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Abstract

Quantum computing is a field that shows tremendous possibilities and promise. It can provide an exponen-
tial speedup compared to classical computers in many computational problems, including simulations of
general quantum mechanical systems, pattern finding and solving linear systems.

Quantum computations can be performed by making use of qubits and performing operations, called
gates, on them. A physical realisation of a qubit will be faulty, and to combat the errors that will inadvertently
but unavoidably occur, the use of a quantum error correction code (QECC) is needed. A QECC is able to
correct static errors; errors that occur on the states. However, it can not correct errors that occur on and
during the operations.

To make the computer resilient to these errors, the implementation of the QECC has to be performed
fault-tolerantly. A fault-tolerant implementation of a quantum operation is designed in such a way that er-
rors that happen during the operation, through faulty gates, do not propagate to errors on the states that
are not correctable any more by the QECC. Hence, error propagation is a key concept in fault-tolerance. Ev-
ery element of a general quantum circuit needs to be designed fault-tolerant. One of the elements that will
be needed in any realistic quantum computer architecture is the possibility of exchanging the states of two
qubits, so that an arbitrary pair of qubits can be brought physically close, allowing the implementation of
multi-qubit gates. Exchanging the states of two qubits can be performed by a fault-tolerant SWAP gate, that
makes use of one ancilla qubit.

In this thesis, a fault-tolerant SWAP operation is implemented on the IBM 5-qubit ‘Tenerife’ device. It
is characterized as a quantum channel by performing quantum process tomography (QPT). The CPTP con-
straints of quantum channels in the framework of QPT are discussed and a method of obtaining a CPTP es-
timate of an initial QPT reconstruction is given. The error process of the fault-tolerant SWAP is analysed and
subsequently compared to a normal implementation of the SWAP gate, on which tomography is performed
as well. The main measure that is used in the comparison is the ratio r of multi-qubit errors (or correlated) to
single-qubit (or uncorrelated) errors in the two implementations.

SPAM errors are an important source of estimated infidelity. To filter these SPAM errors and obtain a
better estimate of only the circuits, SPAM errors are approximated to be only measurement errors. The errors
are characterized by performing tomography on an arbitrary short identity channel, and subsequently using
this as an estimate of the measurement error map. This gives a method to estimate a representation of the
circuit itself.

We can report on an error ratio r of 0.170±0.0029 for the fault-tolerant SWAP operation and an error ratio
r of 1.256±0.0129 for the non-fault-tolerant SWAP operation. However, the total error in the fault-tolerant
SWAP is much higher, resulting in a process fidelity Fp = 0.608 for the fault-tolerant implementation and
Fp = 0.742 for the normal implementation. This is due to the larger number of gates in the fault-tolerant
circuit. This research shows that a SWAP operation can be implemented fault-tolerantly, but that the error
rates of the devices need to be reduced before their use becomes viable.
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Chapter 1

Introduction

1.1 Classical and quantum computing

The idea of using machines to perform computations is very old: mechanical calculators are as old as
the start of the 19th century, and various other devices and objects that help with computing have
existed for over thousands of years. During the first half of the 20th century, however, the area of
automated digital computation emerged - it started with vacuum tubes, but once the transistor was
invented in the 40s, the field increased tremendously in size, and modern life can no longer be imagined
without digital computers. The basic element of such a computer is the bit ; a two-state system that is
either ‘on’ or ‘off’, ‘plus’ or ‘minus’ or, in its most-used representation, a 0 or a 1. Computations are
done by performing operations on these bits, which are also called gates. Billions of bits are combined
into a modern computer, and the power of these machines is ever increasing.

There are, however, limits to the power of these computers. When computer scientists talk about
the power or speed of a computation, they are mainly interested in how the computation scales with
respect to the size of the input parameter of the computation. If the time that it requires to perform
the computation scales polynomially with the size of the input parameter, the computation is said to
be efficient. If, however, the time that it requires to perform a computation scales exponentially with
the size of the input parameter, the computation is inefficient.

To illustrate the distinction between polynomial and exponential scaling, consider a problem where
the goal is to check if a given number N is prime. The most straightforward method to do this is
to divide through every number lower than the given number, and check if there is a remainder1.
If N is a number with five digits, there are ∼ 105 different numbers to check. If our computer can
check 1000 numbers a second, it will take 100 seconds in total to perform the computation. The input
parameter here is the length of N , i.e. its amount of digits. If the input parameter is now twice the
size, the number of different numbers to check is 1010: at the same rate of 1000 numbers a second, the
computation will take about 115 days. Again doubling the input parameter results in 1020 different
numbers: the same computer now takes more than three billion years - about 60% of the age of the
earth. Doubling the input parameter is relatively easy to do - we only need to keep track of twice as
many digits - but the computation itself is exponentially hard.

There are many other known (and important) problems that are not efficiently computable on
a digital computer. Physicists and computer scientists in the 80s realized that simulating general
quantum mechanical systems with normal, digital computers would be inherently inefficient. They also
realized that these quantum mechanical systems could be efficient in simulating each other. Instead of
a normal, digital bit, what is now known as a classical bit, a quantum mechanical bit or qubit would
be the basic element of this new computing device, which is now called a quantum computer. The
qubit is not only allowed to be either 0 or 1, but it can be in a quantum mechanical superposition: a
continuous range of different combinations of the two states. Furthermore, combining multiple qubits
allows them to be in superpositions together. For certain superpositions the qubits are correlated: a
qubit’s state cannot be described without describing the state of other qubits as well. This remarkable
phenomenon is known as quantum entanglement. Superposition and entanglement both necessary for

1Of course there are much better ways to do this, but the general idea of scaling still holds.
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quantum computing.

Many computations that are inefficient on classical computers are known to be efficient on quantum
computers. Apart from simulating quantum systems, other examples in which a quantum computer
offers exponential speedup are pattern matching, solving linear systems and prime factorization; al-
gorithms for each can be found in [1]. A quantum computer can perform many of these calculations
efficiently, whereas a classical computer can only perform them inefficiently. The field of quantum
computing is immensely popular, but there is by no means a working full-scale quantum computer
yet. Building a quantum computer with an adequate number of qubits - possibly millions - is not cur-
rently doable. The best current devices have about 100 qubits, and these qubits are far from perfect;
they are faulty, meaning that errors occur that break the computations performed on them.

It has been said that quantum computing is in its ′30s - there is tremendous interest, but so far,
there are a multitude of competing architectures for the qubit, and there is no determined single way
forward. Even though it is unclear what the eventual physical implementation of a quantum computer
is going to be, one thing seems certain: reliable qubits are hard to make, and whatever the physical
realization is going to be, it will be prone to errors. These errors will be too large to ignore - any
substantial computation will build upon (possibly faulty) intermediate results, and will be rendered
useless if nothing is done.

There are various ways of combating these errors. The first (rather obvious) way is to reduce the
error rates of the various elements of the quantum computer. Although the importance of reducing
error rates is evident, we can not obtain small enough error rates to completely solve the problem.
Even if the error rates are very small, in a very big computation one intermediate error propagate
to an enormous extent. To further combat errors, quantum error-correcting codes or QECCs exists.
This technology provides a way forward, by encoding information or logical qubits into combinations of
multiple physical qubits, thereby making the encoded information more resilient to errors. Quantum
error correction is only one side of the coin - QECCs protect states, but they do not provide any
correction for faulty operations. Without more, they are insufficient to combat any real errors. To
actually perform resilient computations, the use of fault-tolerance is needed.

Fault-tolerant computation is, very loosely speaking, the solution to the problem that a physical
implementation of a quantum computer will never be perfect. Any interaction with the qubits will
be faulty, but a fault-tolerant operation is designed in such a way that the errors do not get out of
hand. They will still occur, but by carefully designed methods they can be contained - if the error
rate is low enough, the operation is then resilient to errors. The most straightforward implementation
of an operation on qubits breaks a QECC - the errors induced by the operation become too abundant
for the code to correct. A fault-tolerant implementation of the same operation provides a method to
process the information without breaking the QECC; it requires an operation to be performed in such
a way that potential errors do not propagate to errors that can not be corrected by the QECC.

Every element of a quantum computer needs a fault-tolerant implementation. The main elements of
any quantum computation are the preparation of qubits in a fixed state, the measurements of qubits
in a given basis, the implementation of the QECC and the various operations that are performed
on the encoded information, which are quantum mechanical logic gates. A quantum gate might be
applied to a single qubit, but computations with multiple qubits require multi-qubit gates that connect
individual qubits. There exist fault-tolerant designs for all of these elements, the threshold theorem
[2] proves that all these elements can be combined into a complete fault-tolerant computation. There
are many caveats and considerations, and one important assumption is that any pair of qubits can be
subjected to a multi-qubit gate. Multi-qubit gates can be implemented on qubits that are physically
close, so any real quantum computer architecture will limit the connectivity of the qubits. To perform
multi-qubit gates on arbitrary pairs of qubits, qubits (or their states) may need to be swapped around.
There is a gate which performs this operation, which is the SWAP gate. This operation itself must
also be implemented fault-tolerantly.
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1.2 Goal of this research

In this thesis, we have investigated a fault-tolerant implementation of the SWAP gate, and have com-
pared it to a standard non-fault-tolerant implementation. The fault-tolerant SWAP is implemented
on a quantum device of IBM, that is accessible via the IBM Q Experience [3]. A fault-tolerant imple-
mentation of an operation should show certain properties and qualities when compared to a normal
implementation, and the comparison is made on these properties. Both implementations of the SWAP
gate are fully characterized and the analysis and comparison can be made using these characterizations.

1.3 Structure of this thesis

There are nine chapters in this thesis, including this introduction. A summary of every chapter can
found in the following outline.

To be able to discuss errors, QECCs and fault-tolerance, a basic foundation of quantum information
science is needed, which is introduced in chapter 2. To combat errors, it is very useful to start by
properly defining what the error processes on qubits are, this is discussed in chapter 3. To analyse
the error on an actual physical system and characterize it as an error process, one needs the technique
of quantum process tomography, which will be introduced in chapter 4. The error correcting codes
and their properties are introduced in chapter 5, and the theory of fault-tolerance is introduced in
chapter 6. The rest of the thesis is concerned with the fault-tolerant SWAP circuit. This circuit,
together with simulations on the tomographic methods and the error processes in the circuit, is
introduced in chapter 7. The results of the experiments can be found in chapter 8. Finally, chapter 9
concludes with a discussion on the methods and results and gives a main conclusion of this research
and recommendations for further research.
Furthermore, there are two appendices. Appendix A provides proofs for various statements in chapter
3, and in appendix B intermediate or additional results of the simulations and experiments can be
found.
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Chapter 2

Introduction to quantum information
science

Quantum information science is to quantum computing what (classical) information science is to
normal computing. It is the theoretical framework for the computations that will be performed on
quantum computers. The basic unit of a classical computer is the bit ; it gets its name from its possible
values, or states: either a 0 or a 1, a “binary digit” or “bit”. Classical computations are performed by
means of operations on those bits. Conversely, the basic unit of a quantum computer is the quantum
bit or qubit. Qubits are not restricted to either 0 or 1 (which are written as |0〉 and |1〉), but they can
also be in a quantum mechanical superposition: a linear combination of the two states. Just as with
classical computing, quantum computations are performed by means of operations on the qubits.
This chapter introduces qubits and the operations that can be performed on them, in section 2.1 and
2.2 respectively. Section 2.2 also introduces the Pauli matrices: a very important class of matrices
that correspond to certain important qubit operations. In section 2.3, a brief introduction will be
given on how to combine qubits and operations into a quantum circuit : a specification for an actual
computation. Physical realisations of qubits will not be perfect, and to still specify them section
2.4 introduces the notion of density matrices. The chapter is concluded by the introduction of two
important tools in the analysis of qubits and computations. Section 2.5 introduces the Bloch sphere,
a visualisation of qubit states that is very helpful in interpreting qubit states and operations. Finally,
to specify how good a quantum state is, section 2.6 introduces the idea of state fidelity, a measure of
quality for quantum states.

2.1 The basic units of quantum computation: Qubits and operations

Qubits

In quantum mechanics, particles or systems can be in a non-classical combination of classical states,
where these states may have different properties such as total energy. This principle, called the
superposition principle, is one of the cornerstones of quantum mechanics and also one of the properties
that is extensively used in quantum computation. The basic unit of a quantum computer, called the
qubit, is any (quantum mechanical) system that has two orthogonal states. This superposition or
state can be viewed mathematically as a vector in C2 where the vector is often written using the
ket-notation:

|ψ〉 = α |0〉+ β |1〉 =

[
α
β

]
, (2.1)

with α, β ∈ C. Here |0〉 and |1〉 form a basis for C2; they represent the two independent levels of
the qubit. Furthermore, the qubit space is equipped with a standard (complex) dot product. The
values of α and β have a very important feature, that is best described using Born’s rule: Upon a
measurement of the qubit in the {|0〉 , |1〉} basis, the state of the qubit collapses to either the |0〉 or
|1〉 state, with the probability Pr(|0〉) (Pr(|1〉)) that it collapses to the |0〉 (|1〉) state dictated by α
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and β:

Pr(|0〉) = |α|2,Pr(|1〉) = |β|2. (2.2)

Measurements will be discussed in greater detail in section 2.1.2. These probabilities lead to another
important feature that the state must possess, namely that it needs to be normalized: |α|2 + |β|2 = 1.
In other words, the inner product of |ψ〉 with itself (〈ψ|ψ〉) needs to be equal to 1. This makes the
space of the qubit a Hilbert space, which we denote with H. |0〉 and |1〉 are orthogonal under the inner
product on H: 〈0|1〉 = 0. Therefore they form an orthonormal basis of H, called the computational
or canonical basis.

Although the computational basis encompasses (usually) the two physically distinct levels of the
qubit, the state of the qubit can be expressed using any two linearly independent vectors that form a ba-
sis for H. Normally, two orthogonal vectors are used. Since all states should be normalized, orthonor-
mality of every orthogonal basis follows. Apart from the computational basis, often used bases are the

Hadamard basis

{
|+〉 =

1√
2

[
1
1

]
, |−〉 =

1√
2

[
1
−1

]}
and the basis

{
|+i〉 =

1√
2

[
1
i

]
, |−i〉 =

1√
2

[
1
−i

]}
.

If the basis of the qubit is not specified, the computational basis is assumed. All these states form
the eigenstates to an important class of matrices called the Pauli matrices, which will be introduced
in section 2.2.

Multiple qubits

Multiple qubits together allow for more states. Namely, if there are n qubits in a system then there
are 2n basis states for that system; all tensor products of the |0〉 state and the |1〉 state for each qubit
separately. Very often, we write d as a shorthand for the system dimension 2n. Mathematically, the
total state of the qubits is then a vector in a Hilbert space of dimension 2n: H2n = H1 ⊗H2...⊗Hn,
with H i the Hilbert space of the ith qubit and ⊗ the Kronecker tensor product. If two qubits are
both in the state |0〉, then together they are in the 2-qubit state |0〉 ⊗ |0〉, often written as |00〉. For 2
qubits, this means that a general state can be written as:

|ψ〉2 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉 =


α00

α01

α10

α11

 , (2.3)

with αij ∈ C and
∑

ij |αij |
2 = 1. This extends to any number of qubits:

|ψ〉n =


α1

α2
...
α2n

 , (2.4)

where still αi ∈ C and
∑2n

i=1 |αi|
2 = 1. This shows an important feature of qubits hinted at in the

introduction: the number of parameters needed to describe the state grows exponentially with the
number of qubits. A basis for the n-qubit Hilbert space H2n can be built from any basis of H2 as all
possible n-fold Kronecker tensor products of the elements of that single-qubit basis. In this text, I
will write the n-qubit Hilbert space H2n as Hn instead for brevity.

Entanglement

If the state of multiple qubits cannot be written as a tensor product of single-qubit states, the qubits
are said to be entangled. It is then not possible to describe the state of a single qubit without
also describing the state of the other qubit, and thus the qubit states are now correlated. Any
state that is not entangled is called separable. Quantum computations with separable states are

6



efficiently simulatable on a classical computer, indicating that entanglement is an important necessary
of quantum computation1.

An example of an entangled state is the state |Φ+〉 = |00〉+|11〉√
2

; the qubits are in an equal superpo-

sition of the |00〉 and |11〉 states. The first qubit is equally in the |0〉 and |1〉 state, but only when the
second qubit is also in the |0〉 and |1〉 state, respectively. |Φ+〉 is one of the 4 Bell states:

|Φ+〉 =
|00〉+ |11〉√

2
, |Φ−〉 =

|00〉 − |11〉√
2

,

|Ψ+〉 =
|01〉+ |10〉√

2
, |Ψ−〉 =

|01〉 − |10〉√
2

.

(2.5)

Note that all Bell states are orthogonal to each other. Therefore, and because there are 4 of them,
they form an orthonormal basis to H2.

Finally, for two qubits, a maximally entangled state can be defined as:

|Ψmax〉 =
1√
2

∑
i

|ψi〉 ⊗ |φi〉 , (2.6)

with the sum over a pair of bases {|ψi〉} and {|φi〉} of the single-qubit Hilbert space. Note that all
Bell states are maximally entangled. A maximally entangled state can be created for any even number
of qubits, by summing over n-fold tensor products. Furthermore, I will denote the specific maximally
entangled state where both bases are the canonical basis ({|ψi〉} = {|φi〉} = {|i〉}) as

|Ω〉 =
1√
d

∑
i

|i〉 ⊗ |i〉 , (2.7)

where I do not explicitly specify the number of qubits in both registers. Note that not every entangled

state is also maximally entangled (e.g. the state
√

3
4 |00〉 +

√
1
4 |11〉 is not separable but also not

maximally entangled).

2.1.1 Unitary operations on qubits

An operation on a qubit is a map O : H1 → H1, meaning that the operation maps qubit states to
other qubit states. Likewise, an operation on a set of n qubits is a map O : Hn → Hn. An operation
performed on a set of qubits is completely described by its action on a basis of the qubits Hilbert space.
Normally, the operation maps a basis {|ψk〉} to a (possibly different) basis {|φk〉} with k summing
over all d elements in that basis:

U =
∑
k

|φk〉 〈ψk| . (2.8)

For these operations we have,

U †U =
∑
k

∑
l

|ψk〉 〈φk|φl〉 〈ψl| =
∑
k

|ψk〉 〈ψk| = I, (2.9)

meaning that U is unitary. These operations on qubits are therefore also called unitary operations or
also just unitaries2. Note that the operation U † maps the basis {|φk〉} back to {|ψk〉}.
Using the vector notation, unitary operations can be viewed as unitary matrix transformations. With
a qubit in the state |ψin〉 and an output state, |ψout〉 = U |ψin〉, they can be linked as a matrix
transformation. If U maps {|ψk〉} to {|φk〉}, then:

|ψout〉 =


β1
β2
...
β2n

 =


u11 u21 . . . u2n1
u12 u22 . . . u2n2

...
...

. . .
...

u2n1 u2n2 . . . u2n2n



α1

α2
...
α2n

 = U |ψin〉 , (2.10)

1Entanglement is, however, not the sole origin of the power of quantum computation. Gottesman-Knill simulation [4]
allows for efficient classical simulation of certain highly entangled states, something I have performed in my thesis but is
not included in this report. See section 5.5 for a very brief introduction.

2In chapter 3, I will discuss operations on qubits that are not unitary. Normally speaking, non-unitary operations,
besides measurement, correspond to errors.
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with uij =
∑

k 〈i|φk〉 〈ψk|j〉. Note that when the unitary U maps the computational basis to another
basis {|φk〉} (i.e. {|ψk〉} is the computational basis), the unitary U simplifies to (with φi the column
vector representing |φi〉 in the computational basis) U =

[
φ1 φ2 . . . φ2n

]
.

Since any unitary matrix can be diagonalized, there are always 2n eigenvectors to U , with the
corresponding eigenvalues lying on the unit circle, i.e. λi = eiθi . This means that, when an operation
U acts on one of its eigenstates, it only introduces an overall phase eiθi . As we will see in section 2.1.2,
such a global phase has no physical meaning. This has another implication: any U1 and U2 that only
differ by a phase (U1 = eiθU2) do not have a physically distinct effect on a qubit. As such, the class
of valid operations on a set of n qubits are exactly the matrices from the group SU(2n), the group of
d× d unitary matrices with determinant |U | = 1.

When performing an operation U1 on one qubit and an operation U2 on another qubit, the total
operation on the combined system is the operation U12 = U1 ⊗U2. An important distinction to make
for unitary operations acting on multiple qubits is whether that operation can be written as a tensor
product of single-qubit operations or not. When this is not the case, the operation is commonly
called an entangling operation. Finally, a unitary operation on a qubit is also called a gate. Qubits
and unitary operations are, together with measurements, combined in quantum circuits to perform
quantum computations. Quantum circuits will be briefly discussed in section 2.3, after a discussion
on quantum measurements in section 2.1.2 and an overview of important unitary gates in section 2.2.

2.1.2 Measurements

The most straightforward measurement that can be performed on a qubit is a projective measurement.
In a projective measurement, a qubit is projected onto a basis of its Hilbert space, mapping the state of
the qubit to any of the elements from that basis after the measurement. The probability of obtaining
a given result is dictated by Born’s rule, introduced in section 2.1. After the measurement, the
qubit state is said to have collapsed to either of the two basis states. Furthermore, the measurement
outcome indicates which of the two it is; the outcome3 will be +1 for |ψ+1〉 and −1 for |ψ−1〉. The
initial information encoded in the qubits’ state (i.e. α and β) is lost, which is why it is said that
measurements destroy quantum information. A projective measurement in the basis {|φ+1〉 , |φ−1〉}
can be denoted by the measurement observable M = |ψ+1〉 〈ψ+1| − |ψ−1〉 〈ψ−1|. It is then said that
one performs a measurement of the observable on the qubit state.

The expectation value λψ,M of an observable M on a qubit state |ψ〉 is a value between 1 and −1;
it is λψ,M = Pr(+1)−Pr(−1) with Pr(+1) and Pr(−1) the probability that the state collapses to the
+1 or −1 basis state, respectively. Using the observable M , λψ,M becomes (note that λψ,M is always
real-valued since M is Hermitian):

λψ,M = 〈ψ|M |ψ〉 = tr
[
M |ψ〉 〈ψ|

]
. (2.11)

It is now evident that a global phase on the qubit can not influence the outcome of any measurement:

λφ = 〈φ|M |φ〉 = 〈ψ| e−iθMeiθ |ψ〉 = e0 〈ψ|M |ψ〉 = λψ. (2.12)

When a qubit is entangled with another qubit, a measurement on the first qubit has implications
for the state of the other qubit. If the first qubit of a Bell pair |Φ+〉 = |00〉+|11〉√

2
is measured in the

computational basis, the state collapses to either the |00〉 or |11〉 state. This means that when a
measurement in the computational basis on the second qubit is performed, the measurement outcome
will always be either +1 or −1, indicated by the outcome of the first measurement. The outcomes of
the two measurements are therefore perfectly correlated. This is a profound result of the principle of
entanglement that quantum mechanics dictates. An important realisation is that the two entangled
qubits need not necessarily be in the same physical location or even physically close; the entanglement
of the two qubit states will persist if there is no interaction of the qubits with the outside world.

A more general measurement that can be made on qubits will be discussed in section 2.4.1.

3In principle, any two number can be the outcome of a measurement, but normally +1 and −1 are associated with
the outcomes; then the measurement observable has eigenvalues +1 and −1.
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2.2 Common unitary operations

2.2.1 Single-qubit gates

Unitary operations form the cornerstone to quantum computation; they allow for interaction with
and manipulation of qubits in such a way that computations can be performed with them. There are
myriad unitary operations - in principle uncountably many- but certain operations are more common
than others. The gates introduced in this section will be the elements of most quantum circuits.

The identity gate I4, also called the memory or wait gate, is the operation that maps every possible
state of a set of qubits to itself:

I =

[
1 0
0 1

]
. (2.13)

The single qubit Pauli operators X, Y and Z are the operations corresponding to the three Pauli
matrices, named after the physicist Wolfgang Pauli:

I =

[
1 0
0 1

]
, X =

[
0 1
1 0

]
,

Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
.

(2.14)

I have included the identity operation I in the above equation, because these four matrices together
form a group P1 under multiplication if they are extended to have a phase of ±1,±i. This is because
∀P , P 2 = I and a product of two different Pauli matrices will result in the third one up to a phase,
rendering the following equation for multiplication of Paulis:

PaPb = δabI + iεabcPc, (2.15)

with δab the Kronecker delta and εabc the Levi-Civita symbol. Apart from that, the four elements of
P1 span the single-qubit operator space. Therefore, any single-qubit operation can be decomposed
into a linear combination of the identity operator and the Paulis. Furthermore, all Pauli matrices have
trace 0. Note that the determinant of the Paulis are not 1 and that therefore they are not elements
of SU(2). Still, they are normally chosen over their counterparts iX, iY, iZ ∈ SU(2) because they are
Hermitian.
X is also known as the bit flip operation, because X |0〉 = |1〉 and X |1〉 = |0〉. Equivalently, Z is

also known as the phase flip operation, because Z |0〉 = |0〉 and Z |1〉 = − |1〉, introducing a phase on
the |1〉 state compared to the |0〉 state. Since Y = iXZ, it performs both the bit and phase flip.

All single-qubit Paulis have a +1 eigenvalue and a −1 eigenvalue. The corresponding eigenstates
are exactly the 6 states introduced in section 2.1: the (|+〉 , |−〉), (|+i〉 , |−i〉) and (|0〉 , |1〉) states are
the +1 and −1 eigenstates of the X, Y and Z matrices, respectively; they can be found in table 2.1.
The Hadamard basis is therefore also called the X basis, and the basis {|+1〉 , |−i〉} is equivalently
called the Y basis.

The Hadamard gate H is the operation that maps the computational basis to the Hadamard basis:

H = |+〉 〈0|+ |−〉 〈1| , (2.16)

in matrix notation (and the decomposition into the Paulis) this becomes

H =
1√
2

[
1 1
1 −1

]
=

1√
2

(
X + Z

)
. (2.17)

Since the Hadamard matrix is a Hermitian matrix, it is its own inverse and therefore idempotent:
HH = I. This means that an equivalent representation of H is:

H = |0〉 〈+|+ |1〉 〈−| , (2.18)

4In this report, I make a distinction between the identity operation and the identity matrix. With I I mean the
operation that acts on qubits, whereas with I I specifically mean the identity matrix.
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P ∈ P1 +1 eigenstate −1 eigenstate

I all states -

X |+〉 = 1√
2

[
1
1

]
|−〉 = 1√

2

[
1
−1

]
Y |+i〉 = 1√

2

[
1
i

]
|−i〉 = 1√

2

[
1
−i

]
Z |0〉 =

[
1
0

]
|1〉 =

[
0
1

]
Table 2.1: Eigenstates of the single qubit Paulis and the identity operator. Together, these 4 operations form
the group P1.

and that therefore the Hadamard gate also maps the Hadamard basis back to the computational
basis. This behaviour is inherent to every idempotent unitary operation. Finally, the Hadamard
matrix shows an underlying symmetry of qubit states: if any unitary gate U gives has as action
U
(
α |0〉+ β |1〉

)
= α′ |0〉+ β′ |1〉, then HUH

(
α |+〉+ β |−〉

)
= α′ |+〉+ β′ |−〉. This remains true if U

is instead defined for the Hadamard basis.
The single-qubit Z matrix adds a phase of eiπ = −1 to the |1〉 state while doing nothing to the |0〉

state. This operation can be generalized to an arbitrary phase, resulting in the Rz(θ) operation, that
adds a phase of eiθ to the |1〉 state.

Similarly, the X and Y operations add a phase of eiπ to the |−〉 and |−i〉 states, respectively, while
leaving the other state of their respective eigenbasis unaffected. These too can be generalized to an
arbitrary phase, resulting in the Rx(θ) and Ry(θ) operations, that add a phase of eiθ to the |−〉 and
|−i〉, respectively. In matrix form, they are:

Rx(θ) =

[
cos
(
θ
2

)
−i sin

(
θ
2

)
−i sin

(
θ
2

)
cos
(
θ
2

)] ,
Ry(θ) =

[
cos
(
θ
2

)
− sin

(
θ
2

)
sin
(
θ
2

)
cos
(
θ
2

)] ,
Rz(θ) =

[
e−i

θ
2 0

0 e+i
θ
2

]
.

(2.19)

Note that these matrices are defined up to a global phase, and that in this form they indeed do add a
global phase to the eigenstates of their respective Paulis. Furthermore, note that indeed Ri(π) = Pi
(up to this global phase) as expected. Finally, just as with the X and Z, Rx(θ) = HRz(θ)H. An
interpretation of the rotation gates (and the origin of their names) can be found in the Bloch sphere
visualization of quantum states, see section 2.5. The Rz(θ) gate has specific names for θ = π

4 and
θ = π

8 : S = Rz(
π
4 ) is called the S- or phase-gate, and T = Rz(

π
8 ) is called the T -gate.

2.2.2 Multi-qubit gates

A very important specific multi-qubit gate is the (2-qubit) controlled-not5, CNOT or CX gate: it
performs an X gate on the second qubit (called the target qubit), conditioned on the first qubit (the
control qubit) being in the |1〉 state:

CX = |0〉 〈0| ⊗ I + |1〉 〈1| ⊗X (2.20)

The action of the CX on the 4 states from the canonical basis H2 can be found in table 2.2; its action
on any other state can then be calculated using linearity by decomposing that state into the canonical
basis. Especially interesting is the action of the CX gate on two qubits whenever the first qubit is in
a superposition of |0〉 and |1〉, while the second qubit is in the |0〉 state:

CX
(
α |0〉+ β |1〉

)
⊗ |0〉 = αCX |0〉 ⊗ |0〉+ βCX |1〉 ⊗ |0〉

= α |0〉 ⊗ |0〉 + β |1〉 ⊗ |1〉 = α |00〉+ β |11〉
(2.21)

5The name controlled-not comes from classical computing: the classical bit flip operation is also called the NOT gate,
and the controlled bit-flip operation is also called the controlled-not.
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Input basis state |ψ〉 CX |ψ〉 SWAP |ψ〉
|00〉 |00〉 |00〉
|01〉 |01〉 |10〉
|10〉 |11〉 |01〉
|11〉 |10〉 |11〉

Table 2.2: The action of the CX gate and the SWAP gate on all 4 states in the canonical basis of H2. Note
that for CX gate the 2nd qubit is only flipped when the first qubit is in the |1〉 state, and that for the SWAP
gate only the states |01〉 and |10〉 are swapped.

Note that when α = β = 1√
2

the initial state on the first qubit is |+〉, the resulting state is the Bell

state |Φ+〉. This 2-qubit gate can thus create entanglement on a pair of qubits. In matrix notation,
the CX gate is:

CX =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (2.22)

Conversely, the CPHASE or CZ gate is the 2-qubit gate that performs the phase-flip or Z gate on
the second qubit, conditioned on the first qubit being in the |1〉 state. It is a counterpart to the CX
gate, and the two are linked by rotating the second qubit to the Hadamard basis.

The 2-qubit SWAP operation swaps the states of 2 qubits:

SWAP = |00〉 〈00|+ |10〉 〈01|+ |01〉 〈10|+ |11〉 〈11| . (2.23)

If two qubits are in the separable state
(
α |0〉+ β |1〉

)
⊗
(
γ |0〉+ δ |1〉

)
, then after applying the SWAP

gate the resulting state is
(
γ |0〉+ δ |1〉

)
⊗
(
α |0〉+β |1〉

)
. This extends to any entangled 2-qubit state:

SWAP
(
α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉

)
= α00 |00〉+ α10 |01〉+ α01 |10〉+ α11 |11〉 . (2.24)

Note that only α01 and α10 have switched; this is because switching qubits does not alter the |00〉 and
|11〉 states. The action of the SWAP gate on the 4 states from the canonical basis H2 can be found in
table 2.2; again its action on any other state can then be calculated using linearity by decomposing
that state into the canonical basis. In matrix notation, the SWAP gate is:

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (2.25)

2.2.3 A generating set for operations

In principle, to perform all possible qubit operations, one would need to perform every element of the
continuous group SU(2). There are uncountably many elements in that group, but every element can
be written6 as a multiplication of a generating set of a discrete group that is dense in the continuous
group. Therefore, if you are able to perform the gates in this set on the qubits, any other operation
can be performed by applying the specific combination of the generating set. Such a generating set is
also named a universal set of quantum gates.

A straightforward example of a universal set of 2-qubit gates is the Hadamard gate H, the T gate
and the CNOT gate. The process of writing an operation as the product of a generating set is known
as compiling. An example is that the X gate can be compiled to HT 4H; therefore the bit-flip operation
can be implemented by first applying the Hadamard operation, then 4 times the T gate, and then
again the Hadamard operation.

6To be precise, every element can be only be approximated by a finite set of gates. This is because the set of gates
SU(2) is uncountably infinite, whereas the set of products of elements in a finite set is countable. An important theorem,
the Solovay–Kitaev theorem[5], states that this approximation can be done efficiently for all gates.
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2.2.4 The generalized multi-qubit Paulis

The Paulis can be extended to n-qubit unitaries by the Kronecker tensor product: Pn = P 1
1 ⊗ ....⊗Pn1 ;

they are also denoted as P1P2...Pn. These multi-qubit operators are generally called the n-qubit
Paulis or also simply Paulis. tr

[
A⊗B

]
= tr

[
A
]

tr
[
B
]
, so tr(Pn) is 0 for all Paulis that are not tensor

products of only the single qubit I. Furthermore, they still have only +1 and −1 eigenstates. If all
n-qubit Paulis are extended with an overall phase of ±1,±i, then together they form a group, the
Pauli group Pn. I will denote an element of Pn with Pn or simply P .

For a P ∈ P1, there is just one +1 and −1 eigenstate; for a general n-qubit (non-identity) Pauli there
are for both the +1 and −1 eigenspace 2n−1 vectors in its basis. Let Pauli Pn = P 1

1 ⊗ ...⊗P i1⊗ ....⊗Pn1
be any Pauli in Pn,

∣∣λ1i 〉 be the eigenstates of the single-qubit Pauli P i1 and λ1i its corresponding

eigenvalue. Then we can write any of the eigenstates
∣∣∣λnj 〉 of Pn as:

∣∣λnj 〉 =
n⊗
i

∣∣λ1i 〉 , (2.26)

with a corresponding eigenvalue λnj =
∏
i λ

1
i . So, any eigenstate of a n-qubit Pauli Pn is a tensor

product of the eigenstates of the 1-qubit Paulis of which Pn is a tensor product. The eigenvalue
of a corresponding eigenstate of Pn is then the product of all eigenvalues of the individual 1-qubit
eigenstates.

The Pauli operators are also linked to the Bell pairs via the single qubit operations on one of the
two qubits. This also allows the definition of the generalized Bell states:

|Bn〉 = (Pn ⊗ I) |Ω〉 . (2.27)

These states together form a new basis for Hn, awhich we will use occasionally throughout this report.
Note that for P1 this indeed generates the four Bell states.

2.2.5 The weight of an operator

The weight wt(P ) of a Pauli operator P is the number of qubits on which it acts non-trivially. If
the n-qubit Pauli P can be decomposed into tensor products of single-qubit Paulis with r identity
gates, then wt(P ) = n − r. E.g. the operator O = X ⊗ I ⊗X has wt(O) = 2, whereas the operator
Q = Z ⊗Y ⊗X has wt(Q) = 3. Furthermore, the support of an operator is the set of qubits on which
it acts non-trivially.

In the framework of quantum error correcting codes, which will be discussed in chapter 5, it is useful
to define the weight of a non-Pauli operator in terms of its decomposition into the Paulis. If an operator
A can be decomposed into Paulis of at most weight k, then wt(A) = k as well. So, the operator CX =
1
2 (II + ZI + IX − ZX) has wt(CX) = 2, but the 3-qubit gate S1,3 = 1

2 (III +XIX + Y IY + ZIZ),
that swaps the state of the 1st and 3rd qubit, also has wt(S1,3) = 2. Note that the weight of an
operator is not preserved after composition. For instance, the Paulis P1 = XY and P2 = ZY both
have wt(P1) = wt(P2) = 2, but their product P1P2 = Y I (up to a global phase) has weight 1.

2.3 Quantum circuits

A quantum circuit is a set of qubits (often called a register) and a set of ordered operations. It is a
representation of a composite operation that is to be performed on the set of qubits. The operations
are applied to the register in the specified order, which can be understood as running the circuit. Any
computation done on a quantum computer is usually represented as a quantum circuit (For an overview
of many quantum algorithms, see [1]). Normally, the qubits are initialized in a specific state, meaning
that this state is prepared on the qubits before the circuit runs. Often the qubits are all initialized in
the |0〉 state, so that any non-trivial preparation of the qubits is included as operations in the circuit.
Moreover, usually the qubits are measured at the end of the circuit, although measurements can in
principle take place anywhere in the circuit. Any element of the operations within the circuit can
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be referred to as a location. If a qubit is ‘waiting’ for operations on other qubits to be done, this is
referred to as a wait-location, which can be represented by performing the identity gate on that qubit.

A quantum circuit has an often-used visual representation, called the circuit diagram. Every qubit
in the register is drawn as a horizontal line, and every operation in the circuit is drawn as a rectangle
on the lines of the supported qubits; within that rectangle is then written that operation. The CNOT
operation has a specific representation in a diagram as a black dot on the control qubit, a vertical line
from that qubit to the target qubit and the modulo-2 addition sign ⊕ on the target qubit. Moreover,
the SWAP operation is drawn as a cross on both supported qubits with a vertical line connecting
them. These representations can be seen in figure 2.1. Furthermore, a very basic quantum circuit
representing the preparation of the Bell state |Φ+〉 can be found in figure 2.2. For a more in-depth
discussion on quantum circuits and how they are drawn I refer to [6].

• ×
U ×

Figure 2.1: The visual representation of a single qubit gate U on the bottom qubit (left), the CNOT operation
with the control qubit at the top (middle) and the SWAP operation (right).

|0〉 H •

|0〉
Figure 2.2: A simple quantum circuit that prepares the Bell state |Φ+〉 = |00〉+|11〉√

2
. The two qubits, both

initialized in the |0〉 state, are represented by the two horizontal lines. The Hadamard operation is performed on
the top qubit, after which the CNOT operation is performed with the top qubit as the control qubit (represented
by the black dot) and the bottom qubit as the target qubit (represented by the modulo-2 addition sign ⊕).

2.4 Density matrices

If an entangled pair of qubits |00〉+|11〉√
2

is shared by two people, named Alice and Bob, neither can

describe the state of their own qubit without knowing the state of the other qubit. When Alice
performs a measurement in the computational basis, Alice knows that Bob’s qubit collapses to the |0〉
or |1〉 state, depending on her measurement outcome. As long as Bob doesn’t know the measurement
outcome - or does not even know whether a measurement was performed by Alice, Bob can describe
the state of his qubit as a statistical mixture of the |0〉 and |1〉 states; it is described using a density
operator ρ, in this case ρ = 1

2 (|0〉 〈0|+ |1〉 〈1|).
More generally, if the state of a qubit is |ψj〉 with probability pj , the density operator or density

matrix describing that state is:

ρ =
∑
j

pj |ψj〉 〈ψj | , (2.28)

with
∑

j pj = 1. Therefore, tr(ρ) = 1. Note that the different states |ψj〉 need not necessarily be
orthogonal to each other.

Any density operator whose sum is over just one element is called a pure state, whereas if the sum is
over more than one element it is called a mixed state, and ρ2 = ρ only for pure states. A density matrix
is not an element of Hn, but an element of a set of operators {M ∈ M2n×2n |M ≥ 0 & tr(M) = 1}
that acts upon elements of Hn. Note that this is not the same space as the space of operations SU(2);
a density operator is never a unitary matrix.
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When a qubit is in a mixed state of all elements of a basis {|ψi〉} of Hn, with equal probability, the
resulting density operator ρmm represents the maximally mixed state:

ρmm =
∑
{|ψi〉}

1

d
|ψi〉 〈ψi| =

I

d
. (2.29)

If a qubit is in the maximally mixed state then no information that might have initially been encoded
is left on the qubit; it is then essentially a random bit.

A density matrix can be decomposed into a weighted sum7 of an orthonormal basis of M. Most
notably, a n-qubit density matrix can be decomposed into a linear combination of the elements Pi ∈ Pn.

2.4.1 Operations on density matrices

Unitary operations

A unitary operation U on a pure state |ψ〉 is denoted by U |ψ〉; as such unitary operation on a pure
density matrix is U |ψ〉 〈ψ|U †. This can be easily generalized to any density matrix. Applying a
unitary operation U on a qubit in the density state ρin gives a state ρout:

ρout = UρinU
†. (2.30)

As will be introduced in chapter 3, more general operations can be defined for density matrices; exactly
these operations can make mixed states from pure states.

Measurements

Performing a projective measurement of an observable M on a qubit on a pure state gives an expec-
tation value λψ,M = 〈ψ|M |ψ〉 = tr

[
M |ψ〉 〈ψ|

]
. This can be extended to any density state ρ:

λρ,M = tr
[
Mρ

]
. (2.31)

A generalization of projective measurements can be made, where the qubit state is not projected
upon a set of orthogonal states but on a set of orthogonal subspaces that together span the whole
Hilbert space. It does not necessarily have to be a projection; for a set of operators {Ai}, the qubit

state will collapse with probability tr
[
AiρA

†
i

]
to any of the states

ρAi =
AiρA

†
i

tr
[
AiρA

†
i

] . (2.32)

Furthermore, we need
∑

iA
†
iAi = I, so that if the measurement outcome is not recorded, the mixed

state
∑

iAiρA
†
i will be obtained. Such a generalized measurement is called a POVM or positive-

operator valued measure.

2.5 The Bloch sphere

Visualizing a state of a qubit can be done using the Bloch sphere. The Bloch sphere is a sphere of
unit radius, for which pure states are points on that sphere. The |0〉 state is the north pole of the
sphere, whereas the |1〉 state is the south pole of the sphere. Any superposition of the two states is a
point on the surface of the sphere; it can be specified (up to a global phase) using the parameters θ
and φ (0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π) as

|θ, φ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 . (2.33)

7This is not necessarily a convex combination. Note for instance that the pure state |1〉 〈1| = 1
2

(
I − Z

)
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Figure 2.3: The +1 (top) and −1 (bottom) eigenstates for the Pauli matrices drawn on the Bloch sphere. Any
pure state is represented by a point on the Bloch sphere. The |0〉 and |1〉 states are on the north- and south
pole, respectively. Any superposition is a point in between. The azimuthal and polar angle are θ and φ from
Eq. (2.33) respectively.

By using spherical coordinates, the corresponding point on the Bloch sphere to |θ, φ〉 is then exactly
the point with radius 1, azimuthal angle θ and polar angle φ. φ is the relative phase of the qubit state;
it is often just called the phase.

The eigenstates of the Pauli X, Y and Z matrices are exactly the intersections of the Bloch sphere
with the x-, y- and z-axes; the +1 and −1 eigenstates lie on the positive and negative ends respectively.

Unitary operations on a qubit can be represented as rotations on the Bloch sphere; this reflects
the idea that any unitary operation can be viewed as a change of basis. The Rx, Ry and Rz are all
rotations over an angle θ about the x-, y- and z-axes respectively. As such, the Pauli operations X,
Y and Z are the operations that rotate any state on the Bloch sphere half of a rotation around their
respective axis. Note that it follows that any eigenstate of a unitary operation should lie exactly on
the axis of rotation and that therefore eigenstates of unitary operations always are antipodal on the
Bloch sphere.

Since density matrices are convex combinations of pure states, they can be viewed as points lying
in the Bloch sphere. The vector v that points to the mixed state is calculated as

vi = tr
[
Piρ
]
, (2.34)

with {i} ∈ {x, y, z}. Therefore, a statistical mixture of the Z-eigenstates is a point on the z-axis, and
the maximally mixed state is the point at the origin.

2.6 State fidelity

Comparing two quantum states can be done by calculating their state fidelity, which is a measure of
the overlap of two quantum states. For two states ρ and σ, the fidelity is

F (ρ, σ) = tr

(√√
ρσ
√
ρ

)2

= tr

(√√
σρ
√
σ

)2

, (2.35)

with the last identity indicating that the fidelity is symmetric. If one of the states is pure, e.g. if
ρ = |ψ〉 〈ψ|, the fidelity simplifies to

F (ρ, σ) = 〈ψ|σ |ψ〉 . (2.36)
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Figure 2.4: Various mixed states represented in the Bloch sphere. The decomposition of ρ into the weighted
sum of pure states determines the vector that represents the mixed state. Note that the states do not lie on,
but rather within the Bloch sphere.

Furthermore, if σ = |φ〉 〈φ| is also pure, the fidelity simplifies further to F (ρ, σ) = |〈ψ|φ〉|2. The fidelity
is bounded by 0 from below and 1 from above; hence it is also often expressed as a percentage.

The state fidelity is commonly used as a measure of the quality of a preparation apparatus, entan-
gling apparatus or any other experimental state; the fidelity is then calculated between the obtained
(often mixed) state, and the ideal or desired (often pure) state. Finally, there is also a fidelity for
operations, the process fidelity, which will be introduced in section 3.7.
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Chapter 3

Quantum channels and open quantum
systems

In a perfect world pure quantum states would always stay pure quantum states, and there would not
be any use for density matrices. In practice, however, many processes influence pure quantum states in
such a way that the formalism of pure quantum states, called closed quantum systems, is not adequate.
In general, a (possibly mixed) quantum state ρin can undergo a unitary transformation, a non-unitary
transformation, an error process or a coupling with its surroundings (often called the environment of
the system), among other things. Generally speaking, this will produce a density matrix ρout, and ρin
is said to have gone through the quantum system or quantum channel. Due to the possible coupling
with its surroundings, this is called an open quantum system. Quantum Channels can be characterized
as linear maps, where they map density matrices to density matrices.
Not any linear map can be a quantum channel; there are some constraints an restrictions put on them
in the framework of open quantum systems, which are introduced in section 3.1. There exist various
representations of the maps Λ, of which some are introduced in section 3.2. Some common channels
are introduced in s:commonchannels, and section 3.5 does the same for error channels specifically.
Finally, two tools that help in analysing error maps are introduced at the end of the chapter: section
3.6 introduces an approximation of error maps called the Pauli Twirl, and section 3.7 introduces a
measure of how good a process is when it is compared to the ideal or desired operation, that is the
equivalent of state fidelities for processes.

3.1 Channels as linear maps

If we have a quantum system Λ, with an input state ρin of dimension n × n and an output state
ρout = Λ(ρin) of dimension m×m, we can view this system or channel as a linear map from the space
of n × n hermitian matrices to the space of m ×m Hermitian matrices: Λ :Mn×n →Mm×m. Note
that this map is not necessarily an isomorphism, however for every unitary operation this is the case.

3.1.1 Restrictions: Complete Positivity & Trace preservation

Since both the input and output state are physical density matrices, there are extra constraints on Λ.
There are two important constraints imposed; complete positivity and trace preservation. Any physical
density matrix should be positive-semidefinite (i.e. should have only non-negative eigenvalues). This
should hold for any (possibly mixed) state put through Λ, but also if only part of a state is put through
the system. Thus, if we have an extended density matrix space Mn1×n1 ⊗Mn2×n2 and for the map
(Λ⊗ In2) :Mn1×n1 ⊗Mn2×n2 →Mm1×m1 ⊗Mn2×n2 we should have (Λ⊗ In2) (ρext,in) = ρext,out ≥ 0,
for any extended ρext. It can be shown [7] that it is enough to show this only for n2 = n1. Any map that
has this property is said to be completely positive. The extension ofMn1×n1 toMn1×n1⊗Mn2×n2 can
be viewed as coupling of the system space to an environment. Thus, the first subspace is the system
space, and the second subspace is the environment.
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Furthermore, any physical state ρ should have unit trace [6] for normalization. Thus, the condition
tr(Λ(ρ)) = tr(ρ)∀ρ must hold. This is exactly the criterion for Λ to be trace preserving.

Any map that is completely positive (CP) and trace preserving (TP) is called a CPTP-map. Fur-
thermore, it is often so that m = n and therefore that the map Λ maps Mn×n to itself. This will be
the case in this text unless otherwise noted.

3.2 Representations of Λ

There exist various equivalent representations of a channel Λ. In this section I state various represen-
tations and their conditions for CP and TP. All proofs for CP and TP are in appendix A.1 and A.2
respectively.

3.2.1 The χ matrix

Let {Bi} be any orthogonal basis forMd×d, s.t. 〈Bi, Bj〉 = dδij , with d = 2n. The map Λ can always
be written in the form:

Λ(ρ) =
d2−1∑
m,n=0

χm,nBmρB
†
n. (3.1)

Here the d2×d2 matrix χ is called the process matrix of Λ. χ, together with the basis {Bi}, completely
characterises the map Λ. Very often the Pauli basis is used for {Bi}; the representation of Λ then
simplifies somewhat, since that basis is unitary. We will use the Pauli basis unless otherwise specified.

If a system acts on a set of n qubits with a process matrix χ1, and on another set of n′ qubits with
a process matrix χ2, a representation of the full system working on all n+ n′ qubits is χ1⊗χ2, in the
basis {B1,i}⊗{B2,i}. If the Pauli basis is used for both χ1 and χ2, the new basis becomes exactly the
Pn+n′ group.

Complete Positivity and Trace Preservation

Any channel Λ is completely positive if and only if its χ matrix is positive-semidefinite, implying all
non-negative real eigenvalues and Hermicity for χ. For Λ to be TP, it is necessary and sufficient for χ
to obey the following equality: ∑

m,n

χm,nB
†
nBm = I. (3.2)

As a direct consequence, χ always has trace 1, but this is not a strong enough statement for trace
preservation. There are d2 constraints coming from Eq. (3.2), which is consistent with the number of
constraints for the Choi matrix (sect. 3.2.2) to be TP.

Calculating χ matrix of a unitary process

Any unitary process U can be decomposed into a sum of the Pauli matrices: U =
∑

Pk∈Pn pkPk, with

pk = 〈Pk, U〉 = tr
[
P †kU

]
. Since a map of a unitary operation U can be written as Λ(ρ) = UρU † =∑

Pm,Pn∈Pn pmp
∗
nPmρP

†
n, it is evident that for a unitary operation χ = |U〉P 〈U |P , with |U〉P the vector

of all weights of the Pauli decomposition of U , so χ has rank 1.

3.2.2 Choi matrix

For a map Λ acting on n qubits, the Choi matrix ρChoi is the density matrix obtained after putting
half of the maximally entangled state |Ω〉 through the channel Λ, while doing nothing on the other
half. Let d = 2n be the system dimension. Then:

ρChoi = (Λ⊗ I)
(
|Ω〉 〈Ω|

)
=
∑
i,j

1

d
Λ
(
|i〉 〈j|

)
⊗ |i〉 〈j| . (3.3)
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The Choi matrix characterizes Λ completely; this is a result of the Choi-Jamiolkowski isomorphism [8],
that forms the basis of the channel-state duality. It states that there is a link between the space of CP
maps and the space of density operators. There is a straightforward interpretation to the Choi matrix;
it is a block matrix with at the (i, j)-th block the matrix Λ(|i〉 〈j|). By linearity, the action of the map
on any state ρin can be calculated from these elements Λ(|i〉 〈j|), thereby completely specifying the
map.

Complete Positivity and Trace Preservation

Since ρChoi is a density matrix, it is positive-semidefinite. This is also a sufficient condition for the
corresponding Λ to be completely positive, based on Choi’s theorem on completely positive maps [7].

The condition for Λ to be trace preserving is that if one traces out the system of ρChoi one should
obtain the maximally mixed state:

tr1
[
ρChoi

]
=

1

d
I. (3.4)

Again, there are d2 constraints for TP coming from Eq. (3.4), consistent with Eq. (3.2) for the χ
matrix. Thus, ρChoi always has trace 1, but this is not a strong enough statement for trace preservation.

The extra constraint of trace preservation on the map Λ also has consequences for the Choi-
Jamiolkowski isomorphism. The isomorphism still holds, but it is now between the space of CPTP
maps and a subspace of the space of density operators: the space of density operators for which
constraint (3.4) holds.

3.2.3 Kraus decomposition

Any linear map Λ(ρ) can be written as Λ(ρ) =
∑

k LkρR
†
k for some set of operators {Lk} and {Rk} by

summing over enough k1. The Kraus representation of a map is when {Lk} = {Rk} (these are then
called the Kraus operators {Ak}):

Λ(ρ) =
∑
i

AiρA
†
i . (3.5)

A Kraus representation of a map is only possible if that map is CP. Therefore, complete positivity is
inherent to a Kraus representation. The condition on the Kraus operators for the corresponding Λ to
be trace preserving is

∑
k A
†
kAk = I. As such, if there is only one Kraus operator, that operator is

necessarily unitary for a trace preserving map.
The Kraus- or operator-sum representation is useful for the following way: for every Ak there is a

probability tr
[
AkρA

†
k

]
that it will happen, and therefore the resulting state is a statistical mixture of

all the resulting states AkρA
†
k. Any channel Λ can be represented by a Kraus representation with at

most d2 Kraus operators. Note the similarities with a POVM.
However, the set of operators {Ak} is not unique; there are always multiple sets of operators that

represent the same channel. Any two sets of Kraus operators {Ak} and {Bk} that correspond to the
same system Λ are linked via a unitary matrix U : Bi =

∑
j UijAj [6].

3.2.4 Superoperator representation

The superoperator representation is essentially a vectorized version of the χ matrix, or the χ matrix
in a different basis. Using the identity |ABC〉〉 =

(
CT ⊗A

)
|B〉〉, a vectorized version of any BmρinB

†
n

can be seen as a matrix product on the vectorized version of ρin:
(
B†

T

n ⊗ Bm
)
|ρin〉〉. This allows

for summation of all individual elements of the χ matrix to obtain one matrix S ∈ Md2×d2 that
completely characterizes Λ:

|ρout〉〉 = S|ρin〉〉 =
(∑
m,n

χm,nBn ⊗Bm
)
|ρin〉〉. (3.6)

1This can be achieved by using the set of all d4 combinations Lk, Rk = Bi, Bj for {Bi} the canonical basis of Md,
up to a scalar multiplication. Then |Λ(ρ)〉〉 =

∑
k(RTk ⊗ Lk)|ρ〉〉=̂

∑
mn,ij Amn,ijρij , so any linear combination of the

elements of ρ can be written like this.
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This representation allows for easy calculation of composite maps, because Λ2

(
Λ1

(
ρ
))

can now (in
vectorized form) be written as S2S1|ρ〉〉; the action of multiple maps can thus also be represented by
a single matrix S = S2S1.

The complete positivity and trace preservation conditions are less intuitive and well defined for the
superoperator than they are for other representations of Λ. To check complete positiveness or trace
preservation, it is easier to map back to another representation and check the CPTP constraints in
that representation. This representation is not very intuitive overall, but it is very useful to find a
representation of composite maps. As such, it is best used as an intermediate and to convert to a
different representation in the end.

3.3 Relations between different representations

Although all representations are in principle equivalent, some representations are better suited than
others for certain situations. There are relations in between all representations, such that every
representation can be obtained. Sometimes it is easier to use an intermediate representation to go
from one to another. The proofs of the following relations can be found in appendix A.3.

3.3.1 The Choi matrix and Λ(ρ)

The actual outcome ρout after applying a map to a density matrix can be obtained from the Choi
matrix using the following relation:

Λ(ρ) = d tr2
[
ρChoi(I ⊗ ρT )

]
. (3.7)

This has little experimental merit, it is useful however when the outcome of a map is to be calculated
when the only characterization of the map that is known is its Choi matrix. To calculate the Choi
matrix from Λ itself is straightforward using the definition of the Choi matrix.

3.3.2 The Choi matrix and χ matrix

The Choi matrix can be calculated as the χ matrix in the basis {|Bi〉〉} = {
(
Bi ⊗ I

)
|Ω〉}. Thus:

ρChoi =
∑
m,n

χm,n|Bm〉〉〈〈Bn|. (3.8)

This equation shows that, in principle, the Choi matrix is actually the χ matrix in a specific basis
{|Bi〉〉}.

To obtain the coefficients of χ from the Choi matrix is straightforward:

χm,n = 〈〈Bm|ρChoi|Bn〉〉. (3.9)

When working with the Pauli basis, the Choi matrix is thus the χ matrix in the Bell basis.

3.3.3 The χ matrix and the Kraus decomposition

To calculate the χ matrix from the Kraus representation is straightforward; the Kraus operators need
only be decomposed into the desired basis {Bm} using the Hilbert-Schmidt inner product. After
summing over all Kraus operators, the desired representation is obtained:

χm,n =
∑
k

〈Bm, Ak〉〈Ak, Bn〉 =
∑
k

tr
[
B†mAk

]
tr
[
B†nAk

]∗
(3.10)

A Kraus representation of Λ can be obtained from the χ matrix using its eigendecomposition. χ
(with a specified basis {Bm}) can always be diagonalised, because it is Hermitian. Each eigenvector
|ψi〉 weighed by its corresponding eigenvalue λi then represents a Kraus operator Ai, with the weights
of the decomposition of Ai into {Bm} the elements of |ψi〉: Ai =

√
λi
∑

j 〈j, ψi〉Bj . Thus, the number of
Kraus operators is directly linked with the number of non-zero eigenvalues of χ. Since the eigenvalues
of a matrix do not depend on the basis in which it is expressed, the Kraus operators do not depend
which basis {Bm} is chosen.
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3.3.4 The Choi matrix and the Kraus decomposition

The Choi matrix can be calculated from the Kraus operators using the definition of the Choi matrix:

ρChoi =
1

d

∑
i,j,k

Ak |i〉 〈j|A†k ⊗ |i〉 〈j| . (3.11)

Obtaining a set of Kraus operators from the Choi matrix can be done by diagonalizing ρChoi. From
its eigenvalues and eigenvectors λk and |ψk〉 one can obtain a set of Kraus operators obeying |Ak〉〉 =√
λk |ψk〉. Furthermore, these Kraus operators are all orthogonal to each other: tr

[
A†iAj

]
=
√
λiλjδij .

3.3.5 The χ matrix and the superoperator

As mentioned, using the identity |ABC〉〉 =
(
CT⊗A

)
|B〉〉 the superoperator matrix S can be calculated

from χ:

S =
∑
m,n

χm,nBn ⊗Bm. (3.12)

Obtaining the χ matrix from S can be done using the Hilbert-Schmidt inner product:

χm,n = tr
[(
Bn ⊗Bm

)†
S
]
. (3.13)

When using the superoperator representation to calculate the total product of multiple maps,
special care needs to be taken when going back to the χ (or any other) representation. Using multiple
superoperator-matrices after each other on a state does preserve the trace, but only if a non-normalized
basis as introduced in 3.2.1. However, if a different basis is used, this results only in a scalar offset, so
the χ matrix can be normalised to obtain the proper state.

3.4 Common channels

Here I will introduce some channels that are very common. When determining representations of
maps Λ they play an important role, and they are applicable in many other representations.

3.4.1 Unitary channels

A unitary operation on a density matrix ρ can be seen as a map Λ(ρ) = UρU †. This is essentially a
Kraus representation of Λ, with only one Kraus operator. Therefore, both the χ and the Choi matrix
only have 1 non-zero eigenvalue, which is equal to 1.

Calculating the χ matrix of a unitary process works essentially the same when mapping a Kraus
representation to a χ representation of the same system. Since there is now only one Kraus operator,
the process is straightforward. First, calculate the support of U on every element of the desired basis
{Bm}, and put those in a vector |u〉. That is, 〈i, u〉 = tr

[
B†iU

]
. Then, the χ matrix of U in that basis

is χU = |u〉 〈u|.
Calculating the Choi matrix for a unitary operation works much like calculating the χ matrix,

but here U itself can be vectorized immediately to obtain |U〉〉. This reflects the idea that the Choi
matrix is the χ matrix in a specific basis. So, for a unitary U , the Choi matrix is of the form
1

d

∑
i,j U |i〉 〈j|U † ⊗ |i〉 〈j|. This leads to ρChoi = |U〉〉〈〈U |, with |U〉〉 the vectorized version of U .

3.4.2 Pauli channels

Any CPTP channel of the form Λ(ρ) =
∑

Pk∈Pn pkPkρPk (with
∑

k pk = 1) is a Pauli channel; all
its Kraus operators are Pauli operators, each with their own specific weight pk. The corresponding χ
matrix in the Pauli basis is a diagonal matrix, with χk,k = pk.

A Pauli channel is often easy to work with, because it has concrete distinct operations on ρ just as
with a Kraus representation, with the added qualities that those operations are the well-understood
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Pauli operations, and that its representation in those operators is unique. Furthermore, Pauli channels
are classically efficiently simulatable2.

The Choi matrix of a Pauli channel also has a nice interpretation. Since states |Pk〉 =
(
Pk ⊗ I

)
|Ω〉

(with Pk ∈ Pn) are all the different generalized Bell states, the Choi matrix for a Pauli channel becomes
a statistical mixture of Bell states: ρChoi =

∑
k pk |Pk〉 〈Pk|.

3.4.3 Partial trace as a channel

Taking the partial trace of a system can also be viewed as a channel. Tracing out the ith qubit of an
n-qubit system has the following Kraus operators:

Ak = I⊗
i−1 ⊗ 〈k| ⊗ I⊗n−i , (3.14)

with I⊗
i−1

the identity matrix tensor itself i − 1 times, and {|k〉} is the computational basis for the
ith qubit. Note that these Kraus operators are not square, indicating that this channel is a linear map
from the operator spaceMd×d to a smaller operator spaceM(d−1)×(d−1). Tracing out more qubits can
be done in succession or by replacing the I operators in the Kraus operators by 〈k| for those specific
qubits.

3.5 Common error channels

A typical error in a quantum circuit arises when it is influenced by an environment. Therefore, errors
are hard to describe in the formalism of closed quantum systems, but within open quantum systems
they can be described easily; an error on a quantum system can be viewed as a channel acting on
that system. Two common errors that happen on qubits are the dephasing and depolarizing errors.
Both these channels are Pauli channels. Another common channel is the amplitude damping channel,
which is however not a Pauli channel.

3.5.1 Systematic errors

An implementation Uact of a unitary operation might always differ from the desired operation Uideal

by a constant operation Uerr. Such an error is called a systematic error:

Uact = UerrUideal, (3.15)

and normally the error is small: Uerr ≈ I. Systematic errors are usually an indication of a poorly
calibrated device or gate set.

3.5.2 Dephasing channel

When there is a probability p that the (relative) phase of a qubit flips, the phase becomes gradually
less defined. Such a process is a dephasing error, and it can be described as a channel with a Kraus
decomposition of two operators: A1 =

√
1− pI and A2 =

√
pZ. The channel acting on a qubit in the

state ρ =

[
a b
b∗ d

]
yields:

Λdeph(p)

([a b
b∗ d

])
= (1− p)

[
a b
b∗ d

]
+ p

[
a −b
−b∗ d

]
=

[
a (1− 2p)b

(1− 2p)b∗ d

]
. (3.16)

Thus, the dephasing channel brings the off-diagonal elements gradually down; when p = 1
2 , the

channel Λdeph( 1
2
) is known as the complete dephasing channel. Since pure states that are superpositions

have off-diagonal elements, whereas purely statistical mixtures have no off-diagonal elements, the
complete dephasing channel destroys any coherence that exists between the two basis states of the
qubit. The complete dephasing channel destroys any coherent quantum information, and as such the

2This can be done by performing Gottesman-Knill simulation, see section 5.5 for more details.
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dephasing channel decoheres the qubit. This can be viewed on the Bloch sphere as a process that
gradually maps the full Bloch sphere (and any coherent state on it) to an ellipsoid centered around
the Z axis; the complete dephasing channel then projects every state on the Bloch sphere to the Z
axis.

|0

|1

p = 0.0
|0

|1

p = 0.17
|0

|1

p = 0.33
|0

|1

p = 0.5

Figure 3.1: Action of the dephasing channel on the entire Bloch ball for {p = 0, 16 ,
1
3 ,

1
2}. With probability

p the relative phase of the qubit is flipped, resulting in a loss of coherence between the |0〉 and |1〉 state,
thereby mapping the qubit state to the Z-axis in the Bloch sphere. For p = 1

2 the relative phase is completely
randomized, resulting in a projection onto the Z-axis. If the initial qubit state was |0〉 or |1〉 there is no effect
from the channel, but if the qubit state was a superposition then the coherent information is gradually lost.

A qubit may undergo a map that decoheres the qubit steadily; the off-diagonal terms are going to
zero as e−t/T2 . Here, T2 is the rate of qubit decoherence. The gradual decay of coherence can then be
viewed as a process that every 1

T2
unit time the qubit can decohere completely, obtaining a statistical

mixture on the qubit. There exist a relation of the T2 time with the T1 relaxation time, see section
3.5.4.

Furthermore, if the Pauli basis is used, the χ matrix for the dephasing channel is a diagonal matrix:
χI,I = 1− p, χZ,Z = p, and all other terms are 0. When two qubits both undergo a dephasing process
separately, the resulting map can be characterized by a Kraus representation where the Kraus operators
are all possible tensor products of the 1-qubit operators: A1 = (1 − p)II, A2 =

√
p(1− p)IZ,A3 =√

p(1− p)ZI & A4 = pZZ. This generalizes to more qubits: the set of Kraus operators for n qubits
is then {A}⊗n, resulting in 2n Kraus operators.

3.5.3 Depolarizing channel

In the depolarizing channel, the Pauli X,Y and Z operators are all applied to the state with equal
probability p

3 , while the state can also be left intact. For one qubit, The Kraus operators are:

{Ak} = {
√

1− pI,
√
p

3
X,

√
p

3
Y,

√
p

3
Z}. (3.17)

Λdep(p) acting on a qubit in the state ρ =

[
a b
b∗ d

]
yields:

Λdep(p)

([a b
b∗ d

])
=

[
(1− 2p

3 )a+ 2p
3 d (1− 4p

3 )b

(1− 4p
3 )b∗ (1− 2p

3 )d+ 2p
3 a

]
. (3.18)

Since tr(ρ) = 1, this can be rewritten as:

Λdep(p)(ρ) = (1− 4p

3
)ρ+

4p

3

I

2
. (3.19)

The depolarizing channel takes a convex combination of ρ with the maximally mixed state, regard-
less of the initial state ρ. In the Bloch sphere this can be viewed as gradually going down to the
origin; essentially deflating the Bloch sphere. For p = 3

4 , we get the completely depolarizing channel;
Λdep( 3

4
)(ρ) = 1

2I for any input state ρ. The qubit is arbitrarily rotated in any direction, all with equal

probability, and none of the initial information remains. The Bloch sphere is then completely mapped
to the origin.
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Figure 3.2: Action of the depolarizing channel on the entire Bloch ball for p = {0, 14 ,
2
4 ,

3
4}. A RX(π), RY (π)

or RZ(π) rotation is applied to the qubit with equal probability p
3 . Therefore, the qubit state is generally

randomized, resulting in a mapping to the maximally mixed state in the origin of the Bloch sphere. For p = 3
4 ,

the qubit state is in an equal mixture of rotations over all axes, destroying any information initially encoded on
the qubit, and thus obtaining the maximally mixed state.

When using the Pauli basis, the χ matrix is again a diagonal matrix, with χI,I = 1 − p and
χX,X = χY,Y = χZ,Z = p

3 .

A 2-qubit depolarizing channel can also be defined, with Kraus operators A1 =
√

1− pI and all

other elements of P2 with equal weight
√

p
15 , for a total of 16 Kraus operators. This depolarizing

channel can be used in simulations as an error map for 2-qubit unitary operations.

3.5.4 Amplitude damping channel

The amplitude damping channel gradually maps a qubit to the |0〉 state. It is a useful representation
of a qubit for which the |0〉 state is the ground state and the |1〉 state is an excited state. The the qubit
can go from the excited state to the ground state, called relaxation; the inverse is far less probable
and is not modelled here.

There are 2 Kraus operators for this channel:

A1 =

[
1 0
0
√

1− p

]
=

1 +
√

1− p
2

I +
1−
√

1− p
2

Z,

A2 =

[
0
√
p

0 0

]
=
√
p(X + iY ).

(3.20)

A2 is the lowering operator, that maps the |1〉 state to the |0〉 state. A1 can be interpreted as the
operator that corresponds to nothing happening to the qubit. If after some time the qubit has not
decayed, it means that the qubit was more likely to be in the |0〉 state to begin with, resulting in√

1− p as the lower right element. Note that A1 is also essential to uphold the trace-preservation
condition

∑
k A
†
kAk = I.

Λamp(p) acting on a qubit in the state ρ =

[
a b
b∗ d

]
yields:

Λamp(p)

([a b
b∗ d

])
=

[
a+ pd

√
1− pb√

1− pb∗ (1− p)d

]
. (3.21)

In the Bloch sphere representation, amplitude damping also deflates the Bloch sphere. However, the
|0〉 is left untouched, so the north pole of the Bloch sphere (instead of the origin as with the depolarizing
channel) stays fixed as it deflates, see figure 3.3. For p = 1, we get the complete amplitude damping
channel, and the entire Bloch sphere is mapped to the |0〉 state. When expressed in the Pauli basis,
the χ matrix corresponding to the amplitude-damping channel is not diagonal; but the coefficients
can be calculated from the decomposition of A1 and A2 into the Paulis.

The characteristic time that is associated with amplitude damping is known as the relaxation time
T1, corresponding to the decoherence time T2. If a qubit state undergoes relaxation, it also gradually
loses its coherence. Therefore, T2 is bounded by T1: T2 ≤ 2T1 [6].
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Figure 3.3: Action of the amplitude damping channel on the entire Bloch ball for p = {0, 14 ,
3
5 , 1}. The qubit

state is gradually mapped to the |0〉 state; the |1〉 state is flipped to the |0〉 state with probability p, whereas
the inverse does not happen. This can be interpreted as the qubit relaxing to its ground state |0〉. For p = 1
the qubit is completely relaxed, obtaining the |0〉 state. Note that this model is not completely physically
motivated; a qubit with finite temperature will generally relax to a statistical mixture of its ground- and exited
state, and not only to its ground state.

The amplitude damping model described here is not necessarily very physical: a qubit will generally
decay to a statistical distribution on the |0〉 and |1〉 state, with the distribution on those two states
determined by the temperature of the qubit. Generally, there will be a non-zero occupation of the |1〉
state after complete damping. To model this, the raising operator must also be included as a Kraus
operator; this allows for excitation of the qubit from the |0〉 tot the |1〉 state. Generally speaking,
the amplitude damping channel (with 2 Kraus operators) models a qubit with temperature T = 0,
whereas the generalized model (with 3 Kraus operators) models a qubit with a finite temperature.

3.6 Pauli Twirl approximation

An approximation of a map Λ can be generated by taking the Pauli twirl operation. The Pauli twirl
generates a map Λ:

Λ(ρ) =
1

d2

∑
m

P †mΛ(PmρP
†
m)Pm, (3.22)

with {Pm} = Pn.
When Λ is represented by its χ matrix in the Pauli basis, the Pauli twirl of Λ is exactly taking the

diagonal of χ and setting al other elements to 0. This operation gives a simple way of obtaining an
approximation of Λ which has only Pauli elements as its Kraus operators, generating a Pauli channel.

3.6.1 Error Weight ratio

A possible error E on a quantum state is a t-qubit error if it is a linear combination of operators Ei
all with weight wt(Ei) ≤ t. These individual Ei’s do not necessarily have to have their support on the
same qubits; in principle a t-qubit error can act non-trivially on all qubits of a system. Furthermore,
if the Kraus operators of an error channel are all t-qubit errors themselves, the channel is a t-qubit
error channel.

1-qubit errors are generally easier to correct than multi-qubit errors. Therefore, the ratio of multi-
qubit errors to single-qubit errors is an important value. Even if a certain error channel is a multi-
qubit channel, if all but one of its Kraus operators are 1-qubit errors, and if the probability of that
particular multi-qubit error happening is lower, that channel is at least ostensibly less severe than a
general multi-qubit error channel.

The Pauli twirl gives an Pauli channel approximation Λ of any Λ, with a corresponding χ =
diag(p1, p2...., pd2). A measure of the amount of single-qubit and multi-qubit errors of the map is
the sum of all eigenvalues of χ that correspond to the weight-1 and weight-2 operators. So, with
Ps : {P ∈ P|wt(Pi) = 1} and Pm : {P ∈ P|wt(Pi) > 1},

s0 = pI , s1 =
∑
Pk∈Ps

pk, s2+ =
∑

Pk∈Pm

pk. (3.23)
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The ratio of multi-qubit errors to single-qubit errors can then be calculated as r = m
s . Note that r

does not indicate any information of how much error there is in total, and furthermore that s+m ≤ 1,
where there is only an equality if pI = 0, something that will generally not happen often, especially
not when error channels are concerned.

3.7 Process fidelity

A measure that is used to test the quality of a map is the process fidelity Fp. If there is a desired
unitary process represented by χideal, then the process fidelity of a system or channel represented by
χ is:

Fp = tr
[
χidealχ

]
= tr

[
χχideal

]
= tr

[
ρChoiρChoi,ideal] (3.24)

Note here that the product χidealχ is indeed the matrix product. The last identity follows from the
fact that the Choi matrix is the χ matrix in a specific basis. The process fidelity is thus the same as
the state fidelity for the Choi matrix.

The desired operation is a unitary operation U and its process matrix χideal can be diagonalized
resulting in only one non-zero eigenvalue (see section 3.4.1). The process fidelity then becomes:

Fp = 〈u|χ |u〉 (3.25)

with |u〉 as defined in section 3.4.1: |u〉 is that vector for which 〈i, u〉 = tr
[
B†iU

]
.

Another used quality measure is the channel fidelity. For a channel with a Choi matrix ρChoi, with
a desired operation U , the channel fidelity is:

Fc = 〈Ω|
(
U † ⊗ I

)
ρChoi

(
U ⊗ I

)
|Ω〉 (3.26)

Using the Choi matrix to calculate Fp and making use of Eq. (3.11), it is easy to see that for unitary
processes the process fidelity and channel fidelity are the same.

To analyse or characterize a system, or specifically the errors on a system, a representation of that
system that characterizes it as a map Λ must be obtained. This can be done by performing quantum
process tomography, which will be introduced in chapter 3.
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Chapter 4

Quantum process tomography

When designing or implementing a quantum circuit, there is a specific operation meant to be per-
formed. However, imperfections in the implementation can give rise to imperfections on that operation.
Without knowing what the system does, adequately performing any task with the system is difficult
indeed. Being able to analyse or characterize a system is therefore an important tool. Sometimes it
is enough to only characterize a specific output of a system (or any other quantum state). To full
characterize any quantum state its density matrix needs to be determined. When many copies of the
state can be prepared, these copies can be used to measure the state in a full set of measurement
observables. Typically the Pauli basis is used, with observables X,Y & Z for every qubit, resulting
in a total of 3n different measurements. By repeating, the expectation value of each observable can
be determined, and from this the density matrix state can be reconstructed. This process is known as
quantum state tomography or QST.

When the action of a quantum mechanical operation on an arbitrary input state needs to specified
completely, it essentially means that a description needs to be found that characterizes the operation
as an open quantum system. As discussed in chapter 3, any representation introduced there will do,
as they all are equivalent. Such undertakings of characterizing a system as an open quantum system
is known as quantum process tomography or QPT. There are various ways of doing this, with the most
straightforward method being standard quantum process tomography or SQPT. Quantum process
tomography is very costly; there are at least 12n different experiments to specify an n-qubit system,
which all need to be performed a large number (∼ 1000− 10000) of times to estimate the expectation
values of those experiments.

In this chapter, I will introduce the method of SQPT to characterise the operations as quantum
channels as introduced in chapter 3 via one of the representations, which is in section 4.1. This is done
by inversion of a linear system of equations. Errors introduced by this method are discussed in section
4.2. These errors can lead to estimated descriptions of the channel that are not CPTP, so a method
of solving these problems is discussed in section 4.3. A method to characterize the errors induced by
a channel is introduced as the error matrix χerr in section 4.4. The fidelity of a process is discussed
and linked to the eigenvalues of the χ matrix. Furthermore, a brief discussion on other methods of
characterizing quantum systems can be found at the end of the chapter in section 4.5.

4.1 Standard quantum process tomography

In standard quantum process tomography, the expectation values of measurements are linked to a
description of the operation like its χ matrix or the Choi matrix. This gives a system of equations to
be solved. I will denote the expectation value of a measurement observable M on a qubit in the state ρ
with Eρ,M = tr

[
Mρ

]
. First I will show how χ and the expectation values are related in section 4.1.1.

Then, in section 4.1.2, I will show how to obtain the expectation values from actual measurement
data.
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4.1.1 SQPT: Linear inversion

Eρ,M is of the form Eρ,M = tr
[
Mρ

]
. If the expectation values of a full set of observables are known,

the full output state ρ can be specified; a full set of observables is any set of operators that spans the
operator space for ρ. Most often, the Pauli basis Pn is used, resulting in 4n different expectation values
that are needed to characterize a density matrix. The reconstruction of ρ is then straightforward:

ρ̂ =
∑
Pk∈Pn

1

d
Eρ,PkPk. (4.1)

This is known as quantum state tomography.
If the goal is not to characterize a state but a process, we can accomplish this by characterizing the

action of the operation on an informationally complete set of input states, by performing QST on all
corresponding outputs, where an informationally complete set of states is a set for which the density
matrices within that set span the entire operator space; this is minimally 4n. However, another used
option is the set of Pauli eigenstates. Note that this regards all eigenstates of all Paulis, for a total of
6n.

The expectation value of a state ρout = Λ(ρin) is then:

Eρin,M = tr
[
Mρout

]
= tr

[
MΛ(ρin)

]
= tr

[
M
∑
m,n

χmnPmρinPn
]

=
∑
m,n

χm,n tr
[
MPmρinPn

]
. (4.2)

Now, if the set of input states is informationally complete, we can rewrite all expectation values
of the form Eρin,M (as obtained from measurements) into a form λij = tr

[
PjΛ(Pi)

]
. Here both the

measurement observable and the input density matrix is regarded as a Pauli operator. We then get
the simplified expression:

λij =
∑
m,n

χm,n tr(PjPmPiPn), (4.3)

with i corresponding to the input Pauli, and j corresponding to the measurement basis.
This is a set of linear equations, that links the λij ’s with the process matrix χ. When the Paulis

are used for λij , there are just as many elements in λij as there are elements in χm,n: (d4). This set
of equations can therefore be specified by a square matrix, when λij and χm,n are both put in vector
form:

λ = Aχ, (4.4)

with A the d4 × d4 matrix that links χ and λ: Aij,mn = tr
[
PjPmPiPn

]
. A is Hermitian1 and unitary.

This means that A−1 = A† = A and thus that χ = Aλ; by de-stacking χ the process matrix χ is then
obtained.

Note that the Pauli operators Pi cannot actually be prepared, because they are not valid density
operators. However, by linearity of quantum mechanics they can be written as linear combinations of
their eigenstates, which can be prepared experimentally. Therefore, the expectation values λij from
Eq. (4.3) can be written as linear combinations too.

4.1.2 Obtaining the expectation values from measurement data

Writing the input operators as sums of actual input states

As stated in the previous section, the expectation values λij from Eq. (4.3) are not directly accessible
by measurement. For example, it is impossible to prepare a trace 0 operator, so we can not prepare a
Pauli basis as an input state ρin as in Eq. (4.3). However, using the linearity of quantum mechanics,
different experimentally attainable expectation values can be combined to calculate all λij .

To see this, note that any Pauli operator can always be written as its eigendecomposition: P =∑
i λi |ψi〉 〈ψi|. Since any Pauli only has +1 and −1 eigenvalues, this is equal to:

P =
∑
λi=1

|ψ+〉 〈ψ+| −
∑
λi=−1

|ψ−〉 〈ψ−| , (4.5)

1This follows from: Amn,ij = tr
[
PnPiPmPj

]
= tr

[(
PnPiPmPj

)†]
= tr

[
P †j P

†
mP
†
i P
†
n

]
= tr

[
PjPmPiPn

]
= Aij,mn,

with the overline denoting the complex conjugate of the scalar.
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with {|ψ+〉} a basis for the +1 eigenspace and {|ψ−〉} a basis for the −1 eigenspace of P . The
individual eigenvectors |ψ+〉 〈ψ+| and |ψ−〉 〈ψ−| can now be prepared on a system of qubits. If the
basis as introduced in section ?? is used, the states that need to be prepared are just the 6 1-qubit
Pauli eigenstates on every qubit, for a total of 6n preparation states. All Paulis, including the identity
operator, can be written as a linear combination of these 6n states.

A specific expectation value λij = tr
[
PjΛ(Pi)

]
can then be decomposed in the eigenbasis of Pi,

because both the map and the trace is linear:

λij =
∑
{|ψ+〉}

tr
[
PjΛ(|ψ+〉 〈ψ+|)

]
−
∑
{|ψ−〉}

tr
[
PjΛ(|ψ−〉 〈ψ−|)

]
. (4.6)

Expectation values can not be measured themselves, they can only be estimated from measuring
observables on qubit states. So, actual experiments allow us to estimate tr

[
PjΛ(|ψ〉 〈ψ|)

]
, for any

Pj ∈ Pn. If a measurement apparatus provides this specific form data, the expectation values λij are
easily calculated using Eq. (4.6).

Extra care has to be taken when the decomposition of Pj into single qubit Paulis contains one or
more identity operators, because then Pj is not a valid measurement observable. However, from the
outcomes of the measurements of observables that are tensor products of only the Pauli X,Y and Z
operators, λij for any Pj can be determined, as explained in the next section.

Determining the expectation value of a measurement from data

When a single qubit in a state ρ is measured in the eigenbasis of a Pauli Pj , the outcome of that mea-
surement indicates whether that qubit is in the +1 or −1 eigenstate of that basis. If the measurement
is repeated Ntot times, N+ times it will be in the +1 eigenstate, and N− in the -1 eigenstate, with
N++N− = Ntot. The expectation value λρ,Pj can now be estimated from these counts: λρ,Pj ≈ N0−N1

Ntot
.

This can be thought of as decomposing the measurement observable into its eigenbasis:

λρ,Pj = tr
[
Pjρ
]

= tr
[
|ψ+〉 〈ψ+| ρ

]
− tr

[
|ψ−〉 〈ψ−| ρ

]
≈ N0

Ntot
− N1

Ntot
. (4.7)

Extending to multiple qubits is now straightforward. The measurement Pauli Pj can be decomposed
into its eigenspaces (Pj = Π+j −Π−j), and if the counts of the +1 and −1 eigenspace projections are
known, the individual terms tr

[
PjΛ(|ψ〉 〈ψ|)

]
in Eq. (4.6) can be estimated from these counts:

tr
[
PjΛ(|ψ〉 〈ψ|)

]
= tr

[
Π+Λ(|ψ〉 〈ψ|)

]
− tr

[
Π−Λ(|ψ〉 〈ψ|)

]
≈ N+

Ntot
− N−
Ntot

. (4.8)

Performing a non-destructive measurement to determine if a multi-qubit state is in the +1 or −1
eigenspace of Pj is generally not trivial2. However, Pj can, just like Pi, be decomposed into a basis of
its +1 and −1 eigenspaces, {|φ+〉} and {|φ−〉} resp.:

tr
[
PjΛ(|ψ〉 〈ψ|)

]
=
∑
{|φ+〉}

tr
[
|φ+〉 〈φ+|Λ(|ψ〉 〈ψ|)

]
−
∑
{|φ−〉}

tr
[
|φ−〉 〈φ−|Λ(|ψ〉 〈ψ|)

]
. (4.9)

All of these decompositions can in principle be performed for any set that makes an eigenbasis; we
need only ensure that the two sets spans the whole operator space. However, by using the tensor
products of the single qubit Pauli eigenstates as a basis (i.e. the eigenstates introduced in section
2.2.4), the measurements become separable: for a measurement of Pj = P 1

1 ⊗ ....⊗ Pn1 , the ith qubit
can be measured in the basis specified by P i1 (if P i1 6= I), and from those measurement outcomes, the
corresponding multi-qubit eigenvalue can be determined. When a P i1 = I, the measurements of any
other Pauli observable can be used; all measurement outcomes then correspond to a +1 eigenstate
because every state is a +1 eigenstate of I.

There is no need to collapse the state to an eigenspace of Pj in one measurement; this can be done
in steps by collapsing to all eigenspaces of the separate single qubit Paulis separately. Measuring all

2One way of doing this is by entangling the system with an ancilla in the same way as a stabilizer measurement. This
has several drawbacks, but might also have advantages. See 9.1.
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qubits separately gives rise to a bitstring s of length n, that then corresponds to a specific eigenstate
|φs〉, for a total of 6n different bitstrings, coming from 3n different measurement observables, namely
X, Y and Z for every qubit.

Now, by running the experiment Ntot times, we get counts {Ns} for every measurement outcome
s corresponding to eigenstate |φs〉, with

∑
sNs = Ntot. We can subdivide all bitstrings s into the

sets {s+} and {s−} corresponding to the +1 and −1 eigenstates, respectively. Using these, we can
estimate any tr

[
PjΛ(|ψ〉 〈ψ|)

]
:

tr
[
PjΛ(|ψ〉 〈ψ|)

]
≈

∑
s∈{s+}

Ns

Ntot
−
∑

s∈{s−}

Ns

Ntot
. (4.10)

4.1.3 Calculating λij

Using both Eq. (4.6) and Eq. (4.10) we can now calculate λij = tr
[
PjΛ(Pi)

]
for all 16n combinations

of Pi and Pj . All combinations can be built up from the 6n different input states and 3n different mea-
surements, resulting in 18n different experiments for full process tomography. A circuit representing
this experiment can be found in figure 4.1. Furthermore, each experiment needs to be performed Ntot

times, to obtain an estimate Ns
Ntot

for every individual term in Eq. (4.9).

|ψ1〉

Λ

P1

|ψn〉
Pn

Figure 4.1: A SQPT experiment. There are n physical qubits; they are all individually prepared in specific
eigenstates of the single-qubit Pauli operators, resulting in a state ρin on all qubits together. The map Λ is then
applied to the qubits. The observable Pj = P 1

1 ⊗ ....⊗Pn
1 , with P i

1 the single-qubit Paulis that make the n-qubit
Pauli Pj , is then measured on the output state ρout = Λ(ρin). This is done by performing measurements of P i

on the ith qubit for all n qubits. This experiment is repeated for different ρin and different Pj , so that the set
of input states ρin and measurement observables Pj both span the operator space individually. Here, for the set
of input states is chosen the set of all Pauli eigenstates, and for the set of measurement observables is chosen
all 3n tensor products of the single qubit traceless Paulis.

If the experiments were perfect, than this would conclude SQPT; χ can now be determined from
these experiments. However, error and noise will influence the estimate of χ. These effects will be
discussed in section 4.2.

4.2 Errors and noise on data

Error on the data will give rise to an imperfect estimation of χ. There will be both statistical noise (due
to finite sampling) and imperfections on the preparations and measurements. These imperfections give
rise to errors generally named SPAM errors (short for state-preparation and measurement). Generally
speaking, statistical and SPAM errors can be considered uncorrelated, resulting in an estimate of λ
that is a sum of the two: λ̂ = λ+ ∆λstat + ∆λSPAM . Note that the natures of ∆λstat and ∆λSPAM
are very different: ∆λstat is a purely mathematical, indicating that the finite sample size of the
estimation is not perfect, whereas ∆λSPAM is a physical error happening on the circuit because the
physical implementation of the preparations and measurements are not perfect.

4.2.1 Statistical errors: standard deviation of χ and confidence bounds

Statistical noise on χ arises from the fact that the expectation values of each term tr
[
|φs〉 〈φs|Λ(|ψ〉 〈ψ|)

]
in Eq. (4.9) can only be estimated from a finite number of experiments Ntot. The measurements that
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are performed to determine these expectation values are essentially samples drawn from a binomial
distribution; the expectation value ps of such a variable is estimated by Nsucces

Ntot
, and the standard

deviation ∆ps on ps is ∆ps =
√

ps(1−ps)
Ntot

. Since 0 ≤ ps ≤ 1, we have ∆ps ≤ 1
2
√
Ntot

.

Then, for the expectation values calculated in Eq. (4.10), by standard methods [9]:

∆
(

tr
[
PjΛ(|ψ〉 〈ψ|)

])
=

√ ∑
s∈{s+},{s−}

∆p2s =
1√
Ntot

√∑
{s}

ps(1− ps) ≤
2
n
2

2
√
Ntot

. (4.11)

Then, using Eq. (4.6), the standard deviation on λij can be calculated:

∆λij =

√∑
{ψ−}

(∆ tr
[
PjΛ(|{ψ+}〉 〈ψ+|)

]
)2 +

∑
{ψ−}

(∆ tr
[
PjΛ(|ψ−〉 〈ψ−|)

]
)2 ≤ 2n

2
√
Ntot

. (4.12)

Any individual λij is a sum of at most d2 terms, with every term bounded by −1 and +1. Therefore,
λij is bounded too: −22n ≤ λij ≤ 22n, and the bound from Eq. (4.12) can only be saturated if λij = 0.
Finally, the standard deviation on χ is:

∆χ =
√

(A�A)(∆λ�∆λ) ≤ (4)n

2
√
Ntot

, (4.13)

where � denotes the Hadamard or elementwise product, and the bound on ∆χ is per element. These
bounds are not very tight, and the bound on ∆χ is especially loose, since it adds deviations on many
different ps, which are all assumed to be equal to 1

2 . Using these calculated standard deviations,
confidence bounds on χ can be calculated. Furthermore, in any subsequent analysis on χ these
standard deviations are used as well.

4.2.2 SPAM errors

SPAM errors are those errors associated with imperfect state preparation and imperfect measurements.
These influences can be represented by (unknown) error maps on every single qubit right after their
(perfect) preparation and right before their (perfect) measurement. A schematic of this representation
can be found in figure 4.2. The methods introduced in section 4.1 do not provide any means to correct
for these errors. In section 8.1 I will consider SPAM errors and introduce an approximate method to
correct them.

|ψ1〉 Λ1
p

Λ

Λ1
m

P1

|ψn〉 Λnp Λnm
Pn

Figure 4.2: An actual SQPT experiment with SPAM errors. Immediately after (perfectly) preparing every
qubit, an individual (unknown) error map Λi

p is applied to the ith qubit, for every qubit. Thereafter, the map
Λ is applied to all qubits. Then, before a perfect measurement of each separate qubit, an individual (unknown)
error map Λi

m is applied to the ith qubit, for every qubit. Compare with figure 4.1.

4.3 Ensuring CP and TP

Problems when determining χ via the methods described in 4.1 arise whenever there is noise on λ.
Particularly, the found solution χmeas will be of the form χmeas = χ + χnoise, with χnoise dependent
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on the noise on λ. In principle, χ should represent a CPTP map, but χmeas might not, due to the
influence of the noise. This results in an estimate of χ that is not in the CPTP-subspace of the space
of process matrices; to obtain a valid representation of the channel, we need to find a CPTP map
which is close to χmeas in some sense.

Since CP and TP are two different criteria, they will be discussed separately. We will first consider
TP, and show that the method of obtaining χ introduces in section 4.1 will always give a TP channel
when a loose condition on the measurement data is fulfilled. Thereafter, we will introduce a method
of obtaining a CP χ close to the original χmeas. This method preserves TP, and thus provides a CPTP
χ if χmeas was TP to begin with.

4.3.1 TP as condition on the measurements

For measurement data of an SQPT experiment a strong statement can be made about whether the
estimated representation of Λ is trace preserving or not. If

∑
{s}Ns = Ntot then the estimated repre-

sentation will be a TP channel. To prove this, the condition of TP for the Choi matrix is rewritten to
a form that can be directly linked to the expectation values λij for Pj = I. The proof is as follows:

For trace preservation, a necessary and sufficient condition is Eq. (3.4) found in section 3.2.2. It
is:

tr1
[
ρChoi

]
=

1

d
I. (4.14)

Since ρChoi =
(
Λ⊗ I

)(
|Ω〉 〈Ω|

)
=
∑

i,j

1

d
Λ
(
|i〉 〈j|

)
⊗ |i〉 〈j|, for Eq. (4.14) to hold we get the identity:

tr
[
Λ
(
|i〉 〈j|

)]
= δij . (4.15)

We can expand |i〉 〈j| into the Pauli basis: |i〉 〈j| =
∑

k
1

〈Pk,Pk〉 〈j|Pk |i〉Pk, with 1
〈Pk,Pk〉 a normalisation

factor. We then get for tr
[
Λ
(
|i〉 〈j|

)]
(with 〈Pk, Pk〉 = d):

tr
[
Λ
(
|i〉 〈j|

)]
=

1

d
tr
[
Λ
(∑

k

〈j|Pk |i〉Pk
)]

=
1

d

∑
k

〈j|Pk |i〉 tr
[
Λ
(
Pk
)]
. (4.16)

The very last term tr
[
Λ
(
Pk
)]

is λij from section 4.1, with Pj = I and Pi = Pk.
Following the same reasoning as with Eq. (4.6), Pk can be expanded into a sum of its positive and
negative eigenspaces, obtaining:

tr
[
IΛ
(
Pk
)]

=
∑
+

tr
[
IΛ(|ψ+〉 〈ψ+|)

]
−
∑
−

tr
[
IΛ(|ψ−〉 〈ψ−|)

]
, (4.17)

with {|ψ+〉} and {|ψ−〉} a basis for the +1 and −1 eigenspaces of Pk.
Since I only has a +1 eigenspace, tr

[
IΛ(|ψ〉 〈ψ|)

]
is, by using Eq. (4.10), equal to:

tr
[
IΛ(|ψ〉 〈ψ|)

]
=
∑
s∈{s}

Ns

Ntot
, (4.18)

where {s} represents a basis for the entire space. In other words, it is summing all counts Ns of all
individual outcomes tr

[
|φ+〉 〈φ+|Λ(|ψ〉 〈ψ|)

]
for |φ+〉 all +1 eigenstates of the identity operator.

If there are no preparations unaccounted for, i.e. if every prepared shot is also measured and the
measurement always returns a value, then

∑
{s}Ns = Ntot. This results in tr

[
IΛ(|ψ〉 〈ψ|)

]
= 1.

Every Pauli that is not the identity has equally large +1 and −1 eigenspaces, whereas the identity
only has a +1 eigenspace. Therefore, Eq. (4.17) results in tr

[
Λ
(
Pk
)]

= d for Pk = I and 0 otherwise.
It is now evident that Eq. (4.16) becomes:

1

d

∑
k

〈j|Pk |i〉 tr
[
Λ
(
Pk
)]

=
1

d
〈j| I |i〉 tr

[
Λ
(
I
)]

= δij . (4.19)

These derivations work from bottom to top as well, so Eq. (4.15) holds if
∑
{s}Ns = Ntot for every

prepared input state, thereby ensuring trace preservation of the estimated process.
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4.3.2 Finding a CP representation of χ

If χmeas does not represent a CP map, then at least 1 of its eigenvalues is negative. The goal now is
to estimate a physical process χest that is close to χmeas and fulfils the CPTP conditions. Here, close
means that the distance d(χmeas, χest) is small, where the distance is usually defined using some norm.
Many norms are possible, here the Frobenius norm is used:

d(χmeas, χest) = ||χmeas − χest||2 =

√∑
ij

∣∣∣χmeas
ij − χest

ij

∣∣∣2 =
√

tr
[
(χmeas − χest)2

]
, (4.20)

where the last identity follows from the fact that both χmeas and χest are Hermitian.
This norm is a specific choice, many others are possible. It is basis-independent [10], meaning that

χmeas and χmeas can be expressed in any basis (as long as both are expressed in the same basis).
Therefore we can change to the eigenbasis of χmeas, where χmeas is a diagonal matrix. From Eq. (4.20)
it is obvious that χest expressed in this basis should have off-diagonal elements equal to zero if the
distance is to be minimized. The diagonal elements can then be viewed as the eigenvalues of χest; we
impose the CP constraint that these are all non-negative. Note that now χmeas and χmeas have the
same eigenvectors. We now get the following function for the distance that is to be minimized:

d(χmeas, χest) =

√∑
i

|λmeas
i − λesti |

2
, (4.21)

with λmeas
i the eigenvalues of λmeas and the constraint λesti ≥ 0, ∀i.

Finding the closest CPTP χest is generally hard to do, but finding a relatively close CP χest can
be done by taking a convex combination of χmeas with the identity channel. This works as follows:

• Express χmeas in the Pauli basis.

• Diagonalize χmeas to obtain a set of eigenvalues λmeas
i and their corresponding eigenvectors

|λmeas
i 〉. Form the diagonalization χmeas = UDU †.

• If λmeas
i ≥ 0 ∀i then χmeas represents a CP map.

• If not, get the smallest eigenvalue λmeas
min and add this to D: D̂ = D + |λmeas

min |Id2 .

• Obtain a new matrix χ̂meas = UD̂U †. This matrix has only non-negative eigenvalues by con-
struction.

• tr
[
χ̂meas

]
= tr

[
χmeas

]
+ tr

[
|λmeas

min |Id2
]

= 1 + |λmeas
min |d2. Any map should have trace 1, so set

χest = χ̂meas

tr
[
χ̂meas

] =
χ̂meas

1 + d2|λmeas
min |

We have
∑

m,n χ
est
m,nP

†
nPm = 1

tr
[
χ̂meas

](∑
m,n χ

meas
m,n PnPm +

∑
n |λmeas

min |PnPn
)

=
1+|λmeas

min |d2
tr
[
χ̂meas

] Id = Id, so

Eq. (3.2) for TP still holds. This means that χest is a process matrix that represents a CPTP map,
if it is derived from a process matrix χmeas that is TP.

4.4 The error matrix χerr

If tomography is performed on a circuit that should be a unitary transformation Uideal, then if both
the circuit is perfectly implemented and the tomography is perfect (implying Ntot →∞), the obtained
χmeas will correspond perfectly to that unitary. In practise, there will be errors in the implementation,
resulting in an estimate χest, which I will now just write as χ. Characterizing this error can in principle
be done directly from χ, but this is less than ideal. However, the whole circuit can be modelled (see
figure 4.3) as a process that first performs the perfect unitary and then applies an error channel:

ρout = Λ(ρin) =
∑
m,n

χerr
m,nPmUidealρinU

†
idealP

†
n (4.22)
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Here χerr is the error matrix [11]. χerr can be calculated from χ as χerr = V χV † with Vm,n =

tr
[
P †mPnU

†
ideal

]
1
d , with d = tr

[
P †mPm

]
. The error matrix is a direct characterization of the error map.

In principle any basis can be used for the error matrix, but it is very useful to use the Pauli basis for
χerr. By using the Pauli basis, the top left element of χerr is the element corresponding to the trivial
part UidealρinU

†
ideal; any non-zero element of χerr that is not in the top left corner therefore indicates

an imperfection of the total process that is the composition of U and Λerr.

ρin Uideal Λerr
ρout

Figure 4.3: For a desired unitary operation Uideal, the total obtained map Λ can be modelled as the perfect
unitary and thereafter an error map Λerr. Λerr then has a representation χerr, which describes the error induced
by the channel.

It can be shown [11] that for systematic unitary errors U err all non-zero elements of χerr are, to
first order, the imaginary parts of the elements in the top row and leftmost column: χerr

m,n = 0 for
m,n > 1. Since χerr is Hermitian, specifying either set of elements is adequate. Furthermore, the
elements in this row (or column) indicate the decomposition of U err on the channel into the basis

{Pk}: U err =
∑

k Im
{
χerr
0,k

}
Pk.

4.4.1 Fidelity of the process

The process fidelity Fp of a unitary map represented by χ is tr
[
χχdes

]
(see Eq. (3.25)). Because the

error matrix is essentially the χ matrix in a different basis, and because the trace is basis independent,
we can use the error matrix to calculate the process fidelity more easily:

Fp = tr
[
χχdes

]
= tr

[
V †χerrV V †χerr

desV
]

= tr
[
χerrχerr

des

]
. (4.23)

The desired error matrix χerr
des is of course the identity channel denoted by χI . χI has only one non-

zero element, in its top-left corner it equals 1. Therefore, the process fidelity Fp is exactly the top left
element of χerr:

Fp = tr
[
χerrχerr

des

]
= tr

[
χerrχI

]
= χerr

0,0. (4.24)

By expanding χ into its eigendecomposition and noting that for unitary desired process χideal only
has one non-zero eigenvalue (see section 3.3.3), the process fidelity can be calculated in terms of the
eigenvalues of χ:

Fp = tr
[
χχdes

]
=
∑
i

λi tr
[
|ψi〉 〈ψi|u〉 〈u|

]
=
∑
i

λi|〈ψi, u〉|2. (4.25)

Furthermore, if χ has reasonable fidelity with respect to χdes, one of its eigenvectors is at least close to
Uideal’s corresponding eigenvector |u〉, with the corresponding eigenvalue λmax being the largest one.
That means that |〈ψmax, u〉|2 ≈ 1. Moreover, all |ψi〉’s are orthogonal to each other, so for i 6= imax,
we have |〈ψi, u〉|2 << 1. Therefore, approximately:

Fp ≈ λmax, (4.26)

with λmax the maximum eigenvalue of χ.

4.4.2 Pauli Twirl of χerr

Since χerr describes all imperfections of the map, it can be used to analyse the weight of the errors of
χ. Taking the Pauli twirl of χerr results in an approximation of the error channel as a Pauli channel;
from this channel the support on the single-qubit and multi-qubit Paulis can be calculated, together
with their ratio.
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4.5 Other characterization methods

The main drawback of SQPT is that it is very costly. There are other characterization methods that
are better suited to specific situations. I will briefly introduce various other methods, though they
will not be considered later.

4.5.1 Ancilla-assisted Quantum Process Tomography

In Ancilla-assisted Quantum Process Tomography [12],[13], or AAPT, the system of interest is first
connected to an ancillary system of (at least) the same size. The maximally entangled state |Ω〉 is
prepared on the 2n qubits; Λ is now applied to half of the system. This results in the Choi matrix
density state on the composite space (see sec 3.2.2). By performing state tomography on this state, the
Choi matrix can be determined, thereby also characterizing the map Λ. The results in a preparation
of a single state. State tomography prescribes measuring all qubits in the 3 different bases, resulting
in a total of 32n = 9n different measurements.

This method has both drawbacks and advantages when compared to SQPT. The number of qubits
that is needed to perform the tomography is twice as high for SQPT. Furthermore, on these 2n qubits
there needs to be a highly entangled state; this is generally much harder to accomplish than preparing
the separable states.

On the other hand, there is only one prepared state, resulting in less complexity in the preparations.
The total number of experiments is 9n, less than the minimum of 12n different experiments for SQPT.
This is a clear advantage - especially for a large number of qubits.

AAPT is especially helpful when running diagnostics on a small subsystem within a quantum
system or quantum computer [14]. In that case, there are enough qubits, and preparing the maximally
entangled state is something that should be doable. A more in-depth discussion of AAPT can be found
in [15].

Necessity of entanglement in the input state

It is not necessary to prepare the maximally entangled state |Ω〉 〈Ω| on the composite space of qubits.
Any state ρ with Schmidt number (see [6]) 22n [14] is adequate; this is also a necessary condition. Note
that imperfections in the preparation of ρ directly leads to error in the estimate of Λ. This condition
can be interpreted [15] as being a condition of invertibility of the resulting output state. This means
that there is no intrinsic need for entanglement; even many states are adequate. This takes away
the disadvantage in AAPT that is the preparation of the maximally entangled state. Specifically, a
separable state of the following form (called a Werner state) can be shown [14] to be adequate:

ρ =
1− ε
d2

I + ε |Ψ−〉 〈Ψ−| , ε ≤
1

1 + d
(4.27)

with |Ψ−〉 the specific (extended) Bell state.

In the specific case that the maximally entangled state is indeed used, as introduced in the previous
paragraph, this method is also called EAPT or Entanglement-Assisted Process Tomography.

4.5.2 Randomized Benchmarking

Randomized benchmarking is a method that does not determine a complete representation of an error
map Λ. It does, however, quantify the error rates of gates in a system by randomly applying gates in
such a way that the resulting total process should be an identity gate (i.e. all randomly applied gates
compile to the identity channel). Any infidelity on the resulting output state indicates errors within
the gates, or in the preparations or measurements. By altering the number of gates, and determining
how the fidelity depends on the number of gates, the influence of the measurement and preparation
errors can be filtered out. The method is much less costly and easier to implement than QPT but it
does not provide any characterization of the induced maps. As such, for the characterization of error
maps it is not adequate.
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4.5.3 Direct Characterization of Quantum Dynamics

The main idea of Direct Characterization of Quantum Dynamics or DCQD is that when using the
right input states, the only measurements that need to be performed are Bell state measurements,
e.g. projections onto the Bell states. This, in general, needs to be only a single fixed measurement
apparatus. The input states that need to be prepared are a (generalized) Bell state and d2−1 other non-
maximally entangled states. Furthermore, the method is direct, meaning the measurement outcomes
(or rather the expectation values of the measurements estimated by the measurement outcome counts)
are directly indicative of the elements of the χ matrix, without the need for linear inversion methods
as for example in Eq. (4.4). Since these inversions add problems this directness is favourable. A more
in-depth discussion of DCQD can be found in [15].

However, Bell state measurements are generally hard to perform. A measurement apparatus that
performs these measurements will necessarily need to perform multi-qubit gates to prepare the qubits
in the right states. 2-qubit gates are generally very faulty, influencing the measurement error rate.
This is why this technique was not used in the experiments discussed in this report.
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Chapter 5

Stabilizer codes

The errors that can occur within systems, as described in chapter 3, can introduce irreparable dam-
age that limits the possibilities and computing power of a system. Quantum error correcting codes
(QECCs) offer a way to combat these errors, by encoding a generally low number of qubits into a large
number of actual qubits; the encoded qubits are then called the logical qubits, and the actual qubits
are called the physical qubits. Detecting and correcting for errors in quantum states is hard to do,
especially if the quantum state itself is to be left untouched. In quantum computation this generally
will be the case, because the quantum states are elaborate superpositions - accidentally measuring
them collapses the states and destroys the encoded information.

There exist many different QECCs, but most popular are the codes known as Stabilizer codes,
introduced by Daniel Gottesman in his thesis [16]. Stabilizer codes are a special class of codes that
make use of the many properties of Paulis; the error detection and correction happens by projecting
upon the eigenspaces of many different Paulis together. They are the leading form of QECCs, and
future quantum computation will (very, very) likely make use of some sort of stabilizer code.

This chapter introduces QECCs and stabilizer codes specifically. Properties and conditions general
to any QECC are introduced in section 5.1, and to interpret these ideas a straightforward example of
a code is given in section 5.1.1. That example is actually a stabilizer code, which are then introduced
more generally in section 5.2. It is good to know exactly which errors a stabilizer code can (and can’t)
correct, so every kind of error on a stabilizer code is discussed in section 5.2.1. After their general
introduction, section 5.3 introduces two very well known stabilizer codes, the so-called perfect code
and the Steane code. Section 5.4 briefly discusses how to perform the necessary measurements to
determine the errors that have occurred, without affecting the encoded information, and the chapter
is closed by section 5.5 that introduces a set of operators called the Clifford operators.

5.1 Quantum error correcting codes

The general idea behind a QECC is to encode the logical qubits into a subspace Hk (called the code
space) of Hn. The basisvectors of Hk then form a basis for the logical qubits; an element from Hk is
called a code word. The dimension of Hk is generally a power of 2: if |Hk| = 2k then the code encodes
k logical qubits. Often k = 1, so that a code encodes one logical qubit into n physical qubits.

A QECC is designed in such a way that (typical) errors that can happen map the code space to
other orthogonal subspaces of Hn. The internal structure of Hk is not distorted, so that encoded
information is preserved. Because the errors are isomorphisms, they can be corrected without altering
the state of the logical qubits. For this to work, there has to be a method of determining the error
and corresponding subspace, without affecting the internal structure of the subspace; such a thing can
be realized by a POVM, and the outcome of that measurement is called the error syndrome.

A code can never correct every possible error: there can only be 2n−k different orthogonal subspaces,
including the code space itself, but each subspace necessarily has dimension 2k, and therefore there
are more than one errors that map to this subspace. Two errors E1 and E2 might map to the same
orthogonal subspace, while rearranging the codewords respective to each other. This means that E1

and E2 need to be corrected for differently: E†1 6= E†2. The syndrome measurement indicates which
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orthogonal subspace it is, but nothing more. Hence, only one of the errors can be corrected for; the
set of correctable errors E for the code contains only one of the two. When designing the code, either
of the two has to be chosen.

The conditions for a code to work can be summarized in the Knill-Laflamme conditions [17][18]:

A code Hk together with a set of correctable errors E is a QECC iff ∀ |ψ〉 , |φ〉 ∈ Hk, ∀E,F ∈ E, the
following condition holds:

〈ψ|E†F |φ〉 = C(E,F ) 〈ψ|φ〉 . (5.1)

The conditions say that the errors E1 and E2 can affect the codewords, mapping them to orthogonal
subspaces (C(E,F ) depends on the errors), but that the internal structure of the code space should
be untouched (C(E,F ) is not allowed to depend on the codewords).

A QECC is designed in such a way that the set of correctable errors E has certain properties. An
error with a high weight is less likely to occur than a lower weight error. So, if E1 and E2 both have
the same error syndrome, but need to be corrected differently, then the lower weight error is assumed
to have occurred. If a code is properly designed, all errors with wt(E) ≤ w, for a certain value t, are
included within the set of correctable errors E . Then, the code is said to have distance d = 2w + 1;
the distance of a code is an often used measure for the correction capabilities of the code. It has an
important interpretation: it is the minimum weight of an error that maps a code word to a different
code word, i.e. a logical error.

If an error occurs on a system, the qubits are subjected to an error channel Λ. The Kraus operators
{Ak} that represent this channel can be any element of SU(2) scaled by some factor; to distinct all of
them by error syndrome would result in the need for uncountably many error syndromes. However,
any element of SU(2) can be written as a linear combination of a basis of the space. Using the Pauli
basis, we can decompose any Ak =

∑
Pi∈Pn α

k
i Pi. Applying Ak to a codeword |ψ〉 results in

Ak |ψ〉 =
∑
Pi∈Pn

αki Pi |ψ〉 , (5.2)

which is a coherent superposition of states Pi |ψ〉. If Ak can be decomposed into only the elements of E ,
the resulting state is a superposition of erroneous codewords Ei |ψ〉, which is a superposition of states all
in different orthogonal subspaces. The error syndrome measurement then projects the superposition
onto any of these orthogonal subspaces, resulting in a single state Pi |ψ〉. Furthermore, the error
syndrome measurement indicates which of these subspaces it is. The error syndrome measurement
effectively discretizes the error, resulting that if a code corrects a set E , it also corrects Span(E).

The fact that for more than 1 Kraus operators a map Λ creates a statistical mixture, is no problem
as well. If the Kraus operators are constrained to be linear combinations of only elements of E , then
the error syndrome measurement will project the state

∑
k AkρA

†
k onto a subspace (corresponding to

a E ∈ E); it then does not matter any more what Ak was and the resulting state after syndrome
measurement is the known state E |ψ〉1. So, if an error map Λ that consists of Kraus operators that
are strictly linear combinations of the elements of a QECC’s correctable set E , then that code can
correct for that error map Λ.

Finally, a stabilizer code that encodes k logical qubits on n physical qubits, with a distance of d,
is denoted as an [[n, k, d]] code. It is desirable for both k

n and d
n to be as high as possible. Clearly

k
n < 1 and d

n <
1
2 , but there exist much stronger bounds on the relations between n, k and d [19][18].

Moreover, the set of physical qubits on which a code is implemented is also called the codeblock ; often
k = 1 and the codeblock then represents one logical qubit. A larger quantum computing system will
then have more than one codeblock.

5.1.1 Example: The 3-qubit bit-flip code

A typical example of a QECC is the 3-qubit bit-flip code. In this code, one logical qubit (k = 1) is
encoded into 3 physical qubits (n = 3). The |0〉 state is encoded into the state |000〉, and the |1〉 state

1To be precise, it can be any E ∈ E with the same error syndrome. But all those errors are the same unitary up to a
stabilizer.
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is encoded into the state |111〉, resulting in a logical codespace Hk = Span{|000〉 , |111〉}. When a line
is written over a ket, it indicates that it is a logical state, so we write |000〉 =

∣∣0〉 and |111〉 =
∣∣1〉 for

the logical |0〉 and |1〉 states. A general state α |0〉+ β |1〉 is then encoded using the code as

α |0〉+ β |1〉 → α |000〉+ β |111〉 = α
∣∣0〉+ β

∣∣1〉. (5.3)

Now, if there is an X error on one of the qubits, resulting in a bit-flip, the erroneous qubit state is
orthogonal to the codespace. If, for instance, the error E1 = X ⊗ I ⊗ I occurs, the resulting state is

E1 (α |000〉+ β |111〉)→ α |100〉+ β |011〉 . (5.4)

Note that the new basis vectors |100〉 and |011〉 span a space orthogonal to Hk. These states are
relatively close to the original codewords, but we can not measure the qubits due to the projective
nature of measurements in quantum mechanics. However, by measuring only the parity of the qubits,
we keep the encoded information intact. The parity of the 1st and 2nd qubit is odd, whereas the parity
of the 2nd and 3rd is even. These two results indicate that a error on the first qubit has happened.
Note that the parity of the 1st and 3rd qubit does not offer any extra information; it can be calculated
from the other two parities.

The outcome of the parity measurements acts as the error syndrome, which indicates what error has
happened. It is the only information that we can obtain before destroying any encoded information.
However, the error E1 is not the only error with this error syndrome. This shows the fundamental
problem with QECCs: error syndromes can never distinct between all different errors than can occur
on a set of qubits. The error E2 = I ⊗X ⊗X has the same error syndrome has E1, but it has to be
corrected differently. Correcting E1 can be done by applying X⊗I⊗I to the qubits, but applying this
to E2 results in X⊗X⊗X, which maps

∣∣0〉 to
∣∣1〉 and vice-versa, thus acting as the logical operation

X. By assuming that E1 occurred, and correcting for it, we have created a logical error, something
we can never hope to correct without actually measuring the encoded information. We say that the
3-qubit bit-flip code corrects single-qubit X errors, and that it does not correct double X errors. This
code does not correct any phase-flip errors, but we can instead encode into the logical states |+ + +〉
and |− − −〉 to correct for those, by making use of the same technique. With just three qubits, we
can do either, but not both.

The 3-qubit bit-flip code corrects weight-1 bit-flip errors. Nevertheless, it does not have a distance
of 2×1+1 = 3, because it does not correct any weight-1 error; only the bit-flips. Since it only corrects
all weight-0 errors, the code has distance 0.

5.2 Stabilizer codes

The parity check measurements of the bit-flip code can be interpreted as determining if the qubits are
in the +1 or −1 eigenspaces of the Paulis Z ⊗ Z ⊗ I and I ⊗ Z ⊗ Z, for the first and second parity
check respectively: |00〉 and |11〉 are +1 eigenstates of Z ⊗ Z, and |01〉 and |10〉 are −1 eigenstates.
The codewords are +1 eigenstates of all these Paulis, called the stabilizers of the code, and if an error2

occurs, the state of the qubits becomes a −1 eigenstate of one or more of the stabilizers.

This behaviour is not special to the bit-flip code; there are many codes which all of its codewords
are a +1 eigenstate of a set of Paulis. This set of Paulis is called the stabilizer of the code. We can
define a stabilizer set S for a codespace Hk (also called the stabilizer of Hk) as the set:

S = {S ∈ Pn|S |ψ〉 = |ψ〉 ∀ |ψ〉 ∈ Hk}, (5.5)

where we thus restrict the elements of S to be Paulis. Any stabilizer S has two basic properties:

• The set S is closed under multiplication, making it a group. If S1, S2 ∈ S, then ∀ |ψ〉 ∈ Hk we
have S1S2 |ψ〉 = S1 |ψ〉 = |ψ〉, so S1S2 ∈ S.

2To be precise: an error that maps the state to a space orthogonal to the codespace. If an error maps a codeword to
another codeword, it is a logical error, and the resulting state is still a +1 eigenstate of all stabilizers.
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• S is an Abelian group. If S1, S2 ∈ S, then [S1, S2] |ψ〉 = 0. This can only be true if [S1, S2] = 0,
since Paulis either commute or anticommute.

Instead of defining a stabilizer in terms of a code, one can also define a codespace in terms of a
stabilizer group. For a given stabilizer group S, define the codespace as the intersection of the +1
eigenspaces of all elements of S. Then, every codeword is an eigenstate of every element of S, and
every eigenstate of every element of S is a codeword. Such a code is called a stabilizer code.

A stabilizer code is normally defined by a set of generators G for its stabilizer group. The number
of logical qubits k that is encoded in the stabilizer code follows directly from the number of generators.
Let r = |G| be the number of generators for S such that |S| = 2r (note that r ≤ n). Then the projector
Π+ of the codespace can be defined as

Π+ =
1

2r

∏
G∈G

(I +G) =
1

2r

∑
S∈S

S, (5.6)

where the last identity follows from the fact that all different products of the generators are all elements
of S. Since the dimension of a subspace is the trace of its projector, we have

dim(Hk) = tr
[
Π+

]
=

1

2r

∑
S∈S

tr
[
S
]

=
1

2r
tr
[
I
]

= 2n−r, (5.7)

because every Pauli that is not the identity is traceless, and I is always in S. We thus see that
k = n− r; every added generator cuts the code space’s dimension exactly in half.

5.2.1 Errors on stabilizer codes

As discussed in section 5.1, if a set E is correctable, then its span is too. Thus, we need only discuss
a basis for SU(2), and we will use Pn as a basis. Since ∀P ∈ Pn we have P † = P , any of these errors
can be corrected by applying the same Pauli to the erroneous codeword.

An element E ∈ Pn can, with respect to the code S, be strictly divided into three different subsets
of Pn: E ∈ S, E 6∈ N(S) or E ∈ N(S)\S, with N(S) the normalizer of S. The stabilizer code treats
an error depending on in which of these subsets it is, so they are discussed separately below.

The set for which E ∈ S

If E is an element of S, then it acts as a stabilizer. In other words, the error E acts as the identity
on the codewords, and they have no non-trivial effect on the code words. Clearly, for any E and F in
this set and any pair of codewords |ψ〉 and |φ〉, 〈ψ|EF |φ〉 = 〈ψ|φ〉, so Eq. (5.1) holds for these errors
with C(E,F ) = 1.

The set for which E 6∈ N(S)

If E /∈ N(S), then E does not commute with at least 1 of the stabilizers. Because Paulis either
commute or anticommute, this means that ∃Si ∈ S s.t. {Si, E} = 0. Then Si acting upon a codeword
|ψ〉 means that, ∀ |ψ〉 ∈ Hk,

SiE |ψ〉 = −ESi |ψ〉 = −E |ψ〉 . (5.8)

In other words, E |ψ〉 is now a −1 eigenstate of the stabilizer Si, regardless of the codeword |ψ〉. In
other words, E now maps the the codespace to some other subspace. The orthogonality of these two
subspaces follows from the fact that, ∀ |ψ〉 , |φ〉 ∈ Hk,

〈ψ|E |φ〉 = 〈ψ|ESi |φ〉 = 〈ψ| (−SiE) |φ〉 = −〈ψ|E |φ〉 , (5.9)

and thus that 〈ψ|E |φ〉 = 0. A measurement of Si now projects onto either of the subspaces, and
the measurement outcome indicates which one. However, judging by the Knill-LaFlamme criteria for
QECCs, this is not a strong enough statement. If two errors E and F both have a non-trivial error
syndrome, then, if they need to be corrected for differently, they also need to map the codewords to
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different orthogonal subspaces. There is a distinction to make between E and F having the same or
a different error syndrome.

If E and F have a different error syndrome, then ∃Si ∈ S for which [E,Si] = {F, Si} = 03. Then,
∀ |ψ〉 ∈ Hk,

〈ψ|EF |φ〉 = 〈ψ|EFSi |φ〉 = 〈ψ|E(−SiF ) |φ〉 = −〈ψ|SiEF ) |φ〉 = −〈ψ|EF |φ〉 , (5.10)

which can only hold if 〈ψ|EF |φ〉 = 0, or in other words, E and F map the codespace to different
orthogonal subspaces. Furthermore, Eq. (5.1) holds, with C(E,F ) = 0.

If E and F have the same error syndrome, they map the codespace to the same orthogonal subspace,
and the error correction has to be the same for both. We thus have [EF, Si] = 0 which holds ∀Si ∈ S.
In other words, EF ∈ N(S), and E and F are said to be in the same coset of N(S). Then:

• If also EF ∈ S, they’re also in the same coset of S, and they effectively cancel each other.
Correcting for either one also corrects the other, so we choose the easiest one to implement, and
the error is corrected. We have 〈φ|EF |ψ〉 = 〈φ|ψ〉, so Eq. (5.1) holds with C(E,F ) = 1.

• If EF 6∈ S, E and F have the same error syndrome, but they act differently on the codewords.
They both map the codespace to the same orthogonal subspace, so EF maps the codespace into
itself. However, EF 6∈ S, so ∃ |ψ〉 , |φ〉 ∈ Hk for which

EF |ψ〉 = |φ〉 6= |ψ〉 . (5.11)

E and F can not be told apart based on the error syndrome, and Eq. (5.11) shows that correcting
F with E (or vice versa) introduces a logical error. The code can not correct both errors, so
only one can be in E . Furthermore, we also have

〈ψ|EF |φ〉 = 〈ψ|ψ〉 6= 〈ψ|φ〉 ,
〈ψ|EF |ψ〉 = 〈ψ|φ〉 6= 〈ψ|ψ〉 ,

(5.12)

meaning there is no C(E,F ) that does not depend on the codewords for Eq. (5.1) to hold.

The set for which E ∈ N(S)\S

If E ∈ N(S)\S, then ∀ |ψ〉 ∈ Hk we have E |ψ〉 ∈ Hk, but ∃ |ψ〉 ∈ Hk such that E |ψ〉 = |φ〉 6= |ψ〉
because E is not in S. In other words, E is a logical operator for the code. The code can not detect
these errors, because there is no non-trivial error syndrome. Furthermore, by the same argument as
in Eq. (5.12), with F = I, there is no C(E,F ) that does not depend on the codewords for Eq. (5.1)
to hold.

5.2.2 The set of correctable errors E for a stabilizer code

The total number of correctable errors can now be determined. Every P ∈ Pn can be written as a
product of three different elements; let C be the representative of the coset of N(S)\S that P is in,
L be the representative of which logical operation P corresponds to, and S be any element of the
stabilizer. Then we can write

P = C × L× S. (5.13)

For every coset of N(S)\S represented by C there is one element, up to the stabilizers, that can
be corrected, corresponding to a specific L. There are 2r different C for a number of generators r,
corresponding to the different orthogonal subspaces determined by the 2r different error syndromes.
Of course, one of those cosets is the stabilizer itself, corresponding to the trivial error syndrome; for
this coset we necessarily choose its L equal to I. For every other C we also choose an L (normally this
is also I), and then for every combination C × L there is the choice of every different S that give the
same result. There are 2r elements in the stabilizer S, so there are in total 2r × 2r = 4r correctable

3Or for which [F, Si] = {E,Si} = 0, but then E and F in Eq. (5.10) can be exchanged, or the minus sign there can
be introduced one equality later.
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errors. Many of these errors have a high weight, because a stabilizer can have a high weight and thus
a low-weight C ×L times this stabilizer then has a high weight as well. These errors are usually very
unlikely to occur, and the code is normally not designed with these errors in mind.

Every coset determined by the error syndrome has in total 4k = 4n−r logical operations (up to
the stabilizers), so, counting for the 2r different cosets and 2r different stabilizers, there are (4n−r −
1) × 2r × 2r = 4n − 4r different Paulis that can’t be corrected. The union of the correctable and
non-correctable errors has of course 4n elements, and every element of Pn is thus accounted for.

5.3 Examples of stabilizer codes

The 5-qubit perfect code [[5, 1, 3]] is the stabilizer code defined by the generators shown in table 5.1a.
There are 5 physical qubits and 4 generators, so there is 5−4 = 1 logical qubit. The set of correctable
errors E for this code is every single-weight Pauli (and the product of those single-weight Paulis with
every stabilizer), so the distance of the code is 3. The code is called perfect because it saturates
the quantum Hamming bound [18] and the quantum Singleton bound [18], meaning that there are no
distance-3 codes with smaller n; there are 15 non-trivial error syndromes, and there are 15 single-qubit
errors (A Pauli X, Y and Z for each of the 5 qubits). The logical X and Z can be implemented by
the bottom two Paulis given in table 5.1a; the logical Y is then necessarily equal to XZ, which can
be implemented by a Y on every qubit. Note that X and Z do commute with every generator, but
not with each other. Furthermore, the choice of X (and thus Z) is arbitrary: X can be defined to be
Z ⊗ Z ⊗ Z ⊗ Z ⊗ Z as well, thereby fixing Z as well.

S1 X Z Z X I
S2 I X Z Z X
S3 X I X Z Z
S4 Z X I X Z

X X X X X X

Z Z Z Z Z Z

(a)

S1 Z Z Z Z I I I
S2 Z Z I I Z Z I
S3 Z I Z I Z I Z
S4 X X X X I I I
S5 X X I I X X I
S6 X I X I X I X

X X X X X X X X

Z Z Z Z Z Z Z Z

(b)

Table 5.1: (a) Generators for the 5-qubit perfect stabilizer code [[5, 1, 3]]. There are also shown representatives
for the logical X and Z operators. (b) Generators for the 7-qubit Steane code [[7, 1, 3]]. There are also shown
representatives for the logical X and Z operators.

The 7-qubit Steane code is [[7, 1, 3]] code, for which the 6 generators are shown in table 5.1b. It is an
example of a CSS code [20], an important class of stabilizer codes. CSS codes, named for its inventors
Calderbank, Shor and Steane, are constructed using two classical codes with certain properties. They
are characterized by a set of generators that only consist of Z Paulis (S1, S2 and S3 for the Steane
code), and a set of generators that only consist of X Paulis (S4, S5 and S6 for the Steane code). Since
they are constructed from classical codes, many of their properties are known from the classical codes.

5.4 Syndrome measurement

To obtain the error syndrome, all generators have to be measured. The measurement of a stabilizer
S = P 1

1 ⊗ P 1
2 ...⊗ P 1

n means that, for a erroneous codeword E |ψ〉, it must be checked if E commutes
or anticommutes with S. This has to be done without altering the codeword, or obtaining any
information of that codeword (because then the encoded information would be destroyed). Therefore,
simply measuring every qubit in the basis dictated by the Paulis P 1

i is too much: not only is the state
of the qubits projected upon either the +1 or −1 eigenspace of S, but onto all eigenspaces of all P 1

i s.
To project only onto the eigenspace of S itself, an extra qubit is needed. This qubit is generally called
an ancilla qubit; qubits on which data is encoded are called data qubits. The ancilla qubit is first
prepared in the |+〉 state, after which the stabilizer S is applied to E |ψ〉, conditioned on the ancilla
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qubit being in the |1〉 state. Such a controlled-S gate can be performed by applying a controlled-P 1
i

gate to the ith qubit, with the ancilla as the control qubit. After rotating the ancilla back to the
computational basis, this results in the entangled state

1√
2
E |ψ〉 ⊗ |+〉+

1√
2
SE |ψ〉 ⊗ |−〉 =

1

2
(E |ψ〉+ SE |ψ〉)⊗ |0〉+

1

2
(E |ψ〉 − SE |ψ〉)⊗ |1〉 . (5.14)

Now, since both S and E are Paulis, they either commute or anti-commute. If [S,E] = 0, (E |ψ〉 − SE |ψ〉)
vanishes, whereas if {S,E} = 0, (E |ψ〉+ SE |ψ〉) vanishes. Therefore, after measuring the ancilla
qubit in the computational basis, the outcome indicates whether [S,E] = 0 or {S,E} = 0, with the
resulting state after the measurement being E |ψ〉, thus leaving the codeword itself intact. See also
figure 5.1. This gives a way of measuring the syndrome of the stabilizer S without affecting the
codeword.

S

|0〉 H • H

Figure 5.1: Measurement of stabilizer S on a set of physical qubits with error E. An ancilla qubit is pre-
pared in the |+〉 state and then a controlled-S operation is performed with the ancilla the control qubit. Just
before measurement the (entangled) total state is 1

2 (E |ψ〉+ SE |ψ〉) ⊗ |0〉 + 1
2 (E |ψ〉 − SE |ψ〉) ⊗ |1〉. There-

fore, upon measurement of the ancilla (separated by the dashed horizontal line) the state either collapses to
(E |ψ〉+ SE |ψ〉) ⊗ |0〉 or (E |ψ〉 − SE |ψ〉) ⊗ |1〉 If [S,E] = 0, the latter half vanishes, and if {S,E} = 0, the
first half vanishes, so the measurement outcome indicates whether the syndrome is +1 or −1.

The ability to perform syndrome measurements, together with a well designed code, enough and
adequately connected qubits, to ability to perform Pauli operations on those qubits, and some various
other ingredients, now allows for encoding of any qubit state, which is then protected to any error
E ∈ E that occurs on the codewords. It is also possible to perform logical Pauli operations, but we
do not know how to perform other logical operations yet. Moreover, if any of these logical operations,
or the syndrome measurements themselves, also introduce an error during the operation, there is no
guarantee whatsoever that the codespace will stay unaffected. These problems can be very hard to
solve, and they are addressed in more detail (and most of them are solved) in chapter 6.

5.5 Clifford operators

The set of Clifford operators Cn is the subset of SU(2n) that is the normalizer of Pn:

Cn : {C ∈ SU(2n)|CPnC† ∈ Pn ∀Pn ∈ Pn}. (5.15)

Thus, just as the normalizer of S maps codewords to codewords, the Clifford set maps Paulis to Paulis.
Furthermore, the Clifford set is a group [18], so it is also known as the Clifford group. The Clifford
group is important in many different areas of quantum information, including QECCs. For CSS codes,
they are easily implementable, and therefore favourable over non-Clifford operations. Furthermore,
Clifford operations are exactly the set of operations that are classically efficiently simulatable, by
making us of Gottesman-Knill or GK-simulation [4], named after its inventors. GK-simulation can
simulate highly entangled states, so it shows that the power of a quantum computer is more elaborate
than just entanglement. I have implemented GK-simulation during my thesis, but it is outside the
scope of this report to discuss it any further.
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Chapter 6

Fault-tolerant computation

Quantum error-correcting codes offer a way of tracking errors and handling them, without destruction
of the encoded quantum information. However, actually implementing a QECC is far from trivial.
They can correct errors (that are within the correctable set E) that arise on an encoded qubit not during
the actual error correction itself. However, errors can arise both during the syndrome measurements
of the error correction scheme, and also when performing logical gates. These errors are influenced
by these operations, possibly drastically increasing the error weight through error propagation. After
only a small number of gates, an error can change into an error with a much higher weight, rendering
the encoded data useless. To combat these problems, circuits have to be designed which limit the
error propagation, so that QECCs can still work; these circuits are called fault-tolerant. In section
6.1 the problem of error propagation is introduced, and section 6.2 discusses the methods devised to
combat this problem. Finally, in section 6.3 a small introduction is given to one of the remaining
problems, that also introduces the need for the fault-tolerant SWAP operation, which is introduced,
experimentally implemented and characterized in chapter 7 and 8.

6.1 Error propagation

If a codeword |ψ〉 has an error E ∈ E on it, there is ostensibly no problem. The error can be determined,
and then be corrected for. However, if a unitary operation U is applied to this erroneous state E |ψ〉,
problems may arise. We can write this state as UE |ψ〉 = (UEU †)U |ψ〉; the error E propagates
through the unitary operation and becomes UEU †. There are now three different situations:

• E and U commute. Then UEU † = EUU † = E and the unitary operation leaves the error
unaffected. So, EU |ψ〉 = E |φ〉 is a (different) codestate with the same error E. Now, if E ∈ E
to begin with, this error is still correctable.

• E and U do not commute, but UE = E∗U with wt(E∗) ≤ wt(E). Then, after applying U to
the erroneous state E |ψ〉, the state E∗ |φ〉 is obtained. For most QECCs, if E ∈ E , then any
other error with the same weight will also be in the set of correctable errors; the new error E∗

is therefore still correctable.

• E and U do not commute, and UE = E∗U with wt(E∗) > wt(E). Now after applying U to
E |ψ〉 the state E∗U |ψ〉 is obtained. There is no guarantee that E∗ ∈ E ; new error is now not
correctable any more.

The third case only occurs for multi-qubit gates. This is easily seen by considering an operation that
consists of tensor products U ⊗ I and noting how it commutes through an error (E ⊗ I) or (I ⊗ E).
Let U and E both be single-qubit operations. Then:

(U ⊗ I)(E ⊗ I) = (UE ⊗ I) = (E∗U ⊗ I) = (E∗ ⊗ I)(U ⊗ I)

(U ⊗ I)(I ⊗ E) = (U ⊗ E) = (I ⊗ E)(U ⊗ I),
(6.1)

with E∗ necessarily also a single-qubit operation. Clearly, the weight of the propagated errors (E∗⊗I)
and (I ⊗ E) will always have the same weight as the initial errors (E ⊗ I) and (I ⊗ E).
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(b) Error propagation

Figure 6.1: (a) Preparation of the 6-qubit cat state |ψ〉 = 1√
2

(|000000〉+ |111111〉) by making use of multiple

CX gates. (b) A single-weight error E1 = IIXIII on the third qubit right after the first CX gate (indicated
by the red X gate) results in a wt(3) error F = XXXIII on the output state.

The most notable example of a unitary U that can increase the error weight after propagation is
the CX gate:

CX(X ⊗ I) = (X ⊗X)CX

CX(I ⊗ Z) = (Z ⊗ Z)CX,
(6.2)

with the CZ gate showing similar behaviour. Note that for a Z error, the extra phase propagates from
the target qubit to the control qubit; this is known as phase kickback and is also the basic principle
for the stabilizer measurement circuits from section 5.4.

This has strong implications for many different circuits. For instance, in figure 6.1a a circuit can
be found that prepares a so called cat state1. A single error on the third qubit can lead to a much
higher weight error on the output qubits, by propagating through the CX gates (figure 6.1b), in this
case resulting in a weight 3 error; the resulting state is 1√

2
(|111000〉+ |000111〉).

Another example is the syndrome measurement circuit in section 5.4; if one of the 2-qubit gates
that (e.g. the 2-qubit gates that make the controlled-S gate) in the circuit fails, it can invoke an error
E on the qubits it has support on, including the ancilla. Even if the part of the error that has support
on the data qubit is in E , the error can still propagate via the ancilla through the rest of the circuit
and will very often result in a higher weight error on the data qubits, that may not be in E . Not
only will the error syndrome measurements be wrong, performing these measurements will increase
the error weight, rendering the state useless.

This behaviour is not unique to cat state preparation or syndrome measurements; any time a
(faulty) multi-qubit gate is applied to two data qubits in the same codeblock, it can introduce an error
that might have a weight that is too high for a distance 3 code to handle. Furthermore, error weight
can drastically increase after application of multi-qubit gates within the codeblock via propagation as
in Eq. (6.2). These problems will arise in any circuit that has these interactions.

6.2 Fault-tolerance

Circumventing these problems can be done by carefully designing the circuits. The normal implemen-
tations of all elements of the circuit are replaced by sub-circuits that perform the same task, but are
designed to limit error propagation. To be able to perform any general quantum computation, imple-
mentation of four different components needs to be possible (These components (also called locations)
are closely related to the 5 DiVincenzo criteria [21]):

• Preparation of qubits. Qubits need to be reliably initialized into a state. One state is
sufficient, because any other state can be prepared from this state by applying a gate. Normally,
the |0〉 is prepared. However, it is very helpful to be able to prepare a range of states, for instance
the |1〉, |+〉 and |−〉 in addition to the |0〉 state.

1A cat state is a state of the form 1√
2

(|000...0〉+ |111...1〉), and is also called a generalized or n-qubit GHZ state.
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• Measurement of qubits. Qubits need to be reliably measured. Just as with preparation,
measurement in only a single basis is sufficient (see section 7.2), but additional bases might be
desirable.

• Logical quantum gates. A universal set of fault-tolerant quantum gates needs to be possible
at the logical level. These gates are fault-tolerant in the sense that they do not give rise to the
problems discussed in the previous section.

• Syndrome measurement and error correction. To be able to detect and correct errors
on the data qubits, the syndromes need to be measured reliably. Moreover, if the syndrome
measurement is faulty, the probability that these faults introduce an uncorrectable error needs
to be low.

Loosely speaking, whenever a circuit performs all these tasks without increasing error weights, it is
said to be fault-tolerant. Any sub-circuit that performs any of these tasks is then also fault-tolerant,
and it is called a fault-tolerant gadget. This is not a strict definition, but more rigorous definitions of
fault-tolerance exist [22][19][23][16][18], which are based on the idea that every gadget should do two
things [19]: when not too many errors occur on the physical qubits and during the physical gates, and
if the input state to the gadget was not too faulty to begin with, then the output state should also
not have too many errors, and it should perform the correct logical operation. Quantifying ‘not too
many’ and ‘not too faulty’ can be done [19][18], but normally the limit is set to weight-1 errors both
on the input state and during the gadget, and the failure of at most one physical gate. This is also
how we treat fault tolerance in this thesis:

If at most one gate in the circuit fails, including 2-qubit gates, thereby introducing a weight ≤ 2 error
anywhere within the circuit, that error must result in an error of weight ≤ 1 on the data qubits. Then
we call the circuit fault-tolerant.

It follows that any gadget consisting of only single-qubit operations is then immediately fault-tolerant.
Only whenever a gadget contains at least one multi-qubit operation, the gadget can become non fault-
tolerant; it generally will be when no extra care is taken. Furthermore, if any gate fails in a circuit
with probability p, then the multi-qubit error rate must scale with p2, essentially suppressing the
multi-qubit error rate. This is a direct consequence of the fact that the circuit is designed to limit
a single gate failure to weight-1 errors. Higher weight errors are therefore only possible from the
failure of at least 2 gates. Furthermore, the definition above does not take into account errors on the
input of the circuit; it is assumed to have no errors on the input. This can be realized by the idea of
extended rectangles [18]; each extended rectangle is a fault-tolerant gadget preceded and followed by
fault-tolerant error correction.

Fault-tolerant gadgets for all the different elements in the list at the start of this section are known.
These gadgets then can be combined [19][18] into a circuit. That this combination works is proven
by the threshold theorem [2], which guarantees that if the error rates of the physical elements of a
quantum computer are below a certain threshold, fault-tolerant quantum computation will be possible.
Below is a short introduction of each of the fault-tolerant implementations of the different locations
described in the above list.

Logical quantum gates Stabilizer codes have the property that every logical Pauli operation
is always implemented by applying a certain Pauli Pn ∈ Pn to the register. Such a Pn necessarily
consists of only single-qubit physical gates, namely single-qubit Paulis. This renders any logical Pauli
immediately fault-tolerant. There are many other gates that can be implemented as a tensor product
of only single-qubit operations for certain codes, for instance the Hadamard transform and S gate for
the 7-qubit Steane code [19].

However, universal quantum computation can not be achieved with these gates, based on the simple
observation that any logical multi-qubit operation necessarily needs to be performed by using at least
one physical multi-qubit gate.
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If a logical multi-qubit gate has no physical multi-qubit gates with support on multiple qubits within
the same codeblock, it is almost fault-tolerant. If furthermore every physical qubit from one of the
codeblocks is only connected to one other physical qubit of the other codeblock, and if this behaviour
goes both ways (see figure 6.2), then that multi-qubit gate, called a transversal gate, is fault-tolerant
[19]. This is best seen by the fact that no single failure of a multi-qubit gate can introduce a weight > 1
error within a single codeblock. Note that the Paulis and other tensor products are also transversal
gates. Transversal gates are linked to the Clifford gates, for CSS codes the transversal gates are always
the Cliffords [18]. Note that the Pauli, Hadamard and S gates described at the start of this section
are also transversal. These transversal gates offer a clean way of performing certain non-Pauli and
multi-qubit gates fault-tolerantly, but it has been shown [24] that no universal set of gates can be
reached this way. Therefore, there necessarily also must be non-transversal gates.

•
•
•
•
•
•
•

Figure 6.2: The logical CX operation between two codeblocks (separated by the dashed lines) both encoding
the 7-qubit Steane code. The operation is implemented by applying 7 CX-gates from the ith physical qubit
in the codeblock of the control logical qubit to the ith physical qubit in the codeblock of the target logical
qubit. Because no single physical qubit is connected to more than one other physical qubit, and because no two
physical qubits from the same codeblock are connected, this gate is transversal, and therefore fault-tolerant.

Non-transversal gates can be implemented fault-tolerantly using a method known as gate telepor-
tation [25]. In gate teleportation, so called magic states [26] are used to perform the gates not on
the data qubits themselves. By teleporting the data qubits to a different logical qubit, the gate that
needs to be implemented is transformed into a different gate that has to be applied to this new logical
qubit. By careful design, this different gate can be easier to implement; generally they can be imple-
mented as transversal gates. Gates that are transversal to begin with are easier to implement than
gate teleportation gadgets, so it is favourable to have as few non-transversal logical gates in a code as
possible. The Solovay-Kitaev theorem [5] guarantees that for many codes one non-transversal gate is
enough [19]. Note that the magic state needs to be prepared fault-tolerantly for gate-teleportation to
be fault-tolerant.

Error correction As mentioned above, the method of syndrome measurement described in sec-
tion 5.4 is not fault-tolerant. However, by making use of cat states as the ancilla, every data qubit
has a single corresponding ancilla, and the readout can be done transversally. Controlled gates from
the non fault-tolerant method from section 5.4 are distributed over all the ancilla qubits transversally.
Then, by measuring every ancilla in the Hadamard basis, the outcome of the measurement is encoded
in the parity of the resulting bitstring of the measurement. This method is not fault-tolerant on its
own, but it is the core of a fault-tolerant protocol known as Shor error correction [27][19]. Shor error
correction is very costly, and improvements exist for certain codes that make use of properties of those
codes. Most notable are Steane error correction [19] and Knill error correction [19].

Steane error correction works only for CSS codes, by making use of the transversality of the CX
gate. Two CX gates are used, one through which bit-flips (X) errors on the data qubits can propagate
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to a logical ancilla prepared in the |+〉 state, and one through which phase-flips (Z) on the data qubits
can propagate to a logical ancilla prepared in the

∣∣0〉 state; see figure 6.3. Non-trivial outcomes of
transversal measurements of the logical ancillae then indicate the presence of X and Z errors; the
error syndrome tells which one. This method needs fault-tolerant preparation of the logical

∣∣0〉 and
|+〉 states on the ancillae, so that phase- and bit-flip errors don’t propagate back to the data qubits,
through the first and second logical CX gates, respectively.∣∣ψ〉 •

|+〉∣∣0〉 • H

Figure 6.3: Steane error correction. Every line represents a full code block. The first (transversal) CX gate
allows for bit-flip errors on the data block to propagate to the first ancilla block; the second CX gates allows
for phase-flip errors on the data block to propagate to the second ancilla block. Non-trivial answers of both
transversal measurements indicate the syndrome of the error on the data qubit. The preparation of the logical
ancillae need to be performed fault-tolerantly, so that Z and X errors can’t propagate to the data qubits via
the first and second CX gates, respectively.

Apart from that there are Flagged circuits [28][29] that make use of normal syndrome measurements
with an extra ancilla. This extra ancilla, called the flag, is entangled with the read-out ancilla, and
measured together with that qubit. A non-trivial outcome of the flag measurement (a raised flag)
indicates the failure of a multi-qubit gate in the syndrome measurement circuit. Furthermore, a raised
flag together with the resulting syndrome indicates the added error on the data qubits, which then
can be corrected for. These flags can also be used in other circuits, creating fault-tolerant gadgets for
certain codes [30].

Measurement Measuring a logical qubit in the
∣∣0〉,∣∣1〉 basis is performing a measurement of the

observable Z̄, the logical Z operator. Any logical operator of a stabilizer code is a Pauli operator, and
by using the syndrome measurement schemes of the previous section, these operators can be measured
fault-tolerantly; it is effectively adding one extra stabilizer on top of the initial stabilizer group of the
code. By first performing error correction and then using the readout method with cat states from
the error correction schemes, the added stabilizer can be measured fault-tolerantly; first performing
error correction is needed to fulfil one of the fault-tolerant criteria [18].

For CSS codes, a transversal physical measurement of every qubit in the Z basis also measures the
logical qubit in the logical Z basis. However, this collapses the data qubits to a separable state (which
is not a codeword of the CSS code), thereby performing a destructive measurement; this measurement
doesn’t project upon either the logical

∣∣0〉 or
∣∣1〉, but essentially destroys the qubit. It is, however, a

fault-tolerant measurement [18].

By use of the transversal CX gate, the data qubits can be entangled with an ancilla register prepared
in the

∣∣0〉 state (encoded in the same CSS code as the data), creating the state α
∣∣00
〉

+ β
∣∣11
〉
. By

measuring the logical ancilla qubit transversally (and thus destructively), the logical data qubit is
projected onto the Z basis, with the outcome of the transversal ancilla measurement indicating the
logical measurement outcome. Just as with Steane error correction, this technique needs fault-tolerant
preparation of the logical

∣∣0〉 state.

Preparation of qubits Preparation of logical data- and ancilla qubits can be done with different
methods. The transversal CX gates of CSS codes allow to perform a transversal check for errors on a
non fault-tolerant preparation of the logical

∣∣0〉 state [18]. This transversal check does not tell what
error has happened, but by repetition of the (possibly faulty) preparation and then performing the
transversal check, a fault-tolerant state can be prepared.
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∣∣ψ〉 •∣∣0〉
Figure 6.4: Steane measurement of the state

∣∣ψ〉 = α
∣∣0〉+ β

∣∣1〉; every line represents a full code block. The

(transversal) CX gate creates the state α
∣∣00
〉

+β
∣∣11
〉
; transversal destructive measurement of the logical ancilla

qubit then projects the logical data qubit onto the Z basis.

Any logical state can in principle be prepared by adding a logical as an extra generator for the sta-
bilizer group and measuring that stabilizer. However, fault-tolerant stabilizer measurements generally
require fault-tolerant preparation of some specific ancilla state, creating a vicious circle. There are
ways to circumvent this, for example making use of Shor error correction and then preparing the cat
states by verifying them with only a bare ancilla. However, these methods can become increasingly
costly and hard to implement.

Finally, to prepare magic states fault-tolerantly, one can make use of a technique called magic state
distillation [26], where from multiple faulty magic states one less faulty magic state can be prepared.
By iterative application of the technique, a magic state with arbitrary small error can be obtained,
but the method described in [26] makes use of 5 faulty states per iteration, so the total number of
states quickly increases as the number of iterations becomes bigger.

6.3 Connectivity between qubits

In the above introduction of fault-tolerance, we assume that any pair of qubits can be subjected
to a 2-qubit gate. When this is possible for a pair, the two qubits are said to be connected. In a
physical realization of a quantum computer, connection between all pairs of qubits will generally not be
possible; to perform a multi-qubit gate on an arbitrary pair of qubits, they first need to be physically
connected. This can be achieved by swapping qubit states with their (connected) neighbours, and doing
this consecutively [18] until the qubits are indeed connected. The (necessarily multi-qubit) SWAP gate
is not fault-tolerant, but a fault-tolerant SWAP gate that makes use of a single ancilla exists [16][18].
This gate will be introduced in chapter 7, and this gate is characterized and experimentally realized
in this thesis, of which the results can be found in chapter 8.
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Chapter 7

The fault-tolerant SWAP circuit

As explained in the last section of chapter 6, in any realistic computer architecture qubits need to be
swapped reliably to perform computations on them. A SWAP operation is of course a 2-qubit gate,
but when two qubits in the same codeblock are swapped, this implementation is not fault-tolerant:
the 2-qubit operation is able to introduce a weight-2 error on the two data qubits. To SWAP qubits
reliably the a fault-tolerant SWAP gadget is needed. This chapter introduces a fault-tolerant SWAP
circuit, which is a fault-tolerant gadget that performs the SWAP operation. It is this circuit for which
tomography experiments are performed to analyse its fault-tolerant properties.

The circuit is introduced and explained in section 7.1. When implementing the tomography exper-
iments on an actual chip, some considerations need to be made, which are discussed in section 7.2.
To better understand the circuit, and to get an indication of what the actual experiments will give
as results, section 7.3 contains simulations on the fault-tolerant and normal circuit, specifically of the
tomography experiments and the error maps that will be introduced by faulty gates. These simula-
tions give insight in the tomography experiments and how the estimation methods for χ influence the
fidelity Fp and the error ratio r, including the CP subroutine from section 4.3.2.

7.1 The fault tolerant SWAP operation

When the SWAP operation is applied to two qubits, it can induce a weight-2 error on these qubits.
Generally speaking, a distance-3 code will not be able to correct this error, rendering the SWAP
operation a non-fault tolerant gate, if it is applied to two qubits in the same code block. This
problem can be solved by introducing an ancilla qubit that acts as an intermediary qubit for the
SWAP operation; the circuit for this can be found in figure 7.1. The two data qubit states are never
swapped directly, meaning that there is never a single 2-qubit gate that is applied to both states
directly. Therefore, no single faulty 2-qubit gate can introduce a weight-2 error on the data qubits.
Furthermore, a perfect SWAP operation never increases the error weight of an incoming error: the
operation exchanges the qubit states, including potential errors. If then at most 1 gate is faulty,
thereby introducing an error with weight 2 or below, the use of the ancilla guarantees a weight ≤ 1
error on the data qubits. This renders this implementation fault-tolerant.

|α〉 × × |β〉
|β〉 × × |α〉
|γ〉 × × |γ〉

Figure 7.1: The fault-tolerant SWAP operation. By using a 3rd qubit as an ancilla (separated by the dashed
line), any single weight-2 gate error will result in at most a weight-1 error on the data qubits. This is a direct
consequence of the fact that no single weight-2 operation is applied to both data qubits directly.

To compare the fault-tolerant implementation with the normal SWAP gate and investigate the
error maps induced by both implementations, the circuits are characterized as channels using quantum
process tomography. The tomography is only performed on the data qubits, because the state of the
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ancillary qubit is not of interest. Note that the ancillary qubit is always prepared in the |0〉 state and
that it is never measured. From the obtained representations of the error maps, by taking the Pauli
twirl, the error weights can then be estimated, enabling a comparison of the fault-tolerant and normal
SWAP operation. How to implement the operations on a physical chip is discussed in the next section.

7.2 Implementation on a quantum chip

The tomography experiments are implemented on the 5-qubit ibmqx4 device ‘Tenerife’ [3] using the
IBM Q Experience and qiskit [31]. The device layout can be found in fig. 7.2. The five qubits are
represented by the 5 circles, and each arrow in between a pair indicates that a CX operation can
be performed on those two qubits, with the arrow pointing from the control- to the target-qubit.
Note that there is triangular connectivity: there are two sets of three qubits which are all directly
connected to each other; this connectivity is required for the fault-tolerant SWAP gate. The device
characteristics are shown in table 7.1. In table 7.1a the relaxation time T1, dephasing time T2, average
gate error Eg and average readout error Er of all 5 qubits are shown. In table 7.1b the average errors
of the 2-qubit CX gates are shown.

Q0

Q1

Q4

Q3

Q2

Figure 7.2: Layout of the ibmqx4 5-qubit chip on which the tomography experiments are run. Each circle
represents a qubit, and each arrow indicates that a CX operation can be performed, with the arrow pointing
from the control to the target qubit.

Q0 Q1 Q2 Q3 Q4

T1 (µs) 42.6 44.1 33.5 44.9 51.6
T2 (µs) 36.7 15.6 21.0 14.9 11.2

Eg (10−3) 0.77 6.35 1.16 2.06 1.12
Er (10−2) 7.0 8.3 3.5 2.3 5.3

(a)

Q0 Q1 Q2 Q3 Q4

Q0 x x x x x
Q1 0.034 x x x x
Q2 0.030 0.045 x x x
Q3 x x 0.059 x 0.042
Q4 x 0.056 x x x

(b)

Table 7.1: (a) Qubit characteristics for the ibmqx4 5-qubit device provided by the IBM Q Experience. The
relaxation time T1, the dephasing time T2, the average gate error rate Eg and the average readout error rate Er

are shown.(b) Multi-qubit error rates for the ibmqx4 5-qubit device provided by the IBM Q Experience. Every
row is a control qubit (C), every column is a target qubit (T).

As can be seen in fig. 7.2, any pair of connected qubits has only one direction in which the CX gate
can be implemented natively. However, the action of the CX gate on two qubits is reversed if both
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qubits are rotated to the Hadamard basis. This can be easily verified by calculating the composite
gate as a matrix product of the individual gates. The SWAP gate can then be compiled as three CX
gates with four Hadamard gates, as shown in fig. 7.3.

Q1 • H • H •

Q0 H H

(a)

Q1 H H • H • H •

Q0 H H H H

Q2 • H • H • • H • H •

(b)

Figure 7.3: (a) The normal, non fault-tolerant SWAP and (b) fault-tolerant SWAP gate as implemented
on the ibmqx4 device. The SWAP operation can not be implemented natively, so it is decomposed to three
consecutive CX operations with the control qubit flipped for the 2nd CX gate. However, the CX operation can
only be implemented in one direction on the IBM device, so the 2nd CX gate is flipped by changing to the
Hadamard basis for both qubits. For the normal SWAP operation, the top qubit is implemented on Q1, with
the bottom on Q0. For the fault-tolerant SWAP, the ancilla at the bottom is implemented on Q2, so that the
two data qubits (and thus tomography qubits) are the same for both experiments.

Furthermore, measurements on the ibmqx4 device are always in the computational basis. To
perform a measurement in another basis {|α〉 , |β〉} (that is, a measurement of an observable M =
|α〉 〈α| − |β〉 〈β|), the qubit is first rotated from that basis to the computational basis by applying a
unitary Rm = |0〉 〈α|+ |1〉 〈β|. The measurement outcome +1 and −1 then correspond to the |α〉 and
|β〉 states, respectively. Likewise, qubits are always initialized in the |0〉 state. To prepare a state |α′〉
on a qubit, it is rotated from the computational basis by applying a unitary Rp = |α′〉 〈0| + |β′〉 〈1|,
with |β′〉 orthogonal to |α′〉. A schematic of the full tomography experiment can be found in fig. 7.4.

|0〉 Rp1 • H • H • Rm1

|0〉 Rp2 H H Rm2

(a)

|0〉 Rp1 H H • H • H • Rm1

|0〉 Rp2 H H H H Rm2

• H • H • • H • H •

(b)

Figure 7.4: The full tomography experiment of (a) the normal SWAP gate and (b) the fault-tolerant SWAP
gate as implemented on the ibmqx4 chip. The two data qubits are initialized in the |0〉 states and then rotated
to the various Pauli eigenstates, indicated by the Rp gates. After the circuit, the two data qubits are rotated
again to perform a measurement in the various Pauli bases; this rotation is done using the Rm gates.

7.3 Simulations of the experiments and circuits

To understand the tomography experiments and the two circuits before implementing them on the
actual chip, we perform two different simulations. The tomography experiments are simulated as
a whole; this allows for understanding of the influence of statistical errors and the CP subroutine
from section 4.3.2 on the outcome of the tomography. Apart from that, the complete maps as open
quantum system channels of both the fault-tolerant and normal SWAP operation are calculated, with
the perfect gates replaced by faulty implementations. This allows for an estimation of the actual
experiments and can act as a check of the outcomes of those experiments.

7.3.1 Modelling the tomography experiment without errors

The simulations of the tomography experiments are performed in qiskit [31], using the off-site ibmq
simulator backend. Errors and faulty gates are not included in the simulations, so that the only
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Figure 7.5: Process fidelity Fp of the estimated process matrix χ from the simulations. The total number of
shots Ntot is varied from 25− 215. The infidelity is caused by the CP subroutine, that maps the estimated χ to
the space of CP maps.

infidelity on the estimated χ is a result of finite sampling and its consequences, most notably the CP
subroutine. This also means that the normal and fault-tolerant SWAP circuits are exactly the same
for these simulations; therefore the simulations are only performed for one of the two experiments.
The fidelity of the estimated process is calculated using the χerr method from section 4.4. In figure
7.5 the fidelities of the simulations can be found with varying total number of shots Ntot. From
Ntot = 214 = 16384, the minimum eigenvalue of the estimated χ is positive, discarding the use for
the CP subroutine. The maximum by the IBM Q Experience allowed Ntot for a single experiment is
213 = 8192. The estimate of χ from simulations with that Ntot can be found in figure 7.6.

The process fidelity of the estimated χ is Fp = 0.92718. Note that the diagonal clearly indicates
the use of the CP subroutine from section 4.3.2. The elements on the diagonal indicate that the initial
estimated χ had a minimum eigenvalue of λmin = −5.26×10−3 and a maximum eigenvalue of λmax = 1,
resulting in a maximum eigenvalue after the CP subroutine of ξmax = 1+5.26×10−3

1+16×5.26×10−3 = 0.92719 ≈ Fp,
which is to be expected based on the arguments in section 4.4.1 and the discussion of the CP subroutine
in section 9.1. Furthermore, with error processes absent, the process fidelity should be 1 (the largest
eigenvalue before the CP subroutine is 1 − 9 × 10−12 reflecting that). Therefore, for tomography
experiments on a perfect device, the CP subroutine can bring down the estimated fidelity by more
than 7% for a total number of shots Ntot = 8192.

7.3.2 Modelling the circuit with faulty gates

The calculations of the circuits as linear maps are performed using numpy [32]. We represent each
faulty gate as a perfect unitary operation followed by a depolarizing channel; for the 2-qubit gates
this is also the 2-qubit depolarizing channel, see section 3.5.3. An identity or wait location is also
modelled with a depolarizing channel. Every single-qubit gate is modelled to have the same error rate
ps, and every multi-qubit gate is modelled to have the same error rate pm, meaning that single-weight
and multi-weight errors occur with the same probability pm

15 . Note that these simulations are not
of the total tomography experiment, but directly calculate Λ itself as the composition of the maps
corresponding to the individual gates. Therefore, any error within the final map is a direct indication
of the errors from the faulty gates, and there are no statistical errors present.

The superoperator representation (see section 3.2.4) is used to perform these calculations. For the
fault tolerant circuit, the partial trace (see 3.4) of the final 3-qubit map is taken to calculate the
map on the 2 data qubits, which will also be obtained by the actual tomography experiments. The
process matrix χ of the complete circuit is then calculated from the final composite superoperator.
Subsequently, we calculate the process fidelity of the two circuits when compared to the perfect
SWAP operation from the χ matrix using the χerr method (see section 4.4.1). Furthermore, from the
χ matrices we calculate the ratio r = s2+

s1
of the multi- and single-weight errors by first taking the

Pauli twirl (see section 3.6.1).
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Figure 7.6: Results of tomography simulations of the fault-tolerant SWAP circuit with Ntot = 8192. (a) City
bar plot of the process matrix χ that is reconstructed from the tomography data. There are no error processes
or faulty gates simulated, the errors in this estimate are therefore completely due to statistical noise. The
fidelity of this process compared to the perfect SWAP operation is Fp = 0.927. Note that there is a constant
term on the diagonal in the plot of χ, indicating that the initial estimated process matrix did not reflect a
CP map and that the CP subroutine has been activated, which is also the source of the considerable infidelity.
Since there are no errors simulated whatsoever, simulations of the non-fault-tolerant SWAP circuit would give
identical results. (b) City bar plot of the error matrix χerr. The only error in the process is a consequence of
the CP subroutine, that shows as the same constant diagonal as in the process matrix (The z-axis scaling is
different in plot (a) and (b) though.).
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Figure 7.7: Contour plot of the fidelities Fp of simulations of a faulty circuit for both the fault-tolerant(left)
and normal(right) SWAP circuit, without any sampling noise. Every gate in the circuit is replaced by a
faulty implementation. Each faulty gate is modelled as a channel which first implements the perfect unitary
operation, and then a depolarizing channel. The 1- and 2-qubit gates have a 1- and 2-qubit depolarizing
channel, respectively. The single-qubit gates are all modelled with an error rate ps, and the multi-qubit gates
are modelled with an error rate pm. Fidelities of both maps when compared to the perfect SWAP operation
are shown. These calculations are performed for a 35 × 35 grid of ps ∈ [0, 0.05], pm ∈ [0, 0.1], resulting in a
2D-landscape of fidelities.

These calculations are performed for a 35 × 35 grid of ps ∈ [0, 0.05], pm ∈ [0, 0.1], resulting in a
2D-landscape of the fidelities (see figure 7.7) and ratios (see figure 7.8). The IBM Q experience gives
estimates of the single- and multi-qubit average error rates (see table 7.1); using these an estimate
can be made of the fidelities of the actual tomography experiments. Based on this model, with
ps = 6 × 10−3 and pm = 0.045, the highest values of the qubits and gates involved, a very crude
estimate of the fidelities is: Fp = 0.8 for the fault-tolerant circuit and Fp = 0.85 for the non-fault
tolerant circuit.

From fig. 7.7 it is evident that, for a fixed ps and pm, the fault-tolerant implementation has a
significantly lower fidelity than its normal counterpart. This is to be expected because of the higher
gate count of the fault-tolerant circuit, where every gate adds to the total error map. Furthermore,
the fault tolerant implementation is more sensitive to pm for a fixed ps than the normal circuit.
Moreover, the gradient of the fault-tolerant circuit is also much steeper; a equal change in ps or pm
has a much stronger effect on the fidelity for the fault-tolerant circuit. By taking the fidelity of every
gate as (1− p) and accounting for various cancellations and error propagations, the fidelities of the
fault-tolerant and non-fault-tolerant circuit can be approximated as:

(Non− FT) Fp ≈ (1− ps)4 × (1− pm)3 ,

(FT) Fp ≈
(

1− 9

10
ps

)15

×
(

1− 3

8
ps

)12

×
(

1− 12

45
pm

)9

,
(7.1)

of which simulations can be found in appendix B.1. This approximation neglects various higher-order
terms and error cancellations, so especially for larger ps and pm it deteriorates.

The ratio r is considerably lower for the fault-tolerant circuit. From figure 7.8 it is evident that as ps
and pm approach zero the ratio also approaches zero; this is the property that the gadget is designed
to have. The ratio steadily increases for both an increasing ps and an increasing pm; there is no
significant difference between the effect of a larger ps and pm. This reflects the fact that 2-qubit errors

56



0.00 0.01 0.02 0.03 0.04 0.05
ps

0.00

0.02

0.04

0.06

0.08

0.10

p m

Fault-tolerant

0.00 0.01 0.02 0.03 0.04 0.05
ps

Non fault-tolerant

0.00

0.07

0.14

0.21

0.28

0.35

0.42

0.49

1.50

1.57

1.64

1.71

1.79

1.86

1.93

2.00

Error weight ratios

Figure 7.8: Contour plot of the multi- to single-qubit error ratios r = s2+
s1

of the Pauli twirl of the total
error map calculated for both the fault-tolerant(left) and normal(right) SWAP operation, for the simulations
described in section 7.3.2. Note the use of different colorbars due to difference in ratios between the fault-
tolerant and normal operation; the ratio of the fault tolerant operation is significantly smaller than the normal
implementation. Furthermore, note that the CP subroutine is not included in these simulations.

can become single-qubit errors after propagation and vice-versa; the 2-qubit gates and single-qubit
gates can both introduce weight-1 and weight-2 errors, but never a weight-2 error on the data-qubits.
The normal circuit shows significantly different behaviour regarding the ratios. For small ps and pm,
there is only minute dependence on the other parameter. Furthermore, it has a lower limit of 1.5 and
an upper limit of 2.0; the lower limit is of particular interest, because the goal of the fault-tolerant
gadget is for its ratio to be lower than this value. In this lower limit, where pm = 0, there are no direct
2-qubit errors, so every multi-qubit error is a direct results of error-weight increase by propagation.

The CP subroutine can be interpreted as adding a uniform error to the process; this will affect the
error ratio. The CP subroutine adds the identity matrix to χ, and therefore also to χerr. The ratio
rCP after the CP subroutine is then, for a 2-qubit process:

rCP =
r(1− Fp) + 9|λmin|(r + 1)

(1− Fp) + 6|λmin|(r + 1)
, (7.2)

with r the ratio before the CP subroutine and λmin and Fp the minimum eigenvalue and fidelity of
χ before the CP subroutine. This means that the ratio goes to 1.5 from both below and above,
reaching that value in the limit of large |λmin|. Hence, the fault-tolerant circuit’s ratio will go up, and
the non fault-tolerant circuit’s ratio down, making the difference between the two ratios less defined.
Nevertheless, as long as |λmin| << 1, the ratio will not be gravely affected by the CP subroutine, which
is the same as the influence on the fidelity.

These simulations and calculations reflect the overall properties that we expect from the fault-
tolerant gadget compared to the normal implementation. The fidelity of the fault-tolerant gadget
will be lower, but the error map will consist of considerably fewer weight-2 errors when compared to
the normal SWAP operation. Furthermore, a perfect fidelity will be impossible to obtain with the
estimation methods used, especially the CP subroutine. That routine will also affect the emerging
ratio of multi- and single-weight errors. However, these implications can be diminished by using a
larger Ntot, and the simulations show that the actual values can still give decisive results.
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Chapter 8

Results of tomography experiments

The main results of the tomographic experiments are obtained from the reconstructions of χ and the
subsequent data analysis that is performed on them. The direct results after the tomographic methods
give unfavourable results. As can be found in table 7.1, the measurement error rates of the ibmqx4
device are relatively high. The methods introduced in chapter 4 do not account for SPAM errors, but
to obtain a better representation of the actual circuit these need to be treated. Section 8.1 introduces
a method of filtering SPAM errors that assumes measurement errors are the main contributor to
SPAM errors, and that preparation errors are negligible. The method is based upon characterizing
the induces measurement errors of the tomography by doing full tomographic characterisation of the
Identity channel and contributing all errors in this channel to measurement errors. Then, the main
results of the experiments and data analysis can be found in section 8.2, along with a short discussion.
The full discussion and conclusions can then be found in chapter 9.

8.1 Preliminary results and SPAM errors

The tomography methods described in chapter 4 and 7 perform reconstruction of χ from the measure-
ment data; and indicate what can be expected from the experiments. However, they do not take SPAM
errors (see section ) into account. The measurement error rates provided by the IBM Q Experience
(see table 7.1) [3] indicate that this results in a significantly low process fidelity for both experiments:
FFT
p = 0.504 for the fault-tolerant SWAP and FNFT

p = 0.730 for the normal SWAP operation. The
corresponding process- and error matrices are not shown here, but are included in appendix B.2.

To combat the SPAM errors, the whole experiment, including these errors, is modelled as a com-
position of maps. Assuming that the preparation errors are negligent compared to the measurement
errors, the full experiment can be modelled as the composition of three maps (see figure 8.1): the
perfect unitary U , the error map Λerr induced by the SWAP circuit itself, and the error map induced
by the measurements Λmeas. Process tomography then estimates this total composition, represented
by a process matrix χtotal. If a representation of Λmeas is known or estimated, it can be used to
calculate (a representation of) U and Λerr together, which is the desired χ. This only works if the
corresponding superoperator of Λmeas is invertible.

ρin Λprep Uideal Λerr Λmeas
ρout

Figure 8.1: Model of treating SPAM errors as an unknown error map before and after the circuit, making the
full circuit a composition of maps. Furthermore, we assume that Λprep ≈ I, so that the SPAM errors consist of
only the measurement errors.

A representation of Λmeas can be estimated by performing full process tomography on the 2-qubit
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identity channel. That tomography estimates a representation of Λprep ⊗ ΛId ⊗ Λmeas. Λprep is again
assumed to be negligible, and the circuit itself is arbitrary short, so that we can assume that ΛId = χI

as well. Then, process tomography on the 2-qubit identity channel directly estimates a representation
χmeas of Λmeas. The results of this tomography experiment can be found in figure B.4.

Let Stotal, S and Smeas be the superoperators corresponding to the total experiment (χtotal), the
erroneous circuit itself (χ) and the error map of the measurement (χmeas), respectively. Then, Stotal =
SmeasS and thus

S = (Smeas)−1Stotal, (8.1)

if Smeas is invertible. This gives a method of computing the desired χ from χmeas and χtotal via the
corresponding superoperator-representations.

8.2 Results after filtering

The process matrices χ computed from the results of the tomography experiments for both imple-
mentations of the SWAP circuit can be found in figure 8.2; note the use of different y-scales due to
different fidelities. Here, Ntot = 40960. Compare with the results of the simulation shown in figure 7.6
to separate the desired result and the noise. The process fidelities of the estimated χ are FFT

p = 0.608

for the fault-tolerant SWAP and FNFT
p = 0.742 for the normal SWAP. The larger amount of noise on

the fault-tolerant implementation reflects these fidelities; there is more error on that implementation.
These graphs concern the filtered process matrix, where the SPAM errors have been filtered out. Fur-
thermore, the CP subroutine was activated to obtain a process matrix with only positive eigenvalues.
The initial estimates of χ and χerr before the CP subroutine can be found in appendix B.3. Especially
the fidelity of the non-fault-tolerant implementation is brought down.

In figure 8.3 the error matrices of the processes are shown; the hermiticity of χerr (and therefore χ)
for both experiments is evident from this depiction. Moreover, the imaginary part of the elements in
the first row and column are relatively large; this indicates a systematic unitary error (see section 3.5.1
and 4.4 or [11]). Furthermore, most other non-zero elements lie on the diagonal of the error matrix
and are positive (and also necessarily real due to the hermiticity of χ); this invites the comparison
with a Pauli error channel. By taking the Pauli twirl, off-diagonal elements are neglected. This
corresponds to neglecting the systematic unitary error and focusing on the aspect of the error map
χerr that randomizes the input states, creating density matrices from pure states. The error matrices
after filtering before the CP subroutine can be found in appendix B.3.

Figure 8.4 shows bar plots of the Pauli twirl of both error matrices; note the use of different y-scales
here as well. As is expected from the fidelities of the processes, the error on the fault-tolerant SWAP
is considerably larger. However, for the fault-tolerant circuit the single-weight errors are also much
larger when compared to the multi-weight errors, whereas for the normal circuit there is no clear
advantage for either of the two. This results in a ratio r = s2+

s1
, with s2+ and s1 the measure for

multi- and single-weight errors respectively, of rFT = 0.170± 0.0029 for the fault-tolerant SWAP, and
a ratio of rNFT = 1.256± 0.0129 for the normal SWAP. However, the ratio for both implementations
or increased by the CP subroutine after the SPAM filtering. The twirls of the error matrices after
filtering before the CP subroutine can be found in appendix B.3.1.
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(a) Fault-tolerant SWAP
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(b) Non fault-tolerant SWAP

Figure 8.2: Results of tomography experiments of the fault-tolerant SWAP circuit (left) and the normal
SWAP circuit (right); Ntot = 40960. Note the use of different y-scales due to different fidelities. Compare with
the simulations shown in figure 7.6. The χ matrix, with the fidelity of the process compared to the perfect
SWAP operation is FFT

p = 0.608 for the fault-tolerant and FNFT
p = 0.742 for the normal implementation. It is

clear that there is more noise on the fault-tolerant implementation, corresponding to the lower fidelity. For this
number of shots, the initial estimate of χ has only positive eigenvalues and is thus already CP. This drops the
use of the CP subroutine in these experiments.
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(b) Non fault-tolerant SWAP

Figure 8.3: Error matrices corresponding to χ computed from the tomographic results. The fault-tolerant
implementation (a) has considerable more error than the normal implementation (b), as can be seen by the
lower size of the leftmost bar in the fault-tolerant implementation. The imaginary part of the elements in the
first row and column are relatively large; this indicates a systematic unitary error (see section 3.5.1 and 4.4 or
[11]). Furthermore, most other non-zero elements lie on the diagonal of the error matrix and are positive (and
necessarily real due to hermiticity of χ).
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Figure 8.4: Pauli twirl of χerr of the (a) fault-tolerant SWAP and (b) normal implementation. Note the use
of different scales for the two graphs. The twirl of χerr, which is its diagonal, is used to calculate the ratio of
multi- and single-weight Pauli errors. The fault-tolerant SWAP has considerable higher errors compared to the
normal implementation, indicated by the lower fidelity of the process. However, the multi-weight Pauli errors
are less likely than the single-weight errors.
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Chapter 9

Discussion and conclusion

The previous chapter has shown the results of the tomography experiments. It allows us finally to
analyse the fault-tolerant properties of the SWAP implementation. In section 9.1 I discuss the methods
that are described in this report, and are used to gather the results. These results are discussed in
section 9.2, and they are concluded in section 9.3. Finally, possible improvements and proposals for
further research are given in section 9.4.

9.1 Discussion of the methods

The tomography experiment simulations

The simulations shown in chapter 7 reveal a few properties of the tomography procedure. Concerning
the tomography experiments, a very important variable is the total number of shots Ntot. As can be
seen in figure 7.5, the tomographic reconstruction methods can introduce considerable infidelity on
the estimated process: for a Ntot as high as 4096 the estimated χ will have a drop in fidelity of over
10%, even if the device on which the experiments are performed is completely devoid of errors.

The CP subroutine

A significant part of this decrease in estimated fidelity is due to the CP subroutine. The method of
mapping back to the space of CP channels is very straightforward, but can also negatively influence
the fidelity. From section 4.4.1 we know that the largest eigenvalue λmax of χ is approximately equal
to the process fidelity Fp. If we consider the method described in section 4.3.2, we have for the new
maximum eigenvalue λestmax, compared to the old maximum eigenvalue λmax:

λestmax

λmax
=

1

λmax

λmax + |λmin|
1 + |λmin|d2

=
1 +
|λmin|
λmax

1 + |λmin|d2
< 1, (9.1)

since
1

λmax
< d2, and the strict inequality coming from the fact that |λmin| > 0.

There are 2 considerations to this result:

• The ratio λestmax
λmax

scales as 1
1+22n

. For a large number of qubits, this decays to zero exponentially
quickly.

• lim|λmin|→0
λestmax
λmax

= 1 and |λmin| gets smaller for as Ntot increases, so increasing the number
of experiments decreases the severity of the problem. This is the obvious result that more
repetitions of the experiments decrease statistical noise.

It is now also evident from Eq. (9.1) that the method introduced in section 4.3.2 to obtain a CP
representation impacts the fidelity of the estimated process. The fidelity of the new process Fp is:
(note that the eigenvectors are the same for χest and χ):

FCPp =
∑
i

χest
i |〈ψi, u〉|

2 =
∑
i

λi + |λmin|
1 + |λmin|d2

|〈ψi, u〉|2 ≈
λmax + |λmin|
1 + |λmin|d2

. (9.2)
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This means that the CP subroutine will decrease the fidelity, and that the estimated fidelity will not
perfectly reflect the experiment.The same considerations for χest

max made in the above list apply to
Fp after application of the CP subroutine. To circumvent this problem, a more elaborate method of
mapping to the subspace of CP channels needs to be devised. Extra care has to be taken to also take
TP channels into account; the method must not the TP constraint.

It is worth noting that there is an internal function of qiskit that performs a mapping to the space
of CP maps based on a technique discussed in [10]. We have used this function during our testing as
well; this function does indeed map a process matrix (or Choi matrix) to the subspace of CP maps, but
by doing so the matrix is also mapped outside the space of TP maps, which was validated by various
tests. The authors of the paper make the assumption that if the method works for state tomography, it
should also work for process tomography. However, the constraint for states is solely that the trace of
the matrix must equal 1, whereas the TP constraint for processes is stricter. Basically, the alteration
of the Choi-Jamiolkowski isomorphism (see section 3.2.2) is not taken into account1.

The error model

Concerning the simulations of the fault-tolerant and non-fault-tolerant circuits with faulty gates, they
show qualitatively what can be expected from the experiments. Figure 7.7 shows that the fault-
tolerant circuit has a much lower fidelity than the normal implementation for the same error rates,
and that the fidelity is also considerably more dependent on the error rates. These two things are to
be expected, because the fault-tolerant circuit has a much larger gate depth, and there are more than
four times as many faulty locations in the circuit. Moreover, the contours in figure 7.7 are straight
for small ps and pm, and only for larger error rates they start to bend. This is a direct consequence
of the errors dependent on higher orders of the error rates, which are thus suppressed for small rates.
Only once the rates grow in value, the higher-order terms start to be significant.

The simulations also show that the fault-tolerant circuit does what it is designed to do when errors
occur uniformly and independently following each operation. The ratio r in the fault-tolerant circuit
is much lower for a fixed ps and pm, and it goes to 0 as the error rates grow smaller. Notably, even for
perfect 2-qubit gates (pm = 0), the ratio r > 0, meaning there are weight-2 errors for finite ps. This
is a direct consequence of error propagation, but it does not affect the fault-tolerant properties of the
circuit: the definition of fault tolerance in chapter 6 does not discriminate between single and multi-
qubit gates: the multi-qubit error suppression must hold for error rates of any kind. The contours
of the fault-tolerant error ratios are very curved for small ps and pm, and they become increasingly
straight for higher error rates. This is not to be expected, because for high error rates the dependence
is linear, whereas for low error rates the dependence is non-linear.

The modelling of the faulty gates as depolarizing channels is a very straightforward but a crude
oversimplification of the actual error maps. The simulations treat correlated (i.e. weight-2) errors
on the 2-qubit gate as equally likely as single-weight errors on those gates. This results in the fact
that the ratio r for the non-fault tolerant SWAP is never less than 1.5; correlated errors are always
as likely as uncorrelated errors. To simulate the circuits more quantitatively would either require
knowledge of the Kraus maps of every element of the circuit, or a much more elaborate simulation of
the involved physics, both of which are beyond the scope of this text. However, the simulations offer a
qualitative result, and can act as a ball-park estimate for the actual experiments, allowing us to check
the experimental results.

SPAM errors and the tomography method

Tomography relies on a high number of measurements; there are 3n measurements that need to be
performed per input state. The ibmqx4 device has considerable measurement error rates, this leads
to infidelity and many uncorrelated errors. For tomography, the goal is to determine the expectation
values of various n-qubit Paulis. In SQPT, these measurements are performed by measuring every
qubit separately, resulting in n measurements. However, the expectation value can also be deter-
mined by entangling the data qubits with an ancilla using a phase kickback technique, and then only

1The authors of the paper and the qiskit team have been notified of this problem.
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(repeatedly) measuring the ancilla; see figure 9.1. Note that this is essentially a repeated stabilizer
measurement. If the single- and multi-qubit gate error rates are low compared to the measurement
error rate, then the lower number of measurements can result in a better estimate of χ and a higher
fidelity. This is a technique that has not been used but is something to consider in future research.

|0〉 Rp1
SWAP

P1

|0〉 Rp2 P2

|0〉 H • • H

Figure 9.1: Alternative method of tomography measurement of Pauli element P = P1 ⊗ P2. Instead of
measuring the qubits individually in the bases dictated by P1 and P2 respectively, the phase kickback technique
is used to measure the the eigenvalue of the operator P immediately.This introduces the need for two extra
multi-qubit gates and two extra single-qubit gates, but reduces the number of measurements that need to be
performed.

9.2 Discussion of the results

There is a big gap between the fidelities of the fault-tolerant and non-fault-tolerant circuit. For
the fault-tolerant SWAP circuit, Fp = 0.608, and for the normal circuit Fp = 0.742. This result
is significant: there is a 30% difference between the two circuits. The unfiltered process fidelities
were F SPAM

p = 0.504 and F SPAM
p = 0.730 for the fault-tolerant and normal circuit, respectively; the

difference is here still more than 20%. However, note that the process fidelity of the tomography
experiment on the identity channel Fmeas

p = 0.818, and that for the fault-tolerant experiment we have

F SPAM
p

Fmeas
p

=
0.504

0.818
= 0.616 ≈ F SPAM

p , (9.3)

and conversely for the normal experiment we have

F SPAM
p

Fmeas
p

=
0.730

0.818
= 0.819, (9.4)

so the difference is scaled by a factor (Fmeas
p )−1 by filtering the SPAM errors. The latter fraction does

not approximate as good as the first because of the CP subroutine; the process fidelity before the CP
subroutine after filtering for the non-fault-tolerant circuit is Fp = 0.929, so the CP subroutine has a
significant effect on this fidelity.

The Pauli twirls shown in figure 8.4 show that in the fault-tolerant implementation, the second
qubit has a large Z error, whereas in the normal implementation, there is a large X error. Note,
however, that these are not the same physical qubits. Furthermore, the correlated errors in the fault-
tolerant twirl are much smaller than the single-weight errors, which is not as evident in the normal
implementation. However, the total error for the fault-tolerant circuit is much larger - which reflects
the process fidelities.

The unfiltered Pauli twirls, which can be found in appendix B.2.1, show less distinct behaviour.
However, the twirl of the non-fault-tolerant experiment in figure B.5b and the twirl of the error
matrix characterizing the SPAM errors in figure B.6 show a large correlation. This indicates that the
uncorrelated errors in the non-fault-tolerant experiment are largely due to the measurement errors,
which (on the assumption that they are independent for different qubits) are solely single-weight
errors. This is also substantiated by the fact that the process fidelities for these two processes are
close, and that after filtering the twirl of the non-fault-tolerant error matrix shows a relatively uniform
distribution over the single- and multi-qubit errors.

As can be seen in the estimated error matrices, all tomography experiments shown signs of a
systematic unitary error. This can be an indication of poorly calibrated gates on the ibmqx4 device. To
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correct for these errors, the inverse of the systematic unitary error can be amended to the specification
of the circuit on which the tomography is to be performed. This is, however, only a pseudo-solution.
The systematic unitary error on the total map is a direct consequence of systematic unitaries on the
individual gates that comprise the circuits, so correcting only for the total resulting error does not
offer any method to correct any other circuit. By characterizing the systematic unitary errors on every
individual gate in the gate set and applying an inverse to these errors (essentially recalibrating the
gates), the systematic error in any circuit will be corrected.

9.3 Conclusion

The main result of the experiments is that the ratio of multi- to single-qubit errors is much lower for the
fault-tolerant SWAP circuit compared to the normal implementation. For the normal implementation,
weight-2 Pauli errors are almost as likely as single-weight Pauli errors; the ratio is rNFT = 1.256 with
a standard deviation of ∆rNFT = 0.0129, but there are 1.5 as many weight-2 Paulis as there are
weight-1 Paulis in P2. A distance-3 code could not correct for those errors. For the fault-tolerant
implementation, the ratio is rFTm/s = 0.170 with a standard deviation of ∆rFT = 0.0029, which is about
one tenth of the ratio of the normal implementation. It can thus be concluded with high certainty that
the fault-tolerant circuit suppresses 2-qubit errors by a considerable amount. However, the fidelity of
the fault-tolerant circuit is much lower than that of the normal implementation: 0.608 versus 0.742.
The ratio might be lower for the fault-tolerant circuit, but the total error rate is much higher due
to the added complexity of the fault-tolerant circuit. Therefore, with the current error rates, the
fault-tolerant implementation does not offer a clear advantage over the normal circuit, and the error
rates of the devices on which the computations will be performed will have to decrease still.

9.4 Recommendations

Although there can be made conclusions on these result, it can be expanded with further research.
First and foremost, improvements in the tomographic experiments can be made. The number of
necessary measurements is very large, but that amount might be reduced by using other data gathering
methods, for instance by using the circuit in 9.1.The the tomographic reconstruction methods can also
be improved. The method of mapping to the CP subspace used in this thesis is suboptimal, but it
does preserve trace-preservation. There are various methods of mapping to the CP subspace for state
tomography, but these often break TP. An example of a method that does not break the TP constraint
is [33]. Furthermore, a better method of SPAM filtering can give better results. The methods of SPAM
filtering used in chapter 8 are relatively straightforward but also imperfect.

The simulations would also greatly benefit from a more detailed error model of the circuits. The
simulations shown in section 7 can qualitatively explain the differences between the fault-tolerant and
normal SWAP, but more details of the error processes need to be incorporated to get a quantitative
simulation. Also, the measurement results indicate the existence of a systematic error. By performing
tomography on every individual gate in the gate set these errors might be correctable.

Lastly, the fault-tolerant SWAP is only part of larger whole. Implementing different fault-tolerant
circuits on the IBM devices to analyse them can further determine fault-tolerant properties (Imple-
menting a full code is generally hard to do on the IBM devices due to connectivity restrictions.)
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Appendix A

Proofs for chapter 3

A.1 Complete positivity in representations of Λ

This section aims to prove all the various equivalent conditions to complete positivity in all represen-
tations of Λ introduced in 3.2. I will compare a map Λ, its Choi matrix ρChoi, its Kraus decomposition
{Ak} and its process matrix χ. The following statements concerning complete positivity are equivalent:

1. Λ is completely positive

2. ρChoi is positive-semidefinite

3. There is a Kraus decomposition of Λ (i.e. Lk = Rk in 3.2.3)

4. The process matrix χ is positive-semidefinite

The statements are shown to be equivalent using the transitive property; they are proven in the
following order(with x→ y meaning statement x leads to statement y):

• 1→ 2 (Λ being completely positive implies that the Choi matrix is positive-semidefinite)

• 2→ 3 (The Choi matrix being positive-semidefinite implies existence of a Kraus decomposition
for Λ)

• 3→ 1 (The existence of a Kraus decomposition of Λ implies that Λ is completely positive)

• 4 → 3 (The process matrix χ being positive-semidefinite implies that there exists a Kraus
decomposition of Λ)

• 3 → 4 (The existence of a Kraus decomposition of Λ implies that the process matrix χ is
positive-semidefinite)

A.1.1 Λ being completely positive implies that the Choi matrix is positive-semidefinite
(1→ 2)

By definition, Λ⊗ I preserves positivity if it is a CP map. Since |Ω〉 〈Ω| is rank 1 and has as its only
non-zero eigenvalue λ = 1, positivity of ρChoi follows because the Choi matrix is

(
Λ⊗ I

)
|Ω〉 〈Ω|.

A.1.2 The Choi matrix being positive-semidefinite implies existence of a Kraus
decomposition for Λ (2→ 3)

First, decompose ρChoi into its eigenvalues λk and eigenvectors |Jk〉 to obtain the Schmidt decomposi-
tion: ρChoi =

∑
k λk |Jk〉 〈Jk|. Since ρChoi is positive-semidefinite, we have λk ≥ 0 ∀k and Re{λk} = λk.
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Furthermore, we can decompose |Jk〉 into a tensor product of vectors in the system space and vectors
in the environment space:

√
λk |Jk〉 =

∑
i |ai〉

k ⊗ |bi〉k. We then get:

ρChoi =
∑
k

λk |Jk〉 〈Jk|

=
∑
k

√
λk |Jk〉 〈Jk|

√
λk

=
∑
k

∑
i

|ai〉k ⊗ |bi〉k
∑
j

〈aj |k ⊗ 〈bj |k

=
∑
i,j,k

|ai〉k 〈aj |k ⊗ |bi〉k 〈bj |k

(A.1)

Therefore (using the relation between ρChoi and Λ from Eq. (??), proven in section A.3.1):

Λ(ρ) = d tr2
[
ρChoi

(
I ⊗ ρT

)]
= d tr2

[(∑
i,j,k

|ai〉k 〈aj |k ⊗ |bi〉k 〈bj |k
)(
I ⊗ ρT

)]
= d tr2

[∑
i,j,k

|ai〉k 〈aj |k ⊗ |bi〉k 〈bj |k ρT
]

= d
∑
i,j,k

|ai〉k 〈aj |k 〈bj |k ρT |bi〉k

=
∑
i,j,k

√
d |ai〉k 〈b∗i |

k ρ
∣∣b∗j〉k 〈aj |k√d

=
∑
k

AkρA
†
k

(A.2)

With Ak =
√
d
∑

i |ai〉
k 〈b∗i |

k. So, if ρChoi ≥ 0, Λ can be written using the operator-sum decomposition
with Lk = Rk.

A.1.3 The existence of a Kraus decomposition of Λ implies that Λ is completely
positive (3→ 1)

Λ is CP if
(
Λ⊗ I

)
ρext ≥ 0 when ρext ≥ 0. In other words:

〈v|Λ⊗ I
(
ρext

)
|v〉 ≥ 0 ∀ |v〉 (A.3)

If Λ(ρ) =
∑

k AkρA
†
k, then (with

∣∣∣v′k〉 =
(
A†k ⊗ I

)
|v〉)

〈v|Λ⊗ I
(
ρext

)
|v〉 = 〈v|

∑
k

(
Ak ⊗ I

)
ρext

(
A†k ⊗ I

)
|v〉

=
∑
k

〈
v
′
k

∣∣∣ ρext ∣∣∣v′k〉 ≥ 0 ∀ |v〉
(A.4)

Where the last inequality follows since ρext is positive-semidefinite.
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A.1.4 The process matrix χ being positive-semidefinite implies that there exists
a Kraus decomposition of Λ (4→ 3)

Since any positive matrix can be diagonalized by a unitary matrix, we have χ = UDU †, or χm,n =∑
i Um,idmU

∗
n,i with dm ≥ 0 the eigenvalues of χ, and Re{dm} = dm. Then:

Λ(ρ) =
∑
m,n

χm,nBmρB
†
n

=
∑
m,n

∑
i

Um,idmU
∗
n,iBmρB

†
n

=
∑
i

∑
m

√
dmUm,iBmρ

∑
n

√
dnU

∗
n,iB

†
n

=
∑
i

AiρA
†
i

(A.5)

With Ai =
∑

m

√
dmUm,iBm.

A.1.5 The existence of a Kraus decomposition of Λ implies that the process matrix
χ is positive-semidefinite (3→ 4)

From section A.3.3 we know that χm,n =
∑

k 〈Bm, Ak〉〈Ak, Bn〉. Therefore, χ is a convex linear
combination of the positive operators |Ai〉 〈Ai|, meaning that χ =

∑
k αk |Ai〉 〈Ai| with αk ≥ 0, ∀k.

This means that χ is positive itself.
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A.2 Trace-preservation in representations of Λ

This section aims to prove all the various equivalent conditions to trace-preservation in all representa-
tions of Λ introduced in 3.2. I will compare a map Λ, its Choi matrix ρChoi, its Kraus decomposition
{Ak} and its process matrix χ. The following statements concerning trace-preservation are equivalent:

1. Λ is trace-preserving

2. tr1
[
ρChoi

]
=

1

d
I

3.
∑

k A
†
kAk = I

4.
∑

m,n χm,nB
†
nBm = I

The statements are shown to be equivalent using the transitive property; they are proven in the
following order(with x→ y meaning statement x leads to statement y):

• 1→ 2 (Λ being trace-preserving implies that tr1
[
ρChoi

]
=

1

d
I)

• 2→ 1 (tr1
[
ρChoi

]
=

1

d
I implies that Λ is trace-preserving)

• 1→ 3 (Λ being trace-preserving implies that
∑

k A
†
kAk = I for the Kraus operators {Ak})

• 3→ 1 (If
∑

k A
†
kAk = I for the Kraus operators {Ak} then Λ is trace-preserving)

• 3→ 4 (If
∑

k A
†
kAk = I for the Kraus operators {Ak} then

∑
m,n χm,nB

†
nBm = I for the process

matrix χ)

• 4→ 1 (If
∑

m,n χm,nB
†
nBm = I for the process matrix χ then Λ is trace-preserving)

A.2.1 Λ being trace-preserving implies that tr1
[
ρChoi

]
=

1

d
I (1→ 2)

First, expand ρ into the canonical basis: ρ =
∑

i,j ρij |i〉 〈j|. Therefore, tr
[
ρ
]

=
∑

i,j ρi,i =
∑

i,j ρijδi,j .

Furthermore, since Λ is linear, tr
[
Λ(ρ)

]
=
∑

i,j ρij tr
[
Λ(|i〉 〈j|)

]
.

The premise is that Λ is trace-preserving: tr
[
Λ(ρ)

]
= tr

[
ρ
]
. In other words, we have the identity∑

i,j ρij tr
[
Λ(|i〉 〈j|)

]
=
∑

i,j ρijδi,j . This holds ∀ρ, so tr
[
Λ(|i〉 〈j|)

]
= δi,j .

Now:

tr1
[
ρChoi

]
= tr1

[(
Λ⊗ I

)
|Ω〉 〈Ω|

]
=

1

d
tr1
[(

Λ⊗ I
)∑
i,j

(|i〉 ⊗ |i〉)(〈j| ⊗ 〈j|)
]

=
1

d
tr1
[∑
i,j

Λ
(
|i〉 〈j|

)
⊗ |i〉 〈j|

]
=

1

d

∑
i,j

tr
[
Λ
(
|i〉 〈j|

)]
|i〉 〈j|

=
1

d

∑
i,j

δi,j |i〉 〈j|

=
1

d

∑
i

|i〉 〈i| = 1

d
I

(A.6)
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A.2.2 tr1
[
ρChoi

]
=

1

d
I implies that Λ is trace-preserving (2→ 1)

The premise is that tr1
[
ρChoi

]
=

1

d
I = 1

d

∑
i |i〉 〈i| =

1
d

∑
i,j δij |i〉 〈j|.

We still have (with {|i〉} and {|j〉} an orthonormal basis for the operator space):

tr1
[
ρChoi

]
= tr1

[(
Λ⊗ I

)∑
i,j

1

d
(|i〉 ⊗ |i〉)(〈j| ⊗ 〈j|)

]
= tr1

[∑
i,j

1

d
Λ
(
|i〉 〈j|

)
⊗ |i〉 〈j|

]
=
∑
i,j

1

d
tr
[
Λ
(
|i〉 〈j|

)]
|i〉 〈j|

(A.7)

Following from the premise, tr
[
Λ(|i〉 〈j|)

]
= δi,j , and thus:

tr
[
Λ(ρ)

]
= tr

[
Λ
(∑
i,j

ρij |i〉 〈j|
)]

=
∑
i,j

ρij tr
[
Λ
(
|i〉 〈j|

)]
=
∑
i,j

ρijδij =
∑
i

ρii = tr
[
ρ
] (A.8)

A.2.3 Λ being trace-preserving implies that
∑

k A
†
kAk = I for the Kraus operators

{Ak} (1→ 3)

The premise is that tr
[
Λ(ρ)

]
= tr(ρ). Furthermore, tr

[
Λ(ρ)

]
= tr

[
I†Λ(ρ)

]
= 〈I,Λ(ρ)〉 and similarly

tr
[
ρ
]

= 〈I, ρ〉.
I denote Λ∗ as the dual of Λ: 〈I,Λ(ρ)〉 = 〈Λ∗(I), ρ〉. (i.e. Λ∗ is that operator for which that equality
holds). The premise is that 〈Λ∗(I), ρ〉 = 〈I, ρ〉 ∀ρ, meaning that Λ∗ is unital: Λ∗(I) = I.

Furthermore, if Λ(ρ) =
∑

k AkρA
†
k, then Λ∗(ρ) =

∑
k A
†
kρAk. This can be shown by the cyclic and

linear properties of the trace:

〈σ,Λ(ρ)〉 =
∑
k

〈
σ,AkρA

†
k

〉
=
∑
k

tr
[
σAkρA

†
k

]
=
∑
k

tr
[
A†kσAkρ

]
=
∑
k

〈
A†kσAk, ρ

〉
= 〈Λ∗(σ), ρ〉

(A.9)

So finally
∑

k A
†
kAk =

∑
k A
†
kIAk = Λ∗(I) = I.

A.2.4 If
∑

k A
†
kAk = I for the Kraus operators {Ak} then Λ is trace-preserving

(3→ 1)

This is straightforward: the premise is Λ(ρ) =
∑

k AkρA
†
k with

∑
k A
†
kAk = I.

Then:

tr
[
Λ(ρ)

]
= tr

[∑
k

AkρA
†
k

]
= tr

[∑
k

A†kAkρ
]

= tr
[
Iρ
]

= tr
[
ρ
]

(A.10)
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A.2.5 If
∑

k A
†
kAk = I for the Kraus operators {Ak} then

∑
m,n χm,nB

†
nBm = I for the

process matrix χ (3→ 4)

Again, Λ(ρ) =
∑

k AkρA
†
k with

∑
k A
†
kAk = I.

We know (see sect. A.3.3) that χm,n =
∑

k αmkα
∗
nk =

∑
k 〈Bm, Ak〉〈Ak, Bn〉. So:

I =
∑
k

A†kAk

=
∑
m,n

∑
k

α∗nkB
†
nαmkBm

=
∑
m,n

∑
k

αmkα
∗
nkB

†
nBm

=
∑
m,n

χm,nB
†
nBm

(A.11)

Furthermore:

tr
[
χ
]

=
∑
m

χm,m

=
∑
m

∑
k

〈Bm, Ak〉〈Ak, Bm〉

=
∑
k

∑
m

〈Ak, Bm〉〈Bm, Ak〉

=
∑
k

〈〈Ak|
(∑
m

|Bm〉〉〈〈Bm|
)
|Ak〉〉

=
∑
k

〈〈Ak|I|Ak〉〉

=
∑
k

〈Ak, Ak〉

= tr
[∑

k

A†kAk
]

= tr
[
I
]

= d

(A.12)

Where
∑

m |Bm〉〉〈〈Bm| = I follows since Bi is an orthogonal basis and the last identity follows from
the premise.

A.2.6 If
∑

m,n χm,nB
†
nBm = I for the process matrix χ then Λ is trace-preserving

(4→ 1)

If
∑

m,n χm,nB
†
nBm = I, then:

tr
[
Λ(ρ)

]
= tr

[∑
m,n

χm,nBmρB
†
n

]
= tr

[∑
m,n

χm,nB
†
nBmρ

]
= tr

[
Iρ
]

= tr
[
ρ
]

(A.13)
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A.3 Relations between different representations of Λ

This section aims to prove the relations between the different representations of Λ as stated in section
3.3.

A.3.1 The Choi matrix and Λ(ρ)

Λ(ρ) = d tr2
[
ρChoi(I ⊗ ρT )

]
follows from:

d tr2

[
ρChoi(I ⊗ ρT )

]
= d tr2

[1

d

∑
i,j

(Λ⊗ I)(|i〉 ⊗ |i〉)(〈j| ⊗ 〈j|)(I ⊗ ρT )
]

= tr2

[∑
i,j

(
Λ(|i〉 〈j|)⊗ |i〉 〈j|

)
(I ⊗ ρT )

]
= tr2

[∑
i,j

Λ
(
|i〉 〈j|

)
⊗ |i〉 〈j| ρT

]
=
∑
i,j

Λ
(
|i〉 〈j|

)
tr
[
|i〉 〈j| ρT

]
=
∑
i,j

Λ
(
|i〉 〈j|

)
〈j| ρT |i〉 =

∑
i,j

Λ
(
|i〉 〈j|

)
〈i| ρ |j〉

=
∑
i,j

Λ
(
〈i| ρ |j〉 |i〉 〈j|

)
=
∑
i,j

Λ
(
ρij |i〉 〈j|

)
= Λ(ρ)

(A.14)

A.3.2 The Choi matrix and χ matrix

Using the χ decomposition Λ(ρ) =
∑

m,n χm,nBmρB
†
n, with the basis {|Bm〉〉 as defined in section

3.3.2, ρChoi becomes:

ρChoi =(Λ⊗ I)(|Ω〉 〈Ω|)

=
∑
m,n

χm,n
(
Bm ⊗ I

)
|Ω〉 〈Ω|

(
B†n ⊗ I

)
=
∑
m,n

χm,n|Bm〉〉〈〈Bn|

(A.15)

The orthonormality of
{
|Bi〉〉

}
can be shown (this will be used in A.3.5):

〈Bn|Bm〉 = 〈Ω|
(
B†n ⊗ I

)(
Bm ⊗ I

)
|Ω〉

=
( 1√

d

∑
i

〈i| ⊗ 〈i|
)(
B†n ⊗ I

)(
Bm ⊗ I

)( 1√
d

∑
j

|j〉 ⊗ |j〉
)

=
∑
i,j

1

d
〈i|B†nBm |j〉 ⊗ 〈i| II |j〉

=
∑
i,j

1

d
〈i|B†nBm |j〉 δij

=
∑
i

1

d
〈i|B†nBm |i〉 =

1

d
tr
[
B†nBm

]
= δm,n

(A.16)
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With the last equality following from the fact that
{
Bi
}

is orthogonal under the standard Hilbert-

Schmidt inner product 〈Bi, Bj〉 = tr
[
B†iBj

]
= dδij .

A.3.3 The χ matrix and the Kraus decomposition

Λ(ρ) =
∑

k AkρA
†
k. Expanding Ak into an orthogonal basis Bm we get Ak =

∑
m αmkBm with

αmk = 〈Bm, Ak〉. Thus:

Λ(ρ) =
∑
k

AkρA
†
k

=
∑
k

(∑
m

αmkBm
)
ρ
(∑

n

α∗nkB
†
n

)
=
∑
m,n

∑
k

αmkα
∗
nkBmρB

†
n

=
∑
m,n

χm,nBmρB
†
n

(A.17)

With χm,n =
∑

k αmkα
∗
nk =

∑
k 〈Bm, Ak〉〈Ak, Bn〉. This is used in section 3.3.3 and section A.1.5.

A.3.4 The Choi matrix and the Kraus decomposition

ρChoi = 1
d

∑
i,j,k Ak |i〉 〈j|A

†
k ⊗ |i〉 〈j| follows directly from:

ρChoi =(Λ⊗ I) |Ω〉 〈Ω|

=
1

d

∑
k

(
Ak ⊗ I

)
|Ω〉 〈Ω|

(
A†k ⊗ I

)
=

1

d

∑
i,j,k

Ak |i〉 〈j|A†k ⊗ |i〉 〈j|

(A.18)

A.3.5 The χ matrix and the superoperator

Using the identity |ABC〉〉 = (C−1 ⊗ A)|B〉〉 and that for any unitary operator U it holds that
U † = U−1 the relation of S expressed in terms of χ is easily shown:

|ρout〉〉 = |
∑
m,n

χm,nBmρinB
†
n〉〉 =

∑
m,n

χm,n|BmρinB†n〉〉 =
∑
m,n

χm,n
(
Bn ⊗Bm

)
|ρin〉〉 = S|ρin〉〉 (A.19)

The inverse relation is likewise trivial due to the orthogonality of
{
|Bi〉〉

}
(see sect. A.3.2):

tr
[(
Bn ⊗Bm

)†
S
]

=
∑
i,j

χi,j tr
[(
Bn ⊗Bm

)†(
Bj ⊗Bi

)]
=
∑
i,j

χi,jδimδjn = χm,n (A.20)
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Appendix B

Preliminary results on tomography
experiments

B.1 Other simulation results

B.2 Results of tomography experiments without SPAM filtering

B.2.1 Pauli twirls of unfiltered error matrices

B.3 Results of experiments after filtering before CP subroutine

B.3.1 Pauli twirls of filtered error matrices before CP subroutine
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Figure B.1: Approximation of the simulations of the fidelities of the fault-tolerant and normal SWAP circuit,
for the same error model as the simulations is section 7.3.2. The fidelity of the normal implementation is
approximated as Fp ≈ (1− ps)4 × (1− pm)

3
, and the fidelity of the fault-tolerant circuit is approximated as

Fp ≈
(
1− 9

10ps
)15 × (1− 3

8ps
)12 × (1− 12

45pm
)9

. The fidelity is approximated as the probability that the error
map of every gate does not have a non-trivial action on the data qubits. For the non-fault tolerant circuit, this
is (1− ps) for the 4 single-qubit gates and (1− pm) for the 3 multi-qubit gates. For the fault-tolerant circuit,
this is

(
1− 9

10ps
)

for the 15 weight locations,
(
1− 3

8ps
)

for the 12 single-qubit gates and
(
1− 12

45pm
)

for the 9
multi-qubit gates. This approximation only partly includes accounting for error cancellations. Compare with
the actual simulations in figure 7.7, and note the correspondence. There is a difference between the actual
simulations and the approximation, due to higher order terms, which is thus apparent for higher pm and ps.
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(b) Non fault-tolerant SWAP

Figure B.2: Tomography results without SPAM filtering for the fault-tolerant (a) and normal (b) SWAP
circuit. Here the process matrices χ are shown. FFT

p = 0.504 for the fault-tolerant SWAP and FNFT
p = 0.730

for the normal SWAP.
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(b) Non fault-tolerant SWAP

Figure B.3: Tomography results without SPAM filtering for the fault-tolerant (a) and normal (b) SWAP
circuit. Here the error matrices χerr are shown. FFT

p = 0.504 for the fault-tolerant SWAP and FNFT
p = 0.730

for the normal SWAP.
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Figure B.4: Tomography results for the identity channel to characterize the SPAM errors. Fp = 0.818.
Because the desired operation is the identity channel, the error matrix χerr is identical to χ.
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(a) Fault-tolerant SWAP
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(b) Non fault-tolerant SWAP

Figure B.5: Pauli twirl of the unfiltered error matrices χerr of the (a) fault-tolerant SWAP and (b) normal
implementation. Note the use of different scales for the two graphs. The fault-tolerant SWAP has considerable
higher errors compared to the normal implementation, indicated by the lower fidelity of the process. For
both implementations, the uncorrelated errors (i.e. single-weight errors) are greater than the correlated errors.
However, especially the normal implementation shows large correlation with the Pauli twirl of the SPAM error
matrix shown in figure B.6.
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Figure B.6: Pauli twirl of the SPAM error matrix χerr corresponding to the map Λmeas characterizing the
SPAM errors. Note the strong correlation with figure B.5b.
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(b) Non fault-tolerant SWAP

Figure B.7: Tomography results with SPAM filtering for the fault-tolerant (a) and normal (b) SWAP circuit.
These representations do not reflect CP maps, so the CP subroutine still needs to be applied. Here the process
matrices χ are shown. FFT

p = 0.640 for the fault-tolerant SWAP and FNFT
p = 0.929 for the normal SWAP.
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(a) Fault-tolerant SWAP
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(b) Non fault-tolerant SWAP

Figure B.8: Tomography results with SPAM filtering for the fault-tolerant (a) and normal (b) SWAP circuit.
These representations do not reflect CP maps, so the CP subroutine still needs to be applied. Here the error
matrices χerr are shown. FFT

p = 0.640 for the fault-tolerant SWAP and FNFT
p = 0.929 for the normal SWAP.
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(a) Fault-tolerant SWAP
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Figure B.9: Pauli twirl of the filtered error matrices χerr of the (a) fault-tolerant SWAP and (b) normal
implementation. Note the use of different scales for the two graphs. The CP subroutine has not been applied,
resulting in negative values in the Pauli twirl. By taking the absolute values of pi in the calculation of r, the
error ratio can be approximated for these maps. The fault-tolerant implementation then has an error ratio
of rFT = 0.0957 ± 0.0029, and the normal implementation then has an error ratio of rNFT = 0.907 ± 0.0129.
Compare with the results in section 8.2.
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