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Summary

Ground vibrations result in disturbance forces in mechanical systems and cause position errors.
High resolution imaging systems or chip fabrication machines require a high position accuracy,
creating the need for vibration isolation systems. This thesis is focused on the development of
a new kind of vibration isolation systems, that carries its load by means of a passive magnetic
configuration called the “magnetic gravity compensator”. A literature study suggested that
magnetic configurations with great vibration isolation properties could be made, and that
passive mechanical vibration isolation systems offer the best vibration isolation performance
commercially available. The goal of this research is to combine both and “Design a passive
magnetic gravity compensator, implemented in a vibration isolation system with a sub-hertz
eigenfrequency”.

A vibration isolation system requires a low-stiffness suspension of its vibration isolated plat-
form. This low stiffness configuration is called the gravity compensator. It was found that a
configuration of three square 20x20x5 mm magnets can be used to create a gravity compensator
with a low stiffness range approximately equal to 1/2 of the magnets dimensions. The load
bearing capacity of this gravity compensator was measured at 26 N, while its stiffness was
lower than ±200 N/m over a range of 10 mm.

Levitation of permanent magnets is not possible without the use of active control, because
there is always an unstable degree of freedom. The magnetic gravity compensator was found
to be unstable for one translation and one rotation, creating the need for a linear guide.
COMSOL simulations showed that by tilting two of the magnets of the gravity compensator, its
stiffness could be adjusted from ∼ 0 N/m to ±1000 N/m, making it possible compensate for the
stiffness that a linear guide would add to the system. These same simulations showed that the
load bearing capacity of the gravity compensator could be adjusted with 10 N by changing the
airgaps between the magnets, while still remaining a low stiffness range of multiple millimeters.

Calculating the force-displacement curve of the magnetic gravity compensator with FEM soft-
ware is a computational intensive task, and it can take multiple hours to calculate a complete
curve at a high resolution. Because of the simple geometry of the rectangular magnets and
the lack of iron in the concept, it is possible to derive analytical equations. One- and two-
dimensional equations for the field have been derived and validated, while three-dimensional
solutions have been found in literature, but where not used in this research.

The passive magnetic gravity compensator is implemented in the vibration isolation system
shown in figure 1. Two leafsprings with a combined stiffness of 61 N/m are used as linear
guide, to compensate for the instabilities of the magnetic concept. An eigenfrequency of 0.78 Hz
is measured for vibrations up to 1 mm. When the amplitude of vibration increases to 2 mm, the
eigenfrequency increases to 1.17 Hz due to the nonlinear stiffness of the setup. During these
measurements the demonstrator carried a weight of approximately 25 N. The demonstrator has
a high damping ratio, which is measured at 0.6 and is caused by a combination of eddy current
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damping in the aluminum and material damping in the linear guide. Due to this damping, the
system has relatively high transmissibility despite its low eigenfrequency when compared to
other high end vibration isolation systems.

The research can be called a success in that a stable passive magnetic gravity compensator with
a sub-hertz eigenfrequency is build and validated. However, there is still room for improvement.
Different material choices can reduce the damping ratio drastically, while lowering the stiffness
and increasing the range of this low stiffness area. A subsequent research is advised to
implement these material changes and validate the tunability of the stiffness of the gravity
compensator with measurements.

Figure 1: Photograph of the vibration isolation system. The aluminum parts contain the gravity compen-
sator, and the plexiglass box is the vibration isolated platform. Sand is used as load.
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Chapter 1

Introduction

1.1 Background

Technology is getting smaller. Due to the current trend of miniaturization of devices, we need
an increased position accuracy in the high tech machines that make these devices. Because
we continue to work on smaller and smaller scales, the influence of external disturbances is
increasing. Disturbance sources that where of no importance in the past can be no longer
neglected and need to be taken into account in the design, or removed from the operating
environment. When talking about disturbances one should think of acoustic vibrations, thermal
deformations and ground vibrations. The latter is the topic of this thesis.

Ground vibrations exist in all environments throughout the world and have a variety sources,
from the movement of tectonic plates, waves crashing on the shore and wind, to man made
sources such as traffic, machinery and HVAC systems1[1]. These vibrations cause disturbance
forces in mechanical systems and need to be removed, when a high position accuracy is
required. This happens by means of so-called vibration isolation systems, which can be built
both as active or passive systems. Active vibration isolation systems make use of sensors,
actuators and control to dampen vibrations, while passive systems use compliant pneumatic or
mechanical springs. Both active and passive systems that can reduce vibrations by two orders
of magnitude at 10Hz are commercially available. These kind of reductions in vibrations can
only be achieved when the isolation system has a very low eigenfrequency and contains little
damping.

This research investigates if it is possible to create a passive—magnet based—vibration iso-
lation system that combines the strengths of the active magnetic systems with those of the
passive mechanical systems, creating some sort of hybrid system. There has been significant
amount of research into actively controlled electromagnetic vibration isolation systems, but a
passive magnetic solution could not been found in literature [2, 3, 4, 5, 6, 7].

1.2 Research goals and objectives

The goal of this research is to “Design a passive magnetic gravity compensator, implemented in
a vibration isolation system with a sub-hertz eigenfrequency”. The term ’gravity compensator’
is used to indicate the part of the setup that delivers the load bearing capacity and can be
thought of as a low stiffness magnetic spring. The vibration isolation system is the complete
system in which the magnetic gravity compensator is used.

Designing a magnetic gravity compensator requires knowledge of electromagnetism and the
tools available to evaluate the performance of magnetic systems. Obtaining, reviewing and
summarizing this knowledge is an important objective of this research. Applying this knowledge
to create, simulate and measure the performance of magnetic concepts is a second objective of

1Abbreviation: Heating, Ventilating and Air-Conditioning.
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2 CHAPTER 1. INTRODUCTION

this research. The final objective of this research is the production of a demonstrator that can
be used to prove the achievement of my goal by measurements.

1.3 Structure of this thesis

This thesis can be split up in three parts. The first part consists of chapter 2 and chapter 3 and
is mostly about the theory on magnetic vibration isolation. Chapter 2 provides an overview of
the theory on vibration isolation and the working principles of commercial vibration isolation
systems. Chapter 3 is a dissertation on magnetism and magnetic forces and the tools available
to predict these fields and forces.

The second part of this thesis consists of chapter 4 and chapter 5 and is concerned with the
design and validation of the magnetic gravity compensator. This magnetic gravity compensator
is the part of the vibration isolation system that provides the load bearing capacity. Multiple
magnetic concepts will be discussed in chapter 4, while chapter 5 discusses the measured
performance of the most promising concept.

The last two chapters of this thesis are on the design and evaluation of the demonstrator.
Chapter 6 discusses the design of the demonstrator and presents its measured performance.
The conclusions and recommendations resulting from the research are presented in chapter 7.

Reading advice

This report is written in such a way that a possible successor has all the information needed
to duplicate my research. A significant amount of theory is included to save this theoretical
successor a lot of time searching for the right documentation, but this theory is quite in-dept.
I would advice the time-conscious reader to focus of the second and third part of this research
and just read the introductions and conclusions of the other chapters. This should be sufficient
to follow the red-line of the story.
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Theory
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Chapter 2

Vibration Isolation

The introduction of this thesis stated that the goal of this research is to “Design a passive
magnetic gravity compensator, implemented in a vibration isolation system with a sub-hertz
eigenfrequency”. It was mentioned that vibrations reduce the position accuracy of a system
and therefore should be removed, using a vibration isolation system. Why vibrations result in
positioning errors and how such a vibration isolation system works, is discussed in this chapter.
Finally, this chapter reviews the working principle of a number of different commercial systems
and the to-be-designed passive magnetic system.

2.1 Position accuracy and vibrations

There are many mechanical systems where the relative position accuracy of the components
is of importance. Think for example of the microscope shown in figure 2.1. The lens of the
microscope has a certain focus point, in which we need to place the object in order to obtain
a clear image. This is done by moving the head (mass m) up and down using a spindle. This
spindle assembly is not infinitely stiff and is therefore modeled as a spring. This finite stiffness
causes a problem: we want a constant distance between the object and the lens to maintain a
clear image, but the spring will deform when the force acting on it changes. And this changing
force occurs when the base vibrates.

lens

object

xl

Vibrations xm

k

m

Figure 2.1: A microscope consisting of a frame on which the object lies and a head containing the lens.
Vibrations cause a changing relative position of the head with respect to the object, due to the finite
stiffness k . When vibrations are large and k is small, this results in a blurry image. Adapted from [8]

When the base is vibrating with a sinusoidal movement xm(t) = x̂m sin(ωt), the object follows
that motion. Because we want a constant distance between the lens and the object, the head
should follow the vibration either. To do so, the had needs an acceleration equal to [8]:

ẍl = −x̂mω2 sin(ωt) (2.1)

Because the head is only supported by a spring, the force acting on this spring is equal to:

5



6 CHAPTER 2. VIBRATION ISOLATION

F (t) = mẍl= −mx̂mω2 sin(ωt) (2.2)

and has an amplitude of F̂ = −mx̂mω2. This force deforms the spring with an amplitude of:

x̂l = mx̂mω2
k (2.3)

This equation can be further compacted by introducting the eigenfrequency of the system:

ωn =√ k
m (2.4)

Substitution of this equation into equation (2.3) results in:

x̂l = x̂m
ω2
ω2
n

(2.5)

The deformation of this spring is equal to the change is distance between the lens and the
object and is the position error ε. This error limits the position accuracy of the microscope.
In case of a microscope, the position error could results in a blurry image when becoming to
large. In case of a chip or MEMS production process, this could mean the loss of a batch of
chips or MEMS devices.

According to equation (2.5), there are two ways we can decrease the position error of a system:
we can increase the eigenfrequency ωn of the system or we can decrease the amplitude x̂m of
the floor vibrations. The latter is done using a vibration isolation system.

2.2 Vibration isolation and transmissibility

When a mass is suspended by some construction, a certain portion of the floor vibrations will
be transferred from the floor to the mass though this construction. The goal of a vibrations
isolation system is to minimize the coupling between the motion of the ground xf and the
motion of the mass xm. This coupling is called the transmissibility T and is defined as:

transmissibility = xm
xf

(2.6)

We can model a vibration isolation system as the mass-spring-damper system shown in fig-
ure 2.2, where k is the stiffness of the suspension and c is the damping of the suspension.

xf

xm
m

k c Floor vibrations

Platform vibrations

Figure 2.2: A mass-spring-damper model of a vibration isolation system. The mass is supported by a
spring with stiffness k and a damper with damping c. The ratio xm/xf is called the transmissibility.
Reproduced from [8].



2.2. VIBRATION ISOLATION AND TRANSMISSIBILITY 7

The dynamics of the mass-spring-damper system are described by the following transfer func-
tion:

xm
xf

= cs+ k
ms2 + cs+ k (2.7)

where s is the Laplace operator. When analyzing the performance of a vibation isolation
system, it is convenient to introduce the damping ratio ζ , which is defined as:

ζ = c2√km (2.8)

The damping ratio is also referred to as the fraction of critical damping and is a dimension-
less number that gives the relations between the damping c and the critical damping cr [8].
Substitution of the eigenfrequency and damping ratio and using s = iω allows us to rewrite
equation equation (2.7) as:

xm
xf

= 2jζ ω
ωn + 1

−ω2
ω2
n

+ 2jζ ω
ωn + 1 (2.9)

where ω is the frequency of the vibration acting on the system. figure 2.3 shows the result
of equation (2.9) for different eigenfrequencies ωn and damping ratio ζ . From this figure
we can see that for ω > ωn, a reduction in the eigenfrequency results in a reduction in
the transmissibility, and a increase in the damping ratio results in an higher transmissibility.
However, below and—especially—at the eigenfrequency, the transmissibility is actually lower
when the damping ratio ζ is higher. This results in a contradiction regarding the damping
ratio.

10
−1

10
0

10
1

10
2

10
−4

10
−2

10
0

10
2

Tr
an

sm
is

si
bi

lit
y 

(a
bs

)

Bode Diagram

Frequency  (Hz)

(ω1,ζ1)

(ω2,ζ1)

(ω2,ζ2)

(ω1,ζ2)

Figure 2.3: The transmissibility of the mass-spring-damper system of figure 2.2 for ωi = {0.5, 2.5} · 2π
and ζi = {0.01, 1}. A lower eigenfrequency and less damping results in better vibration isolation above
the eigenfrequency. The peak in transmissibility indicates the eigenfrequency of the syste [9, 8]

This contradiction can be solved by remembering that the purpose of a vibration isolation
system is to minimize the position errors within the system placed on top of the isolation
system, for instance the microscope of figure 2.1 on page 5. The position error in the microscope
increased quadratically with the frequency of vibration ω and linearly with the amplitude of
vibration x̂m (see 2.5 on the preceding page). Therefore we would rather lower the amplitude
of vibrations at high frequencies that at low frequencies. We can conclude that a passive
vibration isolation system should have an extremely low eigenfrequency and should contain
little damping, approaching the ideal of a floating mass.
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The low eigenfrequency can by achieved by increasing the mass or lowering the stiffness
according to equation (2.4). A vibration isolation system with an extremely large mass is
not practical in its use, so the low eigenfrequency should be achieved by lowering the stiff-
ness. Designing a mechanical system that can carry a significant load with little stiffness and
damping is an interesting mechatronic challenge, where permanent magnets definitely have its
use.

Transmissibility

Transmissibility was defined earlier as the ratio between the displacement of the floor and the
displacement of the mass, but could also have been defined as the ratio between the velocity
or acceleration of the floor and mass . From

xm = Txf

we can derive that the relation between the floor by taking the derivative to time

dxm
dt = dT

dt xf + dxf
dt T (2.10)

When the damping and stiffness of the system do not change over time, the first term of
equation (2.10) becomes zero and we find that the ratio between ẋmand ẋf is again the same
transmissibility T :

ẋm
ẋf

= T (2.11)

The same procedure holds for the acceleration. When equation (2.10) is differentiated to the
time, we find that

ẍm
ẍf

= T (2.12)

This information is very usefull because it means that the transmissibility of a system can be
measured using a displacement sensor like a laser, a velocity sensor like a geophone, or a
acceleration sensor like a accelerometer.

2.3 Commercial vibration isolation systems and their performance

There are multiple ways to create a support that has a low stiffness. Most commercial systems
use pneumatics, active control, or a combination of mechanical springs to do this. The working
principle of these tree methods will be discussed below, as well as their performance.

Passive pneumatic vibration isolation system

Pneumatic vibration isolation systems, also referred to as airpots, make use of a number of
pressure cylinders which support a heavy mass. A schematic overview of such a cylinder is
shown in figure 2.4. In this image we see a piston, a pressurized volume and a diaphragm. The
diaphragm is an air-tight seal and keeps the volume pressurized, while allowing the piston to
move up and down. The pressure causes an load bearing capacity equal to

F = pApiston

where p is the pressure in the volume and Apiston the area of the piston. The pressure is kept
constant by an air supply, creating a system with a low stiffness.
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Table 2.1: A comparison of the performance of a number of commercially available vibration isolation
systems. The performance data is obtained from the manufacturers websites. The advantage of active
systems is that they have no eigenfrequency peak fn . The minus k BM-8 is the overall best performing
system found.

Brand Type fn [hz]
Transmissibility

Load [kg] Principle
1 Hz 10 Hz

minus k BM-6 2.5 1 0.2 4.5 - 48 combining stiffness

minus k BM-8 0.5 0.2 0.005 4.5 - 115 combining stiffness

table stable AVI-400 - 0.84 0.02 0 - 400 active

nanosurf isostage - 0.85 0.016 0 - 8 active

Thorlabs PTP602 4.5 1 0.27 275 - 1100 passive pneumatic

Newport Integrity 2VCS 1.5 1 0.03 0 - 114 passive pneumatic

Kinetic systems 2200 2.1 1 0.09 0 - 91 passive pneumatic

Figure 2.4: Working principle of a pneumatic vibration isolation system. The payload is supported by a
piston that moves in a pressurized volume, create a low stiffness system. Obtained from [1]

In reality, pneumatic vibration isolation systems have eigenfrequencies between the 1 Hz and
4.5 Hz, depending upon the brand and price range as is shown in table 2.1. The stiffness
in a pneumatic vibration isolation system is caused by a combination of the stiffness of the
diaphragm and the consistency of the pressure in the volume. Known producers of pneumatic
vibration isolation tables are Newport, TMC, Thorlabs and Kinetic systems.

Mechanical vibration isolation systems

MinusK is a brand that creates mechanical vibration isolation systems by combining springs
with a positive and negative stiffness. A schematic drawing of their system is shown in fig-
ure 2.5a. If we only focus on the vertical vibrations, the system can be simplified to a load
bearing spring and two buckling beams, as shown in figure 2.5b. A support spring with a high
load bearing capacity but low stiffness is use to carry the weight, while two negative-stiffness
flexures—e.g. buckling beams—are use to compensate for this stiffness. The MinusK vibration
isolation systems are one of the best performing on the market and have eigenfrequencies
between 0.5 Hz and 2.5 Hz as is shown in table 2.1.
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(a) (b)

Figure 2.5: (a) Schematic drawing of a minus k system. Because this thesis is focused on vertical
vibrations only, we can simplify the system, as is shown in (b). The stiffness of the load carrying spring
is compensated for by two buckling beams with a negative stiffness. Obtained from[10].

Active vibration isolation systems

Active vibration isolation systems, like the systems from Table Stable, make use of actuators,
sensors and feedback control to create a low stiffness. An advantage of these systems is
that the controller can compensate for the large gain present at the eigenfrequencies of the
system. However the active components used to control the system introduce noise into the
system. Literature reports that this electronics-noise can become the limiting factor when
active vibration isolation systems are used in an environment with little vibrations [3]. One
option to reduce this noise is to improve the electrical component, a task outside the field of
mechanical engineering. A second option is to completely exclude to noise by removing the
needs for active control: e.g. creating a passive system.

2.4 The passive magnetic vertical vibration isolation system

There is something “right” about the design philosophy of the passive mechanical vibration
isolation systems. Table 2.1 on the preceding page shows that—at the moment of writing—the
Minus K BM-8 has the best performance of all high-end systems from different manufacturers.
There are many more models from Minus K that have a performance similar to the performance
of the BM-8 [10].

The design philosophy behind the passive magnetic vibration isolation system is to create a
system similar to a Minus K system, but replace the mechanical support spring (see figure 2.5)
by a magnetic spring km, also referred to as the ’gravity compensator’. The hypothesis is that
combining a high-force, low-stiffness magnetic spring with a low-force, low-stiffness mechanical
spring might result in a system with a very low sub-hertz eigenfrequency. Figure 2.6 shows
how this system will look like on a system design level. The vibration isolated mass m1
is supported by the magnetic gravity compensator km, while a mechanical linear guide with
stiffness ks and damping cs is used to stabilize the gravity compensator (see section 4.4 on
page 38). A intermediate body m2 is used to ’pre-tension’ the magnetic spring, and the position
z2 of the intermediate body is imposed by means of a stiff mechanism.

Advantages of a passive magnetic vibration isolation system are: that there are magnetic
configurations that can carry a load with very low stiffness (see chapter 4 on page 29); that
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Figure 2.6: A schematic drawing of the passive magnetic vertical vibration isolation system, implementing
the magnetic gravity compensator km , e.g. the magnetic spring. The isolated mass m1 is suspended by
the gravity compensator km , and a linear guide with stiffness ks and damping cs is used to stabilize the
system. An intermediate body m2 is used to ’pre-tension’ the gravity compensator, and the position z2
of the intermediate body is imposed by means of a stiff mechanism.

magnetic solutions can be relatively compact compared to mechanical solutions; and that,
because there is no mechanical contact, there is also no mechanical damping nor mechanical
hysteresis in a magnetic system. Creating a passive system has never been attempted in the
past, as far is known to the author.

2.5 Amplitude of vibrations in different environments

Section 2.1 explained that the maximum achievable position accuracy of a system is a function
of the amplitude and frequency of floor vibrations. The maximum allowable vibrations in certain
environments are prescribed by the ISO and VC standerds and are shown in figure 2.7.

Figure 2.7: The acceleration, velocity and amplitude of vibrations is different environments. Vibrations
levels in the workshop, office, residential area and operating theater are ISO standards, while the VC-A
to VC-G refer to accepted standards for vibration sensitive tools. Reproduced from [1]

The standards of figure 2.7 make it possible to design vibration sensitive devices for a certain
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environment. To return to the example of the microscope: only microscopes with a magnification
up to 40x are suitable for use in a normal residential area, when no form of vibration isolation
is used [1]. When a vibration isolation system is used, its range should be larger than the
amplitude of vibrations. The Mechatronic Systems Design labs at the Delft University of
Technology can be classified as office space, meaning that the to-be-designed passive vibration
isolation system should have a range of at least 100µm.

2.6 Conclusions

Vibrations reduce the position accuracy between components of—high tech—devices, because
these components are connected with finite stiffnesses. When a high position accuracy is
required in a vibration rich environment, a system needs to become very stiff, or needs to be
placed upon a vibration isolation system. The performance of such a vibration isolation system
is analyzed by measuring the transmissibility of the system. This can be done with both a
displacement, velocity, or acceleration sensor. In order to achieve the lowest transmissibility—
e.g. the best vibration isolation performance—a passive vibration isolation system should have
a low eigenfrequency and contain little damping. The passive magnetic vibration isolation
system will support its load using a passive magnetic gravity compensator, which is a magnetic
spring with a low stiffness. The Mechatronic Systems Design labs at the Delft University of
Technology can be classified as office space, resulting in a minimum range of a vibration
isolation system of 100µm.



Chapter 3

Magnetism, magnets and magnetic forces

This chapter is meant to be a quick summary of the parts of electromagnetism that are needed
to understand the magnetic concepts discussed in chapter 4. The chapter starts with an recap
on electrodynamics, followed by a discussion of permanent magnets and magnetic materials.
Next, magnetic circuit theory is introduced as well as how it can be used to calculate reluctance
forces. The chapter ends with the introduction of the analytical charge and current models
used to calculate the fields and force interaction between permanent magnets in air. Both the
magnetic circuit theory and the analytical force and field equations are extensively used in
chapter 4 and chapter 5.

For a more in-dept review of electromagnetism, I would advice the very well written introduction
by Griffiths [11] and the more advanced text [12]. Also, the more application based text written
by Fitzgerald, Furlani, and Munnig Schmidt proved to be extremely useful [13, 14, 8], as well
the following thesis [5, 15, 3, 4].

3.1 Electromagnetism and magnetostatics

The behavior of electric and magnetic fields is described by the four Maxwell’s equations,
which can al be written in integral and differential form. Gauss’s law tells that the nett charge
Qenc contained in a closed surface S is equal to the surface integral of the electric field E
over this same surface [11].

˛
s
E · da = Qenc

ε0 , ∇ · E = ρ
ε0 (3.1)

where ε0 is the permittivity of free space and ρ the charge density. The exists a similar—and
nameless—equation for magnetic fields that states that the surface integral of the magnetic
flux density B is always zero when integrated over a closed surface S[11].

˛
s
B · da = 0, ∇ · B = 0 (3.2)

This means that the number of magnetic field lines entering the closed surface should be equal
to the amount of field lines leaving this surface.

The flux density B and electric field E are related by Faraday’s law, which tells us that a
changing flux density piecing a open surface S results in an electric field in the closed contour
C surrounding that surface [11].

˛
C

E · dl = − d
dt

ˆ
S

B · da, ∇× E = −∂B
∂t (3.3)

While electric fields are created by static charges, magnetic fields are created by moving
charges. The relation between a current piercing an open surface S , and the magnetic field
created in the contour C enclosing this surface is called amperes law [11] .

13
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˛
C

B · dl = µ0Ienc + µ0ε0 ddt
ˆ

E · da, ∇× B = µ0Jencl + µ0ε0 ∂E
∂t (3.4)

where µ0 is the permeability of free space, that is equal to 4π · 10−7N/Am. The total amount
of magnetic flux density passing through a certain area S is called the magnetic flux φ[11].

φ = ˆ
S

B · da (3.5)

The magnetic flux is measured in weber (Wb) and is very useful in magnetic circuit theory,
discussed later this chapter. From Faraday’s law we know that a changing magnetic field
results in a electric field. The potantial difference—or voltage e—in the contour C enclosing
the B-field is equal to the time derivative of the flux times the number of windings N through
which the magnetic flux it passes [11]:

e = Ndφdt (3.6)

In engineering text, the number of windings times the flux is often called the flux linkage
λ = Nφ [13]. The derivative of the flux linkage to the current flowing in the contour C is
called the inductance L:

L = dλ
di (3.7)

In many engineering applications, such as motors or magnetic vibration isolation system, the
frequencies at which magnetic and electric field change are relatively low1. When this is
the case, we speak about magnetostatics; meaning that we can neglect the time derivative in
Amperes law.

Fields in matter

The current that causes magnetic flux density B is a combination of bound and free current
Ienc = Ifreeenc + Iboundenc . We we talk about current in mechanical systems, we talk about the free
current, which makes equation (3.4) inconvenient to work with. Therefore, the magnetic field
intensity H—in physics called the axillary field—is introduced [13, 11]. The relation between
the B and H field is given by

B = µH (3.8)

where the permeability µ = µ0µr is a function for nonlinear materials and else a constant. An
other way of calculating the permeability is by introducing the magnetic susceptibility χm:

µ = µ0(χm + 1)
We can rewrite the all Maxwell equations for fields in matter, but the one most used is Amperes
law:

˛
C

H · dl = Iencfree + d
dt

ˆ
SD · da, ∇×H = Jfree + ∂D

∂t (3.9)

where Jfree is the free current density [A/m2].
1Below the megahertz (Mhz).
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3.2 Magnetic dipole moment and magnetization

Magnetic fields are always the result of moving charges. In the case of a coil, these moving
charges are in the form of a macroscopic current I. Permanent magnets—such as the neodymium
magnets used in this research—have no macroscopic current flowing through them. Here, the
magnetic field is caused by a microscopic current loop, as shown in figure 3.1b. The area
enclosed by the loop times the current is called the magnetic dipole moment m [Am2][11]

m = I
ˆ
da

which is the ’source’ of magnetism in permanent magnets. The model of visualizing a magnetic
dipole as a microscopic current loop is referred to as the Amperian or current model and is—as
far as engineering conserns—physically correct. A different model is the Gilbert, Coulomb or
charge model, which visualizes a magnetic dipole as a combination of a positive and a negative
’magnetic charge’, as shown in 3.1a. Although magnetic monopoles have never been found nor
created until now, both methods can be used for calculations and give equivalent results [3].

N

S

m m
I

(a) Gilbert/Coulomb
model

(b) Amperian model

Figure 3.1: The (a) Gilbert or Coulomb model and (b) Amperian model to describe the magnetic dipole
moment m. Partly reproduced from [11].

When simulating magnetic fields—analytically or with FEM software like COMSOL—you
need to know the magnetic dipole moment per unit volume, which is called the magnetization
M [14]:

M = lim∆V→0
∑

i mi∆V (3.10)

and is measured in ampere per meter (A/m). From equation (3.10) we can see that a material can
only have a magnetization M when the magnetic dipoles mi are aligned, otherwise the vectors
would add up to zero. The magnetization adds to the H field according to the constitutive
relation [14]:

B = µ0(H + M) (3.11)

From equation 3.11 we can deduce that the H field is discontinuous at the edge of a magnet,
and is lower outside the magnet, while the B field is continuous. This is an easy way to check
COMSOL simulations for errors or forgotten magnetizations.

3.3 Permanent magnets and magnetic materials

Most magnetic materials can be classified as paramagnetic, diamagnetic or ferromagnetic
materials. All three types of materials behave different in magnetic fields, so it is important to
know the difference when designing a magnetic gravity compensator.
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(a) B-field (b) H-field (c) M

Figure 3.2: The (a) B-field, (b) H field and (c) magnetization of the same rectangular magnet, simulated
with a 2D mfnc COMSOL simulation. The colorbal goes from red (high) to blue (low).

Paramagnetic materials are materials which acquire a magnetization parallel to the magnetic
field in which they are placed. These materials have a small positive magnetic susceptibility
χm and thus a relative permeability µr larger—but close to—one. Therefore, paramagnetic
materials are slightly attracted to magnetic field, but they do not retain there magnetization
when the external field is removed. A well known paramagnetic material is aluminum, but also
stainless steel can be paramagnetic, as is shown in table 3.1.

Diamagnetic materials are materials which acquire a magnetization opposing the external
magnetic field. They have a negative magnetic susceptibility χm and a relative permeability
µr < 1, meaning they are repulsed by magnetic fields. A magnetic field prefers to move around
diamagnetic materials. Superconductors can be seen as perfect diamagnetic materials; as they
have a relative permeability of zero, no field lines will move through the surface. Bismuth is
one of the stronger diamagnetic materials (table 3.1).

Ferromagnetic materials are materials which acquire a magnetization parallel to the external
field, just like paramagnetic materials. However, for ferromagnetic materials the magnetic
dipoles mi align much better, resulting in a large positive magnetic susceptibility χm and a
high relative permeability. This means that ferromagnetic materials are strongly attracted to
magnetic fields. When the external field is removed, ferromagnetic materials can maintain
their magnetization, in which case they are called magnetized. As the name suggests, iron is
a ferromagnetic material (table 3.1).

Table 3.1: A list of magnetic materials, with their class and relative permeability. A
µr > 1 indicates that the material is attracted to magnetic fields. Values obtained from
en.wikipedia.org/wiki/Permeability_(electromagnetism)

Material Relative permeability µr Class

Iron (99.95 % pure) 200000 Ferromagnetic

Iron (99.8% pure) 5000 Ferromagnetic

Stainless steel (Ferritic) 1000-1800 Ferromagnetic

Stainless steel (Austenitic) 1.003-7 Paramagnetic

Aluminum 1.000022 Paramagnetic

Bismuth 0.999834 Diamagnetic

Superconductors 0 Diamagnetic (perfect)

When literature refers to magnetic materials, they often mean ferromagnetic materials. These
ferromagnetic materials can be further subdivided in soft magnetic materials and hard magnetic
materials, e.g. permanent magnets. The difference between soft and hard magnetic materials
has to do with intrinsic coercivity, which is explained in the next section.
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The hysteresis loop and coercivity

When a ferromagnetic material is placed in an external field H, its magnetic dipoles align with
the field (figure 3.3a). But after the H field is removed, the magnetic dipoles do not completely
move back to their original orientation and a certain amount of magnetization M remains (see
figure 3.3a). This can be imagined as a friction effect according to [8]. Ferromagnetic materials
show a certain amount of hysteresis because of this ‘friction’. This hysteresis is unwanted in
a gravity compensator because it causes energy loss and will show as damping.

The relation between the magnetization M and the externally applied field H is given by a
curve called the intrinsic curve, shown in red in figure 3.3. We can also draw this curve for the
B−H relation, called the normal curve, which is more common in engineering oriented texts.

(a) (b)

Figure 3.3: The normal curve (blue) and intrinsic curve (red) of a ferromagnetic material

There are four important points marked in figure 3.3a, namely: the remanent flux density
Br , the remanent magnetization Mr , the coercivity Hc and the intrinsic coercivity Hci. The
Remanent flux density (Br ) is the flux density that remains in the material when the external
H-field is reduced to zero. The relation between the magnetic flux density and the remanent
flux density is given by:

B = µ0µrH + Br (3.12)

The remanent flux density is a very useful variable, and it the standard of magnet suppliers
to define the strength of their magnets. COMSOL allows the use of both Br and Mr . The
remanent magnetization (Mr ) is the magnetization that remains in the material when the
external H-field is reduced to zero. The coercivity (Hc or Hcb) is the H-field required to
reduce the flux density to zero, while the intrinsic coercivity (Hci or Hcj ) the H-field required
to reduce the magnetization to zero.

The intrinsic coercivity represents the magnets its ability the resist demagnetization. When a
magnetic material has a low intrinsic coercivity, it is called a soft magnetic material. These
materials are not useful as magnets, as external fields will demagnetize the material. Hard
magnetic materials are used as permanent magnets, and have a far higher intrinsic coercivity
of up to 1500 kA/m.

3.4 Magnetic forces

Within magnetostatics there are two forces: the reluctance force and the lorentz force. The
reluctance force is a force between a magnet and a ferromagnetic material—like iron—and
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is caused by a change in reluctance R. The Lorentz force is a force acting on a current—or
permanent magnet—in a magnetic field. An easy way to indentify if a force is a reluctance
a lorenz force, is to see if the force can become repulsive. A repulsive force can never be a
reluctance force and thus mut be a lorentz force2. The differences between reluctance and
Lorentz forces are summarized in table 3.2. Both forces can be used to create a low stiffness
gravity compensator, but more on that in chapter 4.

Table 3.2: Overview of the differences between reluctance and lorentz forces. Adapted from [16]

Reluctance force Lorentz force

Basic computation
principle

energy in magnetic field cross-product of current and
flux density

Computation formula F = ∂W
∂x F = i× B

Direction of force perpendicular to the surface of
materials of different µr

Perpendicular to flux density

Attractive/repulsive always attractive attractive or repulsive

Example magnet sticking on a fridge DC-motor, interaction between
permanent magnets, speaker

3.5 Calculating forces in systems with a well defined flux path

Magnetic circuit theory

Most magnetic circuits, such as actuators, transformers, and a number of gravity compensators,
have a well defined magnetic flux path. They use materials with a high relative permeability,
through which nearly all magnetic flux φ travels. The idea of magnetic circuit theory is that,
because of this well defined flux path, we can simplify the three dimensional magnetic system
to a one dimensional one.

Magnetic circuit theory is extremely similar to electric circuit theory: we have a source of
magnetism called the magnetomotive force F , a magnetic resistance called the reluctance R,
and the magnetic current which is the magnetic flux φ [8, 17]. The cause of the magnetomotive
force can be a coil (figure 3.4a) or a magnet (figure 3.4b). The highly reluctant material of
figure 3.4ab is modeled as wires in figure 3.4, and airgaps become reluctances.

In case there is a coil, the magnetomotive force follows from 3.9 [13]:

F = ˛
C

H · dl = Ni (3.13)

where N is the amount of turns and i is the real current flowing through the coils. Because
the length of the flux path C is equal to the length of the core plus the length of the airgap,
3.13 becomes:

F = Hclc +Hgg (3.14)

Using equations 3.8,3.5, 3.2, the above can be rewritten as:
2You could classify forces on diamagnetic materials like bismuth as reluctance forces. In so then reluctance forces

can become repulsive. However, these forces are extremely small and not useful for engineering applications.
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coil 
N windings

core: 
  mean length: lc
  area: Ac  
  permeability: μ0μr

g
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Figure 3.4: Magnetic circuit theory. (a) shows a three dimensional magnetic circuit with a coil as
source, while in (b) the magnetomotive force F is caused by a permanent magnet. The magnetic circuit
representation of (a) is shown in (c).

F = φ
(
lc
µAc

+ g
µ0Ag

)
(3.15)

which hints that the terms between the brackets are the reluctances, so that

F = φ(Rc +Rg) (3.16)

When the magnetic circuit does not only contain coils but also permanent magnets, we can
still determine the magnetomotive force F and all above is still valid. A permanent magnet
can be modeled as a fictitious coil where the current times the number of windings is equal
to the magnetic field strength times the leng,th of the magnet [13]:

(Ni)equiv = −Hch (3.17)

From equation (3.2) follows that all magnetic flux that travels through the core should go into
the airgap and its surroundings. So it must be true that the field in the gap is equal to

Bg = γφ
Ag

(3.18)

where γ is a loss factor to take stray flux into account. Now the field is knows, we can
calculate the forces. In case of a Lorentz force can use the Lorentz equation (equation (3.26)),
while reluctance forces follow from the energy balance.
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The energy balance

Energy cannot be created nor destroyed. Therefore we can write down an energy balance for
systems with an electromechanical energy conversion, like the system shown in figure 3.5.

Energy input
from electric
sources

 = Mechanical
energy
output

+Increase in energy
stored in magnetic
field

+Energy
converted
into heat

 (3.19)

x y
z

coil 
N windings

core: 
  mean length: lc
  area: Ac  
  permeability: μ0μr

iron plunger

g

g

i
lp

Figure 3.5: A aystem with an electromechanical energy conversion. Conform with equation (3.17), the
coil can also be seen as a permanent magnet.

The energy balance states that the mechanical output of a electromechanical system must be
equal to the electrical energy input, minus the losses and the decrease in energy stored in
the magnetic field. If we take the losses out of our system and take the time derivative of the
energy balance, we get the power balance:

dWfld
dt = ei︸︷︷︸

Ẇelec

−Ffld
dx
dt︸ ︷︷ ︸

Ẇmech

(3.20)

where Ffld is the force caused by the magnetic field. Substitution of equation (3.6) in equa-
tion (3.20) results in the following energy balance:

dWfld = idλ− Fflddx (3.21)

Since the system is lossless, the magnetic field energy is fully defined by the two state variables
λ and x . So it must be true that:

dWfld(λ, x) = ∂Wfld
∂λ

∣∣∣∣
x
dλ+ ∂Wfld

dx

∣∣∣∣
λ
dx (3.22)

By comparing equation (3.21) and equation (3.22) we see that it must be true that the reluctance
force is negative proportional to the derivative of the field energy, while keeping the flux linkage
constant [13]:

Ffld = − ∂Wfld(λ, x)
∂x

∣∣∣∣
λ

(3.23)

The subscribts right of the partial derivatives indicate that the derivative should be taken with
the variable constant. This is a mathematical trick and does not mean that λ or x should be
constant during operating the device.
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When analytically solving equation (3.23) is troublesome, the coenergy of the field W ′
fld can

be used in stead of the energy Wfld . The coenergy is defined as [13]:

W ′
fld(i, x) = iλ−Wfld(λ, x) (3.24)

and gives the exact same results for the reluctance force, when the below formula is used:

Ffld = − ∂W ′
fld(λ, x)
∂x

∣∣∣∣
i

(3.25)

The only difference it that now the current is kept constant during differentiation.

Because the goal of this research is to create a passive system, all magnetic concepts dis-
cussed in chapter 4 use permanent magnets instead of coils. However, equation (3.23) and
equation (3.25) are still applicable if we apply equation (3.17) and replace the magnets by
fictions coils in the calculation.

The Lorentz equation

The Lorentz force is the force acting on a charge q as result of an electromagnetic field and
is equal to:

Fl = q(E + v × B) (3.26)

In the absence of an electric field, the Lorentz force becomes:

Fl = I× B (3.27)

In section §3.2 we talked about the magnetic dipole m and how it could be modeled as two
magnetic charges or as a small current loop. And if we would place this dipole—or small
current loop—in a magnetic field, one would expect a Lorentz force acting on the dipole. This
is indeed the case, and the Lorentz force acting on the magnetic dipole is equal to [11]:

Fl =∇(m · B) (3.28)

As permanent magnets consist of large amounts of aligned magnetic dipoles, they can also be
modeled as a number of magnetic charges or currents, and also have a Lorentz force acting on
them when placed in a magnetic field.

3.6 Calculating forces in systems with a undefined flux path

When the magnetic flux path is well defined by highly permeable materials like iron, magnetic
circuit theory can be used to calculate the magnitude of the B-field. When the magnets are
located in free space, the flux path becomes three dimensional making magnetic circuit theory
useless. Determining the magnetic field can now be done with a FEM program such as
COMSOL, but when magnets have simple geometries it is possible to calculate the magnetic
field analytically. The advantage of such a analytical model is that it greatly reduces the
required computational power compared to a FEM programs. With this great reduction of
computational power, it becomes possible to optimize the size, shape and topology of a magnetic
gravity compensator for a certain force-displacement curve.

The field of a permanent magnet can be modeled using the charge model or using the current
model. Both models are discussed below and should give identical results [14].
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Figure 3.6: This figure shows (a) a permanent magnet with an upwards magnetization modeled as (b)
positive and negative charges at the top and bottom of the magnet and as (c) four current sheets.

The charge model

The charge model builds upon the Gilbert model and models permanent magnets as an amount
of imaginary positive and negative magnetic charges. These positive and negative charges are
located at the top and bottom plates of the magnet, as is shown in figure 3.6.

When a magnet is modeled as magnetic charges there are no currents, so the curl of the H-field
is equal to zero ∇×H = 0 according to Amperes law. Because the H-field is irrotational, it
is allowed to introduce a magnetic scalar potential [14]:

H = −∇φm (3.29)

We do not know H, but we do know the magnetization M which a real value within the magnet
and zero everywhere else. Substitution of equation (3.11) and ∇ · B = 0 in equation (3.29)
results in the solvable relation:

∇2φm =∇ ·M (3.30)

The solution of equation is equal to [14]:

φm(x) = − 14π
ˆ
V

∇′ ·M(x′)
|x− x′| dv + 14π

˛
S

M(x′) · n̂
|x− x′| ds (3.31)

and consists of integration over the finite volume V bounded by surface S . The vector x′ points
to the source points, while x points to the observation points. equation (3.31) is found using
Green’s functions, a mathematical trick very well described in [18, 19, 20, 14]. Finally we can
introduce the volume charge density and surface charge density corresponding to the volume
and surface integrals:

ρm = −∇ ·M volume charge density (A/m2)

σm = M · n̂ surface charge density (A/m)
(3.32)

and rewrite equation (3.31) for vacuum B = µ0H as:

B(x) = − µ04π
ˆ
V

ρm(x′)(x− x′)
|x− x′|3 dv + µ04π

˛
S

σm(x′)(x− x′)
|x− x′|3 ds (3.33)

The above equation gives the B-field at observation point x as function of volume and surface
charges located at x′. For normal magnets, the volume charge density is zero (ρm = 0).
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The current model

The current model builds upon the Amperian model and models permanent magnets as a
number of current sheets, as is shown in figure 3.6. According to Ampere’s law ∇× H = J.
Because the H-field and B-field have a non-zero curl, it is not possible to introduce a magnetic
scalar potential. But it is possible to introduce a magnetic vector potential A [11]:

B =∇× A (3.34)

Substitution of the vector potential into Amperes law, and using equation (3.11), we can rewrite
equation (3.34)to:

∇2A = −µ0(J +∇×M) (3.35)

The above equation looks a lot like equation (3.30) and solving it requires similar steps. In
stead of charge densities, we can now define a volume current density Jm and a surface current
density jm

Jm =∇×M volume current density (A/m2)

jm = M× n̂ surface current density (A/m)
(3.36)

Again—using a Green’s function—the solution of equation (3.35) has been found to be [14]:

A(x) = µ04π
ˆ
V

Jm(x′)
|x− x′|dv + µ04π

˛
S

jm(x′)
|x− x′|ds (3.37)

The B-field is found by substituting the above equation into equation (3.34)and is equal to:

B(x) = µ04π
ˆ
V

Jm(x′)× (x− x′)
|x− x′|3dv + µ04π

˛
S

jm(x′)× (x− x′)
|x− x′|3ds (3.38)

A regular permanent magnet does not contain a volume current density, so Jm = 0. The reason
for this is that all internal currents ’cancel’ each other out, as is illustrated in figure 3.7. A
mathematical explenation is that if we integrate the curl of a vector v over an area S , the result
is equal to integral of v over a perimiter C that encloses S:

ˆ
S
(∇× v) · da = ˛

C
v · dl (3.39)

The above equation is called stokes theorem [11].

Figure 3.7: In a permanent magnet, all internal current cancel each other out. Only a surface current
remains. Image obtained from [11].
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1D solution for the field of rectangular magnets

The magnetic flux density B at the centerline of the rectangular magnet of figure 3.6a can be
found analytically by solving equation (3.33). This can be done simply by hand because the
term (x − x′) reduces to z because of symmetry and x = zẑ and x′ = x x̂ + yŷ. After solving
the integrals, the one dimensional equation for B-field in the z-direction becomes:

Bz = Br
π

[tan−1( (z + h)√w2 + l2 + h2
wl

)
− tan−1(z√w2 + l2 + h2

wl

)]
(3.40)

where is used that Br = µ0M for vacuum and w, h, l are the respective width, height and length
of the magnet. Solutions for different shapes of magnets, such as disks, rings and spheres can
also be obtained analytically and are found at [21] (without derivation nor reference).

The validity of equation (3.40) is checked by comparing its results with results obtained from
a COMSOL mfnc3 3D simulation. As shown in figure 3.8, the results agree well, thus equa-
tion (3.40) is most likely a valid representation of the field of a square magnet and therefore
can be used to fit the measurement data. The COMSOL simulation results show a strong
decrease in flux density for z > 15mm. This is caused by the Infinite Element Domain (IED),
used in the simulation to simulate an ’infinitely large’ airbox to avoid edge effects, and should
be ignored.
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Figure 3.8: The B-field on the centerline of (a) a square permanent magnet and (b) a rectangular magnet
with length = 10 x width. For the square magnet, COMSOL results agree with equation (3.40). The
sharpt decrease in the COMSOL simulation results is caused by the infitite element domain.

2D solution of the field of rectangular magnet

A long rectangular magnet is represented in the current model as two long and two short
current sheets. When the length of the magnet is far larger then the width, we can neglect
the contribution of the short current sheets to the magnetic field. As result, the solution of
equation (3.38) becomes two dimensional and the components of the B-field are given by [14]:

Bx (x, y) = Br4π
[ln( (x + w)2 + (y− h)2(x + w)2 + (y+ h)2

)
− ln( (x − w)2 + (y− h)2(x − w)2 + (y+ h)2

)]
(3.41)

3A type of COMSOL simulation. mfnc stands for: magnetic field no current
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and

By(x, y) = Br2π
[tan−1( 2h(x + w)(x + w)2 + y2 − h2

)
− tan−1( 2h(x − w)(x − w)2 + y2 − h2

)]
(3.42)

and the total B-field is B = Bx x̂ + Byŷ. The variables w and h are the width and height of
the magnet.

If we only look at the centerline x = 0, we can again obtain the one dimensional B-field as
function of the distance from the surface. This is not a good idea for square magnets because
the field obtained with equations 3.41 and 3.42 will be to low, as is shown in figure 3.8a. The
2D formula’s become valid for L > 10w as shown in figure 3.8b.

We can conclude that two dimensional models—analytical or FEM—are not suitable for sim-
ulating the field of a square magnet.

3D solution of the field of a rectangular magnet

An analytic equation of the three dimensional field of a rectangular magnet does exist and can
be found in [14, 3]. However, implementing and using these equations became such a devious
task that it was decided to use COMSOL for all three dimensional simulations.

Force interaction between magnets

When two magnets are placed next to each other and the field created by the first is known,
the forces acting on the second magnet can be derived from the Lorentz equation or using the
Maxwell stress tensor [14]. Although COMSOL is used for all three dimensional problems in
this research. However, some of the concepts of chapter 4 can be simplified. When the magnets
are chosen cylindrical of shape and their central axis are aligned, the problem of calculating the
forces reduces to a 1D problem. According to [22] the force between thin cylindrical magnets
can be approximated with:

Fz ≈ −
πµ0M2R44

[ 1
z2 + 1(z + 2h)2 − 2(z + h)2

]
(3.43)

where R and h are the radius and height of the magnets respectively. A “more than satisfactory
agreement” between equation (3.43) and measurement data is reported in [22], but is not
validated by means of FEM simulations in this thesis.

3.7 Conclusion

Magnetism is created by the alignment of all magnetic dipoles within a material. Magnetizing
and demagnetizing a ferromagnetic material results in energy loss because of ‘friction between
these magnetic dipoles. There are two types of magnetic forces: reluctance forces and Lorentz
forces. The procedure for calculating or predicting these forces depends upon how well the
flux path is defined. Magnetic circuit theory is only useful for circuits with a well defined flux
path, which is often the case in reluctance systems. When airgaps are large, the field can be
determined with FEM software such as COMSOL, or—in the absence of iron—with analytical
equations. Modeling square magnets in 2D can result in significant errors of more than 20%.
Rectangular magnets can only be modeled in 2D when their length is approximately ten times
their height.





Part II

Magnetic gravity compensator design and
validation
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Chapter 4

Magnetic gravity compensator concepts

The previous two chapters explained the theory of vibration isolation and magnetic fields
and forces. This chapter will combine these theories to evaluate the performance of eight
magnetic gravity compensator concepts, with respect to a number of requirements. The concept
choice will be defended, and it will be explained how the load bearing capacity and stiffness
of the magnetic system could be tuned mechanically. The last two sections of this chapter
are dedicated to the stability and robustness to alignment errors of the magnetic gravity
compensator concept.

4.1 Requirements of the magnetic system

The magnetic gravity compensator should have a region in which it can support a load with
little stiffness and little damping, such that the transmissibility between floor motion xf and
payload motion xm will be low. Numerous systems have been designed in the past, that used
(electro)magnetism to bear a load with low stiffness [2, 3, 4, 5, 6, 7]. However, all those magnetic
vibration isolation systems needed some form of active control to keep the system in its low
stiffness area. As the goal of this thesis is to create a passive system, no active control can
be used to keep the gravity compensator in this region of low stiffness. The magnetic gravity
compensator concept should be stable in at least the vertical direction, and that it should be
possible to stabilize the concept in all other direction, without adding significant stiffness and
damping to the z-direction. The criteria used to evaluate the concepts can be summarized as:

• Range of the low stiffness region: The larger the low stiffness region, the easier it will
be to position and keep the system in this area.

• Amount of damping: The lower the amount of damping, the better the system will isolate
vibrations.

• Stability of the low stiffness area: Fewer unstable degree’s of freedom mean less
mechanical constraints needed to keep the system stable.

• Load bearing capacity: The higher the load bearing capacity, the lower the eigenfre-
qency of the system will be, and thus the better it will isolate vibrations.

The ideal force curve of the magnetic gravity compensator is shown in figure 4.1. The red curve
shows the upwards force delivered by the system, and the curve has a positive stiffness at both
sides of the low stiffness region.

Keeping the gravity compensator in it’s low stiffness area is not a problem, when the area is
stable. This can be done by mechanical stops.

29
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Figure 4.1: The ideal force-displacement curve of the magnetic gravity compensator with a large low
stiffness range, enclosed by two positive stiffness ranges.

4.2 Overview and discussion of concepts

There are many magnetic configurations that can be used to create a zero-stiffness region and
below the properties of a number of these concepts will be discussed.

The iron mover

A simple way to create a low-stiffness gravity compensator is by moving an iron plunger
through a magnetic field created by two permanent magnets, as is illlustrated in figure 4.2a.
This concept is build and measured by [23], but their work does not physically substantiate the
force curve of the concept, reproduced in figure 4.2b. An active system based upon the same
magnetic concept is described and validated by [7].

iron mover

x y
z

z

(a) Small iron plunger

−zmax 0 zmax

-Fmax

0

Fmax

displacement
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e

(b)

Figure 4.2: The (a) small iron plunger concept and (b) the corresponding force in z-direction acting
on the irong plunger. Based upon [23]. The image is not to scale, and the force curve is based upon
reasoning.

The force-deflection curve of figure 4.2b shows that the force acting on the iron plunger is such
that the plunger always is pulled into the airgap. This agrees with the expectation, as magnets
attract iron. When the iron plunger is fully in the airgap—at z = 0± δz—the force becomes
zero, as there is no more iron to attract. A simplified explanation of the small displacement δz
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around z = 0, where Fz remains zero is that for ±δz the volume of iron in the airgap does
not change. The two regions where there is a force but little stiffness, e.g. the extreme values
of figure 4.2b, are suited for use in a gravity compensator.

A more physical way to explain the shape of the force curve is by applying the priciple of
concervation of energy. As stated in section §3.5, the force acting on a mechanical plunger
in a system withouth losses nor electrical inputs is equal to the partial derivative of the total
field energy Wfld[13]:

Fz = − ∂Wfld(λ, z)
∂z

∣∣∣∣
λ

(4.1)

Large mover An interesting way to adapt the design show in figure 4.2a is by increasing the
size of the plunger, such that its height is far greater than the size of the magnets, as is shown
in figure 4.3a. However this change will not result in a larger low stiffness region suitable for
gravity compensation, but rather in a larger distance between the force peaks in the force-plot,
as shown in figure 4.3b.
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Figure 4.3: The (a) large iron plunger concept and (b) the corresponding force in z-direction acting on
the irong plunger. The image is not to scale, and the force curve is based upon reasoning.

The shape of figure 4.3b can be explained with equation (4.1). When the iron moves in the
airgap, the energy stored in the airgap reduces, and thus there is a positive force polling the
iron in. However, when the airgap is completely filled with iron, there is no futher change in
Wfld and the force reduces to zero. When the length of iron bar icreases, the bar can displace
more without changing the volume of iron in the airgap, thereby creating a longer range where
the force will remain zero.

Adapting field strength and iron shape Increasing the size of the low-stiffness area is thus
not done by increasing the length of the iron bar, but rather by shaping the energy stored in
the field Wfld(λ, z). The correct shape of the energy function Wfld(λ, z) can be found by looking
at the second derivative: the stiffness kz .

The stiffness in z-direction of a mechanism is defined as kz = −∂Fz/∂z . Substitution of
equation (4.1) results is:

kz = ∂2Wfld
∂z2

∣∣∣∣
λ

(4.2)
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Therefore, a system with zero stiffness in the z direction needs a field energy Wfld that changes
linear with z , such that:

Wfld = ηz

where η is a scalar constant ∀z . One possible way of doing this is by shaping the with of
the iron plunger. Another way, shown in figure 4.4a, is by using many magnets of different
sizes and magnetization M to create the required field energy function Wfld(z) = ηz . Such an
energy function should results in the force characteristic shown in figure 4.4b.

z

reshaped iron plunger

x y
z

(a) Multiple magnets

0

0

displacement

Fo
rc

e

−zmax zmax

-Fmax

Fmax

(b)

Figure 4.4: The energy stored in the field can be adapted by changing the strength of the magnets and
the shape of the iron plunger (a). When both are adapted such that Wfld ∝ z , one would expect a low
stiffness region in the force acting on the plunger (b). The image is not to scale, and the force curve is
based upon reasoning.

Stray flux Figures 4.2b,4.3b,and 4.4b show a force and stiffness equal to zero for z = 0±δz .
Although the calculation method is alway valid, the plots are only correct in the case that
the magnetic field is fully confined in the airgap between the magnets. In reality there
will be a certain amount of stray flux, depending upon the dimensions of the gap and the
difference in reluctance between the airgap and the iron plunger. Figures 4.2b,4.3b,and 4.4b
are approximations and in reality, the force-displacement curve will never be completely flat
around zero.

The Halbach array

A different way to create a gravity compensator is by using a Halbach topology, as shown in
figure 4.5a. Six magnetic rings are used to create a magnetic field in which a seventh magnetic
ring is allowed to move up and down. The four magnetic rings, located at the top and bottom
of the topology, are used to create a high flux density in the airgap, resulting in a high force
density [3]. When a high force density is not necessary, these outer magnets can be removed,
resulting in the design of figure 4.5b proposes by [5].

The curve describing the force acting on the moving ring as function of z highly depends upon
the relative dimensions of the magnets, as shown in figure 4.6 for both topologies. When
the height of the static magnets h is equal to the height of the moving magnet, there is a
single maximum in the force curve. Increasing h results in a second maximum, whilst reducing
the value at both extremes. Both are caused by the phenomena that a magnetic field is far
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Figure 4.5: A (a) gravity compensator using a quasi-Halbach topology [3] and (b) a simplified version
proposed in [5] and [6].
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Figure 4.6: Force Fz acting on the moving magnet for the magnetic configuration of (a) figure 4.5a and
(b) figure 4.5b. In (a) the flux is concentrated in the air gap, resulting in a significatly higher force for
equal magnet volumes. Results obtained with a 2D FEM simulation.

stronger near the edges of the magnet, because at the center of the magnet the dipoles cancel
out each other [11]. Analyzing figure 4.6 we see that for both configurations of figure 4.5, there
is no h that creates a zero stiffness region larger than a point, thereby rendering the concept
unsuitable for a passive magnetic gravity compensator.

Attraction and repulsion

It is also possible to create a gravity compensator with a combination of attractive and repulsive
magnets, as shown in 4.7a. When the relative permeability µr of the complete volume containing
the magnetic field caused by the magnets is equal to one—e.g. there are no soft magnetic
materials present —we can apply the principle of superposition for magnetic fields and add the
fields Btop and Bbottom created by the top and bottom magnets so that Btot = Btop + Bbottum.
Therefore, the total force Ftot acting on the central magnet is the sum of the forces created
by the top and bottom magnets, which can calculated with equation (3.43) if the magnets are
circular and have a small radius compared to their length.

According to equation (3.43) the total force acting on the moving magnets should be the
summation of two inverse quadratic functions. For the magnetic configuration of figure 4.7a,
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Figure 4.7: Three magnets arranged is such a way that a point of zero stiffness is created. (a) is
reproduced from [3], (b) from [2]. The airgap between the magnets is of length d.
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Figure 4.8: The forces-displacement curves corresponding to (a) figure 4.7a and (b) figure 4.7b. The
airgap between the magnets is indicated with d, and the upwards delivered force has a magnitude W .
According to (b) the concept from figure 4.7b cannot carry a weigth and only adds negative stiffness.

this results in the force-displacement function shown in figure 4.8b, where we see a point of
zero stiffness for z = 0. The magnetic typology of figure 4.7a does not result in a point of
low stiffness, as shown in figure 4.8a, and is therefore only useful in a gravity compensator as
compensation for some source of positive stiffness.

Square magnets

Another way of creating a gravity compensator without the use of iron, is by aligning two
square magnets, with equal dimensions but opposing magnetization, so that the center of the
first magnet aligns with the edge of the second, as is depicted in figure 4.9. A simulation of
the forces acting on the moving magnet as function of the z-position is shown in figure 4.10.
The simulated magnets are 20x20x5 mm in size and have a 1.31 T remanent flux density Br
and a 1 mm airgap between them.

The three components of the force shown in figure 4.10 in blue, green and red correspond to the
forces in x ,y and z-direction respectively. Because the magnetic configuration is symmetrical
in the x-direction, there is no x-force acting on the moving magnet. More interesting is the
force in z-direction, shown in red in figure 4.10. This force seems to become constant for



4.3. EXTENDING THE SQUARE MAGNET CONCEPT 35

x y
zz

Figure 4.9: A magnet topology consisting of two repulsive square magnets, that results in a low stiffness
in the z-direction. The forces corresponding to image are shown in figure 4.10. Reproduced from [3]
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Figure 4.10: The (a) forces and (b) stiffnesses for the situation of figure 4.9, when only z-displacements
are considered. The magnets are N42 20x20x5 mm with an airgap of 1mm between them. Results
obtained with a 3D FEM simulation.

3 < z < 15. This large low stiffness region makes the concept highly suitable for use within
a passive gravity compensator.

Magnetic concept choice

The “square magnets” concept is considered the best choice for a passive magnetic vibration
isolation system. The concept allows for large low stiffness areas that are required to passively
keep the vibration isolator in its low-stiffness working point. Also, the absence of iron in the
concept reduces or removes the hysteresis effects that would be present in the iron.

4.3 Extending the square magnet concept

The “square magnets” concept from figure 4.9 is an asymmetric design and if we analyze the
forces between the magnets, shown in figure 4.10, we see an unwanted force in the y-direction.
One way of compensating for Fy would be by using a linear guide. However, as the forces
are large in the y-direction, a strong and stiff linear guide would be needed. This linear
guide would introduce a considerable amount of mechanical hysteresis, thereby rendering the
whole idea of the magnet gravity compensator useless. A different—and more elegant—way of
compensating for Fy is by adding a third—repulsive—magnet to the setup, as shown in 4.11a.
As can be seen in figure 4.12a, this third magnet eliminates Fy while doubling Fz . Because
of the symmetry in the design, there are no moments acting on the central magnet and the
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moments shown in figure 4.12b are due to numerical noise.
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Figure 4.11: Extended version of 4.9. A third magnet is added to compensate for Fy . The magnets are
numbered m1, m2, m3 as shown in (b).
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Figure 4.12: The (a) forces and (b) moments acting on the moving magnets. There is only a force in the
z-direction and there are no moments. Magnets are N42 20x20x5mm with a 1 mm airgap between them.

Tunability

One of the great strengths of a vibration isolation systems such as the those made by minusk,
is that they are tunable both in load bearing capacity as in stiffness. The tunability of the
load bearing capacity removes the need for adding extra weight to the isolated platform, while
tuning the stiffness can compensate the stiffness of for example wires going to the isolated
platform; resulting is a system that is very flexible in its use. During this research is was
found that both way’s of tuning are also possible with the square magnets concept by adapting
the airgap d and angle α of the magnets.

Tuning the load bearing capacity

The forces between two magnets are best visualized when you consider the field produced
by the first magnet, and think of the second magnet a number of surface currents K [A/m]. In
figure 4.14 you can see two long rectangular magnets: a grey one and a transparent one with
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Figure 4.13: The result of a (a) change in airgap d between the magnets, and (b) change in the angle
α of the static magnets. Simulations performed with N42 20x20x5 magnets.

a black outline. The thick black lines are the two current sheets that mathematically represent
the transparent magnet. The magnitude of the force in x-direction—shown in red—follows
from y-component of the field and is calculated using equation (3.26). When we displace the
transparent magnet in the x-direction, the length of the individual force vectors changes, but
their combined length remains about the same. The result is a constant force acting on the
moving magnet.

If we want to increase the force, we can increase K—which would mean replace the magnet
by a stronger one—or increase the field in which the surface current moves. Changing the
flux density is easiest by just moving closer to the surface of the magnet where the field is
stronger, so reducing the airgap d from figure 4.9 should result in a higher force acting on the
middle magnet.

This experiment is validated using a COMSOL mfnc simulation in 3D space and the results
are shown in figure 4.13a. Reducing the airgap indeed increases the load bearing capacity as
well as the size of the low stiffness area.
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Figure 4.14: Shown is the B-field created by an infinitely long rectangular magnet (grey), in which a
second magnet is placed (white). The red arrows are the z-components of the forces acting on the current
sheets (black lines) due to the y-component of the field . The field is calculated using equation (3.41)
and equation (3.42).

Tuning the stiffness

Figure 4.13 shows that if we rotate the outer magnet with an angle α , the stiffness of the
system changes. With rotations from α = −6 . . . 6 deg, we could change the stiffness of the
system from +1000 N/m to -1000 N/m, for a z-range of multiple millimeters.

4.4 Stability of the gravity compensator concept in all DOF

In order to be useful, the square magnets concept needs to be stable in all degrees of freedom
(DOF) and unstable degrees of freedom need to be constrained. The stability conditions can
be found by analyzing the total energy Wtot in the system. Because there is only an energy
exchange between the potential and magnetic field energy, the total energy is equal to the
potential energy Wpot and the energy stored in the magnetic field Wfld:

Wtot = Wfld +Wpot (4.3)

where the potential energy is equal to the mass m of the moving part of the setup

Wpot = ˆ mg · dx (4.4)

and the magnetic energy is equal to [13]:

Wfld = ˆ
V

(ˆ B

0 H · dB
)
dV (4.5)

For a soft magnetic material with a constant permeability, equation (4.5) reduces to [13, 12]:

Wfld = ˆ
V

B22µ dV (4.6)
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When the system is in equilibrium, the gradient of the total energy should be equal to zero:

∇Wtot = 0 (4.7)

so that the energy is at one of its extremes. If the energy profile is convex, the system is at a
stable equilibrium while a concave profile denotes an unstable equilibrium point. The shape
of the profile is found by taking the second derivative of equation equation (4.3):

∇2Wtot =

> 0 stable, convec, minimum energy

< 0 unstable, concave , maximum energy0 neutral, flat, constant energy

(4.8)

As the force-deflections curves are already calculated with COMSOL, we can simplify our
stability conditions by just looking at the derivatives of the forces and moments

−∇F =

> 0 stable

< 0 unstable0 neutral

, −∇M =

> 0 stable

< 0 unstable0 neutral

(4.9)

where F and M are vectors containing the three forces and moments. The derivatives of both
quantities are the translational stiffness k and rotational stiffness c respectively. So a positive
stiffness results in a stable degree of freedom.

Translational stability

The translational stabilities are reasoned from the force-deflection curves shown in figure 4.10,
figure 4.12 and figure 4.13. We can draw the following conclusions about the stability of the
system:

• kx (x = 0) < 0
• kz(α, 5 < z < 15) =


> 0 for α > 0
≈ 0 for α = 0
< 0 for α < 0

• ky(y) > 0
As the system will be tunes to have a slightly possitive stiffness in the z-direction, only the x
direction requires a added positive system: a guidance.

Rotational stability

Due to symmetry, the total rotational stability of the magnetic configuration can be investigated
by looking only at rotations around the y and z-axis. The corresponding moment-rotation plots
are shown in figure 4.15. From these two plots we can reason that:

• cx = cz > 0
• cy =

< 0 for Ry < 20 or Ry > 70◦
> 0 for 20◦ < Ry < 70◦
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As the moming magnet is not rotated about the y-axis (Ry = 0◦) the stiffness cy < 0 and the
DOF is unstable and requires an additional positive stiffness.
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Figure 4.15: The moment-rotation curves for (a) a rotation about the y-axis and (b) about the x/z-axis.

Earnshaws Law

From section §4.4 the question arises if it is possible to compensate for the instabilities in the
x and Ry directions by adding more magnets or using other sizes or shapes of magnets. The
answer is no, stable levitation is not possible using just static magnetic or electric fields. The
cause is that the second derivative of the magnetic potential ∇2Wfld will be zero, meaning
that the potential field has an unstable saddle shape. This is often called Earnshaw’s theorem,
although Earnshaw never wrote about magnetic fields and its work was still based upon dated
physical consepts such as the existance of luminous eter [24]. Three elaborate and far more
recent proofs are found in [25, 26, 5].

4.5 Influence of alignment errors or non-symmetries

When the square magnetic gravity compensator concept is implemented in a setup, it is most
likely that the magnets are not perfectly aligned. The following three alignment errors are
examined:

1. There is a difference in the x-alignment of the non-moving magnets m1 and m3 (see
figure 4.11b);

2. There is a difference in the x-alignment of the non-moving magnets (m1, m3) and the
moving magnet m2 (see figure 4.11b);

3. There is an uneven airgap between the magnets, so that d1 6= d2 (see figure 4.11b).

The influence that each of these three miss alignments has on the force and moment curves of
the magnetic gravity compensator, is discussed in the following paragraphs.

x- alignment error between m1 and m3 Figure figure 4.16 shows the forces as function of
the z-displacement of the moving magnet, when there is an x-alignment error between the two
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outer non-moving magnets. Two parasitic forces Fx (z) and Fy(z) appear, but the alignment
error has little influence on the load bearing capacity of the setup. The same figure shows two
parasitic My(z) and Mx (z). An x-alignment error between the outer magnets can be avoided
by placing them in a stiff enclosure, machined with high tolerances, which is done in the final
design of the demonstrator (see figure 6.7 on page 56).
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Figure 4.16: The parasitic forces acting on the moving magnet m2 , as result of senario 1: an uneven
x-position of magnets m1 and m3 .

x-alignment error between m1, m3 and m2 A more probable alignment error is the x-
alignment error between the two outer magnets and the moving magnet. Figure figure 4.17
shows that an alignment error of 2 mm will result in a maximum force in x-direction of almost
30 N, as well as a moment around the y-axis. These forces and moments will be used in
chapter 6 and section §A.1 as buckling requirements for the linear guide.

0 10 20 30
−10

0

10

20

30

40

z position magnet [mm]

F
or

ce
 [N

]

 

 Fx

Fy

Fz

(a)

0 10 20 30
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

z position magnet [mm]

T
or

qu
e 

[N
m

]

 

 

Mx

My

Mz

(b)

Figure 4.17: (a) The forces and (b) the moments corresponding to an x-alignment error between the two
outer magnets and the moving magnet of 2 mm.

Uneven airgap between the magnets (d1 6= d2) An uneven airgap between the magnets
results in a large force in y-direction and in a large moment around the x-axis, as is shown
in figure 4.18. The force Fy tries to equalize the airgaps between the magnets such that
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d1 = d2 = d. When the linear guide of the moving magnet has a low stiffness in the y-
direction, the moving magnet can magnetically align itself in y-direction. This is done in the
final design of the demonstrator by means of flexure hinges, as shown in figure 6.5 on page 55.
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(a) 2mm displacement of m3 in y direction (d1 = 1mm and
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Figure 4.18: The parasitic forces acting on the moving magnet m2 , as result of scenario 3: an uneven
gap size (d1 6= d2)
4.6 Conclusion

The magnetic gravity compensator concept needs to have a low stiffness and contain little
damping, while having a minimum number of unstable degrees of freedom. It was found
that the ’square magnet’ concept meets these requirements best. The square magnet concept
consists of three rectangular magnets and can be used to create a gravity compensator with
a low stiffness over a large range of approximately 1/2 of the magnets height. When 20x20x5
mm N42 neodymium magnets are used, this results in an expected load bearing capacity of
≈ 40 N over a range of ≈ 10mm. As the gravity compensator does not contain any iron, little
damping is expected. Fine tuning the load bearing capacity of the system can be done by
controlling the airgap, while the stiffness can be made both positive and negative by tilting the
outer two magnets. The magnetic configuration is unstable for translations the x-direction and
for rotations Ry around the y-axis, making a linear guide with low stiffness and damping in
the z-direction necessary. This linear guide should also have a low stiffness in the y-direction,
while having a high stiffness in the x-direction, to compensate for the forces that result from
small alignment errors of the permanent magnets.



Chapter 5

Gravity compensator validation

The previous chapter discussed the conceptual design of the magnetic gravity compensator,
and analyzed it’s performance using finite element software. This chapter discussed the test
setups used to measure and validate the performance of the gravity compensator. The validation
process is an extra step taken to ensure that the gravity compensator behaves as expected,
before it will be implemented in the demonstrator as described in the next chapter.

The validation process of the gravity compensator consists of two parts. In the first part, the
field of the magnets is measured to determine its remnant flux density and dimensions, which
is not as straightforward as it sounds, while in the second part the force-displacement curve
is measured for multiple airgaps.

5.1 Validating the B-field of a square magnet

The first step in validating the simulation results of section §4.3 is validating the B-field of
a permanent magnet, as the force acting on a magnet depends upon the magnetization of
the magnet and the strength of the B-field in which it is placed. This B-field created by a
permanent magnet is a function of the remnant flux density Br as well as the dimenstions of
the magnet and the position x where the field is observed. So in order to validate the B-field,
we need to validate the remnant flux density and the dimensions of the magnets, which is not
as traightforward as directly measuring them.

The dimensions of a magnet are given by a supplier and can ofcourse be checked with a calliper.
However neodynium magnets contain a coating of unknown thickness that protects the brittle
magnetic material inside. So when using a calliper you dot not measure the dimensions of the
dimensions of the magnetic material, while that is what you would like to know.

The remnant flux density of neodynium is indicated by the class of the magnet. In this reasearch
neodynium magnets of class N42 are used, which should have a remnant flux density between
1.29 and 1.32 T. This results in a ±2.3% uncertainty in the remnant flux density. A second
problem is: how do you measure this remnant flux density. As remnant flux density 1.29 <
Br < 1.32 T does not mean that the field that you measure at the magnet surface should
between these values.

Fitting the flux B-field measurements

A way to obtain the dimensions and remanent flux density of a magnet, is by measuring the
B-field at the centerline of the magnet. This data can then be fitted to the one-dimensional
model of equation (3.40). Results of the measurement and a fit are shown in figure 5.1a. The
B-field is measured with the Magna MG-701 Gauss meter and the observation positions x
are prescribed by the 3D printed checkerboard shown in figure 5.1b. As there are only two
unknown variables—the coating thickness s and remenant flux density Br—a trial and error

43
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Figure 5.1: The magnitude of the field on the centerline of the permanent magnet is shown in (a). The
measurement points are shown in red, while the blue line is calculated using eqation 3.40 on page 24.
The measurement results are used to determine the unknown parameters in equation (3.40) (Br = 1.28,
w = l = 19.6 mm, h = 4.6 mm). (b) Shows a 3D printed checkerboard with 3x10 holes in it. The field
is measured in the holes using the Magna MG-701 Gauss meter.

approach was used to fit the model. A remanent flux density of 1.28T and a coating thickness
of 200µm where found to result in a accurate fit, where the coating thickness is assumed to
be identical at all sides of the magnet.

5.2 Validating the force-displacement curve

Description of the measurement setup

The force-deflection curves of figure 4.13 are validated using the setup shown in figure 5.2a,b,c.
The setup is completely build using only rapid prototyping and out-of-the-box Thorlabs parts
and consists of the following components:

• two Thorlabs kinematic mounts that contain two static magnets (figure 5.2b);

• a plexiglas linear guide for the moving magnet (figure 5.2b);

• a Thorlabs manual 1D stage;

• a opto NCDT 1401 laser triangulation sensor;

• a FUTEK 10 lb (44.5 N) load cell.

The moving magnet is placed in an plexiglass enclosure that can move in the plexiglass linear
guide, both produced by laser cutting. The friction in the linear guide is decreased by applying
a Teflon coating to the plexiglass. This decreases the friction to less than 0.4N, as can be seen
in figure 5.2.

The force acting on the central magnet is measured using a FUTEK load cell that is rated for
use op to 10lb, or 44.5N. The connection between the magnet and the load cell consists of a
non-magnetic steel wire. Measuring the displacement is done using a opto NCDT 1401 laser
triangulation sensor. To avoid any influence of the deformation of the steel wire due to the
magnetic forces, the displacement is measured directly at the enclosure of the moving magnet.
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(a) Front view (b) Magnet support

(c) Top view
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Figure 5.2: The setup used to verify the force-displacement curves of figure 4.13 is shown in (a) to (c).
You can see the magnet enclosures, the plexiglass linear guide, the load cell and the laser triangulation
sensor. The friction of the linear guide is shown in (d), where the blue and red lines are the average
friction force measured before and after applying a teflon coating to the plexiglass. The grey area’s are
the 3σ standard deviations of 4 force measurements. .

The Thorlabs 1D stage is used to impose a displacement on the moving magnet and limits the
range of the setup to 25 mm.

The two non-moving magnets are enclosed in two plexiglass casings and mounted on two
thorlabs kinematic mounts. Three screws on these mounts are used to adjust the airgap d and
magnet angle α . Stacks of 0.5 mm thick aluminum plates are placed between the magnets
during adjustment to ensure the desired airgap.

Force-displacement curve for α = 0
When the angle α of the outer magnets is zero, we expect to measure a force with a low
stiffness area of zero to ten millimeters, depending on the airgap d. The measurement setup is
used to validate the force-displacement curves corresponding two and five millimeter airgaps .

The measured force-displacement curve Fz(z, d = 5) corresponding to an airgap of 5 mm is
shown in figure 5.3a. In this figure, the red line is the mean result of three measurement while
the grey area is the mean result plus three times the standard deviation σ of the data. Because
of the high repeatability of the measurement, there is a small standard deviation. We can see
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that the profile of the measured force is very similar to the COMSOL simulation result, but that
the value of the measured force is about 15% lower that the simulated force at its maximum
value. The most likely explanation for this difference is that the airgap was slightly larger
than two millimeter. This small error in the position can result in a large error in the force,
because the field decreases quadratically with the position. So a small position error becomes
a quadratic error in the force. The stiffness-displacement curve kz(z, d = 5) corresponding to
the five milimeter airgap is shown in figure 5.3b and there is only a point of zero stiffness,
which agrees with the expectations.
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Figure 5.3: The measurement results and simulation results for an airgap of 5 mm. (a) shows the forc-
deflection curve and (b) shows the corresponding stiffness. Measurement and simulation results show
great resemblance.

In case of a two millimeter airgap, we expect to see a zero stiffness region of about five
millimeter. However, the measurement results of figure 5.4a,b show something different. Not
only is the force more than 15% lower, but also the zero stiffness region is larger than expected.
How is this possible? Well, the most likely cause is the limited stiffness of the Tholabs mounts
holding the two non-moving magnets. Because the airgap is smaller, the forces in the y-
direction are far larger. These forces are large enough to deform the Thorlabs mounts, thereby
creating a larger airgap that reduces the force Fz . This limited stiffness of the setup made it
impossible to perform measurements with even smaller airgaps.

Because both the stiffness and the force in z-direction are known, it is possible to calculate
an eigenfrequency. When we say that the mass of the setup is equal to the force devided by
the gravity, the equation for the eigenfrequency becomens:

fn = 12π
√
kzg
Fz

(5.1)

where fn is in Hz. The eigenfrequency-displacement curve corresponding to the two milimeter
airgap is shown in figure 5.4c. The above equation is only usefull for the part of the curve
where the stiffness is positive. When the stiffness is negative the real part <(fn) becomes
zero and the function becomes imaginary, which can also be seen in figure 5.4c. This problem
is solved by slightly tilting the outer magnets by an angle α , so that the stiffness becomes
positive.
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Figure 5.4: The measurement results and simulation results for an airgap of two milimeters. (a) shows
the force in z-direction (b) shows the stiffness and (c) the eigenfrequency.

Force-deflection curve for α 6= 0
Due to the low stiffness of the support of the two non-moving magnets, it was not possible to
perform usefull measurement for α 6= 0. The phenomena of figure 4.13 is only seen for smaller
airgaps, but at these smaller airgaps the forces and torques acting on the supports cause
deformations that make it impossible to accurarately position the magnets under a certain
angle α .

5.3 Conclusion

The B-field of a permanent magnet is measured using a Gauss meter and a 3D printed
checkerboard. By fitting the measurement data of the B-field to equation (3.40), it was found
that the neodymium magnets used in this research have a remnant flux density of 1.28T and a
coating thickness of 200µm. Rapid prototyping and out-of-the-box parts where used to create
a setup, with which the force-displacement curves of the gravity compensator where measured
for different airgaps. The measured load bearing capacity of the gravity compensator was
found to be up to 20% lower than the COMSOL simulations predicted, which could—at least
partly—be explained by the limited stiffness of the mounts in which the outer two magnets
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where placed. The overall shape of the force displacement curves showed enough resemblance
with the COMSOL simulation results to consider the simulation results of chapter 4 useful,
and use the square magnetic concept as gravity compensator in the demonstrator. The limited
stiffness of the magnet mounts made it impossible to place—and keep—the magnets under a
small angle to validate the tunability of the stiffness. .
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Demonstrator design and performance
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Chapter 6

Demonstrator design and performance evaluation

The previous chapter discussed the validation of the magnetic gravity compensator. This
chapter will focus on the demonstrator, which is the proof-of-concept vertical vibration isolator
that implements the passive magnetic gravity compensator. The chapter starts with an overview
of the functions and requirements of the demonstrator, followed by a discussion of its design.
Finally, the performance of the demonstrator is evaluated by means of static and dynamic
measurements.

6.1 Functions and requirements of the demonstrator

The main function of the demonstrator is to vertically suspend a mass with low stiffness and
little damping, using the magnetic gravity compensator discussed in the two preceding chapters.
As explained in chapter 4, this means that the setup should position two magnets at a certain
angle α and with a certain airgap d, while a third magnet can move between those two
magnets1. The gravity gravity compensator can be thought of as a nonlinear magnetic spring
km that supports a mass, and has a low stiffness for only a certain range. As explained in
section §4.3 and validated in chapter 5, we need to position the system at a point within in
this range and only allow motion around this point.

The above can be translated to the system shown in figure 6.1. The mass m1 represents the
vibration isolated platform, which is suspended by the magnetic spring km. A linear guide with
stiffness ks and damping cs is connected to the mass m1 and is used to stabilize the magnetic
gravity compensator. This linear guide is also connected to a second body m2, that can be
positioned at a certain height z2 to place the magnetic spring in its low stiffness region. The
system is kept in this low stiffness region by mechanical end stops. Adjusting z2 is done with
a stiff spindle, so the dynamics of the system shown in figure 6.1 simplify to those of a simple
mass-spring-damper system.

km

y x
z

z1

z2 m1

m2

ks
cs

Figure 6.1: Schematic drawing of the demonstrator. z2 is enforced by a spindle, reducing the dynamics
to those of a simple mass-spring-damper system.

1The exact definition of α and d is illustrated in figure 4.11 on page 36.
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Now the design of the demonstrator is translated into an number of components, we can define
requirements for each separate component. These requirements are:

• The linear guide of m2 should be able to position the system at any point of the force-
displacement curve that has a low stiffness. According to figure 4.13 and figure 5.4 this
means that z2 = 4.0 . . . 16.0 mm.

• The stiffness ks of the linear guide of m1 should be smaller than 1000 N/m, which is the
maximum achievable negative stiffness of the magnetic spring according to figure 4.13b.

• The damping cs should be minimal

• The range of the linear guide of m1 should be at least z1 = −5 . . . 5 mm in order to use
the system in its complete expected low stiffness area.

Apart from these requirements, there are also two requirement for the positioning of the mag-
nets:

• The airgap d should have a range of 0.5 . . . 2 ± 0.1 mm, because the force-deflection
curve of the magnet configuration has a clear low stiffness region for this range. The
accuracy of 0.1 mm follows from the numerical noise of the COMSOL simulation.

• The angle α should have a range of −6 . . . 6±0.3 deg. At a 6 deg angle, the positive or
negative stiffness is approximately ±1000 N/m, which should be enough to compensate
for the stiffness of the linear guide.

6.2 Design of the demonstrator

The completed demonstrator is shown in figure 6.1. In this image we can see a qubical frame on
which all components are mounted, with a box hanging beneath it that serves as an adjustable
mass. The upcoming sections will explain the most important choices in the design.

(a) (b)

Figure 6.2: (a) A rendering of the demonstrator and (b) a picture of the demonstrator
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Platform position

One of the most influential choices made during the design process is the position of the
vibration isolated platform, which is located below a single magnetic spring instead of above
it. From a practical point of view it would make more sense to place the isolated platform
above the zero stiffness suspension, like is done in most commercial systems. This way it is
easier to place components atop the isolated platform, without the system itself being in the
way. The downside from this layout it that—when the center of gravity is located above the
suspension—three zero stiffness contact point are needed. Because the goal of this research is
to create a demonstrator—and not a commercial product—it is chosen to use the simpler but
less practical layout and mount the platform directly beneath a single magnetic zero stiffness
spring.

Linear guides

There are two linear guides are used in the demonstrator, both shown in figure 6.5. The first
linear guide is a manual 1D stage and is used to adapt the ’pre-tenstion’ z2 of the magnetic
spring (see figure 6.1). We would like to do this, because the low-stiffness area is confined to
certain elongations of the of the magnetic spring. Outside of this area, the magnetic spring is
very stiff and not suited for use within a vibration isolation system.

A second linear guide allows the central magnet to move vertically in its low stiffness area.
Flexures are used instead of bearings because of their predictable and repeatable behavior
and their lack of backlash. Figure 6.3 shows the four flexure-based linear guides considered
during the design process. The simple double flexure linear guide concept of figure 6.3a is
used in the design.
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[27]

Figure 6.3: Four flexure-based linear guides that could be used in the design. Option a) is used in the
demonstrator.

A downside of the double flexure concept is that the x-position of the moving body depends
upon its z-position, which is unwanted because the force curve of the magnetic spring also
depends upon the x position of the magnet. The x−z dependence could by removed by adding
a second pair of flexures, connected to an intermediate body, as shown in figure 6.3b. When the
second pair of flexures is equal in length and stiffness, they completely cancel out each others
x-displacement. However, the extra mass required as intermediate body—schematically shown
in figure 6.4—introduces a second eigenfrequency in the system. Because of the relatively low
mass mi of the intermediate body, this new eigenfrequency will at a higher frequency, strongly
degrading the performance of the system.
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Figure 6.4: Dynamic model that showns why a linear guide with an intermediate body is a bad idea.

A third option is to use steel wire flexures instead of leafsprings. Each wire locks a single
degree of freedom, so three wires can remove all planar motion when arranged as in figure 6.3c.
By stacking a second set of wire flexures on top of the first we create as system that allows
motion solely in the z-direction [28]. Because this type of linear guide is used in geophones,
it is called the geophone concept. A downside of the geophone concept is that a translation in
z-direction results in a parasitic rotation Rz about the z-axis. In chapter 4 it was explained that
the magnetic concept has a high rotational stiffness around its x and z-axis. If the geophone
concept would be used, this rotational stiffness would be coupled to the translational stiffness
kz through the linear guide, making also this concept unsuited.

The fourth and final concept is consist of two flexures with a positive stiffness and a buckling
beam with a negative stiffness, as shown in figure 6.3d. This concept is know to have a low
combined stiffness but also has a coupled x − z motion. As the linear guide only needs a
stiffness lower than 1000N/m, there is no reason for using this complex system instead of the
much simpler ’double flexure’ concept.

Because of the reasons mentioned above, a double flexure is considered the best option for the
linear guide and is implemented as shown in . The used flexures have a length of 65 mm, a width
of 40 mm and a thickness of 0.2 mm and provide a good balance between stiffness, buckling
force and range. Two sets of flexures have been used, a first with a combined calculated stiffness
is 489 N/m and has been measured to lie between the 422 N/m to 424 N/m—depending upon
the measurement method used—and a second with a calculated stiffness of 61 N/m. More
about the dimensioning and validation of the linear guide can be read in section §A.1 of the
appendix.

The magnetic spring has a high stiffness in the y-direction because the magnets are repulsive.
This would cause an overconstrained system, as the leafsprings also have a high stiffness in
the y-direction. Flexure hinges are added to the leaf springs—as shown in figure 6.5—to
lower the mechanical stiffness. The x-position of the moving magnet can be adjusted up to a
few millimeters using the 3 adjustment screws and 2 spring loaded bolts shown in figure 6.5.

Positioning the magnets

We like to position the two magnets that form the non-moving part of the magnetic spring with
a high stiffness and sufficient pre-tension, while still being able to adjust the airgap d and
magnet angle α . Figure 6.6 shows the load acting on the positioning system as function of the
airgap, for two z-displacements of the moving magnet. These load cases are selected because
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Figure 6.5: The Thorlabs stage and the two leafsprings. Flexure hinges are added to give the system
a low mechanical stiffness in the y-direction. The two non-moving magnets are shown without their
enclosure to clarify the arrangement.

the system will be used at uz ≈ 10 mm, while the force in y-direction will be maximum at
uz = 0. From figure 6.6a we can conclude that the y-stiffness of the system needs to be in the
order of 6 · 105N/m to meet the positioning requirements, while figure 6.6b shows a magnetic
pre-tension in y and z-direction for all airgaps. This means that we only need to apply a
force in x-direction to keep the magnets on their place.
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Figure 6.6: The force acting on magnet m1 of figure 4.11 on on page 36

A positioning system that allows continuous adjustments to the airgap and angle of the airgap
would be preferable for a commercial product, but also adds a lot of complexity to the design
while not adding much academic value to the project. Therefore it was chosen to place the
magnets in a aluminum enclose that is positioned against six spheres as shown in figure 6.7,
creating a kinematic mount.

The airgap is adjusted in steps of 0.5 mm with aluminum plates between the spheres and the
aluminum enclosure, while the angle of the magnet could be adjusted with different sets of
aluminum enclosures. Switching between different sets of magnet enclosures is no problem
because the kinematic mount has a very high position repeatability in the order of micrometers.

The stiffness of the hertz contact in in the order of 107N/m and is given by [27]:



56 CHAPTER 6. DEMONSTRATOR DESIGN AND PERFORMANCE EVALUATION

Figure 6.7: The positioning system of the magnets. The magnet (blue) is glued into its enclosure (green)
and pressed against the metal 6 spheres by a spring-loaded screw. Pre-tension in y and z direction is
provided by the repulsive forces between the magnets. Only one magnet is shown.

k =3 √49 rFaxialE2
eq (6.1)

where Eeq is the equivalent stiffness of the ball (E1, ν1) and flat (E2, ν2):

Eeq = (1− ν212E1 + 1− ν222E2
)−1

(6.2)

making the system stiff enough for reliable measurements.

6.3 Static force measurements

The measurement setup used to validate the force curves is shown in figure 6.8. Shown are the
magnet in a 3D-printed enclosure directly connected to the loadcell, which is in turn connected
to a 1D stage. The position of the magnet is measured directly at the magnets enclosure, using
a OptoNCDT 1402-50 laser triangulation sensor. The loadcell is a vishay 1006, which is a
single point load cell with a measurement range up to 50 N.

Figure 6.8: The leafsprings are replaced by a single point loadcell for the force-displacement mea-
surement. The magnet is directly attached to the load cell and its z-position is measured by a laser
triangulation sensor. Results of the measurement are shown in figure 6.9.
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Single point load cells have the advantage over other types of force transducers that they
are only sensitive in one translational degree of freedom, because their are essentially linear
guides. The high stiffness and low sensitivity of the load cell for all rotations and two translation
removes the need for a linear guide during the force measurement, making it possible to measure
just the force caused by the magnetic spring, without parasitic forces caused by a guidance
system. The measurement results for an airgap of 0.5 mm, 1.0 mm and 2.0 mm are shown in
figure 6.9.

When comparing the measurement results from figure 6.9 with the simulation results of fig-
ure 4.13 and measurement results of figure 5.4, we see two large differences: the forces are
lower than expected and the shape of the seems distorted. The force curve in case of a 0.5 mm
airgap is shown in 6.9a and is only resonable flat between 6 and 9 mm. For larger deforma-
tions of the magnetic spring, the force increases rapidly, resulting in a large and unexpected
negative stiffness.

The other two force curves show similar behavior. At an airgap of 1.0 mm the low stiffness
area starts at a deformation of 6 mm and has a length of only 1.5 mm, while at an airgap of
2.0 mm there is no low stiffness area at all. Again the measurement results do not agree with
earlier simulations and measurements. What could couse this large difference?

The answer is probably the metal used in the setup. Although almost all components are
produced out of aluminum, there are small steel spheres used in the kinematic mount shown in
figure 6.7. During the design it was assumed that these spheres would be small enough and
located far enough from the magnets to have no signification influence on the force curve. But
from the measurement results of figure 6.9 we can conclude that this assumption was wrong
and that the ferromagnetic material does have a detrimental effect upon the performance.

The metal spheres are positioned slightly below the center of non moving magnets and have a
radius of 5 mm. The magnetic field in the air gap between the magnets is decreased within this
range because the magnetic flux prefers to travel trough the steel instead of through the air
because of the lower reluctance of the steel. As result, the force acting on the moving magnet
decreases. The influence of the metal sphere reduces at larger deformation of the magnetic
spring, resulting in a stronger field and thus explaining the peak in force around 18 mm.

Due to time constraints, it was not possible to order spheres made of a material with a lower
permeability, such as anodized aluminum or other types of stainless steel stainless steel and
redo the measurements of figure 6.9.

Tuning the stiffness

Force measurements with the outer magnets under an angle α have neither been conducted,
because tuning the stiffness of a non-constant stiffness makes no sense.
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Figure 6.9: The force-displacement characteristics at an airgap of 0.5 to 2 mm and a magnet angle of
zero. The red line is the average result of n measurements.
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Hysteresis

The hysteresis within the gravity compensator is measured using the setup shown in figure 6.8
and the result of the measurement is shown in figure 6.10. The top graph within figure 6.10
shown the hysteresis loop, which is measured by first decreasing the z-position (red curve) and
then increasing the z-position (light blue curve) of the moving magnet. The bottom graph of
the same image shows the magnitude of the hysteresis, which is the difference between the red
and the light blue line. The hysteresis stays within 1% of the measured force for 1.5 < z < 19,
but increases rapidly to up to 10% for z > 19. A possible explanation for this large amount of
hysteresis is damping within the load cell.
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Figure 6.10: The hysteresis loop of the gravity compensator is shown in the top figure. The hysteresis
is measured by first decreasing the z-position (red curve) and then increasing the z-position (light blue
curve). The total the difference between the curves is shown at the bottom.

6.4 Dynamic measurements

There are three different dynamic measurements relevant to determine the performance of
the setup: an eigenfrequency measurement, a damping measurement and a transmissibility
measurement.

Eigenfrequency

The eigenfrequency of the system is measured using the optoNCDT laser triangulation sensor,
after a force impulse had been applied to the system. The results of the measurements are
shown in figure 6.11. Despite the small low stiffness and without the ability to compensate for
the stiffness of the flexures, the system still achieved an 0.78 Hz eigenfrequency for vibrations
with a peak to peak amplitude up to one millimeter, as is shown in figure 6.11a,b. When we
would calculate the stiffness based upon the stiffness of the flexures (61 N/m) and the load
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bearing capability of the magnetic spring (2500 g) we would find an eigenfrequency of 0.78
Hz, meaning that the magnetic configuration has a very low stiffness for a range of at least a
one millimeter.

For larger vibrations up to two millimeters, the eigenfrequency increased to 1.17 Hz because
of the non constant stiffness at the edges of the low stiffness region of the magnetic spring.
This is shown in figure 6.11c,d.
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Figure 6.11: The eigenfrequency of the system is equal to (a,b) 0.78 Hz for sub-milimeter vibrations and
(c,d) equal to 1.17 Hz for vibrations with a peak-to-peak amplitude of 2 mm . The measurements are
sampled at 200 Hz.

Eigenfrequency pendulum

In figure 6.1 is shown that the platform is mounted below the magnetic spring by wires, forming
a pendulum. One could question if the results from figure 6.11 are indeed the eigenfrequencies
of the system in z-direction, or that the are the result of a crosscoupling between the pendulum
motions and the z-direction.

The eigenfrequency of a pendulum is given by [29]:

f = 12π
√
g
l (6.3)
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where l is the length from the suspension point to the center of gravity. The distance from the
suspension to the bottom of the mass box is 29 cm. As the box itself is approximately 50% of
the mass, l is estimated at 26 cm. According toequation (6.3) this results in a eigenfrequency
of 0.98 Hz, while pendulum eigenfrequency of 0.78 Hz would require a length of 40 cm.

Eddy Current damping

The impulse response of the system—that was presented in figure 6.11—shows a vast decline
in the amplitude of vibration, that was not seen during the analysis of the linear guide itself
(see figure A.3 on on page 73). A longer measurement outside of the low stiffness region of the
magnetic spring has been performed to create a better understanding of the rate of this decline.
The result of the measurement is presented in red in figure 6.12 and shows an exponential
decline.
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Figure 6.12: The time response of the system outside its low stiffness region shows an exponential
decline in amplitude of vibration, corresponding to ζ = 0.6. Sampled at 200 Hz for 10 s. The red line
is the measurement, while the blue line is a fit of equation (6.4) to the measurement data. .

We know that the dynamic response of a mass-spring-damper system is given by [29]:

z = Z0e−ζt sin(ωt − φ) (6.4)

and that the harmonic motion is bounded by the e−ζt term. A damping ration of ζ = 0.6 was
obtained by fitting equation (6.4) to the measurement data presented in figure 6.12. As the
linear guide itself has a damping ratio of ζ = 0.28 (see figure A.3), the magnets must cause a
significant amount of damping. The most likely explanation is that the damping is caused by
eddy currents in the aluminum holder of the central magnet.

Eddy currents are the result of a changing magnetic field in a electrical conductor. According to
amperes law (equation (3.9)), a changing magnetic field induces a electrical field. The magnets
have a constant field, but the z-motion of the aluminum magnet holder causes a changing field
in the aluminum, equal to:

∂B
∂t = ∂B

∂z
∂z
∂t (6.5)
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As result of the electric potential E = −∇V , a current Ifree starts to flow through the aluminum.
The current causes heat losses equal to P = I2freeRaluminum , that appear as viscous damping
in the time response of the system.

To validate the assumption of eddy current, a non conducting magnet holder has been produced
using 3D printing. Unfortunately, the dimensions of the 3D printed part were not up to the
specifications, and the part could not be successfully implemented in the setup. A laser cut
plexiglass magnet holder could be produced with sufficient tolerances and would solve the
problem of eddy current damping, but could not been implemented due to time constraints.

6.5 Transmissibility

The transmissibility of the vibration isolation system is an important measure of its performance
and can be obtained by measuring acceleration, velocity or displacements of the isolated
platform relative to the surroundings (see section §2.2). As the demonstrator is a first order
system, its transmissibility is fully defined by the eigenfrequency and the damping in the
system. Substitution of the measured eigenfrequency and damping ratio in equation (2.9)
results in the transmissibility plot of figure 6.13.
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Figure 6.13: The z-transmissibility of the system (solid blue, fn = 0.78, ζ = 0.6). The red lines show
the transmissibility of two passive minus k systems, while the green lines show the transmissibility of
two high performing active systems. Data is obtained from the manufacturers websites.

Figure 6.13 shows three sets of data. The solid and dotted red lines correspond to the
passive MinusKr BM-6 and BM-8 systems respectively, while the solid and dotted green
lines correspond to the active Table Stabler AVI 400 and the NanoSurfr Isostage. The blue
line indicates the modeled performance of the demonstrator. Although the eigenfrequency of
the demonstrator is just slightly higher than the eigenfrequency of one of the best performing
MinusKrsystem, performance is not satisfactory. The large damping ratio has an adverse
effect on the transmissibility at higher frequencies, and the system is outperformed by all four
systems for frequencies above 15 Hz.

6.6 Conclusions on the demonstrator

Placing the vibration isolated platform below the magnetic gravity compensator results in a
stable pendulum type of system. Stability of the magnetic gravity compensator is achieved by
using two leafsprings as linear guide, with a combined z-stiffness of 61 N/m. A low stiffness
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in the y-direction is realized by connecting two flexure hinges to the leafsprings. Static force-
displacement measurements showed a distorted force curve of the gravity compensator, with
a low stiffness area of only 2-3 mm and a load bearing capacity of just 25 N, in stead of
the expected 10 mm range and 40 N load bearing capacity. Dynamic measurement showed a
damping ratio ζ of 0.6, which is far higher than the expected value of < 0.1, and is caused by
the eddy current damping in the aluminum and damping in the linear guide. However, there
is less than 1% hysteresis in the magnetic gravity compensator and the system is stable in all
directions. And even without adjusting the angle of the magnet, a sub-hertz eigenfrequency of
0.78 Hz already has been achieved.





Chapter 7

Conclusions and recommendations

As was stated in the introduction, the goal of this research was to “Design a passive magnetic
gravity compensator, implemented in a vibration isolation system with a sub-hertz eigen-
frequency”. Objectives where to obtain and summarize the knowledge of electromagnetism
required to design such a system, and use this knowledge to find a magnetic gravity compen-
sator concept suitable for use within a passive magnetic vibration isolation system. The final
objective of this research was to build a proof of concept-of-concept vertical vibration isolation
system and validate that it has a sub-hertz eigenfrequency. This chapter will present the
conclusions drawn from all previous chapters as well as recommendations for possible future
research.

7.1 Conclusions

A vibration isolation system needs a load bearing mechanism that has a very low stiffness
and contains little damping, in order to create a strong decoupling between ground vibrations
and payload vibrations. Such a load bearing mechanism is called a “gravity compensator”. A
passive gravity compensator can be created based upon the attractive force between magnets
and iron, or on the attractive or repulsive forces between permanent magnets. The use of an
“iron-free” magnetic gravity compensator concept is preferrable because it has less damping
due to magnetic hysteresis and eddy currents. (based upon chapter 2, chapter 3)

When the design of a magnetic gravity compensator contains no iron, analytical equations
can be used to calculate the magnetic field and resulting forces of the permanent magnets.
Analytical one- and two-dimensional solutions of the B-field where found to agree very well
with COMSOL FEM simulations and measurements. Three-dimensional solutions for the
magnetic fields and forces between magnets where found in literature, and could be used
in future research to optimize magnetic configurations for certain force displacement curves.
(based upon chapter 3)

It is possible to create a magnetic gravity compensator using three 20x20x5 mm square
neodymium magnets with a 0.5 to 2.0 mm airgap between them. The load bearing capac-
ity of this magnetic configuration was measured at 26 N for a 2.0 mm airgap, and its stiffness
was lower than 200 N/m over a range of 10 mm. (based upon chapter 4, chapter 5)

COMSOL simulations show that the load bearing capacity of the magnetic gravity compensator
can be increased with approximately 10N, by decreasing the airgap d between the square
magnets from 2.0 to 0.5 mm. These same simulations shown the that stiffness of the gravity
compensator can be adjusted from -1000 N/m to 1000 N/m by tilting the outer two magnets
by an angle of -6 to 6 degrees. Combining both adjustments creates a ’magnetic spring’ whose
load bearing capacity and stiffness can be tuned mechanically. (based upon chapter 4)

The magnetic gravity compensator concept is implemented in a vertical vibration isolation
system that is passively stable. The eigenfrequency of this system is measured at 0.78 Hz

65
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for vibrations up to 1 mm and increases to 1.17 Hz for vibrations up to 2 mm, because of
the non-constant eigenfrequency of the system. This is an vertical eigenfrequency comparable
to those of top-of-the-line passive vibration isolation systems1. The small amounts of iron
present in the setup had a far larger influence on the shape of the force curve than expected
and reduced the size of the low stiffness area to 2 millimeter. Due to this distorted force curve,
it was impossible to validate the tunability of the stiffness with measurements. Without this
force distortion, eigenfrequencies below 0.8 Hz can be achieved. (based upon chapter 6)

The damping ratio of the system is measured at ζ = 0.6, which is an order of magnitude
higher than the damping present in commercial systems, and degrades performance at higher
frequencies. This high damping ratio is caused by the eddy currents induced in the aluminum
magnet holder, as well as by damping in the linear guide. Solving both the problems of the
distorted force curve and the eddy current damping can and should be done by changing the
material choice of certain components. (based upon chapter 6)

The research can be called a success in that a stable passive magnetic gravity compensator with
a sub-hertz eigenfrequency is build and validated. However, there is still room for improvement.

7.2 Recommendations for further research

There are a number of opportunities for future research. The current setup suffered from a
distorted force curve, a high amount of damping in the linear guide, and eddy current damping
in the aluminum parts. A start for a subsequent research would be to solve these problems
by replacing parts of the setup by non-magnetic, non conducting materials and to redesigning
the linear guide. After solving these issues, it would be possible to measure the tuning of
the stiffness that has been simulated in this research. By combining the stiffness of a linear
guide with equal but negative magnetic stiffness, a load bearing gravity compensator with an
eigenfrequency below 0.8 Hz can be created.

A further continuation of the research could consist of designing a mechanism that can contin-
uously adapt the tilt and y-position of the two outer magnets of the gravity compensator, so
that the system can be tuned easily. Because the tilt of the two outer magnets and the airgaps
between the three magnets are equal, adjusting the system should be possible with just two
mechanical knobs or actuators. This way a compact low stiffness magnetic spring could be
created, with a continuously tunable load bearing capacity as well as a continuously tunable
stiffness.

1However, these commercially available system isolate vibrations in all directions making their problem and
vibration isolation systems far more complex than the magnetic system designed in this thesis.
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Appendix A

Linear guides: calculation and validation

A.1 Linear guide stiffness

The demonstrator of chapter 6 uses two spring-steel flexures as linear guide for the moving
magnet. These flexures are connected to the moving body as shown in figure A.1 and have a
low—but non-zero—translational stiffness ks in the z-direction. From the schematic drawing

Figure A.1: Setup used to measure the stiffness of the flexures. You see two 0.2 mm thick flexures
connected to the moving body, a Thorlabs stage, and optoNCDT position sensor and a Vishay load cell.

of figure 6.1 it can be seen that this stiffness adds to the stiffness of the magnets kmz as:

kz,tot = ksz + kmz

thereby influencing the performance of the system. If ksz is known and smaller than 1000 N/m,
we can compensate for it by adapting the angle of the magnets α , thereby creating a system
with a extremely low total stiffness kz,tot .

According to beam theory, the total stiffness of the two flexures is given by [27]:

ksx (z) = 2 · 700EAI
L · (700I + u2

zA) (A.1)

ksy = 2 · Etw3
L3 (A.2)

ksz = 2 · 12EI
L3 (A.3)

where t and w are the thickness and width of the flexures respectively, uz is the z-displacement
and I = wt2/12 is the bending moment. The buckling force limits the minimum thickness of
the flexures

Fx,buckling = 4π2EI
L2 (A.4)
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and the thickness is chosen such that the flexures would not buckle under an x−alignment
error of the moving body of 2 mm. A second constraint is the range of the linear guide. The
maximum deflection of the flexure in z-direction is given by [27]:

uz = L2σmax3Et
and is equal to half the range of the linear guide.

A manual optimization results in a flexure with a calculated stiffness of 489 N/m, whose other
properties are summarized in table A.1. The calculated stiffness is validated by performing
both a force measurement and a eigenfrequency analysis.

Table A.1: Properties of the flexures

w [mm] L [mm] t [mm]
ks,z [N/m]

Fx,buck [N] uz,max [mm]
calculated ∂Fz/∂z mω2

40 65 0.2 489 422 424 33.3 7.5

40 65 0.2 61 - - 4.16 15.0

Measuring the force-displacement curve

figure A.1 shows the flexures and moving body which are connected to the 1D stage by a
loads cell. When the stage is moved the displacement is measured directly at the moving
body by the optoNCDT 1405-50 sensor while the force is measured using the Vishay 1006
load cell. This way, the measurement results are not influence by the strain of the connection
between the moving body and the load cell. The average result and standard deviation of
three force-displacement measurements are shown in figure A.2. The flexures behave as linear
springs and have a stiffness of ks,z = 422 N/m, which is found by a linear fit.
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Figure A.2: The average result and 3σ standard deviation of three different force deflection measurements.
The corresponding stiffness is 422 N/m

Measuring the eigenfrequency

The eigenfrequency of the system is measured using the setup shown in figure A.1, without the
loadcell connected. After an initial displacement of a few milimeters, the system is released
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and the displacement is measured with the optoNCDT 1402-50 sensor. The first two seconds
of the time response of the system are shown in figure A.3a, while figure A.3b shows the fast
Fourier transform of this signal. Using:

ks = m(2πfn)2 (A.5)

we can calculate that for a mass of m = 200 g and an eigenfrequency of fn = 7.32 Hz the
flexures should have a combined stiffness of 424 N/m.
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Figure A.3: The (a) time response of the system after a release from an initial displacement of ~ 4 mm
and (b) the Power Spectral Density of the signal. Both figures show the eigenfrequency of 7.32 Hz. The
total measurement had a length of 10 s and was sampled at 1000 Hz.

Damping coefficient

The linear guide behaves as a mass-spring-damper system, whose time response is given by
[29]

z(t) = Z0e−ζt sin(ωt − φ) (A.6)

A damping ratio of 0.28 is found by fitting the time resonse data of figure A.3 with this equations
and the bound corresponding to this data is shown in figure A.4.

Conclusion

The stiffness’s obtained by the force-displacement and eigenfrequency measurements are sim-
ilar as expected, but deviate 60 N/m from the calculated value. This can be explained by
the fact that the stiffness is cubic proportional to the thickness—or in mathematical terms:
ks,z ∝ t3. A reduction in thickness of the flexures of 5 %—or 10 µm—already results in a
stiffness of 420 N/m. The linear guide has a damping coefficient of ζ = 0.28.
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Figure A.4: The time response of the linear guide and the fitted amplitude of vibration corresponding to
ζ = 0.28. The data is sampled at 1000 Hz for a time span of 10 s.



Appendix B

Description of the FEM model

A number of two-dimensional and all three dimensional simulations in this thesis have been
performed using COMSOL Multiphysics 4.4. Choosing the right simulation, and especially: the
right mesh, saves a lot of simulation time. During this research, simulation time decreased by
a factor 10 to a 100 with just some tweaking and knowing some tricks. This chapter discusses
the most important ones.

B.1 Geometry of the airbox

The boundary condition of a COMSOL mfnc simulation is that the magnetic scalar potential is
zero at the ’edges’ of the airbox around the magnet. The size and shape of this airbox have a
large influence on the calculated field. Figure B.1 shows three different airboxes. The first one
is square, the second one is square with a Infinite Element Domain (IED) and the third one is
round with an infinite element domain. A round airbox with an IED gives the best results.

(a) (b)

(c)

Figure B.1: Three COMSOL magnetic field no current (mfnc) simulation of a three-dimensional magnet.
A round airbox with an infinite element (c) domain gives by far the best results.
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B.2 Mesh

The mesh needs to be finest where the field changes most, while it can be really couse in the
infinite element domain as can be seen in figure B.2. The magnetic field changes most at the
edges of the magnet, so we want the mesh finest over there. This happens outomatically when
you give the edges of the magnet a small radius. The air is meshed with a normal triangular
mesh, while a square mesh works well for the infinite element domain.

Figure B.2: Mesh of a mfnc simulation.


