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Longitudinal Behavior Planning with Maneuver
Prediction for Urban Driving

Abstract—One of the remaining challenges in the development
of intelligent vehicles is the topic of behavior planning in urban
scenarios. Based on perception of the environment around the
intelligent vehicle, driving behavior has to be optimized to achieve
a comfortable driving experience without sacrificing safety. This
work covers the development of a novel longitudinal behavior
planning method for an intelligent passenger vehicle in urban
scenarios. A multi-layer situation analysis architecture consisting
of localization, maneuver prediction and trajectory prediction is
used to predict traffic object trajectories on urban intersections
and roundabouts. A universal model predictive controller is devel-
oped to determine the optimal longitudinal acceleration behavior
of the intelligent vehicle online in a variety of urban scenarios,
based on the predicted trajectories. Real-time simulations show
that the behavior planning method is able to maintain safe driving
conditions with reasonable comfort during scenarios with varying
traffic maneuvers.

I. INTRODUCTION

According to the World Health Organization (WHO), road
traffic accidents are the cause of 1.25 million deaths and
many millions of serious injuries per year worldwide [1].
Additionally, traffic accidents result in high economic losses.
In 2015, the costs resulting from traffic accidents combined
to an estimated e14.2 billion in the Netherlands alone [2].
For approximately 94% of traffic accidents in the U.S.A.,
driver error is found to be the critical reason leading up to
a traffic accident [3]. With the aim to reduce the number
of casualties, as well as the economic losses due to traffic
accidents, automobile manufacturers and research groups are
developing Advanced Driver Assistance Systems (ADAS) that
prevent a driver from making errors. Besides the improve-
ment in safety, ADAS have the goal to increase comfort
and fuel efficiency in vehicles. From the development of
Adaptive Cruise Control (ACC) in the 1990s ([4], [5]), to
the implementation of conditionally self driving systems in
recent years, such as Tesla’s Autopilot [6] or Mercedes-Benz’
Intelligent Drive [7], research focus has been shifting from low
level control of the vehicle’s actuators to higher level control.
Nowadays, one of the remaining challenges in the development
of intelligent vehicles is the topic of behavior planning in
urban scenarios. This topic, also known as decision making,
constitutes the vehicle’s ability to optimize driving behavior by
combining knowledge of perceived objects and surrounding
road users, traffic laws and local road layout, as well as
physical limitations and the state of the ego vehicle. Many
different approaches have been developed to optimize the
acceleration behavior of intelligent vehicles. However, these
methods either require prior knowledge of traffic maneuvers,
are unable to perform in real-time, have a very narrow action

set, or are incompatible with urban driving. Therefore, in this
work, a novel behavior planning method for urban scenarios is
developed that is capable of optimized real-time longitudinal
control with traffic maneuver prediction.

A. Functional System Architecture
A functional system architecture for intelligent vehicles,

shown in Figure 1, is proposed in [8]. It consists of four
layers: strategic, tactical, operative and executive. The strategic
layer contains the global route planning module which is
responsible for general navigation and route planning. The
tactical layer consists of the situation analysis and behavior
planning module which is responsible for tactical choices about
driving behavior such as lane changes and acceleration for
merging in traffic. The operative layer contains the trajectory
planning and tracking module which finds the optimal path
for the vehicle based on the inputs from the higher level
control modules. Finally, the executive layer consists of low
level control and actuators to follow the path proposed in the
operative layer.

This project focuses on the development of a novel behavior
planning method for longitudinal control of an intelligent
passenger vehicle in urban scenarios. The functional system
architecture is relevant for this project because the modular
nature of the architecture allows for independent development
of the behavior planning module. By using this architecture,
the assumption is made that the tasks in the remaining control
modules are either solved by other automated systems or by
human drivers, leaving the opportunity to focus fully on the
development of the behavior planning module.

B. Related Work
One of the earliest implementations of a behavior planning

making process in an intelligent vehicle was in the DARPA
urban challenge. Competing in this challenge, Boss, a vehicle
developed by Carnegie Mellon University used a rule-based
decision making process to perform driving tasks in an ur-
ban environment [9]. This decision process is based on an
architecture where a goal selector determines in which of the
preprogrammed situations the ego vehicle finds itself, followed
by the execution of behavior components specific for each sit-
uation. The behavior components contain predetermined rules
that specify how the vehicle should behave in a given situation.
Furthermore, for simple traffic situations these methods have
an unparalleled ease of implementation, requiring little more
than a few Boolean algebraic equations. However, a practical
limitation is that a rule-based decision process is applicable
to preprogrammed situations only, making this method of



2

Figure 1: The functional system architecture of an intelligent
vehicle consists of four layers: strategic, tactical, reactive
operative and executive. Adapted from [8].

behavior planning unsuitable for wide applicability in varying
scenarios [10], [11].

A more widely applicable method of behavior planning is
the method of Monte-Carlo Tree Search (MCTS) Decision
Making. This method, used in [12] for longitudinal and lateral
decision making in highway scenarios uses randomly sampled
actions to generate a decision tree. The decision tree consists
of nodes representing the states of the vehicles, with the initial
node representing the current state of the vehicles. From the
initial node, a decision tree is generated by sampling a random
decision from the available actions, such as accelerating,
braking or keeping a constant velocity. The decision leads
to the generation of a new node, consisting of the states of
the vehicles that follow from the decision. A disadvantage
of the Monte-Carlo Tree Search in [12] is that the action set
is relatively narrow. The algorithm can only decide between
keeping a constant velocity, accelerating or decelerating with
a fixed acceleration, stopping or changing lane to the left or
the right. Because of this limited action set, it is possible that
the optimal driving strategy could not be reached resulting in
less desirable maneuvers. Especially in urban scenarios where
the ego vehicle is required to merge onto roundabouts and
intersections between other vehicles, it is necessary to have
wider range of possible acceleration and deceleration values
without compromising computational efficiency.

A variation on the tree search method is the Partially
Observable Markov Decision Process (POMDP). Just like
the MCTS method, this method, used in [13], makes use of
decision trees to find the optimal decision set. However, where
MCTS evolves the decision tree from a single initial estimated
state, the POMDP evolves the decision tree for the entire
range of initial state probabilities. For this reason, this method
works for partial observability, and thus can find the optimal
decision set even when encountered with incomplete or noisy
measurements of the states of traffic objects. A disadvantage
of this method is that it has very high computational costs.
It has been shown in [14] that a POMDP method for urban
decision making is able to run in near real-time for an action
set of three possible actions. By expanding the action set,
the computational costs increase exponentially, making this
method impractical for real-time use with a wide action set.

In [11] and [15], a Model Predictive Controller is used for
longitudinal and lateral behavior planning in highway scenar-
ios. Model Predictive Control (MPC) based behavior planning
utilizes an internal transition model to predict the evolution
of states during a finite time horizon. Online optimization of
a cost function is used to find the optimal driving behavior.
The cost function can be based on vehicle kinematics, road
laws, comfort rules and risk indicators, and aims to minimize
undesirable actions. The advantage of such a behavior planning
method is that it allows for a continuous action space, meaning
that the controller is able to optimize the action to an exact
acceleration value. In [16], this behavior planning method is
extended for use in urban scenarios. It is shown that an MPC
based behavior planner is able to provide desirable actions in a
variety of simplified urban scenarios. The practical limitation
of this work is that it assumes that the path of all traffic
objects is known in advance, as well as that these traffic objects
maintain a constant velocity.

C. Overview of the Research Project
Based on this literature overview, it can be concluded that

there are many different approaches to behavior planning for
intelligent vehicles, each with its own benefits and drawbacks.
In this project, the focus is on a behavior planning method that
follows the criteria:
• Applicable to a variety of urban scenarios
• Capable of real-time performance
• Wide action set to accommodate both comfortable and

evasive maneuvers
• Ability to predict traffic maneuvers

Based on these criteria, a Model Predictive Controller-based
behavior planning method is the most fitting method for this
project. The choice is made to focus fully on longitudinal
behavior planning, instead of combining a longitudinal behav-
ior planner with a lane change decision making method. This
choice is made because for lane changes, a discrete decision
making module is required that is not compatible with this
model predictive control based behavior planner. Decisions
on lane changes could be included by developing a separate
decision process for lateral motion that is run in advance of
the longitudinal behavior planning module, such as is done in
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[16]. For the development of this behavior planning module
the following research questions are proposed:
• Can a single model predictive controller be used for

behavior planning in a large variety of urban scenarios?
• How can traffic maneuver prediction be implemented in

the behavior planning process?
• How will the model predictive controller be able to

balance comfort and safety in critical situations?
• Can real-time performance be maintained?
This work covers the development and testing of a

model predictive control-based longitudinal behavior planning
method with maneuver prediction for use in urban scenarios.
Section II describes the methods for developing and evaluating
the behavior planning method. In section III, the implemen-
tation of the situation analysis and behavior planning module
are covered. Section IV shows the evaluation of the behavior
planning method through simulations. Lastly, the discussion
and conclusion are covered in section V.

II. DEVELOPMENT AND VALIDATION

In order to answer the posed research questions a method of
development and validation is determined. The choice is made
to simulate the performance of the behavior planning module
using IPG Carmaker 5. This real-time virtual test driving
software is capable of dynamical simulations of an entire traffic
scenario. The convenient architecture of this software allows
for specific development of a longitudinal control method of
the ego vehicle, without the necessity of manually generating
lateral movement trajectories. The simulation software is run
through a program developed in C++ that is able to access the
simulation data and input the longitudinal control values into
the simulation in real-time. The Model Predictive Controller
is developed in C++ using the code generation tool within
the Toolkit for Automatic Control and Dynamic Optimization
(ACADO) [17]. This toolkit generates optimized code for non-
linear model predictive control, based on the defined control
problem functions.

For the development of the behavior planning module, a
number of assumptions are made. Firstly, it is assumed that
the global localization of the ego-vehicle and traffic objects
is handled by an accurate, independent localization method
outside of the scope of this work. In the simulations this is
handled by reading out the global x and y coordinates for
all vehicles directly from the simulation states. Furthermore,
traffic priority rules are not applied and traffic objects do not
adapt their approach to intersections based on the positioning
of the ego-vehicle. This forces the ego-vehicle to yield for traf-
fic objects when necessary, instead of traffic objects yielding
for the ego-vehicle. The traffic objects are set up to only adapt
their velocity to follow the ego-vehicle after it has passed the
intersection or roundabout to prevent rear-end collisions with
the ego-vehicle.

A. Evaluation Criteria
The developed controller is evaluated in a selection of

scenarios on a roundabout, and an unsignaled four-way inter-
section and Y-intersection. For each junction, initial conditions

and traffic object maneuvers are varied to show how the
behavior planner compensates for changes in the scenario. The
performance of the behavior planning module is judged based
on the following criteria:
• Safety: Small distances to traffic objects are regarded as

less safe.
• Comfort: High values of jerk and acceleration are expe-

rienced as uncomfortable.
• Time efficiency: Additional time needed to pass an

intersection means the behavior is less time efficient.
The safety criterion is measured as the smallest distance and
the lowest Inter-Vehicle Time (TIV) between the ego-vehicle
and traffic objects. The TIV is calculated as the distance
between the centers of the ego-vehicle and traffic object ahead,
divided by the longitudinal velocity of the ego-vehicle [18].
As a rule of thumb, the Dutch public prosecutor, as well
as many national and international traffic safety organizations
recommend an inter-vehicle time of at least 2 seconds [19].

The comfort criterion is measured as the peak longitudinal
jerk, and the peak longitudinal acceleration or deceleration of
the ego-vehicle. Although no exact acceleration threshold has
been found above which longitudinal acceleration is deemed
uncomfortable, most studies indicate that longitudinal accelera-
tions and decelerations up to at least 1.5 m s−2 are considered
acceptable in public transport. Furthermore, Jerk is a strong
indicator for comfort, and it has been shown that values of
more than 3 m s−3 are likely considered unacceptable in public
transport [20]. These values for public transport are applicable
to intelligent vehicles, because future intelligent vehicles could
provide a similar travel experience to public transport, where
passengers are not seated in the traditional layout of passenger
cars.

Time efficiency is measured as the time it takes for the
ego-vehicle to enter an intersection after that intersection is
vacated by traffic objects. This criterion will be referred to
as the Time To Intersection (TTI). A large TTI means that
the behavior planning module is conservative and might take
more time than desired to complete a driving task, resulting
in lower time efficiency. Conversely, a small TTI means that
the behavior planning module is assertive and might take more
risks to achieve higher time efficiency.

III. SITUATION ANALYSIS AND BEHAVIOR PLANNING

The goal of behavior planning in intelligent vehicles is to
predict which vehicle control action will result in the most
beneficial driving behavior. To determine which of the possible
actions is the most beneficial, a cost function is devised that
quantifies the consequences of each action. An optimization
algorithm then searches which control action results in the
lowest cost.

In this project, a model predictive controller (MPC) is used
to find the optimal control actions. The advantage of using
an MPC is that this allows for a continuous action space.
This means that the controller not only decides whether to
accelerate or brake, but rather is able to predict which exact
acceleration value would result in the optimal driving behavior.
The MPC does this by using a transition model consisting of
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differential equations and algebraic equations to predict how
a set of initial states and control inputs propagates during
a time window. This time window is called the prediction
horizon tH, and consists of a number of samples NH, referred
to as the prediction steps. On each of the prediction steps, the
transition model, cost function and constraints are evaluated.
An optimization algorithm then determines which combination
of control input results in the lowest combined costs during
the entire prediction horizon. This optimal control process is
repeated at every sampling instance with the new initial states.

A. Situation Analysis

Behavior planning for an intelligent vehicle requires certain
knowledge of the surroundings of the vehicle. The behavior
planning module needs to be able to predict the future states
of the traffic scene, such as the positions and velocities of
other vehicles, so that the future consequences of all available
actions can be weighed. This part of the behavior planning
framework is called situation analysis, and is responsible for
predicting the future states of the traffic scene based on the
current state of the traffic scene and control inputs. A large
variety of state prediction models for traffic can be found in
literature. These models can be divided into three categories:
physics based motion models, maneuver based motion models,
and interaction aware motion models [21]. Physics based
motion models, such as the constant velocity model, also
known as a single integrator, used in [15] and [16], and the
Intelligent Driver Model proposed in [22] and used for car
following, consist of kinematic or dynamic equations, and are
the simplest and most computationally efficient models for
predicting the states of traffic objects. Physics based motion
models use a set of general models to predict all motion of
traffic objects. Because of this general approach, these models
are unable to accurately predict specific maneuvers made by
traffic objects, and are only accurate when the paths of traffic
objects are known a priori, such as in [16].

Maneuver based motion models, such as the Bayesian
Network proposed in [23], make use of trained classifiers to
predict which of a set of predetermined maneuvers a traffic
object will undertake. Based on the maneuver prediction, a
maneuver-specific kinematic model is applied that is able
to accurately predict the future states of the traffic objects
during a small prediction horizon. However, because a model
predictive controller uses a fixed internal transition model
to predict the future states in the traffic scenario, a specific
MPC would need to be formulated for each combination of
maneuvers, with a higher-level controller switching between
the different MPC controllers. For a scenario with multiple
traffic objects, the number of possible maneuver combinations
is too large for this solution to be considered practical.

Interaction aware motion models form the most advanced
maneuver prediction models [21]. These models consider
vehicles to interact and influence each other. These models
work by estimating the probability of one vehicle’s states based
on noisy and incomplete measurements of the current and
previous states of all vehicles in a scenario [24]. By using
the measurements for all vehicles to predict the motion of a

Figure 2: The architecture of behavior planning consists of a
digital map, and localization, maneuver prediction, trajectory
prediction and behavior planning modules.

single vehicle, the motion model is able to predict interactive
behavior between the vehicles. Although these methods can
lead to very accurate motion prediction, the computational
costs of these methods make them impractical for real-time
applications [21].

B. Functional Architecture of Behavior Planning
To achieve the most accurate motion predictions while

maintaining a general transition model in the MPC that is
capable of behavior planning in a large variety of urban
scenarios, the choice is made to take a multi-layered approach
to future state prediction. The architecture for this is shown in
figure 2.

The architecture of behavior planning consists of a digital
map, localization, maneuver prediction, trajectory prediction,
and behavior planning modules. Firstly, a digital map is made
that includes all road segments and junctions in a particular
traffic scene. For each junction, the digital map prescribes
which maneuvers are available to the vehicles on each road.
These maneuvers are: Right Turn (RT), Straight (ST) and
Left Turn (LT). The information in the digital map is used in
the localization, maneuver prediction and trajectory prediction
modules.

In the localization module, the global coordinates of each
vehicle are compared to the available road segments to find
on which road segment each traffic object is driving. This
information is passed through to a Bayesian network that
uses the additional information of velocity, acceleration and
position on the road of each traffic object together with the
availability of maneuvers to predict which maneuver each
traffic object will make. This Bayesian network is developed
in [23] specifically for use with IPG Carmaker 5. In this
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Figure 3: The ellipse around the ego-vehicle indicates the safe
zone as defined by the constraints in equation (5). The road
coordinate system consists of s, the traveled distance along
the lane centerline, and t, the lateral deviation from the lane
centerline.

application, the Bayesian networks make use of 10 evidence
nodes and 3 binary maneuver nodes to determine which of
the available maneuvers is the most likely. For each traffic
object, a separate Bayesian network is generated. With the
digital map and the knowledge of the current road segment
and predicted maneuver, a route prediction can be made for
each traffic object. This route prediction is the combination
of roads that a traffic object is predicted to take during the
prediction horizon. For each traffic object, the road coordinates
and global coordinates along the predicted route are sampled
from the digital map and stored. Both coordinate systems
are shown in figure 3. The road coordinate consists of the
s and t coordinates, where the s coordinate follows the lane
centerline and indicates the travelled distance of a vehicle.
The t coordinate is perpendicular to the lane centerline and
represents the lateral deviation from the lane.

A polynomial fitter using ordinary least squares estimation
is then used to generate a continuous trajectory in global
coordinates as a function of the road coordinate for each
vehicle in the scenario. The predicted trajectory of each traffic
object comprises a set of two polynomials, shown in equation
(1), where xi and yi are approximations to the respective global
x and y coordinates, and si is the longitudinal road coordinate
of traffic object i. The coefficients bni and cni are generated

by the polynomial fitter.

xi =

5∑
n=0

bni · sni

yi =

5∑
n=0

cni · sni

(1)

For the trajectory prediction of the ego-vehicle, a third poly-
nomial is included that approximates the yaw angle θego of the
ego-vehicle as a function of the longitudinal road coordinate
sego, with polynomial coefficients dnego . The resulting set of
polynomials for the ego-vehicle is shown in equation (2).

xego =

5∑
n=0

bnego · snego

yego =

5∑
n=0

cnego · snego

θego =

5∑
n=0

dnego · snego

(2)

The reason to use polynomials to represent vehicle trajectories,
is that these trajectories can be directly used in the model
predictive controller. Because these polynomials consist of a
fixed form where the variations in the approximated trajectory
only originate from varying the coefficients bni , cni , bnego ,
cnego and dnego this representation of the trajectory fits with
the requirement of the model predictive controller to have a
general transition model that is capable of state prediction in
a variety of scenarios. The transition model can be adapted
to each specific trajectory, simply by feeding the appropriate
polynomial coefficients into the MPC. Using polynomials to
approximate trajectories does have its disadvantages. Because
extrapolation of higher order polynomials tends to lead to
highly inaccurate approximations, it is important to predict the
trajectory for a longer prediction horizon than is used in the
model predictive controller. Furthermore, fitting polynomials
of a high order can lead to overfitting to the sampled coordi-
nates, and increases computational costs in the MPC. Therefore
the choice is made to use fifth order polynomials to approx-
imate the vehicle trajectories. To validate the accuracy of the
fifth order polynomials, three different trajectories are approx-
imated and the resulting global coordinates are compared to
the real global coordinates. These trajectories are: driving in
a straight line, approaching and entering a roundabout, and
approaching an intersection and making a sharp left turn.
The median and maximum approximation errors for the three
trajectories are shown in Table I. With median approximation
errors of 1.8 cm to 5.6 cm the polynomial approximations are
sufficiently accurate for this application.

C. Transition Model, Constraints and Cost Function
The polynomial coefficients that approximate the predicted

trajectories are used in the transition model of the model
predictive controller. The transition model comprises a set



6

Trajectory Median error (cm) Maximum error (cm)
Straight 1.8 5.5
Entering roundabout 5.6 17.1
Left Turn 4.9 20.9

Table I: Median and maximum approximation errors of fifth
order polynomial trajectories.

of states, differential equations and algebraic equations to
represent the kinematics of the ego vehicle and all traffic
objects in a traffic scene. The transition model that is used
in this project is a constant acceleration model based on the
road coordinate system, with safety constraints based on the
global coordinate system. The state Xi of traffic object i is:

Xi ∈ R4 =

sivixi
yi


Where vi is the longitudinal velocity, xi is the global x-
coordinate, and yi is the global y-coordinate of traffic object
i. The transition model describing the traffic objects is:

ṡi = vi
v̇i = ai

xi =

5∑
n=0

bni · sni

yi =

5∑
n=0

cni · sni

(3)

Where ai is the longitudinal acceleration of traffic object i.
This accelerations of all traffic objects are assumed to be
constant during for the duration of the prediction horizon. The
state Xego of the ego-vehicle is:

Xego ∈ R5 =


sego
vego
xego
yego
θego


Where vego is the longitudinal velocity, xego is the global x-
coordinate, yego is the global y-coordinate, and θego is the yaw
angle of the ego-vehicle. The transition model describing the
ego vehicle is:

ṡego = vego

v̇ego = ucntrl

xego =

5∑
n=0

bnego · snego

yego =

5∑
n=0

cnego · snego

θego =

5∑
n=0

dnego · snego

(4)

Where ucntrl is the control input that is optimized.

In order to guarantee safe, legal and comfortable driving
behavior, a set of constraints has been placed on the transition
model. The most important set of constraints has the goal
to avoid collisions between the ego-vehicle and surrounding
vehicles. To achieve this, a safety ellipse is generated around
the ego-vehicle that encompasses an area with the width
of the ego-vehicle and a distance in front of the vehicle
approximately equal to a two second following distance, which
follows the yaw angle of the ego-vehicle.This safety ellipse is
shown in figure 3. The constraints prohibit traffic objects from
entering the safety ellipse. In order to increase robustness of
the controller, it is important to include a slack variable, as
proposed in [25], in these constraints. This makes sure that,
even when the constraints are broken, an optimal control input
can be calculated. The constraint to prevent collisions between
the ego-vehicle and traffic object i is shown in equation (5).

((xi − xego − xt) cos θego + (yi − yego − yt) sin θego)
2

d2trail

+
((xi − xego) sin θego − (yi − yego) cos θego)

2

d2width

+εi ≥ 1

(5)

Where:
xt = 1

2 ttrail · vego · cos θego

yt = 1
2 ttrail · vego · sin θego

dtrail = ttrail · vego + dlength

And ttrail is the desired trailing time ahead of the ego-vehicle,
dwidth is the width of the ego-vehicle, dlength is the length of
the ego-vehicle, and εi is the slack variable.

Besides the safety constraints, the MPC makes use of a
constraint on the maximum velocity of the ego-vehicle. In
order to prevent the ego-vehicle from severely breaking legal
speed limits, a constraint is placed that limits the maximum
velocity of the ego-vehicle to 5% above the target speed that is
included in the digital map. Another slack variable in included
on this constraint. This allows the controller to break the speed
limit to avoid collisions in a worst case scenario. Additionally,
a constraint is placed on the minimum velocity of the ego-
vehicle. Limiting the minimum velocity to 0 m s−1 prevents
the controller from deciding the vehicle has to reverse.

Furthermore, constraints are placed on the maximum al-
lowed acceleration and deceleration. In this MPC the choice is
made to limit the acceleration to a maximum value of 2 m s−2

and to limit the deceleration to −2.5 m s−2. These constraints
are based on the technical limitation of the simulated vehicle.
By placing the acceleration and deceleration limits at higher
values, the acceleration optimized by the MPC cannot be
directly followed by the simulated vehicle, which could result
in undesirable actions.

The cost function h of the MPC is set up as a least squares
function. In the least squares function, the distance between
a variable and its reference value is squared, multiplied by a
weight w and summed. In the cost function, shown in equation
(6) a cost is placed on the longitudinal velocity vego with
it’s reference value of the target velocity vref. Furthermore,
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a cost is placed on the acceleration aego, with the goal to
maximize comfort inside the ego-vehicle. Lastly, a cost is
placed on the slack variables εij to discourage breaking the
safety constraints.

h =

NH∑
j=1

Nobjs∑
i=1

wv

∥∥∥vegoj − vref

∥∥∥2 + waa
2
egoj

+ wiε
2
ij (6)

The optimization problem is solved using QPOASES. This
open source implementation for solving quadratic program-
ming (QP) has shown to outperform many other QP-solvers
and has a direct interface with the ACADO toolkit [26]. The
optimization is iterated 10 times to minimize the integration
error, and the entire process of situation analysis and behavior
planning is iterated every 0.2 s of the simulation. The choice
to sample a longitudinal control input every 0.2 s is based on
a study by Aldert as cited in [10]. The study found that ”In
order to guarantee a reactive behavior, the decision making
process has to be performed with a sampling period of at
[most] ∆T = 0.2 seconds.”

IV. SIMULATION RESULTS

To test and validate the performance of the newly developed
behavior planning module, a number of urban driving scenarios
are simulated. The behavior planning module controls the lon-
gitudinal acceleration of a Mercedes-Benz ML SUV with au-
tomatic transmission. The simulations are performed on three
different intersections. These intersections are: a large single
lane roundabout, a straight 4-way intersection and a small Y-
intersection. For each of the three simulated intersections, a
variety of initial conditions and traffic object trajectories are
tested. As discussed in section II-A, the performance of the
behavior planning module will be judged on safety, comfort
and time efficiency.

During initial testing of the behavior planning module, a
number of parameters are determined. With these parameters,
shown in Table II, the performance during initial testing was
found to be acceptable.

Parameter Value
Prediction horizon tH 5 s
Trailing time ttrail 1.9 s
Number of prediction steps NH 15
Number of optimization iterations 10
Maximum number of traffic objects 4
Width of ego-vehicle dwidth 1.85m
Length of ego-vehicle dlength 5m
Cost weight on velocity wv 1
Cost weight on acceleration wa 10
Cost weight on velocity slack wε,v 104

Cost weight on safety slack wε,i 104

Table II: Model parameters for traffic simulations.

A. Roundabout
The roundabout intersection consists of a large single-

lane roundabout. Three different roundabout scenarios are

simulated, each with slightly different behavior of traffic
objects. For each of the scenarios, the ego-vehicle approaches
the roundabout with a speed of 8.3 m s−1 (30 km h−1),
while two traffic objects are occupying the roundabout. In
the first scenario, the two traffic objects follow each other
closely, preventing the ego-vehicle to merge between the
traffic objects. In the second scenario, the gap between the
traffic objects is larger, allowing for the possibility that the
ego vehicle merges between the traffic objects. In the third
scenario, the second traffic object follows the other traffic
object closely, after which it exits the roundabout ahead of
the ego-vehicle.

1) Roundabout scenario 1: In this scenario, both traffic
objects continue on the roundabout, and the ego-vehicle enters
the roundabout. Both traffic objects have an initial velocity of
8.3 m s−1, and maintain this velocity for the duration of the
simulation. The maneuver prediction model correctly predicts
that both traffic objects keep following the roundabout and do
not make a right turn.

Figure 5 shows the velocity profile, acceleration and jerk of
the ego vehicle during the scenario. The initial velocity of the
ego vehicle is 8.3 m s−1, and this velocity is maintained until
approximately 3 seconds after the start of the simulation. At
that moment, the ego vehicle starts decelerating with approx-
imately −0.65 m s−2. Figure 4a shows the scene at 6 seconds
after the start of the simulation. At that moment, the two
traffic objects are approaching the roundabout exit at constant
velocity, with the ego vehicle decelerating its approach to the
roundabout entrance. At t = 8 s, the deceleration of the ego
vehicle is shortly increased to a maximum deceleration of
−1.82 m s−2. At approximately t = 9.5 s, the vehicle shifts
gears, resulting in large spikes in the acceleration profile.
Figure 4b shows the scene at t = 10 s. At that moment, traffic
object 1 has passed the roundabout exit, with traffic object 2 in
the middle of the roundabout exit. After the gearshift, the ego
vehicle shortly decelerates with −1.5 m s−2 until the vehicle
reaches a minimum velocity of 1 m s−1 at t = 12 s. Figure
4c shows the scene at that time instance. At that moment, the
two traffic objects have passed the roundabout exit, and the ego
vehicle starts to accelerate with a maximum value of 1.1 m s−2

onto the roundabout. The vehicle continuous to accelerate until
the end of the simulation, just before it has reached its target
speed of 8.3 m s−1.

The closest distance between the ego-vehicle and any of
the traffic objects occurs at t = 11 s. At that moment the
distance between the centers of the ego-vehicle and traffic
object 2 is 6.2 m. At that moment, the ego-vehicle has a
speed of only 1 m s−1. This equates to an inter-vehicle time
of TIV = 6.2 m, however at these velocities the absolute
distance is a better indicator of safety than the inter-vehicle
time. With a maximum deceleration of −1.82 m s−2, and a
maximum acceleration of 1.1 m s−2, the driving behavior is
just outside the acceptable levels as discussed in section II-A.
More comfortable driving behavior could have been achieved
if the vehicle decelerated slightly harder in the earlier stages
of the approach to the roundabout, however this conflicts
with the aim of the controller to maintain the highest allowed
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(a) t = 6 s (b) t = 10 s (c) t = 12 s

Figure 4: Snapshots of scenario 1 on the roundabout. The ego-vehicle approaches the roundabout with two traffic objects present
on the roundabout. The ego-vehicle decelerates to enter the roundabout behind the two traffic objects.

Figure 5: Longitudinal velocity, acceleration and jerk of the
ego-vehicle in scenario 1 on the roundabout. The spikes in
the acceleration and jerk are the result of gearshifts of the
automatic transmission. The horizontal lines indicate comfort
limits.

velocity. The longitudinal jerk of the ego-vehicle only exceeds
the comfort limits during gearshifts. As these gearshifts are
controlled by the automatic transmission, the peak acceleration
and jerk during the gearshifts is not attributed to the behavior
planning module. The highest absolute peak value that can be
attributed to the behavior planner is 2.3 m s−3 and occurs at
t = 11.5 s. The TTI for this scenario is 1.6 s, which means
the ego-vehicle has joined the intersection relatively quickly
after being vacated by the traffic objects.

2) Roundabout scenario 2: In this scenario, the first traffic
object, TO1, has identical initial conditions as in scenario 1,
and follows the same path. Traffic object 2, TO2, follows

the other traffic object at a longer distance as compared to
scenario 1. The maneuver prediction module is correctly able
to predict that both traffic objects continue their trajectory on
the roundabout.

Figure 7 shows the longitudinal velocity profile of the two
traffic objects. Both vehicles travel at a constant velocity of
8.3 m s−1. However, after the ego-vehicle has merged between
the two traffic objects at t = 11 s, traffic object 2 slightly
reduces its velocity to maintain a safe following distance to
the ego-vehicle.

Figure 8 shows the longitudinal velocity, acceleration and
jerk of the ego-vehicle. The ego-vehicle travels at an initial
velocity of 8.3 m s−1, and maintains this velocity for the first
3 seconds of the simulation. Between t = 3 s and t = 7.5 s, the
ego-vehicle reduces its velocity with a maximum deceleration
of −0.7 m s−2. Figure 6a shows the scene at t = 7 s. At
that moment, traffic object 1 is just passing the roundabout
exit, with the ego-vehicle approaching the entrance to the
roundabout. Between t = 7.5 s and t = 10 s, the ego-vehicle
maintains a somewhat constant velocity, before entering the
turn to join the roundabout. Figure 6b shows the scene at
t = 10 s. At that moment, traffic object 1 has passed the
roundabout exit and traffic object 2 is far enough back for the
ego-vehicle to merge in between the traffic objects. During cor-
nering, the ego-vehicle scrubs some of its velocity, resulting in
a peak deceleration of −1.6 m s−2. After completing the corner
to join the roundabout, the vehicle starts to accelerate back up
to its target velocity of 8.3 m s−1, with a peak acceleration
of 0.7 m s−2. Figure 6c shows the scene at t = 12 s. At that
moment, the ego-vehicle has joined the roundabout between
the two traffic objects.

The closest distance between the ego-vehicle and any of
the traffic objects occurs at t = 9 s. At that moment, the
distance between the ego-vehicle and traffic object 1 is 12.5 m
with the ego-vehicle traveling with a velocity of 6.4 m s−1.
This equates to an inter-vehicle time of TIV = 1.95 s, which
is approximately equal to the recommended safety distance
as discussed in section II-A. With a peak deceleration of
−1.6 m s−2 and a maximum acceleration of 0.7 m s−2, this
driving behavior is just outside of the acceptable margins.
Because the largest peak in deceleration originates from
cornering, higher comfort levels can be achieved by reducing
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(a) t = 7 s (b) t = 10 s (c) t = 12 s

Figure 6: Snapshots of scenario 2 on the roundabout. The ego-vehicle approaches the roundabout with two traffic objects present.
Because of the larger gap between the traffic objects, the ego-vehicle is able to merge in between.

Figure 7: Longitudinal velocity of traffic objects in scenario 2
on the roundabout. Traffic object 1 maintains its initial velocity,
with traffic object 2 decelerating slightly to maintain a safe
distance.

the target velocity before the start of the corner. The
longitudinal jerk levels stay well within the comfort limits.
The maximum absolute jerk is 2.5 m s−3, and occurs at
t = 11.2 s. The TTI for this scenario is 1.3 s, which means
the ego-vehicle has joined the intersection relatively quickly
after being vacated by the traffic objects.

3) Roundabout scenario 3: In this scenario, traffic object 1
has identical initial conditions as in scenario 1 and 2 of the
roundabout, and follows the same path. Traffic object 2 has
identical initial conditions as in scenario 1 of the roundabout,
however, in contrast to scenario 1, traffic object 2 makes a
right turn exiting the roundabout.

Figure 10 shows the velocity profiles of the two traffic
objects. Traffic object 1 travels at a constant velocity of
8.3 m s−1. Traffic object 2 has the same initial velocity but
reduces its speed slightly to maintain a safe following distance
to traffic object 1. At t = 6 s, traffic object 2 decelerates before
exiting the roundabout. At that same moment, the maneuver
prediction module is able to predict that traffic object 2 will
make a right turn at the roundabout exit. After exiting the
roundabout, traffic object two accelerates back up to its initial
velocity of 8.3 m s−1.

Figure 8: Longitudinal velocity, acceleration and jerk of the
ego-vehicle in scenario 2 on the roundabout. The horizontal
lines indicate comfort limits.

As is shown in figure 11, the longitudinal velocity, acceler-
ation and jerk profiles of the ego-vehicle during this scenario
are nearly identical to those of scenario 2 shown in figure 8.
This shows that the behavior planning module efficiently uses
the predicted maneuver to predict that the path of traffic object
2 will not coincide with the path of the ego-vehicle, resulting
in similar behavior as to when traffic object 2 was at a larger
distance behind traffic object 1.

Figures 9a through 9c show the scenes at t = 7 s, t = 9 s
and t = 12 s. From this, it is clear that the ego vehicle is able
to predict early on that traffic object 2 will exit the roundabout
and adjusts its behavior only on the presence of traffic object
1.

The closest distance between the ego-vehicle and any of the
traffic objects occurs at t = 9 s. At that moment, the distance
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(a) t = 7 s (b) t = 9 s (c) t = 12 s

Figure 9: Snapshots of scenario 3 on the roundabout. The ego-vehicle approaches the roundabout with two traffic objects present.
Traffic object 1 maintains its trajectory on the roundabout. Because traffic object 2 is predicted to exit the roundabout, the ego-
vehicle merges onto the roundabout in front of traffic object 2.

Figure 10: Longitudinal velocity of the traffic objects in
scenario 3 on the roundabout. Traffic object 1 maintains its
initial velocity, with traffic object 2 reducing its velocity prior
to exiting the roundabout.

between the ego-vehicle and traffic object 1 is 12.6 m, with
the ego-vehicle traveling at 6.3 m s−1. This equates to an inter-
vehicle time of exactly 2 seconds, which is the recommended
minimum distance between vehicles. The maximum decelera-
tion of the ego vehicle is an acceptable −1.5 m s−2. The jerk
levels are well within the comfort limits, with a maximum
longitudinal jerk of 2.4 m s−3, which occurs at t = 11.2 s.
The TTI for this scenario is 1.3 s, which means the ego-vehicle
follows traffic object 1 in the same way it did in scenario 2
on the roundabout.

B. Straight four-way Intersection
The straight four-way intersection consists of four

connecting roads, each with a length of 100 m. In each
simulated scenario the ego-vehicle approaches this intersection
with a speed of 13.9 m s−1 (50 km h−1). For each scenario,
three traffic objects are present and approaching the
intersection from the right. The subsequent behavior of the
three traffic objects is varied between the scenarios. For this
intersection, two scenarios are simulated. In the first scenario,
the three traffic objects maintain a straight trajectory across

Figure 11: Longitudinal velocity, acceleration and jerk of the
ego-vehicle in scenario 3 on the roundabout. The horizontal
lines indicate comfort limits.

the intersection, forcing the ego-vehicle to adapt its velocity
to avoid a collision. In the second scenario, one of the traffic
objects makes a right turn on the intersection, which tests the
maneuver prediction ability of the behavior planning module.

1) Four-way scenario 1: In scenario 1 of the four-way
intersection, three traffic objects approach the intersection from
the right. The first two traffic objects maintain a speed of
13.9 m s−1, with the third traffic object following at a speed of
11.1 m s−1. Throughout the scenario, the maneuver prediction
module is able to correctly predict that the three traffic objects
will go straight on the intersection. The progression of the
scenario is shown in Figures 12a through 12c.

Figure 13 shows the velocity, acceleration and jerk profile
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(a) t = 3 s (b) t = 6 s (c) t = 8 s

Figure 12: Snapshots of scenario 1 on the four-way intersection. The ego-vehicle approaches the intersection with three traffic
objects coming from the right. The ego-vehicle decelerates to let the traffic objects through before entering the intersection.

of the ego-vehicle. The initial velocity of the ego-vehicle is
13.9 m s−1, which it maintains for approximately 1 second. At
t = 1 s, the ego-vehicle recognizes that it needs to decelerate
to avoid a collision with the traffic objects. Figure 12a shows
the scenario at t = 3 s, where the first traffic object is about
to enter the intersection. At that moment, the ego-vehicle
is decelerating with a rate of −1.3 m s−2. The deceleration
is increased until the peak deceleration of −2.3 m s−2 is
achieved. At t = 6 s, the first two traffic objects have passed the
intersection, and the deceleration of the ego-vehicle is slightly
reduced. At t = 6.8 s and t = 7.7 s, the automatic gearbox
makes two downshifts resulting in peaks in deceleration and
jerk that are not attributed to the behavior planning module.
At t = 8 s, the third traffic object has passed the intersection.
After that moment, the ego-vehicle starts to accelerate back up
to the target velocity with a peak acceleration of 1.2 m s−2.

The closest distance between the ego-vehicle and any of
the traffic objects occurs at t = 7.9 s when traffic object
3 is in the middle of the intersection. At that moment, the
distance between the ego-vehicle and traffic object 3 is
19.9 m, while the ego-vehicle travels at a speed of 3 m s−1.
This distance is quite a bit larger then necessary, which
results in decelerations that are higher than optimal. The peak
deceleration is −2.3 m s−2 which is more than 50% higher
than the acceptable limit proposed in Section II-A. Excluding
the peaks in jerk due to the automatic gearshift, the jerk
stays within the comfort limits with a maximum value of
2.6 m s−3. The TTI for this scenario is 2.5 s, which means
the ego-vehicle has joined the intersection relatively quickly
after being vacated by the traffic objects.

2) Four-way scenario 2: The second scenario of the four-
way intersection consists of the first and third traffic objects
going straight, with the second traffic object making a right
turn. Figures 14a through 14c show the progression of the
scenario during the simulation, with Figure 15 showing the
velocity profiles of the traffic objects. Traffic object 1 maintains
a constant velocity of 13.9 m s−1 for 8 seconds, until it has
passed clear of the intersection, after which it quickly slows
down to near standstill. The reason for this is that this map
for the intersection has roads of only 100 m leading up to it.
Unfortunately the way the simulation software is set up causes

Figure 13: Longitudinal velocity, acceleration and jerk of the
ego-vehicle in scenario 1 on the four-way intersection. The
spikes in acceleration and jerk are the result of gearshifts of the
automatic transmission. The horizontal lines indicate comfort
limits.

errors when traffic objects exceed the limitations of the map.
Therefore, all traffic objects come to a halt before this moment.
Traffic object two starts with the same constant velocity of
13.9 m s−1. After approximately two seconds, the vehicle starts
decelerating until it reaches 4.8 m s−1, after which it makes a
right turn and accelerates back up to 13.9 m s−1. Traffic object
2 starts with the same velocity of 13.9 m s−1, and quickly
decelerates to keep a safe following distance to the vehicle in
front. After traffic object 2 makes the turn right, traffic object
3 accelerates shortly, and slows down again to avoid the first
traffic object.

For traffic objects 1 and 3, the maneuver prediction module
correctly predicts that these vehicles will maintain a straight
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(a) t = 3 s (b) t = 6 s (c) t = 10 s

Figure 14: Snapshots of scenario 2 on the four-way intersection. The ego-vehicle approaches the intersection with three traffic
objects coming from the right. The first and third traffic object go straight over the intersection, with traffic object 2 making a
right turn. The ego-vehicle decelerates to let the traffic objects through before entering the intersection.

Figure 15: Longitudinal velocity of the traffic objects in sce-
nario 2 on the four-way intersection. Traffic object 1 maintains
its initial velocity for 8 seconds after which it reduces its
velocity to avoid exiting the map. Traffic object 2 slows down
before entering the intersection. After making a right turn, the
traffic object accelerates. Traffic object 3 maintains adjusts its
velocity to maintain a safe distance to the other traffic objects.

trajectory over the intersection. For traffic object 2, after
approximately 4 seconds, the maneuver prediction module
predicts that the vehicle will turn right at the intersection.

Figure 16 shows the longitudinal velocity, acceleration and
jerk profiles of the ego-vehicle. The ego-vehicle has an initial
velocity of 13.9 m s−1, which it maintains for the first second
of the simulation. After approximately 1 second, the ego-
vehicle starts decelerating, and continuous to do so until
t = 10 s, where the vehicle is momentarily at standstill. Figure
14a shows that at t = 3 s, the three traffic objects are still
approaching the intersection. At t = 4.4 s, a peak deceleration
of −2.3 m s−2 is achieved. Figure 14b shows that at t = 6 s,
traffic object 1 has vacated the intersection, with traffic object
2 on the verge of entering the roundabout and making a right
turn. At approximately t = 7 s and t = 8 s, two peaks occur
in the acceleration and jerk profiles of the ego-vehicle. These
peaks are the result of downshifts of the automatic gearbox and
are not attributed to the behavior planner. Figure 14c shows the

Figure 16: Longitudinal velocity, acceleration and jerk of the
ego-vehicle in scenario 2 on the four-way intersection. The
spikes in acceleration and jerk are the result of gearshifts of the
automatic transmission. The horizontal lines indicate comfort
limits.

scenario at t = 10 s. At that moment, traffic object 3 has passed
the intersection, and the behavior planning module determines
that the path is clear, which results in acceleration of the ego-
vehicle.

The minimum distance between the ego-vehicle and the
traffic objects is 17.1 m at 10 seconds after the start of the
simulation. At that moment, the ego vehicle is at standstill,
therefore this is considered to be a very safe maneuver.
The maximum deceleration of the vehicle is found to be
−2.3 m s−2 and occurs at both t = 4.4 s, and t = 9.0 s. This
is 50% over the acceptable acceleration level. A more com-
fortable behavior could have been reached by maintaining a
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(a) t = 4 s (b) t = 7 s (c) t = 10 s

Figure 17: Snapshots of scenario 1 on the Y-intersection. The ego-vehicle approaches the Y-intersection, with two traffic objects
approaching the intersection from the other road, following each other closely. The ego-vehicle decelerates to merge onto the
intersection behind both traffic objects, maintaining a safe following distance.

Figure 18: Longitudinal velocity, acceleration and jerk of the
ego-vehicle in scenario 1 on the Y-intersection. The horizontal
lines indicate comfort limits.

smaller distance to traffic object 3. The jerk of the ego-vehicle
remains within the comfort limits with a maximum value of
2.8 m s−3. The TTI for this scenario is 4.1 s, which means
the ego-vehicle waits quite a long time before joining the
intersection. This is likely due to the ego-vehicle completely
coming to a stop to avoid colliding with the traffic objects.

C. Y-intersection

The Y-intersection scenarios consist of the ego-vehicle
approaching a Y-intersection at approximately the same
time as two traffic objects that follow each other. On this
intersection, the traffic objects and ego-vehicle merge together
onto one single road. The only available maneuver for all

vehicles on this intersection is to go straight through the
junction. Two scenarios are evaluated on the Y-intersection.
In the first scenario, the two traffic objects follow each other
closely leaving little space for the ego-vehicle to merge in
between, which forces the ego-vehicle to adapt its driving
behavior. In the second scenario, the two traffic objects follow
each other at a longer distance, allowing the ego-vehicle to
merge between the two traffic objects after adjust its velocity.

1) Y-intersection scenario 1: In this scenario, two traffic
objects approach the Y-intersection on the same road follow-
ing each other closely, with the ego-vehicle approaching the
intersection on the other road. Figure 17a shows the state
of the scenario at t = 4 s. Both traffic objects approach the
intersection with a velocity of 13.9 m s−1, and maintain that
velocity for the duration of the scenario. The ego-vehicle
approaches the intersection with the same velocity, but is
forced to adjust it’s velocity to avoid colliding with the traffic
objects.

Figure 18 shows the longitudinal velocity, acceleration and
jerk of the ego-vehicle. The ego-vehicle maintains its initial
velocity of 13.9 m s−1 for the first 4 seconds of the simulation.
At approximately t = 4 s, shown in Figure 17a, the ego-vehicle
starts to decelerate to allow the traffic objects to merge in front
of the ego-vehicle. The deceleration is increased until a peak
deceleration of −1.7 m s−2 is achieved at t = 7 s. As is shown
in Figure 17b, at that moment traffic object 1 has passed the
intersection with both traffic object 2 and the ego-vehicle about
to enter the intersection. From t = 7 s the vehicle reduces the
deceleration until the minimal velocity of 6 m s−1 is reached
at t = 10 s. Figure 17c shows that, at that moment, both traffic
objects have passed the intersection, and the ego-vehicle is able
to follow traffic object 2. The ego-vehicle then accelerates back
up to its target velocity of 13.9 m s−1 with a peak acceleration
of 1 m s−2 occurring at t = 12 s.

The closest distance between the ego-vehicle and any
of the traffic objects occurs at t = 9 s. At that moment,
the distance between the ego-vehicle and traffic object 2
is 15 m, and the velocity of the ego-vehicle is 7.2 m s−1.
This equates to an inter-vehicle time of just over 2 seconds,
indicating that the driving behavior can be considered safe.



14

(a) t = 5 s (b) t = 10 s (c) t = 13 s

Figure 19: Snapshots of scenario 2 on the Y-intersection. The ego-vehicle approaches the Y-intersection, with two traffic objects
approaching the intersection from the other road with a slight gap between the traffic objects. The ego-vehicle decelerates to let
traffic object 1 enter the intersection first. Thereafter, the ego-vehicle accelerates to merge onto the intersection between both
traffic objects, while maintaining a safe following distance to traffic object 1.

Figure 20: Longitudinal velocity of the traffic objects in
scenario 2 on the Y-intersection. Traffic object 1 maintains its
initial velocity. Traffic object 2 only adjusts its velocity after
passing the intersection, to maintain a safe following distance
to the ego-vehicle.

With a peak acceleration of 1 m s−2 and a peak deceleration
of −1.7 m s−2, the driving behavior is slightly outside the
acceleration limits proposed in [20]. The longitudinal jerk
stays well within the comfort limits for the duration of
the simulation, with a peak jerk of 1.9 m s−3, occurring at
t = 10.2 s. The TTI for this scenario is 1.6 s, which means
the ego-vehicle has joined the intersection relatively quickly
after being vacated by the traffic objects.

2) Y-intersection scenario 2: In this scenario the distance
between the two traffic objects is slightly bigger as compared
to the previous scenario. The velocity profiles of the traffic
objects are shown in Figure 20. Both traffic objects have an
initial velocity of 13.9 m s−1. Traffic object 1 maintains this
velocity for the duration of the scenario. Traffic object 2 is
programmed to maintain its initial velocity until it has passed
the intersection at t = 12 s, after which it adjusts its velocity
to maintain a safe gap to the vehicle in front. This is done
to force the ego-vehicle to adjust its behavior to the traffic
objects, instead of relying on the traffic objects to create space

Figure 21: Longitudinal velocity, acceleration and jerk of the
ego-vehicle in scenario 2 on the Y-intersection. The spikes in
the acceleration and jerk are the result of gearshifts of the
automatic transmission. The horizontal lines indicate comfort
limits.

for the ego-vehicle.
Figure 21 shows the longitudinal velocity, acceleration and

jerk profiles of the ego-vehicle. The vehicle has an initial
velocity of 13.9 m s−1 and maintains this velocity for the
initial 3.5 s. From that moment until t = 8.5 s, the ego-vehicle
decelerates with a peak of −0.9 m s−2. Figure 19a shows the
state of the scenario at t = 5 s. At that moment, traffic object 1
enters the roundabout. Traffic object 2 follows the other traffic
object at a distance, and the ego-vehicle is decelerating to
allow traffic object 1 to join the intersection. At t = 8.5 s,
the ego-vehicle achieves the minimum velocity of 10.3 m s−1,
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after which the vehicle starts to accelerate. At t = 10 s, traffic
object 1 has passed the intersection, the ego-vehicle is in the
middle of the intersection, and traffic object 2 is starting to
join the intersection, as shown in Figure 19b. At that moment
the ego-vehicle reaches its maximum acceleration of 2 m s−2

which it maintains for a second, after which the vehicle reduces
its acceleration. At approximately t = 12 s, the ego-vehicle
makes a gearshift, explaining the sudden spike in acceleration.
At that moment, the ego-vehicle reaches a maximum velocity
of 15.7 m s−1. This means that the vehicle slightly exceeds its
target velocity in order to increase the gap to traffic object 2
behind. At t = 13 s, shown in Figure 19c, the traffic objects
have passed the intersection, and the ego-vehicle is now in
between the two traffic objects. At that moment, traffic object
2 is reducing its velocity to maintain a safe distance to the ego-
vehicle, and the ego-vehicle decelerates strongly to maintain
a safe distance to traffic object 1. The ego-vehicle reaches a
peak deceleration of −2.4 m s−2 at t = 13.7 s, until it reaches
a velocity of 11.5 m s−1, after which it slowly accelerates back
up to the target velocity of 13.9 m s−1.

The closest distance between the ego-vehicle and any of
the traffic objects occurs at t = 11 s. At that moment, the
ego-vehicle is ahead of traffic object 2, with traffic object
2 closely following the ego-vehicle at a distance of 10.3 m.
This distance is quickly increased by the acceleration of the
ego-vehicle, and slight deceleration of the traffic object. At
t = 12 s, the ego-vehicle is following traffic object 1 at a
distance of 31.3 m while driving with a velocity of 15.7 m s−1.
This equates to an inter-vehicle time of approximately 2
seconds, indicating that the following distance to traffic object
1 is safe. During the scenario, the ego-vehicle achieves a
peak deceleration of −2.4 m s−2 and a peak acceleration of
2 m s−2. Both these values exceed the limits proposed in [20]
considerably. However, the jerk levels stay well within the
comfort limits, with a maximum jerk of 2.5 m s−3, occurring
at t = 14.6 s. The TTI for this scenario is 2.5 s, which means
the ego-vehicle has joined the intersection relatively quickly
after being vacated by the traffic objects.

D. Discussion of Results

The results of the simulations are summarized in Table III,
where the minimum distances and inter-vehicle time (TIV), the
peak acceleration and jerk values, and the time to intersection
(TTI) are shown for each scenario. For all the tested scenarios,
the maneuver prediction module was able to correctly predict
the maneuvers of the traffic objects. With these maneuver
predictions, the behavior planning module was able to maintain
a safe distance to the traffic objects through all the tested
scenarios. Only in scenario 2 on the roundabout, the inter-
vehicle time momentarily drops to 1.95 s. The most important
factor in determining driving comfort is jerk. For all scenarios,
the peak longitudinal jerk remains well under the comfort limit
of 3 m s−3. However, in nearly all the tested scenarios, the peak
longitudinal acceleration slightly exceeds the limit as proposed
in [20]. Especially in scenario 2 on the Y-intersection, the
peak acceleration exceeds the proposed limit by 0.9 m s−2.
However, this peak occurs during deceleration and is necessary

to maintain a two second following distance. For most scenar-
ios, the ego-vehicle is able to maintain decent time efficiency.
However, in scenario 2 of the four-way intersection the TTI is
4.1 s, which means the ego-vehicle is more conservative than
desired. These simulation results show that a model predictive
controller is capable of behavior planning in a variety of urban
scenarios, while constantly evaluating a trade-off between
safety and comfort. Video footage of all simulated scenarios
is available online and can be found through Appendix A.

Map Scenario Criterion Value
Roundabout Scenario 1 Distance 6.2m

TIV 6.2 s

Acceleration −1.82m s−2

Jerk 2.3m s−3

TTI 1.6 s
Scenario 2 Distance 12.5m

TIV 1.95 s

Acceleration −1.6m s−2

Jerk 2.5m s−3

TTI 1.3 s
Scenario 3 Distance 12.6m

TIV 2 s

Acceleration −1.5m s−2

Jerk 2.4m s−3

TTI 1.3 s
Four-way Intersection Scenario 1 Distance 19.9m

TIV 6.6 s

Acceleration −2.3m s−2

Jerk 2.6m s−3

TTI 2.5 s
Scenario 2 Distance 17.1m

TIV ∞
Acceleration −2.3m s−2

Jerk 2.8m s−3

TTI 4.1 s
Y-Intersection Scenario 1 Distance 15m

TIV 2.1 s

Acceleration −1.7m s−2

Jerk 1.9m s−3

TTI 1.6 s
Scenario 2 Distance 31.3m

TIV 2 s

Acceleration −2.4m s−2

Jerk 2.5m s−3

TTI 2.5 s

Table III: Summary of results of the simulations.

The simulations were performed on a platform with an Intel
Core i7700k processor running at 4.2 GHz on a single core.
The average KTT iteration of the model predictive controller
has a calculation time of 2.68 ms with a minimum calculation
time of 0.90 ms and a maximum of 3.11 ms. The entire process
of situation analysis and behavior planning is able to run in
real-time with a control input delay of less than 0.2 s.
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V. DISCUSSION AND CONCLUSION

In this work the development of a novel longitudinal behav-
ior planning method with maneuver prediction for driving in
urban scenarios is presented. The behavior planning method
makes use of a model predictive control scheme to optimize
longitudinal acceleration of an intelligent vehicle in urban
scenarios. The choice for a model predictive control-based
behavior planner is based on the aim to develop a universal
method that is applicable for a variety of urban scenarios, is
capable of real-time performance and has a wide action set. It
has been shown that by using a multi-layer situation analysis
architecture, a universal model predictive controller is able to
plan acceptable behavior for a variety of urban scenarios where
traffic object trajectories are not known a priori. Within the
situation analysis architecture, a Bayesian Network predicts the
maneuvers of traffic objects on intersections and roundabouts.
By combining these maneuver predictions with knowledge of
the map, traffic object trajectories can be predicted. By approx-
imating these trajectory predictions with a set of polynomials
of a fixed form, the trajectories can be input to the universal
model predictive controller.

Simulation results show that the behavior planning method
correctly accounts for traffic object maneuvers, and is able to
maintain an adequately safe distance to traffic objects. Comfort
is judged based on longitudinal jerk, as well as acceleration
and deceleration levels of the vehicle. The longitudinal jerk is
shown to remain within acceptable limits, however the accel-
eration values are on the edge of acceptable limits for most
scenarios. Real-time performance is maintained throughout
the simulations. For future work, expansion of the behavior
planning model to include lane change decision making and
follow road laws is required for more complex multi-lane
intersections. Moreover, for this work the assumption was
made that the global coordinates, velocity and acceleration
of all vehicles are observable. Because this assumption may
not always be valid for real-life driving, additional research is
needed to extend the behavior planning module for use with
partial observability of the environment.

APPENDIX A
SIMULATION VIDEO FOOTAGE

Video footage of all the simulated scenarios is
made available through the TU Delft Repository
at https://repository.tudelft.nl/islandora/object/uuid:
57f9a5f4-0608-42ca-b956-346afe5e4b7d?collection=
education. The video footage consists of the following
files:
• Roundabout S1.mp4: Top-down footage of roundabout

scenario 1.
• Roundabout S2.mp4: Top-down footage of roundabout

scenario 2.
• Roundabout S3.mp4: Top-down footage of roundabout

scenario 3.
• Fourway S1.mp4: Top-down footage of four-way inter-

section scenario 1.
• Fourway S2.mp4: Top-down footage of four-way inter-

section scenario 2.

• YInt S1.mp4: Top-down footage of Y-intersection sce-
nario 1.

• YInt S2.mp4: Top-down footage of Y-intersection sce-
nario 2.
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