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Summary

Starting from a number of specific belt parameters, the dynamic behaviour of a

belt system is mathematically described using an analytical as well as a
discrete, or finite element, approach. The analytical approach is only applicable to
describe the dynamic behaviour of a simplified belt system during stationary operation
whereas the discrete approach is the only approach for real complicated systems to
describe both the stationary and the non-stationary operation.

The analysis of the stationary operation of belt systems focuses on the
determination of the amplitudes of transverse vibration of belt spans supported by two
rolls. For this purpose a system of two coupled equations of motion is derived. The
amplitude of transverse vibration of a belt span is normally small and the linear
solution of the equations of motion is accurate. However, if a belt span is excited in
or near a resonance frequency due to direct or parametric excitation, this amplitude
can increase considerably and only the non-linear solution is accurate. An asymptotic
non-linear solution, based on a perturbation method, is given and has been verified by
experiments. Based on the results of this verification, criteria have been set up to
design so-called resonance free belt supports.

The analysis of the non-stationary operation of belt systems focuses on the
question whether the transient belt tension is admissible and whether the performance
of the system is acceptable. A software system called TUDBELT, based on the finite
element method, has been developed for this purpose. The structure of TUDBELT is
object-oriented and includes a description of all major components of belt conveyor
systems. With this software system calculations can be performed to simulate the non-
linear dynamic behaviour of a belt system. The finite element description also
includes a detailed description of the motion resistances of the belt and the dynamics
of the drive system. A number of simulations have been performed to determine the
influence of the start-up procedure, specified in velocity profile and duration of the
procedure, on the maximum belt tension and the performance of the belt system. The
results of these simulations are compared with the results of simplified analyses.

This thesis focuses on the dynamics of belt systems for bulk solids transport.
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Summary

As an example a horizontal belt conveyor system of 1 kilometre length driven
by an induction motor, controlled by a static power converter (SPC), has been
chosen. The shortest start-up time can be obtained when the acceleration of the drive
pulley is kept constant and the start-up supply frequency of the SPC is about 10 to 20
% of the stationary supply frequency. A good estimation of the upper limit of the
start-up time for the considered conveyor in case of a start-up with constant
acceleration can be achieved using the maximum belt force during stationary
operation, the maximum acceleration force, the required safety factors on the belt
tension during stationary and non-stationary operation and the stationary belt speed.




Samenvatting

n dit proefschrift ligt het accent op de dynamica van bandtransporteurs. Uitgaande

van een aantal karakteristieke bandparameters, is het dynamisch gedrag een

bandsysteem wiskundig beschreven volgens zowel een analytische als een discrete,
of eindige elementen, benadering. De analytische benadering is alleen bruikbaar voor
de beschrijving van het dynamisch gedrag van een vereenvoudigd bandsysteem tijdens
de stationaire toestand. De discrete benadering daarentegen, is de enige benadering
waarmee het dynamisch gedrag van gecompliceerde bandsystemen tijdens zowel de
stationaire als de instationaire toestand beschreven kan worden.

Bij de analyse van de stationaire toestand gaat de aandacht met name uit naar
de amplitudes van transversale trillingen in bandsegmenten ondersteund door twee
rollen. Hiervoor is een gekoppeld stelsel van twee bewegingsvergelijkingen afgeleid.
Normaal zijn de trillingsamplituden klein en is de lineaire oplossing van het stelsel
van bewegingsvergelijkingen nauwkeurig. In geval van directe of parametrische
excitatie van een bandsegment in of dichtbij een eigenfrequentic kunnen deze
amplitudes aanzienlijk zijn en is alleen de niet-lineaire oplossing nauwkeurig. Een
asymptotische, niet-lineaire oplossing, gebaseerd op een perturbatie methode, is
gegeven en geverifieerd met behulp van experimenten. Op grond van de deze
verificatie zijn criteria opgesteld waarmee zogenaamde “resonantie vrije
bandondersteuningen” ontworpen kunnen worden.

De analyse van de niet stationaire toestand is vooral gericht op de vraag of de
bandspanningen tijdens die toestand toelaatbaar zijn en of het bandsysteem op
acceptabele wijze functioneert. Voor deze analyse is het computerprogramma
TUDBELT geschreven, gebaseerd op een eindige elementen model. De structuur van
TUDBELT is object georiénteerd en bevat een beschrijving van alle belangrijke
componenten van een bandtransporteur. Met dit programma kunnen berekeningen
worden uitgevoerd waarmee het niet-lineaire dynamisch gedrag van een bandsysteem
gesimuleerd kan worden. Bij de ecindige elementen beschrijving van de
bandtransporteur is ook aandacht besteed aan de bewegingsweerstand die een band
ondervindt en de dynamica van de elektrische aandrijving. Met het
computerprogramma zijn een aantal simulaties uitgevoerd om de inviced van de
aanloopprocedure, gespecificeerd door snelheidsprofiel en tijdsduur, te onderzoeken
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op de maximale bandspanning en het functioneren van een bandtransporteur. De
resultaten van deze simulaties zijn vergeleken met de resultaten van vereenvoudigde
berekeningsmethoden.

Als voorbeeld is gekozen voor een horizontale, 1 kilometer lange transporteur
die wordt aangedreven door een elektromotor gestuurd door een frequentieregelaar.
Gebleken is dat de kortste aanlooptijd gerealiseerd kan worden wanneer de versnelling
van de aandrijfrommel constant wordt gehouden en de frequentieregelaar een
startfrequentie heeft van ongeveer 10 tot 20 % van de stuurfrequentie tijdens stationair
bedrijf. Tevens is gebleken dat in dit geval, uitgaande van de maximale bandkracht
tijdens stationair bedrijf, de maximale acceleratiekracht, de veiligheidsfactoren op de
bandspanning tijdens stationair en instationair bedrijf en de bandsnelheid tijdens
stationair bedrijf, een goede bovengrens voor de tijdsduur van de aanloopprocedure
met constante versnelling gevonden kan worden.
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Nomenclature

Capitals

A cross sectional area of the belt

A cross sectional area of the bulk solid material

Ac cross sectional area of a steelcord

Am cross sectional area of a steelcord carcass

B belt width

Ces design capacity of a belt conveyor system

C,. mass ratio of a loaded belt

Cy mass ratio of an unloaded belt

G reference configuration

D diameter of an idler roll

D, diameter of an idler roll accounting for the curvature of the belt
Dy/D; linear/nonlinear deformation function

E’ storage modulus

E” loss modulus

E’ lateral flexibility

E, effective Young’s modulus of a belt

E. Young’s modulus of a carcass

Eq dynamic Young’s modulus of a belt

E, Young’s modulus of the matrix material

E, Young’s modulus of a steelcord

E;» Young’s moduli of the three parameter solid model
Fg breaking strength of a yarn or cable

Fy drive force

Fg belt guiding force due to vertical belt and bulk material load
F indentation rolling resistance force per unit width
F kinematic transfer function

Fr belt guiding force due to friction

Fr traction force

F, vertical belt load per unit width

I, nominal motor current

Lo moment of inertia of an idler roll

I, moment of inertia of a belt with respect to the x-axis
Ka start-up factor

Ks

static belt sag ratio

[m’]
[m7]
[m’]
(m’]
[m]
[kg.s"]
[1
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Nomenclature

L idler spacing

L.w  conveyor length

L, rotor inductance

L, stator inductance

Leow  length of the belt conveyor system

M mass matrix

M; resistance moment of a bearing of an idler roll
M, mutual inductance between two rotor phases
M, mutual inductance between two stator phases
M, mutual inductance beween a stator and a rotor phase
N matrix of shape functions

N, number of steelcords per mm belt width

N; number of fabric plies in a carcass

N, number of yarns per mm fabric width

Po2 dimensionless flexural stiffness

P’ inverse initial static strain

P Euler buckling load

R radius of an idler roll

R, rotor resistance

R, stator resistance

Ra radius of a horizontal curve

S actual safety factor

Sa safety factor of a nonstationary moving belt
Sp safety factor of a stationary moving belt

S matrix of elasticity constants

Sq matrix of damping constants

T belt tension

T, start-up time

8] dimensionless axial displacement

U, nominal motor voltage

v dimensionless transverse displacement

Vy belt speed

Ve volume fraction of carcass material in a beit
X dimensionless axial co-ordinate

Z nominal impedance

Non capitals

a dimensionless amplitude

[ longitudinal wave speed

C axial propagation speed of transverse waves
b, total thickness of the side covers of a belt
d, total thickness of a belt

d thickness of a carcass

thickness of a fabric ply

[m]

[m.s'I]
(m.s’]
[m]
[m]
[m]

fm]




Nomenclature

d, thickness of lower belt cover [m]
dy mean tickness of a belt cover [m]
d, thickness of upper belt cover [m]
f force vector [-1
f, acceleration rolling resistance factor [-]
£, horizontal curve resistance factor -1
f, bearing rolling resistance factor [-]
f, steel cord fill factor [-]
f; indentation rolling resistance factor [-]
£, correction factor for the indentation rolling resistance factor -1
f, total rolling resistance factor [-1
h

thickness of visco-elastic belt under cover [m]
i supply current (A]
iy radius of gyration [m}]
i vector of phase currents [-]
ks bending rigidity parameter [-]
ke unit strength of a carcass [N.mm}
ke unit fabric strength [N.mm'}
kn standarised unit strength of a belt [N.mm'']
1 length of a deformed element [m]
1 initial length of an element {m]
m;,, belt mass per unit of length fkg.m]
ml’)ulk mass of the bulk material on the belt per unit of length [kg.m'l]
m:ou reduced mass of the idlers per unit of length [kg.m'I]
Mg reduced mass of an idler [kg]
n number of revolutions of a shaft [rpm]
P number of pole pairs [-]
q distibuted belt load [N.m]
qi component of the vector of independent nodal co-ordinates and deformations  [-]
T internal roll radius fm}
To12 reduction factor of the safety factor [-]
S slip [-]
t time [s]
u axial displacement [m]
u vector of phase voltages [-]
U supply voltage V1
v transverse displacement {m]
X cartesian co-ordinate [
X; nodal co-ordinate [-1
y cartesian co-ordinate [-]
z cartesian co-ordinate [-]
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Nomenclature

Greek capitals

r load ratio [-]

@ retardation function I-]

¥ relaxation function [N.m™]
Q dimensionless frequency [

Greek non capitals

oy, trough angles (-1
B speed ratio -l
bi deformation tensor [-]
3 loss angle I]
3, inclination angle of a belt conveyor system [-]
€ strain [-]
g generalised strain [-1
n damping factor [N.m®.s)
Nef fabric strength efficiency in a carcass -}
Nie steel wire efficiency in a steelcord [-]
Ny yarn strength efficiency in fabric {-]
tilt angle of an idler station [-]
%] super elevation angle of an idler station (Chapter 5) / rotor angle (Chapter 6)  [-]
ratio between the stiffness of the belt tensioner and that of the belt [-]
n perturbation parameter []
Mbr friction coefficient between belt and idler roll [-]
v Poisson’s ratio [-]
£ length co-ordinate -l
p density of the belt material [kg.m"]
Phulk density of the bulk solid material [kg.m™]
c stress [N.m?}
o; generalised stress [N.m]
T relaxation time sl
P angle of surcharge [-1
y,,  alignment angles [-]

® frequency s




Chapter 1

Introduction

the dimension in one direction, referred to as the axial direction, is much

larger than in the other two directions. In many cases a one-dimensional
approach is eligible for a proper description of the configuration. If belts, tapes and
cables are applied in mechanical systems like belt conveyors, tape recorders and
monocable ropeways, they are often referred to as axially moving materials or axially
moving continua. In this thesis the name axially moving materials is adopted. Other
examples of the application of axially moving materials encompasses mechanical
systems such as high-speed magnetic and paper tapes, cable tramways, skilifts, band
saws, axially moving threadlines, strings, wires and fibres, pipes that contain flowing
fluid and power transmission chains and belts.

In this thesis systems that combine a belt and a supporting structure to
transport information, energy and/or materials are called belt systems. In belt systems
the belt may be supported by rolls or wheels and plates or bars, or by an air film. The
belt may be endless and can be used as a carrier of information or materials, or the
belt itself can be transported. In general an endless belt is a permanent part of a
system whereas a non endless belt is mostly not a permanent part of a system.

Belts, tapes and cables, just as beams and rods in general, have in common that

The dynamic behaviour of a belt system depends on the belt load, the
properties of the belt, the characteristics of the support structure, including the drive
system, and the interaction between belt and support structure. Important properties of
the belt, which also determine the propagation speed of stress waves in the belt and its
energy consumption, include the density of the belt material, Young's modulus, the
flexural rigidity and the visco-elastic properties of the belt covers. The characteristics
of the belt support structure include the drive characteristics, the rotational inertia of
the rolls and pulleys, and the friction in their bearings. The interaction between the
belt and the support structure is mainly determined by the belt tensioner, the roll or
idler spacing, the roll diameters and the belt speed.

The dynamic behaviour of a belt system can be ascertained by determination of
vibrations of the belt and the belt tensioner. Severe belt vibrations should be
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prevented since they cause operational and maintenance problems, including excessive
wear of the belt and the support components, and an increase of the energy
consumption of the system. The frequencies of transverse vibrations of the belt,
however, indicate the belt tension and its condition and therefore these frequencies
can be used in monitoring systems. The analysis of the vibrations and the dynamic
stability of belt systems and also the prediction of the response to general excitation
are essential to the optimal design of a broad class of technical devices. A distinction
can be made between the dynamic bebaviour of belt segments or belt spans and that of
the entire belt system.

If the dynamic behaviour of one belt span is of interest it may be considered as
uncoupled and isolated from the remainder of the system by its support by wheels,
rolls, pulleys or guide bearings, assuming high wheel inertia, infinite rigidity of the
supporting structure and negligible belt sag compared to the roll or idler spacing.
Excitation of transverse vibrations caused by the interaction of the belt and its
supports is common and significant. Roll eccentricities and belt imperfection, in
particular those in the belt splice, are major causes of these excitations. During the
manufacturing process a number of imperfections will be introduced into the belt.
These imperfections may be geometric in nature, such as thickness or width
variations, or possibly changes in the mechanical properties of the cross section.
Resonance phenomena occur when the excitation frequency approaches a natural
frequency of the moving supported belt span. In addition to resonance due to direct
excitation, axially moving materials may exhibit instabilities due to parametric
excitations caused by belt tension fluctuations. The natural frequencies of transverse
vibration of an axially moving belt decrease with increasing belt speed. At a critical
belt speed these frequencies are zero. This critical speed increases with increasing
longitudinal velocity of the transverse waves.

Transverse vibrations of an endless belt couple the response of the entire belt
to that of the support rolls or wheels. The model describing the motion of one span
cannot be uncoupled from the remainder of the system without loss of model validity.
The static belt sag couples the different spans and the wheels. Wheel or roll inertia,
stiffness of the belt tensioner and the belt tension and speed are other parameters that
govern the degree of coupling. Besides the resonance phenomena mentioned above,
tensioner resonance may also occur in a belt system when the excitation frequency is
equal to the natural frequency of the (spring) tensioner system.

The travelling flexible string and the travelling, tensioned Euler-Bernoulli
beam are the most common models of axially moving materials. Due to the simplicity
of the linear models that are usually used, their responses to general excitation and
given initial conditions do not represent the true responses in case of low belt tension
or large belt sag which cause large amplitudes of vibration. Analytical studies of non-
linear models based on a perturbation method can be used to improve the solution
obtained from the linear approach. To determine the response of a total belt system,




Introduction

including the support rolls or wheels, models based on the finite element method
(FEM) are best suitable.

1.1 Aim and scope of the study

This study focuses on the application of models of belt systems used in the field of
bulk solids transport. In view of their world-wide use and proven reliability, belt
conveyors are of considerable importance for continuous transport of bulk solids. Due
to improvements in design procedures and in the manufacturing of belt conveyor
systems, the use of belt conveyors is no longer restricted to in-plant movement of bulk
solid materials and they are now used for long distance overland transportation as
well.

Current belt conveyor research and development cover the following areas:

1) belt conveyor dynamics, including:

— design of starting and stopping procedures

— determination of dynamic belt stresses

— transverse vibrations of conveyor belts and the influence of idler spacing
and troughing configuration

— stability of motion of belts and the bulk solid on conveyor belts

— booster drives to reduce belt tensions and permit longer individual span

length

2) belt monitoring, including: :
— belt tension monitoring employing acoustic and electro-magnetic devices
— belt crack detection employing ultra-sonic devices

3) conveyor belt performance and economics, including:

— calculation of the rolling resistance, taking into account belt rubber
hardness, sag, troughing configuration, idler/belt interaction and ambient
operating temperature

— conveyor belt/drive drum friction, taking into account rubber hardness,
surface roughness and wrap angle

4) design of transition geometries, including:
— design of horizontal and vertical curves
~ design of troughing zones
5) splice design and analysis
6) belt cleaning including carry-back measurement and development of improved
cleaning efficiencies
7) improved quality control in belt and component manufacturing
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The first three subjects are considered in this thesis. Starting from finite element (FE)
models of belt conveyors described in the literature, a new FE-model has been
developed. Current FE-models of belt conveyors can only simulate the axial elastic
response of the belt to general excitation and given initial conditions. However, an
important aspect of modern belt conveyor design is the analysis of resonance
phenomena in an axially moving belt span supported by two idlers. To consider both
axial and transverse elastic response of the belt, the new FE-model permits simulation
of the transverse elastic response and coupling of the axial and transverse responses.
This allows the design of belt supports that prevent resonance of transverse vibration
of the belt, the so-called resonance free belt supports, and the solution of operational
problems including the lifting of the belt from its supports. To determine the nature of
transverse belt vibrations and the parameters which govern these vibrations an
analytical approach is used. The accuracy of the results obtained from this approach
has been verified by experiments. During the design process of a belt conveyor
system the choice of the type of the conveyor belt to be used is important since the
dynamic performance of the belt mainly depends on its mechanical properties. These
properties were included in the model to enable comparison between different types of
belts. To maintain a consistent level of accuracy of the total model this demanded the
development of accurate models of the drive system and the resistances met by the
belt during motion through the conveyor. To facilitate the application of the
knowledge gained in this research project, simulation tools have been developed
which can be used in the design stage of belt conveyor systems.

1.2 Contents of the thesis

Chapter 2 is devoted to essential aspects of the mathematical and finite element
techniques, and to software engineering.

In Chapter 3 the material properties of belts are highlighted. A number of
characteristic ratios have been derived which enable a quick comparison of the
relevant properties of different types of belts. These ratios are used in the following
chapters.

Chapter 4 addresses the analytical modelling of general belt systems. An
overview of models described in the literature is given and a model which can be used
to determine the transverse vibration of a belt span has been derived.

Chapter 5 deals with the motion resistance of belt conveyors, in particular the
indentation rolling resistance of the belt and the resistance in horizontal curves.

In Chapter 6 the components of a drive system are highlighted. An explanation
of the components that are used and the criteria that affect the selection of these
components is given.
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Chapter 7 is devoted to the discrete modelling of belt systems. A finite element
representation of the belt and the drive components is presented. The results from
simulations with this model are shown in Chapter 8.

In Chapter 9 the transverse vibrations of belt spans are investigated. The
relation between the frequency of transverse vibration and the axial belt speed is
shown and its practical relevance is illustrated. The results obtained from experiments
are used to verify the theoretical models derived in previous chapters.

Chapter 10 is devoted to the conclusions, design aspects and practical
recommendations. In particular, methods to select an optimal start-up procedure of
belt conveyor systems and the design of resonance free belt supports are considered.







Chapter 2

General theory

techniques and the software engineering used in this study are considered. The

In this chapter the mathematical background and techniques, the finite element
definitions given are used in the following chapters.

2.1 Mathematical background and techniques

In this section some aspects of the elementary matrix and vector theory are
highlighted.

2.1.1 Matrices and vectors

A matrix, denoted by a bold capital, is a rectangular array of real or complex
numbers. With the numbers A;; , also called the elements or components of A, an M x
N matrix A can be written as [Bowen and Wang, 1976]:

Ay sz o Am
A A, A

A= 21 :-z 2N @.1)
Avi Ay Ay

This matrix can be subdivided into a number of submatrices, for example:

A, A
A= [ 11 12jl 2.2)
Ay Ay

If two square matrices A and B are of the same order and such that AB=BA=I then
B is called the inverse of A and can be written as B=A"" . If A has an inverse then it
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is said to be nonsingular. If A and B are both nonsingular matrices then
(AB)"' =B™'A™' . The matrix of order N x M obtained by interchanging the rows and
columns of the M x N matrix A is called the transpose of A and is denoted by A™ . It
can easily be shown that (AB)” = B'A” .

A vector, denoted by a bold lower case, is a one-dimensional array of real or complex
numbers. For example the vector b can be written as:

b,
b

b= 52 =[b, b, - by] 2.3)
bM

If the elements of a vector or matrix are time dependent then their differentiation is
defined as the vector or matrix of the differentiated elements. For example:

‘f\n f:\u Am
0 _ 4 o An An 7 An 2.4)
dt : : oo

Avi A 0 Ay

The integration of a vector or matrix is defined as the vector or matrix of the
integrated elements. For example:

[Audt [Ade o [Ade

[ A= J-A:zldt | A:22dt | A?th 2.5

jA;ﬂdt | A,‘mdt . _[A,;det

2.1.2 Vector valued functions and maps
Let X and Y be two vector spaces and x and y two vectors, xeX and ye¥. Linear
mappings between vector spaces will be denoted by capitals and the corresponding

matrices by bold face capitals. If F is a linear mapping then it is defined by:

F:FX—>Yor y=Fx, xeX, yeY (2.6)
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where F is a matrix. However, linear mappings are sometimes too restrictive.
Therefore also non-linear mappings, for which the relation between x and y is non-
linear, are considered. Non-linear mappings are denoted by capital italics and the
corresponding non-linear functions by bold face capital italics. If F is a non-linear
mapping then it is defined by:

F:X—>Yor y=F(x), xeX,yeY 2.7

Manifolds may be defined as subsets of an m-dimensional space R™ in which the
manifolds are embedded. The manifolds considered in this thesis are defined by m-n
algebraic equations as:

Fx)=0 .8)

where. F is an (m-n)-dimensional vector valued function of x €R™which is
sufficiently many-times differentiable. The manifold is now an n-dimensional surface

in the space R™. Let F be a non-linear map of a manifold M(X) into a manifold
M(Y),

F:M(X) > M(Y)ory=F(x),x eM(X),y<cM() 2.9

F is differentiable at a point if its local representative is differentiable. The
components of the derivative map DF, that are partial derivatives of F at x=x,, can
be associated with the so-called Jacobian matrix of Fat x;:

OF,

D; F(xy) = F;(x0) = ——

2.10
" (2.10)

Xo

If there is no possibility of confusion then the point of application x, may be omitted.

The components of the second order derivative D> F can be associated similarly with
the second order partial derivatives of the vector function F :

D, F =F, 0 [ﬂ:—] 2.11)

T AT
W ox, \ 0k,

Let X, Y and Z be three vector spaces, G a mapping of X into ¥ and F a mapping of ¥
into Z, thén H:X — F(G(X)) is a mapping of X into Z, which is said to be composed
of F and G (in that order), and denoted by H=F - G. The components of the
derivative map DH are defined by:
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D,H=D,(F-G)=DF-DG (2.12)
The components of the second order derivative map D* H follow from the chain rule:
D,H =D, (F-G)=(D’F-D,G)-D,G +DF -D,G (2.13)

It is often convenient to think of X as a mapping from /(R') into U(R’):
X:I->Uorx=X(t),xeU,tel (2.14)

The image of I under the mapping X is called a trajectory. If F is a mapping from
U(R’) into V(R’) then the mapping ¥, which is composed of X and F , can be
written as:

Y:I>Vor y=Yt)=F-X(t),yeV,tel (2.15)
From equation (2.14) the derivative map DX is defined by:
DX:I—-TU or x=DX(t), xeTU ,tel (2.16)

where TU is the so-called tangent space to U. With the equations (2.12) and (2.15) the
derivative map DY = D(Fe X) is:

DY:I—- TV ory =DY(t) =DF -DX(t) =DF -x , y €TV ,t €/ (2.17)
The second order derivative map D* X follows from equation (2.16):
D*X:[—> T°U or % =D’X(t), xeT°U ,tel (2.18)

where T°U is the tangent space to TU. From the equations (2.17) and (2.18), the
second order derivative map D> Y is given by :

D*Y:1— T’V or y = (D’F -DX(t)) - DX(t) + DF - D*X(t)
=(D’F-%) - x+DF-x, yeT?V ,tel

(2.19)
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2.2 Finite element techniques

A specific finite element theory for the analysis of multibody systems was initiated
and developed by Besseling {1977 and 1982}, Van der Werff [1977] and Jonker
[1988]. It was originally designed for the kinematic and dynamic analysis of
mechanisms and manipulators with a number of flexible links. The description starts
from the expressions of the element deformation modes, the so-called generalised
strains, as non-linear functions of the nodal co-ordinates. This is an algebraic
analogue to the continuous field description of deformations. The deformation of an
element is taken into account in case of a flexible element whereas it is zero in case of
a rigid element. Deformable elements are handled by allowing non-zero deformation
parameters for these elements and by specifying constitutive equations relating the
deformation and the dual stress parameters. Instead of imposing constraint equations
for the connection between different parts of a mechanism, permanent contact
between the parts or elements is achieved by letting the elements have displacements
and certain rotations of the nodal points in common.

The usefulness of this approach for the dynamic analysis of (flexible) belt
systems can be illustrated by consideration of the description of the contact between a
roll support and the belt. If constraint equations are used to account for the (sliding)
contact between the belt and a roll then these equations have to be adjusted
continuously, depending on the time dependent position of the belt on the roll. This
adjustment can be omitted by application of a special roll supported belt element, with
extra zero deformation modes, that accounts for the contact between the roll and the
belt. Therefore the application of special elements, of which the deformation modes
represent the physical character of a coupling, enable an efficient finite element
description of a belt system.

2.2.1 Finite element description

The global position of each element, denoted with a superscript €, is specified by a set
of nodal co-ordinates, x° € X° , which may be Cartesian co-ordinates or co-ordinates
that describe an orientation. The assembly of the co-ordinate subspaces X° form the
configuration space X of the entire belt system:

X=3x° (2.20)

The generalised strains, € € £°, are defined as (non-linear) functions of the nodal co-
ordinates:

1
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e = D'(x%) @2.21)

The configuration space, defined in (2.20), is the sum of overlapping co-ordinate
subspaces since the elements can share nodal points. Since elements never share
deformation modes the intersection of the deformation spaces of two elements is the
null space. Therefore the deformation space of the system E is the direct sum of the
deformation spaces of the elements:

E =@®E° (2.22)

The deformation functions can be taken together in a continuity map for the entire
system:

D:X > E, e = D(x) 2.23)

The map (2.23) constitutes the basic equations for the kinematic analysis. Kinematic
constraints can be imposed by giving nodai co-ordinates or deformations prescribed
values.

The spaces X and E can both be partitioned in agreement with the constraint
conditions and the choice of generalised co-ordinates as

X=X®X®X", E=E°DE®E" (2.24)

The superscript o denotes the fixed (invariant) nodal co-ordinates or deformations, ¢
the dependent nodal co-ordinates or deformations and m the independent (or
generalised) nodal co-ordinates or deformations. Let nx be the total number of nodal

co-ordinates x,, nxo the number of fixed support co-ordinates x;, nxc the number of
dependent nodal co-ordinates x; and nxm the number of independent nodal co-

ordinates x;". Also let ne be the total number of deformation mode co-ordinates €, ,
neo the number of fixed prescribed deformation mode co-ordinates (constraint

conditions) €;, nec the number of dependent deformation mode co-ordinates €] and

nem the number of independent or generalised deformations €. The number of
degrees of freedom of the belt system is n=nx-nxo-neo=nxm-+nem. Since
nx=nxo+nxc+nxm it follows that nxc-neo=nem.
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2.2.2 Transfer functions

The nodal co-ordinates and deformations can be determined as non-linear functions of
the independent co-ordinates, [Jonker, 1988]:

_xo ] ’—FXO(xm’sm)_

xc FXC(xm,sm)

x" _ F™(x™.e™) 2.252)
£° FSO(Xm,Sm) *

am Fem(xm’sm)

[e° | [F*(x".&") |
Summarised:

m _ [F 8(‘1)} - F(q) (2.25b)
el [F(g

T
where q =[(x’“)T (s“‘)T] . The non-linear vector functions F* and F°® are called

the geometric transfer functions of the belt system and F the kinematic transfer
function. With equation (2.25a) the velocity vector can be determined as:

<] [DFe@]
x° DF*(q)
x" DF*™(q) | .

- . 2
i'_;O DFz:o(q) q (2 6a)
&" | |DF™(q)
[° | |DF*(q) |

where the operator D represents partial differentiation with respect to the generalised
co-ordinates. Summarised:

x|_[DF@] . _ y
)

The deformation modes are also functions of the nodal co-ordinates, with equation
(2.23):

13
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g° D°(x)
£™ | =| D™(x) 2.27)
€° D' (x)

The superscripts o0, ¢ and m combined with the operator D are introduced to indicate
partial differentiation with respect to the corresponding co-ordinates. The deformation
rates are obtained from equation (2.27):

£° D°D°(x) D°D°(x) D"D°(x) |{x°

¢® |=|D°D™(x) D°DP™(x) D"D"(x)||x° (2.28a)
£° D°D(x) D°'D°(x) D"D(x) ||x"

which can be summarised in:

€ =DD(x)-x (2.28b)

17
The matrix [(D“D")T (D°D”‘)r] is an (neo+nem) x (nxc) matrix which is square

since nxc=neo+nem, as is explained in section (2.2.1). From their definitions it
follows that:

e

x° =DF*-q=[0 0]-q; X" =DF™-q=[1 0]-q (2.29a)
£ =DF®.q=[0 0]-q;é™ =DF™-q=[0 1]-q (2.29b)

thus with equation (2.28a) it follows that:

cpe I -D"D° 0
- m D‘D"
X 0

-D"D" 1|-q=2"A%

I I 0
1 (2.30)
D°D° | [-D"D° 0]|ym
=| DD~ | |-D"D™ 1 Lm]=Zq
I 0

With equation (2.30) the first order transfer functiods DF* are determined:
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~1
D‘D° -D™D° 0
x° =DF*.q= .0 2.31

a [D“D“‘} [—D‘“D"‘ 1} a @30

With the equations (2.28a) and (2.30) the time derivatives of €°, which also determine
the first order transfer functions DF® , are:
’_‘m} = [D*D*-DF*+ D"D*-DF™]-q 2.32)

& =DF*-q=[D°D* D‘“D”]{
X

To find the second order derivatives equation (2.28a) is differentiated with respect to
time from which it follows that:

£ ] [(D’D°(x)-%)-x D°D°(x) D'D°(x) D"D°(x)]|[%°

£ |=|(D’D”(x)-x)-x| + |[D°D"(x) DD"(x) D"D"(x)||x° | (2.33a)
£ ] |(D’DF(0)-%) % D’D°(x) D°D'(x) D"D(x) ||X"

In short:

£ =(D*D(x)-x)- %+ DD(x) - & (2.33b)

Similar to the derivation of equation (2.30) it can be shown that:

«1 [T, -D"D" 0], (D?D° %)%
1=l pepm -p"p" 1||. |-|(DD™ %) % (2.342)
X" e”
0 1|1 0

In short:
[ﬁ]zl*‘dﬂrgm 2.345)
X
where:

DcDo -1 (DZDO').()').(
=lpepr| Y and g™ =-|(D’D" %) % (2.35)

0 I 0

15
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Note that:
x=(D’F"-q)-q+DF*-§ (2.36)

From the equations (2.34) and (2.36) the components of the second order geometric
transfer functions D*F* can be obtained:

¢ o -1 2 o, XY, X
D,F* =—[D D } {(D,D D‘Fx) gl } .37
p°p~| |(D’D" -D,F*)-DF*

The components of D*F*°and D*F*™ are zero. The time derivatives of £° are:

g =[D°D° DmD°]F;]+(DZD° %)% (2.38a)
X

or

& =[D°'D° D"D*]Z'§+g" (2.38b)

where

g2c =[Dch Dch] EOgZOm +(D2Dc X)‘X

cpyo 171 2D° . v). % 239
=—D°D°[DD J {(DqD Y ’f]+(nﬁr-x)-x 239
pep”| |(D*D™-%) %
Note that:
§=(DF°-q)-q+DF’-§ (2.40)

The components of D’F* can be obtained after differentiation of equation (2.32)
with respect to time:

D,F* =(D’D" -D,F*)-DF* +D°D" - D;F* 2.41)

The components of D’F*and D*F™ are zero. Expressions for the vector functions
D are given in Chapter 7.
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2.2.3 The equations of motion

The equations of motion of a belt system can be derived with the aid of the principle
of virtual power (Jourdain's principle), [Davies, 1982]. According to this principle
the virtual power of the external forces that act on a body is zero for all the virtual
velocities with zero rate of deformation. So,

8" (£(x,%,t) - M(x,X, )% — (N - %) ) = 0 V 8% { 8k |82 = DD(x) - 3% =0}

(2.42)
With the aid of a vector of multipliers of Lagrange o this leads to
5x"(f-M X - (N-%)-%)="(DD-5%) (2.43a)
or,
Mx=f-(N-x)-x-D"c (2.43b)
where
D =DD(x) (2.44)

The components of the vector of multipliers of Lagrange ¢ may be interpreted as the
generalised stresses dual to the generalised strains defined in (2.23). The equations of
motion are reduced to a minimal set of equations by means of the transfer functions F
and its derivatives. Substitution of equation (2.36) in equation (2.43b) yields:

[(DF")TM DF"] i =(DF")'[f - (N-(DF* -4))-(DF*-4) - "o - M((D*F* -4) -q)
(2.452)

If X° is left out, since it is zero, and equation (2.34) is used then the following set of
equations of motion is obtained:

[z*TM z*] §=2"[f-£,-D"o-M g™ | (2.45b)
where
f, =(N-(DF*-4))-(DF* - 4) (2.46)

17
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Equation (2.45) can be written in a compact form as:

M, (q,4.1) § = F,(qq,1) (2.47)
where
M, = [z*TMz’} F,=2"[t-f,-D'oc-Mzg*" ] (2.48)

or in a state space form as

dla] [ 4
i

which may be reduced to:
yO=£y) (2.49b)

where y = [qT qT]T . The equations of motion (2.49) are integrated numerically by

a Runge-Kutta procedure with variable stepsize [Press et al., 1992]. The constitutive
equations are given in Chapter 7.

2.2.4 Kinematic analysis

. ) . T .
Starting from a known configuration [x(Tn) afn)] at time t=t, of a belt system, the
instantaneous vectors q, ., , 9,4, and g, are obtained after numerical integration

of the equations of motion (2.49). The new instantaneous configuration of the belt
system at time t=t,,, is determined by:

|:x(n+i)—J _ |:F(':ﬂ)(q(n+l)):| (2.50)

€
€m) Foa @)

However, this configuration cannot be determined directly from equation (2.50) since

. . . T " .
the kinematic transfer functions [(E;‘ ﬂ>) (Efl m) ] , contrary to the first and second

order transfer functions, are unknown. Therefore the first and second order transfer
functions, as described in Section 2.2.2, are used to calculate a second order
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- T . .
prediction of [xg, 0 Ea +1)] accounting for the first and second order terms of the

. . T . .
Taylor series expansion at [X(Tn) e(Tn)] . This is written as follows:

[X(“ﬂ)] = [x(“):' + |:D[?(:l) ' Aq(nﬂ)] + l[(D2FE‘:{) : Aq(n'ﬂ)) : Aq(n*‘l) (25 1)

€a4) Em DF(; Aqgy | 2 (DZFE:) 'Aq(nm)'AQ(nm
where
Aq(n-ﬂ) Yoy Ay (2.52)

To guarantee that
D(X o)) = € (2.53)

an iteration process is applied. A solution for this system of equations is determined
by using an iterative correction routine based on the Newton-Raphson method which
takes only the first order terms of the Taylor series expansion of D(x) into account
[Bathe, 1985]. The iterative approximation is as follows:

Xiay = X 10X (2.54)

where the residual vector 6xg, is the correction at step i, calculated from the linear
system of equations

-1
D°D" | | dg;
8 ¢ = | @ 2.55
x(l) |:Dchj| [aszl)il ( )
where the residual deformations are obtained from the continuity equations
Se; D°(x,
o m( o) i (2.56)
oe D™(xy) - &

The correction routine (2.54) ends if the final solution [x(Ti) S(Ti)]T is sufficiently
accurate. This is verified by
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o
R

<8 2.57
sen 2.57)

where 8 >0 is a prescribed threshold value. This iteration process converges if the
approximation [X(TU SZ)]T is sufficiently close to the final solution [x(Tn) s(Tn)]T
[Jonker, 1988].

2.2.5 Kinetostatic analysis

The internal stress distribution and the unknown reaction forces of the belt system can
be calculated with a kinetostatic analysis after the motion of the system is known. If
the total forces are defined by:

fo=f-Mx-(N-x)-x=f+f" (2.58)

where the superscript in denotes the inertia forces, then the virtual power equation can
be written as:

8x"f =8¢0 V 8k e{ 8% 8¢ = DD(x)- 8% (2.5%)
The inertia forces f" have been obtained from the preceding dynamic analysis.
Equation (2.59a) can also be written as:

f+f"=DD"c (2.590)

From equation (2.59b) the internal stress distributions ¢ and ¢”, that must be
calculated before the reaction forces can be calculated, can be obtained:

[“0 } - [(D‘D")T(D“D“‘)T]—l(i“ 10 - (D°DF) o) (2.60)

m

G

where the vector f° contains the prescribed forces and the vector of dependent stresses
o is determined from a constitutive law. Finally the vector of reaction forces f° and
the vector of driving forces f" can be obtained from:

20
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fm

[fa}—[*mH(D"”’)T (o) (o0 11 2.61)

|-t~ ] | (p"p*)" (D"D")" (D”D*)' Z

2.3 Software engineering

Starting from a correct mathematical model of a physical process or system, a
software system can be designed to perform simulation of that process or system. A
software system consists of a computer program and its documentation. The
development or engineering of a software system should be a systematic process.
According to the definition of Jalote [1991] software engineering is the systematic
approach to the development, operation, maintenance and retirement of software. It
can be considered as a combination of structured programming, structured
documentation and structured management. In particular structured programming is
important considering its influence on the maintainability and in particular the
extensibility of the software system. In this chapter the structure of the simulation
software system TUDBELT is considered. TUDBELT has been developed to perform
simulations of the dynamic behaviour of belt systems. The computer program of
TUDBELT is written in the object oriented computer language C*+. Object oriented
programming has some advantages for finite element analysis and multibody system
dynamics as will be indicated in the next section, [Forde et al., 1990], [Lodewijks,
1991}, [Zimmermann et al., 1992], [Dubois-Pelerin and Zimmermann, 1993] and
[Koh and Park, 1994].

2.3.1 Object oriented software engineering

In the finite element analysis of a belt system the system is decomposed in finite
elements. A similar approach is obtained from the object-oriented analysis of a belt
system where the system is decomposed in objects. These objects are defined within
the scope of the problem domain and represent physical parts of the system. The
advantage of applying the object oriented approach in finite element analysis is that it
provides an overlay in which the object oriented decomposition covers the finite
element decomposition. The description of the

rCImsiﬁcmion HEncapsulation | objects can include the description of finite
1 1 elements thus creating a compact data

g | structure. This is provided by the four
fModularity ¢ Hierarchy I elements that form an object model:
classification, encapsulation, modularity and

Figure 2.1: Elements of an object model. hierarchy. A classification denotes the essential
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characteristics of an object that distinguish it from all other kinds of objects thus
providing crisply defined conceptual boundaries, relative to the perspective of the
viewer [Booch, 1994]. A classification serves to separate an object's essential
behaviour from its implementation by focusing on the outside view of an object. A
complementary concept is encapsulation that focuses on the implementation that gives
rise to the object's behaviour. Encapsulation is the process of compartmentalising the
elements of a class that constitute its structure and behaviour; encapsulation serves to
separate the contractual interface of a class and its implementation [Booch, 1994]. To
reduce the complexity of a system it can be decomposed into sets of coupled modules.
This modularity creates a number of well-defined and documented boundaries within a
program. To rank the objects a hierarchy can be developed that ordens and links the
classifications.

The computer program TUDBELT is built up of three modules. The first
module, TAKEOFF, reads the model data from an input data file and builds the finite
element model according to predefined rules. The second module, FLIGHT, starts,
controls and stops the simulation process. The third module, LANDING, prepares the
graphical presentation of the simulation results. The objects that are used within these
modules represent components of the modelled belt system, including an induction
motor and a pulley, and components that are used during the calculation process,
including matrices and vectors. The modules and the objects are discussed in the next
three sections.

2.3.2 TAKEOFF

Prior to a computer session the user has to descretise the belt system into a number of
discrete elements and give the initial position, displacements, velocities and
accelerations of the nodal points. Based on this information the user has to define the
elements and give the element type, the nodal point numbers of the elements and
specific element data including the cross-sectional area, the specific weight, Young’s
modulus and the bending stiffness. He also has to give the position, the magnitude and
the direction of the prescribed forces and the constraint conditions. The constraint
conditions include information of the type: initial state and position of the motor, the
gear box, the tensioning system, the pulleys and the idlers. Finally the user has to
give specific calculation process data including the minimum stepsize, the required
accuracy, the maximum number of steps and the calculation time interval. The
information about the nodal points, elements, prescribed forces, constraints and
calculation process data is stored in the data file MODEL.TXT.

After start-up of TUDBELT the module TAKEOFF reads the data file
MODEL.TXT. To enable further processing and easy access to the most important
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data stored in this file, four objects are used. These objects are decomposed in such a
way that they cover the finite element decomposition. In other words the four objects
store and represent the nodal points, elements, prescribed forces and constraints. The
objects, which are defined by corresponding classes, point to four data lists which are
automatically initiated by the module TAKEOFF after reading the dimension, or the
number of items, of a list. See Table 2.1 and Figure 2.2.

NodalPoint NoList nno
Element ElList nel
Constraint CoList nco
Force FoList nfo

Table 2.1: Data lists classes . . .
As a result, the dimension of for example the NoList

is equal to the number of nodal points. During the initialisation process, each
component of the E/lLisz, that is also an object of the class Element, is connected 1o the
NoList by two pointers that point to the nodal points of the corresponding element, see
Figure 2.3. This figure also shows the contents of the objects of the classes Element
and NodalPoint. The contents of objects of the class Element include the deformation
parameters, the generalised stresses and the two pointers. The contents of the class
NodalPoint include the position (x,y,z,a), the displacements (u,v,w.f), the velocities
(ud,vd,wd,fd), the accelerations (udd,vdd,wdd,fdd) and the number of degrees of
freedom (nvrij). After initialisation of the four data lists, the CoList is considered to
determine the positions of the pulleys and idlers. If a pulley is detected then an
additional nodal point is created. The position of this nodal point is equal to the
position of the axis of the pulley. The positions of the pulley and idlers are compared

[FoList[0] | 4{Contents | [NoListjolH{Contents | [coListior}Contents | [ElList(0] }{Contents |
B! s g v
ﬁusz[ 1 HContmLs | |N0List[ 1])—D|Eommts_] lCoList[ 1 ]HConlmts ] ITzlList[ 1 Hc"“""il

@i;[nﬁyz] pfcontants | lNoList'[nno—2]l——i|EIontmLs| ICQLisznmﬂHcmms] IEEisl?nel-Z]
- ¥

FoList[nfo-1] CmtmsJ [NoLisl[nno—l]HConteznsl lCoList[noo—l]HContmts] [ElList[neI-l] Contents

Figure 2.2: Initiation of the data lists.
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to the positions of the nodal points to detect the elements that are supported by a
pulley or an idler. If an element is supported by a pulley or an idler then the
parameter rolnr indicates the position of the object in the CoList that stores the data of
the specific pulley or idler. If a nodal point is supported by a pulley then the switch
on_pulley of the nodal points is set to 1 instead of 0. After consideration of the
CoList, the NoList is considered. If a nodal point is supported by a pulley, which can
be learned from the switch on_pulley, then an additional element is created that
connects the nodal point of the belt element with the nodal point that represents the
axis of the pulley. The switch original of the objects Element is 1 for elements that
are defined by the user and 0 for elements defined by the module TAKEOFF. After
consideration of the NoList the whole belt system has been discretised into finite
elements.
Although all the
information of (discre-

¥

¥ .
L ElList[r] '_’deformation parameters NoList[s] k’ xlulud |udd tlsed) Compopents Of the
" - v{vivd[vad] belt system is stored in
generalised stresses
v " — z ;V ‘fV: ”f‘:: the four data lists
other properties a | fdd | . . .
il onpuiey | INoList, ElList, ColList
pointer to node p - . .
g and Folist, this storage
pointer to node q does not always enable
original | - rolur easy access of specific
NoList[s+1] xJulud [udd| . .
v [va[vaa| information of, for
v zlwlwdlwid| example, the induction
alfltd#d] motor or a pulley. If

on_pulley . . . .
information is required

about the motor or a
Figure 2.3: Connection berween the ElList and the NoList. specific pulley then the

CoList has to be
searched for this information. This information may be stored in the last object of the
CoList which makes this search process very time consuming. Therefore objects have
been defined in such a way that they provide an overlay in which the object oriented
decomposition covers the component decomposition of a belt system, see Figure 2.4.
These belt system components will be discussed in the Chapters 3 and 6. If a specific
part of a belt system is considered then this part may contain a drive system, a belt, a
pulley, an idler and bulk solid material. To enable access to a specific part of a belt
system the class BeltSys has been defined. An object of this class is not used to store
data but it inherits the data structure from classes that represent physical components
of a belt system. These classes are DriveSystem, TensionSystem, Belt, Pulley, Idler
and BulkSolid. The classes DriveSystem, Belt and Idler inherit a part of their data
structure from classes that represent parts of the components. For the class
DriveSystem these classes are IndMotor, ReductionBox, FluidCoupling, SPC (Static

nvrij
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Power Converter), CST (Controlled Start Transmission), DiskBrake and HoldBack.
For the class Belt these classes are Cover and Carcass and for the class Idler they are
Roll and Frame. Besides information that is obtained from linkage by pointers to
objects of the four data lists, the objects of these classes also contain new data and
procedures. For example, the class /ndMotor provides a procedure to calculate the
motor torque. To enable easy access to objects of the classes IndMotor and
FluidCoupling, which is required to enable a fast calculation of the motor torque and
fluid coupling torque, the objects of the class IndMotor are linked to each other in the
list MoList and the objects of the class FluidCoupling in the list FIList.

o

drive system tensioning system belt idler bulk solid material pulley
f | | | [ ] [a= ] [ | [

l l I I |

3
belt system segment

Figure 2.4: Decomposition to belt system segments.

Overlays that cover the finite element decomposition and the component
decomposition of a belt system are provided by the two decompositions described
above. However, the application of objects of these decompositions is not suitable for
covering the mathematical decomposition of the belt system. In other words, no part
of these objects can directly be used in the numerical solution of the equations of
motion of the belt system. Therefore objects have been defined in such a way that
they provide an overlay in which the object oriented decomposition covers the
mathematical decomposition of a belt system. In Section 2.2.1 the partitioning of the
spaces X and E in three sub spaces was described. This partitioning is also used in the

module TAKEOFF. Since all the necessary

v information is already stored in the NoList
W A nodalpoint 0 nodalpoint1 modalpointz  and EIList, and also accessible via the
u

component decomposition, only six lists of
pointers are required to perform the
partitioning of the nodal point co-ordinates

Figure 2.5: Two element finite element model.
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and the deformation parameters. The class SubSpaceElem is used for this purpose.
The objects of this class only contain a pointer and specific information about the
object data they are pointing to. In the module TAKEOFF six objects of the class
SubSpaceElem are defined, X0, XC, XM, EO, EC and EM, which represent the vectors
x°, x°, x™, &°, €° and £" respectively. The partitioning of the nodal point co-ordinates
and the deformation parameters, and thus the distribution of the co-ordinates and
parameters over the six pointer lists, is automatically performed in accordance with
rules prescribed by the user. As an example the partitioning of the nodal co-ordinates
of the finite element model shown in Figure 2.5 is shown in Figure 2.6.

The partitioning implies that matrices and vectors have to be built up in accordance
with the partitioning. For example the matrix M and the columns of matrix D are
built up in accordance with the partitioning of X where the rows of D are built up in
accordance with the partitioning of E. The most simple way to build the matrices and
vectors is by accessing the nodal co-ordinates and the deformation parameters through
the NoList and the ElList. However, these data lists are not partitioned. Therefore the
pointer lists are used to sort the matrices and vectors according to the sub space
partitioning. After the partitioning process the module TAKEOFF defines the matrices
and vectors used in the numerical solution of the equations of motion and determines
the initial position of the belt system, in particular the position of the belt on the
SUpports.

The main steps performed by the module TAKEOFF then can be summarised in:

step 1. Read model data from the input file and store these in data lists.

step 2. Scan the data lists of the elements, nodal points and boundary conditions, and
define, in case of elements that represent a supported belt part, additional
elements, nodal points and deformation modes. Partition the nodal co-

ordinates and the deformation modes and make the vectors x°, x°, X", €°, €°
and ™.

step 3. Define the matrices D, Z°, £°, M and M, and the vectors y, o, g*™and
F

o
step 4. Determine the initial position of the belt on the supports.
step 5. Set the timestep counter to the initial time : t=t, .
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Figure 2.6: Distribution of the nodal co-ordinates over the pointer lists X0 and XM in accordance with
the sub space partitioning.
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2.3.3 FLIGHT

The module FLIGHT starts, controls and stops the simulation process. The main steps
of this process are summarised by:

step 1.

step 2.

step 3.

step 4.

step 5.

Update the state of the belt system including the drive system, the bulk solid
material stream etc. for time t.

Calculate the deformation parameters and the generalised stresses. Make the
matrices D, Z", £° and the vectors f, g” and o. Evaluate the system mass
matrix M. Make the matrix M,, the vectors F, and f". To obtain M;’ use
Gauss-Jordan elimination with full pivoting [Press et al. (1992)].

Calculate the generalised stress vectors ¢° and 6™ and the force vectors f° and
" If the final time is reached, t>t,,,, or if the motion of a belt element is
such that a constraint condition should be removed, then stop.

Apply a fourth order Runge-Kutta method with variable stepsize [Press et al.
(1992)] to integrate ¥, to obtain y,,, . Before each integration step, step 2 is
repeated starting from the second integration step. After each integration step
the new configuration of the belt system is calculated by a kinematic analysis,
see equation (2.53).

Store the timestep data. Increment the timestep counter, t —>t+At, go to
step 1.

2.3.4 LANDING

The module LANDING prepares the graphical presentation of the simulation results.
The main steps performed in this module are:

step 1.

step 2.
step 3.

create two output files DATA.TXT and RESULT.TXT. The lay-out of the
latter is equal to the lay-out of MODEL.TXT. DATA.TXT can be used as
input file for the graphical procedures of the software package Matlab®.
delete all the used data structures.

if the simulation process was stopped before t>t, =~ then rename
RESULT.TXT to MODEL.TXT and restart the module TAKEOFF else
terminate TUDBELT.
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Chapter 3

Belt properties

weft direction ince most belts used in the
warp direction,” ’ . Netherlands are reinforced by
e fabric carcasses, this chapter

focuses on the properties of fabric
belts.  These  properties  mainly
determine the belt's dynamic behaviour
and can be defined by a number of
quantities. The carcass properties are
highlighted in Section 3.1 and the belt
cover properties in Section 3.2,
Properties of steelcords and steelcord
belts are given for comparison.

! rubber

3.1 Carcass properties

The carcass, which is the reinforce-
ment of the belt, can consist of a
P (multi) ply or solid woven fabric or of
PA— aramide or steelcord cables. Figure 3.1
shows the four typical carcass
structures. The simplest carcass
structure is the cord fabric where the
Figure 3.1: Carcass types . cords, which can be made of polyester
(E), polyamide (P) or aramide (A),

provide the necessary strength and stiffness in the weft (axial) direction of the belt.
Figure 3.1a shows the mono-ply cord fabric whereas the multi-ply cord fabric is
shown in Figure 3.2. To provide bending stiffness in the warp direction of the belt,
warp cords are included in the carcass as is shown in the straight warp fabric of
Figure 3.1b. To combine a high carcass strength and high warp bending stiffness, the

c: Solid woven fabric

I
{
I rubber d: Cable
| S —
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solid woven fabric can be used as shown in Figure 3.1c. If aramide cords or
steelcords are used as reinforcement, the carcass structure can be like shown in Figure
3.1d. In practice the cables are held together by warp cables like shown in Figure 3.3.

Figure 3.2: Multi ply cord fabric belt, [Breidenbach, Figure 3.3: Steel cord belt, [Breidenbach,
1995] . 1995).

A fabric is built up of yarns that are twined bundles of fibres. For the application in
the carcass of a belt, the usefulness of different reinforcement yarns is compared on
the basis of three criteria. Firstly, the yarns must have a low density to minimise the
specific mass of the belt. Secondly, the yarns must have a high specific strength to
minimise the number of yarns and thus the thickness of the carcass. Thirdly, the
stiffness of the yarns should limit the elongation of the carcass to maximal 1.5 % to
reduce the size of the belt tensioner.

3.1.1 Unit strength

In structural elements like rods, the breaking strength of an element can be calculated
by multiplying the cross-sectional area and the breaking stress of the material. In the
field of conveyor belts, however, this approach is not useful since only the carcass
and not the belt covers contribute to the belt strength. Therefore the breaking strength
of a belt with a specific width B is calculated by multiplying the breaking strength per
unit width of the carcass, also called the unit carcass strength, and the belt width. The
tensile strength per unit fabric width, or unit fabric strength, kg, can be calculated
from the breaking strength of a yarn, Fy, the number of yarns per mm fabric width,

N,, and the yarn strength efficiency in fabric, n,, , [Lodewijks, 1990]:




Belt properties

kF = Tlny),FB » [Nmml] (3.1a)

The number of yarns varies from 50 to 225 per 100 mm in the weft and from 30 to
100 per 100 mm in the warp direction of a ply. The yarn strength efficiency in fabrics
made of polyester yarns in the weft and polyamide yarns in de warp direction, the so-
called EP fabrics, is about 0.92 as is depicted in Figure 3.4. In the same way, the unit
strength of a steelcord ply, kg, can be calculated from the breaking strength of a
steelcord, Fg, the number of steelcords per mm belt width, N, and the steel wire

efficiency in steelcord, m,, , [Lodewijks, 1990]:

kr =1 N.F, (3.1b)
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Figure 3.4: Yarn strength efficiency in EP fabric,  Figure 3.5: Typical steelcord structure.
[Lodewijks, 1990].

The steelcords used in a steelcord belt are made of 7 smaller cables each made of 7 or
19 steel wires, see Figure 3.5. Also in this case the strength of one steelcord is less
than the sum of the strengths of the smaller cables whose strength in turn is less than
the sum of the strengths of the steel wires. The efficiency of the wires in a 1x7 cable
and a 1x19 cable is approximately 0.90 and 0.88 respectively. A good estimate of the
efficiency, 1, , of the steel wires in a 7x7 and a 7x19 steelcord, as depicted in Figure
3.5, is 0.84 and 0.80 respectively, [Feyrer, 1994]. The number of steelcords varies
from 6 till 10 per 100 mm belt width. The unit strength of a multi-ply EP carcass, ke,
is defined by:

ke =nNekp 3.2)
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kp= 63 N/ i i
ke SN e Nimm k= 125 Nimm wh.er.e ncf‘ is the fabric strength
091 k= 160 Nfmm efficiency in a carcass and Ng the
number of fabric plies. Figure 3.6
shows the fabric strength efficiency

06 )
Net [-] 05 1 Of a carcass, made of fabric plies
’ with different unit fabric strengths'

ky= 200 N/mm k=250 N/mm

0.7

g:; kg, as a function of the standardised

0.2 unit strength ky. The standardised

0.1 unit strength, which indicates the

0 200 400 600 800 7000 1s00 Minimum unit s'Fr(_enth of a carcass,

ky [N/mm] is used for classification of carcasses

in a number of categories. These

Figure 3.6: Fabric strength efficiency in a carcass, categories indicate the field of

[Lodeviks, 1990]. application of a carcass.

3.1.2 Young's modulus

To find the static Young's modulus of an EP belt from experiments, a tensile test as
described in DIN standard 22102 can be used. The speed of the traverse of the tensile
testing machine is, as is prescribed by that standard, 100 mm/min yielding a strain
rate of about 0.017 s-1 for a sample with standardised length of 100 mm. A typical
stress-strain curve that can be obtained from a tensile test is shown in Figure 3.7. In
this figure two zones can be distinguished. In zone I the woven structure of the belt's
fabric is stretched. This process is irreversible which results in a permanent strain of
the belt and explains why this zone does not occur in a tensile test of a used belt. In
zone II the real tensile test begins. Under normal operational conditions the maximum
strain of a belt is smaller than 1.5 %. In that case the belt material is almost linear
elastic and Young's modulus of the belt is constant. It can be obtained from Figure
3.7 by:

Ac
E =— .
® Ae 3-3)

The value of Young’s modulus of a belt obtained from a tensile test is dependent on
the strain rate during that test. Although the static Young’s modulus can be used for a
statically loaded belt, it can not be used for a dynamically loaded belt.

' Note that this efficiency is independent of the number of fabric plies in the carcass and of the thickness of the
Tubber plies between the fabrics plies.
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Figure 3.7: Stress-strain curve of an EP 500/3 belt, [Lodewijks,
1991].
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Figure 3.8: Sinusoidal belt load applied to an EP 500/3 belt during
hysteresis experiment with frequency of 0.05 Hz, {Lodewijks, 1991].
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Figure 3.9: Belr load/strain curve of an EP 500/3 belt during
hysteresis experiment with frequency of 0.05 Hz, [Lodewijks, 1991].
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To obtain Young’s modulus for a dynamically loaded belt, a hysteresis test is
performed where a sinusoidal load is applied to the belt as is shown in Figure 3.8.
The time dependent stress is prescribed by the following equation:

o(t) = Asin(ot) +B (3.4)

where A is the amplitude of stress variation, o the circular frequency of deformation
and B the mean stress. The visco-elastic response, shown in Figure 3.9, is equal to
[Struik and van den Berg, 1989]:

£(t) = Csin(ot +8) +D (3.5)

where D is the mean strain, 8 is the phase angle here called the loss angle, A/C=E;
the dynamic Young's modulus, E,cosd=E'(w) the storage modulus and E sind=E"(®)

the loss modulus. The loss factor is defined by tand=E"/E'. If the mean load, the
load amplitude and frequency are known in advance, the dynamic Young's modulus
E, should be used instead of the static Young's modulus E, to determine the correct
elastic response. As an example, the static Young’s modulus of an EP 500/3 belt,
which can be obtained from the stress/strain curve as shown in Figure 3.7,
E,=244.14 N.mm™ whereas the dynamic Young’s modulus,which can be obtained
from Figure 3.9, E4=286.93 N.mm™.

To calculate the static Young's modulus of the belt in case no experimental
data are available, the Gough-Tangorra formulas, that are based on the classical
laminate theory, can be used [Hsieh, 1985]:

E, =V.E, +(1-V,)E,_ (3.6)

where V_ is the volume fraction of carcass material, E_ the static Young's modulus of
the carcass material and E the static Young's modulus of the matrix material that
protects the carcass. In cases where equation (3.6) yields inaccurate moduli, more
sophisticated formulas are available, [Kittredge, 1991]. However, from experiments it
follows that the moduli obtained from equation (3.6) are accurate in most cases. The
static Young's modulus of a fabric carcass ply normally follows from experiments
since it is not very convenient to define a formula for this modulus considering the
many different carcass structures. However, in case of a cord reinforced carcass, the
static Young's modulus can be determined from the geometry of the cords. The static
Young's modulus of an 1xN steelcord can be calculated by [Feyrer, 1994]:
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n 3
B=-y 8% pa (3.7
Ay T 1+ visin‘o,

where Ay, is the total cross sectional area of all the wires in the cable, z; the number
of wires in the i layer around the core of the cable, o the twist angle of the wires in
the i layer, v, Poisson's ratio of these wires, E; the static Young's modulus of the
wires in the i layer and A, the cross sectional area of the wires in that layer.

In case of a multi-ply cord fabric carcass the volume fraction of carcass material can
be obtained from:

v, = B-b N, (3.82)
B 4,

where B is the belt width, b, the total thickness of the belt's side covers, Ny the

number of plies, d; the thickness of each fabric ply and d, the thickness of the belt.

The volume fraction of carcass material of a (mono-ply) steelcord belt can be obtained
from :

vV, = e 3.8b
¢ B d, ° (3.80)

where N, the number of steel cables per unit belt width, A is the cross sectional area
of a steelcord and f, the fill factor.

3.1.3 Bending stiffness

The effective bending stiffness of a belt with respect to the neutral axis can be
calculated by:

(Ehly)eff = [E(y.2) 2°dA (3.9)

With use of equation (3.9) and the dimensions given in Figure 3.10, the effective
Young’s modulus, with respect to the y-axis as indicated in Figure 3.10, of a belt
with upper cover, lower cover and side covers, is equal to:
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(E,1

by

)eﬁ{ﬁ_c(%‘_‘ﬁ CPLA }[d (442 - 6d,d, +3d; - 12d,d, +12d,d, +12d3)] +
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Figure 3.10: Cross section of a belt.

The effective bending stiffness, in case of a one-ply cord fabric belt with belt width B,
no side covers (b,=0) and two covers with thickness d,, (d,=d,=d,; d,=2d,,+d,),
calculated with respect to the y-axis as indicated in Figure 3.10 (which in this case is
the neutral axis), is:

3
(E,L,), =E. B, 1k B(gd3 +d2d, +1d dzj (3.10b)
by eff 12 m 3 m 2 mYc

Normally the average Young’s modulus of the belt, E, or E4, is known instead of
Young’s moduli of the carcass E. and of the belt cover, or matrix material, E
However, the carcass delivers the largest contribution to the effective bending
stiffness since Young’s modulus of for example a rubber belt cover is about 1 N.mm™
whereas the average static Young’s modulus of for example an EP 500/2 belt is 250
N.mm™. Therefore, if E, or E4 is known instead of E, and E_, then the effective
bending stiffness can be calculated with use of equation (3.10) taking E. equal to E,
or Ey and E; zero. In case of a troughed belt also the trough shape has to be
accounted for, see [Harrison, 1984] and [Lodewijks, 1994].

To determine whether or not the bending stiffness significantly influences the
dynamic behaviour of a belt, a bending rigidity parameter ky is defined*:

* This parameter will be derived in Section 4.2.3.4.
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[ E,l
kg = l+n2n2# , n=12,- (3.11)

where n is the wave number of the transverse vibrations, T the belt tension and L the
idler spacing. If kg differs significantly from 1 then the belt's bending stiffness must
be taken into account.

3.1.4 Belt tension related parameters

For design purposes, standards like DIN 22101, ISO 5048 and CEMA provide safety
factors that limit the allowable belt load. The safety factor that has to be taken into
account on the stationary stresses in a belt, Sy, is defined by:

1

=1—(r0+r1+r2) (3.12a)

B

and the safety factor on the non-stationary stresses in the belt, S,, is equal to:

1

:m (3.12b)

A

where 1, accounts for the reduction of the strength of the belt (splices) due to fatigue,
r; takes into account the extra forces that act on the belt in transition zones and on
pulleys etc., whereas r, accounts for the extra dynamic stresses in the belt during

starting and stopping. The values of these reduction factors can be found in Table 3.1.
Some conveyor belt manufacturers allow for lower safety factors on the stationary belt
stresses, see Table 3.2.

B (Cotton) light >0.691 | 20.100 | 20.060

P (Polyamide) normal >0.715 | 20.100 | >0.060 | >5.4 | 28.0

E (Polyesier) heavy >0.734 | 20.100 | 20.060 | 6.0 | >9.5
light >0.641 | >0.150 | >0.060 | >4.8 | 26.7

ST (Steelcord belt) normal 20.665 | >0.150 | 20.060 | >5.4 | =8.0
heavy >0.684 | >0.150 | 20.060 | 6.0 | 29.5
Table 3.1: Reduction factors and safety factors according to DIN 22101.
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B (Cotton) light 3.0 3.2
P (Polyamide) normal - 3.5
E (Polyester) heavy 3.6 3.7
light 2.5 2.8
ST (Steelcord belt) normal - 3.0
heavy 3.0 3.2

Table 3.2: Minimum safety factors Sy ., on the stationary stresses in a belt according
to ContiTech Transportbandsysteme GmbH (Sg ;) and Dunlop-Enerka B.V. (Sg pin2) -

This reduction is not only based on improved belt and splice design but also on the
increased experience with the design of transition zones and with starting and stopping
procedures, also see {Lodewijks, 1995a]. The existing, or actual, safety factor S in a
belt section is defined by:

S— k;B (3.13)

where T is the belt tension in that section. Note that T and S are variable along the
belt length. According to DIN 22101 it is required that S>S, during starting and
stopping and that S > S, during normal operation. A typical value for S during normal
stationary operation is 8.

A sufficiently accurate approximation of the static belt sag ratio K, which is
the ratio between the static belt sag and the idler spacing, is:

m'gL

T (3.14)

K, =

where m'g is the distributed belt and bulk weight in N.m™. In correctly designed belt
conveyor systems K is smaller than 0.015, although some designers accept ratios of
about 0.05.

For the design of starting and stopping procedures it is important to know at
what speed stress waves travel through a belt. Two wave speeds can be defined:

¢, = /Eg;cﬁ\/E: s (3.15)
P p \pA
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where p is the density and A the cross sectional area of the belt material. The first
parameter c, is the longitudinal wave speed that governs the frequencies of axial
vibrations of a belt. The second, c,, is the axial propagation speed of transverse waves
that governs the frequencies of transverse vibrations of a belt span without bending
stiffness and supported by two idlers. Table 3.3 shows the wave speeds for two belts
loaded at S=10.

EP 1000/5 804.3 80.0
St 1000 1637.4 76.0

Table 3.3: Wave speeds for three different belts, [Lodewijks, 1990].

The wave speeds however, depend not only on the density of the belt material but, in
case of a conveyor belt, on the mass of the bulk material on the belt as well. The
longitudinal wave speed also depends on the load of the (reduced) masses of the
supporting idlers. If the two wave speeds are rewritten to:

¢ = |Bo - /EgA . L T (3.16)
p mbell pA mbell

where my,, is the belt mass per unit of length, then the effective wave speeds for an
unloaded, supported belt can be written as follows:

E.A My,
Cretru = l ; = —— ¢, =CyC 5 Cop = €, (3.17)
v mbel[ + Inroll

where m’, is the reduced mass of the idlers per unit of length, and for a loaded,
supported belt:

E.A m;
_ b _ belt _
Crem = \/ = —c, =Cy ¢

’ ’ ’ ’
mbell + mbulk +mroll mbclt + mbulk + mmll

T m,
_ _ belt _
Coet. = \] am Y ¢, =Cpc,
My + My My + My

where m;,, is the mass of bulk material on the belt per unit of length. In practice the
equations (3.18) represent the lower limits of the wave speeds whereas the equations

(3.18)
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(3.17) represent the upper limits. The ratio between the wave speeds for a loaded and
an unloaded belt can be obtained from the equations (3.17) and (3.18):

’ '
c — mbslt + n'1roll c — CLl c
1effl — ’ leffu = C 1,effUu

’ ’
mbelt + mbulk + mroll u

m/
— belt —
CoeL = ; T Coeru T CL2C’.Z,eﬁ‘U
My, + My

3.2 Cover properties

(3.19)

Most belt covers are made of rubber or polyester material. The constitutive behaviour
of these materials is visco-elastic as can be learned from the time-dependency of the
stress-strain relations, [Lodewijks, 1990 & 1995b]. The most important environmental
parameters that affect the dynamic response of visco-elastic materials are temperature,
frequency and the amplitude of an imposed load, see for example [Eirich, 1978]. It is
also important to know the exact compound of the material. In rubber for example the
amount of carbon black influences the material properties considerably, [Mey and Van
Amerongen, 1969].

The constitutive equation for an isotropic linear visco-elastic material can be
written in general tensor form [Fliigge, 1975], [Struik and Van den Berg, 1989]:

t d,.
clt) = j ‘*I’(t—t')?la%.t——){lt' (3.20)

in which ¢® =0 - (%tro)l is the deviatoric stress tensor and yi=y - 4try)I the
deviatoric strain tensor. The fourth order tensor function W(t) is called the relaxation
function and specifies the stress response to a unit strain increment. It can be written
as :

w() =¥, +[g) exp(—%) &t (3.21)
[V}

where g(t) is the relaxation spectrum which can be discrete or continuous and 7 the
N

relaxation time. If in the uniaxial case a pulse-spectrum g(t) = gjéi('c -1 ) is used
j=1

then the relaxation function is equal to:
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W) =¥, +3 g, exp(—%) (3.22)

=1 i

This material model is known as the generalised Maxwell model. Figure 3.11 shows
this uniaxial case. In this model a number of damping coefficients n; is used which

are related to specific relaxation times t;, in order to be able to represent the
constitutive behaviour of a material for a wide range of loading frequencies.

4
i
|

N
L4 L
n1%3 T]zm TINW é
1 7 !
v
Figure 3.11: Generalised uniaxial Maxwell Figure 3.12: Three parameter Maxwell model
model. (standard linear solid model).

If this range is relatively small for a specific application then it is sufficient to use one
relaxation time which fits for that range. In such a case a three parameter Maxwell
model, or a so called standard linear solid model, results, which is the simplest model
that can describe the relaxation of a material and situations of constant stress or high
strain rates, see Figure 3.12.

The relaxation function of the three parameter model is :

¥(1)=E, +E, exp(—%) (3.23)

where the relaxation time 7 =Ei . For a three parameter Maxwell model the storage
2
modulus is:

_ E.E; +o’n’(E, +E,)

> 2 3.24
E; +o™m” ( )

E'(0)
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where o is the circular frequency of deformation. The loss factor tand is in this case
defined by:

"

2
tans == = OnE (3.25)
E' EE;+o’n’(E, +E,)
The damping factor m of the three parameter Maxwell model can then be written in
terms of the loss factor:

2 7 tand

= (3.26)
2 + (% +28)tand

n(s)

From experiments it can be learned that a real rubber cannot be modelled with one
relaxation time. However, if the differences in belt speed are not too large, in fact the
belt speed of conveyor belts varies from 0.1 m/s to 10 m/s, then it is sufficient to
choose one relaxation time. This relaxation time must be chosen in agreement with the
time it takes for a material point of the belt cover to pass the contact zone between
belt and roll.

As an example, the storage modulus, the loss modulus and the loss factor of an
SBR rubber have been obtained from experiments using a Dynaliser” [Lodewijks,
1995b]. The Dynaliser” is used to perform a strain controlled relaxation test by
imposing a known deformation on a sample and measuring the variation of the
reaction force as a function of time. The testpiece is deformed by fast penetration of a
spherical indentor. The indentation is kept constant for the minute or less required for
the test and an integrally mounted transducer produces the data for a force relaxation
curve. A computer then calculates the storage modulus E’, the loss modulus E” and
the loss factor tand [Smith, 1993]. With these moduli and factor being known, the
equations (3.24)-(3.26) can be used to determine the parameters E,,E, and n of the
three parameter Maxwell model. The results of the experiments are depicted in the
Figures 3.13 - 3.15 as a function of temperature and deformation rate. In Figure 3.15
it can be seen that the loss factor passes through a maximum. This maximum is the
so-called transition point which is about -40° C for the considered SBR rubber. The
temperature zone around the transition point is called the transition region. The
temperature zone below the transition region is called the glassy region whereas the
temperature zone above the transition region is called the rubbery region [Brown,
1996].
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/— 1000 Hz
' 100 Hz
10 Hz

10° ) . ) . . “_
D.E[] -40 20 0 20 40 B0 0.001 Hz
temp [C]

Figure 3.13: The storage-modulus as a function of temperature and deformation rate, [Lodewijks,
1995b].

— 1000 Hz

/— 100 Hz
I,//ff 10 Hz
///~— 1Hz
/~— 0.1Hz
0.01 Hz

1 D 1 1 1 1 1 ~
80 40 20 0 20 40 g0~ 0.001 Hz

Figure 3.14: The loss-modulus as a function of temperature and deformation rate, [Lodewijks, 1995b].
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Glassy Transition Rubbery region
region _region

09

08
07
tan@®)
06}
05
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03F
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. 0.001 Hz
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temp [C° ]
Figure 3.15: The loss-factor as a function of temperature and deformation rate, {Lodewijks, 1995b].
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Analytical modelling of belt
systems

lowest natural frequency. This amplitude increases considerably when the belt is

excited in the resonance frequency by the supports or the tensioning system.
Severe transverse vibration of a belt is often the cause of costly breakdowns in large
belt conveyor systems [Harrison, 1992]. In band saws, vibration results in waste of
raw material, reduced tool life, and poorer dimensional accuracy and surface quality
in the product, [Ulsoy and Mote, 1982]. Therefore, knowledge of the natural
frequencies of transverse vibration of belt parts is important for the design of a
support structure which will not cause belt excitation, a so-called resonance free belt
support.

In most belt systems the belt is vibrating transversely with a small amplitude in its

In this chapter the analytical determination of the natural frequencies of
transverse vibration of a moving flat belt span, supported by two pulleys or idlers, is
discussed. The dependence of these frequencies on the belt material parameters, the
belt speed and the stiffness of the tensioning system will be shown. The interaction
between different belt parts or between the belt and the tensioning system is mostly
modelled by a discrete approach. This approach will be discussed in Chapter 7. The
design of resonance free belt supports will be discussed in Chapter 9.

4.1 Introduction

Belt systems can be divided into two categories: the string-like systems (second order
systems) and the beam or plate-like systems (fourth order systems). If the bending
stiffness of an axially moving material can be neglected then the system is classified
as a string-like system otherwise it is classified as a beam-like system [Wickert and
Mote, 1988].
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4.1.1 String-like systems

The transverse vibration of moving string-like systems was first investigated by
Skutch (1897) who calculated the fundamental vibration frequency of a string
travelling between two fixed supports. Subsequent fundamental research on linear
vibrations yielded three major conclusions [Archibalt and Emslie, 1958; Swope and
Ames, 1963]. Firstly, if ¢, is the propagation speed of transverse waves at zero
transport speed and V, is the axial transport speed. then disturbances propagate in the
up- and downstream directions at speeds c, —V, and c, +V,, respectively, relative
to a fixed observer. Secondly, this speed difference renders a motion of the travelling
string of non-constant phase; disturbances that travel upstream are retarded in phase
relative to those that propagate downstream. Thirdly, the natural frequencies of the
oscillations decrease monotonically as the transport speed increases. All frequencies
vanish when V, =c, and instability results. Archibalt and Emslie (1958) noted the
similarity between the axially moving string vibration problem and that of a pipe
containing a flowing fluid.

The accuracy of the linear theory was investigated through inclusions of
several forms of non-linearity in the equations of motion (cf. [Carrier, 1945; Lee,
1958: Vicario, 1958; Zaiser, 1964; Mote, 1966]). Simplifications such as relatively
small transverse displacements and constant axial velocity and mass density were used
to calculate approximate solutions for the non-linear planar motion. This showed the
limitations of the linear theory. Tension variation during oscillation with sufficiently
large amplitudes affects the response, and the linear theory is rendered inapplicable.
This effect becomes more pronounced when =V, /c, increases [Thurman and Mote,
1969].

Axially-moving string-like materials interact with other componenis of the
system which has been analysed in several recent studies (cf. [Rhodes, 1970; Mote
and Wu, 1985; Ulsoy et al., 1985; Majewski, 1986; Wang and Mote, 1986; Fujino et
al., 1993; Hwang et al., 1994]).

All axially-moving materials accelerate and decelerate axially, and some
systems, such as magnetic tapes and aerial tramways, do so frequently. Miranker
(1960) first introduced variable transport speed in a model. Acceleration has a
stabilising effect on transverse vibration but deceleration has a destabilising effect
[Mote, 1968].

Although the influence of damping on the vibrations can be considerable, only
a few studies consider this. Linear damping forces of the form Cv, ( cf. [Sack, 1954;
Mahalingam, 1957; Mote, 1968]) where v is the transverse displacement,
C(v, +V,v,) (cf. [Mahalingam, 1957; Ulsoy and Mote, 1982]) and C,v, +C,V,v
[Ulsoy and Mote, 1982] where included in the equation of transverse motion. Here
v, +V,v, represents the transverse velocity of a string particle as measured by a
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fixed observer; v is that velocity measured by an observer moving axially with the
string with a speed Vi,

The influence of sag of an axial moving cable was first recognised by Simpson
(1972). He analysed the free, in-plane vibrations of an elastic, axially-moving cable,
that passes through fixed eyelets at the same elevation. His model assumed both small
displacements and small equilibrium cable sag (also see [Soler, 1970; Irvine, 1980;
Luongo et al., 1984]). Triantafyllou (1984&1985) later considered in-plane vibrations
of axially moving cables with support eyelets at different elevation and cables with
either very small or very large sag. Perkins and Mote (1987) developed a non-linear
three-dimensional cable dynamics theory. Recently, periodic solutions of some large
amplitude forced belt vibrations were given by Blom (1994).

4.1.2 Beam-like systems

Early analysis of the vibration and stability of axially-moving beam-like materials
focused on the linear transverse vibration of an axially-moving Euler-Bernoulli beam
(cf. [Mote, 1965; Barakat, 1967; Chubachi, 1958]). Simpson (1973) first derived the
equations of motion of a travelling Timoshenko beam:

The stability of travelling beams excited parametrically either by periodic
tension variation or periodic edge loading has been analysed by Mote (1968) (see also
Buffington and Kane, 1985). Wheel eccentricity, variations in band stiffness, and
pinch roller or guide friction forces produce periodic axial tension. Periodic axial
motion is another source of parametric excitation (cf. [Wickert and Mote, 1990;
Abrate, 1992; Asokanthan and Ariaratnam, 1994]).

Motivated by high-velocity computer tapes that travel over guides and read-
write heads, several investigators have analysed the steady-state displacement of
materials that travel over a rigid discontinuous surface [Ono, 1979; Majewski, 1986].
In most applications, the axially-moving beam is supported at two points and the
transverse motion of the beam within the span interior is of interest. The dynamics of
a cantilever beam, which is ejected from a single fixed support was studied by
Mansfield and Simmonds (1987). Development of this model was motivated by the
development of long, slender spacecraft antennas [Weeks, 1986] and by paper
transport in copying machines [Mansfield and Simmonds, 1987].

A band and pulley system consists of two band spans and two pulleys. The
earliest models considered vibration of only one span; because of the inertia and
dissipation associated with the pulleys, the vibration of the considered span was
assumed uncoupled from the motion of the other span and the pulleys. However,
transverse vibration of the endless band loop couples response of the entire band to
that of the pulleys, and in general, the model describing the motion of one span
cannot be decoupled from the remainder of the system without loss of model
accuracy. Band-pulley coupling has some important implications for vibration control.
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In some instances active control of one span motion can be achieved through
application of control forces to the other span, the pulleys or the support structure (cf.
[Mote, 1965; Rhodes, 1970; Mote and Wu, 1985; Wang and Mote, 1986; Wang and
Mote, 1987; Abrate, 1992; Asokanthan and Ariaratnam, 1994]).

4.2 Dynamics of a stationary moving belt

In this section the motion of a homogeneous belt span supported by two rolls or
pulleys is considered. The frequencies of axial and transverse vibration are derived
accounting for the influence of the belt speed, the belt material parameters and the
stiffness of the tensioning system. The interaction between adjacent belt parts is not
considered.

4.2.1 Deformation of the belt

Consider a belt supported by two pulleys as depicted in Figure 4.1. The belt will be
pre-tensioned and has an initial strain €° in the reference configuration C,. The
configuration of static equilibrium under gravity load is C, in which &' is the
additional deformation of the middle surface of the belt. C, indicates the

configuration of the belt during motion in which the strain additional to &' is €.
Starting from the reference configuration G, the square of the length of an
infinitesimal pre-tensioned belt part ds is equal to, see also Figure 4.2:

(ds)’ = (dx)’ @é4.n

L

belt—.

. -pulley

dx+du’+du’

Figure 4.1: Belt configurations. Figure 4.2: Deformation of an infinitesimal
belt segment.
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The square of the length of the infinitesimal belt part, ds, in configuration G, is equal
to:

(ds)? = (dx +du’)? + (dv")? =[(1 +u?) +(v?x)2](dx)2 [1+2v!] @ @)
where v}, is a component of the deformation tensor y in G, which is:
Y=’ +%[(u?x)2 +(vf’x)2] 4.3)

Note that the initial belt sag is not a function of time. The square of the length of the
infinitesimal part in configuration C,, ds, is equal to:

(d;)2 =(dx +du® -+-dul)2 +(dV0 +dV1)2

, 4.4
:[(1 +u8 +ul) + (Vv +vY) ](dx)2 =1+2v] J@xy?
where v, is a component of the deformation tensor y in C,:
v =l e+ 4 ) (v )] (4.5)

If the belt strains are small, the axial strain can be divided into the following two

terms:
gl = dS;dS - [——14‘23’11 1
S
: (4.6)
2 dS - dg

e == =J1+2y8 = 1+2y

Substituting the equation (4.3) and (4.5) in equation (4.6), and considering the pre-
strain g, yields:

T, 2 2
g=—0 :g' = (1+uf’x) +(vf’) -1
E,A @.7)

e (RS o () U (P e
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where T, is the initial belt tension whereas E, and A are Young’s modulus and the
cross sectional area of the belt. The average belt stress in the deformed configuration

C. then is:

o=E, (g’ +&' +e’)=E.¢ 4.8)
where
T, 0 1)} 0 1)
€= + 1 +u, +u ) +H{v, +v -1 4.9
EhA \/( X -X) ( X vx) ( )

4.2.2 Equations of motion

To obtain the transverse and longitudinal or axial equations of motion of a belt span
supported by two frictionless guides, it is useful to use the following co-ordinates:

-~ 0 1
- [x +u} _ [x +u'(x) +u (x’t)} (4.10)

v vOx) + vI(x,t)

With these co-ordinates the velocities are:

o | x, +ulx, +ulx, +ul u' + Vb(l + ﬁ"x)

X=1 0 1 1 =1 ~ “.11)
v,xx,t + V,XX.I +V,t v.z + th.x

where V is the belt speed:

Ve =x, (4.12)

The accelerations are:

u?n + 2Vbufxt + vlflrxx

3~ 4.13
Vi +2VV + VIV, “-13)

f:

Just as in Chapter 2, the equations of motion are obtained with aid of the principle of
virtual power:
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L L . ..

[8eTodx = [5%" (f— pAL) dx (4.14)
0 0

where L is the pulley spacing and

L L L
[8870dx = E,A[ 688 dx + E,1, | 7,87, dx (4.15)
0 0 0

With equation (4.9),

2 (4.16)

<

st =[(1+ T )oi, + 767, [(1+ 1) + (7]

The force vector f is equal to:

f =l: 0 ] 4.17)
—q(x,1)
N Assume that the belt is
Yi supported by a spring
K=E,A/L L tensioning system as is
dx@t AAA A X k depicted in Figure 4.3 and
fTy VIV A ,A\S that the pre tension of the
8 AAAR \ & 1 VoV § belt is T,. When the belt is
A ST e moving, a displacement
‘ K=E,A/L : from the static equilibrium
D L R position is caused by the
Toe— . centrifugal  force. The
T, equilibrium position of the
To+— tension pulley can be
To + EyAS/L&— obtained from force
2pA(dﬂdt)zé—é%)—>2To X3 equilibrium neglecting the
PR resistance  between  the
To + EAS/L & pulley wheels and the guide
Figure 4.3: Belt support interaction. rails:
E, A 2 _ pAV;]
2 (TO = 5) =2pA(x,) +2T,-k3 =3 “EALK (4.18)
L 2

55



Chapter 4

which yields the total belt tension T, of both spans:

T,=T,+8 E;:A =T, + NpAV; 4.19)
where
kLY
= 1+ s 4.20
i [ 2EbAj ( )

The parameter n depends on the relative stiffness of the support and the belt. For

locked centre pulleys with very rigid shafts and supports, n=0. When the support
stiffness vanishes as is the case when the belt tension is applied by a dead weight,

n=1.

Substitution of the equations (4.9), (4.15), (4.16) and (4.19) in (4.14) yields:

X

\/(1 + &) (%) 4.21)

L L
+[ By, ¥,V dx =[8x(f - pAX] dx
0 0

[(1+ﬁfx)8i’1fx +\7fx6{7;][Tb ~ B, A+ EA(1+T) +(V, )]
dx

!

Substituting the equations (4.11) and (4.13) in equation (4.21) yields:

(PA[u), +2V,u', + V7,

[Tb -E,A+EA(1+T) +(\’7_x)2} [+ ]| siax +
V&) ()

pA[V,lu + 2th,lxt + Vbz\T,’xx] —-q

© o [

|:Tb -E,A+EA (1 + ﬁ‘.’x)2 '*'(‘7;()2 }Tx 8\.7dx =0
- 3 5 + Ebly\?,-xxxx
(1+@) +(7.)

© ey

4.22)
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This equation yields the two equations of motion. The equation of motion for the axial

direction is:
-

] (+ UV, V = VL?J (4.23)
[+ @)+

2y~ T,
uly +2Voul, + (V) — e, = cf[l - Ebl;\

where ¢, is the wave speed for longitudinal waves defined in equation (3.15). The

equation of motion for the transverse direction is:

1 1 2 2y o~ o~ —_
Vot 2va,m +(V, —¢)) Vit EblyV,xm =

( T, _1] (L+ )V, = (L )TV,
1 E,A [(1_‘_6;)2_'_(\—;‘;)2]%

q (4.23b)
pA

In the following, terms with u’, are neglected compared to terms with u', and the
superscript 1 of o' is dropped. The following dimensionless parameters are

introduced:
x=> u=2 v=2
L L L
L T (O . L (4.24)
L c, T,
PO2 =Eb12 P12=EbA K:l"ﬂ
T,L T,

With these parameters and neglecting terms O(V*) and O(U*)=0(V*), equation

(4.23a) reduces to:

U, +2BUy, + (B - P g = (B = 1-1B*)Vy Vi (4.252)
Equation (4.23b) reduces to:
V., +2BV,. +(kB® - 1)V, + P2V,

. X XX 0 7 XXXX (4.25b)

= (P12 -1 - T]BZ)(%\‘/?(\‘/TXX +U,x\7xx +VATXUvXX) +T

The motion of the belt on top of the pulleys is constrained. The simple support

boundary conditions are assumed to be:
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V(0,7) = V(1,7) =0 ; Vi (0.7) = Vi (1,1) =0 : U(Q.1) = U(1,7) =0 (4.26)

4.2.3 Linear solution

Before the nonlinear equations (4.25a&b) are considered, four special cases of
vibration, which are frequently used in literature, are derived from the following
linear differential equations:

U, +2BU,, +(B>-P)U,, =0 (4.27a)
Vo + 2BV, +(kB? = 1)V, + PPV =T (4.27b)

The four cases of free vibrations are:

. the axial vibration of a belt

. the transverse vibration of a string

. the transverse vibration of a beam

. the transverse vibration of a beam with string effect.

W N =

4.2.3.1 Axial vibration

The linear differential equation (4.27a) can be rewritten in the original parameters:
g +2V,u,, + (Vi —cfJu,, =0 (4.28)

If the belt vibrates harmonically in a natural frequency, the motion in the longitudinal
direction is:

u(x,t) = u(x) cos(ot + @) 4.29)

where ¢ is the phase shift which in case of a moving belt depends on the position on
the belt and is equal to:

_ m(x:L)

Vb

(4.30)

where
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2 g2 2
V; =CITV*L=V,)[$‘2 —1) (4.31)
b b

Substitution of the equations (4.29)-(4.31) in (4.28) shows that the amplitude function
u(x) has to satisfy the following equation:

2.2
U + =0 4.32)
(c; - Vb)

The solution for u(x) then is:

1x) = C, sin(ﬁii) +C, cos(“’—f) (4.33)
C C
where
2 _ 2 2
=GV _ c,(l - V—;j (4.34)
Cl 1

If the belt is clamped at x=0:

u@0,0=0 (4.352)

and harmonically excited at the other end:

(L, t) = u,cos(ot) (4.35b)
then substitution of these boundary conditions yields the constants of equation (4.33):
Y,

) ((DL)
sin| —
c

The constants V, andc’ are called the apparent belt speed and the apparent wave speed
respectively. From equation (4.36) it can be seen that resonance occurs when:

C = :C,=0 (4.36)

oL i n=123 (4.37)

C
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hence the natural frequencies are:

2
m=i‘ﬁcl[l—v—g), n=123,:- (4.38)
L c

1

Since ¢, is usually large with respect to V,, see for example Table 3.3, the influence
of the belt speed on the axial natural frequencies is normally neglected.

4.2.3.2 Transverse vibration of a string

When the belt stress due to the pre-stressing of the belt is high compared to the
additional stress caused by the transverse vibration of the belt, it is justified to assume
the pre-stress constant and linearise the equations of motion. If in addition the strain
energy due to bending deformation is small with respect to the strain energy due to
axial deformation, the bending term in equation (4.27b) may be omitted. In case of a
stationary moving belt with a spring tensioning system, the following equation is
obtained from (4.27b) omitting the tilde:

Ve F2V,v, HrVE = c))v,, =0 (4.39)

in case the belt load I'=0. If one belt end, at x=0, is clamped and the other, at x=L,
is subjected to harmonic displacement:

v(L,t) = v,cos(ot) (4.40)

the soltution of the equation of motion (4.39) may be written as:

v(x,1) = ¥(x)cos(ot 4»\‘/3;()( L)) (4.41)

b

where V(x) has to satisfy the equation:

+(cg +(1-%)V7)

x 0’V =0 (4.42)
' (c§ - KVbZ)”

and
. cl-xV? ( I ]

Vi > oy | — - 4.43
b Vb b Bz ( )
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The general solution of equation (4.42) is:

wx
*

) +C, cos(m—f)
c c

¥(x) = C, sin(

where

. ¢ —xV;] 1-«p’
CcC = = 02 =
Je+1-x)V? J1+(1-x)p?

(4.44)

(4.45)

Substitution of the boundary conditions in equation (4.44) yields the constants:

VO

, (mL)
sin{ —
c

The final solution is:

C = . C,=0

()4

VX, 0=V, %ws[w(t +%j]

%

C

From equation (4.47) it can be seen that resonance occurs when:

OL i n=123-
C

hence the natural frequencies are:

— 2
o= d-xp =123,

L 1+1-w)p?’

(4.46)

(4.47)

(4.48)

(4.49)

Equation (4.49) indicates that the frequencies vanish whenV, =c, /\/E . This belt

speed is called the critical belt speed. Note that with decreasing stiffness ratio x the
critical speed increases. This critical belt speed is also called the divergence speed. If
the belt speed tends to the critical speed, the requirements to linearise the equations of

motion will no longer be fulfilled.
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In case of a non moving belt equation (4.49) is reduced to:
o= n_fcz, n=1223,, (4.50)

The existence of a critical speed, which is in this case V,=c,, has no implications for
belt conveyor systems since the belt speed never approaches the critical speed.
However, for high speed belt-systems like band saws, it should be remembered that
the belt speed of systems tensioned by spring tensioners can easily approach the
critical belt speed.

4.2.3.3 Transverse vibration of a beam

When during vibration the strain energy due to pre-stressing is negligible compared to
the strain energy due to bending, it is justified to neglect the pre-siress terms in
equation (4.27b). In case of a non moving belt and omitting the tilde, the following
equation remains:

LV e =0 4.51)

After substituting
v(x,1) = v(x) cos(ot + @) (4.52)

in (4.51) the following differential equation is found:

"
%%— §=0 (4.53)
where
1
2\4
)
b

The general solution of (4.53) is:

v(x) = C,cosh(ux) + C,sinh(ux) + C,cos(ux) + C,sin(ux) (4.55)
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The four integration constants have to satisfy the boundary conditions. In case of a
simply supported belt they are:

YO0 = V(L) =¥, (0)= ¥, (L) =0 (4.56)

Substitution of the boundary conditions yields the following natural frequencies:
2.2 E I

o="0 12 h=123, 4.57)
L pA

4.2.3.4 Transverse vibration of a beam with string effect

If both the pre-stress and the bending stiffness influence the belt vibration, the full
differential equation (4.27b) must be used, omitting the tilde:

E.I
PYy =0 (4.58)

Vo +2vayxl +(KV2 - Cg)v_xx + pA XXXX

b

For a non-moving belt, the displacement function:
v(x,0) = cm(“?) exp(iot) (4.59)

satisfies the boundary conditions of a simply supported belt. Substitution in (4.58)
yields the natural frequencies:

) : *E,l
0’ =(Pﬁ) ¢ +(ﬂ) by (4.60a)
L L/ pA
or
P
o="c fl+-= (4.60b)
L T,

where T, is the pre-stress load and P, the n™ Euler buckling load for a simply

supported ideal column:
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_ n’n’E, I, @.61)
e, — L2 .

To estimate the effect of neglecting the bending stiffness of a belt, the parameter kg,
which has been defined in (3.11), can be used in equation (4.60):

nm
o =—=c,k 4.62
L 2t ( )

For a stationary moving belt the exact solution of (4.58) is obtained by assuming a
solution in the form:

~ .n
vix,t) = V(x)exp(lf(x - Vht)) (4.63)

After substitution into equation (4.58) the following natural frequencies for a belt
supported by non-centre locked pulleys can be obtained, [Abrate, 1992]:

nn . T,  (nm)’ El
o=—|-V, £ MV, +—=-+—| —= (4.64)
L pA L PA

Neglecting the Coriolis acceleration term 2V,v, in equation (4.58) yields the
following result for the square of the natural frequencies:
n*n* Ebly

L' pA

2.2
,_D'm

o’ =——c(l- xp) + (4.65)

This equation gives results in good agreement with experimental values [Abrate,
1992].

4.2.4 Nonlinear solution

4.2.4.1 Method of solution

If the amplitudes U and V are small as has been assumed, the governing equations
(4.25) are weakly non-linear. The nonlinear terms in those equations are of order

VZor V*. Therefore, a perturbation method is well suited. In [Thurman and Mote,
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1969] a combination of the methods of Lindstedt and Krylov-Bogoliubov is used.

Power series expansions for U, V and 7 in a small parameter p are introduced into
the two partial differential equations (4.25) and thus an arbitrariness will appear in the
approximation following the solution of the linear equations. This arbitrariness allows
the selection of available coefficients in order to eliminate the secular terms in the
subsequent approximations. This is done by selecting the undetermined coefficients in
such a way that the non-homogeneous perturbation term is orthogonal, on the
average, to the linear solution. To reduce the increasing amount of calculations, only
those longitudinal vibrations will be considered that are caused by transverse
vibrations (particular solution of equation (4.25a)).

Substitute the following functions into the equations (4.25):

U=U, +uU, +p’U,+...
V=V, +uV, + 1V, +... (4.66)

1= Ql0(1+ wh, +p’h,+...)

where U is a small and as yet undefined parameter, h; are constants to be determined
and

Q,=2= 4.67)

which is the dimensionless lowest frequency of the linear solution. Equating the
coefficients of equal powers of | to zero, the nonlinear problem is reduced to a
sequence of linearised equations in each of which the nonlinear terms are known from
the solutions of the equations of lower order in u. When the transport speed is
constant these are:

LV, =T (4.68)
LU, = (P = 1- B’V Vo (4.69)
L0V~1 =FK - 2h1[BQO\7:),XT + (KBZ - 1)\7;,xx + P02\70'xxxx - F] 4.70)
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LU, =(P? = 1-nB)(Vix Vorx + VoxVixx)

20, [BE, Uy + (B - P’) R L B \ A

L, V =F,-2h [BQ Voxr (KB ) 0.XX +P02V~o,xxxx - F]
_hf[(]q32 - 1) oxx + Pozvo,xxxx - r]

_2h1[ﬁgo\7;_xT + (KB2 - 1)\71‘,xx + P()Z\Z.XXXX - Fl]

LU, = (B = 1= nB)(VixVixe + Vox Vaxx + Vax Vosx )
~2h, [BQ Um ( - )oxx (P? = 118 Vo Voo
~h3{(B” = P2 U = (7 = 1= 1B )V Vi |
—2hl[ﬁQOUo_m ( PU = (P2 = 1=1B2)(Vy Vo +

LV, =F -2h [BQ Voser *(kB” = D)V + PV = T
=20, (B” = 1)V + P Vosoux — T

~h3[(<B” ~ )V + B3 Vo000 ~ ]
~2h,[BR, Y r + (8% = Vi + PV 00 ~ i

—2h [BQ VZ,XT (KBZ ) 2.XX + P2V’ XXXX F ]

where
0? o* 0? o
L,=Q; +2BQ +(xp* -1 +P?
e 2B G+ (6B 1) s R
8? o fod
L, =Q} — +2BQ +(B* - P?
’oT? B ° 5XaT (B ‘)8X2

1 _ _ _ .
F1 = E(Pl2 - 1 - nBZ )(% \z?,XVO,XX +U O,XVO,XX +VO.XUO,XX)

4.71)

4.72)

(4.73)

(4.74)

(4.75)

(4.76)

4.77)
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__(P -1- T]B )(2 Vixx +3V1xvoxvoxx
(4.78)

+UO,XV1,XX +V1,XU0,XX +UI,X\7(’),XX +\7;),XU1.XX)

—

%Vozx 1LXX %V x Vaxx +3Voxv2xvoxx
+U2XV:)XX+UIX 1XX+UO,XV2XX (4 79)

+U0‘XX\7 + U, xxVix + Uz Vox

The solution procedure is systematic. Solving equation (4.68) yields the linear,
generating solution,\Z) , and the first linear natural frequency €, . Using \70 and
Q, , equation (4.69) can be solved for the particular solution U, . With V, and
U, , F can be calculated using equation (4.77). After substitution of \70 and F ,
the right hand side of equation (4.70) will contain some terms of the same frequency
as \70 . To obtain a periodic solution for V, , the influence of these terms must be
minimised. Therefore, the right hand side of (4.70) is constructed orthogonal to the
linear solution, V~0 , by appropriately selecting the as yet undetermined constant h, .
This factor becomes:

IIZ“VFdeX

w7 = (4.80)
2 [ 17V [BO Vs +(xB? = 1)V + P Vi — T JdTaX
The first nonlinear approximation to the circular frequency is:
- % (4.81)
1+ ph,

Now determine the particular solution \7: from equation (4.70). U, is obtained from
(4.71) and F, from (4.78). Similarly the right hand side of equation (4.72) is

constructed orthogonal to the linear solution V; . The second constant h, is:
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_ [[["V,EdTax
2 2.‘.01.( [BQ VO xt T (KB ) oxx T P; Vo XXX r]deX

_ I J. [ OXX + P2V0 XXXX F]deX
1 P27~
2_‘-0 jO O[BQQVOXT (KB - 1) 0.XX + PO VO.XXXX - F]deX

+

(4.82)

by

The first nonlinear approximation to U and V  and the second approximation to Q
are:

QO

—0 - u=Pa’ 4.83
1+ ph, + p’h, H=5 (4.83)

U=U,+ul,: V=V, +nv,;: Q=

Proceeding in the same manner would yield higher order approximations which
improve the accuracy. However, the accuracy of the second approximation on £ is
already satisfying {Thurman and Mote, 1969].

4.2.4.2 Non moving belt

To illustrate the solution method for the nonlinear equations of motion, the first
(n=1) nonlinear frequency of transverse vibration of a non-moving belt ($=0)
without bending stiffness (P} = 0) and supported by locked centre pulleys (k=1) is
shown in this section. The linear solution for this case was determined in Section
4.2.3.2 and given in equation (4.50). In dimensionless form this frequency is
Q, == . The dimensionless displacement function, see also equation (4.47), is:

V,(X,T) = a sin(zxX) cos(T) (4.84)

However, this displacement function was determined without accounting for the
weight of the belt. To determine the displacement function which accounts for this
effect, the displacement function is written in terms of the eigenfunctions,
x and v [Meirovitch, 1974}:

Vo, T) = ETH(X) +HMwX) | (4.85)

The generalised co-ordinates & and £ are [Meirovitch, 1975]:
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E(T) = f;[ﬁ(t Yeos(Q(T ~ t')) + lé:(t' )sin{Q(T - t')):l dt' +(0)cos(QT) +£(0)sin(QT)
&M= J:[léz(ﬂ )eos(Q(T - ) - F(t' )sin(Q(T - t'))} dt' + £(0)cos(QT) — £(0)sin(Q2T)

(4.86)

where F and F are the generalised forces:
~ 1 = 1
F(D) = -Q[ w(X) X, T) dX ; F(T) =0 %(X) (X, T) dX (4.87)

The distributed belt load g(X,T) is equal to the belt weight I'. The components of the
orthonormal eigenfunctions are [Wickert and Mote, 1990]:

X :% /l_iBQSin(nX)cos(nBX) Ty = % Il —iBZ sin(nX)sin(npX) (4.88)

In case of a non moving belt (B=0) and the first natural frequency (n=1) the
components of the orthonormal eigenfunctions reduce to:

x= —‘/zsin(nx) ;w=0 (4.89)
T

Substitution of these eigenfunctions in equation (4.87) yields the generalised forces

l?andF::

Foo; Fe22p (4.90)
7
Substitution of these forces in equation (4.86) yields:
F
E(T) = 5(1 —cos(T); LM =0 (4.91)

Substitution of the equations (4.89) and (4.91) in (4.85) then yields the displacement
function:
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4“TL sin(mX)(1 - cos(T)) 4.92)
0

V,(X,T) = %sin(nX)(l - cos(T)) =

7'53

The static belt sag at X=0.5 is approximated by K_ = 4311,“ . This is comparable with
T 0

the approximation of DIN 22101 standard obtained by using a parabolic displacement

field, quL, which was given in equation (3.14).
0

Following the perturbation method as described in Section 4.2.4.1, the first
approximation of the axial motion U, is determined from:

Q(Z)Uo,rr - Pleoxx = (Plz - 1)\}:),)(\7:),xx 4.93)

With the displacement function given in equation (4.92), the particular solution of this
equation is given by:

2 2 _ 2 _
U, = %sin(2nX){—3( Plpﬁ 1) ¥ 16(42‘)12 _11) cos(T) - cos(ZT)] (4.942)

For practical applications P} >> | and in that case the result reduces to:

2

I §in(@ax)[=3 + 4cos(T) - cos(2T)] (4.94b)
T

U, =

If the effect of the belt weight, and thus the static belt sag, is negligible (I'=0), then
the displacement function given in equation (4.84) is used to calculate the particular
solution of (4.93) which in that case is:

2

2 i
U, = %sin(ZnX)[~ P'P2 L cos(zT)] (4.952)

1

If P’ >>1 this reduces to:

na’ |
U, = E—sm(2nX)[—l - cos(2T)] (4.95b)
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The function uF, can be determined from equation (4.77) and ph, from equation
(4.80) which, in case of zero bending stiffness P(f =0, can be rewritten to:

[ [VouFdTax
u 1= 1 27
2f [ Vo[-Vosx JaTAX

(4.96)

This can be calculated with use of the symbolic manipulator program Maple V.
Starting from (4.92), the belt sag equation, the result is:

(P? - 1)1“2(1920 P} +288 - 95‘-] 7

P’ ,
; ~ —~PIT? 4.97a
64 n* (4P} - 1) ! @.97)

uhl-:—

and starting from (4.84), the amplitude equation, the result is:

n2a2(6 P12+1)(Pf— )N 3 L,
64 P2 & —En Pra (4.97b)

Hh1=—'

With these coefficients, the first approximation of the lowest nonlinear fundamental
frequency is, in case of belt sag:

Q= T ~ T (4.982)

L5
(P’ - 1)(1920 P? +288 - 96Jr2 - §RT

P

1-

64 7t (4P ~1)

and for free vibrations:

T T
Q= ~ 4.98b
n*(6 B +1)(P; —1Ja® -3 oprye ( )
- p 3!
64 P;

Proceeding in a systematic manner to calculate the second approximation, F,, h, and
V~0 are substituted in the right hand side of equation (4.70). If the restriction is made

to cases for what P} >>1 , the following particular solutions can be found. For belt
sag:
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2
VX, T) =l"nl:1 sin(mX)[-40 +8cos(2T) - 0.5c0s(3T)] (4.99a)

and in case of free vibrations:

V,(X,T) =4a—zsin(1tX)cos(3T) (4.99b)
T

Accordingly solving equation (4.71) yields, in case of belt sag [Serckx, 1995]:

2p2

U, X, T) = r l:‘ sin(2nX)[4O —36¢c0s(T) — ? cos(2T) +§ cos(3T) - 5005(4’1’)]
b 2
(4.100a)

and for free vibrations [Thurman and Mote, 1969]:

U,(X.T) = a%sin(2nX (1 Z(GP‘ZH)] 2T +(P‘2—1) 4T
(X, )-Ea sin(2nX) +W2_1) cos(2T) (1312_4)005( )

(4.100b)
mo L a*sin(2nX)[cos(2T) + cos(4T))
32r

The functional pF, is formed by substitution of the appropriate functions into equation
(4.78) and ph, from equation (4.82). In case of belt sag:

(p? - 1)r2(1920 P’ +288 - 9?)
y 3 i
*h, == - ;
RT3 64 n* (47— 1)
- (4.1012)
. (P} - 1)r*(8832000P, - 3037440P)  1825P/T"*
153607 (4P? ~ 1) T
and in case of free vibrations:
m'a* (P2 - 1) AL
l-'-2h2 — ( 1 ) (61:)1 TIJ __E ~ in4l;.14a4 (4 IOlb)
1024 2P 4) 4096
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With the coefficients h, and h,, the second approximation to the lowest nonlinear
fundamental frequency is, in case of belt sag:

Q= n

1- 15—11’121“2 +

1825 P}
P e

Lo
I

and for free vibrations:

T

1- 3f1t2P12a2 + f;;}wn“Pfa“
32 4096

(4.102a)

(4.102b)

The ratio between the linear and the nonlinear frequency applying equations (4.982)
and (4.102a) is depicted in Figure 4.3. Figure 4.4 shows this ratio applying equation
(4.98b) and (4.102b). Note that T is n*/4 =~ § times the static belt sag K. To obtain
approximations to the nonlinear period of an axially moving belt, the same procedure
can be used. Some results for free vibrations are given by Thurman and Mote [1969].

1= -
~—

0e - . second approximation
Q08

Ty,

|
0.6
first approximation \

05 N
04 0005 001 0015

afl

Figure 4.3: Ratio between the nonlinear, T,, and
linear, T, period versus vibration amplitude for
P;=50.

1
0.98 second approximation
0.96
L—'0.94
T
0.92
first approximation
0.90]
0'880 4 8 12 16 20 24
I'[-] x 10°

Figure 4.4: Ratio bevween the nonlinear, T,, and
linear, T, period versus beit load for P;=50.
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4.2.4.3 Stationary moving belt

To determine an approximate solution of the equation of transverse motion of an
axially moving belt, Bapat and Srinivasan [1967] neglected the coupling between the
axial and transverse motion of a moving belt by assuming that the belt tension force is
constant. The nonlinear equation of transverse motion (4.25b) of a belt, supported by
locked centre pulleys (k=1) and neglecting the bending stiffness (P,=0), then reduces
to:

Vo + 2BV, +(B - 1)V = 3(P? - 1) V3 Vi (4.103)
Bapat and Srinivasan [1967] used the method of harmonic balance to obtain a solution

of this equation. Their result can easily be extended to predict all natural frequencies
[Abrate, 1992]:

Q, = nny/1-p° 1+T’Bz)nznzﬂzal, n =123, (4.104)

This equation indicates that, with the same vibration amplitude, the non-linear effects
are more pronounced for high values of B and higher modes. Non-linear effects can
be neglected only for small amplitudes and high tension levels. Figure 4.5 shows the
period ratio for different values of § using equation (4.104).

Korde [1985] also considered this problem and he obtained a correction factor
for equation (4.107):

-1

2(1-82))"
Q=0 |1+L 1+—(2,—B,) (4.105)
48 9n°Pa*

The two approximations of Thurman and Mote for the nonlinear/linear period ratio as
given in the equations (4.98b) and (4.102b), and the approximations of Bapat and
Srinivasan, equation (4.104), and of Korde, equation (4.105), are compared in Figure
4.6.
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D 0.01 0.02 a 0.03 0.04 0.05

0 0.25 1.00 2.25 4.00 6.25
pl

Figure 4.5: Period variation versus amplitude for different values of p and P;=50.

Thurman and Mote,
0.0} ~first approximation
’ __Thurman and Mote,
second approximation

0.8
To
T 0.7

0.6} Korde approximation

Bapat and Srinivasan approximation —
Q.51
0.4 - . -
0 0.005 0.01 0.015

af]

Figure 4.6: Period ratio versus vibration amplitude for four different approximations (8=0, P,=50).
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4.2.5 Parametric excitation

There are two principal mechanisms that may drive a running belt spanning two
pulleys into transverse vibration. The first mechanism of excitation, at a frequency
close to a natural frequency of transverse vibration of the belt, is direct transverse
excitation of the belt end by pulley runout or another irregularity. Pulley eccentricity
or passage of the belt splice over the pulleys can directly excite the belt. The second
mechanism of excitation, at a frequency close to twice a natural frequency, is through
the tension or the edge loading being periodically driven. Pulley eccentricity,
variations in belt thickness or stiffness, passage of a splice over the pulleys and pinch
roller or guide friction forces produce periodic axial tension.

Besides these direct excitation sources there is a mechanism of parametric self-
excitation [Rhodes, 1970]. If a belt is vibrating transversely the length of the vibrating
span changes at twice the frequency of the belt vibration and with the length, the
tension has also an alternating component at twice the belt frequency. When the belt
winds onto the pulley, the varying tension on the moving belt will be recorded as a
strain or stress pattern in the belt, assuming the belt does not slip on the pulley
surface. When the belt pays off the pulley onto the next span, this stress pattern
causes a corresponding tension variation on that span. The process repeats around the
next pulley introducing into the original span a replica of the original tension variation
but delayed in time and reduced in amplitude. If the delay has a proper relation to the
belt vibration period, then this fed-around tension can sustain or increase the
vibration.

A rough generalisation is that metallic belts, of which the axial tension may
change markedly when either a pulley or belt irregularity is encountered, tend to be
excited parametrically. Belts of more compliant materials, like rubber or leather, tend
to be excited directly.

The principle of parametric excitation of a non-moving belt was explained by
Kauderer (1958). Abrate (1987) analysed the vibration due to manufacturing
imperfections of V-belts. The imperfections were shown to be detectable by a Fourier
series analysis of the ride-out variations during a standard belt inspection test. Ride
out is defined as the radial motion of the belt in a pulley groove. An experimental
investigation of a V-belt drive by Kozhevnikov (1982) indicated that splices in the belt
due to manufacturing imperfections can be a significant source of vibration. The
bending stiffness in the joint area is in general greater than in the rest of the belt
which gives additional dynamic loads. The response of a band/pulley system under
impulsive boundary conditions due to the passage of welds was investigated by Wang
and Mote (1987). As the weld enters or leaves a span, an impulse to the transverse
displacement was observed. A mathematical model for this system consisting of two
coupled spans and accounting for the inertia of the pulleys and flexibility of the
supports has been presented. Koyama (1990) showed experimentally that tension
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variations generated by pulley eccentricity can reduce the amplitude of vibration of
timing belts for which tooth impacts are the major source of excitation. It was also
shown that adding material to the back of the belt along half of its length so as to
change its density will also help to reduce vibration amplitudes near resonance peaks.
Analyses of a moving string subjected to a force excitation representing tooth-sprocket
impacts were presented by Watanabe et al. (1990) for the case of variable tension and
variable density.
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Chapter 5

Motion resistances of belt
conveyors

techniques using discrete models of belt systems, it is important to be able to

model not only the belt properly, but the interaction between the belt and the
supporting structure as well. In this chapter the mathematical formulations of a
number of resistance forces encountered by a conveyor belt during motion will be
given. The underlying phenomena which cause the resistances differ. Some are caused
by the visco-elastic behaviour of the belt cover material whereas others are caused by
the friction between the belt and the supporting structure.

To obtain accurate results and get full advantage of modern simulation

5.1 The rolling resistance

The rolling resistance accounts for the major part of all motion resistances. The
parameters which determine the rolling resistance of the belt are the belt speed, the
diameter and material of the rolls, the belt parameters such as width, material,
temperature, tension, lateral load, idler spacing and trough angle.

In this section an approximate formulation of the rolling resistance is derived
for a flat belt. However, the equations can easily be extended to troughed belts. The
important energy dissipating sources are: the time dependent indentation rolling
resistance, the rotation inertia of the rolls of the idlers and the friction of the bearings
of the idler rolls. Each source is considered separately and the contribution to the
rolling resistance is given. The results obtained are compared to those of Jonkers
(1980) and Spaans (1991).

81



Chapter 5

5.1.1 The indentation rolling resistance

The rolls of the idlers are made of a relatively hard material like steel or aluminium
whereas the belt covers are made of much softer material like rubber and PVC.
Therefore the belt cover is indented by the roll due to the weight of the belt and the
bulk material when the belt moves over a roll. Due to the visco-elastic properties of
the cover material the recovery of the compressed part will take some time. This
results in an asymmetrical stress distribution between the belt and the roll which yields
a resultant resistance force; the indentation rolling resistance force. The magnitude of
this resistance force depends on the constitutive behaviour of the cover material, the
radius of the idler roll, the vertical force due to the weight of the belt and the bulk
solid material, and the radius of curvature of the belt in curves in the vertical plane.

To reduce the investment and operating costs of a belt-conveyor system it is
important to identify the influences of the plant parameters on the energy
consumption. In terms of the indentation rolling resistance this implies that the
dependence of this resistance on the roll radius, idler spacing, belt speed and radius of
curvature should be known. It is also important to know the influence of the belt
material and belt structure on the indentation rolling resistance and therefore on the
energy consumption of the belt. For example, the resistances of steelcord belts and EP
belts differ due to the difference in carcass structure, [Greune and Hager, 1993] and
[Hager and Hintz, 1993]. Here the differences in belt structure are not taken into
account.

The constitutive behaviour of the rubber belt cover material is described by a
three parameter Maxwell model as described in Section 3.2. This model is used by a
number of researchers, see for example [May et al., 1959], [Hunter, 1961], [Jonkers,
198071 and [Johnson, 1985]. Morland (1962) uses a model with more relaxation times.

The various sources of energy dissipation in rolling may be classified into
those which arise through micro-slip and friction, those which are due to inelastic
properties of the material and those due to roughness of the (rolling) surfaces. In this
section the restriction is made to the rolling friction due to the inelastic properties of
the belt cover material which is the largest contribution, [Johnson, 1985].

During rolling the material lying in front of the contact zone between belt and
roll is being compressed whilst that at the rear is being relaxed. In case of conveyor
belts, the visco-elastic cover material relaxes more slowly than it is compressed so
that the belt and the roll separate at a point (x =-b) closer to the centre line (x = 0)
than the point where they first make contact (x =a), see Figure 5.1. In the figures the
belt and the roll are depicted upside down which -is done for simplicity only. The
asymmetrical contact-phenomenon and the resulting asymmetrical stress distribution
result in a resistance force.
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If the maximum indentation,
which is a function of the belt
speed Vy, is y, and the radius of
the roll is R then at any point
P(x,y) within the contact area
the indentation can be
approximated by :

> v, Y=o - o (5.1

Figure 5.1: Idler rolling over a rubber half space.

provided that yo<<R. If point P enters the contact zone at t=0 with a constant speed
V,, and the process is stationary then

a—-x=Vit (5.2)
Combining the equations (5.1) and (5.2) yields :
(a-Vit) =2R(y, - y) (5.3)

Assuming a®> =2Ry, which is correct for an independent spring support, a so-called

Winkler foundation see Figure 5.2, the indentation written in terms of time t is given
by [May et al., 1959]:

y= ;]—I;(Zat -V, (5.4)

Finding the pressure distribution between a rigid cylinder and a visco-elastic layer
requires the solution of an integral equation. This procedure is followed by Hunter
(1961). The solution from this approach is relatively complicated and cannot be used
directly in this case because Hunter considers the problem that the indentation depth
¥, and not the resultant vertical force, is prescribed. A more convenient approach is
to assume that the belt covers can be modelled by a simple visco-elastic Winkler
foundation model rather than by a visco-elastic layer, see Figure 5.2. The visco-
elastic foundation of depth h, rests on a rigid base and is compressed by the rigid
roller. Since there is no interaction between the springs of the foundation this implies
a.o. that shear between adjacent elements of the model is ignored. The inertia of the
foundation material is also neglected.
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If the indentation depth is small compared |
to the thickness of the belt cover and it may
be assumed that the carcass material is
indeed undeformable, then the visco-elastic
Winkler model can be applied to
approximate the strain of the belt covers
due to the indentation of the roll.
X Therefore, this deformation is given by:

~Spring

v (7 PV 5.5
Y 2Rh(a b ) (5.5

;}'/
//

//////////

Rigid base
Figure 5.2: Winkler foundation model.

(compression strain is taken positive here)
and the deformation rate is equal to:

?=%(a—\’bt) (5.6)

If a Maxwell model with one relaxation time (three parameter solid) is chosen to
model the constitutive behaviour of the belt cover material then substitution of the
equations (5.5) and (5.6) in equation (3.20) yields the stress distribution:

E; Vit t a+b
0= 2izhb (at = v,6) + =0 [(a * V"T)(l ) ex"(_?)) B Vbt] 0SS
5.7)
Substituting 27X fort yields the following equation :
b
E, fa—-x)a+x E.k l(a—x) a—x
o(x)=a’ __1_( )( )+ 2 1+k(1-e -__)_( )
v {2Rh A T U B U
(5.8)
where
k= o (5.9
a N

The ratio b/a can be obtained from equation (5.8) since o(-b) = 0. If the belt moves
at a constant speed then the distributed vertical force per unit width may be obtained
by integrating equation (5.8) which yields :
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E = j o®)dx = g l:h { (9)3 + 3(9 +2}
| Bk’ {(1 k){(a:b] +k[exp(_%(a:b)) B 1)}_%(a :bﬂ

(5.10)
Since E is constant for a stationary moving belt and the ratio b/a is known from
equation (5.8), the length a can be calculated from equation (5.10). This leads to:

E

S0 Bafosfe) e 52)- D202 ]

To calculate the rolling resistance, the moment has to be taken about the centre of the
roller:

M = [o()x dx (5.12)
b
The total resistance force per unit width is:
4 2 4
ot 2 o (),
R 8R*h a a
k

()1l 22

(5.13)

Finally, the indentation rolling resistance factor, defined as used in DIN 22101, is
equal to:

FE _ E°n” a
fw = = ?)2"3 Fau (. B Ey) (5.14)
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in which D is the diameter of the roll. The derivation of the indentation rolling
resistance factor (5.14) is the same as given by May et al. (1959). However, in the
application May assumes that the indentation depth h is independent of the belt speed.
As a result, starting from a specific belt speed V,,,, the vertical force in the model of
May increases with increasing belt speed. In the above consideration the vertical load
F; is taken constant which results in a decreasing indentation of the belt with
increasing belt speed. Therefore, the indentation rolling resistance factor found by
May et al. (1959) is higher than f;;, for belt speeds above V,, and lower than f;,, for
belt speeds below V.

Spaans (1991) and Jonkers (1980) also use the Winkler foundation model
instead of a layer to model the visco-elastic response of the belt. To determine the
indentation rolling resistance they use a formulation for the energy loss due to
hysteresis losses of the cover material. Spaans assumes that the visco-elastic response
of the belt material can be modelled by a combination of linear elastic belt material
and a coefficient of energy loss due to indentation that accounts for the visco-elastic
behaviour. He arrives at :

13
Fz

N — (5.15)
(5) E"'DP(1+1-n)™)"

f, =0.5m

where E’ is the lateral flexibility of the belt which is equal to the dynamic Young’s
modulus of the total belt divided by the belt thickness and can be determined from a
hysteresis test. This test also yields the loss factor 1. The diameter D, accounts for
the diameter of the roll and the radius of curvature of the belt. It is defined by:

1 1, U (5.16)

D, D 2R,

where R; is the radius of curvature of the belt on top of the roll. The lateral flexibility
and the loss factor are determined from a hysteresis test performed at a specific
frequency. Therefore equation (5.15) is only valid for a specific belt speed. To
compare Spaans’ equation with equation (5.14), equation (5.15) has to be adapted. As
mentioned above the lateral flexibility of the belt is equal to the dynamic Young’s
modulus of the total belt divided by the belt thickness. Here only the belt cover is
considered. The lateral flexibility is therefore equal to:

5.17)
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where E'is the storage modulus and 8 the loss angle of the belt cover material which,
for the three parameter Maxwell model, are given in the equations (3.24) and (3.25)
respectively. With this result and the loss factor as given in equation (3.26), the
indentation rolling resistance factor becomes :

1/31, 1/3
F'*h

N 473
(3) EYDy[1+(1-n,6)"]

£ =0.5n(5) (5.18)

Jonkers also relates the indentation rolling resistance directly to the hysteresis losses
due to the indentation of the belt cover. He assumes that the development of the
indentation depth y along the contact line can be approximated by a sinusoidal instead
of a parabolic function (equation (5.4)):

y =y sin(ot) (5.19)
where
© = :be (5.20)

Jonkers uses the three parameter Maxwell model to determine the hysteresis losses.
He arrives at :

(5.21)

43 my3L 3
£ = 0.5  tand [(n +28)cos§} E/h

4+/1+sind E'"* DY

The contact length (a+b) depends on the storage modulus. The storage modulus,
however, depends on the deformation rate which depends on the contact length.
Therefore, to calculate the deformation rate an iterative procedure using a predictor
2a, for the contact length has to be used which follows from the Winkler model,
[Johnson, 1985]:

a; _3EDh (5.22)

4 E,
The correct deformation rate and storage modulus are obtained after a number of
predictor-corrector steps.

For the calculation of the maximum indentation depth, both Jonkers and
Spaans assume that the indentation of the belt by the roll is symmetrical with respect
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to the centre line of the roll. However, with increasing belt speed, and hence
increasing deformation rate, the indentation profile becomes more asymmetrical.

The drawback to these theories is twofold. Firstly, the hysteresis loss factor
(equation 3.26)) is generally not a material constant. Secondly, the hysteresis loss
factor in rolling cannot be identified with the loss factor in a simple tension or
compression cycle. The latter effect can be estimated by comparing the results
obtained by Hunter (1961) and May (1959). In both analyses the indentation depth is
prescribed instead of the vertical belt load.

Hunter starts from the retardation equation instead of the relaxation equation
(3.23):

O1) = i[l + f*(l - exp(-i)ﬂ (5.23)
Uy T

In case of the three parameter Maxwell model the modulus pup and the retardation

coefficient f* are:

Ko =E1+E2,f'=% (5.24)

1

The indentation rolling resistance according to Hunter is:

e Uy fio ) orf1- (=)
a2 r-(2)) 529

where:

2 20=VA+ ) RE,

0 (5.26)
T,

a\? Zf*‘,h*

Lol = . 5.27
(a] +K0(k) RS (5:27)

/K (%) A1)
() Lk

Fl—a( . 2[(a) 1}11(“] (5.28)
and

b =Q1+f)k (5.29)
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The functions Kg,Kq,lp,I; are zero and first order (modified) Bessel functions
[Watson, 1952].

The vertical belt load, FZ*, and the indentation rolling resistance force, Fi*, according
to May can be obtained from the equations (5.10) and (5.13) by substitution of a,, see
equation (5.26), for a. Note that in this case the indentation depth is prescribed and
not the vertical belt load. The indentation factor according to May is:

f = L 5.30
m = (5.30)

If a correction factor is defined by:

*

f;
f, == 5.31
e (5.3

which indicates the accuracy of the Winkler model, then the proposed total
indentation resistance factor is:

f, =1ff, (5.32)
Besides Spaans, Jonkers, May and Hunter, other researchers developed models to
determine the indentation rolling resistance force. A survey is given in [Lodewijks,
1995].

If the radius of the roll R=0.0795 m, the thickness of the belt cover h=0.008
m, the vertical force F,=2000 N/m, the belt speed varies from 0.1 to 10 m/s and the
cover material is the SBR rubber of Section 3.2, then the following three parameters
can be used :

E, =710° Nm?, E, =2,5.10° Nm? , n =1875 Nm™s

With these belt parameters the different results for the indentation rolling resistance
factors are given in the Figures 5.3 and 5.4. As can be seen in the Figures 5.3 and
5.4 the indentation rolling resistance factors calculated with the equations of Hunter,
equation (5.25), May, equation (5.30), Jonkers, equation (5.21), and Spaans,
equation (5.18), are higher than those calculated with the equations (5.14) and (5.32).
The differences between the factors shown in Figure 5.4 are caused by differences in
the formulation of the problem. Hunter and May prescribe the indentation depth
whereas in case of equation (5.14) and (5.32) the vertical belt load is prescribed. The
indentation rolling resistance factor obtained from the moment M, which is the result
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of the asymmetrical stress distribution, is about half the factor which is obtained from
calculation of the indentation rolling resistance force using the loss factor. This
explains the differences between the factors shown in the Figures 5.3 and 5.4. In
TUDBELT the indentation rolling resistance factor given in equation (5.32) is used.

0.035

0.03

0.025r

0.02

0.5

0.01

0.005

0 2 2 6
Vb [m/s]

Figure 5.3: Indentation rolling resistance factor according to Jonkers (solid line, equation (5.21)) and
Spaans (dashdot line, equation (5.18)).

0 2 s 6
Vb [m/s]
Figure 5.4: Indenzation rolling resistance factor according to Hunter (solid line, equation (5.23), May
et al. (dashed line, equation (5.30)), equation (5.14) (dashdot line) and equation (5.32) (dotted line).
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5.1.2 The inertia of the idlers

When the belt is not moving at a stationary speed then the rotation inertia of the idlers
and the bearings should be taken into account. This inertia can be accounted for by
the following acceleration rolling resistance factor :

dv,
red
f=—_dt 5.33
. EB (5.33)

where B is the belt width and m_, =% the reduced mass of the idler rolls. The

moment of inertia of an idler roll, neglecting the end disks, is equal to:
Iroll = %pTCbmll(R4 - r4) ' (534)

where b, is the roll width, R the external and r the internal roll radius.

5.1.3 The rolling resistance of the bearings

The rolling resistance of the bearings of an idler roll, which is the resistance of those
bearings to rotation in steady state, can be defined by :

(5.35)

where M, is the resistance moment. This resistance moment includes a load
independent and a load dependent component, and ,depending on the bearing type, it
can also include a contribution of the sealings. These components are normally given
by the bearing manufacturer.

5.1.4 The total rolling resistance
Finally, the total rolling resistance factor is defined by:
f, =1 +f, +f, (5.36)

Typical data of an idler roll are:
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R=0.0795m,r=0.0775m, p="7850kg.m™ b, =1.150 m

B=lm,F =2000 N.m", %: 15 m.s™

With these data the acceleration rolling resistance factor is equal to f, =0.0065. In

Figure 5.5 the bearing rolling resistance factor of an SKF bearing type 6305 is shown.
This figure also shows the acceleration rolling resistance factor, f,, of the above

mentioned roll in case the acceleration of the belt is 1.5 m.s”, the indentation rolling
resistance factor, f;, and the total rolling resistance factor f,.

0025 —— . // / >¥ : \ \

0.02¢

0015}

0o+

00051

Figure 5.5: The total rolling resistance factor (solid ~ Figure 5.6: Forces acting on a belt travelling
line), the bearing rolling resistance factor (dashdot through a horizontal curve.

line), the indentation rolling resistance factor (dotted

line) and the acceleration resistance factor (dashed

line).

5.2 Motion resistance of horizontally curved belt
sections

In comparison with straight belt conveyors there are two aspects of horizontal, curved
conveyors that need to be considered: the traction force Fy directed to the inside of
the curve and the in-plane bending stresses, see also Figure 5.6. In this section only
the first aspect will be considered.
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When a belt runs through a horizontal curve, a component of the tensile force
of the belt is directed to the inside of the curve of the supporting frame [Weigel,
1976],[ Grimmer and Kessler, 1992]:

_TL

E
T R

(5.37)

ch

assuming that L<< R,. To prevent run-off, the belt supports must exert forces on the
belt which counteract this traction force F,. These forces are obtained as a result of
the weight of the belt and the bulk material, summarised in the force F,, and the
friction between the idlers and the belt, summarised in the force F.. F; and F_ are
called the horizontal belt guide forces. For the extreme situations where the belt is
located on the inside or the outside of the curve, a run-off can only be prevented if the
following condition is satisfied:

F,, + K, <F; <F; + F (5.38)

where the index i denotes the inside and o the outside of the curve. From equation
(5.38) the conclusion can be drawn that the guide forces must decrease from the
inside of the curve to the outside of the curve. The guide force F, results from the
distribution of the gravitational force over the three idler rolls depending on the
position of the belt and the super-elevation angle of the idler. The force F,, results
from the total belt material weight, Frg pe,, Whereas F, , results from the total bulk
material weight, Frg wui, €€ Appendix A and Figure 5.7.

o/ ’

/

Figure 5.7: Guide force resulting from the weight of the belt and the bulk material.

The guide force Fg can be divided into three parts corresponding to the three idler
rolls:
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F; =Fg + Foy + F (5.39)

where the indices L, M and R indicate the left, middle and right idler roll
respectively.

B

FG,beltL

FNG.bell FG,beltL tan a,
Fr pens
[ ) 9
¥ Fryg pam Fra peit

Figure 5.8: Lengths, angels and forces resulting from the belt weight within the range of a horizontal
curve.

From Figure 5.8 it can be learned that the components of F,, are:

Foperr = (FNG,henL +FNG.bulkL) tan(OH + 6) COSOL, COSd,
Fo pert = (FNG,belvM +FNG,bulkM) tan(9) cosd, (5.40)

Fs perw = _(FNG.beltR +FNG,bquR) t‘r-‘m(‘xz - 9) CosaL, Cosd,

where Fng e, Fng.veitv @1d Frng henr are forces normal to the three idler rolls due to
the belt weight, Fngpukts Fng.ouv and Fugpur are forces normal to the three idler
rolls due to the bulk material weight, see Appendix A; 6 the super-elevation angle of
the idler station; o; and o, the trough angles and 3, the inclination angle of the total
belt conveyor system. The guide force F, can also be divided into three parts
corresponding to the idler rolls:
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F; = Fy +Foy + Fix (5.41)

"V
* \\ .
! .’\A‘
Wi/ e )
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Figure 5.9: Guide force resulting from friction forces between the idlers and the conveyor belt
travelling through a horizontal curve.

Elevation only of an idler station does sometimes not result in guide forces that can
counteract the traction force Fp. Therefore the idler station is also aligned. From

Figure 5.9, which shows the alignment of the idler rolls, it can be learned that the
(maximum) components of F, are:

Fo. = “‘brcos(\ul + ‘9) cosa, cosd, (FNG.beltL + FNG.bquL)

Foy = ub,cosvf}[cosfis (FNG_belM +Fyg bt ) + (FGML tano, + Fy o Lanaz)] (5.42)

Fer =~ Hy, COS(WZ - 9) Ccos o, cosd, (FNG,benR + FNG,bqu.R)

where ,, is the friction coefficient between the belt and the rolls, S the super-tilt

angle of the idler station and y, and , are the two alignment angles. Due to the

alignment of the idler station, a resistance force results. This resistance force F,; can
also be divided into three parts:

Far = l:arL + FarM + FarR (543)

where the three components are equal to:
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F, =tan(y, +9) Fy
F,, =tan9 Fy,, (5.44)

al

F =tan(y, - 9) Fy

The horizontal curve resistance factor f,., which is the ratio between the resistance F,,
and the total vertical load, Fyg, is defined by:

£ = F, (5.45)

¥ (my, +m,) g Lcosd,
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The belt conveyor drive system

system, it affects the conveyor performance, capacity and economics. The

integration of drive technology in belt conveyor design is therefore important.
The drive system will significantly influence the belt tension during starting and
stopping of large belt conveyor systems. A reduction in the transient loading will
reduce the belt size. The reduction in belt size and weight will also reduce the size of
all other conveyor components and the structure.

Despite the advantages of using an optimal drive system, the options available
to the conveyor engineers are mostly only general purpose drives designed by their
suppliers, to be satisfactory for a large number of industrial applications. Since most
standard drive systems fall short of the specific requirements the system should meet,
the conveyor engineer should be aware of these requirements to enable proper
selection of the drive system components. Work based on finite element models of
belt conveyors [Nordell and Ciozda, 1984], [Harrison, 1985], which is discussed in
the next chapter, has accurately defined the conveyor drive system requirements.
Some of these requirements for application in long belt conveyors are discussed in the
following section.

The drive system is one of the most important elements in a belt conveyor

6.1 Technical requirements of a drive system

The most important technical drive system requirements are the profile and length of
the starting and stopping procedure, overload protection, proper load sharing among
multiple drives and minimising load on the electrical components.

6.1.1 Starting and stopping procedures

A starting or stopping procedure of a belt conveyor can be velocity controlled or
torque controlled. In this thesis only velocity-controlled starting and stopping
procedures are considered. The velocity-controlled starting and stopping procedures of
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long belt conveyors, specified in velocity profile and length, are not standardised. In
absence of standardisation, the drive system suppliers mostly try to design a start-up
procedure with constant acceleration to minimise the acceleration force, or do not
concern themselves with attaining any particular velocity profile of the start-up
procedure. Based on simulation with finite element models of belt conveyor systems
and experimental verification, Harrison (1983) and Nordell (1985) recommended
profiles for the starting procedure in terms of the belt speed to minimise the transient
belt tension. Harrison recommended for the belt speed during acceleration V,, :

vb,(t)=%(1-cos(%fn, 0<t<T, 6.1)

where T, is the length of the starting procedure, or the time it takes the belt to reach
the design speed. Nordell recommended:

2t* T,
Vba(t) = Vb(—iz—) f0r 0 S t S —2“
2 6.2)
4t 2t T,
Vba(t) = Vb(—l +? —?) for 7 <t< Ta

a a

With this velocity profile the
so-called belt shock, which is

:’:_ the second derivative of V,

’ with respect to time, is not

o continuous. However, the

v, osr maximum shock value is only
v [-1os} 81% of the peak value obtained
04 from equation (6.1). Although

03 the velocity profiles of both of

02f the above procedures, see

0.1 Figure 6.1, will give very

0 ‘ : : . satisfactory results for

[¢] 02 0.4 06 0.8 1 e s . .
t minimising peak tension during
T, ~ transients, the results can

further be improved by adding
¢ a rest period in the procedure.
Figure 6.1: Acceleration profile according to Harrison (solid Durin ; ;
. . > . g this rest period, that
line), tion (6.1), and Nordell (dotted . .2). .
ine), equation (6.1), and Nordell (dotted line), equation (6.2) takes place nght after the start,
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the belt speed is kept constant. During this rest period the initial belt slack can be
pulled out, which permits all the conveyor elements to attain a running condition at
very low torque and speed before the acceleration is continued to higher torque values
[Nordell, 1991]. This eliminates over stressing of the belt that would otherwise be
produced by the large initial error in the PID control loop. This method can reduce
peak belt tension by about 15 %. Other velocity controlled start-up procedures will be
discussed in Chapter 8.

An approximation of the start-up time which is often used, see for example
[Singh, 1994], is that the length of the starting procedure, or start-up time, should at
least be equal to five times the time it takes a longitudinal stress wave to travel
through the return part of the belt from head to tail of the conveyor. Written in terms
of the propagation speed, c, this is:

T, > 5l 6.3)
Cl
where L, is the length of the conveyor from head to tail. However, this start-up

time is only valid if it is used for torque controlled start-ups and used as the time
during which the drive torque is increased from zero to the required start-up torque,
[Funke, 1973]. This start-up torque can for example be 1.4 times the nominal drive
torque. If equation (6.3) is used as the length of a velocity controlled start-up then it
will result in inadmissible belt tensions as will be shown in Chapter 8.

In practice the “one minute starting time per km of conveyor length” rule is
often applied since application of equation (6.3) may result in very steep acceleration
profiles and very high peak tensions during starting. Since the propagation speed of
longitudinal waves varies from about 500 m.s” till 2000 m.s" depending on the
reinforcement material of the belt, this implies that the factor which is 5 in equation
(6.3), according to this rule, varies from 30 till 120. In case of conveyors with a
length over 2-3 km this rule leads to unnecessary long starting procedures. In such a
case the results of simulation of the dynamic behaviour of the conveyor belt should be
used.

Using the belt speed variation given in equation (6.1) yields a maximum
acceleration of:

v, ®

v, =t 6.4
b,a(max) 2,-1-:’1 ( )
If m* is the effective mass of the belt contributing to the longitudinal vibrations then

the acceleration force F,. can be written as:
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E. =MV, im0 (6.5)

According to Harrison and Roberts (1984) m™ has a value of approximately one fourth
of the belt system mass for the fundamental mode. However, taking only one fourth
of the belt system mass into account leads to an underestimation of the total
acceleration force as will be shown in Section 8.6.2. If F; is the maximum belt

tension during stationary operation then, according to Harrison and Roberts (1984),
for steel cord belts the required safety factor with respect to the belt stress during
stationary operation should be:

S, 23 (F—IE—F) (6.6)

1

Studies of Nordell (1989, 1993 and 1995) showed that for steelcord belts a reduction
in safety factor from 6.7 to 5.5 or even lower is totally feasible by properly
addressing the belt construction and belt dynamics considerations including the
selection and use of the drive system. Similar conclusions can be reached for the
safety factor of fabric belts.

A controlled stop can be achieved by applying a stopping procedure with a
mirror characteristic of the start characteristic given in equations (6.1) or (6.2). Since
the stopping of a conveyor belt is potentially more damaging and less controllable
than its starting, the length of the stopping procedure may be more critical than the
length of the starting procedure. Nordell and Ciozda (1984) found that the strain
energy stored in the belt reacts with a higher specific impuise than can be generated
by the drive system. Therefore the length of the stopping procedure may have to be
extended by application of flywheels on the drive system input, moreover the inertia
of the drive must stay connected to the conveyor belt. The start-up of a belt conveyor
system equipped with a drive system with flywheels, however, requires a special
motor. The simulation of the dynamic behaviour of a belt conveyor system during
(emergency) stopping must be used to analyse the longitudinal waves and to ensure
that the corresponding stresses remain within safe limits.

6.1.2 Overload protection

All belt conveyor components must be protected from mechanical or electrical
overloading. The motor and the drive system may be sufficiently large to start an
overloaded conveyor. However, when the drive system inputs excessive torque into
the belt conveyor, a load surge going through the conveyor can overload the reducers
and the mechanical components of the motors. Therefore the possibility of
accidentally starting or running an overloaded conveyor must be eliminated, which
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can be achieved by using a drive system with an adjustable maximum torque limit.
The torque limiting device, which requires a control and feedback system, should be
located just before the output shaft of the drive system. Also important is the dynamic
responsiveness of the torque limiting device since it should eliminate the possibility of
a momentary major load peak on the belt conveyor passing through the torque limiting
section into the reducer and motor.

6.1.3 Drive requirements

Most long belt conveyor systems are driven by multiple drive systems. Proper load
sharing among these drives during all phases of operation minimises the loads and
stresses on the conveyor components. This requires cascaded PID control loops for
the control of the drive speed and drive output torque.

Other requirements of belt conveyor systems have to do with limiting the load
on the elecirical system of the conveyor. The drive system should either allow the
conveyor motors to be started unloaded or reduce the inrush currents to an acceptable
level during acceleration. The drive system should also allow the conveyor to stop
without stopping the motors. To avoid overloading of the power supply system
resulting in excessive line voltage sags, the conveyor motor starts should be
staggered. The drive system should also include self-monitoring and self-diagnostics
to avoid drive system failures and thus minimising the down time of the conveyor and
providing operational flexibility. For example, if one drive system of a multi-drive
conveyor has to be taken off-line, the conveyor should still remain operating possibly
at a lower loading level. Finally, the drive system should not lead to complications by
generating unacceptable levels of line pollution and noise.

6.2 Components of a drive system

There are five major drive variants used for long belt conveyors [McCormick,
1985a], [Schulz, 1995]:

1) a combination of a squirrel cage motor and a fluid coupling with delayed filling
chamber. The oil in the delaying chamber is circulated into the working chamber
within approximately 25 s after acceleration of the motor. Especially for long
distance belt conveyors with relatively high masses to be accelerated during start-
up, the fluid coupling with delayed filling chamber may unacceptably be heated.

2) a combination of a squirrel cage motor and a drain-type fluid coupling which
involves a constant circulation of oil. Control of the acceleration is achieved by
simple torque control, i.e. by opening and closing the oil-delivery when 1.3-1.5
fold of the rated stationary torque is reached.
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3) a combination of a squirrel cage motor and a control coupling. By adjusting the oil
level or pressure in the working chamber of the coupling, the torque is made
transmittable. Control of the coupling is made in such a way that the system
accelerates to full speed via a prefixed torque ramp.

4) a combination of a squirrel cage motor with frequency control. The belt speed is
adjusted in proportion to a prefixed ramp of the stator frequency of the motor. If
the torque of the motor exceeds the prefixed limit value of for example 1.4 fold the
rated stationary torque, the frequency ramp is stopped until the torque drops below
this limit value. This drive variant has the advantage that it can be used to
decelerate the system. In that case the ramp function decreases.

5) a slipring motor controlled through a number of, for example 12, resistance steps.
The torque of the motor is controlled by switching between resistance steps. A
torque limitation is realised by intermittently switching to the next resistance step
as long as the torque generated by the slipring motor is smaller than the
predetermined value of 1.4 fold the rated stationary torque.

Although the choice of a drive system should be based not only on the price
but also on the technical requirements, the investment of a drive system has to be
considered in the planning of the total conveyor system. An illustrative example
[Schulz, 1995] shows that the share of all drives in the total investment amounts to
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Figure 6.2: Possible components of a drive system.

approximately 4 % if drives with
frequency control are used.
Compared to this drive variant,
the investment cost of drive
variants 1, 2, 3 and 5 are 43%,
60%, 94% and 62% respectively
of the investment of drive variant
4.

In the next sections an
overview of the components of a
drive system for a belt conveyor
system is given. Also the power
equations and the equations of
motion of each component of the
drive system are derived in the
following  paragraphs.  These
equations are used in the simula-
tion software system TUDBELT.
The possible components of a
drive system are summarised in
Figure 6.2.




The belt conveyor drive system

6.3 Static power converter

If an induction motor is connected to a source with fixed supplied voltage or current
and frequency, the motor torque and number of revolutions of the output shaft can not
be controlled but are determined by the characteristics of the motor and the load. To
control the voltage or current and the frequency supplied to a motor, a static power
converter (SPC) can be used. An SPC is an electrical device which converts the fixed
frequency to a variable frequency and either the fixed input voltage to a variable
voltage, Voltage Source Inverter (VSI), or the fixed current, Current Source Inverter
(CSI). Induction motors supplied with variable-voltage/current, variable-frequency
sources are capable of meeting the requirement of control over a wide range of speed
variations.

When ac motors are operated on variable voltage/frequency supplies, system
instability may occur due to pulsation of the motor torque caused by the voltage and
current harmonics applied to the machine [Lipo, Krause and Jordan, 1969]. In many
cases these torque pulsations define the lower limit of the speed range which yields
satisfactory system performance. The minimum frequency of these torque pulsations
for a CSI is six times the supply frequency. Normally the supply frequency of belt
conveyor drives is varied between 10 and 60 Hz which in this case results in torque
pulsations of 60 to 360 Hz. The maximum first natural frequency of longitudinal
vibrations of a belt conveyor system longer than 1 km is about 1 Hz whereas the
maximum first natural frequency of transverse vibrations of the belt is about 20 Hz.
The frequency of axial vibration caused by transverse vibration is twice the frequency
of that vibration. Therefore the maximum significant frequency of axial vibration is
40 Hz. Since the frequency of torque pulsation is at least 60 Hz, no important
interactions may be expected. Therefore no separate (mathematical) model of an SPC,
as for example given in [Krause and Lipo, 1969] and [Lipo and Krause, 196%9a & b],
is included in TUDBELT. The SPC, which is assumed to be a symmetrically and
ideally converter, is accounted for by directly changing the motor supply voltage and
frequency.

6.4 Induction motor

Most belt conveyor systems are fitted with an induction motor of the squirrel-cage
type or the slipring type. The mathematical analysis needed to determine the dynamic
behaviour of an induction motor can be based on a circuit analysis approach and does
not need a detailed description of the electromagnetic phenomena internal to the
motor. This approach does not provide the same physical insight into the operation of
a motor as a detailed electromagnetic approach, but can be used for the majority of
motors.
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6.4.1 The electromagnetic couple

The relation between the phase voltages and phase currents of a three phase induction
motor is:

d
=Ri+—(Li 6.7
u + " (Li) 6.7)

where u is the vector of phase voltages, i the vector of phase currents, R the matrix of
phase resistances and L the matrix of phase inductances. The components of vector u
are:

uT = [usa Ugp U U, Uy U rc] (6. 83.)

where the indices s and r refer to the stator and rotor respectively and the indices a, b
and c refer to the three phases, see also Figure 6.3.

e C AT
lsaTE- vsa lqu:, lusq
0
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r/;/{j { 4 i . ) ) rd g ] ;
o sb 2 transformations qr_ g\ lsg
i u 2 \ | vy ——» I (o \ ‘( VY
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S L u | -
SR sb : u / usd
> rd,,/"
Uy’

Figure 6.3: Transformation of the machine model.

If the stator windings are fed by a symmetrical three-phase supply and the rotor is star
switched and short circuited then the phase voltages u are:

u,v/2cos(ot +¢)
u,+/2cos(ot +¢ — 27)
u= u,v2cos(ot + ¢ — 4m) (6.8b)
0
0
i 0 ]

104



The belt conveyor drive system

where o is the supply frequency and ug is the supply voltage. The components of i
are:

T

= [lsa lsb lsc lra 1rb lrc] (69)

The components of the matrix of phase resistances R are:

R, 0 0 0 0 O
0O R, 0 0 0 O
R- 0 0 R, 0 0 O :[RS 0 } 6.10)
0 0 0 R, 0 O 0 R,
0 0 0 0 R, O
10 0 0 0 0 R
and the components of L are:
L, M, M, M, M, M.
M, L. M, M, M, M,
L- M, M, L, M, M, M, Z[LSS Lsr} 6.11)
M, M M| L, M M, L. L,
M, M, M, M, L M,
M, M, M, M, M, L, |

where L, and L are the stator and the rotor inductances, M and M, the mutual
inductances between two phases of the stator and the rotor respectively, and

M, = M_cos(pb)
M, =M, cos(pB + 2?“) (6.12)

M, = M, cos(pd +4—3Tc)

where My, is the maximum value of the mutual phase inductance in case the rotor coil
and the stator coil are in opposite position, p is the number of pole pairs of the motor

and 0 the rotor angle. The phase voltages can not be determined from the system of
six equations (6.7) since this system contains seven unknowns: the six components of
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the vector of phase currents and the rotor angle. The required seventh equation is the
equation of motion of the motor:

2
T-1=799,4 9 (6.13)
de? dt

where J is the equivalent moment of inertia of the rotating components of the drive,
T, the electromagnetic torque, T, the external load torque and d_, the motor damping
coefficient. The electromagnetic torque is equal to:

dL
T, =4i"—1i 6.14
e 2 d9 ( )
To simplify the system of equations (6.7), an orthogonal transformation of the phase
voltages and phase currents may be performed, see also [White and Woodson, 1959],
[Boldea and Nasar, 1986], [Deleroi, 1989a] and [Smith, 1990]. If a new vector of
phase voltages u is introduced which is defined by:

u=Au; 0 =[u, u, ougou, u, ugl (6.15)

and also a new vector of phase currents i which is defined by:

i=AL P =[iy i iy b G g (6.16)
where:
12 1 o 0 0 0 |
W2 -1 13 0 0 0
L -1 _1
a-@}? r 1B 0 00 6.17)
0 0 0 1v2 1 0
0 0 0 iv2 -1 13
L0 0 0 12 -t -4

then, after substitution of equation (6.15) and (6.16) in (6.7), the following system of
equations can be obtained:

ﬁ=ﬁi+§£(ﬁ)=(ﬁ+éé}1+ti (6.18)
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where:
R=R
i 0
G=3pM,
and
[L, +2M, 0
L, - M
i—; —
(sym)

0 0

0 0

0

(sym)

0 0
0 0
L -M, 0
L, +2M,

6.19)
0 0 0]
0 -sin(pB) —cos(pb)
0  cos(pf) —sin(p6)
0 0 0
0 0
0_
(6.20)
0 0]
M, cos(pf) —3M_ sin(pB)
IM,, sin(pd) M, cos(pb)
0 0
L,-M, 0
L,-M,|
(6.21)

Substitution of the equations (6.16) and (6.20) in equation (6.14) shows that the
electromagnetic couple after transformation is equal to:

T.=1i"G i

o=

The phase voltages u are:

0
us\/gcos(mt +¢)
u, Jsin(ot + ¢)

=)
I

(6.22)

(6.23)
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From the equations (6.18) and (6.22) it can be learned that the zero sequence
variables iy, and i, do neither determine the o and  components of the voltages nor
the electromagnetic torque. Therefore, they are suppressed in what follows.

To further simplify the system of equations (6.18), a second orthogonal
transformation is performed such that the resulting equations have matrices

independent of 6. New vectors of phase voltages u and phase currents i are
introduced, see also Figure 6.3, which are defined by:

u=Bu;u' = [uSd Uy Uy Uy (6.24)
and
P=Bi;i"=[iy iy iy i (6.25)

where the transformation matrix B is equal to:

cos(p6,)  sin(p®,) 0 0
p|sn(8,) cos(po) 0 0 (6.26)
0 0 cos(p,) sin(p8,)
0 0 -sin(pd,) cos(ps,)

where the angles 6 and 0, are not determined yet. Substitution of the equations (6.24)
and (6.25) in (6.18) yields the following system of equations:

a- (ﬁ +é(:;)? +Li (6.27)
where:
R, 0 0 0
Y 6.28
10 0 R, 0 (6.28)
0 0 0 R
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pde{ 0 L } pd(9—6,){~l\7ls —Mc}
= de |-L dt M -M
0G - tizk 9 o (6.29)
d6+6,) [-M, M, .| 0 L,
TR [ v v a|-L, 0
and
L, 0 M, -M,
i-| Y L M M (6.30)
M, M, L, 0
-M, M, 0 L,
The constants L, L., M_, and M, are equal to:
L =L -M,;L =L -M,
o~ ~ - (6.31a)
M, =M sin p(0, - 6, +6) : M, =M cos p(6, - 6, +6)
where
M =3iM, (6.31b)
The simplest form of the system of equations (6.27) is obtained when:
6,-9,+0 =0 (6.32)
For a short-circuited rotor, the phase voltages u are:
J3 u,cos(ot + ¢ +pb,)
a NEY usin(wt +¢ +pb,) (6.33)
0
0

The simplest form of the phase voltages is obtained by choosing 6 such that:
ot+¢+pb, =0 (6.34)

In that case the phase voltages (6.33) reduce to direct phase voltages:
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u"=[u,v3 0 0 0 (6.35)

With equation (6.32) the matrix (:} can be rewritten to:

[0 -1 [0 -1
R mLs[l O] wM[ 1 0}
0G ( dG)M 0 -1 ( de]]: 0 -1 (6.36)
TPV o] TP o
where
®»— pé =SS0 6.37)

which defines the slip s. The matrix G can also be written in terms of the slip.
Substitution of the equations (6.25) and (6.26) in equation (6.22) shows that the
electromagnetic couple after transformation is equal to:

T, = +i"(B"G B)i = pM(i,qi — i.ei,) (6.38)
Figure (6.3) schematically shows the transformations.

The different machine parameters can be given in the per unit form. The real
motor parameters are obtained from the per unit values by multiplying them with the

corresponding nominal impedances. The nominal phase impedance of the stator
parameters Z,; and the rotor parameters Z,_are defined as follows:

(6.39)

where U, and U, are the amplitudes of the nominal stator and rotor supply phase
voltages respectively and I and I, the amplitudes of respectively the nominal stator
and rotor phase current of a specific motor (catalogue values). With the per unit
values, denoted by non-capitals, the values of real motor parameters can be
calculated. For example the rotor and stator resistances can be obtained from their per
unit values by:
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R,=Z,t, =Z1, ; R, =Z(c2r)=Z,r (6.40)

s T “ns's n's >
In most catalogues the per unit values of the rotor parameters include the
transformation factor ¢ . In that case the nominal impedance of the stator is used to

calculate both the stator and the rotor parameters. The per unit values of different
motor parameters can be found in [Deleroi, 1989b].

6.4.2 Induction motor parameters

When selecting an induction motor from a catalogue, the following data are given or
can be determined from the given data:

P, the nominal power [kW]

n, the nominal number of revolutions per minute [rpm] ; 6= 7/30 n_ [s'].

n, the synchronous number of revolutions [rpm] ; © = 7/30 p n, [s"].

U, the nominal supply phase voltage [V]

I, the nominal supply phase current [A]

f, the nominal frequency of the (supply) alternating current (normally 50) [Hz]

n the efficiency [-]
P number of pole pairs

In TUDBELT the real motor parameters are determined with use of these catalogue
data which should be provided by the user. The procedure to determine the real motor
parameters is as follows. The (nominal) motor slip is equal to:

n-n, _,_po (6.41)
n (0]

This slip approximates the per unit rotor resistance as can be noticed in practice:

r.=s (6.42)

The stator resistance can for example be found in the figures in [Deleroi, 1989b]. For
normal induction motors used in drive systems of belt conveyors the per unit stator
resistance

r,~0.02 (6.43)

In practice, the efficiency of the motor without iron losses, is approximately equal to:
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n=1-2(r, +r,) (6.44)

which can be found in the catalogue and can be used as a check. The induction
coefficients of the induction motor can be approximated by

R, ~0005: Re %0006 (6.45)
oL ol

s T

Finally the mutual inductance can be derived from:

M _is (6.46)

V Si:l"

where the coefficient of Blondelc = 0.04 .

ol

6.4.3 Steady state torque of an induction motor

Under (electrical) steady state, i = 0, and assumption (6.34), the system of
equations (6.27) reduces to:

i= (ﬁ + é(:;)? , (6.47)

From this system of equations and equation (6.13) the steady state drive power of an

induction motor will be determined. Similar to equation (6.33) the stator phase
currents are:

i, =3 i, cos(ot +pb,) ; i, =3 i, sin(ot +pf,) (6.48)

If the angle O, is chosen such that ot +p8, =0 then substitution of this angle in the
equations (6.33) and (6.48) yields:

o' = [~/§ u,cos(¢) +3usin(¢) O O] (6.49)

and
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=30, 11, =0 (6.50)

Substitution of the equations (6.28), (6.36), (6.49) and (6.50) in equation (6.47) leads
to:

ird = (DsrL, irq : irq z_:_ci):Sf__I\;l_B_f_isd (651)
R, ((osrLr) +R?

where

O, =50 (6.52)

ST

The first and the second equation of (6.47) can be written as follows:

=3 ucos(0)=R,i, ~oMi,
=3 ugin(9)=o Li, +o Mi, (6.53)

and combining the equations (6.51) and (6.53) yields:

2 2
2_ o oo, MR, s o ML,
u; =i [Rer»“——((0 L) +Rf] +o (LS 7( I:) ] (6.54)

sr—r

The electromagnetic torque can be obtained by combining the equations (6.38) and
(6.51):

T, = —p My, =3p M2 —2=MRe (6.55)
(cosrL,) +R?

Substituting i from equation (6.54) in terms of u’ yields the expression for the

torque when the machine is voltage-excited, whereas equation (6.55) corresponds to a

current-excited machine.

Since electric-magnetic transient phenomena in the induction motor vanish
within about two periods of the supply frequency, the steady-state equation of the
torque can be used in the equations of motion of a belt conveyor system. Therefore
equation (6.55) is used in TUDBELT to calculate the torque of an induction motor.
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6.4.4 Simulation of a start of an induction motor

TUDBELT has been used to determine the dynamic behaviour of a 200 kW induction
motor with the following catalogue (phase) parameters:

U,=220V ;I =340A;f, =50Hz;p=2;J =5.8kgm’; d, =0 Nms
60,

n=0.95;n, =148 rpm ; n, = = 1500 rpm

and loaded by an external load T;=1000 N.m. Figure 6.4 shows the torque-speed
characteristics of the motor fed by different supply frequencies f=w/2mw.
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2000} \
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ol ! | i i d so0l e
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Figure 6.4: Torque-speed characteristics of an Figure 6.5: Supply current versus time.

induction motor for different supply frequencies.
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Figure 6.6: Motor torque versus time. Figure 6.7: Number of revolutions of the motor

shaft versus time.
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Two start-up-procedures have been simulated. During the first start-up the
motor is switched on directly (direct start) with a supply frequency of 50 Hz. During
the second start-up the motor is switched-on at 10 Hz while the supply frequency is
increased linearly to 50 Hz in 20 s (frequency controlled or soft start). During the
interval the ratio voltage/frequency is kept constant by application of an SPC. The
Figures 6.5-6.7 show the source current, the motor torque and the number of
revolutions pro minute of the motor shaft during the start-ups. These figures clearly
show three advantages of an SPC-regulated start-procedure:

¢ lower source current during soft start, see Figure 6.5.
» lower peak torque during soft-start, see Figure 6.6
¢ smaller energy losses

6.5 Fluid coupling

A fluid coupling is a hydrodynamic transmission comprising a motor driven
centrifugal pump (the impeller) supplying liquid to a load connected turbine (the
runner). The impeller, connected to the motor shaft, and the runner, connected to the
reducer shaft, can be both similar in construction, each consisting of a series of blades
or vanes mounted into convex shaped housings. When the elements are put together, a
hydraulic circuit in the form of a vortex can be established. In action, rotation of the
impeller creates centrifugal forces and these result in the liquid flowing outwards from
the impeller into the runner, whose shape directs the liquid back into the impeller.

To change the power transmitted, a change of flowrate is necessary. If the
runner is free to rotate, then both input and output speed are equal. If a load is applied
to the runner, a slight speed difference between impeller and runner indicates the
development of torque. The torque developed by the coupling varies with the degree
of speed difference (the slip). The slip is defined by:

s=—t—* (6.56)

where n, is the number of revolutions of the impeller or pump and n; the number of
revolutions of the runner or turbine. Since input and output torques, T, and T,, are
equal it follows that the fluid coupling efficiency n is equal to:

‘n:—L: L t:—L'_—I—S (657)
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where P, and P, are the turbine and pump power respectively. While the efficiency is
high at the design point, sustained operation at other conditions can lead to

overheating unless adequate cooling is provided.
The torque that can be transmitted from

-casing "
the pump to the turbine can be
approximated by [Middelmann, 1992]:
T, = ApDj¢> (6.58)

| T,

where p; is the fluid density, @, the

angular speed of the pump and A a
; constant which depends on the slip and
“—runner on specific fluid and coupling
\ parameters. This equation is used in
‘—impeller TUDBELT. The factor A can be
approximated by:

Figure 6.8: Basic sizes of a hydrodynamic coupling. Ms) = A's® (6.59)

assuming a constant filling degree, see also [Holler, 1996]. According to Thoma
(1964) the power n is 1 and A"~ 75107 for couplings containing a low viscosity
fluid, a low number of blades and a small diameter-ratio d,/D,, also see Figure 6.8,

and A" ~50.10™ for couplings containing a high viscosity fluid, a high number of
blades and a large diameter-ratio. However, n=1/2 results in a torque/slip
characteristic that is closer to characteristics found in experiments performed by
Middelmann (1992). More detailed torque equations based on experiments are given
by Timm (1958) and Middelmann (1992).

It is clear that for a given (standard) fluid coupling the relationship between
moment (or power) and speed is fixed, and in this sense the fluid coupling does not
need a control system. However, the drive system requires the addition of a gearbox
for torque multiplication and angular speed reduction. Thus the fluid coupling acts as
an automatic clutch between gearbox and motor, and a control system can be required
to match the motor output to the load (that is the gearbox output). Since the fluid
coupling of given dimensions has its own torque-speed curve it is essential to match
coupling and motor characteristics to obtain good acceleration of the load with
acceptable efficiency. Especially in systems with a high inertia, like long overland belt
conveyors [McCormick, 1985b], it is important that the motor can run-up under no-
load/low-load conditions to prevent the motor, drive train and the belt from
overloading and to limit the period of high starting currents. Two special types of
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fluid couplings have been developed for this purpose: the delay-chamber fluid
coupling and the drainable or pump-filled fluid coupling [Annon, 1989]. The use of a
delay-chamber fluid coupling, with emptying of the delay-chamber by use of
centrifugal forces, ensures that the motor will always start, regardless of the voltage
(>0) available and will transmit the maximum pull-out torque available to start an
overloaded conveyor. On the average, the torque of a fluid coupling with delay
chamber is limited to approximately 1.3 times full load torque. The use of a drainable
fluid coupling enables a run-up under no-load condition. At motor start-up, the
coupling is empty and acts like a clutch completely disengaging the motor from the
conveyor. Once the motor has run-up to speed, fluid (water or oil) is fed into the
coupling so that torque is transmitted. This increases the motor current which is
constantly monitored. As soon as the current reaches a pre-set limit the fluid supply to
the coupling is switched off and, since the fluid is continuously escaping from the
coupling through the discharge nozzles, the amount of fluid in the coupling drops,
reducing the torque transmission and the motor current.

A typical belt conveyor start-up procedure with use of a drainable fluid
coupling is as follows. The conveyor starting is split into three phases.

1. pre-tensioning of the belt
2. acceleration of the belt conveyor to 10 % of full speed
3. acceleration of the belt conveyor to full speed

The third phase begins only when the whole conveyor is running at 10 % of full

speed. As an example, for a long belt conveyor system of 10.5 km the time taken
from rest to full belt speed is approximately 320 seconds [Annon, 1989].

6.6 Drum brake
To ensure a proper deceleration of a belt conveyor system a drum brake is added to
the drive train of large conveyor systems. Especially in case of (regenerative) down-

hill conveyors the brakes play an important role in the reliability of the system. The
brake torque Ty, is given by:

T = KR, (6.60)
where Fy, is the brake force and Ry, is the radius of the drum brake.

Apart from the ordinary brakes, it is important to take certain safety measures
for inclined conveyors. In case of drive failure of an inclined belt conveyor, a reversal

117



Chapter 6

of the conveyor, caused by the weight of the conveyed material, must be prevented.
This is the function of backstops. Depending on the size of the belt conveyor, the
backstop units are located in various positions. In small and medium size conveyor
systems, it is common practice to place backstops directly at the motor or the reducer.
In large belt conveyor systems, backstops are often placed directly on the drive pulley
shaft between the bearings and the output shaft of the gear box. In case of a multiple
drive system, each drive pulley input shaft is fitted with a backstop. Because of the
high cost of these kind of (low-speed) backstops, they are nowadays replaced by
(high-speed) backstops installed on the input or intermediate gear shaft.

During braking the torque in the backstop can be 4 to 10 times the normal
input or motor torque. The wind-up characteristic of a backstop, required to find out
whether or not the backstop is strong enough to resist this brake torque and to
determine the influence of the backstop wind-up characteristics on the dynamic
behaviour of the belt conveyor, is given by [Timtner, 1994]:

Ty, = C0y + C,0p, (6.61)

where Ty, is the wind-up torque in the backstop, C;, C, and n are backstop

parameters and @y, is the wind-up angle. The constants of a typical wind-up
characteristic of a backstop with load-sharing and clearance are [Timtner, 1994]:

C,=7.31-10° [Nm], C, =6.92-10" [Nm], n=5.

Both the normal drum brake and the backstop equations are included in TUDBELT.

6.7 Reduction box

Since the angular speed of the induction motor shaft is much higher than required for
the drive pulley shaft, a reduction box is applied to obtain the required speed at the
drive pulley. If the losses in the reduction box are neglected then the input power
Py in and output power Py, are equal. With the required reduction factor i, the

input and output torque, Ty, ;, and Ty, o, and the radii of the two gear wheels, R,
and Ry, can be obtained from:

P

b

= Tr in(br in = Tr out(br out . .
Pt e oo L =iT,, iRy ==R,,i21  (6.62)
(prb‘in =1 (prb,oul '
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In TUDBELT a model of the reduction box is included which also accounts for the
reduced moments of inertia of the gear wheels. The effect of clearance between the
teeth of the gear wheels has been neglected.

6.8 Disc pack

Apart from the fluid coupling, several soft start units exist using wet (oil) disc packs
to transmit the drive power from the induction motor to the drive pulley [McCormick,
1985b]. These units offer two advantages. Firstly, they lock up at running speed and
therefore they do not have slip associated with fluid couplings. Secondly, they enable
the motor to reach full speed before application of the load. Some units are either
mounted directly on the motor shaft or coupled to the motor shaft and then attached to

torque controlled system velocity controlled systes. @ Separate reducer by means
| of a coupling. Other units
il 100 f"""""’ """" are build directly into the
belt speed . o belt speed ' . “,’ ‘ reducer.

N A wet disc pack unit,
) which controls the output
TEme T tdme  torque, is a torque controlled
\ system instead of the usually

full load torque full load torque i applied velocity controlled
s | B 1 | S system, see Figure 6.9.
100% | | 100% | Some units are open loop
/"’ ’ control systems to control the
— - . torque of the drive system by
time time

the amount of fluid in the
unit or by changing the
orifices which control the
rate of flow between a prefill
chamber and a piston chamber. If, in case of a torque controlled system with constant
acceleration, a load change occurs, the acceleration remains constant. Due to the
temporary disturbance of the acceleration, however, the length of time to reach full
running speed increases. Conversely, with a velocity controlled system, torque has to
be increased in order to keep the time to reach full running speed constant, see Figure
6.9.

Figure 6.9: Load change during acceleration of a fully closed
loop system.

Two types of wet disc pack units exist that differ in principle. Both types have
plates that interact to transmit the drive power. The gap between the plates is closed
by increasing the pressure of the fluid through a hydraulic actuator. The plates of
units of the first type are mounted directly on the incoming and outgoing shafts, units
of the second type use a reaction clutch grounded system utilising a planetary gear
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output. This latter unit, the controlled start transmission (CST), has been applied
successfully in many large belt conveyor systems [Spear, 1986], [Singh, 1994].

The CST
internals consist of
three distinct parts:
an input section,
an output section
and a disk pack,
see Figure 6.10
[Singh, 1994]. The
other major parts
of the CST are a
cooling system, a
hydraulic actuator
and electronic
controls. The input
section consists of
Figure 6.10: The CST [Singh, 1994]. either a one- or

two-stage  helical

reduction gear for parallel units, or a spiral bevel stage followed by a helical stage for
right angle units. The output section consists of a sun gear (1), planet gears (2) which
are connected to a planet carrier (3), and a ring gear (4). The disc pack, see Figure
6.11, consists of two sets of meshed plates. The stationary plates are connected to the
housing, and the

rotating plates are

Coaling Ol connected to the
ot ring gear. When
no hydraulic pres-
sure is applied to
i Actustor the disc pack, the
i, _ (Braking Torque} rotating plates (and
Stationary Plates ring gear) are free
to rotate. As hy-

draulic pressure is

Figure 6.11: The disc pack [Singh, 1994]. applied to the disc
pack, the motion

of rotating plates (and ring gear) is retarded. Finally, if there is sufficient pressure,
the rotating plates (and ring gear) will lock up with the stationary plates. The motor
rotation is transmitted through the input section to the sun gear (1) in the output
section. The sun gear rotates the three planet gears (2). When the ring gear (4) is free
to rotate, i.e. when there is no hydraulic pressure in the disc pack, the planet gears

Rotating Plates (Ring Gear)
Coaling OB | L T
Chut

Coating
Qitln
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rotate the free-floating ring gear. The planet carrier (3) does not turn. The output
shaft, which is part of the planet carrier, remains stationary. As the pressure is applied
to the disc pack, the ring gear motion is impeded, and the planet gears start revolving
on the ring gear to compensate for this impeded motion. As a result, the planet carrier
and the output shaft start turning. By controlling the hydraulic pressure in the disc
pack, the transmission of motion and torque from the motor to the CST output shaft
can be precisely controlled.

In TUDBELT the influence of a CST on the dynamics of a belt conveyor
system can be simulated through prescription of the reducer input torque.
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Discrete modelling of belt
systems

on the finite element method (FEM) and the finite difference method (FDM) are

applied in all branches of engineering. In the field of belt systems, discrete models
are used in two specific classes of applications. Firstly to analyse the global dynamic
response of the belt during starting and stopping. Secondly, they are used to model the belt
splice to determine the local stress distribution due to the global response of the belt and
the corresponding safety factor with respect to failure, see for example [Hager and Von
der Wroge, 1991], [Nordell, Qiu and Sethi, 1991] and [Shi, 1993a-c]. The discrete
analysis focusing on the dynamics of belt conveyor systems will be discussed in this
chapter. In the first section the state of the art in the development of discrete models of
belt conveyor systems will be described. The second section describes the finite elements
which can be used to model the belt and other components of the belt conveyor system.

S ince powerful computer systems are available, discrete models and techniques based

7.1 Introduction

Due to the development of the rubber technology, conveyor belts improved significantly
after the Second World War and the application of belt conveyor systems for the
transportation of bulk materials became widespread. Besides the application for in-plant
transportation of bulk materials, the improved belt types enabled application in long
overland systems as well. Therefore the capacity as well as the length of belt conveyor
systems increased significantly.

To calculate the total power supply needed to drive a belt conveyor system, design
standards like DIN 22101 are used. In these standards the belt is assumed to be
inextensible. This implies that the axial forces exerted on the belt during starting and
stopping can be approximated by Newtonian rigid body dynamics and the forces yield the
belt stresses. With these stresses and dropping the assumption of inextensibility, the
maximum extension of the belt can be calculated. This way of determining the elastic
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response of the belt is called the quasi-static (design) approach. For low capacity and small
belt-conveyor systems this led to an acceptable design and acceptable operational
behaviour of the belt. However, the upscaling of belt conveyor systems to high capacity or
long distance systems introduced operational problems including:

¢ excessive displacement of the weight of the gravity take-up device

e premature rupture of the belt, mostly due to failure of a splice

e destruction of the pulleys and major damage of the idlers

o lifting of the belt off the idlers which can result in spillage of bulk material
e damage and malfunctioning of drive systems

To detect the cause of these operational problems, the behaviour of the belt and
drive system during nonstationary operation were experimentally investigated. Relevant
studies include Coeuillet (1955), Vierling and Oehmen (1958), Bahr (1960) and Vierlingh
(1961). The first objective of the experiments was to determine the development of axial
stress waves in the belt and their influence on the belt tension and the drive force. Also the
delay effect, caused by the finite propagation speed of the stress waves, which appears
during non-stationary operation of the belt, was of interest. Oehmen (1959) experimentally
studied the start-up of a belt conveyor system in detail, accounting for the characteristics
of the drive system, the tensioning system and the belt. He distinguished three phases
during the start-up of a conveyor: the break-away phase, during which the belt tension is
increased until the belt starts to move, the acceleration phase and the stationary phase. The
results of Oehmen’s study were supplemented by Vierling (1961) and confirmed by
experiments of Rottky (1961), Matting and Vierling (1962), and Funke and Winterberg
(1964). With the knowledge gained from these experiments the starting sequence of
multiple-engine drives and the design of automatic tensioning systems, like for example a
winch tensioner, could be improved, as has been described by a number of authors
including Brade (1965), Zur (1966), Havelka (1967 ), Brade and Menning (1969) and
Bierhof (1973).

Field experiments during start-up of a conveyor were not always possible and the
number of start-up variations that could be tested was limited. Therefore the need for a
mathematical model, which could be used to obtain detailed insight in the behaviour of the
belt during nonstationary operation, increased. Because of the complexity of the equations
of motion that describe the behaviour of a conveyor beit during nonstationary operation,
the first mathematical models that have been implemented for this purpose were the
electrical analogue models, see for example Vasilev and Tipilin (1962), Bacholdin and
Rychalskij (1963), Segal (1969), Masin (1972) and Karolewski (1983&1986). However,
parallel to the development of these models, also an analytical solution of the equations of
motion was developed by Havelka (1963) and Sobolski (1963). They simplified the
equations of motion by assuming a constant belt acceleration and neglecting the motion
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resistances, the inertia effect of the rotating conveyor components and the drive
characteristics. His model is comparable to that of Karbasov (1962) except that Karbasov
did not assume the belt acceleration to be constant. Pankratov (1964) considered the
influence of the inertia but he also neglected the motion resistances and drive
characteristics. Besides the inertia, Bacholding and Leskevic (1965) also considered the
mass of the bulk material on the belt and studied the influence of the loading degree on the
propagation speed of the stress waves. Dumonteil (1967) included the motion resistances
in his model but assumed them to be independent of the belt speed and the direction of
motion. Besides that Richolm (1969&1970) accounted for speed independent motion
resistances, he included a time-dependent drive force. As a result the break-away phase
was neglected in the models of Dumonteil (1967) and Richolm (1969). In the study of
Funke (1973) the motion resistances are velocity-dependent. He also considered the visco-
elastic character of the belt material, and discretised the belt into two homogenous and
continuous elements that model the carrying and the non-carrying or return part of the
belt. The motion of the two parts is coupled through the motion of the pulleys. With the
results obtained from this model, the insight into the behaviour of the belt during
nonstationary operation increased considerably. This enabled the improvement of the
design of high capacity or long distance belt conveyor systems. The application of
simulation tools in the design process of belt conveyor systems is called the dynamic
(design) approach. It was recognised that discretisation of the belt in more than two belt
parts would increase the accuracy of the calculations. Instead of using one or two elastic
elements with homogenous mass distribution, the belt should be modelled by a number of
finite elements to account for the distribution of the resistances and forces exerted on the
belt. However, the application of this kind of models requires advanced computational
equipment that was not available at the end of the sixties, Tol (1974). Besides Funke
(1973) also Rao (1973) and Harrison (1981) used computers to study the transient stresses
during starting and stopping of the belt.

The first finite element model of a belt conveyor system was developed by Nordell
and Ciozda (1984). Their model includes the time dependent drive force, motion
resistances and visco-elastic behaviour of the belt material. Schulz (1985) included a
random factor generator to represent the belt loading degree as a stationary Gaussian
process to account for the stochastic character of the mass flow. Ellis and Miller (1987)
used a moving finite element model to determine the development of stress waves with a
steep front. Morrison (1988) illustrated the power of applying computer graphics to
visualise the simulation results. Verification of the results of simulations has shown that
software based on this kind of belt conveyor models are quite successful in predicting the
elastic response of the belt during starting and stopping, see for example Nordell and
Ciozda (1984), Surtees (1986), Funke and Konneker (1988), Harrison (1988) and Schulz
(1995). Nowadays, these models are still being developed to improve the description of
the motion resistances. For example, in the model of Lieberwirth (1994) the motion
resistance met by the belt in a horizontal curve is included.
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Although it is possible to include the effect of belt sag on the propagation of axial
stress waves, as will be shown in Section 7.2.1.2, most finite element models as
mentioned above determine only the longitudinal elastic response of the belt. Therefore
they fail in the accurate determination of:

» the motion of the belt over the idlers and the pulleys

o the dynamic stresses in the belt during passage of the belt over a (driven) pulley

o the dynamic drive phenomena

¢ the motion resistance due to bending stiffness of the belt

o the development of stress waves with steep gradients

o the interaction between the belt sag and the propagation of longitudinal stress waves

o the influence of the belt speed on the stability of motion of the belt

e the influence of parametric resonance of the belt due to the interaction between
vibrations of the take up mass and the transverse displacements of the belt

e the influence of direct excitation of the belt due to eccentricities of the idlers on
transverse vibrations

o the development of transverse vibrations

o the influence of the damping caused by bulk material and by the deformation of the
cross-sectional area of the belt and bulk material during passage of an idler

e the lifting of the belt off the idlers in vertical curves

The transverse elastic response of the belt is also often the cause of breakdowns in long
belt-conveyor systems and should therefore be taken into account. The transverse response
of a belt can be determined with special models as proposed in [Harrison, 1984] and
[Lodewijks, 1994b], but it is more convenient to extend the present finite element models
with special elements which take this response into account, [Lodewijks, 1994a, 1995a-d].

7.2 Finite element models of belt conveyors

To illustrate the transition of a belt conveyor system to a finite element model, consider
the typical long belt-conveyor geometry shown in Figure 7.1, [Lodewijks, 1994a&c,
1995¢]. This conveyor consists of the belt, a drive pulley, a tail pulley, a vertical gravity
take-up, a number of idlers and a plate support. Since the length of the belt part between
the drive pulley and the take-up pulley, 1, is normally negligible compared to the length of
the total belt, 2L, these pulleys can mathematically be combined to one pulley as long
as the inertias of the pulleys of the take-up system are accounted for. The mass of the
gravity take-up system is My, see Figure 7.2. The position of the drive pulley in Figure
7.1 is fixed whereas the position of the combined drive/take-up pulley in Figure 7.2 is not
fixed.
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Figure 7.1: Typical belt-conveyor geometry indicating three
Support sections.

=
IR R VR
- — = "*’ o

fier fivr fna s faa

=

Leony

Figure 7.2: Combination of the take-up pulley and the drive
pulley. The distribution of the motion resistance forces is
shown.
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Figure 7.4: Replacing the interaction of the belt and its
supporting structure by forces.

If the main interest is in the
longitudinal elastic response of the belt
then the influence of the belt support
on the longitudinal behaviour of the
belt can be represented by forces that
account for the motion resistance
forces such as the resistance of the
idlers to rotation on their bearings, the
indentation rolling resistance etc.
These forces vary from place to place
depending on the exact local
(maintenance) conditions and
geometry of the belt conveyor and are
therefore distributed along the length
of the belt (Figure 7.2).To determine
accurately the influence of these
distributed forces on the motion of the
belt, the belt is divided into a number
of finite elements and the forces which
act on a specific part of the belt are
allocated 1t the corresponding
element, see Figure 7.3. If the interest
is in the longitudinal elastic response
of the belt only, then the belt is not
discretised on those places where it is
supported by a pulley which does
enforce its motion, for example the
drive pulley. The belt is discretised on
those places where it is supported by a
pulley that does not enforce its motion
for example the tail pulley. This is
shown in Figure 7.4. The last step in
building the model is to replace the
belt's drive and tensioning system by
two forces which represent the drive
characteristic and the tension forces.
See the forces F,; and Fy in Figure 7.4
which account for the coupling
between the two nodal points 1 and N.
Forces allocated to the nodal points
around a pulley account for the
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resistances in the bearings of the pulley and its inertia, see f, and f;,, in Figure 7.4. The
maximum belt speed is about 10 m/s whereas the propagation speed of the longitudinal
stress waves, as mentioned in section 3.1.4, varies from about 1,000 m/s for fabric belts
to 2,500 m/s for steelcord belts. Hence the influence of the belt speed on the axial elastic
response of the belt is negligible which was also mentioned in Section 4.2.3.1. This
implies that all the elements and forces that account for the interaction between the belt
and its supporting structure remain in their position relative to the supporting structure.The

magnitude of these forces, however,

may vary from time to time. This

F R ey A A N Fi depends on the temporary local belt
y speed and belt load that results from
| the distributed bulk material load
I which travels through the fixed

* element grid with the belt speed. In

Figure 7.4 the orientation of the
elements is given which results in
the configuration of Figure 7.5 when the belt is laid in the x-direction.The exact
interpretation of the finite elements depends on which resistances and influences of the
interaction between the belt and its supporting structure are taken into account and the
mathematical description of the constitutive behaviour of the belt material. Depending on
this interpretation, the elements can be represented by a system of masses, springs and
dashpots as is shown in Figure 7.6, [Nordell and Ciozda, 1984], where such a system is
given for one finite element with nodal points ¢ and c+1.The springs K, and K, and
dashpot H model the visco-elastic behaviour of the tensile member, G models the belt's
variable longitudinal geometric stiffness produced by the vertical acting forces on the belt
section between two idlers, C represents a Coulomb friction with a friction coefficient
varying between the static and dynamic coefficient and V indicates the velocity dependent
resistances. The belt length represented by one element lies in the range of 10 to 250 m
depending on the total belt length and the desired
accuracy. If, besides the axial elastic response,

Figure 7.5: Belt laid in x-direction.

— 'C—*JEHTJ\/\N\;}*M also the transverse response is of interest (iotal
) ' elastic response), then the belt has to be

discretised at such a scale that the motion of the

. J\f\;\‘/\v _ e e Delt over the supports, as for exaqlple.an idler or
<—cf VTN A4 A amperng pulley, can be determined. This implies that the
I belt length represented by one element in this

™ ic case lies in the range of 0.1 to 0.25 m. Apart
O from the difference in belt length, the most

important difference between models used to
determine only the axial elastic response and
models used to determine the total elastic respon-

Figure 7.6: Five element composite model
[Nordell and Ciozda, 1984].
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Figure 7.7: Belt supported by idlers.
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Figure 7.9: Belt supported by a plate.

se is that the position of the elements
relative to the conveyor is not fixed for the
latter. This is caused by the relative low
axial propagation speed of transverse belt
waves which is about 25 to 100 m/s, see
Section 3.1.4. Compared to this speed the
belt speed can not be neglected. Therefore
the belt elements move relative to the
conveyor as does the real belt. This also
implies that the bulk solid material does not
move through the element grid but is fixed
to an element as Jong as it is not discharged
from the belt (head pulley). The motion of
the elements through the conveyor also
affects the handling of the boundary
conditions. For determination of the total
elastic response of the belt, it is not
sufficient just to allocate forces to the
relevant nodal points of the elements which
account for the interaction between the belt
and a support. Also the exact position of
the element on the support has to be
determined to check whether this position
is geometrically possible. This procedure
has to be repeated every time step and is
different for each type of support.
Therefore three types of supports have to
be distinguished, the idler support, the
pulley support and the plate support, see
the Figures 7.7, 7.8 and 7.9. The nodal
points of elements representing a belt part
supported by an idler, the nodal points n,
n+1, n+4 and n+5 in Figure 7.7, are
subject to constraint conditions that
constrain their motion relative to the idler.
The motion of nodal points n+2 and n+3
is not constrained. The motion of nodal
points of elements representing a belt part
on a pulley is described by the motion of
that pulley if the belt does not slip. In case
of belt slip the radius of the motion of the
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nodal points to the pulley centre is fixed but the elements are free t0 move on the surface
of the pulley. Special attention is drawn to the nodal points of pulley supported elements
which are not located on a pulley, nodal point n+1 and n+5 of Figure 7.8. The motion of
those (edge) nodal points is constrained to prevent the belt from taking geometrically
impossible positions. Finally, if elements represent a belt part supported by plates or bars,
for example on the loading section, then the motion of the belt supported by the plate
support is constrained which normally implies that there remains only one direction of
motion. Also in this case special attention should be given to the edge elements.

7.2.1 Belt elements

In this section the mathematical description of three finite elements is given that can be
used to model the belt. In the section 7.2.2 the relevant mass matrices and constitutive
relations are given.

7.21.1 Truss

| If only the longitudinal deformation of the
belt, and not its bending, has to be taken
into account then a truss element can be
used to model the response of the belt,
[Lodewijks, 1991]. The two-dimensional
truss element shown in Figure 7.10 has
four degrees of freedom. Each nodal point

€ has two displacement components which
define the component vector u :
€ X .
u =[up v, U, vq] (7.1)
Figure 7.10: Definition of the displacements of a truss
element

Four vectors fix the position of the nodal points with respect to the global Cartesian co-
ordinate system :

Xp =Xpe1 +ype2
u =ue +ve
P p1 P2
B (1.2)
X, =X ty.e, :

u, =ue +ve,

The vector which connects the two nodal points of the deformed element is :
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Ipe =Xq tug — X~ wp (7.3)

To describe the position of any point on the element, a linear shape function is used. The
vector which fixes this position is, in the undeformed state :

xe =x, Hxq ~ %p)€ (7.4)
and in the deformed state :
Xz + e =X, +up +(xq Fug — X, — u)é (7.5)

where £ is a dimensionless co-ordinate along the axis of the element which varies from 0,
in nodal point p, to 1 in nodal point g, see Figure 7.10. For the in-plane motion of the
truss element there are three independent rigid body modes. Therefore one deformation
mode remains which describes the change of length of the axis of the truss element. The
axial deformation of the truss element is defined by :

1 2
g, = D/(x) = W(lpq g - 10) =
0

25}3—[2 (x" B XP)(uq B up) +2 (yq B yp)(vq B vP)+(u" B u")2 +(Vq - VP)2]

(7.6)
where the length of the undeformed element, 1, is equal to :

Ly =% = %,) + (v - v,) &)

In equation (7.6) the quadratic length of the material line element is used which is in
agreement with the continuum definition of the strain component. The virtual power
corresponding to the virtual rate of deformation 8¢, of axial deformation of the truss
element defines the dual of the generalised strain rate €, : the generalised stress o,. From

this definition it follows that &, 1/1; is equal to the normal force in the truss element.

7.21.2 Truss with belt sag

If it is to be expected that there are belt sections in the conveyor where v? is of the order
u, then it is necessary to take the influence of the belt sag on the axial deformation into
account, {Lodewijks, 1991&1992]. This situation can for example occur in long belt-
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conveyor systems with up-hill and down-hill
sections, heavily loaded conveyors or after
an emergency stop, [Ellis and Miller,
1987].Although bending deformations are
not included in the truss element, it is
L | possible to take the static influence of small
values of the belt sag approximately into
account. The belt sag 3, which is determined
from the equilibrium equations of a tensioned string which is simply supported at both
ends, is equal to:

Figure 7.11: Static sag of a tensioned belt.

2
5= kL (7.8
8T

where q is the distributed load due to the belt and bulk material, L the length of the belt

span between two idlers, T the belt tension and K; the static belt sag ratio, see Figure
7.11. The angle between the horizontal and the tangent to the belt is:

gx gL
=V = - 79
o(x)=v, T 2T 7.9)

where v is the transverse displacement of the belt. With this angle, the length of sagged
belt can be calculated:

L*=L+Asz“(1+lv2)dx:L 1+i[ﬁ)' (7.10)
o " T Y u\T

This yields the additional axial strain due to the vertical belt load:

A 2
85=_L~:L(£) S 7.11)
L 24\T/ "3

With this equation the total axial strain can be written as follows:
€ =€, +§, (7.12)

Substituting (7.11) in (7.12) and writing the total axial strain in terms of the belt tension
T, assuming linear elastic material, yields the axial deformation €;:
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T 1 (qu)
L 2) (7.13)
EA 24 T

where Ey, is the average Young’s modulus of the belt and A the cross sectional area:
A=Bd, (7.14)

The effective Young’s modulus of a sagged belt can be obtained from equation (7.13) by
differentiation of the axial deformation €, with respect to the belt tension T:

1 _Ade,__1_+é(qL3) :L(H&@sz (7.15)
Eb,t:ff dT Eb 12 T Eb

3T °
which can be rewritten to:

(7.16)

where

3
B=12— =21
(qL)’A 16 AK?

(7.17)

The effective Young’s modulus of equation (7.16) was also used by Funke (1973), and
Ellis and Miller (1987).

7.21.3 Beam

If the bending deformation has to be taken accurately into account then beam elements can
be used to model the belt, {Lodewijks, 1993]. Parts of the belt can have considerable
transverse displacements and rotations. The local deformations, however, should still be
small if only elastic deformations are considered. Therefore, the relative displacements of
all material points of a beam element between two nodal points should be small compared
to the distance between these nodal points.
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The beam element in two-dimensional
space shown in Figure 7.12 has six
degrees of freedom. Each nodal point
has two displacement components and
one angle of rotation which define the
component vector u :

T _
u _[up Vo My Ug Vg l“lq]

(7.18)

1 X

Figure 7.12: Definition of the nodal point displacemenss FOT the motion of the beam element

and rotations of a beam element. there are three independent rigid body
modes, therefore three independent
deformation modes remain. The beam
element has, besides a longitudinal

deformation parameter, two bending deformation parameters, see Figure 7.13. These

bending deformations, €, and €,, can be specified by the inner product of the vector L, and

the vectors e,” and e,", respectively, also see [Jonker, 1988]:

P

e; -1
£, =D, ()= % (7.19)
0

3.1
e~l e (7.20)

;= D_z(“) ==

0

The relationship between the local and
the global unit vectors is:

el = RjRYe (7.21a)

where the matrix R~ describes the
transformation of the global base
vectors to the local base vectors of the
undeformed state and RP the
transformation due to nodal point

R 1 rotation at node p. In case of Figure
e’z‘__v_ o R 7.12 it can be seen that (7.21a)
€ X becomes:

Figure 7.13: The bending deformations of a beam element.
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ef | [coso singT[cosu, sinp, |[e] |cos(o+u,) sin(o+u)][e
e | -sinp cose -siny,  cosp, | | e, - —sin((p+uk) cos((p +uk) e,
(7.21b)

where k is p or q. To account for the influence of the bending deformations on the
stretching of the centroidal axis of the beam element, the bending displacements are
superimposed on the linearly varying displacements between the two nodal points. In the
deformed state the position of any point on the axis of the beam element is approximated
by :

Xe e =xp iy Hxo To- % up) E-lo[e2e8(81- 287 +2) +eses (€7 )]
(7.22)

This yields for small bending deformations the axial deformation of the beam element:

1 1

&= Dl (u) —_ (lpq : lpq - ](2)) +_(2 8% +82 €3 +2 8%) (723)
25 30

The virtual power of deformation of the beam element defines the duals of the generalised

virtual strain rates 9, : the generalised stresses o, . In case of small strains the generalised

stress o, is the normal force multiplies by the length of the element. The other two

generalised stresses are the resultant moments of the normal stress distributions in the end
Cross sections.

7.2.1.4 Idler supported beam

If a belt moves over an idler then the length co-ordinate &, which determines the position
of the idler, see Figure 7.14, is added to the component vector of the beam-idler system,
see Figure 7.15, thus resulting in a vector of seven displacement parameters, also see [Van
Oostveen, 19871:

welu, v, om U v o g (7.24)

There are two independent rigid body motions for an in-plane beam element with sliding
support at one point, therefore five deformation parameters remain. Three of them, €, €,
and €, , determine the deformation of the belt and are already given in 7.2.1.3. The
remaining two, €, and £,, determine the relative displacement between idler and support,
see Figure 7.15. These deformation parameters are zero for a rigid support.

135



Chapter 7

idler
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Figure 7.14: Belt supported by an idler. Figure 7.15: Idler supported beam element with

two constraint conditions.
If the radius vector to the top surface of the idler is given by (see also Figure 7.14)
Xia = Xiq€ +¥i4€y (7.25)

then the strain component €, can be defined by:

g, = D) =(x, +u,) e, —x, €, =0 (7.26)
and &5 by:
85 = D) =(x, +u,)-€ —x, - =0 7.27)

If during simulation &, > 0 then the belt is lifted off the idler and the constraint conditions
have to be removed from the finite element description of the belt.

7.2.1.5 Pulley supported beam

When the belt moves over a pulley it depends on the position of the element whether the
whole element or a part of the element is supported. Elements with only one node on the
pulley are partly supported, see Figure 7.17. The distance between a nodal point on a
pulley and the shaft of the pulley is equal to the radius of that pulley. The angle between
the orientation at the nodal point and the horizontal is equal to the angle between the
tangent to the pulley and the horizontal. These constraints are forced by a rigid truss
element which is placed between the shaft of the pulley and the supported nodal point of
the element, and by a deformation parameter €, which can be considered as a torsion
spring of infinite stiffness, see Figure 7.17.
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ezlk Xpu
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0,0) e X

Figure 7.16: Belt supported by a pulley. Figure 7.17: Pulley supported beam elements.

If the radius vector to the pulley shaft is given by, see also Figure 7.16:

X, =X, +y, e, (7.28)
pu+1 pu~2

pu

then the strain component €4 of nodal point k can be defined by:

(e +uy - %) e,
g = Dg(X) =1, — 1, =W, —atan =0 (7.29)
(xk +u, - x]m)-e2

Nodal points of partly supported elements which are not located on the pulley are coupled
with the supported nodal point by an idler support which is located on the edge of the
pulley. This prevents the edge elements from geometrically impossible positions.

The shaft of a pulley is modelled as a hinge element which enables the connection
rods to rotate. Two types are distinguished: the single and the plural hinge element, see
Figure 7.18. A single hinge element has only one angle of rotation whereas a plural hinge
element has a number of angles of rotation. A single hinge element is used for non-driven
pulleys where the belt does not slip over the pulley surface. In case of a driven pulley, a
part of the belt can slip and a plural hinge element should be used. To determine slip
between the belt and the pulley surface, a detailed description of the contact phenomena
between the belt and a driven pulley is required. Since this has not been considered, up to
now only single hinge elements have been used in the belt system models.
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i
' n ,n+l n+2 n+3, n+4
A: ;
et
(0.6) e1= X
Figure 7.18: The shaft of the pulley as single (A) and Figure 7.19: Plate supported beam elements.
plural (B) hinge element.

7.2.1.6 Plate supported beam

The transverse displacement of a belt is zero when the belt moves over a plate, see Figure
7.19. In that case the transverse displacement parameters of the beam elements are
constrained. To allow the belt to enter and to leave the plate supported section smoothly,
two idler supports are used on the edges of the plate.

7.2.2 Dynamic characteristics

The stiffness and inertia properties determine the dynamic characteristics of the (finite) belt
elements. The stiffness properties are described by stiffness matrices relating stresses and
deformations in a similar way as in the continuum description. Linear visco-elastic
behaviour of the belt elements is characterised by the linear constitutive equation (Kelvin-
Voigt model):

G, € £
o, |=S|g, [+S,|¢, ' (7.30)
O3 €3 €,

where S and S, are symmetric matrices containing the elastic constants and the viscous
damping coefficients respectively. The displacements of any point on a one-dimensional
finite element can be written in terms of the nodal point displacements and rotations:

u(€,t) =N(§) u(t) (7.31)
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where u(t) is the component vector of the local displacements and N the matrix of shape

functions, prescribing the shape functions in terms of the independent variable £. In case
of a truss element as discussed in Section 7.2.1.1, the shape functions are described by:

(7.32)

N(&)={1—g 0 go}

0 1-¢ 0 ¢

For the transverse displacement of a beam element in a two-dimensional space the shape
function is a third-order polynomial. For a prismatic homogeneous beam, the elasticity
matrix S is [Besseling, 1977]:

r A
1 0 0
:2 =3
ly ly
S=EAl 0 4% 27 (7.33)
£
0 2% 4%
i Lk

where iy is the radius of gyration of the cross sectional area of the element. For the truss
element S is a scalar: S=E,A 1,. The matrix of viscous damping coefficients S, is
determined by the chosen linear visco-elastic model [Zur, 1986a&b].

The inertia properties of the concentrated or distributed mass of the elements are
described by mass matrices. The components of the mass matrices can be calculated by
evaluating the virtual power of the inertia forces:

_loﬂ<8il(§,t),%(M(§)ix(§,t))> d€ = —l,m/,,, j; (Bu(E, 1, i) d& (7.34)

’

assuming that the mass per unit length is constant and given by m_ .. . The mass matrix

which can be obtained from equation (7.34) is called a consistent mass matrix if the linear
shape functions, given in equation (7.31), are used. For a truss element with the mass per
unit length

m’_ =pA (7.35)

const

the consistent mass matrix is obtained by:

~1,pA jol (8U(E, 1, W(E, 1) dE = ~1,pASA" jol NN d€ i = —-8u"M @ (1.36)
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where
2010
All0 2 0 1
M=——-——~p6° Lo a0 (7.37)
0102

The displacements of any point on a beam element as function of the length parameter &
are given in equation (7.22). From this equation the velocity and acceleration of any point
on a beam element can be obtained:

iy =(1- )it +E aglof (668 + 2 8)E"- 287 +8) Hevet + sef)(-€" +€7)] (7.380)

ity =(1- )i, e i—lo[(£: 8 + 26288 +ea)(E' - 28 +8)

(7.38b)
Hised + 28:68 + ese)(-£* +2)|

In these equations the deformation parameters €, and &; and their derivatives with respect
to time are used. From e‘§. €, and €; given in the equations (7.21b), (7.19) and (7.20)
respectively, the following time derivatives can be obtained:

&5 = —cos(Q +u, )i, e, —sin(@ +u,)ie, (7.39a)

& = (—cos(e +ut, )iy +sin(@ +u, )it} Je, +(—sin(e +1, )ik, — cos(@ +u, )i} Je,
(7.39b)

£, =1i[—(ﬁq - up)sin((p +i,) +(vq B VP)COS((p +H”)]—
[{} .
li[(xq tug—x, - UP)COS((D +up)+(yq TV TY, T vp)sin(<p +“P)] ey

0 (7.39)
&= %[(uq ~ i, Jsin(@ )~ (¥, - ¥, Jeos(o +u,)]+
i[(xq ity =X, = U, Joos(@ +) +(y, v, ~y, = v, Jsin(@ +u,)] i,
(7.39d)
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€= %[‘(ﬁq - iip)Sin((P +u,) +('\>q - '\}p)cos((p +up)] -

0

%[(uq - up)cos((p +u,) +(\'/q - \'/p)sin((p +up)]up +
0

1 (7.3%)
l_[( T up)(ﬁl.isin(w +H,) - fi,cos(@ +Up))] _
0
li[(yq v, -y, - vp)(uicos((p ) +Hisin(e +up))]
0
€= li[(llq - ﬁp)Sin((P +u,) - (Vq - '\}p)cos((p +pq)] +
0
%[(nq ~ i, Jeos(@ +1,) (¥, - v, Jsin(@ +1,)], -
’ (7.399)

(xq +u, - x, ~ up)(glflsin(q) +h,) — ficos(e +uq))] +
ll[(yq +v, ~ ¥, — v, JKZcos(@ +u,) Hi sin(o +uq))]

where k is p or q. Substitution of the equations (7.39) in the equations (7.38) yields
complicated expressions for the velocities and accelerations. To simplify the equations
(7.39), it is assumed that the relative rotations of the nodal points of a beam element are
small compared to the absolute rotation of the beam element. In that case the following
approximations are allowed:

sin(@ +u,) ~sin(e +u,) ~ sin(p) ~ Ay/l,

(7.40)

cos(@ +u,) = cos(p +u,) = cos(@) = Ax/l,
where
Ax=x_,4+u, —x_—u

L (7.41)
Ay:yq+vq—yp—vp
Substitution of (7.40) in the equations (7.39) yields:
. 1 Ayp
ok o Ay AV (7.422)

I, ',
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& = (-, + Ayi)e, + - (~Avii, - Axid)e, (7.420)
0 0

6 =53, - )% (5, - ¥, Ay ~ 28xApi, (7.420)
0

&, = %[(uq -, JAx - (v, = v, JAy + 2AxAypq] (7.42d)

éz = _l.%[_(iiq - ijp)AX +(Vq - Vp)Ay] _%[(ﬁq - l]P)Ay +(\./q - VP)AX]up *

—117[(Ax2 - Ay2)p't°; - 2AxAyiip]

0

(7.42¢)
g = %[(ﬁq - ﬁp)Ax - (Vq - Vp)Ay] + %[(ﬁq - ﬂp)Ay +(vq - vn)Ax]uq -
Sl(ax - ay)is - 2axayii, |
’ (7.426)

where k is p or q. After substitution of (7.38) in (7.34) using (7.42), the following
equation can be obtained:

1, . .. T .
~1opA [ (SU(E, 1), ii(%,0) d& = -8a" (M it + M, q) (7.43)
where:
140 +16 A 68 oAy 70-168 168AY g3y
: i k Lo
140 1655 2max  1624Y 50168 p3a
0 0 0
M= pAl, 41; -13AyA i 13Ax =31
420 (sym) 140 +1620  _162XAY 55y
0 0
140 +162%° 224«
0
i 4l |
(7.44)
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- 5 2 2
86 A"fy 44 é%— 0 A _g6 AxAy -44 AZ +42 A’;
[ 0 l 0 16 I 6 10 10
2 2
42 AZ -44 A’; 86 Axfy 424y 42 AZ +44 A’; 86 A"fy
12 E 12 B 12 2
_PAl, -8Ax —8Ay 0 8Ax 8Ay
v A 2
D0 sqfhY a8 agB gax saDXAY HeAYT oA
I 2 12 E 2 12
2 2 2
A
2887 968 54 2XAY gy gAY 4oghX 54 AXAY
lO 10 IO 10 0 10
L 6Ax 6Ay 0 -6Ax —6Ay
2 2 2 7
a8 gAY gfXT g Axly Y. 282 g8Ax
1 12 2 12 2 R
2
28AY" (962X sgBXAY gAY pgAXT g AXAY ey
0 0 1(] IO l() l0
6Ax 6Ay —6Ax —6Ay 0
2 2 2 2 .
VL BV ML 86 LAY AT pax
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(7.45)
The vectors i and q in equation (7.43) are
W =[d, Y, i, G, V, i, (7.46)

af=[igh, Y, A, Vi, G VR U, Y, B 04

As can be seen in the matrices M and M, the non-linear effect of large rotations cause the
configuration dependency of the consistent mass formulation for a beam element.

143



Chapter 7

7.2.3 Electrical and mechanical elements of belt conveyor systems

In this section the discrete models of the electrical and mechanical components of belt
conveyor systems are presented. Not all the components are discretised to elements, some
are only modelled by one nodal point.

7.2.3.1 Torsion

The linear torsion element has two
degrees of freedom, , and L, and one
rigid body mode, the rigid rotation of the
shaft. Therefore one deformation mode,
which indicates the angle of twist of the
P S shaft, remains. It is defined by:

pulley

shaft ~
' N\

]JP “— conveyor belt g, = D7(l.l) - l‘l'q — up (748)

torsion element . . . . .
P Assuming a linear interpolation function,
the inertia properties are summarised in
Figure 7.20: Definition of the displacements parameters the following mass matrix :

of the torsion element.
pl 1,12 1
M =22 7.49
6 Iil 2 ( )

where [, is the polar moment of inertia of the element. One stiffness property relates the
stress to the deformation of the torsion element:

GI
c,=5¢,= l—"e, (7.50)
0
where G is the shear modulus.

7.2.3.2 Induction motor

The shaft of an induction motor is modelled by a
torsion element. The electric torque of the motor,
which is given in equation (6.55), is attached to
the drive shaft. The moments of inertia of the
rotating parts of the motor are added to the mass
matrix of the torsion element.

Figure 7.21: Induction motor.
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7.2.3.3 Fluid coupling

fluid coupling

impeller shaft —. C

_— runner shaft

fluid coupling element

Figure 7.22: Fluid coupling element.

Oy = Sg&; = X*Pfo,(ll,, - l:l'q) They

The fluid coupling, which connects the
impeller shaft and the runner shaft, is
modelled by a fluid coupling element.
This element has two rotations, w, and
Kq. The virtual power of deformation of
the fluid coupling element defines the
dual of the generalised virtual strain rate
3¢, = D,(01): the generalised stress G
which is the torque acting on the
impeller and the runner. From the
approximation of equation (6.58) it
follows that:

(7.51)

The moments of inertia of the impeller and the runner are added to the masses of the
corresponding nodal points of the two shafts. In Figure 6.2 the fluid coupling was placed
before the reduction box. This reduces the torque by a factor equal to the reduction factor
when compared to the coupling placed after the reduction box which directly influences
the size of the coupling.

7.2.3.4 Drum brake and back stop

The brake couple caused by the brake force is an external moment connected to a nodal
point. The mass of the (rotating) brake drum, see Figure 7.23, is added to the mass of the
corresponding nodal point. The required couple of a drum brake placed before the
reduction box is a factor equal to the reduction factor smaller than for a drum brake placed
after the reduction box. For this reason the drum brake in Figure 6.2 was placed before
the reduction box.

7.2.3.5 Reduction box

The transition elements of the drive system, as for example the reduction box, are
modelled with constraint conditions as described in Section 7.1.2.4. A reduction box with
rigid wheels and shafts and a reduction ratio i can be modelled by a reduction box element
with two rotations, H, and p,, one rigid body motion (rotation) and therefore one
deformation parameter :

145



Chapter 7

Helical bevel gear box

axis - — ————
“\ ;77 brake drum o e ]
N ; [ - gear wheel |
7 i 1 4
- (7& ’ 0 gear wheel 3 —1° 4 W i — ingoine shaft
L e ,,»'7‘: iy O
L \\ y — bearing outgoing shaft— T i\ = —\l . T
C ; . < ’ \ ~ — gear wheel 2
worm wheel gear — 1 &k@m \ s ) ’
— brake block _J J
Tbr reduction box element | —we——T lg
—pp-§—> P b
p ) : q
Figure 7.23: Drum brake. Figure 7.24: Reduction box element.
=Dy(w)=p, +in, =0 (7.52)

The inertia properties of the reduction box element are important. The inertias of the gear
wheels are added as equivalent inertias to the nodal points.

7.2.3.6 Pulley transition

The pulley transition element is used to connect torsion elements, via a pulley, with truss
elements of the belt. This element has three nodal points, p, q and r. The nodal points q
and r are shared with two truss elements, the nodal point p is shared with a torsion
element. If the drive shaft is fixed to the conveyor structure then the element has three
displacement parameters i, u, and u,. The element has one rigid body mode, a rotation,
and therefore two deformation parameters remain. The first describes the relative rotation
between the pulley shaft and the pulley surface and is defined by:

u, +u,
19 = Do) = p, ~ 4 =0 (7.53)

where R is the radius of the pulley. Since the pulley shaft is assumed to be rigidly
connected to the pulley wall this deformation parameter is zero. The second deformation
parameter describes the relative motion (slip) between the upper and the lower part of the
belt and is defined by:

u, —u

&y =Dy () =— ) ==0 (7.54)
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____ conveyor belt

- conveyor belt q . u
i b r
Wq U
pulley transition
element

shaft — |
.. } -~ tensioni ight
pulley transition element i ChsIoning welg
Figure 7.25: Definition of the displacements Figure 7.26: Definition of the generalised displacements
parameters of the pulley transition element. of a pulley transition element for the take-up pulley.

Since the lateral motion of the belt is governed by the rotation of the pulley, no slip is
possible between the belt and the pulley surface. Therefore also this deformation
parameter is zero. If the drive pulley can move laterally, then the pulley transition element
has four displacement parameters. Since the element in this case has two rigid body
modes, one rotation and one translation, two deformation parameters can be defined. One
describes the coupling between the pulley shaft and the pulley surface and is already given
in equation (7.53). The other describes the coupling between the lateral motion of the
pulley centre and the belt ends and is defined by:

U, —u
€, =Dy, ()= u, = % =0 (7.55)
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Numerical results of belt
conveyor simulations

conveyor system during non-stationary operation are given. The lay-out of the

system is given in the first paragraph. In paragraph 8.2 the drive force and power,
the required belt strength and type, and the masses of the conveyor components,
which are required for the finite element models described in paragraph 8.3, are
calculated according to DIN 22101. In paragraph 8.4 the results of a number of
simulations are given which show the influence of model parameters on the simulated
dynamic behaviour of the belt. In the fifth paragraph, the results of an approximate
dynamic analysis of the start-up of the belt conveyor are given. In paragraph 8.6 these
results are compared with the results obtained from finite element simulations, using
the discrete model described in Chapter 7.

In this chapter results of simulations of the dynamic behaviour of a long belt

8.1 Problem description

Figure 8.1 depicts a typical horizontal belt conveyor lay-out. For reason of simplicity
no horizontal or vertical curves, no trippers or booster drives etc. are considered. In
Table 8.1 the relevant belt conveyor and bulk solid material data are given, where

Looar Caes is the design
* L > capacity and ¢, the
P idlers - —beltloading section  angle of surcharge of
‘ oqE\u? - —— the bulk solid matserial,
== see also Appendix A.
LN\ padpuliey In the design stage of
= takewppulley O pey the conveyor system,
tensioning weight the most important
consideration from the
Figure 8.1: Horizontal belt conveyor lay-out. engineers point of
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view is the calculation of

L. =1000 m Poux = 850 kg.m™ size and drive power since
9, =20° they govern the size of all

the other conveyor

Table 8.1: Conveyor belt data. components.  The  drive

power and belt type,
although mainly determined by the forces that act on the belt during stationary
operation of the belt system, are significantly influenced by the forces that act on the
belt during non-stationary operation. Therefore, besides the calculation of the drive
power and the belt strength, also a drive system and a start and stop procedure have to
be selected. In the next paragraph a calculation of the drive power and the belt type
according to DIN 22101 is given. The data obtained from this calculation are used to
make a finite element model. With this model the dynamic behaviour of the belt
during non-stationary operation of the conveyor is simulated to check the selection of
the drive system, starting procedure and belt type.

8.2 Calculation according to DIN 22101

The design capacity of the conveyor can be calculated by:
Coe = Pouic Aburk ges Vo 8.1)

where the subscript des refers to the design stage of the conveyor. Based on the data
provided in Table 8.1, the belt width and trough shape, which determine the cross-
sectional area of the bulk solid material, and the belt speed have to be chosen. From
literature [Roberts et al., 1981] it is known that from the economical point of view the
belt width B is limited to 1200 mm. If three-roll idlers are used with a trough angle of
35" and B=1200 mm then the maximum cross-sectional area of the bulk solid material
on the belt can be obtained from equation (A.5): A ., = 0.1911 m®. With this area
the required belt speed is 4.3 m.s”. However, to include a safety margin for the belt
capacity and to choose a DIN prescribed belt speed, the belt speed is chosen 5.2 m.s’
'. The corresponding cross-sectional area of the bulk solid material on the belt
obtained from equation (8.1): A, .. =0.1571 m*. The specific mass of the bulk
solid material on the belt, my,, , and the total mass of the bulk material, m,,,, are:

My = Py Apaes = 13354 kg.m™ s my, =my, L. =133547kg (8.2)

conv
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A five layer fabric belt EP 500/5, with a fabric thickness of 4.3 mm and rubber belt
cover thicknesses of 2 and 4 mm, is selected'. The density of the rubber and the
fabric material are 1150 kg.m” and 1163 kg.m‘3 respectively. The average Young’s
modulus of the beit is 340.917 MPa. The specific mass of the belt, my,, , and the
total belt mass, my,y,, are:

ml,)ell = B (pmbberdcovers +pfabricdfabric) = 14'28 kg‘m—l
m,, =2m,, L. =28560kg

belt conv

8.3)

The carrying part of the belt is supported by three- roil idler stations. The return part
is supported by one-roll idlers. The idler spacmg for the carrying idlers, L., is
chosen to be 1.5 m and the idler spacing for the return idlers, L, is 2.5 m. The rolls
all have a diameter’ of 0.133 m. The masses of a carrying roll, m,y, and a return
roll, mg,,, are 7.43 kg and 19.3 kg respectively. The average mass per unit length

due to the idlers, m!,, is given by:
My, = ke _ 1487 kg m™ 3 me,, = oo = 7,72 kg.m”

L. L, (8.4)
m:'oll rollc + mroll r =22.59 kg.m"l

where the indices ¢ and r indicate the carrying and return part respectively; n. and n,
are the number of rolls in the carrying and return idler stations. According to
Simonsen (1987) the reduced mass of the idler rolls, which is the mass to be added to
the belt to take into account the inertia effect of the rolls, is about 90 % of the mass of
the roll:

=0.9m/

=1338kg.m™ ; m), . =0.9m, =6.95kg.m™

=20.33 kg.m im_, =m/, L =207328 kg

red,r™~conv

rcd \Ic roll,c roll,r

(8.5)

m’ +m’

red,r — rcd rc red,rr

The total stationary drive force can be calculated in approach of DIN 22101:

! This choice has to be checked at the end of the calculations. The parameters of the rubber material of
the belt covers are already given in Section 5.2.1.

% At the end of the calculations the belt sag has to be calculated to check this choice.

® This choice depends on the belt width and belt speed. The roll parameters are already given in Section
5.2.2,
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F.=CfL,, (m,roll,c +mg, + ml’)ulk)g s B =Cf Lconv(m:oll,r + ml’)tlt)g (8.6)

F,=F +F, =Cf Lconv(m'roll +2my, + mv;ulk)g

where C is the ratio between the total resistance force including the effects of
accessories like side skirts and the main resistance force calculated above, and f the
effective friction coefficient which is the average friction coefficient for the carrying
and the return part of the belt. For a belt conveyor length of 1000 m the DIN standard
prescribes a C factor of 1.09. The effective friction factor f is chosen to be 0.018 in
accordance with the results of a calculation of the rolling resistance with the model as
described in Section 5.2. The drive forces for an unloaded and a loaded belt are, with
equation (8.6):

ch(empty) = 561 kN Fdl(ernpty) = 423 kN Fd(emply) = 985 kN

Fieontes = 3132 kN Fiionneg = 423 kN Fyonp = 3555 kN

The maximum drive force during start-up of a belt conveyor is:

F, = fuleg (8.7a)

A

where the subscript A denotes acceleration, P, is the nominal drive power, m, the
drive efficiency and K, is a drive-system dependent start-up factor, see Table 8.2. The
start-up factor is considerably influenced by the inertia of the drive system. The start-
up factor of high inertia drive systems is lower than given in Table 8.2. If the nominal
drive power, accounting for the drive efficiency, is equal to the required stationary
drive power then equation (8.7a) can be simplified to:

F, =FK, , (8.7b)

induction motor, drain-type fluid coupling controlled start-up 1.2
induction motor, resistance stepped start-up 1.4
induction motor, normal fluid coupling controlled start-up 1.5
induction motor, star delta switched start-up 1.6
induction motor, direct start-up 2-3

Table 8.2: Start-up factors, [Simonsen, 1987].
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In case of a drain-type fluid coupling controlled start-up, assuming that the nominal
drive power is equal to the required stationary drive power, the maximum drive forces
for an unloaded and a loaded belt are, with equation (8.7b):

F

dA(empty)

= 11.82 kKN ; Fyyqoueq = 42.66 kN

To enable transmission of the drive power from the
drive pulley to the belt a minimum belt tension is
necessary to prevent slip. The maximum ratio between
the belt tension before the drive pulley, F,,, and after
the drive pulley, F,,, during start-up can be calculated
with the Euler-Eytelwein equation [Kuhnert and Schulz,
1995]:

Figure 8.2: Belt tension E‘—A < exp(i,,a,,) (8.8)

distribution over a driven pulley. A

where o, is the wrap angle and w,, the friction
coefficient between the belt and the pulley. In the considered belt conveyor the wrap
angle is o, =7 and an approximate friction coefficient is p,,=0.35 [DIN 22101]. The
maximum difference in belt tension before and after the drive pulley is equal to the
drive force during start-up:

Fa—Fa=Fy (8.9

With the equations (8.8) and (8.9), the minimum belt tension for an accelerating
loaded belt F,,=21.33 kN and for a stationary moving loaded belt F, =17.78 kN.
The minimum tensioning force® required to enable transmission of the drive power of
an accelerating belt is twice the force F,,: F, =42.66 kN. Therefore, also in case of a
stationary moving belt the minimum belt tension is 21.33 kN. The maximum belt
tension for an accelerating belt F;y=F,+F3,=63.99 kN and for a stationary moving
belt Fi=F,,+F;=56.88 kN. The belt safety factor on the tension of a stationary
moving belt, see also Section 3.1.4, is Sg=8. Therefore the required strength capacity
per unit width is:

SpF

B nsplice

=474 N.mm" (8.10)

* With this force and the selected idler spacings, the belt sag is below 1.5 %.
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where the belt splice efficiency taken to be Ngpiice=0. 80°. This shows that the strength
of the selected belt type of 500 N. mm’ is sufficient for this application. The required
drive power Py for a stationary moving fully loaded belt is:

P, = AA =205.4 kW 8.11)

Ny

The efficiency of the drive system is assumed to be 1;=0.90. A drive power of

Py=250 kW is selected. The angular speed of the drive pulley o4 with radius R;=0.6
. 6

mis’:

o, =gl=8.67 s (8.12)

d

The motor has a nominal angular speed ©,=155.93 s which yields the necessary
reduction factor of the gearbox:

i=24 _1799 (8.13)
[0)

m
The inertia of the selected motor’ reduced to a mass on the drive pulley radius is:

22
= le, = 6,654 kg (8.14)
R,

red,m

where the moment of inertia of the motor is J,,=7.4 kg.mz. The inertia of the gearbox
reduced to a mass on the drive pulley radius is:

JE
M, =5 ~37 kg : (8.15)

red,g R 2
d

where the moment of inertia of the gearbox reduced on the motor axis is J,=13.3
kg. m”. The reduced mass of the steel drive pulley, neglecting the pulley ends, is:

* The belt splice efficiency of a multi-layer fabric belt can be estimated by dividing the number of fabric
layers minus one by the number of fabric layers. This results in a splice efficiency of 4/5 for the five
layer fabric belt in the considered belt conveyor.

® The minimum diameter of the pulleys is prescribed by the conveyor belt manufacturer.

7 For example type DKR 355 M4, see the Vector brochure on Squirrel cage induction motors.
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1 4 _ 4
Jdp ~ Pl ppulley bpulley (Rd Rd,in)

red,d = ~ 2
* R R;

m =1606 kg (8.16)

where the density of the pulley material e, =7850 kg.m”, the width of the drive
pulley byyey=1.5 m and the inner radius of the pulley Ry;,=0.56 m. The drive
pulley, the tension pulley and the tail pulley are equal. The steel bend pulleys have a
radius of 0.2 m, an inner radius of 0.17 m and a width of 1.5 m. The reduced mass of
the bend pulleys is equal to:

4 4
m Jﬂ ~ %TE ppullcy bpulley(Rs - Rs,in) — 354 kg (8 17)

red,b) = 2 2
i Rs Rs

The drive torque T, for a stationary moving belt is:
T, =F,R, =21.33 kNm (8.18)

The combination of the drive power/torque and reduction factor is used to select the
8
gearbox”.

8.3 Finite element models

In this chapter three finite element models are used which are shown in Figure 8.3.
Model 1 consists of 20 truss elements with bending deformation and has 21 degrees of
freedom; only the conveyor belt is discretised. Each element models a belt segment of
100 m. In model 2 the induction motor and the gear box are included in the model.
Therefore two torsion elements, one reduction box element and a pulley transition
element are added to the truss elements. Taking all constraints into account this yields
two extra degrees of freedom. Model 3 is almost equal to model 2 but it includes a
detailed analysis of one idler supported belt section 25 m from the drive pulley, see
Figure 8.3. The idler spacing is 1.5 m. This demands additional beam elements
(nodes 5-12). Each beam element models a belt segment of about 0.5 m. Model 3 has
43 degrees of freedom. The belt is tensioned by either a weight tensioner or a winch
tensioner. The weight tensioner is shown in Figure 8.3. In case of a controlled (ideal)
winch tensioner the weight is replaced by a constant tension force. The element types
of the three models are listed in Table 8.3, more information on specific elements can
be found in Chapter 7.

® For example type KH 186, see the brochure Vector squirre] cage induction motors.
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14 1516 17 18 19 20 21

model 1:
20 19 18 17 16 15 14 13 12 11
AT TTa 5 607 8 9 1011 12 13 ‘ e
/ : .
model 2: " ,,,,,,,,,,,,,,,,,,,,,,, 4 N
P 3)
/

4 56 7 8 9o 101112 13
{

§ /i
. T

/23 22 21 20 19

0 truss torsion torsion 0 1

1 truss reduction box reduction box 1 2

2 truss torsion torsion 2 3

3 truss pulley transition pulley transition 3 4

4 truss truss truss 4 5

5 truss truss beam 5 6
6 russ truss supporied beam 6 7

7 truss truss beam 7 8
8 truss truss beam 8 9
9 truss truss supported beam 9 10
10 truss truss beam 10 11
11 truss truss beam 11 12
12 truss truss truss 12 13
13 truss truss truss 13 14
14 truss truss truss 14 15
15 truss truss truss 15 16
16 truss truss truss 16 17
17 truss truss truss 17 18
18 truss truss lruss 18 19
19 truss truss truss 19 20
20 - truss truss 20 21
21 - truss truss 21 22
22 - truss truss 22 23
23 - truss truss 23 24
24 - - truss 24 25
25 - - truss 25 26
26 - - truss 26 27
27 - - russ 27 28
28 - - truss . 28 29
29 - - truss . 29 30
30 - - truss 30 31
31 - - truss 31 32

Table 8.3: Element types in model 1, 2 & 3.
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8.4 Model implications

In this section the results of a number of simulations are given which show the
influence of the model parameters on the dynamic behaviour of the belt. The
considered subjects are the axial and transverse vibration of a belt segment, the
propagation of longitudinal waves and the motion of bulk material on the belt.

8.4.1 Frequency of axial vibration

Figure 8.4 shows a belt segment modelled by one
X-direction truss element. It is known from Chapter 4 that the
first natural frequency of axial vibration of a belt

node ¢ trusselement node 1 . L.
o ) segment with length L is given by:

Iat

o) {f
Figure 8.4: Truss element. O = _TECI (8.19)
L
Hence the period of axial vibration is:
T= 2n = 2L (8.20)
0o c

The first natural frequency and corresponding period of axial vibration of a linear
truss element, using a consistent mass matrix, are:

23 nL
_ . 8.21
L Cl T ‘\/§C1 ( )

The influence of the belt tension dependent sag may approximately be taken into
account by using the effective Young’s modulus (Z. 16). In that case the wave speed c,
in the equations (8.20) and (8.21) is replaced by ¢ ; which is defined by:

N E
¢ =\/ N e (8.22)
P (@LVE,A
127°

With Young’s modulus of the belt E,=340.917 MPa and the belt density p,=1155.34
kg.m'3 , the propagation speed of the axial waves is equal to 543.21 m/s. If the length
of the element is the total belt length of 2000 m, then the approximate lowest
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frequency and corresponding period of axial vibration of the truss element are given
in Table 8.4. The differences between the periods of axial vibration imply that the
(apparent) axial wave speed in a finite element model which consists of one truss
element, using a consistent mass matrix, will be about 10.3 % higher than in the real
belt. This is caused by the assumption that the axial displacement of the belt can be
approximated by a linear displacement function (7.32). However, from equation
(4.97) it can be seen that axial displacement function is not linear. Applying more
truss elements will result in a better approximation of the real displacement field. The
discretization error will therefore decrease with increasing number of truss elements,
see Figure 8.5. In the finite element models 1-3 20 truss elements have been used.
The discretization error on the lowest natural frequency is in that case 0.103 %.

Table 8.4: Lowest frequency and period of axial vibration.
Analytical solution and solution using a truss element.

To check the integration procedure of TUDBELT, the free vibration of a 2000
m long truss element with an initial displacement of nodal point 1 of 1 m has been
simulated. Figure 8.6 shows the axial displacements u of the two nodal points. The
period of vibration is exactly as given in Table 8.4. The maximum relative error
between the frequencies given
in Table 8.4 and those
obtained from the simulations
is 0.04 % which confirms the
accuracy of the  used

discretisation 7

error (%] 4 integration procedure.
Accounting for the
discretization error of 20
elements, the maximum

relative error between the
analytic solution and the
e solution found by TUDBELT

number of elements [-] for the lowest frequency of the
Figure 8.5: Relative error between the analytical solution and Datural axial vibration using 20

the solution using truss elements for the lowest natural truss elements is 0.15 %.
frequency of axial vibration (symmetric vibration).

O = N W a&a o
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Figure 8.6: Nodal point displacement for a linear truss element
with consistent mass matrix (symmetric vibrations).

8.4.2 Frequency of transverse vibration

In Section 8.4.1 the frequency of axial vibration of a belt segment modelled by a truss
element has been considered. In this section the lowest frequency of free transverse
vibrations is considered. To determine whether or not the beam elements can be used
to accurately model the belt, nine test cases are considered as depicted in Table 8.5.
In the first three cases a belt segment of 1.5 m is clamped at one side whereas it is
free to move at the other end (clamped-free belt). The analytical result for the first

natural frequency of small amplitude transverse vibration of the clamped-free belt in
the cases 1-3 is {Den Hartog, 1956]:

3.516 |E,I
f= e VoAl (8.23)

In case 4 an end load of 12.5 N is applied at t=0 to a beam element at rest. Due to
the low bending stiffness, the amplitudes of vibration are large. In case 5 a belt
segment of 3 m is clamped at both sides. The analytical result for the first natural

frequency of small amplitude transverse vibration of a clamped-clamped beam is [Den
Hartog, 1956]:

22.0 |EL,
f:—»—27t —plil} (8.24)

161



Chapter 8

1 0.402 0.409 1.8
1.5m
2 o, 0.402 0.405 0.8
) 15m |
3 0.402 0.403 0.4
% 1 2 3
1.5m 1
4 ; - 0.382 -
1.5m .
5 0 1 2 3 4
‘ 628 0.630 0.4
3m _J
6 0 1 2 3 4
e 0.282 0.284 0.7
‘ 1=3m :
7
LI U - 2.625 2.636 0.4
; L=3m :
8 ; i
: :J;" e p gl 2.625 2.636 0.4
1, L=3m ‘ '
Ty _ ) 862 _
gl.Sm; L=3m ‘1.5m5

Table 8.5: Resuits for the first natural frequency of transverse vibration.

In case 6 both ends of the belt are free to translate and rotate. The analytical result for
the first natural frequency of small amplitude transverse vibration of a simply
supported belt is [Den Hartog, 1956]:

162




Numerical results of belt conveyor simulations

2 (8.25)

In case 7, which has already been considered in Chapter 4, the belt is pre-tensioned
(T=3500 N). In the cases 8 and 9 the gravity load is applied. In case 8 the belt is
simply supported and in case 9 the belt is also supported by two idler supports, see
also Section 7.2.1.4. Due to the high pre-tension, the deflection of the belt in case 8
is very small and therefore the non-linear effects in this case are negligible. The effect
of bending of the belt (on the idler supports) can be determined by consideration of
the differences between the results of the cases 8 and 9. The relevant belt parameters
used in the examples are:

p=115534 kg.m™ ; A=0.01236 m* ; E, = 340.917 10°N.m>
I,=109310" m*; L=15-3m; T =3500 N

The first transverse vibration mode of the belt can in good approximation be described
by the finite element model made of beam elements since the shape functions of the
beam element are of the third order. The accuracy can be improved by increasing the
number of elements as can be learned from the results of the cases 1-3. The vibration
was initiated by giving the nodal points 1, 2 and 3 of respectively case 1, 2 and 3 an
initial transverse velocity of -0.1 m.s". In case 4 nodal point 1 and in the cases 5-8
nodal point 2 was given an initial transverse velocity of 0.1 m.s™". In case 9 the initial
transverse velocity of nodal point 3 was -0.1 m.s"'. The amplitude of vibration varies
from 0.05 m in case 1 to 0.025 m in case 3. In case 4 the displacements are large,
with a maximum of about 0.8 m. Since only one element is used the solution for the
first natural frequency of the large amplitude vibration is not very accurate. However,
the solution indicates that the belt load may cause large displacements and hence
requires a non-linear solution for a not pre-tensioned low stiffness beam. Comparison
of the frequencies of the cases 7 and 8 show that in case 8 the influence of the gravity
load is almost negligible due to the pre-tension of 3500 N.

Figure 8.7 shows the transverse displacement of the middle of the belt
segment, nodal point 2, of case 6. The frequency of transverse vibration is 0.284 Hz.
The frequency of forced longitudinal vibration, due to the transverse vibration, is
0.568 Hz which is twice this frequency. The longitudinal displacement of one end of
the belt, nodal point 4, is shown in Figure 8.8.
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Figure 8.7: Transverse displacement of nodal point Figure 8.8: Axial displacement of nodal point 4 of

20f the simply supported beam (case 6).
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Figure 8.9: Axial displacement of nodal point 4 of
the simply supported beam (case 7).

the simply supported beam (case 6).

Figure 8.9 shows the axial displacement
of nodal point 4 of case 7 which in that
case is governed by the free longitudinal
vibration. The frequency of longitudinal
vibration which is obtained from Figure
8.9 is 93.284 Hz which is about 3.0 %
higher than the first natural frequency
obtained from equation (8.18). The
influence of the transverse vibration on
the longitudinal vibration of the belt can
not be seen in Figure 8.9. This is
caused by the differences in amplitude
of both longitudinal vibrations. The
amplitude is about 3.10™ for the forced

longitudinal vibration due to the transverse vibration and about 2.5. 10° for the natural
longitudinal vibration. The amplitude of the forced longitudinal vibration increases
considerably when the belt load due to the weight of the belt is considered (case 8&9).
In that case both frequencies of longitudinal vibration can be determined. Figure 8.10
shows the transverse displacement of the middle of the belt, nodal point 2, of case 8.
The frequency of transverse vibration is 2.632 Hz. From Figure 8.11, which shows
the longitudinal displacement of one belt end, two frequencies, 2.632 Hz and 93.400
Hz, are obtained. In this case the dominant frequency of forced longitudinal vibration
is equal to, and not twice, the frequency of transverse vibration, because of the belt

sag.
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Figure 8.10: Transverse displacement of nodal point  Figure 8.11: Axial displacement of nodal point 4
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Figure 8.12: Transverse displacement of nodal point Figure 8.13: Axial displacement of nodal point 6

3of the idler supported beam (case 9). of the idler supported beam (case 9).

.6 0.8 1

The belt sag, which is the mean transverse displacement of the belt, is 1.5 % of the
idler spacing as was intended. If two idler supports are used and in addition two pin
supports, then extra stiffness is introduced in the model. The frequency of transverse
vibration, which can be obtained from Figure 8.12, is 2.842 Hz which is 7.8 %
higher than in case of pin supports (case 7). The frequencies of longitudinal vibration,
which are obtained from Figure 8.13, are 2.842 Hz and 47.441 Hz. The natural
frequency of longitudinal vibration is in this case 4.8 % higher than the analytical
result. In case 7, this frequency was 1.5 % higher than the analytical result.

In model 3 four beam elements are used to model the belt segment between the
two idlers. From Table 8.5 it follows that the maximum relative error between the
TUDBELT solution and the analytic solution for the lowest frequency of transverse
vibration in that case is 0.7 %.
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8.4.3 Wave propagation

In Section 3.1.4 formulations were given for the velocity of longitudinal waves, cl.
To illustrate the difference in velocity of longitudinal waves travelling through an
unloaded and waves travelling through a loaded belt, two simulations have been
made. For these simulations finite element model 1 has been used. In both simulations
the belt was started by a constant drive force and the reduced masses of the idlers and

pulleys were neglected.

In the first simulation the whole belt was unloaded and therefore the mass of
the nonlinear truss elements was only determined by the specific mass of the belt.
Since all elements model a belt segment of the same length, the mass of all elements
was equal. Figure 8.14 shows the first 10 seconds of the start-up of the unloaded belt

[}

4
nodal point
velocity
[s]

N

nodal point
number [}

Figure 8.14: Longitudinal nodal point velocity
during start-up of the unloaded belt conveyor.
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Figure 8.16: Contour plot of the longitudinal
velocity of the nodal points during start-up of the
unloaded belt conveyor.
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Figure 8.15: Longitudinal velocity of nodal points

0, 10 and 20 during start-up of the unloaded belt

conveyor.
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Figure 8.17: Contour plot of the longitudinal
velocity of the nodal points during start-up of a
loaded belt conveyor.
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conveyor. On t=0 s a velocity wave departs from the head of the belt (node 0) with a
constant wave velocity c¢,=543.21 m/s. It passes the tail pulley (node 10) at t=1.9 s
and arrives at the end of the belt (node 20) on t=3.7 s. Then it reflects against the
tensioning pulley (node 20) and returns to the head of the belt where it arrives at
t=7.4 s. Figure 8.15 shows the belt velocity versus time at the head (node 0), the tail
(node 10) and tensioning pulley (node 20). Note that the speed jump, and not the
preceding speed variation, represents the head of the velocity wave. Figure 8.16 is a
contour plot of Figure 8.14 which shows the stationary propagation of the stress wave
through the belt. The wave speed c; is constant through the whole belt.

In the second simulation the carrying part of the belt was loaded. In that case
the mass of the elements was determined by the sum of the specific mass of the belt
and that of the bulk solid material. Therefore the mass of the elements modelling a
segment of the (loaded) carrying part was higher than the mass of elements modelling
a segment of the return part. As a result, longitudinal waves propagate slower through
elements modelling a segment of the carrying part than they do through elements
modelling a segment of the return part of the belt. In model 1 the elements O through
9 (nodal points O through 10) model a loaded belt segment. Figure 8.17 shows a
contour plot of the start-up of the loaded conveyor. With a specific bulk mass,
m,,, =133.54 kg.m", and a specific belt mass, m, =14.28 kg.m", the factor
C,=0.31, see also Section 3.1.4. Therefore the wave speed in the loaded belt part is
c;=168.8 m/s. The different velocities of longitudinal waves in the load carrying part
and the unloaded return part are visible in Figure 8.17. Figure 8.18 shows a start-up
of the unloaded belt conveyor with the reduced mass of the tensioning pulley. This
reduced mass is equally distributed over the nodal points O and 20. Besides the
longitudinal wave departing from the drive pulley (node 0), also a longitudinal wave
with a small negative velocity departs from the tensioning pulley due to the inertia of
that pulley. This can also be seen in the contour plot Figure 8.19.
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Figure 8.18: Longitudinal velocity of the nodal Figure 8.19: Contour plot of the longitudinal
points during start-up of an unloaded belt conveyor ~ velocity of the nodal points during start-up of an
with tension pulley inertia. unloaded belt conveyor with tension pulley inertia.
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8.4.4 Bulk solid material stream

As introduced in Chapter 7, models made of beam elements require a different
description of the transported bulk material than models made of truss elements.

In case of a belt conveyor system modelled by beam elements, where the
elements actually move through the conveyor, the mass of the elements modelling a
loaded belt segment is increased by the mass of the bulk solid material on that
segment. This mass is constant as long as the belt segment is loaded and no further
action has to be taken to control the mass flow of the bulk solid material.

In case of a belt conveyor system modelled by truss elements, the elements
remain in their place relative to the conveyor and the bulk solid material stream
moves through the element grid. This is illustrated in Figure 8.20 for a truss element
representing three belt sections. The belt loading degree ratio k;p, shown in Figure
8.20, indicates the ratio between the actual and the maximum mass of the bulk solid
material on the belt. The maximum or design mass of the bulk solid material on the
belt is prescribed by the design capacity of the conveyor. The belt can to a certain
extent be overloaded, the maximum load being described by design standards. In that
case the actual production exceeds the design capacity. Since the maximum value of
the belt loading degree ratio is one, overloading can be realised by increasing the area
of the cross section of the bulk solid material in the model and thus increasing the
capacity of the belt.

In Figure 8.20 the length of a segment of the bulk solid body, which is the
product of the belt loading time and the belt speed, is chosen to be equal to the
element length. If the length of one element is longer than the length of the bulk solid
material body then the length of the elements must be decreased to represent
accurately the actual bulk solid material stream.

To calculate the correct mass of an element during a simulation, the mass
balance of bulk solid material on the belt is determined every time step for the belt
elements. The maximum mass of the bulk solid material on a belt part modelled by a
belt element is:

M = Pouc A butkdes Lo (8.26)

where n indicates the element number and L, is the element length. At time t the
actual mass of the bulk solid material in the belt element is:

M® () = M2, k() (8.27)

where k() is the loading degree ratio.
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Figure 8.20: Flow of bulk material through a truss element.

The mass which enters the belt element is equal to the mass which leaves the
foregoing element:

M (6) = Mg, (0 (8.28)
The mass which leaves the element is:

kip(®) =0 = M! ()=0 5V, (DAt <L
LD( ) ()u(( ) bn( ) n (8293.)
kip(® =1 = M, (1) = Py A ges Vin (DAL

If 0< ki (t) <1 then two cases can occur. In the first case bulk material is present at
node p and the bulk material body has not yet reached node q of the element, see t;-t3
of Figure 8.20. In that case the mass which leaves the element is:

(1- k5 ®) L, 2 V,, (At = M2 (=0

out

(8.29b)
(1- KI5 (0) L, < Vi AL = M0 = Py A g Von 0AL - (1 - K3, 0) L, )
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In the second case no bulk material is present at node p and the bulk material body
has not yet left the element, see t4-t; of Figure 8.20 and the mass which leaves the
element is:

Kip(O L, 2V, (DAL = M (0) = Ppu Apuicdes Von (DAL

o (8.29c¢)
krIiD(t) Ln < Vbn (t)At = M:ut (t) = pbulkAbulk,deskrliD (t) Ln
At time t+At the actual mass of the bulk solid material in the element is:
M™(t + At) = M"(t) + M} (t) - M, (D) (8.30)

Substitution of the equations (8.26) till (8.29) in (8.30) yields the loading degree ratio
kip(t +AD):

M"(t + Ab)

8.31
M (8.31)

kip(t +At) =

To check this procedure, a simulation, using finite element model 1, has been made of
the movement of the bulk solid material through the elements for a stationary moving
belt. The simulation starts with a fully loaded belt element 9 and a stationary belt
speed of 0.60 m/s. Element 9 is not being reloaded during simulation. The figure
8.21 and 8.22 show the loading degree ratio of the elements. As can be seen the belt
loading ratio of element 9 decreases linearly, whereas the belt loading degree of
element 8 increases linearly. With a belt speed of 0.60 m/s and a belt element length
of 100 m, element 9 should be unloaded and element § should be fully loaded after
167 seconds. This is confirmed by the results of the simulation. As may be expected,
the total carrying part of the belt, which has a length of 1000 m, is unloaded after
1667 seconds.
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Figure 8.21: Surface plot of the loading degree  Figure 8.22: Side view of surface plot of the loading
ratio k;p, during the first 200 seconds of belt degree ratio of the elements during movement of bulk
motion. solid material body through the elements.
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8.5 Start-up of an inextensible conveyor belt

The analysis of a start-up of a belt conveyor system focuses on the question whether
or not the transient belt tension is admissible and whether or not the performance of
the system is acceptable. The belt tension during start-up is admissible if the nominal
belt strength kN, taking into account the splice efficiency, multiplied by the belt width
B and divided by the maximum transient belt force is larger than the required safety
factor S, on that tension. The performance of a belt system is acceptable if the belt is
always in tension, the belt remains on the supports and the bulk solid material remains
on the belt. It is desirable that the amplitudes of transverse vibration of belt segments
are small to reduce the energy consumption of the system and that the displacements
of the belt tensioner are small to reduce its size.

The maximum belt tension during start-up can easily be approximated by
assuming that the belt is inextensible and that the drive force during start-up is
constant. As a result the acceleration of the belt during start-up is constant. The
transient drive force Fy, can be calculated by multiplying the required drive force
during stationary operation F;, see equation (8.6), and a drive-system dependent start-
up factor K,, see Table 8.2°. From Section 8.2 it follows that for the design under
consideration the drive force during stationary operation, F,4, for the unloaded belt is
9.85 kN and for the loaded belt is 35.55 kN. The start-up factor K, for a direct start-
up is about 2.5 for a drive system without slip coupling. Therefore the maximum
drive force during start-up is 24.63 kN for the unloaded belt and 88.89 kN for the
loaded belt. Remember that the drive force F; was equal to the motion resistance
force met by the belt, which in this case is assumed to be independent of the belt
speed. Therefore the acceleration of the belt during start-up can be obtained from:

FdA - Fd

The total mass of the moving parts of the considered belt conveyor system is equal to
the sum of the total reduced masses of the idlers, the total mass of the carrying and
the return belt parts, the total mass of the bulk material on the belt (only for the
loaded belt), the reduced masses of the four bend pulleys, the reduced mass of the
drive pulley, the tail pulley and the tension pulley, the reduced mass of the induction
motor and the reduced mass of the gear box:

(8.32)

® Normally the start-up factors of an unloaded and a loaded belt conveyor differ. Here they are assumed
to be equal.
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Zm =mred,r +2 mbell + mbulk + 4mred.bp + 3mred,dp + mred,m + mrcd,g (8'33)

Substituting the masses given in (8.2), (8.3), (8.5) and in (8.14)-(8.17) in equation
(8.33) results in a total mass of 61,813 kg for the unloaded belt and 195,360 kg for
the loaded belt. Substituting these masses and the drive forces given in (8.6) and
(8.7b) in equation (8.32), yields an acceleration of 0.24 m.s” for an unloaded belt and
0.27 m.s” for a loaded belt. Since the final belt speed is about 5.2 m.s”, this constant
acceleration results in a start-up time of 21.8 s for the unloaded belt and 19.2 s for the
loaded belt'°. These start-up times are not equal as may be expected which is caused
by the difference in mass terms in the equation of the motion resistance force,
equation (8.6), and the total mass of the moving parts, equation (8.33). With the drive
force during start-up, Fy,, also the actual safety factor of the belt during start-up can
be calculated:

_kNB T‘splicc - kNB nsplice

act r]—‘]A epa
[e"“ - 1) Fun

With the selected EP 500/5 belt with width B=1.2 m, a wrap angle a=='", a friction
factor between belt and pulley n=0.35 and the drive force F 4, =88.89 kN, the actual
safety factor is S, =12.2 for the unloaded belt and 3.4 for the loaded belt. According
to the DIN standard the safety factor during non stationary operation should be at least
5.4, see also Section 3.1.4. Therefore, based on this calculation, it can be concluded
that the maximum drive force during start-up of the loaded belt should be limited to
55.55 kN. This implies that the maximum start-up factor is 1.5 which can for
example be achieved by application of a fluid coupling, see Table 8.2. In that case the
average acceleration of the belt is 0.10 m.s™ which results in a start-up time for the
loaded belt of 50.8 s. In the following, the calculation of the start-up time and safety
factor of the unloaded belt is referred to as calculation I, whereas the calculation of
the start-up time and safety factor of the loaded belt is referred to as calculation II.

(8.34)

The constant start-up drive force used in the above calculation is an
approximation. To determine the influence of the relation between the motor torque
and the angular speed of the motor shaft, and thus determine the start-up torque or
force based on the motor characteristics as has been discussed in Section 6.4.3,

TUDBELT is used.

' The start-up time for the unloaded belt is 6.03 s in case the drive force Fy, of the loaded belt is used
to start the unloaded belt.
" The wrap angle o is only equal to = in case of the start-up of a loaded belt couveyor. In all other
cases it is smaller than 7.
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Figure 8.23: Belt speed of the unloaded belt
(solid line) and the loaded belt (dotted line).
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Figure 8.25: Motor current during the direct
start-up of an unloaded belt (solid line) and a
loaded belt (dotted line).
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Figure 8.24: Motor torque during the direct start-up of

the unloaded belt (solid line) and the loaded belt

(dotted line).
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Figure 8.26: Actual safety factor during direct start-up
of an unloaded belt (solid line) and a loaded belt
(dashed line).

The direct start-up of an induction motor driven flywheel, where the supply frequency
of the induction motor is 50 Hz, has been simulated. The reduced mass of the
flywheel was equal to the total mass of the unloaded or loaded belt reduced on the
drive pulley. The resistance torque on the flywheel was equal to the belt motion
resistance multiplied by the drive pulley radius. The simulation of the direct start-up
of the unloaded belt is referred to as simulation I, whereas the start-up of the loaded

belt is referred to as simulation I1I.

Figure 8.23 shows the belt speed versus time in both cases. The start-up time
of the unloaded belt is 5.3 s and of the loaded belt 27.8 s. Figure 8.24 shows the
motor torque during the start-up. The start-up drive force can be calculated from the
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motor torque by multiplying the motor torque by the reduction factor, 17.99, and
dividing the result by the drive pulley radius, 0.6 m. This yields a drive force of 44.7
kN at t=0 which is half the start-up drive force used in the foregoing calculation. The
maximum drive force, which is equal to 140.5 kN, can be calculated from the
maximum drive torque, which in case of a direct start is equal to the tilting couple of
the induction motor. The start-up time of the loaded conveyor is longer than estimated
by the calculation 11 caused by the lower start-up drive force. The start-up force for
the unloaded belt and the loaded belt are equal resulting in a shorter start-up time than
estimated for the unloaded conveyor. Figure 8.25 depicts the motor current during
both start-ups. The time during which the maximum start-up current is allowed to be
present in the motor is about 10 seconds. This illustrates that a direct start-up,
according to this simulation, overloads the motor. Therefore, also based on the
simulation results, the conclusion would be that a slip coupling is required to drive the
belt, to prevent the motor from overloading. Besides that the motor is overloaded,
also the belt is overloaded. Figure 8.26 shows that the minimum safety factor is 2.2
for both the unloaded and loaded belt which is less than half the required 5.4, see
Section 3.1.4. As can be learned from comparing the calculation results and the
simulation results, taking the correct motor characteristics into account significantly
influences the results. The influence of the belt’s elastic response however is still
unknown. Therefore simulations have been made of the start-up of the unloaded and
loaded belt conveyor with finite element model 2, which has been described in Section
8.3. The results of these simulations are described in the first section of the next
paragraph.

8.6 Start-up of an elastic conveyor belt

In this paragraph the results of simulations using the software system TUDBELT and
finite element models 2 and 3 are presented. The response of the belt to a direct start-
up and to velocity controlled start ups have been simulated. Based on the results of
these simulations, criteria for the design of proper start procedures are listed in the
last section of this paragraph.

8.6.1 Direct start

In addition to the calculations and the simulations for the unloaded and the loaded belt
described in Section 8.5, four simulations of a direct start-up have been made using
model 2: '

simulation a: direct start-up of an unloaded belt conveyor tensioned by a winch
tensioner
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simulation b: direct start-up of an unloaded belt conveyor tensioned by a weight
tensioner

simulation c: direct start-up of a loaded belt conveyor tensioned by a winch tensioner

simulation d: direct start-up of a loaded belt conveyor tensioned by a weight tensioner
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Figure 8.27: Belt speed at the drive pulley (solid  Figure 8.28: Motor torque during a direct start of
line), the tail pulley (dashed line) and at the the unloaded belt.

tensioning pulley (dash-dot line) during a direct

start of the unloaded belt.

Figure 8.27 shows the speed of the belt at three sections in the conveyor during the
start up of simulation a: the drive pulley (node 4 of model 2), the tail pulley (node 14
of model 2) and the tensioning pulley (node 24 of model 2). At the drive pulley, the
belt is accelerated within 1.6 seconds to a velocity of 5.2 m.s”. In paragraph 3.1.4
the longitudinal velocity of waves in a belt has been discussed. If the distributed mass
due to the idler rolls, which is different for the carrying and return part of the belt,
and the mass of the belt are accounted for, then the ratio of velocity of waves, defined
in Section 3.1.4, Cy;=0.70 for the carrying belt part and Cy=0.81 for the return part.
The average ratio of velocity of waves is Cy=0.75 resulting in an average
longitudinal wave velocity of ¢, =408.95 m.s". With this velocity, the lowest natural
frequency of longitudinal vibration of the total belt is 0.102 Hz. The corresponding
period of vibration is 9.78 seconds which can clearly be recognised in Figure 8.27.
The amplitude of vibration is different for the three different belt sections. It is small
for the belt on the drive pulley where the motion of the belt is governed by that
pulley, whereas it is large for the belt in the free-moving tensioning system. Figure
8.28 shows the drive torque during a direct start-up of the unloaded belt conveyor.
The first peak in this figure, of about 4750 Nm, is the tilting couple which the drive
torque passes during acceleration of the induction motor, see also Figure 6.4. Since
the belt speed vibrates around the nominal speed, also the angular velocity of the
motor shaft varies around its nominal value. This results in the motor torque and
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Figure 8.29: Motor current during a direct start  Figure 8.30: Variation of the axial strain & in the

of an unloaded belt. belt after the drive pulley (solid line) and before the
tensioning pulley (dashed line) during a direct start
of an unloaded belt.

current as shown in the Figures 8.28 and 8.29 respectively. The period of motor
torque and current variation is the same as the period of the longitudinal belt
vibration.

The alternating motor torque results in an alternating belt tension. Figure 8.30
shows the variation of the axial strain g;, see equation (7.13), in two different belt
segments: the segment right after the drive pulley (element 4 of model 2) and just
before the tensioning system (element 23 of model 2). As can be seen in that figure,
the variation of the axial strain of the belt on the drive pulley is smaller than zero
during a part of the cycle. However, it should be realised that even if g; is smaller
than zero, the total belt strain s*l is positive and the belt is still tensioned.

Finally, the belt sag in the carrying belt part influences the motion of the
tensioning weight. If the belt is driven and the belt tension increases, also the total
belt length increases. Therefore normally the average vertical displacement of the
tensioning weight, y, is downwards (y <0). However due to the non-linear effect of
belt sag in the carrying part of the belt, the tensioning weight is lifted (Yayerage >0) as
can be seen in Figure 8.31. This figure also shows that the maximum vertical
displacement of the tensioner weight is 11.80 m which is not acceptable. Figure 8.32
shows the belt speed during the direct start-up of simulation c. The head of the belt
reaches a speed of 5.2 m.s™ in 10.7 seconds. The motor torque and current are shown
in the Figures 8.33 and 8.34. The ratio of velocity.of longitudinal waves, defined in
Section 3.1.4, for the loaded carrying part C;=0.30 whereas it is 0.81 for the
unioaded return part. With the average ratio of 0.55 the average velocity of the
longitudinal waves is 299.11 m.s™.
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tensioning pulley during a direct start of an the tail pulley (dashed line) and at the tensioning pulley
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Figure 8.33: Motor torque during a direct start of Figure 8.34: Motor current during a direct start of
the loaded belt. the loaded belt.

With this velocity, the lowest frequency of axial vibration of the belt is 0.07 Hz and
the period of vibration 13.37 seconds. The variation of the belt strain €, in the
carrying side is only occasionally negative, see Figure 8.35. Therefore the positive
vertical displacement of the tensioning pulley is smaller than during the direct start-up
of the unloaded belt, see Figure 8.36. The results of the simulations b and d are not
shown in detail since the differences between a and b, and between ¢ and d are small.
The results of the simulations a-d and those of the calculations and simulations of
Section 8.5 are summarised in Table 8.6. In this table the loading degrees, the type of
tensioning system, the start-up times, the maximum vertical displacement of the

tensioning pulley y..., see Figure 8.36, the maximum strain s;mx and the actual
safety factors of the belt during the start-up are given.
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Figure 8.36: Vertical displacement of the tensioning
pulley during a direct start of a loaded belt (winch
tensioner).

Figure 8.35: Variation of the axial strain in the
belt after the drive pulley (solid line) and before
the tensioning pulley (dashed line) during a direct
start of a loaded belt.

calculation % - 0.0088 12.2 21.8
calculation 11 100 % - - 0.0314 3.4 19.2
simulation I 0% - - 0.0485 2.2 5.3

simulation II 100 % - - 0.0485 2.2 27.8
simulation a 0% winch 11.802 0.0195 5.5 1.58
simulation b 0% weight 11.925 0.0191 5.6 1.61
simulation ¢ 100 % winch 9.934 0.0306 3.5 10.65
simulation d 100 % weight 9.753 0.0294 3.6 10.75

Table 8.6: Calculation and simulation results.

As can be seen from Table 8.6, the start-up times obtained from the calculations I&II
and simulation 1&I1 are longer than the start-up times obtained from the simulations a-
d. The safety factors obtained from the simulations I&II are smaller than the safety
factors obtained from the simulations a-d.

From the results of the simulations a-d it follows that the belt is always in
tension during a direct start-up. However, the maximum vertical displacement of the
tension pulley is about 10 m. Therefore, the performance of the belt conveyor during
direct start-up is not acceptable. From the results of the simulations ¢ and d it follows
that a direct start-up of the loaded conveyor is also not admissible since the minimum
safety factor on the belt tension during start-up is smaller than the prescribed 5.4.
Also the time, during which the maximum start-up current is present in the motor of
the loaded belt conveyor, is critical. Therefore, the start-up of the belt conveyor has
to be controlled to decrease the acceleration of the belt in order to increase the
minimum safety factor. In the next section the attention is focused on the velocity
controlled start-ups of a loaded belt conveyor.
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8.6.2 Velocity controlled start

In Section 8.6.1 it was shown that a direct start-up of the loaded belt conveyor
overloaded the belt and heavily loaded the motor. Also the performance of the belt
conveyor during start-up, see the definition in Section 8.5, was unacceptable.
Therefore a start-up procedure should be chosen which:

» lowers the maximum motor torque
¢ limits the motor current
¢ enables the control of the start-up time and trajectory of the belt speed

To satisfy these requirements an SPC is chosen to control the supply frequency of the
motor. By controlling the supply frequency, the motor torque is controlled indirectly
whereas the belt speed on the drive pulley is controlled directly as will be shown in
the next section.

8.6.2.1 Linear offset start-up procedure

As a start, a linear offset start-up procedure is chosen with a start-up time of 30
seconds. The velocity profile of a linear offset procedure is:

v, -V,
Vba(t)=(—b~T—Lo)t +V,,, 0<t<T

a

(8.35)

a

where V,, is the initial speed at t=0 s. For a linear start-up the initial speed is zero.
To produce a break-away couple and obtain an initial belt speed, the supply frequency
of the motor is given a start value of 5 Hz, see also Figure 6.4. From the start value
the frequency is linearly increased to 50 Hz. Figure 8.37 shows the variation of the
supply frequency with time for this start-up procedure. Figure 8.38 shows the belit
speed at three belt sections in the conveyor during the start-up. Comparison of the
Figures 8.37 and 8.38 learns that in this case controlling the supply frequency implies
that the belt speed at the drive pulley is controlled. Linearly increasing the supply
frequency in 30 seconds from 5 Hz to 50 Hz results in a linear increase of the belt
speed at the drive pulley from an initial speed to the stationary speed in 30 seconds. It
turned out that similar conclusions hold for all the following (simulated) velocity
controlled start-ups.
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Figure 8.37: Motor frequency supplied by the SPC  Figure 8.38: Beit speed on the drive pulley (solid

during a start-up of 30 s. line), the tail pulley (dash-dot line) and tensioning
pulley (dashed line) during a velocity controlled
start-up of 30 s.

The motor couple during the start-up is depicted in Figure 8.39. Comparing
this figure with Figure 8.33 shows that the maximum motor couple is much lower in
case of a velocity controlled start-up. The same holds for the motor current which can
be seen from comparison of the Figures 8.40 and 8.34. The lower motor couple
results in lower belt tensions and smaller axial belt strains.

Figure 8.41 shows the variation of the axial strain of the belt. If the belt sag is
small then the total axial strain €, and the variation of the axial strain €, are equal,
see Section 7.2.1.2. The maximum axial strain &; =0.0238 which implies a minimum

safety factor of 4.5. In case of a direct start up the maximum strain &, and the
minimum safety factor were 0.0298 and 3.6 respectively. From Figure 8.41 it also
follows that the axial strain €, is always larger than zero. Therefore it may be
expected, as was explained in Section 8.5.1, that the vertical displacement of the
tensioning pulley is downwards resulting in negative values of the displacement
parameter y of the tensioning pulley. This is confirmed by Figure 8.42 which shows
the vertical displacement of the tensioning pulley.

The transverse displacement of the belt can be determined from the ratio
between the vertical belt load and the belt tension, see equation (3.14). Only
transverse belt vibrations caused by belt tension variations are determined. Figure
8.43 shows the belt sag ratio of a belt segment right after the drive pulley and just
before the tensioning pulley. ’
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after the drive pulley (solid line) and just before the
tensioning pulley (dashed line) during a velocity
controlled start-up of 30 s.
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Start-up time

From the results of the simulation of the linear offset start-up of 30 seconds, it
follows that, compared to the results of a direct start-up, the motor is no longer
overloaded, the axial belt strain is always positive and the maximum belt strain is
lower. However, the minimum safety factor of 4.5 is still below the required 5.4 and
the maximum vertical displacement of the tensioning weight (6m) is still considerable.
To find the influence of the start-up time on the safety factor, four additional
simulations have been made of a linear offset start-up of the loaded belt in which the
start-up time was 10, 20, 40 and 50 seconds respectively, and the offset frequency 5
Hz. Since the performance of the belt conveyor was already acceptable in case of a
direct start-up, the question is which start-up time results in an admissible maximum
belt tension.

Figure 8.44 shows the maximum total axial belt strain as a function of the
start-up time. This curve is used to calculate the minimum safety factor versus start-up
time (Figure 8.45). From this figure it follows that the start-up time should be at least
40 seconds to keep the minimum safety factor above the required 5.4. In that case
also the maximum vertical displacement of the tensioning weight is acceptable, see
Figure 8.46. The start-up times T, obtained in Section 6.1.1 are 11.4 seconds
according to equation (6.3), and 60 seconds according to the rule of one-minute-per-
km-conveyor-length. According to the results of the simulations, the start-up time
which follows from equation (6.3) yields an unacceptable short start-up time as was
expected whereas the rule of one-minute-per-km-conveyor-length, yields an
acceptable start-up time for this specific conveyor. The start-up time which can be
determined from equation (6.6) is discussed at the end of this section.

To complete the information of the velocity controlled start-ups, Figure
8.47 shows the minimum belt strain €, as a function of the start-up time and Figure
8.48 shows the belt sag ratio. Besides the minimum safety factor also the maximum
belt sag is normally prescribed for design purposes. The maximum belt sag ratio for
this conveyor was set to 0.015. Before the start-up, the belt sag ratio of the carrying
part of the loaded conveyor is 0.013. As can be seen in Figure 8.48 the belt sag ratio
decreases with increasing start-up time. For a start-up times larger than 30 seconds,
the initial belt sag is not exceeded. The minimum start-up time based on this
information is therefore 30 seconds. Finally, the Figures 8.49 and 8.50 show the
maximum motor torque and the maximum motor current respectively as a function of
the start-up time. From Figure 8.50 it can be seen that the maximum motor current is
constant above a start-up time of 30 seconds. The motor current of 905.2 A at the
beginning of the start-up procedure, where the supply frequency is 5 Hz, is then also
the maximum.
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Figure 8.45: Minimum safety factor during velocity
controlled start-ups.

Figure 8.44: Maximum total belt strain &
during velocity controlled start-ups.
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Start-up frequency of the SPC

From the above consideration it can be concluded that the linear offset procedure,
during which the belt speed is linearly increased, is a suitable start-up procedure. The
question however is which start frequency should be used. The start frequency
directly influences the belt acceleration. To determine the relation between the start
frequency and the minimum safety factor, three additional simulations of a linear
offset start-up have been made. During these simulations the start-up time was 30 s
and the start frequencies were 10, 15 and 20 Hz. The results for a start frequency of 0
and 5 Hz being known. Figure 8.51 shows the minimum safety factor as a function of
the start frequency. From that figure it follows that the highest (minimum) safety
factor is obtained for a start frequency of about 5-10 Hz, which is 10-20 % of the
maximum supply frequency. In that case the maximum vertical displacement of the
tensioning weight is 2.96 m whereas it is 7.63 m and 8.45 m respectively for a linear
offset start-up with start frequency of 15 and 20 Hz. It should be noticed that the
offset frequency directly determines the start-up current which is normally restricted
to 1.4-1.5 times the stationary current. According to the results of the simulations, an
offset frequency of 5-10 Hz is therefore admissible.

8.6.2.2 Alternative velocity controlled start-ups

In Section 6.1.1 three alternatives were given for the linear offset speed increase used
in the start-up procedures mentioned above. Besides the speed trajectories proposed by
Harrison, equation (6.1), and Nordell, equation (6.2), also a variant with a delay
period was mentioned. The velocity profile of this procedure is:
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T, <t<T, +AT, (8.36)

(t—AT,), T, + AT, St < T, + AT,

where T, is the time at which the rest period starts and AT, the rest time. Note that
the total start-up time in this case is T, + AT, .

To determine the minimum safety factors which result from a start-up
procedure with velocity profile according to the equations (6.1), (6.2) and (8.36),
four additional simulations have been made. The basis of comparison is the linear
offset start-up procedure with the start frequency of 5 Hz, linear speed increase and
start-up time of 30 seconds. To quantify the influence of the offset frequency, an extra
simulation has been made of a linear start-up, where the initial frequency is zero, with
a start-up time of 30 seconds. The influence of the delay period has been determined
from a simulation where, after 5 seconds (T, =5 s), a delay period of 5 seconds
(AT, =5 s) is inserted during which the supply frequency is kept constant. The supply
frequency trajectories of the other two simulations correspond to the speed trajectories
of the procedures described by Harrison and Nordell. Remember that the trajectory of
the belt speed at the drive pulley follows the trajectory of the supply frequency, see
Figure 8.38. The supply frequencies as a function of the start-up time of the five
procedures are shown in Figure 8.52.
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Figure 8.52: Supply frequency during five simulations. Linear offset (solid line left), linear (dashed
line), linear delayed (solid line right), Harrison (dash-dot line) and Nordell (dotted line).
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linear offset .
linear 6.292 |0.0130 | 0.0246 4.3 0.170 |[3229.9 | 927.9
linear delayed | 5.148 | 0.0130 |0.0236 4.5 0.170 [ 3094.2 | 869.0

Harrison (6.1) | 9.345 | 0.0301 |0.0303 3.5 0.268 [4132.4 | 1282.8

Nordell (6.2) | 10.748 | 0.0382 | 0.0382 2.8 0.341 [4291.2 | 1365.5

Table 8.7

The results of the simulations are summarised in Table 8.7. Compared with the linear
offset procedure, it can be seen that the linear delayed procedure yields an equal
safety factor whereas for all other procedures it is lower. This is caused by differences
in maximum acceleration at the head of the belt. In the start-up procedures of
Harrison and Nordell, the maximum acceleration appears in the middle of the start-
up. The transient phenomena are not yet damped out by the time the start-up
procedure ends. The belt acceleration during the linear procedure is higher than
during the linear offset procedure. This explains why the safety factor of the linear
procedure is lower than that of the linear offset. The insertion of a delay period seems
to be useful when comparing the safety factors, however, in case of the linear delayed
procedure the total start-up time is 35 seconds. From Figure 8.45 it follows that the
minimum safety factor of a linear offset procedure with a start-up time of 35 seconds
is 5.0. Therefore, if 35 seconds are available, the linear offset procedure is
preferable. The maximum vertical displacement of the tensioning weight of a linear
offset start-up of 35 s is comparable to that of the linear delayed start-up of 35 s.

8.6.3 Estimation of the start-up time

Equation (6.6) [Harrison and Roberts, 1984] describes the required safety factor on
the belt tension during stationary operation Sg. In equation (6.6) the minimum safety
factor on the belt tension during non-stationary operation is assumed to be 3. If this
value is replaced by S, ., » then the following equation for the minimum safety factor
can be obtained:

F,
S g min = SB[F +1F ) (8.37)
1 ac

where F is the maximum belt force during stationary operation and F,. the maximum
acceleration force. The maximum stationary belt force of the considered conveyor F,
can be written as:
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po
F = (ei - 1] F,=CF, (8.38)

Substituting equation (8.6) in (8.38) yields:

1:1 = C*C fg LCOI’\V(m/

roll + 2m{)e|t + mi)ul.k) (839)
Substituting equation (6.5) and (8.39) in (8.37) yields the following approximation for
the minimum safety factor on the belt tension during non-stationary operation:

. -1
1//
S pin = SB[I +—~——C“ C*’";‘“;j (8.40)

Another more accurate approach is as follows. Assume that the start-up of the belt is
controlled by a velocity and that the belt speed is increased linearly. In that case the
acceleration of the belt on the drive pulley is constant. To accelerate the belt, bulk and
idlers, an extra drive force F,. is required which can be estimated by:

E, = (m},, +2m}, +m}, )LV, (8.41)

conv

The extra drive force yields an extra belt tension F,. which is equal to:

E,.=CF, (8.42)
With this extra belt tension due to the acceleration of the belt, equation (8.37) can be
rewritten to:

E
SA,mm=SB[F +1F J (8.43)
1

lac

Substitution of equation (8.39) and (8.42) in (8.43) yields:

N -1
\A ]

8.44
Cfe (8.44)

gm=%@+

The crosses in Figure 8.53 depict the maximum accelerations and the minimum safety
factors of the simulations of the velocity controlled start-ups described in this section.
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Figure 8.53: Minimum safety factor versus maximum
belt acceleration. Crosses indicate the simulation
results, the solid line equation (8.38) and the dash-dot
line equation (8.42).

In the calculation of paragraph 8.1 the
safety factor on the belt tension during
stationary operation Sy was taken 8.0.
The solid line depicts the minimum
safety factor on the belt tension during
non-stationary operation as a function
of the maximum  acceleration
according to equation (8.40). The
dash-dot line depicts this variation
according to equation (8.44). As can
be seen in Figure 8.53, the solution
according to equation (8.44) seems to
be a lower limit of the safety factors
as a function of the maximum
acceleration of the belt.

In case of a linear increase of the belt speed, the belt acceleration is:

- \%
V=

(8.45)

The minimum required safety factor during non-stationary operation is S,. Therefore,
after substitution of equation (8.45) in equation (8.40), the following expression for

the start-up time can be obtained:

A ( S, ]
AT * reere
C'Cfg\S, -8,

Substitution of equation (8.45) in (8.44) yields:

TA:chb ( = J
g\S; -85,

(8.46a)

(8.46b)

Equation (8.46a) yields a start-up time of 9.4 seconds whereas according to equation
(8.46b) the start-up time is 56.1 seconds. Considering the results of the simulations,

the start-up time calculated with equation

(8.46a) is not acceptable whereas

application of equation (8.46b) results in a smooth start-up. Table 8.8 summarises the
start-up times predicted by the different criteria and indicates whether or not these

start-up times lead to a smooth start-up.
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quation (6. 1.4 no
one minute per km rule 60.0 yes
equation (8.46a) 9.4 no
equation (8.46b) 56.1 yes
simulations 38.5 yes

Table 8.8: Summary of the start-up times.

8.6.4 Application of beam elements

In Section 8.6.1 the direct start-up of the belt conveyor was discussed. During the
simulations described in that section model 2 has been used. The belt sag ratio of the
belt segment just after the drive pulley, modelled by element 4, was determined from
equation (3.14) using the local dynamic belt tension. To determine directly the belt
sag ratio, a simulation of a direct start-up of the unloaded belt conveyor is made using
model 3. In that case the belt sag ratio can be determined from the transverse
displacement of a belt segment between two idlers. In terms of model 3, this implies
that the belt sag ratio is calculated by dividing the vertical displacement v of nodal
point 8 by the idler spacing L=1.5 m. Figure 8.54 shows the belt sag ratios obtained
from both simulations. As can be seen in this figure, the belt sag ratio is equal to
about 0.015 for the non moving belt in both cases. If the belt sag ratio is calculated
from an actual vertical belt displacement, then positive vertical belt displacements,
which result in negative values of the belt sag ratio, can be detected. This is not
possible when the belt sag is calculated from the belt tension.

The average belt tension during the time interval from t=0 to t=0.4 s was
21.18 kN. With the density of the belt of 1155.34 kg.m™ and the carrying idler
distance of 1.5 m, the average frequency and period of transverse vibration are 12.8
Hz and 0.077 s respectively. This period of vibration can be recognised in Figure
8.54. It can also be found in the transverse vibrations of the adjacent nodal points of
node 8 which are shown in Figure 8.57 (dashed line) and in Figure 8.58 (solid line).
Analysis of the data of the vertical displacements of nodal points 7-9 with Matlab®,
shows that, besides the frequency of 12.8 Hz, also a frequency of 9.0 Hz is apparent
in that data. This frequency can also be recognised in the variation of the total axial
strain as is shown in Figure 8.56. This frequency is the natural frequency of axial
vibration of the belt segment of 25 m, modelled by truss element 4 of model 3,
preceding the considered belt segment. In Section 8.6.1 it was explained that the
average longitudinal velocity of waves in the unloaded belt was 408.95 m.s™.
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Figure 8.55: Belt speed on top of the idler 1 (solid
line), idler 2 (dotted line), at the drive pulley (dashed
line) and 100 m after the drive pulley (dashdot line).
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Figure 8.58: Transverse displacement of the belt just
before (node 9, solid line) and just after (node 10,
dashed line) idler 2 of model 3.
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Substitution of this velocity and the belt length of 25 m in equation (8.21) yields the
natural frequency of axial vibration of 9.0 Hz and the period of vibration of 0.11
seconds. This period of vibration can also be recognised in the variation of the belt
speed as is shown in Figure 8.55. As was already discussed in Section 8.4.3, the
natural frequency of axial vibration of the total belt can normally be found in the
variation of the belt speed of real belt conveyors. The high frequency of 9 Hz,
however, which is caused by the application of only one truss element to model the
belt segment preceding the considered segment, will not appear in the belt speed
variation of real belt conveyors.

Figure 8.55 shows the belt speed at the drive pulley, 100 m after the drive
pulley and the belt speed on top of the two idlers of the considered belt segment. The
belt speed at the drive pulley and 100 m after the drive pulley are respectively the
axial velocities of the nodal points 4 and 5 of truss element 4 of model 2. The belt
speeds on top of the idlers are the axial velocities of the extra displacement parameters
& of the idler supported beam elements 6 and 9 of model 3. Apart from the belt speed
variation, the belt speeds on top of the idlers, which are placed about 25 m after the
drive pulley, lay between the belt speed at the drive pulley and 100 m after the drive
pulley.

Finally, the Figures 8.59 and 8.60 show the angle of twist in the two shafts of
the drive system as a function of time. The high frequency vibration of the motor
shaft, which can be seen in Figure 8.59 right after t=0 s, is caused by the natural
vibration of that shaft.

2x10'4 .
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0 005 01 015 02 025 03 035 04 0 005 01 015 02 025 03 035 04
t[s} tls]
Figure 8.59: Angle of twist of the shaft Figure 8.60: Angle of twist of the shaft between the
between the induction motor and the reduction box and the drive pulley (element 2 of
reduction box (element 0 of model 3). model 3).
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8.7 Conclusions

Based on the results of the calculations and simulations as described in the Sections
8.4-8.6, the following conclusions can be listed:

1.

The bending stiffness of the belt used in the considered belt conveyors is low.
Therefore, as can be seen in Section 8.4.2, the influence of the bending stiffness
on the lowest frequency of transverse vibration of the pre-stressed belt can usually
be neglected. In such a case, truss elements instead of beam elements can be used
to determine the transverse vibration of an idler supported belt segment.
However, when it is required to model accurately the bending of the belt on top
of an idler, this can only be done by beam elements.

The application of 20 truss elements in a model of a 1 kilometre long belt
conveyor, that take approximately into account the effect of belt sag, enable an
accurate calculation of the low frequency axial vibrations and the average belt sag
between the idlers. The local application of beam elements and of special idler
supported beam elements to model a specific belt span supported by idlers, enable
the accurate calculation of the axial strain and the belt sag between the idlers. An
important drawback of the local application of beam elements is that their
application slows down the calculation process for two reasons. Firstly this is
caused by the smaller step-size that is required for a stable integration of the
equations of motion. Secondly this is caused by the application of special idler
supported beam elements which require every time-step a check whether or not a
nodal point passes an idler and, if necessary, the termination and restart, after
rebuilding the finite element model, of the simulation process.

Application of the DIN procedure, to calculate the maximum stationary belt

tension and introduction of a drive system dependent multiplication factor to

estimate the maximum tension during start-up giving the minimum safety factor
on that tension, showed that a direct start-up of the specific belt conveyor under
consideration results in an inadmissible maximum belt tension as expected. Based
on the required minimum safety factor, it was then calculated that the average
acceleration of the belt during a non-direct start-up should be limited to 0.10 m.s>
which will result in a start-up time to reach a speed of 5.2 m.s" which is 50.8 s.
Using these start-up data, it was shown that this can for example be achieved by
the application of a drive system with a fluid coupling. Comparing the start-up
time of 50.87 s with the minimum required start-up time of 40 s, obtained from
the results of the finite element simulations, shows that, for the considered belt
conveyor system, application of a velocity controlled start-up with linear speed
increase and the start-up time of 50.8 s will yield a smooth start-up. Application
of the DIN procedure to analyse a direct start-up results in overestimation of the
start-up time.
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Based on the results obtained from the finite element simulations, it can be
concluded that calculations where the belt is assumed to be inextensible, the
inertia is taken into account by a flywheel and the real (ideal) motor characteristic
is taken into account (method II), result in overestimation of both the maximum
belt tension and the start-up time. Application of this method does not yield a
more accurate analysis of the start-up than the DIN procedure. It is therefore not
useful to use this method to calculate the belt tension during non-stationary
operation of a belt conveyor system.

Based on the results of the finite element simulations, it can be concluded that, to
minimise the belt tension during start-up, the maximum acceleration of the belt
should be minimised. It was shown that the best option to minimise the belt
acceleration is the application of a start-up procedure, either velocity controlled or
torque controlled, with constant acceleration. In case of a velocity controlled start-
up it turned out that the lowest belt tension during start-up was obtained in case
the start supply frequency of the induction motor was about 10-20 % of the
stationary supply frequency. It also turned out that all other performance
characteristics of the considered conveyor, including the vertical displacement of
the take-up pulley, were acceptable if the maximum belt tension during start-up
was admissible.

The software system TUDBELT is not optimised to time but to efficiency of
storage of variables. Due to the small torsion elements used to model the shafts in
the drive system, simulation of a start-up of a belt conveyor using a finite element
model is time-consuming. However, if it is used to calculate accurately the
maximum belt tension during non-stationary operation, to determine the minimum
required belt strength, application of this method is worth the effort, since the belt
is the most expensive component of long belt conveyor systems.

The required belt strength can be calculated using either the stationary belt tension
or the non-stationary belt tension multiplied by their respective safety factors.
Since the non-stationary operation of a belt conveyor system can be influenced by
the choice of the start-up or stopping procedure, it should be realised that a
reduction of the required belt strength, and thus a reduction of the investment, can
only be achieved if the non-stationary belt tension and the corresponding safety
factor are used to calculate the minimum required belt strength.

Compared to the safety factors obtained from the finite element simulations, a
good estimation of the minimum safety factor can be achieved by using the
maximum acceleration of the belt, the safety factor on the belt tension during
stationary operation, the effective friction coefficient and the ratio between the
total motion resistances and the main resistances. Application of the start-up time,
calculated with that method in case of a start-up procedure with constant
acceleration, results in a smooth start-up of the considered belt conveyor.
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9. Models based on the finite element method, like the simulation software system
TUDBELT, are most suitable to analyse the dynamics of belt systems since they
provide a flexibility that models based on other methods do not provide. In
particular the procedure of accounting for constraints by using zero-prescribed
deformation parameters is very effective.

10. The object-oriented structure of TUDBELT enables an efficient and easy
accessible storage structure of the model and calculation parameters which enables
an easy maintenance and development of the model components. An important
drawback of the object-oriented structure is that it slows down the calculation
process due to the overhead of the three decomposition structures.
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Experimental analysis of
transverse belt vibrations

moving flat belt span supported by two idlers is considered. These experiments

have been performed to evaluate the approximate analytical models as described in
Chapter 4, see also [Van den Dool and Otto, 1993], [Dijkstra and Stelwagen, 1993],
[Van Ammers and Timp, 1994], [Weijgand, 1995] and [Wit, 1995]. In Section 9.1 an
introductory experiment performed with a real full-scale belt conveyor is discussed.
The components of the test facility used for the other experiments, as discussed in
Section 9.3, are described in Section 9.2. The results obtained are given in Section
9.4 whereas their applications are discussed in Section 9.5.

In this chapter an experimental analysis of transverse vibrations of a stationary

9.1 Introductory experiment

Geometric imperfections of idler rolls and pulleys, or the passage of a belt splice over
an idler roll or pulley, cause an excitation, yielding a transverse vibration in a belt.
An introductory experiment has been performed to investigate whether or not the
frequencies of excitation and the first natural frequency of transverse vibration of a
particular belt span between two idlers can be obtained from a measurement of the
transverse displacements. The excitation frequency of, for example, an eccentric idler
roll depends on its angular speed, and thus on the belt speed V,. The excitation
frequency, f;, of an idler roll with eccentricity is equal to:

f= A
" =D

r

.1

where D, is the diameter of the idler roll. The belt is also excited by the passage of a
belt splice over an idler. The frequency of belt splice passage, f,, depends on the belt
speed, the belt length and the number of splices. For a belt with endless length Ly
and one belt splice the important frequencies are:
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£ =

T L (9.2)

and f =

= <

belt

where L is the idler spacing. Assume that the description of the transverse
displacement of a supported belt span can be approximated by the linear differential
equation (4.39). In that case, and neglecting the bending stiffness, the lowest natural
frequency of small amplitude transverse vibration in case of a simply supported belt is

given by (also see Section 4.2.4.3, x=1):

=% [_p (9.3a)

T 2L

where B=V,/c,. In case of a belt span where one end is subjected to harmonic

vertical displacement (eccentric idler roll), this frequency is given by (see Section
4.2.3.2):

=52(1-
f—2L(1 B?) (9.3b)

Resonance will occur when a natural frequency of transverse vibration of the belt is
approached by either the excitation frequency of an idler or an excitation frequency of
belt splice passage. As follows from the equations (9.1), (5.2) and (9.3), to design
belt supports that prevent excitation in the first natural frequency, the so-called
resonance free belt supports, the idler spacing L, and the belt speed, are subjected to
the following conditions:

L

f#f= L= -4 9.4

== ¢26 B (9.4a)

£ 2=V, # i, (9.4b)
wD,

fi=f=L= Z—B(l -p?) (9.4c)

The maximum production length of conveyor belts is about 100 till 400 m. With a
maximum belt speed of 10 m/s, the maximum frequency of the primary belt splice
excitation is 0.1 Hz. Since the frequencies of transverse vibration are always higher,
condition (9.4a) is always satisfied. The second and third condition however should be
considered during the design stage of a belt conveyor. To illustrate that all the
frequencies, given in the equations (9.1), (9.2) and (9.3), can be determined, the
transverse displacement of a stationary moving supported belt span has been measured
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using an acoustic distance meter (ADM), which will be discussed in Section 9.2.1,
and recorded on a PC, see Section 9.2.5.

The considered conveyor belt, an unloaded EP 250/2, has a belt width of 0.6
m, a thickness of 7.3 mm, a density of 1197.2 kg.m™ and one belt splice. The endless
belt length is 52.7 m, the considered idler spacing is 3.66 m and the idler rolls have a
diameter of 0.108 m. The belt tension force during the experiment was about 1.1 kN
as could be learned from the static belt sag ratio K,=0.021. The longitudinal velocity
of transverse waves ¢,=14.6 m/s which was calculated from the square root of the
ratio between the belt stress and the belt density. With a stationary belt speed
V,=3.57 m/s, the dimensionless speed ratio p was 0.24. With these data the

following frequencies can be calculated:

f =0.067 Hz, f, =0.98 Hz, f =1.88 Hz, f, =10.52 Hz

0752197 i Figure 9.1 shows the ratio between the
measured transverse displacement v and
0.50 the idler spacing L as a function of time.

After processing of this signal by a Fast
Fourier Technique (FFT) the spectral
viL of density of Figure 9.2 was obtained. In
H this figure all four frequencies can be
recognised. The first frequency, which

0.25

-0.25¢

050 appears at 0.067 Hz, is caused by the
passage of the belt splice through the
0787 : 4 s s considered belt span. The second, at 0.98

2 3
tis] Hz, is caused by passage of the belt

Figure 9.1: Ratio between the measured transverse splice over the idler stations. The third
disp{acement and the idler spacing of a stationary frequency, which appears at 1.91 Hz, is
moving belt span supported by two rolls. the first natural frequency of transverse
vibration of the belt span. The fourth
frequency, at 10.5 Hz, is caused by the rotation of the idlers. The difference between
the calculated and measured natural frequency of the transverse belt vibration will be
clarified in Section 9.4. Due to the motion resistances, the dynamic belt tension is
higher than the pre-tension which explains part of the difference. From equation
(9.4b) it can be learned that resonance may be expected when the belt speed is
approximately 0.67 m/s. Since the belt speed was 3.57 m/s, no resonance phenomena
occurred during the experiment.
To-illustrate that resonance phenomena due to idler excitation can occur, the
transverse displacement of the considered belt span has been measured during an SPC
controlled start-up of the belt conveyor. The belt speed was increased step-wise.

197



Chapter 9

X 103 3
D, =0.108 m
8f Ks =0.021
25

7

[ 2
spectral sk ca/Ks [%]
density 1.5}

]

1n1u.lu J
0 0 .
0 5 10 f[HZ] 15 20 0 05 2

U vy [mis) "

Figure 9.2: Spectral density of transverse vibration Figure 9.3: Measured ratio of the standard deviation
of a stationary moving belt span supported by two  of the amplitude of transverse vibration and the
rolls. static belt sag .

After every step the belt speed was kept constant and the transverse displacement of
the belt was measured after a stationary state had been reached. As can be seen in
Figure 9.1, the amplitudes of transverse vibration over a time interval were not
constant. Therefore the standard deviation was calculated. The mean amplitude of
vibration can be approximated by ~2 times the standard deviation assuming that the
belt vibrates harmonically. Figure 9.3 shows the measured ratio between the standard
deviation of the amplitude, o,, and the static belt sag ratio K for different belt speeds.
This figure shows that indeed resonance occurs around a belt speed of 0.67 m/s as
was expected.

Severe transverse belt vibrations not only cause extra wear of the conveyor
components, but also dissipate a part of the drive power. To estimate the power
dissipated in the transverse vibration of belt parts, it is assumed that the transverse
displacement is described by the linear solution of the equation of transverse motion in
the first vibration mode:

vix,t)=a sin(n—g) cos(mt) 9.5)

where a is the vibration amplitude of the middle of the belt part. The kinetic energy of
the transverse motion of the belt is maximum for v(x,t)=0. In that case it is equal to:

K = %j:(pA|v’l|2) dx (9.6a)
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From equation (9.5) it can be seen that v(x,t)=0 for ot=(1+2mr/2.
Differentiation of v with respect to time yields the transverse belt speed v .
Substitution in equation (9.6a) yields:

Ky = %pAbaz(DZL (9.6b)

Due to the damping of the belt material and bulk solid material on the belt, the
amplitude of transverse vibration will decrease. The amplitude reduction within one
vibration period :
_2m__ 2n

P (O 0)\[1—(;2

where @, is the damped natural frequency and  the damping factor, is equal to:

a, +, =exp[ —ZTEC ] (98)

a, J1=-&F

With this amplitude reduction, the energy dissipated in one vibration period t,, which
should be supplied to the belt to maintain a transverse vibration with amplitude a, is:

t 9.7

i 2
U e =ZpAh(af+lF —af)(o'L 9.9)

This corresponds to the power:

P, = Vs _ —1—pAmfa2L 1-exp —4ns (9.10)
t 8n 1-&?

P

According to Otto and Van den Dool (1993) the damping factor of conveyor belts is
about 0.02 to 0.04. Therefore the required power can be simplified to:

1 :
P~ 8—npAmfa2L[1 - exp(-4n5)] 9.11)

According to Harrison (1994) the amplitude of vibration in belt spans of the return
part is approximately 1% of the idler spacing. This is confirmed by Figure 9.1. If the
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horizontal belt conveyor considered in Section 8.1 is used as an example, then the
power required to maintain natural transverse belt vibrations of all the belt spans of
the return part of the belt is equal to 11.5 kW which is about 5.6% of the total drive
power. In case of resonance the amplitudes of vibration are even larger. However the
situation that all the belt spans of the return part vibrate with the same amplitude is
rare.

From the foregoing considerations it follows that transverse belt vibrations can
considerably affect the operational behaviour of a belt. However, they also enable the
determination of the magnitude of the belt tension. Therefore, experiments have been
performed on a special test facility to determine which of the models, as described in
Chapter 4, most accurately predicts the finite amplitude natural frequency of
transverse vibration. In particular, this is important to determine what safety margin
should be accounted for in the design of resonance free belt supports and to evaluate
whether or not the frequencies of transverse vibrations can be used in a belt
monitoring system. The equipment used in these experiments is described in the next
section.

9.2 Test facility

The main purpose of the test facility, which is depicted in the Figures 9.4 and 9.5, is
to enable the determination of transverse vibrations of an idler supported, stationary
moving, belt span. To control the belt speed an SPC is applied on the 1.5 kW
induction motor. The conveyor structure is stiff and isolated from the ground by four
thin rubber foundation sheets to eliminate environmental influences and noise. In the
design special attention is given to an easy replacement of the endless belt. The belt is
supported by seven aluminium pulleys and two aluminium idlers. The drive, tail, and
tension pulleys have a diameter of 0.150 m and for the bend pulleys and the idler rolls
it is 0.100 m. The drive pulley is crowned to track the belt. If the tracking is not
sufficient then also the tail pulley and the bend pulleys can be adjusted to track the
belt. The conveyor has been designed to support an endless belt with a length of about
7 m. To prevent the belt from being lifted off the idlers, the belt is installed under the
idler rolls instead of on top of the rolls. In the Figures 9.4 and 9.5 three parts can be
distinguished: an SPC, a belt conveyor and a data recording and processing unit.

200




Experimental analysis of transverse belt vibrations

2800 mm

» 4

tail pulley

N\ idler roll ﬁﬁ,,ﬁ,’,,;,awu'stic' distance T TTTa
\ idler rolls —._ !
\ o - meter (ADM) 600 mm

data processing

unit \

drive pulley

00 mm
SR uni
N e
“++4+-3 bend pulleys [ T
i bend pullys |
tension pulley | 00 mm

— g4 w

e
j [
A,,,_,,"L]p tensioner !
T weight ‘

<

7

Figure 9.4: Schematic presentation of the dynamic test facility.

Figure 9.5: The dynamic test facility (Photograph courtesy of Facilitair Bedrijf TU Delft).
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From Chapter 4 it is clear that the following data are required to describe
accurately the transverse vibration v(t) of a belt span by a non linear model:

. the idler spacing: L

. the belt tension: T

. the belt speed: V,

. the specific belt mass: m,

. the effective bending stiffness: (EI).

. the effective normal stiffness of the belt: (EA)+

[ R O R

The specific belt mass and also the effective normal and bending stiffness are
determined by the selected belt type. The belt conveyor is designed to enable the
measurement of the transverse displacement of the belt in the middle of the span; the
idler spacing, the belt tension and belt speed can be adjusted. The components and the
signal processing will be discussed in the following sections.

9.2.1 Acoustic displacement meter

To measure the transverse displacement of the idler supported belt span, an acoustic
displacement meter, or ADM, is used. The ADM, type “Ultrasonic Ranger HE-5017,
is placed above the middle of the supported span and is used to measure contactlessly
the distance to the belt. It is provided with two transducers. The first one emits a
sound wave which, after reflection against the belt surface, is received by the second
transducer. The delay time between transmission and arrival is a measure for the
distance between the ADM and the belt.

9.2.2 Idler spacing adjustment

To enable a quick and accurate adjustment of the idler spacing, the two beams of the
upper frame that carry the idlers are provided with holes over a length of 2 m. The
distance between adjacent holes is 50 mm. Also the idler frames are provided with
two holes. The idler spacing can be adjusted between 100 mm and 2000 mm by fixing
the idlers to the structure with fitted dowels. During the experiments three idler
spacings have been used: 800, 1200 and 1600 mm.

9.2.3 Belt tension adjustment

To pre-tension the belt, the conveyor is provided with a weight tensioner. The
tensioner is built up of a tension pulley and a container which are bolted together. The
tensioner can move along two guide bars which prevent the container from swinging.

202




Experimental analysis of transverse belt vibrations

The mass of the tension pulley and the container is 38.6 kg. Special blocks with a
mass of about 12 kg are available to be put into the container to increase the mass of
the tensioner. During the experiments O, 2, 4 or 6 blocks were added which resulted
in pre-tensions of the belt as is summarised in Table 9.1. With increasing pre-tension
the energy loss due to bending of the belt increases. Due to the limited motor power
of 1.5 kW, the maximum tensioner mass turned out to be about 120 kg.

To excite the moving belt, a small block is dropped in the container. To guide
this block, a shaft is mounted on the bottom of the container. The transverse vibration
of some belts was governed by a strong low frequency excitation caused by the belt
splice. In those cases the excitation provided by the tensioner weight was not enough
to enable the determination of the first natural frequency of transverse vibration.
These belts were therefore excited by hand between the idlers.

38.6 65.5 89.8 113.9
189.27 | 321.29 | 440.20 | 558.35

Table 9.1

Due to the motion resistances, the belt tension is not equal to the pre-tension. The
drive force Fy is equal to the sum of the motion resistance forces. All the idlers and
pulleys are, related to the position of the ADM, symmetrically placed in the
conveyor. It is assumed that the motion resistances are equally distributed over the
conveyor. This assumption holds if the conveyor is well aligned and the resistance to
rotation of the bearings of two identical idlers or pulleys is equal. In that case the belt
tension of the idler supported segment, F,, is approximately equal to the sum of the
pre-tension, F,, and half the drive force, see also Figure 9.6:

E =F +3F 9.12)

FAFa+FgtFo| [Pt FatFatFatFu=Ft0.5F| [FtF,+FotFost 2Fu=F+0.5F ¢ Fu |

ForFotFa | S FoFaFaF03EFtFu)

[FtFol” FFy !

%

Figure 9.6: Belt tensions.
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Ry The drive force can be measured with
the dynamometer shown in Figure
9.7. This device is mounted directly
_ N under the induction motor. Two strain

\ gauges are placed on a ring which is

induction motor

P

|~ drive pulley

IR »

[ SR TR connected to the motor socket and the
motor socket . J . reducer structure by two ball joints. These

» i “ .
e : joints ensure that only forces and no
( }’\. 1 ball joints moments are measured. The dynamo-
strain gaugesw-/*i?’* LT meter measures not only the drive
% force but also a static force due to the
structure lee . .
e, weight of the motor.To exclude this

weight, the output signal of the
dynamometer is put to zero in case of
the belt at rest by fine tuning the
device.If 1. is the distance between the centre line of the drive pulley shaft and the
centre line of the measuring ring and Ry, is the radius of the drive pulley then the
drive force can be calculated from, see also Figure 9.7:

Figure 9.7: Force measuring device.

F, = (9.13)

9.2.4 Belt speed adjustment

The shaft of the induction motor, type SEW Dft 90 L4, and the drive pulley shaft are
connected by a bevel gear box, type Graessner 07 H 13R, with reduction ratio 1. The
nominal number of revolutions of the motor is 1420 rpm. With a reduction ratio of
1.0 and the diameter of the drive pulley of 0.15 m, this results in a nominal belt speed
of 11.15 m.s™". Higher belt speeds can be achieved by supplying the SPC controlled
motor with frequencies above the 50 Hz. The angular speed of the drive pulley shaft
is measured by a tacho meter which is mounted directly on the shaft. The tacho has a
range of 0 to 2500 rpm which is enough considering the nominal number of
revolutions of the shaft of the motor. To control the angular speed of the motor shaft,
and thus the belt speed, an SPC, type Hitachi J100-015 HFT, supplies the motor with
variable voltage and frequency. Seven different belt speeds have been used during the
experiments: 0.0, 2.0, 4.0, 6.0, 8.0, 10.0 and 12.0 m/s.

Both idler rolls are provided with a digital incremental shaft encoder type
Tekel TKW 6162 3600. These encoders give a discrete time series of the mechanical
position of the idler roll shaft for direct display and processing. The encoder has 3600

increments per revolution which implies that an angular displacement of 0.1" can be
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detected. The purpose of the encoders is to find out whether or not they can be used
to detect severe transverse belt displacements. Assume that the start position for both
encoders is the same. If the transverse displacement of the stationary moving belt
between the idler rolls is small then the difference of the output signals of the
encoders is small. If the transverse displacement is large then this difference is
significant. The output from the encoders can also be used to determine the (local)
belt speed.

9.2.5 Signal processing

During an experiment five analogue signals come available: the transverse
displacement of the belt, the belt speed, the drive force and the angles of the two idler
roll axes. The two signals of the incremental encoders are collected in a collector box
which subtracts both signals and raises the difference with an offset value. The
remaining four cables carrying the signals are collected in a cable collector which is
directly connected to a personal computer. A trigger, which activates the PC to record
the signals and which has a sample frequency of 200 Hz, is mounied in the cable
collector. Also an amplifier and a filter, which are used to transform the ADM signal,
are mounted in the cable collector. The software program SPEEDCON [Wit, 1995] is
used to process the signals. The FFT procedure of the software package Matlab® is
used to find the frequency spectrum of the displacement signal.

9.3 Experimental program

In this paragraph the experiments are discussed. Also the relevant properties of the
conveyor belts which have been used are given.

9.3.1 Experimental data

Prior to an experiment the idler spacing, belt tension and belt speed have been
adjusted. The transverse displacements of a stationary moving belt have been
measured at seven different speeds, three different idler spacings and four different
pre-tensions which yields 84 combinations. For each parameter combination two
experiments have been performed; one with and one without excitation by the
tensioning mass. Therefore 168 experiments have been performed for each conveyor
belt. Since four different belts have been used, 672 experiments have been carried out
altogether. During a series of 7 experiments the pre-tension and idler spacing were
kept constant and the belt speed was decreased from 12 m/s to 0 m/s. To enable the
accurate determination of the frequency of transverse vibration, the transverse
displacement of the belt has been measured during 10 seconds for an experiment with
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excitation and 30 seconds for an experiment without excitation. From an experiment
the following data are obtained:

o aqverage belt speed, which is directly obtained from the signal of the tachometer.

e average drive force, which is obtained from the signal of the dynamometer. From
the experiments it follows that after a series of 7 experiments a residual drive force
remained in the belt which was caused by the break away friction of the bearings of
the idlers and pulleys. This residual drive force is subtracted from drive forces
measured during the other 6 experiments [Wit, 1995].

e average belt sag, which is the average transverse displacement of the belt measured
during an experiment without excitation. From the experiments it follows that the
belt sag ratio could be accurately predicted by equation (3.14). However, for small
idler distances or high pre-tensions the natural curve of the belt, caused by the
manufacturing and by differences in upper and lower belt cover thicknesses,
significantly influences the measured belt sag which results in significant
differences between the measured and calculated belt sag.

e standard deviation of the transverse displacement, which is calculated, for the
experiments without excitation only, to get an idea of the average amplitude of
vibration. Since the transverse displacement of the supported belt part is about
sinusoidal, the amplitude of transverse vibration can be estimated by multiplication
of the standard deviation by a factor~/2 . The average amplitude of vibration could
also have been determined directly from the measured transverse displacement
signal. However, due to noise in the signal this results in an overestimation of the
amplitude. The differences of the standard deviations found during the experiments
without excitation is significant. This is due to the low level random excitation of
the vibrations and to direct excitation of the transverse displacement by passage of
the belt splice.

o minimum and maximum transverse displacement, which is analysed, for the
experiments with excitation only, to check the amplitude of vibration.

e damping factor, which is calculated for the experiments with excitation only from
the decrease of the amplitude of vibration.

e frequency spectrum of transverse vibration, which is calculated with use of the FFT
procedure. The spectrum is obtained from the signals with excitation which yields
the most accurate results.

o idler spacing, which is adjusted prior to an experiment.

e pre-tension, which is also adjusted prior to an experiment.

The data obtained from the experiments are listed in Appendix B.
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9.3.2 Installed conveyor belts

For the experiments four different EP belts, as indicated in the Tables 9.2 and 9.3,
have been used. The conveyor belt sizes and parameters given in Table 9.3 are
provided by the conveyor belt manufacturers. More information can be found in
Appendix D. The belts all had a width of 200 mm.

EP 120/1 | Fabreeka Bandtransport B.V. 11-11 PVC
EP 200/2 | Dunlop Enerka B.V. SL 200/2 RA rubber
EP 240/2 | Fabreeka Bandtransport B.V. 21-18 PVC
EP 360/3 | Fabreeka Bandtransport B.V. 31-11 PVC

Table 9.2: Conveyor belt description.

1.80 0.409 1.681 0.041
5.59 1.297 2.616 0.822
4.45 1.063 1.682 0.278
4.24 0.964 1.815 0.272

Table 9.3: Conveyor belt sizes and parameters.

9.4 Results of the experiments

In this section the results of the experiments described in Section 9.3 are discussed.
The main objective of the experiments is to evaluate the analytic approximations as
given in Chapter 4 for the first natural frequency of transverse vibration of an axially
moving belt.

Three analytical approximations are used. The linear speed independent
frequency of a string, f, see also equation (4.50), the linear speed dependent
frequency, f,,;, taking into account the bending stiffness and neglecting the coriolis
term, see also equation (4.65), and the non-linear frequency according o Korde
(1985) flk, see also equation (4.105):

1 T
fo =" |— 9.14
ssl 2 L pA ( a)

(1-pY T = mE
f = — 9.14b
et \/ 412 pA 4L'pA ( )
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Besides the analytical approximations, a discrete approximation of the non
linear frequency of an axially moving belt according to Thurman and Mote (1969),
f,, is used. For this purpose a computer program developed by Serckx (1995) and
based on the finite difference method is used. In the solution process, terms up to the
order O(uz), where p is a small perturbation parameter used in Section 4.2.4, are
taken into account. Serckx (1995) performed 13 experiments to verify his numerical
model. Although his results are not discussed in detail in this chapter, they are taken
into account when drawing conclusions at the end of this paragraph.

The total number of experiments was 672. To limit the number of calculations
required to determine the non-linear frequency according to Thurman and Mote
(1969), only combinations of the lowest or highest pre-tension and the smallest or
largest idler spacing are considered for four different belt speeds. This results in 16
combinations for each conveyor belt and 64 in total. The experimentally obtained
frequencies and the frequencies obtained from the three analytical and the discrete
approximations for these combinations, are given in Appendix C. These frequencies
are also shown in the Figures 9.8-9.11 as a function of the dimensionless speed ratio
B. These figures show the linear speed independent frequency (dashdot line), the
linear speed dependent frequency (solid line), the non linear frequency according to
Thurman and Mote (dashed line), and the non linear frequency according to Korde
(dotted line) as a function of the speed ratio . The frequencies obtained from the
experiments are indicated by circles. The amplitudes of transverse vibration used to
calculate the non-linear frequencies are obtained from the experimental data.

15 2
L=0.8 m
L=16m
5
F,=189.27 N F,=5658.35 N
EP 120/ EP 120/1
o . . 0 X . .
1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 0.1 0.2 0.3 0.4 05
B B
Figure 9.8a Figure 9.8b
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To be able to evaluate the approximations for the frequency of transverse vibration,
the basic assumptions of these approximations have to be considered. Three
assumptions are relevant for this chapter:

1.

In all cases terms of the order O(V/L)Z, and O(u/L)=O(v/L)2 are neglected with
respect to unity.

. In the application of the perturbation method terms of O(p3) are neglected where

the small parameter u=P’a’> where P’ =E,A/T, and a the dimensionless
amplitude of vibration.

. Korde (1985) neglects the non-linear coupling between the transverse and the axial

motion of the belt.

From the experiments the following conclusions can be drawn:

1.

The dimenionless amplitude a is equal to the maximum transverse displacement v
divided by the idler spacing L. During an experiment without excitation, this
amplitude was not constant just as in the introductory experiment, see also Figure
9.1. In that case the average amplitude was approximated by the standard deviation

of the amplitudes multiplied by+/2 . Also during an experiment with excitation, the
amplitude was not constant. However, it turned out that after a few vibrations the
amplitude reduced to about one third of the amplitude of the first vibration of the
belt. The signal with reduced amplitudes was used to determine the frequency of
transverse vibration. That reduced amplitude was also used to calculate the non-
linear frequency according to Thurman and Mote (1969) and according to Korde
(1985). The amplitudes of the different experiments were comparable. The average
amplitude a is about 1.5 107 whereas the maximum amplitude is 5 10”. Therefore
the terms O(v/L)? and O(u/L) may indeed be neglected with respect to unity.

. As can be seen in the figures 9.8-9.11, the linear speed independent approximation

(dashdot lines) overestimates the frequency whereas the linear speed dependent
approximation (solid lines) underestimates the frequency. The trends of both
nonlinear approximations follow the trend of the frequency versus B as obtained
from the experiments. The nonlinear frequencies are mostly slightly lower than the
experimentally obtained frequencies. This result could be observed during all the
experiments.

. The influence of the bending stiffness of the belt on the frequency of transverse

vibration is small in most cases. The maximum error made by neglecting the
bending stiffness is 1.5 % in case of belt EP 200/2; the minimum error is 0.2 % in
case of belt EP 120/1.

. During the experiments the maximum value of the parameter p~0.25. The

nonlinear analytical approximations of the (small amplitude) frequency of
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transverse vibration of an axially moving belt deviates maximal = 2.5 % from the
frequency obtained from the experiments for 1 <0.1 and $<0.9. For un>0.1 (and
B<0.9), this deviation is maximal 10 %. This is confirmed by the experiments of
Serckx (1995). These deviations are partly caused by errors in measuring. Wit
(1995) found that even after measuring in threefold the relative error is still about
2.5%. The small deviations are mainly caused by the assumption that (1) the belt
behaves like an axially moving uniform string or beam and that (2) the belt is
simply supported by the idler rolls. Due to the non-homogenous belt material and
the imperfections in the belt caused by the production process, which can cause a
non-homogenous. stress distribution, the belt’s behaviour can differ significantly
from the behaviour of a homogeneous and uniform string or beam. The assumption
of a simply supported belt includes that both belt ends can rotate freely but not
move in the axial direction. In the test-facility, however, the motion of the
supported belt part is constrained by the motion of the idler rolls which is governed
by the friction in the bearings and its inertia. This results in under-estimation of the
frequencies. Large deviations are caused by (3) taking only terms of O(u) and
O(uz) into account. Deviation due to the third approximation occurs when p>0.10
and for large values of B. In that case also terms of order O(u*) should be taken
into account.

. The contribution of the non-linear terms in the equation of motion of an axially
moving belt significantly increases as the belt speed increases. As already stated by
Thurman and Mote (1969), the results of a linear approximation are poor for
B>0.3. This is confirmed by the experiments where the perturbation parameter
u<0.15 and the static belt sag smaller than the amplitude of vibration. In case of
> 0.3 the linear frequency deviates from the non-linear frequency by a percentage
between 10 and 75 % depending on the magnitude of p.

. To estimate the natural frequency of transverse vibration of an axially moving belt
the approximation of Korde (1985) is useful. Under normal operational
circumstances (L<0.05 and B<0.5) the maximum deviation from the measured
frequency is £ 5%. During the experiments of Serckx (1995) the parameter
1u>0.05. His results confirm that in this case the approximation according to
Korde (1985) overestimates the frequency where the approximation according to
Thurman and Mote (1985) yields accurate results.

. During the experiments only flat belts have been used. However, also the
frequencies of transverse vibration of a troughed belt can be determined from its
transverse displacement signal. The frequencies of transverse vibration of the
troughed belt mentioned in Section 9.1 are above 100 Hz [Wit, 1995].
Determination of these frequencies requires a sample frequency of at least 200 Hz.
Since the sample frequency of the ADM used during the experiments was only 60
Hz these frequencies could not be detected.
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8. In order to obtain accurately values for the lowest frequency of transverse vibration
from the transverse displacement of a belt, a measurement of at least 10 seconds
was required during the experiments. Therefore, the belt tension could only be
calculated from this frequency for a stationary moving belt. Determination of the
belt tension during non-stationary operation is not possible.

9. Due to dominant noise in the signal, the frequency of transverse vibration of the
considered belt span could not be determined from the signals of the digital
incremental shaft encoders.

9.5 Application of the experimental results

In the experiments described in this chapter the frequency of transverse vibration of
an axially moving belt was obtained from the measured transverse displacements of
the belt to evaluate three analytic approximations and one discrete approximation of
that frequency. It turned out that transverse vibrations of a belt span supported by two
idlers without special excitation are noticeable under all operational circumstances.

The nature of these excitations is often rather random which results in
considerable vibration amplitude fluctuations. The transverse displacement of a belt
span is excited by the periodic passage of the belt splice and by the rotation of the
supporting idlers. In the frequency spectrum, which is obtained from the measured
displacement signal after transformation from the time to the frequency domain, at
least three peaks are noticeable. These peaks indicate the frequency of passage of the
belt splice, the first natural frequency of transverse vibration of the belt and the
frequency of excitation of the idlers. Normally the spectral density at the first natural
frequency of transverse vibration of the belt is far larger than the spectral densities at
the other frequencies. However, due to the random character of the excitation, this
speciral density varies and can sometimes be smaller at the first natural frequency than
the spectral densities at other frequencies. This implies that the frequency of
transverse vibration of the belt can not always automatically be found from the results
of one experiment by searching for the frequency with the largest spectral density.

The relation between the belt tension and the frequency of transverse vibration
can be used to design resonance free belt supports, to monitor the maintenance
condition of belt conveyor components other than the belt and to monitor the
conveyor belt to determine belt damage.

In the introduction to this chapter an example is given of the three frequencies
that can be determined from the transverse displacement signal of an axially moving
belt. Resonance phenomena may be expected when the excitation frequency of an
idler roll, or a multiple of this frequency, approaches the lowest natural frequency of
transverse vibration of the belt. In equation (9.4) three conditions are given that
constrain the idler spacing to prevent resonance. From Section 9.4 it follows that the
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Korde (1985) approximation can be used to determine accurately the frequency of
small amplitude transverse vibration. Resonance free support is ensured if a safety
margin of + 10 % is held. The idler spacing is then subjected to the following
condition:

k “_Dr_ —R2 @r_ —B?
fi2ff = L<0.9 3 1-B°or LZl.l2l3 1-B (9.15)

This equation can be used to define idler spacing zones in which resonance
phenomena may be expected and that should therefore be prevented. This is illustrated
in Figure 9.12 where six lines, based on this equation, are drawn. These lines bound
the potential resonance zones for the conveyor described in Section 9.1. The three
zones, indicated by numbers 1, 2 and 3, hold for three different idler diameters. The
lines that bound the resonance zones for multiples of the idler frequency, and which
are not drawn, lay between the indicated zones and the axes. The combination of the
idler spacing and belt speed used in the introductory experiment is indicated by a
cross mark. From this figure it can be concluded that during stationary operation no
resonance is to be expected from the idler/belt span interaction.

The determination of the maintenance condition of belt conveyor components
can be illustrated by inspection of the idlers. Idler wear expresses itself in idler cover
wear and an increase of the motion resistance of the idler as a result of bearing wear.
The idler frequency, see equation (9.1), can be determined very accurately from the
transverse displacement signal of the belt. If the cover of the idler mentioned in
section 9.1 réduces 2 mm then the idler frequency increases with 4 % from 10.53 Hz
to 10.93 Hz. This increase can easily be detected. By determination of the belt tension
for adjacent belt parts using the tension/frequency relation the motion resistance of
each idler set can be determined. Although the accuracy in this case is lower than the
accuracy of the cover wear determination, it gives a clear indication which idlers
should be replaced to decrease the total motion resistance of the belt. This procedure
is only reliable if the vertical belt load is exactly known to determine the belt tension
accurately. Since the bulk material loading degree is normally not constant, this
procedure can not be used for a loaded belt.

Conveyor belt damage can be determined by considering the spectral density
of for example the frequency of belt splice passage. If a belt splice is damaged then
the spectral density at the frequency of splice passage will increase compared to the
spectral densities of other frequencies. Ageing can affect the material parameters of
the belt which affect its bending stiffness. Since the influence of the bending stiffness
is hardly noticeable in the frequency of transverse vibration, it is not possible to detect
ageing of the belt.
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Figure 9.12: Calculated resonance zones for different idler diameters D. Cross indicates belt speed and
idler space during introductory experiment.
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Design aspects, conclusions
and recommendations

distinguish between the stationary and the non-stationary operation of a system.

During stationary operation the dynamic behaviour of a belt system is mainly
controlled by the interaction between the belt and the belt supports, and by the
interaction between the belt and the belt tensioner. During non-stationary operation it
is mainly controlled by the starting and stopping procedures, which are specified by
velocity profiles and duration of the procedures, and by the velocity of the
longitudinal wave propagation through the belt.

To describe mathematically the dynamics of belt systems, it is useful to

10.1 Stationary operation

During stationary operation all belt spans supported by two idlers vibrate transversely
in a natural frequency due to low level random excitation and usually the amplitudes
remain small. The amplitude increases considerably when a belt span is excited in the
first resonance frequency. This excitation can be direct, caused by idler roll
eccentricity or passage of belt splices over a supporting idler, or parametrical, caused
by belt tension variation due to tensioner vibration or passage of belt splices over
pulleys. To prevent that the belt speed approaches the critical speed, the belt tension
should be high enough to ensure that the longitudinal velocity of transverse waves is
much higher than the maximum belt speed. During stationary operation of belt
conveyor systems this condition is normally fulfilled. If the dynamic behaviour of one
belt span is of interest and the source, frequency and amplitude of excitation are
known in advance, then it is often sufficient to consider that span isolated from the
rest of the .system to analyse the response to the excitation. However, in belt systems
that contain many belt spans, like long belt conveyor systems, the interaction between
adjacent spans and especially the interaction between longitudinal and transverse belt
vibrations is important. In that case a global analysis should be considered.
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10.2 Non-stationary operation

To analyse the dynamic behaviour of a belt system during non-stationary operation,
the entire belt system should be considered and not just one belt segment. The starting
and stopping procedure, which are not standardised, should be chosen in such a way
that the transient belt tension does not exceed the maximum belt tension, prescribed
by design standards, and that the performance of the belt system during starting and
stopping is acceptable.

The transient belt tension during start-up is determined by the start couple of
the drive system, the inertia and acceleration of the belt, the reflection and
interference of stress waves, and the damping in the belt system.

The damping in the belt system is determined by the selected belt and its
supports and can hardly be influenced since the choice of a belt is determined by its
application and price.

Stress waves can reflect against pulleys. In case of a pulley that can only
rotate, wave reflection occurs when the rotation of the pulley is constrained by for
example the motion of components connected to that pulley like in case of a drive
pulley. In case of a pulley that can both rotate and move laterally, wave reflection
does always occur except when the rotation of the pulley is free and the lateral motion
is constrained as for example in the belt tensioner. In case of a screw tensioner, which
is used to pre-tension the belt, stress waves never reflect since the tension pulley can
rotate freely and can not move laterally. However, most belt systems are fitted with a
winch or weight tensioner to maintain a minimum belt tension. In that case the tension
pulley can rotate and move laterally which causes reflection of stress waves. If
reflection yields unacceptable stress levels then the lateral motion of the tension pulley
should be prevented or constrained during start-up.

The influence of stress waves on the total belt tension is significant in case of a
high start couple or a step-wise increased drive couple. To minimise the influence of
travelling stress waves, the belt tension should be increased slowly and continuously.
The initial value of the start-up drive force should be such that it just exceeds the total
break-away resistance force.

By far the most important parameter which influences the transient belt tension
is the acceleration of the (loaded) belt. The maximum allowable acceleration force is
limited by the belt tension during stationary operation and the ratio between the safety
factors on the tension in a moving belt during stationary operation and non-stationary
operation. Given the inertia of the (loaded) belt this prescribes the maximum belt
acceleration which is governed by the velocity profile and duration of the start-up
procedure. From this point of view it is recommended to choose a constant belt
acceleration, and thus a linearly increasing belt velocity, which will minimise the
start-up time as has been explained in Chapter 8. A linearly increasing belt velocity
requires a controlled start-up. In this thesis only the dynamic behaviour of static
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power converter (SPC), velocity controlled start-ups have been analysed by simulation
using the simulation software system TUDBELT. However, a linearly increasing
local belt velocity can also be achieved by the application of a controlled fluid
coupling or a controlled start transmission (CST). Since the belt speed turned out to
increase linearly with the (electrical) supply frequency of the SPC, a control algorithm
has not been designed. However, the application of a fluid coupling or a CST
requires a control algorithm to ensure a linear speed increase. To test this algorithm, a
simulation software system like TUDBELT is necessary. To prevent peak loads on
the belt, the control algorithm should ensure a constant acceleration instead of forcing
the belt speed to follow a predetermined velocity profile as has been explained in
Chapter 6.

The performance of a belt system is acceptable if the belt is always in tension,
if it remains on the supports and, in case of belt conveyors, the bulk solid material
remains on the belt. It is desirable that the amplitudes of transverse vibration of the
belt segments are small to reduce the energy consumption of the system, and that the
displacement of the belt tensioner during non-stationary operation is small to minimise
its size. Although the dynamics of a belt system can only be analysed by simulation of
the dynamic behaviour of the entire system, it is sufficient to analyse only those
sections in detail where operational problems like a lift off of the belt from the
supports can be expected to determine whether or not the operational behaviour of the
system is acceptable.

10.3 Calculation methods

In this thesis a number of approximation methods to analyse the dynamics of belt
systems have been discussed. Some of these methods are relatively simple and can for
example be used to find out whether or not resonance phenomena may be expected, as
discussed in the Chapters 4 and 9, or to estimate the belt tension during non-stationary
operation, as discussed in Chapter 8. Other methods, like those discussed in the
Chapters 5-7, are relatively complex and enable the analysis of the dynamics of entire
belt systems. It is important for an engineer in the design stage of a belt system, to
use those methods that provide relevant and sufficient information. In general it can
be said that complex methods are applied in case of belt systems which require a
precise knowledge of the belt motion, for example in case of digital audio and video
systems, or the belt tension, for example in case of belt systems with expensive
tension carrying members like long belt conveyor systems.

In Chapter 4 the equations of motion of a stationary moving belt span have
been derived. Depending on the amplitude of transverse vibration, either the simple
linear solution or the more complex nonlinear solution of these equations can be used
to determine the motion of the belt.
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From experiments, described in Chapter 9, it was found that the frequency of
transverse vibration of a stationary moving belt span can accurately be obtained by a
perturbation method taking terms of O(u) and O(1*) into account, where u is the ratio
of the square of the dimensionless amplitude of vibration and the initial strain which is
used as a small perturbation parameter. The nonlinear analytical approximation of the
frequency deviates maximal £ 2.5 % from the frequency obtained from the
experiments for ©<0.1 and B<0.9, where B is the ratio between the belt speed and
the longitudinal velocity of transverse waves. For 0.1 <p<0.25, this deviation is
maximal 10 % depending on the magnitude of B. In that case also terms of order
O(u3) should be taken into account. The contribution of the non-linear terms in the
equation of motion significantly increases when the belt speed increases. In case of for
example u=0.15 and B>0.3, the minimum deviation of the linear frequency from the
non-linear frequency is 10 %. However, the same accuracy can be reached in case of
smaller values of  and larger values of p, for example p=0.22 and f=0.1. Under
normal operational circumstances, where 1 <0.05 and <0.5, the approximation of
Korde, neglecting the coupling between transverse and axial displacements, can be
used to estimate the frequency of transverse vibration of an axially moving conveyor
belt. In that case the maximum deviation from the measured frequency is +5%.

The response to direct excitation by the idlers can be determined through
prescription of the time-dependent motion of the belt on the supports, whereas the
response to parametric excitation can be determined approximately through
prescription of the time-dependent pre-tension of the belt.

In Chapter 8 four methods have been used to analyse the dynamic behaviour of
the belt, in particular to calculate the belt tension, during start-up.

In the first method, discussed in Section 8.5, the belt is assumed to be
inextensible and the stationary belt tension is obtained by calculating the required
stationary drive and tensioning force with a design standard. To approximate the
transient belt tension, the stationary belt tension is multiplied by a factor that estimates
the ratio between the start-up couple and the stationary couple of the drive system.
However, this factor is only a rough approximation of the real ratio between the
maximum drive couple during start-up and the stationary drive couple. The
acceleration of the belt can be calculated from the constant transient belt tension and
the constant total mass of the belt conveyor system. With this (constant) acceleration
and the stationary belt speed, the start-up time can be calculated. Application of this
procedure leads to overestimation of the start-up time since the real belt is elastic and
the transient belt tension is not constant.

In the second method, also discussed in Section 8.5, the belt is still assumed
to be inextensible. However, the real drive characteristics, as has been discussed in
Chapter 6, are taken into account by application of a model where the drive system is
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modelled correctly and where the belt is modelled by a flywheel which accounts for
the inertia but not for the elasticity of the (loaded) belt, see also the equations (6.13)
and (6.55). Based on the results obtained from the simulations using the third method,
it can be concluded that application of this method to analyse a direct start-up results
in overestimation of both the maximum belt tension and the start-up time. It is
therefore not recommended to use this method since it does not yield more accurate
results of a start-up than the previous method.

In the third method, as discussed in Section 8.6, belt elements as discussed in
Chapter 7, which model the axial elastic response of the belt to general excitation, are
introduced. To obtain accurate results from calculations with this model, a precise
description of the motion resistances is required as has been discussed in Chapter 5.
The most accurate model is achieved when finite elements that model both the axial
and transverse elastic response of the belt are applied. From the simulations,
described in Chapter 8, it was found that the application of nonlinear truss elements to
model a belt segment enables an accurate calculation of the average axial strain and
the average belt sag in that segment. The application of beam elements and of special
idler supported beam elements to model a specific belt span supported by two idlers,
enable the accurate calculation of the axial strain and the belt sag in that span.

The fourth method, discussed in Section 8.6.3, is used to approximate the
minimum safety factor on the belt tension during start-up. Application of the start-up
time, calculated with this method in case of a start-up procedure with constant
acceleration of the considered 1 km long horizontal belt conveyor system, results in a
smooth start-up.

10.4 Belt parameters

The belt parameters that govern the dynamic behaviour include the density of the belt
material, Young’s modulus, the flexural rigidity and the visco-elastic properties of the
cover material.

The velocity of longitudinal waves is determined by Young’s modulus and the
density of the belt material. To reduce the influence of longitudinal waves on the
dynamic behaviour of a belt system, the propagation speed should be as high as
possible which can be achieved by application of a belt with a high stiffness, a low
specific mass of the cover material and a low specific mass per unit strength of the
carcass material. A high stiffness of a belt also reduces the size of the belt tensioner
whereas a low specific mass reduces the motion resistances, in particular that of the
unloaded return part.

To further reduce the motion resistances, in particular the indentation rolling
resistance, the cover material of the selected belt should have a low loss factor.
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In case of long belt conveyor systems, conveyor belts are selected not only on
a low energy consumption of the belt, governed by the visco-elastic properties of the
belt cover and the specific mass of the belt material, but on the splice efficiency as
well.

10.5 Conclusions on the developed software system

Based on the experiences with the simplified methods to analyse the dynamics of belt
systems and with the software system TUDBELT | the following conclusions can be
drawn:

1. Complex finite element models, like used in TUDBELT, are most suitable to
analyse accurately the non-linear dynamics of belt systems since they provide a
flexibility that models based on other methods do not provide.

2. Belt segments can be modelled by truss or by beam elements. If an accurate
calculation of the average axial strain and the average belt sag in a belt segment is
required then the application of truss elements suffices. If an accurate calculation of
the axial strain and the belt sag in a specific belt span supported by two idlers is
required then the application of beam elements is necessary. The application of
beam elements has three consequences that considerably increase the calculation
time. Firstly, it requires the application of idler supported beam elements. This
implies that on every time-step the model has to be reviewed to check whether or
not a beam element leaves or enters the considered supported belt span and whether
or not the belt is lifted off of the idlers. If that happens then the simulation is
terminated and restarted with a rebuilt model. Secondly, application of beam
elements decreases the step-size of the calculation process when an explicit routine
is used for integration, due to the high natural frequencies of transverse vibration
of beam elements, compared to the step-size of calculations with a model that
consists only of truss elements. Thirdly, with the application of beam elements the
number of degrees of freedom increases considerably and thus the size of all
matrices and vectors. Therefore, beam elements should only locally be applied.

3. Although it is very useful to include a model of the complete drive system in the
model of a belt system, the drive system should be modelled carefully to ensure
that the calculation process is not unnecessarily slowed down due to high natural
frequencies of drive system components.

4. The handling of the constraints, which describe for example the support of the belt
by idler rolls or the coupling between different components of the drive system, by
application of special finite elements with zero prescribed deformation parameters
is very effective. Firstly, the description of those deformation parameters is close
to the physical interpretation of the real belt support or coupling between
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components. Secondly, since all the boundary conditions are handled in the same
way, they can be fulfilled by one effective routine.

. The greatest advantage of application of TUDBELT to analyse the non-linear
dynamics of a belt system is that it enables an accurate determination of the
influence of the different parameters on the dynamic behaviour of an entire system
by parameter variation. This considerably enlarges the insight of the influence of
the different parameters on the dynamic behaviour of that system.

. The required belt strength can be calculated using either the stationary belt tension
or the non-stationary belt tension multiplied by their respective safety factors. Since
the non-stationary operation of a belt conveyor system can be influenced by the
choice of the start-up of stopping procedure, it should be realised that a reduction
of the required belt strength, and thus a reduction of the investment, can only be
achieved if the non-stationary belt tension and the corresponding safety factor are
used to calculate the minimum required belt strength. Application of any complex
(time-consuming) method to determine the belt tension during non-stationary
operation is therefore only profitable if the safety factor on the non-stationary belt
tension may be used tc select the minimum belt strength. If the stationary belt
tension and corresponding safety factor are used to select the minimum belt
strength then a simplified method suffices to estimate the belt tension during non-
stationary operation.

. The complexity of a software system increases until it exceeds the capacity of the
programmer who maintains it. Therefore it is essential to simplify the storage
structure of the model and calculation parameters. In TUDBELT, the object-
oriented structure ensures that this storage structure is efficient, easyly accessible
and well maintainable. An important drawback of the object-oriented structure is
that it slows down the calculation process due to the overhead of the three
decomposition structures.

. The accuracy of the simulations with a software system like TUDBELT depends
on the accuracy of the required model parameters like the friction coefficients and
the visco-elastic properties of the belt. It is therefore essential to perform detail
experiments to determine those parameters.

10.6 Recommendations on model development

Based on the experiences with TUDBELT and the results of the simulations, the
following recommendations are made:

1. To optimise the calculation process, it is useful to determine the influence of

decoupling the storage of the calculation parameters from the remainder of the
storage structure on the calculation speed. Coupling of the three decomposition
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structures of the object-oriented structure decreases the calculation speed due to the
accompanying overhead. It may be expected that decoupling will increase the
calculation speed. Unfortunately it will also increase the effort required for
rebuilding the model after a change in the boundary conditions.

2. For the simulation described in Section 8.6.3, a model has been built of a belt
conveyor system where the belt was modelled by truss elements and beam elements
(model 3 of Section 8.3). However, it may be more time-efficient to analyse first
the global non-linear dynamic behaviour of the belt conveyor system and to use the
results of this analysis to determine the local non-linear dynamic behaviour of idler
supported belt spans. This requires a further development of TUDBELT.

3. The model of the indentation rolling resistance as described in Section 5.1 accounts
only for the belt cover material. To be able to distinguish between belts with
different carcass materials, the influence of the carcass on the indentation rolling
resistance should be determined.

4. For the further improvement of the finite element model of belt conveyor systems
in TUDBELT it is recommended, provided that it will not result in excessive long
calculation times, that the following options are (locally) included:

1. the influence of the trough shape on the dynamic behaviour of the belt by
application of plate elements instead of beam elements to model the belt.
Hereby the influence of the deformation of the cross sectional area of the
belt during passage of an idler on the motion resistance can be included.

2. a model of the rolling resistance of pipe belts and cable belts.

3. a description of the motion resistances of air supported and cable supported
belts.

4. a separate model of the bulk solid material on the belt by application of
special finite elements. This will enable the determination of the motion of
the bulk material on the belt, in particular the coupling between the axial
motion of the belt and the bulk material during non-stationary operation and
in the feed chute, and also enables the determination of the influence of the
deformation of the cross sectional area of the bulk material during passage
of an idler on the motion resistance.

5. the description of the drive/contact phenomena between drive pulley and
belt. This will for example enable the analysis of the performance of multi-
drive systems.

6. a feedback control algorithm to control the start-up and stopping of belt
systems driven by systems including a CST or fluid coupling.
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Distribution of the belt and bulk
mass

The motion resistances depend mainly on the idler loads, caused by the gravity
load of the belt and bulk material, and the distribution of these loads over the
rolls of an idler station.
. v The total idler load caused by the
. B weight of the conveyor belt can be
., Al calculated by multiplying the idler
S b ' ’ spacing L and the specific mass of
| the belt material accounting for the

i belt sag:

, 8
Frg pen = Myt 8 L[l +§K:)
D s (A @b
N Qlﬂ: R [ﬁm‘m”ﬂﬂh where the specific mass is equal to:

oo Mm
‘L“—IM——JK {[\”H My, =B dypyy (A.2)

Figure A.1: Geometry of a three-roll idler station.

and the factor (1+§Kf} accounts

for the (static) belt sag assuming the bending stiffness to be small. The forces normal
to the left, middle and right roll of a three-roll idler station, as shown in Figure A.1,
denoted by subscript L, M and R, are:

1
FNG,belLL = ELCOS(QI +e) F’I'Gvbcll (A'3a)

)
Fuo et = EMCOSG Fr6 peic (A.3b)
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|
FuG.berw = ERCOS(O(Z - 9) Fr6 petc (A.30)

where 1, Iy and Iy are the widths of the belt parts supported by the indicated rolls, B
the total belt width, 8 the super-elevation angle of the idler station, and o, and o, the
trough angles.

The calculation of the idler load caused by the weight of the bulk material is
more complicated. The cross sectional area of the bulk material can be calculated
from the capacity C [kg.s’l]:

C
ViPoux

A = (A.4)

Starting from a known belt speed V, the capacity of a belt conveyor is limited by the
maximum of the cross sectional area of the bulk material on the belt. This maximum
is prescribed by standards like DIN 22101. For a three-roll idler station this standard
maximises the bulk solid width on the belt tob=0.9B—0.05 [m]. Accounting for
this maximum width and with use of Figure A.1 the following maximum cross
sectional area can be obtained for a symmetrical idler station (o, =a, =, b.=b;=b,,
0=0):

sin(ot + 2
———( @) +l~’vitan(p0 (A.5)
cosQ, 4

Apuiemas = (L +b,cosa)b,
where ¢, is the so-called angle of surcharge of the bulk material; it is the angle
between the horizontal and the surface of the material while it is at rest on a moving
belt conveyor. For the capacity of profiled conveyor belts see for example Lodewijks
(1995). With the bulk solid area (A.5) the maximum idler load due to the mass of the
bulk solid material is:

Fro pux = Mpux 8 L (A.6)

where the specific mass of the bulk material is:

My = A puPouk (A.7)

The distribution of this force over the three rolls of 'the idler station depends not only

on the geometry of the idler station but also on the bulk material mechanics as well.
During the passage of an idler station the cross sectional area of the bulk solid
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material is deformed and relaxed. Due to this deformation/retaxation behaviour of the
bulk material extra forces are exerted on the rolls. Krause and Hettler (1974) derived
expressions for the total bulk material forces normal to the idler rolls assuming that:

1. one idler supports a bulk solid material segment of length L/2 ahead of the idler
which is relaxing and a segment of length L/2 in front of the idler which is
deforming.

2. the bulk solid material is cohesionless and granular

3. the deformation and relaxation of the bulk material cause internal shear

4. the cross sectional area of the bulk material is symmetrical

The force normal to the left, middle and right roll are according to Krause and Hettler
(1974):

1 2
Fao purt. = Fg pue = Zg Poux L D} (7‘0 + }\‘c) COSP,,

AT N (L Rt e
A ) buk& Uz _()Lc + )‘,o)sin(pwsinq - (7% + xo)ubrcoswwsina
(A.8)
where
A = sin(cx +(P) (A 98.)
N sin(g,, +@)sin(@ - ¢,) '
Jsin(e —@,) + sin(oL 4.
0
A = sin(oc - (P) (A 9b)
¢ @ To) - sin(p,, +@)sin(Q +o,)
v sin(a +¢,)

In the equations (A.8) and (A.9), ¢ is the internal friction angle of the bulk material,
oy, the friction angle between the bulk material and the belt, w,, the friction factor
between the belt and the roll and A, and A, are the bulk solid resistance ratios. The
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equations (A.8) and (A.9) are only valid if ¢,<¢ and o>9, and, in case of relaxation
of the cross sectional area [Krause and Hettler, 1974], for internal shear angles:

0. < am(w] (A.108)
K coso, — cosp
where
A sin(o —
_ yAsin(@-0,) (A.10b)

sin{o + @)

In case of deformation of the cross sectional area, @, should satisfy the inequality:

. i
0. <atan(£w] A.113)
K cose, —cosp

where

B JAsin(a+9,) (A.11b)

- sin(at + @,)

For a non-symmetrical cross sectional area similar expressions can be derived.
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Experimental data

are given. The Tables B.1-B.12 present the data obtained from experiments with
the belts EP 120/1, EP 200/2, EP 240/2 and EP 360/2. In the tables the following
parameters are given:

In this appendix the data obtained from the experiments as discussed in Chapter 9

L the idler spacing [m]

F, the pre-tension force [N]

V,  the belt speed fm.s"]

Fy the drive force [N]

G, the standard deviation of the amplitudes of transverse vibration [m]

3 the belt sag [m]

al the difference between the maximum and minimum vertical
displacement v of the first vibration cycle [m]

(‘; the damping factor [-]

f the measured frequency of transverse vibration [Hz]
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B.1 Experimental data conveyor belt EP 120/1

0.8 189.27

0.8 321.29

0.8 440.20

0.8 §58.35

-

11.99 | 57.69 ]
10.00 | 52.56 | 0.31 1.92

8.00 | 50.38 | 0.30 1.92 33.72 134 | 12.80
6.01 4820 | 0.29 1.86 39.33 2.29 | 12.96
306 | 4444 | 1.25 1.95 39.36 411 | 13.10
2.00 | 4021 | 030 1.96 37.27 2.91 | 13.39
0.00 17.20 | 0.08 2.11 12.89 1.08 | 13.31
12.01 | 49.55 | 0.23 1.52 25.20 231 | 15.68
1001 | 46.13 | 0.25 1.46 19.52 121 | 15.91
3.01 4449 | 0.8 1.48 21.00 1.73 | 16.13
6.00 | 39.21 0.40 1.44 23.61 3.06 | 16.28
4.00 3791 | 0.8 1.38 25.72 1.67 | 16.36
1.99 31.89 | 0.27 1.52 27.91 1.98 | 16.41
0.00 2.03 0.08 1.55 23.13 1.71 | 16.70
12.00 | 67.43 | 0.20 1.34 21.84 1.07 | 18.50
9.99 61.15 | 0.26 1.27 26.30 1.17 | 18.97
8.00 55.55 | 0.30 1.29 35.65 2.44 | 19.25
6.00 5171 | 0.45 1.24 79.63 2.05 | 19.36
3.99 | 49.41 | 0.31 1.20 31.54 3.05 | 19.40
2.00 | 4476 | 0.30 1.24 79.11 2.39 | 19.45

12.00 61.84 0.23 1.04 32.52 1.79 20.69
10.00 58.15 0.28 1.05 28.65 1.63 20.94
8.00 52.69 0.30 1.05 24.02 2.13 21.26
6.00 49.53 Q.35 0.99 29.09 1.51 21.51
4.00 48.48 0.33 0.94 28.21 1.81 21.60
2.00 43.13 0.31 1.04 22.31 1.90 21.73
0.00 0.73 0.08 1.02 18.36 1.44 21.98

Table B.1: Experimental data of belt EP 120/1 with idler spacing L=0.8 m.
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1.2 189.27 6.00 45.14 0.44 3.24 47.45 4.79 8.84

8.00 51.87 0.43 2.90 42.31 4.96 12.71
1.2 440.20 6.00 49.20 0.34 3.01 44.66 2.65 12.77
3.99 44.17 0.62 2.99 41.45 3.21 12.87
2.01 39.04 0.29 3.20 37.95 0.94 12.93
0.00 8.89 0.06 3.34 30.78 3.04 12.66

12.00 46.76 0.26 2.66 38.61 2.12 13.82
10.01 41.85 0.33 2.66 38.82 1.67 13.94
8.00 37.41 0.30 2.63 39.49 2.24 14.06
1.2 558.35 6.00 36.25 0.34 2.60 35.37 1.41 14.15
3.99 31.92 0.38 2.59 36.32 2.93 14.44
2.00 27.49 0.34 2.55 40.28 2.95 14.70
0.00 -11.09 0.05 2.60 36.98 2.40 14.62

Table B.2: Experimental data of belt EP 120/1 with idler spacing L=1.2 m.
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1.6 440.20

1.6 558.35

8.00 50.94 0.34 3.61 54.62 1.80 9.67
6.01 47.53 0.33 3.64 61.22 2.87 9.78
4.00 44.24 0.39 3.60 62.48 2.37 9.81
2.00 38.07 0.34 3.61 61.67 2.65 9.84

12.01 59.21 0.29 2.90 40.99 2.58 10.43
10.00 54.06 0.37 2.92 39.86 2.21 10.64
7.99 49.85 0.33 2.96 39.90 2.41 10.81
6.01 47.62 0.36 2.93 43.01 2.27 10.88
4.01 44.66 0.42 2.97 26.14 4.51 10.94
1.99 38.60 0.35 2.97 52.21 5.44 11.13
0.00 -1.67 0.06 3.17 36.14 1.96 11.04

Table B.3: Experimental data of belt EP 120/1 with idler spacing L=1.6 m.
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B.2 Experimental data conveyor belt EP 200/2

0.8 189.27 6.00 69.45 0.53 . 30.70 3.18 | 7.79

12.00 106.32 0.69 1.00

10.01 99.61 0.36 0.85 2.27

8.00 93.93 0.42 0.83 1.85
0.8 440.20 6.01 89.37 0.79 0.80 1.69

3.99 84.51 0.43 0.69 1.85

2.02 79.15 0.41 0.59 1.84

0.00 10.65 0.07 0.31 1.39

12.01 110.07 0.39 0.58 16.61 2.23 | 11.79
9.99 102.05 0.46 0.45 14.45 1.61 | 12.21

8.00 95.13 0.43 0.49 20.22 1.66 | 12.54
0.8 558.35 5.99 90.87 0.50 0.46 19.48 1.30 | 12.88
3.99 86.17 0.61 0.48 20.52 2.81 | 13.08
2.00 77.74 0.45 0.25 23.01 2.26 | 13.14
0.00 6.42 0.10 0.37 19.23 1.21 | 12.95

Table B.4: Experimental data of belt EP 200/2 with idler spacing L=0.8 m.
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1.2 | 189.27

1.2 | 321.29

1.2 | 440.20

1.2 | 558.35

12.01 94.14 0.45 7.74 19.57 2.79 | 4.48
10.01 88.21 0.85 7.84 23.24 2.63 | 4.68
8.01 83.50 0.88 7.89 24.99 2.84 | 4.99
6.01 80.24 1.35 8.24 30.21 3.09 | 5.16
4.00 78.02 1.24 8.91 30.63 3.71 | 5.41
2.00 71.22 0.72 8.06 32.08 3.08 | 5.51

12.00 115.78 0.50 2.94 22.05 3.10
10.00 111.22 0.45 2.78 28.75 3.46
8.00 105.29 0.65 2.72 42.84 2.15
6.00 101.64 0.44 2.80 19.28 1.28
4.00 1.66 2.74 28.22 1.52
1.99 0.58 32.33 1.56

12.16 0.85

0.37

11.99 116.66 2.03 22.50 1.39 | 7.67
10.00 111.09 0.44 1.95 40.03 2.02 | 7.99
8.01 102.40 0.62 1.93 19.70 1.36 [ 8.23
6.00 96.08 0.43 1.92 22.17 1.43 | 8.44
4.00 92.20 0.63 1.92 20.71 2.28 | 8.65
2.01 84.46 0.51 1.92 22.69 1.45 | 8.73
0.00 11.95 0.10 1.50 16.54 1.06 | 8.72

Table B.5: Experimental data of belt EP 200/2 with idler spacing L=1.2 m.
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1.6 189.27 6.00 71.94 0.74 15.94 24.20 2.95 3.92

1.6 321.29 6.00 71.87 0.75 9.83 23.52 2.09 4.93

1.6 440.20 6.00 89.16 0.79 7.17 18.75 1.21 5.74

12.00 109.67 0.48 5.54 13.27 1.32 5.85
10.01 103.24 1.37 5.52 25.23 1.20 6.06
7.99 97.81 0.61 5.53 11.42 1.91 6.26
1.6 558.35 6.00 91.93 1.73 5.60 15.84 1.00 6.39
4.00 87.70 1.86 5.62 10.42 2.45 6.58
2.00 77.19 2.44 6.09 14.38 1.11 6.64
0.00 -1.65 0.21 6.06 18.65 1.10 6.52

Table B.6: Experimental data of belt EP 200/2 with idler spacing L=1.6 m.
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B.3 Experimental data conveyor belt EP 240/2

0.8 189.27 6.01 91.37 0.89 3.57 48.54 5.99 8.74

8.00 101.72 0.54 2.66 37.43 3.36 10.92

0.8 321.29 6.00 93.33 0.71 2.60 29.77 3.24 11.22
3.99 86.55 0.57 2.73 33.99 3.62 11.50
1.98 73.66 0.44 2.58 32.80 2.03 11.75
0.00 -5.32 0.08 2.95 38.14 2.02 11.31
12.01 126.16 0.30 2.31 35.72 1.83 12.05
10.02 117.93 0.74 2.35 31.12 3.24 12.31
8.01 109.10 0.36 2.27 34.36 1.81 12.61
0.8 440.20 6.00 101.74 0.48 2.25 30.58 3.78 13.08
4.00 97.08 1.06 2.27 35.00 2.61 13.33
2.00 83.69 0.45 2.52 38.64 1.56 13.37
0.00 -3.12 0.07 2.40 42.02 2.77 12.23

13467 | 033 | 208 | 3627 | 32 | 137

12.00

10.00 127.06 0.70 2.03 30.06 1.91 13.98

8.01 118.62 0.38 2.00 32.47 1.40 14.39
0.8 558.35 6.00 110.80 0.36 1.98 27.55 2.28 14.63

4.00 104.41 0.49 1.89 29.81 4.03 14.75

1.99 92.91 0.41 1.93 34.16 4.11 14.79

0.00 0.69 0.09 1.92 31.43 1.32 14.64

Table B.7: Experimental data of belt EP 240/2 with idler spacing L=0.8 m.
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12.00 117.69 0.43 4.96 33.20 4.96 6.75
9.99 108.93 0.45 4.95 38.14 3.31 7.06

7.99 99.95 0.63 5.06 14.62 5.09 | 7.29.
1.2 | 321.29 5.99 93.65 0.56 5.01 4289 | 2.16 | 7.5
4.00 8742 1.76 4.96 40.93 1.36 | 7.62
1.98 74.19 0.69 5.05 54.25 3.66 | 1.74
0.00 3.33 0.09 6.10 51.23 470 | 7.39
11.99 | 149.10 | 0.49 4.46 51.70 3.74 | 8.02
10.00 | 139.44 | 0.69 4.43 51.36 | 3.99 | 8.29
7.99 13111 | 0.68 4.40 55.47 334 | 8.55
1.2 | 440.20 5.99 12520 | 0.48 4.41 5366 | 4.61 | 8.73
3.99 1771 | 0.70 4.45 44.41 18 | 8.84
1.99 103.68 | 0.49 4.29 37.24 1.72 | 9.01
0.00 12.15 0.10 478 4726 118 | 8.65

12.01 144.06 0.62 3.88 37.80 1.36 9.05
10.00 138.05 0.40 3.92 43.40 1.72 9.33
8.01 128.91 0.47 3.99 31.77 3.44 9.48
1.2 558.35 6.01 122.56 0.69 3.99 36.71 1.14 9.75

4.00 116.06 0.45 4.11 36.58 2.56 9.89
1.98 103.15 0.53 3.91 37.99 1.64 10.00
0.00 8.61 0.06 4.18 38.90 1.62 9.65

Table B.8: Experimental data of belt EP 240/2 with idler spacing L=1.2 m.
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1.6

1.6

1.6

1.6

189.27

321.29

440.20

558.35

12.01 133.66 0.76 7.07 29.07 1.85 6.71
10.00 127.30 1.13 7.19 34.33 2.36 6.93
7.99 119.44 0.45 7.09 39.99 2.45 7.11
6.01 111.07 0.67 7.07 38.41 2.61 7.28
3.99 104.59 0.85 7.06 41.15 1.85 7.42
1.96 92.33 1.26 7.15 56.35 1.96 7.46
0.00 6.25 0.07 7.07 28.36 1.78 7.30

Table B.9: Experimental data of belt EP 240/1 with idler spacing L=1.6 m.
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B.4 Experimental data conveyor belt EP 360/3

0.8 189.27 5.99 80.41 0.53 2.99 7.63 0.00 8.83

0.8 321.29 6.01 88.90 1.19 1.72 22.05 2.50 11.54

0.8 440.20 6.00 121.42 0.82 1.19 15.52 1.78 13.33

8.01 . 0.44 0.65 21.98 2.32 14.49
0.8 558.35 6.00 . 0.76 0.83 19.82 4.55 14.89
4.00 . 0.58 0.73 20.32 1.50 15.03
2.00 . 0.37 0.95 26.88 2.53 15.06
0.00 . 0.09 0.79 13.45 1.55 14.89

Table B.10: Experimental data of belt EP 360/1 with idler spacing L=0.8 m.
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1.2 189.27

1.2 321.29

1.2 440.20

1.2 558.35

12.00 128.14 0.39 2.87 4.82 0.00 7.99
10.00 120.77 0.39 2.95 4.52 0.00 8.36
8.02 114.24 0.46 3.00 5.91 0.00 8.56
6.00 113.44 0.60 3.22 5.97 1.70 8.82
4.00 102.46 1.02 3.09 5.98 0.00 8.87
1.98 92.478 0.69 3.02 4.96 2.61 9.20

12.00 140.47 0.61 1.89 4.31 2.24 9.16
10.00 133.22 0.40 1.85 3.79 1.92 9.45
8.02 127.10 0.42 1.94 3.90 1.78 9.68
6.00 118.72 0.68 2.06 5.45 1.76 9.90
3.99 113.69 1.08 2.10 5.40 1.55 10.09
1.99 100.84 0.52 2.03 3.28 1.58 10.17
0.00 10.70 0.12 1.63 4.03 2.99 10.31

Table B.11: Experimental data of belt EP 360/1 with idler spacing L=1.2 m.
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1.6 189.27 5.99 85.21 0.60 13.06 22,94 3.17 4.59

12.00 | 132.68 | 0.0l 5.72 0.84 | 0.88 | 5.95

9.99 129.87 0.59 5.89 9.11 1.71 6.16
7.99 122.24 0.44 5.99 8.00 1.45 6.44
1.6 440.20 5.97 116.58 0.62 6.08 10.59 1.64 6.59
3.59 109.07 0.99 6.11 13.05 0.93 6.73
1.98 102.80 1.20 6.14 15.60 1.39 6.84

283t
12.02 137.92 0.29 4.56 7.79 3.02 6.80
10.01 133.39 0.39 4.54 5.85 1.36 7.00
8.00 126.84 1.34 4.64 11.29 1.16 7.23
1.6 558.35 5.99 121.78 0.54 4.73 7.24 2.19 7.37
3.98 113.03 1.10 4.68 13.18 1.31 7.54
2.01 107.44 0.84 4.79 7.35 2.22 7.56
0.00 12.15 0.06 4.95 11.76 1.53 7.47

Table B.12: Experimental data of belt EP 360/1 with idler spacing L=1.6 m.
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Computational data

frequency of transverse vibration of a stationary moving, idler supported, belt

span, as discussed in Chapter 9, are given. The Tables C1-C4 present the data of
belts EP 120/1, EP 200/2, EP 240/2 and EP 360/3. In the tables the following
parameters are given:

In this appendix the three analytical and the discrete approximations of the first

L the idler spacing [m]

F, the pre-tension force IN]
V, the belt speed [m.s™]
f the measured frequency [Hz]
f the nonlinear frequency according to Thurman and Mote [Hz]
for the linear speed independent frequency [Hz]
faer  the linear speed dependent frequency [Hz]
flk the nonlinear frequency according to Korde [Hz]
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0
0.8 558.35 4 21.60 22.76 22.37 22.08 22.30
8

Y
1.6 189.27 4 6.79 6.69 6.62 6.37 6.87
8

1.6 558.35 4 10.94 11.68 11.18 11.03 11.11

0 4.13 3.88 3.77 3.82 4.19
1.6 189.27 4 4.05 3.96 4.06 3.70 4.13
8 3.72 3.38 4.10 2.53 3.32
12 3.28 2.87 4.15 0.76 1.63
0 6.52 6.60 6.48 6.51 6.55
1.6 558.35 4 6.58 6.48 6.74 6.51 6.63
8 6.26 5.99 6.77 5.81 6.28
12 5.85 5.44 6.80 4.62 5.62

Table C.2: Computational data of belt EP 200/2.
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0 8.99 9.17 8.34 8.43 8.80
0.8 189.27 4 9.11 9.32 9.09 8.46 9.44
8 8.47 7.84 9.21 6.43 8.51
12 9.39 3.21 6.09
0 14.64 14.89 14.32 14.38 14.48
0.8 558.35 4 14.75 14.87 14.97 14.58 14.89
8 14.39 13.69 15.06 13.34 14.32
12 13.73 12.91 15.16 11.25 13.26
0 4.70 4.80 4.17 4.18 4.30
1.6 189.27 4 4.64 4.85 4.55 4.20 4.46
8 4.27 3.96 4.60 3.17 3.88
12 3.85 2.89 4.67 1.47 2.70
0 7.30 7.57 7.16 7.17 7.23
1.6 558.35 4 7.42 7.68 7.47 7.25 7.49
8 7.11 6.92 7.52 6.64 7.19
12 6.71 6.23 7.56 5.57 6.56

Table C.3: Computational data of belt EP 240/2.

0
0.8 189.27 ]
8
12
0 14.89 15.39 15.03 15.09 15.07
0.8 558.35 4 15.03 15.42 15.68 15.31 15.54
8 14.49 14.77 15.75 14.10 14.96
12 13.60 13.22 15.82 12.07 13.91

1.6 189.27

<] BN k=)
J:.
N
o
N
o
S0

kB b
Q
V=3
N
N
(=)
~
<
(=

0 7.47 7.60 7.52 7.53 7.53
1.6 558.35 4 7.54 7.68 7.85 7.65 7.76
8 7.23 6.95 7.90 7.06 7.47
12 6.80 6.51 7.93 6.03 6.92

Table C.4: Computational data of belt EP 360/3.
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Measured belt properties

DIN 22102 and DIN 22109 has been used, see Figure D.1. The initial gauge
length 10 is 100 mm. The geometry ensures a homogenous belt stress
distribution in the middle of the specimen. To determine the tensile strength and
failure strain, a tensile testing machine provided with special gripping wedges, which
prevents slip of the specimen
in the wedges, has been used.

To determine the material parameters of a belt, a test specimen standardised in

initial gauge length 1y

100 mm
The rate of elongation of the
% specimen, standardised in
—> . DIN 22102, is 100 mm/min.
T 35 mm To determine the influence of
[25 mm the strain rate on the tensile
4 . strength and failure strain
50 mm 220 mm f 50 mm also tensile tests at a rate of
elongation of 50 mm/min and
200 mm/min have Dbeen

performed. Besides tensile
tests on the belt also tests on
the belt splice have been
carried out to determine the
tensile strength and failure
strain of the splice. Each test has been performed in threefold. For each belt the
following data have been obtained:

R = 1000 mm

Figure D.1: Top view of DIN 22109 standard test specimen.

o failure strain: g,=Al/l,

e failure stress: o,

¢ tensile strength per unit width: k

o cffective (static) Young’s modulus: E,

¢ failure stress of the belt splice: 6}, gyice

e splice strength efficiency: Npice =0y spice/ Ob
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These data are listed in Table D.1.

Table D.1: Conveyor belt data obtained from tensile test.

From the tensile tests the following conclusions can be drawn:

1. Performing the tensile test in threefold results in a standard deviation of the tensile
strength of maximal 2.5 %. This accuracy is sufficient for this application.

2. The belts EP 120/1 (one fabric ply), EP 240/2 (two fabric plies) and EP 360/3
(three fabric plies) are provided with finger splices whereas belt EP 200/2 (two
fabric plies) is provided with an overlap splice. The splice efficiency of an overlap
splice is about n/n-1, where n is the number of carcass plies: Ngjice is about 50 %
for belt EP 200/2. The splice efficiency of a one-ply finger spliced belt (EP 120/1)
is about 20 %. Every additional carcass ply in a finger spliced belt increases the
splice efficiency with a factor 1.5; M. is about 30 % for belt EP 240/2 and about
45 % for belt EP 360/3. The splice efficiency of a finger splice is lower than the
splice efficiency of an overlap splice.

To determine the relevant visco-elastic parameters, hysteresis experiments have been
performed. The loading conditions during these experiments should include the
loading conditions in the test facility. The four pre-tensions used during the
experiments are given in Table 9.1. As follows from the tables in Appendix B, the
maximum drive force is about 150 N. Adding half this maximum drive force to the
pre-tension yields the belt tension in the idler supported belt part. Since the belt width
is 200 mm, the belt force per unit width during the hysteresis experiments must be
1.3, 2.0, 2.6 and 3.2 [N/mm]. Two loading cycles can be distinguished. The first
loading cycle is due to the motion of the belt through the conveyor. With a maximum
belt speed of 12 m/s and an average belt length of 7 m this cycle has an frequency of
1.7 Hz. The second loading cycle originates from the transverse vibration of the belt
during passage of the idler supported section. Due to the transverse displacement in
this section an extra load is applied to the belt. The maximum measured frequency of
the first transverse vibration is 22 Hz, see Appendix B. The additional belt strain due
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to the transverse displacement can be estimated by using equation (7.11) where the
maximum transverse displacement must be used instead of the belt sag. From
Appendix B it follows that the average transverse displacement is about 1.5 % of the
idler spacing for the first vibration. In that case the additional belt strain is about 0.06
%. With Young’s modulus of the belt material and the given cross sectional area, the
additional belt force is between 80 and 200 N. This is of the same order of magnitude
as the drive force. However, after reduction of the amplitude of vibration to about one
third of the amplitude of the first vibration, the additional belt strain is 0.0067 % and
the additional belt force is between 9 and 22 N. Depending on the amplitudes of
vibration either the frequency of drive force variation or the frequency of variation of
the belt force due transverse vibration determines the frequency of the major load
cycle. The amplitudes of vibration are large with respect to the belt sag and the
frequency of the tension variation is twice the frequency of transverse vibration.
Therefore the maximum frequency of the tension variation will be 44 Hz.
Unfortunately, the maximum frequency of the tensile testing machine is 20 Hz. To
determine the frequency dependency of the visco-elastic belt properties, hysteresis
experiments have been performed at frequencies of 1, 10 and 20 Hz. Since the pre-
stress of the belt is approximately equal to the minimum belt stress, the minimum belt
stress during the hysteresis experiments was taken equal to the pre-stress. The
maximum belt stress was equal to the sum of the pre-stress and the additional stress
due to the transverse displacements. From the stress-controlled hysteresis experiments
the following data are obtained:

o the loss angle &

¢ the dynamic Young’s modulus E4
e the storage modulus E’

¢ the loss modulus E”’

See also Section 3.1.2. These data are listed in the Tables D.2 and D.3.
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Table D.2: Visco-elastic properties of conveyor belt EP 120/1 and EP 200/2 obtained from hysteresis
tests.
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+3.2
0.1078 0.1090 0.1063
453.08 477.44 496.74
450.45 474.60 493.94

1 46.71 48.71 51.94 52.70
Table D.3: Visco-elastic properties of conveyor belt EP 240/2 and EP 360/3 obtained from hysteresis
tests.
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From these experiments the following conclusions can be drawn:

1.

Due to the low minimum belt strains of about 0.22 % till 0.67 %, and thus low
belt stresses, the dynamic Young’s modulus increases with increasing average belt
stress. Above a belt strain of about 1.5 %, however, it decreases with increasing
average belt stress, see also Figure 3.7.

. Due to the visco-elastic character of the belt material, the dynamic Young’s

modulus increases with increasing strain rate or loading frequency.

. The loss angle is small and decreases with increasing average belt stress. Therefore

it is profitable, from an energy point of view, to have a high belt stress and a small
cross section. The loss angle increases with increasing strain rate.

. The relation between the dynamic Young’s modulus, the loading frequency and the

belt tension is almost linear within the indicated strain and frequency range.

To determine whether or not the loading conditions of the belts during the

experiments are comparable to the normal loading conditions during stationary
operation, the static belt sag ratio K, and the actual safety factor S can be used.
Normally the maximum static belt sag ratio K;=1.5 % and the maximum safety factor
S=10. The minimum and maximum values of these parameters during the
experiments are listed in Table D.4. The parameters in this table are calculated with
use of the data given in the tables of Appendix B.

Table D.4: Belt tension related conveyor belt parameters.

As can be seen in Table D.4, the belt sag ratio is lower than 1.5 %. However, the

actual minimum safety factor is much higher than 10. The minimum safety factor is
governed by the maximum belt tension which was limited by the drive power as stated
in Section 9.2.3.
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