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Abstract—A common approach to deal with NP-hard problems
is to deploy polynomial-time -approximation algorithms. These
algorithms often resort to rounding and scaling to guarantee a
solution that is within a factor (1 + ) of the optimal solution.
Usually, researchers either only round up or only down. In this
paper we will evaluate the gain in accuracy when rounding up
and down. The main application of this technique upon which we
focus is Quality of Service routing, and specifically the Restricted
Shortest Path problem.

I. INTRODUCTION

The digital revolution manifested a large-scale transforma-
tion of analog information into a binary representation of zeros
and ones. The level of accuracy that can be attained is directly
related to the amount of bits that is used. In general, a coarser
granularity means a smaller (space and time) complexity. We
will focus on the impact of the way of rounding on the
accuracy of (Quality of Service) routing in computer networks.
We will first explain the notation that is used. A network

is represented as a graph G = (N ,L) consisting of a set
N of N nodes and a set L of L links. Nodes represent the
routers or switches in a network, while the links represent
the communication links. We only consider connected graphs
without self-loops and at most one link between a pair of
nodes. A specific link in the set L between nodes u and v is
denoted by (u, v). Each link (u, v) ∈ L from node u to node v
is characterized by a cost and a delay. For these additive QoS
measures, the value (further called the weight) of the QoS
measure along a path is the sum of the QoS weights on the
links defining that path. For min-max QoS measures, the path
weight of the QoS measure is the minimum (or maximum)
of the QoS weights of the links that constitute that path.
Rounding min-max weights has therefore a smaller impact
than for additive weights, because the round-off errors do not
add up along the entire path.
The rest of this paper is organized as follows: in Section II

we briefly review the related work. In Section III we apply
our results to the Restricted Shortest Path (RSP) problem.
Simulation results are provided in Section IV. We end this
paper in Section V with the conclusions.

II. RELATED WORK

Rounding is very often used in -approximation algorithms.
An -approximation algorithm is an algorithm that is not nec-
essarily exact, but which can provide a solution quantifiably

close to the exact solution. The solution provided by an –
approximation algorithm is guaranteed to be within a factor
(1+ ) of the exact solution, where > 0. Such a performance
guarantee is not provided by heuristics and in this sense –
approximation algorithms are considered to be better than
heuristics. Unfortunately, their complexity is a function of 1
and therefore their running time in practice can be excessive.

Almost all proposed –approximation algorithms in the
field of QoS routing focus on the Restricted Shortest Path
(RSP) problem. The RSP problem is a subproblem of QoS
routing, in which the goal is to find a path P with min-
imal cost c(P ) that obeys one constraint ∆ (typically) on
the delay. Warburton [10] was the first to develop a fully
polynomial-time approximation scheme for the RSP problem,
assuming acyclic graphs. Hassin [4] improved this algorithm
and provided an -approximation algorithm with complexity
O((LN + 1) log logB), where B is an upper bound on the
cost c(P ) of a path. It is assumed that the link weights
are positive integers. Hassin’s -approximation algorithm ini-
tially determines an upper bound (UB) and a lower bound
(LB) on the optimal cost denoted by OPT . Once these
bounds are found, the approximation algorithm bounds the
cost of each link by rounding and scaling it according to:
c0(u, v) =

j
c(u,v)(N−1)

LB

k
∀ (u, v) ∈ L. Finally, it applies a

pseudo-polynomial-time algorithm on these modified weights.
Lorenz and Raz [8] provided a further improvement, which
is explained in Section IV. In [7] we have presented a QoS
solution to device QoS algorithms that take into account the
properties of the link-state update (LSU) policy (part of QoS
protocol). When these two entities are considered separately,
two sources of inaccuracy (in LSU policy and algorithm)are
introduced or we require an exponential-time exact algorithm.
Our solution eliminates the inaccuracy in the algorithm and
thereby guarantees a polynomial-time complexity, whereas the
inaccuracy in the LSU policy is bounded via and controlled
by the ISP.

There are two possible ways of rounding, namely rounding
up and rounding down. Usually, researchers choose just one
of these possibilities. For instance, Goel et al. [3] round
down, whereas Chen and Nahrstedt [1] round up. Instead
of only rounding up (or down), one could consider mixing
between rounding up and down. Chen et al. [2] randomly
round up or down to have an expected error of 0 (under an
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assumed uniform distribution of the link weights). Another
possibility besides randomly rounding up or down, is to round
to the nearest number, such that the worst-case round-off error
that can be made is halved. In this paper we evaluate the
performance of rounding up and/or down.

III. THEORY

In this section we will apply our theory to the RSP problem.
We will base our theory on the SEA algorithm [8] and its proof
of correctness. SEA initially determines an upper bound (UB)
and a lower bound (LB) on the optimal cost via a testing
procedure. SEA improves upon Hassin’s algorithm by finding
better upper and lower bounds and by improving the testing
procedure. Once these bounds are found, SEA bounds the
cost of each link by rounding up and scaling it according to:
c0(u, v) =

j
c(u,v)(N+1)

LB

k
+ 1 ∀ (u, v) ∈ L. Finally, it applies

an exact pseudo-polynomial-time algorithm on these modified
weights. In this way SEA obtains the polynomial complexity
of O(LN(log logN + 1)). Let S = LB

N+1 . The correctness of
SEA is proved via three lemmas (see [8] for their proofs):
Lemma 1: Let P be any path, and c0(u, v) =j
c(u,v)(N+1)

LB

k
+ 1 ∀ (u, v) ∈ L, then

c(P ) ≤ c0(P )S ≤ c(P ) +NS
Lemma 2: Any path P returned by SEA satisfies

c(P ∗) ≤ c(P ) ≤ UB + (N + 1)S = UB + LB
Lemma 3: If UB ≥ c(P ∗), then SEA returns a feasible path

P that satisfies
c(P ) ≤ c(P ∗) + LB

The SEA algorithm only rounds up via c0(u, v) =j
c(u,v)(N+1)

LB

k
+ 1 ∀ (u, v) ∈ L. We now investigate SEA

when running it with costs that are rounded down1 as follows:

c0(u, v) =

¹
c(u, v)(N + 1)

LB

º
∀ (u, v) ∈ L

We set U 0 =
¥
UB
S

¦
+1. The correctness of the algorithm when

using these rounded-down costs follows in an analogous way,
with three lemmas.
Lemma 4: Let P be any path, and c0(u, v) =j
c(u,v)(N+1)

LB

k
∀ (u, v) ∈ L, then

c(P )−NS ≤ c0(P )S ≤ c(P )

Proof: For each (u, v) ∈ L, we have c(u,v)
S − 1 ≤

c0(u, v) ≤ c(u,v)
S and hence c(u, v)− S ≤ c0(u, v)S ≤ c(u, v)

and

c(P ) =
X

(u,v)∈P
c(u, v) ≥ S

X
(u,v)∈P

c0(u, v) = c0(P )S

≥ c(P )− (N − 1)S

1When rounding down we may create zero-valued link costs. Hence care
must be taken to avoid loops. In our case, we have non-zero delays, which
avoid looping.

Lemma 5: Any returned path P satisfies

c(P ∗) ≤ c(P ) ≤ UB + εLB
Proof: By definition c(P ∗) ≤ c(P ) and c0(P ) ≤ U 0 =¥

UB
S

¦
+1. Since c0(P ) ≤ U 0, we have c(P ) ≤ c0(P )S+(N−

1)S ≤ U 0S+S+(N−1)S = U 0S−S+(N+1)S ≤ UB+ LB .
The result follows from Lemma 4.
Lemma 6: If UB ≥ c(P ∗), then a feasible path P is

returned that satisfies

c(P ) ≤ c(P ∗) + LB
Proof: For each (u, v) ∈ P ∗, we have c0(u, v) ≤ c(u,v)

S +
1. Thus

c0(P ∗) =
X

(u,v)∈P∗
c0(u, v) ≤ c(P ∗)

S
≤ UB

S
≤ U 0

Since the algorithm includes U 0, we surely know that P ∗
is examined. By Lemma 4, c0(P ∗)S ≤ c(P ∗). Since P ∗ is
examined by the algorithm and since it seeks to minimize c0,
we must have for the returned solution P that c0(P ) ≤ c0(P ∗).
Combining with Lemma 4 we get

c(P ) ≤ c0(P )S + LB ≤ c0(P ∗)S + LB ≤ c(P ∗) + LB

The above proofs are intuitively explained when considering
that the maximal rounding error (for both rounding up as
rounding down) that can be made on a link equals S. Since a
path can have no more than (N − 1) hops, the total error that
can be accumulated along the path equals (N − 1)S < LB .
If we extend this reasoning to rounding to the nearest integer,
then the total error that can be accumulated along the path
equals (N − 1)S2 < 2LB .
By computing two paths via rounding up and down, we

can return the one that has minimum cost. The worst-case
complexity remains O(LN(log logN + 1)). Moreover, if the
two paths are the same, there is a high probability that we
have found the exact path. Note, that it is easily shown that
if both paths are the same, that this is not a guarantee for
having returned the exact path. We will demonstrate this for
the shortest path problem, in Figure 1, where the rounding
granularity g = 0.1. The left graph is the original graph G, the
middle graph G− is the graph G with link weights rounded
down, and the right graph G+ equals G with link weights
rounded up. It is clearly seen that although the shortest paths
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Fig. 1. g = 0.1, the left graph is G, the middle graph G−, and the right
graph equals G+

in the rounded graphs are the same, they do not equal the
shortest path in the original graph G.
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IV. SIMULATIONS
In this section we will present our simulation results. We

will consider four ways of rounding, namely (1) rounding
up, (2) rounding down, (3) two-pass rounding that selects the
best path from (1) and (2), and (4) (one-pass) rounding to
the nearest integer. We use an exact algorithm SAMCRA [9]
to find the optimal cost OPT = c(P ∗). Based on this value
we round the costs as c0(u, v) =

h
c(u,v)(N+1)

OPT

i
, where [x]

refers to the rounded value of x (either rounded up, down,
...) and recalculate the RSP path based on the rounded costs.
We have performed simulations on random graphs of the type
Gp(N), where p is the link density, and two-dimensional
square lattices. In the class of random graphs, the delay and
cost of every link (u, v) ∈ L were taken as independent
uniformly distributed random integers in the range [1,M ].
For the class of lattices, the delay and the cost of every
link (u, v) were negatively correlated: the delay was chosen
uniformly from the range [1,M ] and the corresponding cost
was set to (M + 1) minus the delay. According to [5] this
scenario constitutes a worst case for the RSP problem. We
have chosen M = 105. In each simulation experiment, we
generated 104 graphs and selected nodes 1 and N as the source
and destination, respectively. For lattices, this corresponds to
a source in the upper left corner and a destination in the lower
right corner, leading to the largest minimum hop count. For
the random graphs, this is equivalent to choosing two random
nodes.
The delay constraint ∆ was selected as follows. First, we

computed the least-delay path (LDP) and the least-cost path
(LCP) between the source and the destination using Dijkstra’s
algorithm. If the delay constraint ∆ < d(LDP), then there is
no feasible path. If d(LCP) ≤ ∆, then the LCP is the optimal
path. Since these two cases are easy to deal with, we compared
between the algorithms considering the values d(LDP) < ∆ <
d(LCP), as follows:

∆ = d(LDP) +
1

2
(d(LCP)− d(LDP)) (1)

We have evaluated the algorithms that use rounding based
on how successful they are in minimizing the cost of a returned
feasible path, when compared to the exact algorithm. To this
end we define the effective approximation α as

α =
c(Px)

OPT
− 1

where c(Px) is the cost of the feasible path that is returned by
algorithm x. We plot E[α] based on the 104 iterations. Figure
2 displays the effective approximation α as a function of for
the random graphs with N = 100 and p = 0.2 and lattices
with N = 25.
We can see that α << , which has readily been observed

and explained in [6] for the case of rounding up. The dif-
ferences between the different ways of rounding are not big
when compared to the value of , but the relative difference
may be considerable as observed for the random graphs. The
performance of rounding to the nearest integer outperforms
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Fig. 2. Effective approximation in the class of (top) random graphs, and
(bottom) lattices.

rounding up or down, which was expected since the worst-
case error is halved. However, it is interesting to see that
rounding down outperforms rounding up. Given uniformly
distributed link weights, this result is somewhat surprising,
since the expected error in link weights should be the same in
both cases. A possible explanation is that we are searching for
a minimum-cost path (instead of just any path), and the (small)
rounded weights x, which are part of the shortest path, may
on average be closer to bxc than to dxe. This effect is likely
increased with a coarser granularity/accuracy. Furthermore, in
the class of random graphs with uniformly distributed link
weights, the shortest path may not be the minimum-hop path.
However, when we are rounding up, we are adding to the link
weights, which may result in a preference for minimum-hop
paths.
The ranking in performance in the class of lattices with

negatively correlated link weights is the same as for the class
of random graphs, except for a larger effective approximation
α. We refer to [6] for an explanation of this phenomenon.
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V. CONCLUSIONS
In this paper we have provided a theoretical and simulative

analysis of the influence of rounding link weights either up or
down. Rounding link weights often results in a better running-
time, however it comes at the expense of accuracy. We have
directed our attention to the Restricted Shortest Path (RSP)
problem, which is an important subproblem of Quality of
Service (QoS) routing. We have proposed to combine rounding
up and down, either in one-pass or two-pass. Our simulations
confirm the increase in accuracy, when not confining to one
way of rounding.
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