for thick silicon-rich layers is still interesting. This is
caused by the differences in volume between a nanocrys-
tal and its enclosing box (see Fig. 2). The volume of a
nanocrystal is 4

3πr
3, and its enclosing box is approxi-

mately 2r(2r + d)2. The volume ratio of the enclosing box
over the nanocrystal decreases with increasing silicon-
rich layer thickness, explaining the trend observed in
Fig. 6 for relatively large silicon-rich layer thicknesses.
However, for very small silicon-rich layer thicknesses, the
optimal composition does not vary. To explain this, we
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Fig. 6 Optimal stoichiometry. The optimal stoichiometry for films
with varying silicon-rich layer thicknesses for a sample with
crystallinity of 1 (solid line) and 0.4 (dashed line). The buffer layer
thickness is kept constant at 1 nm

look closer into their probability density functions, shown
in Fig. 7.
The peak at 1 nm is caused by the availability of near-

est neighbors in the neighboring silicon-rich layers. The
probability density function broadens for larger silicon-
rich layer thicknesses because its standard deviation is
related to the 2D nanocrystal density by σ2D ∝ 1/√n2D
[28]. Since n2D decreases for greater silicon-rich layer

Fig. 7 Nearest-neighbor distance probability density functions. The
nearest-neighbor distance probability density functions for samples
with silicon-rich layer thicknesses of 1.5, 2, and 3 nm and buffer layer
thickness of 1 nm, calculated using their respective optimal
compositions. The gray area depicts the range of desired
nearest-neighbor distances. Shorter distances imply clustering, and
greater distances lead to an insufficient tunneling probability

thicknesses, the probability density functions broaden.
The optimal composition depends on the probability of
finding a nearest neighbor within a limited range (2 nm
for SiOx). For silicon-rich layer thicknesses up to approxi-
mately 2 nm, the probability of finding a nearest neighbor
beyond 2 nm is negligible, as can be observed in Fig. 7.
For these thicknesses, there is no reason to increase the
nanocrystal density, since more closely packed nanocrys-
tals will not increase the probability of finding a near-
est neighbor within 2 nm. On the contrary, an increase
in nanocrystal density will increase the probability of
clustering.

Conclusions
We demonstrated an analytical method to optimize the
composition of a silicon-rich layer for different crystallini-
ties and thicknesses in order to achieve the highest density
of non-touching and closely spaced silicon nanocrystals
after annealing. The optimal stoichiometry depends on
the crystallinity decreases for increasing silicon-rich layer
thicknesses. However, for very small silicon-rich layer
thicknesses, the optimal composition does not vary. This
method can be used to find the best as-deposited compo-
sition in order to achieve optimal nanocrystal density and
spacing after a subsequent annealing step.

Endnote
1Note that the buffer layer composition is not stoichio-

metric and therefore will contain some excess silicon as
well. This excess silicon will increase the amorphous Si–
Si bond density, resulting in an underestimation of the
crystallinity. However, since the buffer layer thickness is
only 1 nm, compared to 3 nm for the silicon-rich layer,
we expect this effect to be limited and assume it can be
neglected.
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