
Master’s Thesis

A comparison of supervised gene set
searching algorithms for outcome

prediction of breast cancer

Thesis Committee:
Prof.dr.ir. M.J.T. Reinders
Dr. L.F.A. Wessels
Ir. M.H. van Vliet
Dr. E.A. Hendriks
Dr. G.W. Klau

Author Raul Kooter
Email Raul@xs4all.nl

Student number 1150162

Thesis supervisor Dr. L.F.A. Wessels
Ir. M.H. van Vliet

Date September 23, 2009 - 14:00

[I,C)
TInformation and

Communication
Theory Group

mailto:Raul@xs4all.nl

Preface

Before you lies the final report of the project I’ve worked on for my Master’s Thesis, consisting
of an article, supplementary material to the article, and a work document. In short, last year I’ve
implemented various algorithms from literature which should improve the diagnosis of breast cancer,
and compared them using a standardized evaluation protocol. This work was conducted under the
roofs of both the Delft University of Technology and the Netherlands Cancer Institute.

A few acknowledgments are in order to those who have somehow helped me during this project.
The ones who have assisted me the most are my direct supervisors, Lodewyk, for his feedback and
for making my graduation possible in the first place, and Martin, for his feedback and for providing
me with all the necessary code, data and other necessary background knowledge. My gratitude also
goes out to all those at the DUT who have made the Master Bioinformatics possible. A ’thank you’
is also in order to Han-Yu Chuang for personally answering my inquiries about her paper.

I would also like to thank my fellow bioinformatics students for accompanying me while being
stranded with me on a deserted computer island somewhere on the 11th floor: Bas, Jelle, Jeroen,
Onno, Patrick and Tisha.

Another thanks goes to the friends I’ve made during my Computer Science study and my time
at the Christiaan Huygens study association, which are unfortunately too many to mention. A few
names I would like to mention are Thomas and Gerardo, who have kept in touch since the beginning
of the study and of course my CH board members: Jasper, René, Shiraz, Mike and Bas.

Finally, a big thanks to my parents and Ricardo, for supporting me always.

R.P. Kooter
September 14, 2009

Computers can figure out all
kinds of problems, except the
things in the world that just
don’t add up.

James Magary

1

Pages 1–13

A comparison of supervised gene set searching
algorithms for outcome prediction of breast cancer
Raul Kooter 1,2, Martin van Vliet 1,2, Lodewyk Wessels 1,2

1Information and Communication Theory Group, Faculty of Electrical Engineering, Mathematics
and Computer Science, Delft University of Technology, Delft, The Netherlands
2Bioinformatics and Statistics group, Department of Molecular Biology, Netherlands Cancer
Institute, Amsterdam, The Netherlands

ABSTRACT
Motivation: Determining whether a tumor is likely to metastasize is a
task that helps selecting the correct treatment for a patient. In breast
cancer research, traditional classification of tumors depends on
evaluating clinical risk factors, which has led to over-treatment in the
past. High-throughput technologies such as mRNA microarrays have
generated large amounts of data on tumors from patients, making it
possible to perform classification using machine learning techniques,
achieving higher accuracy than the traditional classification methods.
While early methods have selected an optimal set of single genes as
features, newer methods have attempted to find groups of genes that
classify accurately. By combining the gene expressions according to
these groups a new set of features is determined. The goal of this
work is to analyze the classification performances using the latter
technique.
Results: In this work various genes set searching algorithms will be
reviewed on simulated data, indicating under which conditions these
algorithms generate a better feature set than the original feature set.
The methods are also applied on actual breast cancer data, indicating
that very few of these methods are convincingly able to generate an
improved feature set.
Contact: r.p.kooter@student.tudelft.nl

1 INTRODUCTION
The determination of the aggressiveness of tumors using clinical risk
factors has led to less mortalities but also cases of overtreatment
(van ’t Veer et al. (2002)). By assessing the gene expression levels
of a tumor using mRNA microarrays, a new set of features arises
from which a more accurate prediction of metastasis development
can be made. Recent research has focused on selecting a set of
prognostic markers from these features, or genes, which are able
to discriminate between the two classes of tumors: tumors that do
and do not metastasize.

Two studies which have compiled breast cancer datasets and
selected a set of prognostic markers by machine learning are those
by van ’t Veer et al. (2002) and Wang et al. (2005). Van ’t Veer
determined a 70-gene signature, while Wang determined a 76-gene
signature. The set of markers determined by Van ’t Veer was later
evaluated on a larger breast cancer dataset by van de Vijver et al.
(2002). While they both improved prediction accuracy, the two
sets of markers only had three genes in common and a decreased
performance when a set of markers of one study was tested on the
dataset of the other study.

Hoping to find a more robust and accurate set of prognostic
markers, recent methods have used additional data sources and
exploited the structure induced by these to find groups of genes
which, when their gene expression is combined, will transform
into new features that are more accurate and robust predictors. The
underlying hypothesis here is that the activities of pathways are
more powerful predictors for cancer classification than activities
of single genes, and that the newly found features will represent
the activities of these pathways more accurately. These methods
include the work of Chuang et al. (2007), that defines groups by
searching for predictive subnetworks in a protein-protein interaction
network; the work of Lee et al. (2008), that defines groups by
searching predefined gene sets from databases such as MSigDB or
GO for predictive subsets; and the work of Park et al. (2007), that
uses hierarchical clustering and LASSO to define predictive groups
(clusters) in a data-driven way. We will refer to these methods as
Chuang, Lee, and Park, respectively.

Chuang’s and Lee’s algorithms differ from Park’s in that the
latter doesn’t use additional predefined biological data, thus being
data-driven rather than knowledge-driven. On the other hand, the
approaches of Chuang and Lee may be biased by the data contained
in the pathway databases or suffer from the noise in the PPI datasets.
All these approaches (Chuang, Lee and Park) claim a performance
improvement over predictors based on single genes. However, an
extensive comparison of the performances of the three existing gene
set searching algorithms on multiple breast cancer datasets has not
been performed. In addition, none of the existing studies provide
insight in the type of effect that underlies the gain in performance.

In this work a comparison and analysis will be made of algorithms
which attempt to find prognostic markers by combining gene
expression. A standardized and comprehensive comparison will be
made between Chuang, Lee and Park, along with a few minor
variations. Artificially generated datasets will also be employed to
further analyze the methods. By doing so we hope to find out how
finding prognostic markers by combining gene expression can be
optimized, whether groups of genes actually improve classification
significantly over single genes and how this possible improvement
can be explained.

2 APPROACH
Three gene set searching algorithms, Chuang, Lee and Park were
implemented with a few differences from their original design,
along with some variations in implementation. Seven breast cancer

1

R. P. Kooter et al

Table 1. Collection of datasets used in this work. The samples column indicates
the number of samples that could be assigned to the poor/good group.

Source Samples n Notes

Wang et al. (2005) 286 Different normalization
van de Vijver et al. (2002) 248 Agilent platform
Miller et al. (2005) 193 Used in SOS
Pawitan et al. (2005) 142 Used in SOS
Desmedt et al. (2007) 120 Used in DMFS
Chin et al. (2006) 97 Used in DMFS
Loi et al. (2007) 120 Used in DMFS
SOS (Specific Overall Survival) 335 Miller and Pawitan
DMFS (Distant Metastasis Free Survival) 337 Desmedt, Chin and Loi

datasets were employed to evaluate the algorithms. A selection of
algorithms were used in an all-against-all comparison, in which each
of the algorithms was used to select markers from one dataset and
tested on the remaining datasets. After performing this comparison,
conclusions were drawn about the efficiency of the algorithms
across all datasets. We will now give an overview of the datasets,
algorithms, and evaluation procedure.

2.1 Datasets
All datasets except for the Wang dataset were preprocessed as
described in van Vliet et al. (2008). For an overview see Table 1.
As described in their paper, in order to combine six Affymetrix
datasets and one Agilent dataset, the feature set was taken to be the
intersecting set of Entrez identifiers common to both platforms, and
the corresponding probe for each Entrez identifier was selected to be
the one with the highest variance and with a ‘ at’, ‘ s at’ or ‘ x at’
extension, resulting in 11601 features. The same normalization
procedure was applied to these six datasets. Since Wang’s dataset
was compiled using a similar Affymetrix platform, it was easily
added by selecting the corresponding Affymetrix probes, although a
similar normalization procedure could not be applied since the raw
data was not available.

The Miller and Pawitan datasets were combined into the SOS
(Specific Overall Survival) dataset and the Desmedt, Chin and Loi
datasets were combined into the the DMFS (Distant Metastasis Free
Survival) dataset. This grouping of datasets was performed since
these were the only clinical endpoints available for these datasets.
Even though used by van Vliet et al. (2008), the Minn dataset
was removed from the collection due to low quality. The final four
datasets, Vijver, Wang, SOS and DMFS were z-normalized such
that each gene had a mean of zero and a standard deviation of one.

Based on the survival time and censoring for the respective
clinical endpoints, the samples in the datasets were assigned to
either the good or poor outcome group. Samples were labeled ’poor’
if, in the Vijver and DMFS dataset, metastasis was detected within
five years or if, in the SOS dataset, death occurred within five
years. Samples were labeled ’good’ if no event occurred and the
patient had a follow-up of at least five years. Samples which did
not belong in either category were discarded. For the Wang dataset,
the labels assigned were identical to the labels assigned by Chuang
et al. (2007).

2.2 Gene sets and protein-protein interaction networks
The protein-protein interaction (PPI) network was downloaded
from the supplementary information of Chuang et al. (2007).
This PPI network is a combination of interactions derived from
literature, yeast-two hybrid experiments and mass spectrometry
data. The network consists of 57235 interactions for 11203 nodes
represented by Entrez identifiers. The PPI network and the gene
expression data had 8572 identifiers in common.

To test the pathway-based algorithms, the MSigDB C2 pathways
were downloaded. Even though at the time of writing version 2.5
was available of MSigDB C2 gene sets, version 1.0, as used by Lee
et al., was primarily used and downloaded from an online archived
version at http://www.broadinstitute.org/gsea/msigdb/. It consists of
522 pathways, with a total of 4915 genes. There is an overlap of
4554 identifiers with the gene expression datasets.

2.3 Predictor gene set searching algorithms
We define the set of genes which can either be encountered in the
datasets or in the additional external data as G = {g1, g2, ..., gp∗}.
A gene expression dataset such as Vijver can be defined as X =
{xi,j}p×n with labels Y = {y1, y2, ..., yn}, yj ∈ {0, 1} and
genes GX = {g1, g2, ..., gp} ⊂ G. Here p is the number of
genes and n is the number of samples. We assume that all the
datasets X are already z-normalized per gene. A predictor gene
set searching algorithm attempts to find a set of predictor gene sets
W = {W1,W2, ...,Wp′}, where Wk ⊂ GX , p′ denotes the total
number of predictor gene sets and and pk denotes the number of
genes in the k’th gene set.

This set W can be used to perform the following mapping: X W→
X ′ where X ′ = {x′k,j}p′×n is the transformed dataset such that:

x′k,j =
∑
i∈Wk

xi,j√
pk

(1)

Predictor gene sets can come in the form of subnetworks (eg. in
Chuang), condition-responsive genes (eg. in Lee) or clusters (eg. in
Park). In order to define a gene set an algorithm may use external
data such as protein-protein interaction data (PPI) or biological
gene sets (GS), such as MSigDB. Note that this external data isn’t
restricted to using the genes represented in the dataset X , the PPI
for example contains genes which aren’t represented in GX .

2.3.1 Chuang’s algorithm. Chuang attempts to find W using a
dataset X and the PPI . In a PPI network consisting of m nodes,
a greedy search (see below) is performed starting from each node
resulting in m predictor gene sets. A subnetwork Mk is a subset of
pk genes which form a subnetwork according to the PPI network.
(Note that we will be employing W to denote the final set of gene
sets produced by the gene set searching algorithm and M as a set
of candidate gene sets being evaluated by the algorithm). For every
subnetwork, a subnetwork activity vector ak can be calculated using
an equation similar to Equation 1:

ak,j =
∑
i∈Mk

xi,j√
pk

(2)

In order to find discriminative subnetworks, a score for
discriminative potential (S) is introduced. This score can be derived
for each possible subnetwork Mk by calculating a measure of

2

A comparison of supervised gene set searching algorithms

association between Y and ak. Chuang et al. (2007) employed
mutual information to calculate S(Mk):

SMI(Mk) =
∑
x∈a′

k

∑
y∈0,1

p(x, y)log
p(x, y)

p(x)p(y)
(3)

where p(x, y) is the joint probability distribution of a′k and y, p(x)
and p(y) are the marginalized probability distribution of p(x, y) and
a′k is a discrete version of ak, obtained by binning the values of ak
in 9 linearly spaced bins.

Subnetworks maximizing SMI(Mk) are found by performing a
greedy search starting each of the nodes in the PPI network. At
each step of the greedy search, candidates for addition include nodes
which are direct neighbors to the existing subnetwork and which
are within a distance of two PPI hops from the starting node. The
canditate which increases SMI(Mk) maximally is considered for
addition. If it increases SMI(Mk) by at least five percent, it is added
to the subnetwork, otherwise the search stops.

Chuang’s original implementation included three additional steps
to select only the most significant subnetworks, but for a consistent
comparison with the different methods, these steps are not
executed in our experiments. Rather, we employ feature selection
in the double-loop-cross-validation procedure to select predictive
subnetworks.

An overview of Chuang is depicted in Figure 1.

2.3.2 Chuang* algorithm. Chuang* is a modified version of
Chuang designed to work on predefined biological gene sets rather
than a protein-protein interaction network. Just as Chuang, it
employs greedy forward selection and mutual information as a
scoring measure. The greedy search is performed for all biological
gene sets, i.e. the final number of predictive gene sets equals the
number of biological gene sets.

For each biological gene set Mk, the first gene added to
the predictor gene set Wk is the gene with the highest mutual
information score. Then, from the remaining genes, the gene which,
together with the already selected genes, maximizes the mutual
information, is selected. This process terminates when the set is
exhausted or the performance score does not increase.

2.3.3 Lee’s algorithm. Lee finds W by iterating over a set of
predefined biological gene sets and selecting an appropriate subset
of genes in each of these gene sets, referred to as ’condition-
responsive genes’ (CORGs) in Lee et al. (2008).

In a predefined biological gene set, or pathway P =
{g1, g2, ..., gpP }, the genes are ranked according to their t-score.
For a gene gi ∈ P , its t-score, ti, is the Student’s t-statistic
measuring the association between the gene expression and the class
label:

ti =
µ1 − µ2√
s21
n1

+
s22
n2

(4)

where µ1 and µ2 are the means of xi,J0 and xi,J1 , s1 and s2 are
the standard deviations of xi,J0 and xi,J1 and n1 and n2 are the
number of samples in xi,J0 and xi,J1 respectively. We define xi,J0
and xi,J1 as the vector of values of all samples with class label 0
and 1 respectively, i.e. J0 = {j|yj = 0} and J1 = {j|yj = 1}. For

Protein-protein interaction network (PPI)

1 j n
1

i

p

Samples

Genes

Gene expression matrix

Good outcome

Poor outcome

Gene expression profiles

j

1

i

pk

Samples

Genes x
ij

a
kj

 0
k
Y

Subnetwork
Label

Activity a
kj
 =

M
k

1 n

 0 0 1 1 1

i

∑
i∈M k

x ij
 pk

Discriminative potential S(M
k
) = Mutual Information score between a

k
 and Y

Subnetworks maximizing S(Mk) for each starting node in PPI

Fig. 1. Overview of Chuang’s algorithm. Using the PPI network and the
dataset X , a greedy search is performed at each node of the PPI network,
which searches for a subnetwork maximizing the mutual information
between the network activity and the class label. Shown in the figure is a
single step of the greedy search where the mutual information is calculated
for an intermediate subnetwork. At each step of the greedy search, the
neighboring node that maximizes the mutual information is considered for
addition. Only neighboring nodes which lie within a distance of two PPI
links from the starting node are considered. If the mutual information
increases by at least five percent, the associated node is added to Mk . This
figure is adapted from Chuang et al. (2007).

a pathway P , its average t-score is:

tavg =
ti
pP

(5)

If tavg < 0, the genes in P are re-ordered such that ti ≤ ti+1, i =
1, 2, ..., pP − 1, otherwise the genes are ordered according to
descending t-score: ti ≥ ti+1, i = 1, 2, ..., pP − 1.

Given this ranking, a subset Mk of P can be defined as the first
k genes Mk = {g1, g2, ..., gk}. Similar to Chuang, for such a
subset Mk an activity vector can be calculated using Equation 2.
The discriminative score S(Mk), however, is calculated using the
absolute value of the t-score. Only one of these subsets is returned as

3

R. P. Kooter et al

being the CORG set of pathway P , in this case the smallest possible
k for which S(Mk+1) ≤ S(Mk).

Lee’s original implementation included steps to select the most
promising subset of pathways to feed into the algorithm and a
filtering step to select only the most significant subset of CORG sets
returned by the algorithm. These selection steps are not included in
our experiments.

For an overview of Lee, see Figure 2.

Pathway P

j

1

pk

Samples

Genes

x
ij

1 n

CORG set M
k
 = {g1, g2, ..., gk}

t-score

t
1

t
k

Re-ordered member genes
by their t-scores

t
i
 ≥ t

i+1
 if t

avg
 ≥ 0

t
i
 ≤ t

i+1
 if t

avg
 < 0

t
avg

 = average t-score of all
member genes

Activity a
kj
 = a

kj

Pathway P = {g1, g2, ..., gm}

pm

 0 0 1 1 1

k

Y
Gene set
Label 0

∑
i∈M k

x ij
 pk

CORG set of pathway P

j

1

i

pk

Samples

Genes
x

ij

1 n

Discriminative potential S(M
k
) = t-score between a

k
 and Y

M
k
 is the CORG set of pathway P if k is the smallest number

 satisfying S(M
k+1

) ≤ S(M
k
) where 1 ≤ k ≤ m

Fig. 2. Overview of Lee’s algorithm. Shown here is the algorithm to
determine the condition-responsive gene set (CORG set) given a pathway
P and its corresponding gene expression dataset. For each node in the
pathway P , the t-score (ti) can be calculated which measures the capability
of the corresponding gene to discriminate between the two phenotypes. All
genes in the pathway are ordered based on their t-scores. After ordering,
a gene set Mk consists of the genes 1 through k. The combined z-score
of the individual genes of the gene set make up the activity vector ak . For a
pathway P consisting ofm genes,m possible gene sets are considered, each
with a discriminative potential S(Mk). The smallest gene set with the first
maximum discriminative score is taken to be the CORG set of the pathway
P . This algorithm can be repeated for a set of pathways to determine a set
of CORGs. This figure is adapted from Lee et al. (2008).

2.3.4 Lee(PPI*). To see how well the Lee search approach
would perform in combination with the PPI data, a set of gene

sets were generated (from the PPI). We will refer to these gene
sets as PPI∗. This set of gene sets was generated by iterating
over every node in the PPI and defining a gene set as all genes
corresponding to PPI nodes within a maximal distance of two from
each starting node. Similar to Chuang, the nodes which had more
than 300 connections were ignored. This helps keep the gene sets in
PPI∗ reasonably small. PPI∗ consists of 11203 gene sets.

2.3.5 Park’s algorithm. In contrast to the previous methods,
Park does not use additional biological data to find predictor gene
sets, but attempts to find them by analyzing the structure induced by
the gene expression.

Park performs hierarchical clustering of the genes of the dataset
X , using average linkage and Pearson correlation as distance
measure. The resulting dendrogram can be cut at p possible levels.
Each cut results in a set of clusters. Let’s define the j’th cluster
at level i as Mi,j . At the lowest cut off level, i = 1, there is
one cluster consisting of all genes: M1,1 = {g1, g2, ..., gp} and
at level i = p, p clusters are returned, each consisting of a single
gene: Mp,1 = {g1},Mp,2 = {g2}, ...,Mp,p = {gp}. At level
i, the clusters are given by Mi = {Mi,1,Mi,2, ...,Mi,i}. Given
the clusters obtained at a given level, Equation 2 is employed to
compute the predictor gene set activities, resulting in the activities
at level i, given by ai = {ai,1, ai,2, ..., ai,i}.

At a level i, the performance of the clusters Mi can be assessed
using cross-validation. At every step of this cross-validation, the
gene sets are ranked based on the t-score of their gene set activities,
ai, and trained using a Nearest Mean Classifier on the training
subset and evaluated on the testing subset, returning a learning
curve. These learning curves are combined into a single learning
curve li across all folds of the cross-validation procedure: li =
{li,1, li,2, ..., li,i} where li,j is the AUC corresponding to the
performance of the best j gene sets. The minimum error over all
learning curves indicates the optimum cut off level. The clusters
at this optimum cut off level are returned as W . Notice that this
algorithm, unlike Chuang and Lee, has the property that every gene
is represented only once in W .

This implementation differs from Park et al. (2007) in several
ways. First of all, in the original implementation, LASSO was used
as the method to both select the optimal cut off level and number of
features. The original implementation also selected the 3017 most
significant genes before applying the algorithm. For a more detailed
overview, see also Figure 3.

2.4 Algorithm comparison
To see how well a set of markers extracted from one dataset,Xtrain,
would perform on a second dataset,Xtest, the second dataset would
be transformed using the set of markers Wtrain and subjected to a
double-loop-cross-validation (DLCV) procedure to get a set of AUC
performance scores v. See part (a) in Figure 4.

A selection of gene set searching algorithms was made and
were applied to the four datasets (Vijver, Wang, SOS and DMFS).
Each of these marker sets were tested on each of the remaining
three datasets. For a single gene set searching algorithm, S, these
performance scores may be concatenated to get a larger set of
performance scores vS . See part (b) in Figure 4 (note that in Figure 4
we restrict ourselves to three datasets).

4

A comparison of supervised gene set searching algorithms

Dendrogram Clusters Learning curve

M11 = {g1, g2, ... gp}

M21, M22

Mi1, Mi2, ... Mii

...

Mp1 = {g1}, ..., Mpn = {gp}

Minimum

AUC landscape

AUC

Number of clusters

Number of clusters

AUC

Mi1, Mi2, ... Mii

The genes are clustered using
correlation as a distance measure
and by average linkage

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

0 . 2 5

0 . 3

0 . 3 5

0 . 4

0 . 4 5

0 . 5

Cut-off level

1 j n
1

i

p

Samples

Genes

Gene expression matrix

Optimum set of clusters

...

W1 W2 W3 W4

The minimum value in the entire AUC
landscape indicates the optimum cluster set

Fig. 3. Overview of Park’s algorithm. The genes of a gene expression
dataset are clustered by Pearson correlation and average linkage. The
resulting dendrogram can be cut off at m levels, meaning that there are m
possible ways in which them genes can be split up. Given a clusteringMi =

{Mi,1, ...,Mi,i}, a cross-validated learning curve li can be generated.
The global minimum error found in all li’s indicates the preferred cut
off level, the algorithm returns the corresponding Mi. For Park’s original
implementation, see Park et al. (2007).

If four datasets would be used for selection and testing of the
markers, and the DLCV procedure returns 100 AUC scores, then
the entire procedure would yield 1200 AUC values per gene set
searching algorithm. To test whether one algorithm outperforms
another algorithm, a one-sided paired Wilcoxon test was performed
on the set of AUC values. The resulting p-value would indicate
whether one algorithms outperforms the other. See part (c) in
Figure 4.

After inspection of the AUC values, it appeared the Wang dataset
produced significantly lower AUC values, regardless of which set
of markers were used. Therefore the set of prognostic markers
produced by Wang and the Wang dataset were removed from the
analysis, leaving us with 600 AUC values per algorithm.

The algorithms used in the comparisons were Chuang, Lee, and
Park. The case where no actual gene set searching algorithm was
used, but all single gene markers were used is indicated by Singles,
which results in 11601 markers. Also, the variation Chuang* and
Lee (PPI*) were added. To see if the gene sets produced by Park

could be improved we fed them into a gene set searching algorithm
to obtain the variations Chuang* (Park) and Lee (Park). Note that
such a variation, e.g. Lee (Park), uses the same dataset to run both
Park and Lee (Park). Finally, to see whether using the t-score instead
of the mutual information would make a large difference, a variation
of Chuang (PPI), termed Chuang (PPI, T-score) was also used.

To test the predictive power of a set of prognostic markers derived
from a dataset, a double-loop-cross-validation (DLCV) procedure
is employed, similar to the one described in Wessels et al. (2005).
We used a Nearest Mean Classifier (NMC) using Euclidian distance
measure and the Area Under the Curve (AUC) of the ROC as a
scoring measure. A detailed description of the DLCV procedure can
be found in the Supplementary Material Section 1.

Training
Dataset

Xtrain

Testing
Dataset

Xtest

Run gene set
searching algorithm

(Figure 1, 2, 3)

Predictor
gene sets

W

Map Xtest using W

Transformed
Testing
Dataset

X'test

Double-loop
cross-validation

(Figure 5)

100 AUC
values v

Fixed
splitting
order

a) Gene set searching, cross-validation procedure

b) Cross-dataset cross-validation

Xtrain Xtest

Cross-validation
procedure (a)

600 AUC
values vs

Dataset
A

Dataset
B

Dataset
A

Dataset
C

Dataset
B

Dataset
A

Dataset
B

Dataset
C

Dataset
C

Dataset
A

Dataset
C

Dataset
B

c) Algorithm comparison

Gene set
searching
algorithms

Cross-dataset
cross-validation

600 AUC
values v

One-sided
Paired Wilcoxon test

Algorithm A

Cross-dataset
cross-validation

(b)

600 AUC
values vA

Algorithm B

Cross-dataset
cross-validation

(b)

600 AUC
values vB

Is algorithm A significantly
better than algorithm B?

Fig. 4. Algorithm evaluation procedure. (a) The cross-validation procedure
checks how well a set of markers trained on one dataset performs on a
second set. (b) The cross-dataset cross-validation procedure uses every
dataset in turn as a training and testing dataset to return a measure the overall
performance of a gene set searching algorithm. This example shows a cross-
dataset cross-validation for three datasets, A, B and C. (c) Algorithms are
compared by subjecting the cross-dataset performance values to a one-sided
paired Wilcoxon test.

2.5 Artificial data
In order to analyze the behavior of the gene set searching
algorithms, artificial datasets were generated to evaluate both the
basic properties of combining gene expressions and the efficiency
of these algorithms. A few criteria had to be met while designing
these models: 1) the data had to have relatively many genes while
having few samples to simulate the small sample size problem, 2)
about ten percent of the genes should carry signal predictive of the
outcome, and 3) the data had to simulate the notion of pathways
whereby combining gene expression could theoretically result in
improved performance. Two models were designed: a linear model

5

R. P. Kooter et al

and a logical model. We expect the gene set searching algorithms
to work better than just using all single genes on the logical model.
Park, on the other hand, should perform better on the linear model,
since a large degree of redundancy (correlation) is present between
genes - a feature exploited by Park.

2.5.1 The linear model. The linear model generates of a set
of 100 latent variables H = {h1, h2, ..., h100}, a set of 1000
genes X = {x1, x2, ..., x1000} and a binary outcome variable y,
see Figure 5. The genes and the outcome variable have a linear
dependence on the latent variables and this dependency is corrupted
by adding independent noise. The latent variables are sampled from
a normal distribution with parameters µhi and σ2

hi
. The expression

of the genes are generated according to xi = βiH + ε, where ε
is a noise variable sampled from a normal distribution with mean
µεi = 0 and variance σ2

εi , and bi is a vector of real coefficients.
The outcome variable y is modeled similarly, but is discretized
using y = sign[βyH + ε] where sign(x) = 0 if x < 0 or
sign(x) = 1 if otherwise. The outcome variable also has added
noise εy ∼ N(µεy = 0, σ2

εy).
For our experiments, the linear model θ1 is employed, with the

default values for the parameters, which can be varied depending on
the experiment:

h ∼ N(µ = 0, σ2 = 1)

y = sign[h1 + ...+ h10 + ε]

xi =

h1 + ε if i = 1, ..., 10
h2 + ε if i = 11, ..., 20
...
h100 + ε if i = 991, ..., 1000

ε ∼ N(µ = 0, σ2 = 1)

The linear model is depicted in Figure 5.

h1 h2 h10 h11 h100

x1 x2 x10 x11 x20 x21 x100 x101 x1000y

Fig. 5. The linear model θ1.

In this model, the output (class label) only depends on a limited
number of latent variables (h1, ..., h10). One can think of these
hidden variables as ’hallmarks’ that are contributing to cancer
formation. The genes are organized in correlated groups where all
genes in a group depend on the same hidden variable. The genes
serve as a read-out of the hallmarks. The model contains 900 noise
genes which are independent of the class label.

To get an idea of the actual distribution of the data produced by
the linear model, a simplified version of θ1 with less noise and where
y depends on fewer latent variables is shown in Figure 7.

2.5.2 The logical model. The logical model generates 101
latent variables H = {h0, h1, ..., h100}, 1000 genes X =
{x1, x2, ..., x1000} and a binary outcome variable y. We also
introduce an extra set of variables, which are the gene activities
X ′ = {x′1, x′2, ..., x′1000}, and the outcome activity y′. This model
is designed to be more complex than the linear model (it contains
non-linear effects), but also designed to benefit from combining
gene expression. The latent variables are sampled from a Bernoulli
distribution such that Pr(hi = 1) = pi = 1 − Pr(hi =
0). A gene activity, which is meant to simulate whether a gene
is activated or not, is modeled using a Boolean function of the
latent variables, x′i = fBoolean,i(H), as is the outcome activity
y′ = fBoolean,y(H). These discrete variables are transformed
into continuous variables using two normal distributions. That is,
if x′i = 0, then xi ∼ N(µx′

i
=0, σ

2
x′

i
=0), and if x′i = 1, then

xi ∼ N(µx′
i
=1, σ

2
x′

i
=1). Outcome variable y is modeled similarly,

but discretized similarly to the linear model such that y ∈ {0, 1}.
So if y′ = 0, then y ∼ sign[N(µy′=0, σ

2
y′=0)], and if y′ = 1, then

yi ∼ sign[N(µy′=1, σ
2
y′=1)].

Just as for the linear model, a logical model θ2 is designed which
has a set of default values. Formally, the logical model θ2 is defined
as:

Pr(h = 0) = 0.5, P r(h = 1) = 0.5

y′ = h0

y ∼
{
sign[N(µ = −1, σ2 = 1)] if y′ = 0
sign[N(µ = 1, σ2 = 1)] if y′ = 1

x′i =

h0 ∧ hi if i = 1, ..., 100
hi−100 if i = 101, ..., 200
hi−200 if i = 201, ..., 3000
...
hi−900 if i = 901, ..., 1000

xi ∼
{
N(µ = −1, σ2 = 1) if x′i = 0
N(µ = 1, σ2 = 1) if x′i = 1

The logical model is depicted in Figure 6.

h0 h1 h2 h10 h11 h100

x'1 x'2 x'10 x'11 x'20 x'21 x'100x'101 x'1000y'

x1 x2 x10 x11 x20 x21 x100 x101 x1000y

Fig. 6. The logical model θ2.

A somewhat simpler version of the logical model, where less
noise is added and the means of the bimodal distributions are further
apart, can be found in Figure 7. Even though the parameters are
modified, the notion of logical dependence in this simplified model
remains the same, as seen in the left-most panel in the second row,
where the output seems to be a logical AND of x1 and x2.

6

A comparison of supervised gene set searching algorithms

- 4 - 3 - 2 - 1 0 1 2 3
- 3

- 2

- 1

0

1

2

3

- 4 - 3 - 2 - 1 0 1 2 3
- 4

- 3

- 2

- 1

0

1

2

3

- 4 - 3 - 2 - 1 0 1 2 3
- 4

- 3

- 2

- 1

0

1

2

3

- 4 - 3 - 2 - 1 0 1 2 3
- 4

- 3

- 2

- 1

0

1

2

3

4

- 4 - 3 - 2 - 1 0 1 2 3
- 4

- 3

- 2

- 1

0

1

2

3

4

Two correlated
signal features

Two uncorrelated
signal features

A signal and a
noise feature

Two correlated
noise features

Two uncorrelated
noise features

- 3 - 2 - 1 0 1 2
- 2 . 5

- 2

- 1 . 5

- 1

- 0 . 5

0

0 . 5

1

1 . 5

2

- 3 - 2 - 1 0 1 2
- 2 . 5

- 2

- 1 . 5

- 1

- 0 . 5

0

0 . 5

1

1 . 5

2

2 . 5

- 3 - 2 - 1 0 1 2
- 2 . 5

- 2

- 1 . 5

- 1

- 0 . 5

0

0 . 5

1

1 . 5

2

2 . 5

- 3 - 2 - 1 0 1 2 3
- 2 . 5

- 2

- 1 . 5

- 1

- 0 . 5

0

0 . 5

1

1 . 5

2

- 3 - 2 - 1 0 1 2 3
- 2 . 5

- 2

- 1 . 5

- 1

- 0 . 5

0

0 . 5

1

1 . 5

2

2 . 5

Two signal
features

Semi-correlated
signal and noise

A signal and a
noise feature

Two correlated
noise features

Two uncorrelated
noise features

Model θ1

Model θ2

x1

x11 x101 x102 x111x2

x1 x1 x101 x101

x1

x101 x102 x201 x102x2

x1 x1 x101 x101

Fig. 7. Scatterplots of instances of the linear model and the logical model. These models are simplified versions of the models shown in Figure 5 and Figure 6,
where the parameters are modified to give a better idea of the distribution. Shown in these scatterplots are the various combinations that two genes from the
model can have. Signal genes are genes xi with i ≤ 100 that contribute to the outcome variable y, while noise genes are genes xi with 100 < i ≤ 1000

that don’t contribute to y. Notice that the logical model is able to model pathway activity as truly activated or deactivated. From a biological point of view,
this model may be considered as modeling the pathway activities using the latent variables, while the activation of each gene is some function of the pathway
activities.

2.5.3 Artificial gene sets. In order to evaluate how well gene set
searching algorithms that depend on predefined data perform on the
artificial data, we generated artificial gene sets. For example, Lee
needs a set of gene sets as input to determine the CORGs. Since we
can’t use the MSigDB pathways as are previously used for Lee, we
define our own gene sets.

Of course, the performance of a gene set searching algorithm
might just depend on the information given by such a predefined
gene set. That’s why for our experiments we will consider multiple
possible gene sets. The gene sets we will use are based on the design
of model θ1. These sets are:

• Correlated. This set consists of 100 gene sets. All genes that
are correlated (that are dependent on the same latent variable)
are combined.
M1 = {g1, g2, ...g10}
M2 = {g11, g12, ..., g20}
...
M100 = {g991, g992, ..., g1000}.

• Correlated, signal only. This set consists of 10 gene sets.
Same as the ’Correlated’ gene sets, but only the signal genes
are involved.
M1 = {g1, g2, ...g10}
M2 = {g11, g12, ..., g20}
...
M10 = {g91, g92, ..., g100}.

• Uncorrelated. This set consists of 100 gene sets. In every gene
set, the genes don’t depend on the same latent variable h.

M1 = {g1, g11, ...g91}
M2 = {g2, g12, ..., g92}
...
M100 = {g910, g920, ..., g1000}.

• Uncorrelated, signal only. This set consists of 10 gene sets.
Same as the ’Uncorrelated’ gene sets, but only the signal genes
are involved.
M1 = {g1, g2, ...g10}
M2 = {g11, g12, ..., g20}
...
M10 = {g10, g20, ..., g100}.

• Mixed. This set consists of 100 gene sets. In every gene set,
both signal and noise genes are combined.
M1 = {g1, g101, ...g901}
M2 = {g2, g102, ..., g902}
...
M100 = {g100, g200, ..., g1000}.

A graphical representation of these gene sets can be found in the
Supplementary Figure 11.

2.5.4 Simulation workflow. For each experiment, the simulation
parameters defining the models θ1 and θ2 were used to create a set
of five artificial datasets, each consisting of 300 samples. These
datasets were normalized to have a mean of zero and variance of
one per gene. After that, they were subjected to a cross-dataset-
cross-validation protocol as shown in Figure 4(b) which returns five
possible predictor sets and (5x4=)20 average AUCs.

7

R. P. Kooter et al

3 RESULTS AND DISCUSSION
3.1 Real data results
Application of the procedure outlined in section 2.4, for Singles,
Chuang (PPI), Chuang (PPI, T-score), Lee (C2 V1.0), Chuang*
(C2 V1.0), Lee (PPI*), Lee(Park), Chuang(Park) and Park and
the three datasets SOS, DMFS and Vijver resulted in the results
presented in Figures 8 and 9. From the performances on the test
sets it is clear that in some cases network-based approaches perform
significantly better than single singles, while in some cases the
performance is (slightly) worse than single genes. To get a more
precise indication of the relative performances, the head-to-head
statistical comparisons depicted in Figure 9 are very useful. In
this figure, whenever a method X significantly outperforms method
Y, this is indicated by a box colored red in row X and column
Y. Figure 8 presents the results of a detailed comparison of the
algorithms. This figure summarizes the marker properties such as
subnetwork size and the AUC performances on the test set.

Chu
an

g*
 (C

2
V1.

0)

Le
e

(C
2

V1.
0)

Sing
les

Le
e

(P
ar

k)

Chu
an

g*
 (P

ar
k)

Chu
an

g
(T

−s
co

re
)

Chu
an

g
(P

PI)
Par

k

Le
e

(P
PI*)

Chuang* (C2 V1.0)

Lee (C2 V1.0)

Singles

Lee (Park)

Chuang* (Park)

Chuang (T−score)

Chuang (PPI)

Park

Lee (PPI*)

 p < 0.01
 p < 0.05

Fig. 9. Comparisons of the various algorithms. Markers were found using
the SOS, DMFS or Vijver dataset and tested on the remaining 2 datasets.
A p-value of the paired one-sided ranksum test between two sets of AUC
values was used to assess the significance. Boxes colored (light) red mean
that the algorithm indicated in the row performed significantly better than
the algorithm indicated in the column.

A comparison with more variants of the algorithms included, as
well as a version where Wang is included in the analysis can be
found in the Supplementary Figure 3 and Figure 4.

The two methods that top the list are Chuang* and Lee,
which both find the predictive gene sets within the MsigDB
C2 pathway, version 1.0. When the Chuang* and Lee gene set
searching algorithms are applied to the PPI derived gene sets the
performance is significantly worse. Apparently, the use of the C2
pathways works better than using the PPI network. A possible
explanation for this effect could be that the number possible gene
sets in the PPI (∼ 10000 sets) is much larger than the number of
possible gene sets (∼ 500 sets) in the MSigDB database, and that
noise genes are selected during the training process.

To get an idea of the effect of the number of features, the
evaluation procedure was repeated using only the top-ranking
markers. For Singles, Lee, Chuang and Park, the top 10, 50, 100,

200 and 500 markers where identified by evaluating the t-score
of these markers using the training datasets. Subsequently, only
these top gene sets (markers) were employed in the cross-validation
procedure on the test set. The results of this comparison is presented
in the Supplementary Figure 6. According to this comparison,
the overall ranking of the methods remained fairly constant (from
stronger to weaker): Lee, Singles, Chuang, Park. Also, overall the
method seem to perform best when all markers are used. The smaller
the number of markers used, the worse the performance.

Furthermore, even though Park seems to perform poorly in the
results, when the Park clusters results are fed in the Lee algorithm,
it outperforms the original Park algorithm. This indicates that Park
includes too many genes in the clusters it creates.

None of the methods convincingly outperform the single genes
case, with the exception of Chuang*, but only at p < 0.05 and not
at p < 0.01.

Judging from the classification results when the markers and
testing datasets are split (see Supplementary Figure 5), the ranking
of the algorithms is not consistent. For example, when the markers
from Vijver are tested on DMFS, Park strangely turns out to be
the top-ranking algorithm, but when the Vijver markers are tested
on SOS, Park becomes the lowest-ranking algorithm. Also, judging
from the comparisons separated according to the training and testing
datasets, the ranking of algorithms seems to be mainly depending on
the testing dataset.

Taking a more in-depth look at the effect of the search
algorithm, we note that Chuang* has forward feature selection
incorporated in the gene set search while Lee finds gene sets using
sequential selection. In Supplementary Figure 4, when comparing
Chuang* (C2 V2.5, T-score) against Lee (C2 V2.5), we notice
that Chuang* ranks higher, but it doesn’t significantly outperform
Lee. However, Lee (C2 V1.0) ranks higher than Chuang* (C2
V1.0, T-score), but again doesn’t significantly outperform the
other. Our data therefore does not suggest that forward feature
selection outperforms sequential selection in the gene set searching
algorithms.

Next, we analyze whether the scoring method, such as mutual
information or t-score has an effect. In Supplementary Figure 4, we
compare Chuang* (C2 V2.5, T-score) against Chuang* (C2 V2.5),
from which it is apparent that using the t-score works significantly
better than the mutual information score, at p < 0.05, however in
Supplementary Figure 3, where Wang is included, the significance
is lost. Also, even though Chuang (PPI, T-score) ranks higher than
Chuang (PPI), this improvement is not significant.

All in all, in order of importance, the results seem to be mostly
influenced by 1) the dataset on which the markers are tested, 2) the
external data used in marker searching algorithm 3) the searching
algorithm.

3.2 Artificial data results
In this section we describe several experiments on the artificial
datasets generated with models θ1 and θ2. The purpose of these
experiments is to shed light on the gene set searching algorithms
and characteristics of the datasets which might help explain the
performance of the algorithms on the real data. The first experiment
is designed to inspect what happens to the DLCV performance
when noise features are added to the marker set. In our real data
experiments, we have relaxed the restriction that only the most

8

A comparison of supervised gene set searching algorithms

Subnetworks

0 − 11601

Genes

0 − 11601

Largest subnetwork

0 − 511

Avg subnetwork size

0 − 4.7

Vijver AUC

0.5 − 1.0

SOS AUC

0.5 − 1.0

DMFS AUC

0.5 − 1.0

Chuang (PPI)

Chuang (T−score)

Chuang* (C2 V1.0)

Chuang* (Park)

Lee (C2 V1.0)

Lee (PPI*)

Lee (Park)

Park

Singles

DMFS

SOS

VIJVER

Fig. 8. This figure summarizes the results obtained for all the algorithms on the three datasets. For each gene set searching algorithm, the properties are
separated in three rows, each indicating the properties obtained for the DMFS, SOS and Vijver dataset. The area colored red indicates the relative value lying
within the boundaries given in the top of the column. ’Subnetworks’: the total number of markers found by an algorithm. ’Genes’: the total number of genes
involved in the union of all the markers. ’Largest subnetwork’: the total number of genes in the marker that combines the most genes. ’Avg. subnetwork’: the
average number of genes combined in the markers. The last three columns indicate the performance of the markers found on either the Vijver, SOS or DMFS
dataset, as described in Section 2.4.

significant markers should be used, but instead used all the markers
returned by an algorithm, and we have let the DLCV procedure take
care of selecting the best markers.

3.2.1 Experiment 1. In our first experiment, for both θ1 and θ2
we add genes (xi) based on their index (i).

So, the first 100 features are signal features, after which only
noise features are added. So, no real gene set searching algorithm
was used, but instead we’ve implemented a method that just selects
the first n features, regardless of the information in the training set.
For the results, see Figure 10.

As can be seen from the figure, both models indeed have a
peak performance at 100 features, the point at which all signal
features are included. After adding more noise features however, the
performance of model θ1 worsens, in contrast to model θ2. This is
probably due to a better contrast in t-scores of the features in model
θ2, making it easier for the DLCV to select the proper reporter set.

3.2.2 Experiment 2. The second experiment is to verify whether
combining genes in a gene set by combining the expression values
of these genes really improves the performance. For an overview of
the experiment, see Figure 12.

For the first three parts of this experiment we only employ model
θ1 and only the signal genes, i.e. x1, x2, ... , x100.

In the first part we compare the classification performance
obtained by two different approaches. In both approaches we
evaluate the classification performance (AUC) when the number
of genes employed to classify is increased in groups of ten. In
other words, we compute the performance obtained with 10, 20,
30 up to 100 genes. However, the genes are entered in the order
implied by their indices, i.e. the first group consists of x1, x2,
..., x10, the second group of x11, x12, ..., x20 etc. This implies
that at each step we add all the genes associated with a hidden
variable. In the first approach, we enter the genes as single
features, i.e. the dimensionality of the problem increases in steps
of 10 from 10-dimensional to 100-dimensional. This approach is

9

R. P. Kooter et al

1 1 0 0 2 0 0 5 0 0 1 0 0 0
0 .5 5

0 .6

0 .6 5

0 .7

0 .7 5

0 .8

0 .8 5

0 .9

0 .9 5

G e n e in d e x

A
v

e
ra

g
e

 A
U

C

M o d e l θ1

M o d e l θ2

1 1 2 3 100 1 2 3 1000

Fig. 10. For both artificial models, multiple datasets were generated, after
which the average AUC performance was calculated using cross-dataset-
cross-validation. At gene set searching algorithm here is merely taking the
first n features in order of index. After adding the first 100 signal features,
only noise features are to be added.

referred to as ’not combining correlated features’ in Figure 12(a).
In the second approach, we combine the genes associated with
a hidden variable prior to computing the performance, i.e. we
define a new feature space of ’meta-genes’, z1, z2, ..., z10,
where zk =

∑10
i=1 x(k−1)∗10+i/

√
(10). This implies that the

dimensionality of this problem is one-tenth of the dimensionality of
the first approach. The second approach is referred to as ’combining
correlated features’ in Figure 12(a) and the results obtained with,
for example, z1, z2 and z3 are depicted at the x-axis position of
30, denoting the number of genes combined in Figure 12(a). It is
surprising to observe from these results that combining of correlated
features does not improve the performance at all.

In the second part the experimental setup is exactly the same
as the first part, except for the order in which the features are
evaluated. While all features associated with a hidden variable were
entered simultaneously in the first part, here we enter a set of 10
uncorrelated features at each step. For example, in Step 1, x1, x11,
x21, ..., x91 are evaluated as single (not combining uncorrelated
features) or after being combined (combining uncorrelated features)
as meta-gene. In Step 2 x2, x12, x22, ..., x92 are evaluated, etc.
In contrast to the first part where the number of hidden variables
being represented by the genes gradually increase from a single
hidden variable to all ten at the end, in the second part, we enter
genes associated with all hidden variables at each step. Since all
hidden variables are required to predict the output (y), this implies
that the algorithm theoretically has full information available at each
step. This is clearly manifested in the superior performance obtained
by (not) combining uncorrelated features over combining correlated
features. (See Figure 12(c) where the curves are represented in the
same set of axes.) In contrast to combining correlated features,
combining uncorrelated features is significantly better than not
combining uncorrelated features.

In the third part all signal genes are always employed to evaluate
the performance. However, at each step of the process a subset
of genes is combined prior to the evaluation of the classification
performance. For example, at Step 3, z1, z2 and z3 are obtained by
combining {x1, x2, ..., x10}, {x11, x12, ..., x20} and {x21, x22, ...,

x30} respectively, while the rest of the genes are entered as single
variables. A similar procedure is followed for the uncorrelated
genes. In these experiments full information on the output is always
available to the classifier, we merely check under which conditions
combining genes helps. Figure 12(d) clearly shows that combining
correlated genes does not result in any advantage, while combining
uncorrelated genes does result in a performance increase. These
results are concordant with the results presented in Figure 12(a-c).

For the last part of this experiment the noise features are also
included in the analysis, and the procedure employed in the third
part is repeated for this enlarged set. Note that only the signal genes
are involved in uncorrelated and correlated combining. Considering
the performance curves in Figure 12(d) we observe that now
combining of uncorrelated features clearly helps, since it enables
the classifier to better distinguish the signal genes from the noise
genes. However, combining uncorrelated features is much more
advantageous.

3.2.3 Experiment 3. Finally, Park, Lee and single gene features
were evaluated on model θ1 using various values for the noise added
to the features, σx. The results are shown in Figure 13.

As can be seen from Figure 13(a), Park indeed gives a significant
improvement in performance in model θ1 over single genes, but only
if the noise is sufficiently low so Park can build and select the proper
marker set.

According to Figure 13(b), using mixed sets results in the worst
performance. Lee (’Correlated, signal only’) performs worse than
Lee (’Uncorrelated, signal only’), which is in accordance with
Experiment 2. Lee (’Correlated’) with noise performs worse than
Lee (’Correlated, signal only’) as expected, but also performs worse
than single genes for low noise levels. Lee (’Uncorrelated, signal
only’) performs best, as expected, since there is no noise and we
combine genes in sets which work best according to Experiments 2.
Lee (’Uncorrelated’) with noise works worse for higher noise levels
but similar for low noise levels, as expected, but still significantly
outperforms the single genes. From these observations we conclude
that good quality gene sets can help if it contains independent
information, poor quality gene sets can hurt the performance.
Uncorrelated gene sets result in a performance significantly better
than single genes.

In model θ2, as expected, Park doesn’t give an improvement, see
Figure 13(c).

In Figure 13(d) we observe that Lee (’Uncorrelated’) shows a
large significant improvement over single genes, which, in turn,
outperforms mixed gene sets.

In conclusion, in both models, Lee results in improvement given
good sets. Park only results in a possible improvement in model θ1.

4 CONCLUSION
We were surprisingly unable to reproduce the previous results in
such a way that the gene set searching algorithms (as proposed by
Chuang et al. (2007) and Lee et al. (2008), i.e. Chuang (PPI) and
Lee (C2 V1.0)) would outperform single gene approaches. In fact,
single genes significantly outperformed Chuang (PPI) (p < 0.05)
but were not significantly outperformed by Lee (C2 V1.0). Various
explanations may be given for this negative result: by omitting

10

A comparison of supervised gene set searching algorithms

(a)

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
0 . 5 5

0 . 6

0 . 6 5

0 . 7

0 . 7 5

0 . 8

0 . 8 5

0 . 9

0 . 9 5

N u m b e r o f fe a t u re s in vo lve d

A
v

e
ra

g
e

 A
U

C

M o d e l θ1

C o m b in in g c o rre la t e d fe a t u re s

N o t c o m b in in g c o rre la t e d fe a t u re s

1
2
3

10

Not combining correlated features

Combining correlated features

1
2
3

10

11
12
13

20

1
2
3

10

11
12
13

20

21
22
23

30

91
92
93

100

1
2
3

10

1
2
3

10

11
12
13

20

1
2
3

10

11
12
13

20

21
22
23

30

91
92
93

100

(d)

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
0 . 9 1

0 . 9 1 5

0 . 9 2

0 . 9 2 5

0 . 9 3

0 . 9 3 5

0 . 9 4

0 . 9 4 5

0 . 9 5

0 . 9 5 5

0 . 9 6

N u m b e r o f fe a t u re s c o m b in e d

A
v

e
ra

g
e

 A
U

C

M o d e l θ1
, 1 0 0 fe a t u re s in vo lve d

C o m b in in g c o rre la t e d fe a t u re s

C o m b in in g u n c o rre la t e d fe a t u re s

1
2
3

10

11
12
13

20

21
22
23

30

91
92
93

100

1 1121 91 1 1121 91
2 1222 922

3

10

12
13

20

22
23

30

92
93

100

3

10

13

20

23

30

93

100

Combining correlated features

Combining uncorrelated features

91
92
93

100

1
2
3

10

11
12
13

20

21
22
23

30

1
2
3

10

11
12
13

20

1 1121 91
2 1222 92

21
22
23

30

91
92
93

100

3 1323 93

102030 100

(b)

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
0 . 7

0 . 7 5

0 . 8

0 . 8 5

0 . 9

0 . 9 5

1

N u m b e r o f fe a t u re s in vo lve d

A
v

e
ra

g
e

 A
U

C

M o d e l θ1

C o m b in in g u n c o rre la t e d fe a t u re s

N o t c o m b in in g u n c o rre la t e d fe a t u re s

1 1121 91 1 1121 91
2 1222 92

Not combining uncorrelated features

Combining uncorrelated features
1 1121 91
2 1222 92
3 1323 93

102030 100

1 1121 91 1
2
11
12
21
22

91
92

1
2
3

10

11
12
13

20

21
22
23

30

91
92
93

100

(e)

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
0 . 8 4

0 . 8 6

0 . 8 8

0 . 9

0 . 9 2

0 . 9 4

0 . 9 6

N u m b e r o f fe a t u re s c o m b in e d

A
v

e
ra

g
e

 A
U

C

M o d e l θ1
, 1 0 0 0 fe a t u re s in vo lve d

C o m b in in g c o r re la t e d fe a t u re s

C o m b in in g u n c o r re la t e d fe a t u re s

1
2
3

10

11
12
13

20

21
22
23

30

91
92
93

100

101
102
103

110

991
992
993

1000

1 1121 91 1 1121 91
2 1222 922

3

10

12
13

20

22
23

30

92
93

100

3

10

13

20

23

30

93

100

Combining correlated features

Combining uncorrelated features
101
102
103

110

991
992
993

1000

991
992
993

1000

101
102
103

110

991
992
993

1000

91
92
93

100

101
102
103

110

1
2
3

10

11
12
13

20

21
22
23

30

991
992
993

1000

1
2
3

10

11
12
13

20

1 1121 91
2 1222 92

991
992
993

1000

21
22
23

30

91
92
93

100

101
102
103

110

3 1323 93

102030 100

101
102
103

110

(c)
1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

0 . 5 5

0 . 6

0 . 6 5

0 . 7

0 . 7 5

0 . 8

0 . 8 5

0 . 9

0 . 9 5

1

N u m b e r o f fe a t u re s in vo lve d

A
v

e
ra

g
e

 A
U

C

M o d e l θ1

C o m b in in g c o rre la t e d fe a t u re s

N o t c o m b in in g c o rre la t e d fe a t u re s
C o m b in in g u n c o r re la t e d fe a t u re s

N o t c o m b in in g u n c o rre la t e d fe a t u re s

(f)

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
0 . 8 4

0 . 8 6

0 . 8 8

0 . 9

0 . 9 2

0 . 9 4

0 . 9 6

N u m b e r o f fe a t u re s c o m b in e d

A
v

e
ra

g
e

 A
U

C

M o d e l θ1

C o m b in in g c o rre la t e d fe a t u re s , 1 0 0 fe a t u re s in vo lve d

C o m b in in g u n c o rre la t e d fe a t u re s , 1 0 0 fe a t u re s in vo lve d
C o m b in in g c o rre la t e d fe a t u re s , 1 0 0 0 fe a t u re s in vo lve d

C o m b in in g u n c o rre la t e d fe a t u re s , 1 0 0 0 fe a t u re s in vo lve d

Fig. 11. The numbers in the boxes below the graphs refer to the gene indices. All indices in a box are combined to serve as input to the algorithms. For
example, in (a), the genes x1, x2, ..., x10 are employed to calculate the leftmost point of the ’Not combining correlated features’ curve, while z1 =
(x1 + x2+, ...,+x10)/

√
(10) is a single meta-gene which is used to calculate the leftmost point of the ’Combining correlated features’ curve. All genes (or

combinations of genes) on a yellow region are employed as input to the corresponding on the x-axis.

11

R. P. Kooter et al

(a)
0 1 2 3 4 5

0 . 4 5

0 . 5

0 . 5 5

0 . 6

0 . 6 5

0 . 7

0 . 7 5

0 . 8

0 . 8 5

0 . 9

0 . 9 5

σ x

A
v

e
ra

g
e

 A
U

C

M o d e l θ1

P a rk

S in g le s

(b)
0 1 2 3 4 5

0 . 5

0 . 5 5

0 . 6

0 . 6 5

0 . 7

0 . 7 5

0 . 8

0 . 8 5

0 . 9

σ x

A
v

e
ra

g
e

 A
U

C

M o d e l θ2

P a rk

S in g le s

0 1 2 3 4 5
0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

σ x

A
v

e
ra

g
e

 A
U

C

M o d e l θ1

S in g le s
L e e (C o rre la t e d)

L e e (C o rre la t e d , s ig n a l o n ly))

L e e (U n c o rre la t e d)

L e e (U n c o rre la t e d , s ig n a l o n ly)
M ix e d

(c)
0 1 2 3 4 5

0 . 4 5

0 . 5

0 . 5 5

0 . 6

0 . 6 5

0 . 7

0 . 7 5

0 . 8

0 . 8 5

0 . 9

0 . 9 5

σ x

A
v

e
ra

g
e

 A
U

C

M o d e l θ1

P a rk

S in g le s

0 1 2 3 4 5
0 . 5

0 . 5 5

0 . 6

0 . 6 5

0 . 7

0 . 7 5

0 . 8

0 . 8 5

0 . 9

σ x

A
v

e
ra

g
e

 A
U

C

M o d e l θ2

P a rk

S in g le s

(d)
0 1 2 3 4 5

0 . 4 5

0 . 5

0 . 5 5

0 . 6

0 . 6 5

0 . 7

0 . 7 5

0 . 8

0 . 8 5

0 . 9

σ x

A
v

e
ra

g
e

 A
U

C

M o d e l θ2

S in g le s

L e e (U n c o rre la t e d)
L e e (U n c o rre la t e d , s ig n a l o n ly))

M ix e d

Fig. 12. Average AUC performance when comparing (a) Park against
singles on model θ1, (b) Lee against singles on model θ1, (c) Park against
singles on model θ2, (d) Lee against singles on model θ2.

the selection of significant markers and using DLCV instead of 5-
fold cross-validation we have used a larger marker set which may
have solved the small sample size problem only partly. As can be
seen from the artificial data experiments, the presence of non-signal
features in a dataset may cause the feature selection to perform
worse, since it makes it harder to find the correct reporter set.

But the differences could also be due to different preprocessing of
the datasets, slight variations in implementation of the algorithms,
the cross-validation procedure, the use of Nearest Mean Classifier
and AUC for evaluation, etc. However, at one point, to reproduce
Chuang’s algorithm, the exact same datasets and marker sets as used
in their work were downloaded for evaluation, which still did not
return the same trend as claimed in their paper, suggesting that the
evaluation procedure has a larger effect than expected.

Three gene set searching algorithms were implemented, along
with a few variations, and were subjected to the same evaluation
protocol. Due to low quality, compared to the other datasets,
the Wang dataset was eventually left out of the analysis. Our
main observation is that there are few methods that significantly
outperform the single genes case, that is, if we apply the evaluation
protocol on all genes without the intervention of a gene set searching
algorithm, we get a decent performance which is only outperformed
by Chuang*.

However, even though few methods outperform the single genes
case, the use of the MSigDB C2 pathways seems to be responsible
for the biggest improvement here. The most notable feature of the
C2-based methods is that only ∼ 500 markers are found, consisting
of ∼ 500 genes, in contrast to the PPI-based method that returns
∼ 10000 markers. To see if this performance could be attributed to
the difference in number of features, the top-n ranking markers were
selected for a few of these methods. However, the trends among
the algorithms remained the same. See Supplementary Figure 6. It
should be noted that the performance of the markers depend much
on the dataset used to test the performance of these markers. Even
though the performance of Park is weak, when the Park markers
obtained using the Vijver dataset are tested on the DMFS datasets,
Park becomes the highest ranking method. See Supplementary
Figure 5.

Artificial data was generated to explore the basic properties of
combining gene expression and using gene set searching algorithms.
By doing so, we’ve observed that the presence of non-signal
genes may worsen the performance, so perhaps employing all
∼ 10000 markers returned by an algorithm should require an
additional proper feature selection step, such as employing the
LASSO algorithm.

Also, in some cases, combining uncorrelated features may give
a better performance than combining correlated features. In some
cases, combining correlated features to give a better approximation
of the pathway activities only seems to give an advantage when in
the context of noise features, since combining correlated features
helps to select the proper reporter set rather than really achieving an
intrinsic improvement in signal.

To conclude, we recommend always employing the Chuang*
algorithm in conjunction with the C2 database. Single genes should
always be included as a simple benchmark and possible fallback.

REFERENCES
Chin, K., DeVries, S., Fridlyand, J., Spellman, P. T., Roydasgupta, R., Kuo, W. L.,

Lapuk, A., Neve, R. M., Qian, Z., Ryder, T., Chen, F., Feiler, H., Tokuyasu, T.,
Kingsley, C., Dairkee, S., Meng, Z., Chew, K., Pinkel, D., Jain, A., Ljung, B. M.,
Esserman, L., Albertson, D. G., Waldman, F. M., and Gray, J. W. (2006). Genomic
and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer
Cell, 10, 529–541.

Chuang, H., Lee, E., Liu, Y., Lee, D., and Ideker, T. (2007). Network-based
classification of breast cancer metastasis. Mol. Syst. Biol., 3, 140.

12

A comparison of supervised gene set searching algorithms

Desmedt, C., Piette, F., Loi, S., Wang, Y., Lallemand, F., Haibe-Kains, B., Viale, G.,
Delorenzi, M., Zhang, Y., d’Assignies, M. S., Bergh, J., Lidereau, R., Ellis, P.,
Harris, A. L., Klijn, J. G., Foekens, J. A., Cardoso, F., Piccart, M. J., Buyse, M., and
Sotiriou, C. (2007). Strong time dependence of the 76-gene prognostic signature
for node-negative breast cancer patients in the TRANSBIG multicenter independent
validation series. Clin. Cancer Res., 13, 3207–3214.

Lee, E., Chuang, H. Y., Kim, J. W., Ideker, T., and Lee, D. (2008). Inferring pathway
activity toward precise disease classification. PLoS Comput. Biol., 4, e1000217.

Loi, S., Haibe-Kains, B., Desmedt, C., Lallemand, F., Tutt, A. M., Gillet, C.,
Ellis, P., Harris, A., Bergh, J., Foekens, J. A., Klijn, J. G., Larsimont, D.,
Buyse, M., Bontempi, G., Delorenzi, M., Piccart, M. J., and Sotiriou, C. (2007).
Definition of clinically distinct molecular subtypes in estrogen receptor-positive
breast carcinomas through genomic grade. J. Clin. Oncol., 25, 1239–1246.

Miller, L. D., Smeds, J., George, J., Vega, V. B., Vergara, L., Ploner, A., Pawitan, Y.,
Hall, P., Klaar, S., Liu, E. T., and Bergh, J. (2005). An expression signature for p53
status in human breast cancer predicts mutation status, transcriptional effects, and
patient survival. Proc. Natl. Acad. Sci. U.S.A., 102, 13550–13555.

Park, M. Y., Hastie, T., and Tibshirani, R. (2007). Averaged gene expressions for
regression. Biostatistics, 8, 212–227.

Pawitan, Y., Bjhle, J., Amler, L., Borg, A. L., Egyhazi, S., Hall, P., Han, X., Holmberg,
L., Huang, F., Klaar, S., Liu, E. T., Miller, L., Nordgren, H., Ploner, A., Sandelin, K.,
Shaw, P. M., Smeds, J., Skoog, L., Wedrn, S., and Bergh, J. (2005). Gene expression

profiling spares early breast cancer patients from adjuvant therapy: derived and
validated in two population-based cohorts. Breast Cancer Res., 7, R953–964.

van de Vijver, M., He, Y., van’t Veer, L., Dai, H., Hart, A., Voskuil, D., Schreiber, G.,
Peterse, J., Roberts, C., Marton, M., Parrish, M., and (shortened) (2002). A gene-
expression signature as a predictor of survival in breast cancer. N. Engl. J. Med.,
347, 1999–2009.

van ’t Veer, L. J., Dai, H., van de Vijver, M. J., He, Y. D., Hart, A. A., Mao, M.,
Peterse, H. L., van der Kooy, K., Marton, M. J., Witteveen, A. T., Schreiber, G. J.,
Kerkhoven, R. M., Roberts, C., Linsley, P. S., Bernards, R., and Friend, S. H. (2002).
Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415,
530–536.

van Vliet, M. H., Reyal, F., Horlings, H. M., van de Vijver, M. J., Reinders, M. J.,
and Wessels, L. F. (2008). Pooling breast cancer datasets has a synergetic effect on
classification performance and improves signature stability. BMC Genomics, 9, 375.

Wang, Y., Klijn, J., Zhang, Y., Sieuwerts, A., Look, M., Yang, F., Talantov, D.,
Timmermans, M., Meijer-van Gelder, M., Yu, J., Jatkoe, T., Berns, E., Atkins,
D., and Foekens, J. (2005). Gene-expression profiles to predict distant metastasis of
lymph-node-negative primary breast cancer. Lancet, 365, 671–679.

Wessels, L. F., Reinders, M. J., Hart, A. A., Veenman, C. J., Dai, H., He, Y. D., and
van’t Veer, L. J. (2005). A protocol for building and evaluating predictors of disease
state based on microarray data. Bioinformatics, 21, 3755–3762.

13

Master’s Thesis

Supplementary Material
A comparison of supervised gene set searching algorithms for outcome

prediction of breast cancer

Thesis Committee:
Prof.dr.ir. M.J.T. Reinders
Dr. L.F.A. Wessels
Ir. M.H. van Vliet
Dr. E.A. Hendriks
Dr. G.W. Klau

Author Raul Kooter
Email Raul@xs4all.nl

Student number 1150162

Thesis supervisor Dr. L.F.A. Wessels
Ir. M.H. van Vliet

Date September 23, 2009 - 14:00

[I,C)
TInformation and

Communication
Theory Group

mailto:Raul@xs4all.nl

Pages 1

A comparison of supervised gene set searching
algorithms for outcome prediction of breast cancer:
Supplementary Material
Raul Kooter 1

1Information and Communication Theory Group, Faculty of Electrical Engineering, Mathematics
and Computer Science, Delft University of Technology, Delft, The Netherlands

1 CROSS-VALIDATION PROCEDURE
The dataset is split in five stratified folds. Each subset is used in turn
as a testing subset, with the other four subsets being the training
subset. The training subset is used to both determine the optimal
number of features and to train the classifier, which is tested on the
the testing subset. This procedure returns five AUC values, and is
repeated 20 times, returning 100 AUC values in total. The average
of these AUC values is returned as the average performance.

The inner loop of the cross-validation procedure is run to
determine the optimal number of features in an unbiased manner.
The dataset fed into this inner loop is itself split in four subsets, with
each subset being an inner testing subset and the other three being
the inner training subset. For every fold, the features are ranked by
the magnitude of the t-score of the inner training subset. Given this
ranking, a learning curve l was calculated for every fold. This inner
loop procedure was repeated three times, after which a combined
learning curve was calculated. The optimal number of features n∗
was determined by taking the position of the minimum error in the
combined learning curve. Given this optimal number of features,
the entire dataset fed into the inner loop was re-ranked according to
t-score, and the NMC was trained on the top ranking features.

To make a fair comparison between sets of markers tested on the
same dataset, the information on how the samples were split was
stored and reused. The AUC values are then suitable for testing with
a paired Wilcoxon test.

An overview of the procedure can be seen in Figure 1.

2 ADDITIONAL TABLES AND FIGURES

Split in
5 parts

Repeat r of 20 repeats

Dataset

Test set

Training
set

Fold j of 5-fold CV

INNER
LOOP*

Optimum
predictor
Cn*

Validation of
predictor

AUC
vr,j

Set of 100
AUC values

v

* The inner loop determines the optimum number of features n* in an unbiased manner, and
trains an optimum predictor on these n* features

OUTER LOOP

Split in
4 parts

Repeat r of 3 repeats

Dataset

Test set

Training
set

Fold j of 4-fold CV

INNER LOOP

Optimum
predictor
Cn*

Optimum
number

of features
n*

Train NMC

Validation of
predictor

AUC
learning curve

lcr,j

Combined
learning
curve
lc

Train NMC
on n*

features

Fig. 1. Double-loop-cross-validation strategy.

1

R. P. Kooter et al

Algorithm 1 Chuang's algorithm

for Node ∈ NodesPPI do

Subnetwork ← Node
Score←MI-Score(XSubnetwork, Y)
repeat

Candidates←Neighbours(Subnetwork, PPI)∩MaxDistance2(Node, PPI)
for Candidate ∈ Candidates do

ScoreCandidate ←MI-Score(XSubnetwork∪Candidate, Y)
end for

BestCandidate← arg maxCandidate(ScoreCandidate)
if ScoreBestCandidate > Score× 1.05 then

Subnetwork ← Subnetwork ∪BestCandidate
end if

until Subnetwork hasn't changed
Subnetworks← Subnetworks ∪ Subnetwork

end for

return Subnetworks

Algorithm 2 Lee's algorithm

for Geneset ∈ Genesets do

CORG← ∅
ScoreCORG ← 0
for Gene ∈ Geneset do

ScoreGene ←T-Test(XGene, Y)
end for

if Mean(ScoreGeneset) > 0 then

Geneset←OrderDescending(Geneset) {Order w.r.t. scores}
else

Geneset←OrderAscending(Geneset)
end if

N ← 0
repeat

N ← N + 1
Candidates← Geneset1,...,N

ScoreCandidates ←T-Test(XCandidates, Y)
if ScoreCandidates > ScoreCORG then

CORG← Candidates
ScoreCORG ← ScoreCandidates

end if

until CORG hasn't changed
CORGs← CORGs ∪ CORG

end for

return CORGs

Algorithm 3 Park's algorithm

Dendrogram←Cluster(X) {Use average linkage}
for Level := 1 to #Features(X) do

Genesets←CutO�(Dendrogram, Level)
LearningCurveLevel ←CrossValidate(XGenesets, Y) {Use area under curve}
MinErrorLevel ←Min(LearningCurveLevel)

end for

BestLevel← arg minLevel(MinErrorLevel)
BestGeneSets←CutO�(Dendrogram, BestLevel)
return BestGeneSets

1

Fig. 2. Pseudo-code of the three main algorithms used.

2

Supplementary Material

C h u a n g * (C 2 V 1 . 0)

C h u a n g * (C 2 V 2 . 5) (T - s c o r e)

C h u a n g * (C 1 V 2 . 5)

C h u a n g * (C 2 V 2 . 5)

L e e (C 2 V 2 . 5)

C h u a n g * (C 2 V 1 . 0) (T - s c o r e)

L e e (P a r k)

S i n g l e s

L e e (C 2 V 1 . 0)

C h u a n g * (C 3 V 2 . 5)

C h u a n g * (P a r k)

L e e (C 1 V 2 . 5)

C h u a n g * (C 4 V 2 . 5)

C h u a n g (T - s c o r e)

C h u a n g (P P I)

L e e (C 3 V 2 . 5)

C h u a n g * (C 5 V 2 . 5)
P a r k

L e e (P P I *)

L e e (C 5 V 2 . 5)

L e e (C 4 V 2 . 5)

C h u a n g * (C 2 V 1 . 0)

C h u a n g * (C 2 V 2 . 5) (T - s c o r e)

C h u a n g * (C 1 V 2 . 5)

C h u a n g * (C 2 V 2 . 5)

L e e (C 2 V 2 . 5)

C h u a n g * (C 2 V 1 . 0) (T - s c o r e)

L e e (P a r k)

S i n g l e s

L e e (C 2 V 1 . 0)

C h u a n g * (C 3 V 2 . 5)

C h u a n g * (P a r k)

L e e (C 1 V 2 . 5)

C h u a n g * (C 4 V 2 . 5)

C h u a n g (T - s c o r e)

C h u a n g (P P I)

L e e (C 3 V 2 . 5)

C h u a n g * (C 5 V 2 . 5)

P a r k

L e e (P P I *)

L e e (C 5 V 2 . 5)

L e e (C 4 V 2 . 5)

 p < 0 . 0 1
 p < 0 . 0 5

Fig. 3. A comparison of the algorithms. A red box in row X and column Y indicates that the algorithm in row X significantly outperforms the algorithm in
column Y. In this set, Wang is included as both a training and testing dataset.

3

R. P. Kooter et al

C h u a n g * (C 2 V 2 . 5
) (T - s c o r e)

C h u a n g * (C 2 V 1 . 0)

L e e (C 2 V 1 . 0)

L e e (C 2 V 2 . 5)

C h u a n g * (C 2 V 1 . 0
) (T - s c o r e)

C h u a n g * (C 3 V 2 . 5)

C h u a n g * (C 2 V 2 . 5)

C h u a n g * (C 1 V 2 . 5)

S i n g l e s

L e e (P a r k)

L e e (C 3 V 2 . 5)

C h u a n g * (P a r k)

C h u a n g * (C 4 V 2 . 5)

L e e (C 1 V 2 . 5)

C h u a n g (T - s c o r e)

C h u a n g (P P I)
P a r k

L e e (C 5 V 2 . 5)

C h u a n g * (C 5 V 2 . 5)

L e e (P P I *)

L e e (C 4 V 2 . 5)

C h u a n g * (C 2 V 2 . 5) (T - s c o r e)

C h u a n g * (C 2 V 1 . 0)

L e e (C 2 V 1 . 0)

L e e (C 2 V 2 . 5)

C h u a n g * (C 2 V 1 . 0) (T - s c o r e)

C h u a n g * (C 3 V 2 . 5)

C h u a n g * (C 2 V 2 . 5)

C h u a n g * (C 1 V 2 . 5)

S i n g l e s

L e e (P a r k)

L e e (C 3 V 2 . 5)

C h u a n g * (P a r k)

C h u a n g * (C 4 V 2 . 5)

L e e (C 1 V 2 . 5)

C h u a n g (T - s c o r e)

C h u a n g (P P I)

P a r k

L e e (C 5 V 2 . 5)

C h u a n g * (C 5 V 2 . 5)

L e e (P P I *)

L e e (C 4 V 2 . 5)

 p < 0 . 0 1

 p < 0 . 0 5

Fig. 4. Same as Figure 3, but Wang was not included for training and testing.

4

Supplementary Material

DMFS markers tested on VIJVER

Le
e

(C
2

V1.
0)

Le
e

(P
ar

k)

Chu
an

g
(P

PI)

Le
e

(C
2

V2.
5)

Sing
les

Le
e

(P
PI*)

Chu
an

g*
 (C

2
V2.

5)

Chu
an

g*
 (C

2
V2.

5)
 (T

−s
co

re
)

Chu
an

g
(T

−s
co

re
)

Chu
an

g*
 (C

2
V1.

0)
Par

k

Chu
an

g*
 (P

ar
k)

Le
e*

 (P
PI)

Lee (C2 V1.0)

Lee (Park)

Chuang (PPI)

Lee (C2 V2.5)

Singles

Lee (PPI*)

Chuang* (C2 V2.5)

Chuang* (C2 V2.5) (T−score)

Chuang (T−score)

Chuang* (C2 V1.0)

Park

Chuang* (Park)

Lee* (PPI)

SOS markers tested on VIJVER

Le
e

(C
2

V1.
0)

Chu
an

g*
 (C

2
V1.

0)

Chu
an

g*
 (C

2
V2.

5)
 (T

−s
co

re
)

Sing
les

Le
e

(P
ar

k)

Chu
an

g*
 (P

ar
k)

Chu
an

g*
 (C

2
V2.

5)

Le
e

(C
2

V2.
5)

Chu
an

g
(P

PI)

Chu
an

g
(T

−s
co

re
)

Le
e*

 (P
PI)

Par
k

Le
e

(P
PI*)

Lee (C2 V1.0)

Chuang* (C2 V1.0)

Chuang* (C2 V2.5) (T−score)

Singles

Lee (Park)

Chuang* (Park)

Chuang* (C2 V2.5)

Lee (C2 V2.5)

Chuang (PPI)

Chuang (T−score)

Lee* (PPI)

Park

Lee (PPI*)

DMFS and SOS markers tested on VIJVER

Le
e

(C
2

V1.
0)

Chu
an

g*
 (C

2
V1.

0)

Sing
les

Le
e

(P
ar

k)

Chu
an

g*
 (C

2
V2.

5)
 (T

−s
co

re
)

Le
e

(C
2

V2.
5)

Chu
an

g*
 (C

2
V2.

5)

Chu
an

g
(P

PI)

Chu
an

g*
 (P

ar
k)

Chu
an

g
(T

−s
co

re
)
Par

k

Le
e

(P
PI*)

Le
e*

 (P
PI)

Lee (C2 V1.0)

Chuang* (C2 V1.0)

Singles

Lee (Park)

Chuang* (C2 V2.5) (T−score)

Lee (C2 V2.5)

Chuang* (C2 V2.5)

Chuang (PPI)

Chuang* (Park)

Chuang (T−score)

Park

Lee (PPI*)

Lee* (PPI)

VIJVER markers tested on DMFS

Par
k

Sing
les

Le
e

(P
ar

k)

Chu
an

g*
 (P

ar
k)

Chu
an

g*
 (C

2
V2.

5)
 (T

−s
co

re
)

Chu
an

g*
 (C

2
V1.

0)

Chu
an

g*
 (C

2
V2.

5)

Chu
an

g
(T

−s
co

re
)

Chu
an

g
(P

PI)

Le
e

(C
2

V1.
0)

Le
e

(C
2

V2.
5)

Le
e*

 (P
PI)

Le
e

(P
PI*)

Park

Singles

Lee (Park)

Chuang* (Park)

Chuang* (C2 V2.5) (T−score)

Chuang* (C2 V1.0)

Chuang* (C2 V2.5)

Chuang (T−score)

Chuang (PPI)

Lee (C2 V1.0)

Lee (C2 V2.5)

Lee* (PPI)

Lee (PPI*)

SOS markers tested on DMFS

Le
e

(C
2

V2.
5)

Chu
an

g*
 (C

2
V2.

5)
 (T

−s
co

re
)

Sing
les

Chu
an

g*
 (P

ar
k)

Le
e

(P
ar

k)
Par

k

Chu
an

g*
 (C

2
V1.

0)

Chu
an

g*
 (C

2
V2.

5)

Chu
an

g
(T

−s
co

re
)

Chu
an

g
(P

PI)

Le
e

(C
2

V1.
0)

Le
e

(P
PI*)

Le
e*

 (P
PI)

Lee (C2 V2.5)

Chuang* (C2 V2.5) (T−score)

Singles

Chuang* (Park)

Lee (Park)

Park

Chuang* (C2 V1.0)

Chuang* (C2 V2.5)

Chuang (T−score)

Chuang (PPI)

Lee (C2 V1.0)

Lee (PPI*)

Lee* (PPI)

VIJVER and SOS markers tested on DMFS

Par
k

Sing
les

Chu
an

g*
 (C

2
V2.

5)
 (T

−s
co

re
)

Chu
an

g*
 (P

ar
k)

Le
e

(P
ar

k)

Le
e

(C
2

V2.
5)

Chu
an

g*
 (C

2
V1.

0)

Chu
an

g*
 (C

2
V2.

5)

Chu
an

g
(T

−s
co

re
)

Chu
an

g
(P

PI)

Le
e

(C
2

V1.
0)

Le
e

(P
PI*)

Le
e*

 (P
PI)

Park

Singles

Chuang* (C2 V2.5) (T−score)

Chuang* (Park)

Lee (Park)

Lee (C2 V2.5)

Chuang* (C2 V1.0)

Chuang* (C2 V2.5)

Chuang (T−score)

Chuang (PPI)

Lee (C2 V1.0)

Lee (PPI*)

Lee* (PPI)

VIJVER markers tested on SOS

Chu
an

g*
 (C

2
V1.

0)

Le
e

(C
2

V1.
0)

Chu
an

g*
 (C

2
V2.

5)
 (T

−s
co

re
)

Le
e

(C
2

V2.
5)

Chu
an

g*
 (C

2
V2.

5)

Chu
an

g
(T

−s
co

re
)

Le
e*

 (P
PI)

Le
e

(P
PI*)

Chu
an

g
(P

PI)

Sing
les

Le
e

(P
ar

k)

Chu
an

g*
 (P

ar
k)

Par
k

Chuang* (C2 V1.0)

Lee (C2 V1.0)

Chuang* (C2 V2.5) (T−score)

Lee (C2 V2.5)

Chuang* (C2 V2.5)

Chuang (T−score)

Lee* (PPI)

Lee (PPI*)

Chuang (PPI)

Singles

Lee (Park)

Chuang* (Park)

Park

DMFS markers tested on SOS

Le
e*

 (P
PI)

Chu
an

g*
 (C

2
V1.

0)

Le
e

(C
2

V1.
0)

Chu
an

g*
 (C

2
V2.

5)
 (T

−s
co

re
)

Le
e

(P
PI*)

Le
e

(C
2

V2.
5)

Chu
an

g*
 (C

2
V2.

5)

Chu
an

g
(T

−s
co

re
)

Chu
an

g
(P

PI)

Chu
an

g*
 (P

ar
k)

Le
e

(P
ar

k)

Sing
les Par

k

Lee* (PPI)

Chuang* (C2 V1.0)

Lee (C2 V1.0)

Chuang* (C2 V2.5) (T−score)

Lee (PPI*)

Lee (C2 V2.5)

Chuang* (C2 V2.5)

Chuang (T−score)

Chuang (PPI)

Chuang* (Park)

Lee (Park)

Singles

Park

VIJVER and DMFS markers tested on SOS

Chu
an

g*
 (C

2
V1.

0)

Le
e

(C
2

V1.
0)

Chu
an

g*
 (C

2
V2.

5)
 (T

−s
co

re
)

Le
e*

 (P
PI)

Le
e

(C
2

V2.
5)

Chu
an

g*
 (C

2
V2.

5)

Le
e

(P
PI*)

Chu
an

g
(T

−s
co

re
)

Chu
an

g
(P

PI)

Chu
an

g*
 (P

ar
k)

Le
e

(P
ar

k)

Sing
les Par

k

Chuang* (C2 V1.0)

Lee (C2 V1.0)

Chuang* (C2 V2.5) (T−score)

Lee* (PPI)

Lee (C2 V2.5)

Chuang* (C2 V2.5)

Lee (PPI*)

Chuang (T−score)

Chuang (PPI)

Chuang* (Park)

Lee (Park)

Singles

Park

Fig. 5. A comparison of a subselection of the algorithms separated according to training and testing dataset. The same data as used as shown in Figure 4, the
results aren’t merged together.

5

R. P. Kooter et al

Le
e

(C
2

V1.
0)

 to
p5

00

Le
e

(C
2

V1.
0)

Le
e

(C
2

V1.
0)

 to
p1

00

Le
e

(C
2

V1.
0)

 to
p2

00

Sing
les

Le
e

(C
2

V1.
0)

 to
p5

0

Sing
les

 to
p5

00

Chu
an

g
(P

PI)
Par

k

Sing
les

 to
p2

00

Chu
an

g
(P

PI)
to

p1
00

Chu
an

g
(P

PI)
to

p2
00

Chu
an

g
(P

PI)
to

p5
00

Sing
les

 to
p1

00

Chu
an

g
(P

PI)
to

p5
0

Sing
les

 to
p5

0

Sing
les

 to
p1

0

Par
k t

op
50

0

Par
k t

op
50

Le
e

(C
2

V1.
0)

 to
p1

0

Par
k t

op
20

0

Par
k t

op
10

0

Chu
an

g
(P

PI)
to

p1
0

Par
k t

op
10

Lee (C2 V1.0) top500
Lee (C2 V1.0)

Lee (C2 V1.0) top100
Lee (C2 V1.0) top200

Singles
Lee (C2 V1.0) top50

Singles top500
Chuang (PPI)

Park
Singles top200

Chuang (PPI) top100
Chuang (PPI) top200
Chuang (PPI) top500

Singles top100
Chuang (PPI) top50

Singles top50
Singles top10

Park top500
Park top50

Lee (C2 V1.0) top10
Park top200
Park top100

Chuang (PPI) top10
Park top10

 p < 0.01
 p < 0.05

Fig. 6. Similar to Figure 4, but using the top-n ranking markers. Markers were ranked according to absolute t-score using the training dataset, and we highest
ranking n number of markers were selected for evaluation.

6

Supplementary Material

0.68
0.7

0.72
0.74
0.76
0.78

Tested on VIJVER

0.68
0.7

0.72
0.74
0.76
0.78

Tested on SOS

0.68
0.7

0.72
0.74
0.76
0.78

Tested on DMFS

Chu
an

g*
 (C

2
V2.

5)
 (T

−s
co

re
)

Chu
an

g*
 (C

2
V1.

0)

Le
e

(C
2

V1.
0)

Le
e

(C
2

V2.
5)

Chu
an

g*
 (C

2
V2.

5)

Sing
les

Le
e

(P
ar

k)

Chu
an

g*
 (P

ar
k)

Chu
an

g
(T

−s
co

re
)

Chu
an

g
(P

PI)
Par

k

Le
e*

 (P
PI)

Le
e

(P
PI*)

VIJVER markers
SOS markers
DMFS markers

Fig. 7. Barplots of the performances. The same data used to generate Figure 4 is used here.

7

R. P. Kooter et al

0.65

0.7

0.75

Tested on VIJVER

0.65

0.7

0.75

Tested on SOS

0.65

0.7

0.75

Tested on DMFS

Chu
an

g
(P

PI)

Chu
an

g
(P

PI)
to

p5
00

Chu
an

g
(P

PI)
to

p2
00

Chu
an

g
(P

PI)
to

p1
00

Chu
an

g
(P

PI)
to

p5
0

Chu
an

g
(P

PI)
to

p1
0

Le
e

(C
2

V1.
0)

Le
e

(C
2

V1.
0)

 to
p5

00

Le
e

(C
2

V1.
0)

 to
p2

00

Le
e

(C
2

V1.
0)

 to
p1

00

Le
e

(C
2

V1.
0)

 to
p5

0

Le
e

(C
2

V1.
0)

 to
p1

0
Par

k

Par
k t

op
50

0

Par
k t

op
20

0

Par
k t

op
10

0

Par
k t

op
50

Par
k t

op
10

Sing
les

Sing
les

 to
p5

00

Sing
les

 to
p2

00

Sing
les

 to
p1

00

Sing
les

 to
p5

0

Sing
les

 to
p1

0

VIJVER markers
SOS markers
DMFS markers

Fig. 8. Barplots of the performances of the top-n ranking markers. The same data used to generate Figure 6 is used here.

8

Supplementary Material

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Fig. 9. The genes involved in the top 10 most frequent selected markers for each method, using markers that are found using Vijver, and which are tested on
SOS. The methods are: a) Chuang, b) Chuang* (C2 V1.0), c) Chuang* (Park), d) Chuang(PPI, t-score), e) Lee (C2 V1.0), f) Lee (Park), g) Lee (PPI*) h) Park
and i) Singles. The markers indicated in white are also the top 10 single gene markers for this setup.

9

R. P. Kooter et al

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Fig. 10. The genes involved in the top 10 most frequent selected markers for each method, using markers that are found using DMFS, and which are tested on
SOS. The methods are: a) Chuang, b) Chuang* (C2 V1.0), c) Chuang* (Park), d) Chuang(PPI, t-score), e) Lee (C2 V1.0), f) Lee (Park), g) Lee (PPI*) h) Park
and i) Singles. The markers indicated in white are also the top 10 single gene markers for this setup.

10

Supplementary Material

x1 x11 ... x91 x101 x111 ... x191 ... x901 x911 ... x991

x2 x12 ... x92 x102 x112 ... x192 ... x902 x912 ... x992

...

x10 x20 ... x100 x110 x120 ... x200 ... x910 x920 ... x1000

x1 x11 ... x91 x101 x111 ... x191 ... x901 x911 ... x991

x2 x12 ... x92 x102 x112 ... x192 ... x902 x912 ... x992

...

x10 x20 ... x100 x110 x120 ... x200 ... x910 x920 ... x1000

x1 x11 ... x91 x101 x111 ... x191 ... x901 x911 ... x991

x2 x12 ... x92 x102 x112 ... x192 ... x902 x912 ... x992

...

x10 x20 ... x100 x110 x120 ... x200 ... x910 x920 ... x1000

x1 x11 ... x91 x101 x111 ... x191 ... x901 x911 ... x991

x2 x12 ... x92 x102 x112 ... x192 ... x902 x912 ... x992

...

x10 x20 ... x100 x110 x120 ... x200 ... x910 x920 ... x1000

x1 x11 ... x91 x101 x111 ... x191 ... x901 x911 ... x991

x2 x12 ... x92 x102 x112 ... x192 ... x902 x912 ... x992

...

x10 x20 ... x100 x110 x120 ... x200 ... x910 x920 ... x1000

Uncorrelated, signal only

Uncorrelated

Correlated, signal only

Correlated

Mixed

Fig. 11. A graphical representation of the gene sets used for the artificial data experiments.

11

R. P. Kooter et al

Tested Markers Chuang (PPI) Chuang (T-score) Chuang* (C2 V1.0) Chuang* (Park) Lee (C2 V1.0) Lee (PPI*) Lee (Park) Park Singles
DMFS SOS ITIH4 CXCL12

PTK2B JAK2
RPS6KA6 MAPK1
HSP90AA1 NEK2
PTPRR HIF1A
GRB2

CXCL12 PTK2B TNFRSF14 ALDH1A1 ABAT
ACADS

CDC25A CENPN
E2F1 PPFIA1
KRT18 RALA

TNFRSF14 CCT5 TNFRSF14

DMFS SOS WDR5 HSP90AA1
EIF2AK2 LSM1
YWHAZ TERT
ERBB2

HIF1AN HDAC2
SUV39H1 EED
ASH2L HIF1A
PGK1 PML

CXCL12 PTK2B CCT5 CDC2 CCNB1 DLG7 CDC25A
CENPN E2F1
PPFIA1 KRT18
HSP90AA1

CCT5 TNFRSF14 EPHX2

DMFS SOS RASGRF1 CDC2
CCNB1 CCNB2
CDKN1A CIB2

HAL MAPK1
HSP90AA1 NEK2
PTPRR HIF1A
DHPS

PPFIA1 CDH3
CPNE1 BYSL
ALCAM

EPHX2 CDC2 CCNB1 STAT5A CXCL12
IL6ST KIT EVL

EPHX2 EPHX2 CCT5

DMFS SOS WEE1 CCNB2
CCNB1 GADD45B
CDC25B

IER3 MAPK1
NEK2 PTPRR
HSP90AA1 HIF1A
GRB2 CAMK2D
MAPK6

PPP1R12B ADCY1
PTK2B

BTG2 STAT5B STAT5A
MAP2K4 FOS
BCL2

PDE4A KIT EVL
SKAP1 IGJ

TREM1 PARP3 BTG2

DMFS SOS VAV1 PTK2B
IL6ST CXCL12
PIK3CG

FKBP3 HDAC2
SUV39H1 EED
TOP2A PPARD
ASH2L GADD45B

STAT5B JAK1 TREM1 TRIP13 CCT5
PGK1 NOL5A
PSMD14

IL6ST KIT EVL
PDGFRA CSF1
GOLGB1 FLT3
EPOR ARHGEF7
IL6R

PARP3 TREM1 KIF13B

DMFS SOS IL2RA STAT5B
STAT5A JAK1
PTK2B

CAMK2D MAPK1
HSP90AA1 NEK2
PTPRR HIF1A
DHPS

STAT5B JAK1 PARP3 CCNB1 CDC20
TRIP13 HNRPAB
ALG3

LRP2 SYNE1
KIF13B ERBB4

BTG2 KIF13B PARP3

DMFS SOS GYS2 CCT2
CCT6A CCT5
GYS1

THAP4 PREI3
FADD GIPC1
MCM2 PAICS

STAT5B JAK1 KIF13B CCNB1 CDC20
TRIP13

DKFZp762E1312
CCT5 AP1G1

BTD BTG2 TREM1

DMFS SOS CBX5 CCT5
MKI67 TCP1

TNFRSF14 TRAF3
NRIP1 PPARG
CTBP2 NR3C1

TRIP13 PGK1 SQLE CDC2 CCNB1
CDC20 BUB1B

DKFZp762E1312
CCT5 AP1G1

KIF13B SQLE BTD

DMFS SOS CYB5R2 TRIP13
KIAA1609

HDAC1 TOP2A
PPARD RUVBL2
EED GADD45B
CCNB1 MDM2
S100A9 ASH2L

IGF1 BCL2
ADCY1

BTD CDC2 CCNB1
CDC20 BUB1B

PSMD14 STMN1
KRT18 VARS
HSP90AA1
TMEM132A PFKL
HSPA14 NDRG1

SQLE BTD SQLE

DMFS SOS INPP5D DOK1 KIT
IL6ST PDGFRL

C8orf32 TRIP13
SEC24A SFN
KRT18 CDC2
KIAA0408

ATM BCL2 ELOVL5 CDC2 CCNB1 DKFZp762E1312
CCT5 ITGB4BP
PPFIA1

ABHD14A ELOVL5 KIF20A

Table 1. Overview of the top 10 subnetworks. Markers from SOS, tested on DMFS. These top ranking features were found by running the DLCV on DMFS
using the SOS markers, and keeping track how often a feature was returned as an optimal predictor by the inner loop of the DMFS.

12

Supplementary Material

Tested Markers Chuang (PPI) Chuang (T-score) Chuang* (C2 V1.0) Chuang* (Park) Lee (C2 V1.0) Lee (PPI*) Lee (Park) Park Singles
DMFS VIJVER MAD2L2 MAD2L1

BUB1B BAT2
P4HA2 CENPA

IL6R IL6ST JAK2
STAT5A EPOR
RPL4 AR JAK1

BYSL PGK1
TRIP13 NP
MORF4L2 HYOU1

TNFRSF14 F11R BAIAP2
BYSL GP5

RPL11 KIF13B TNFRSF14 EPHX2 TNFRSF14

DMFS VIJVER WEE1 CDCA3
CCNB2 PKMYT1
YWHAB MAP2K1
CCNE2 CCNA2
ITGB1

KRT18 TROAP
HGS SFN CDC2
BIRC5 MAP2K1
CDK5R1

BCL2 FCER1A
ICOS

EPHX2 CCNB2 RPL11 KIF13B EPHX2 TNFRSF14 EPHX2

DMFS VIJVER FLJ20254 RAD54L
RAD51 PSMD7
LSM1 UPF2

HTR2A JAK2
IL6ST STAT5A
CSF3 JAK1 DLG4
FZD1 KIF13B
BRCA2

JAK2 CISH JAK1
IL6R

TRIP13 CCT5 E2F1 NDRG1
CDC2

RPL11 KIF13B BTG2 TRIP13 CCT5 CCT5

DMFS VIJVER BYSL TROAP
TRIM37 KIAA0408
PRC1

PAK2 ARHGEF6
PDHB TGFBR1
PIK3R1 VAV3 IRS1
INS ARHGAP15

BCL2 IL7R
STAT5A

KIF13B BCL2 IGF1 KIT K-ALPHA-1 F11R
GAPDH RGS19
SLC2A1 GRB2
NFASC KCNA2
ITGA5 CLTC
DDEF1

TREM1 BTG2 BTG2

DMFS VIJVER SKI K-ALPHA-1
PML CCT2 TDG

MAGEA12
STAT5A JAK2
C10orf86 AR RPL4
EPOR JAK1

PSMD1 ABCF1
CDC20

BTG2 JAK2 STAT5A
JAK1

K-ALPHA-1 CCT5
NFASC TAF6

BTD PARP3 KIF13B

DMFS VIJVER PIN4 TPX2
AURKA FN1
COL13A1 MMP9
LGALS3BP
COL4A1 GTPBP4
NAT10

ERCC1 CCNH
GTF2B RRAD
POLR1B RPL5
ESR1 RPL11
CCND2 MRPL2

TPX2 CDK2AP1
VIL2

TREM1 BCL2 JAK2 FOS KIF20A PSMD7 PARP3 TREM1 PARP3

DMFS VIJVER K-ALPHA-1 CCT5
THEG CCT2

LOC158997
KPNA1 NP
GAPDH

BTG2 BCL6
IGFBP6 FHL2

PARP3 BCL2 STAT5A
JAK1 PIK3CA
IL2RG PIK3R1

BTG2 KIF13B SQLE TREM1

DMFS VIJVER THEG CCT5
K-ALPHA-1 CCT2

ROS1 VAV3 IGF1R
JAK1 JAK2 ZYX
IL6ST KIT HOXA9

CCNB2 ERBB2
RAD51 CCNE1

BTD RRM2 PGK1
MARS

BTG2 ABHD14A KIF13B BTD

DMFS VIJVER RAE1 BUB1
BUB1B

TIAF1 JAK3
IL6ST JAK2 JAK1
STAT5A

E2F1 IL11 BUB1B SQLE ALDH3A2 ABAT
GAD1 DPYD
ALDH2

BTG2 SQLE COCH SQLE

DMFS VIJVER EPHX2 ARHGAP8 CTTN
ANKZF1 GRB2
FGD1 KCNA2
ACTR3

JAK2 CISH JAK1
IFNG

ABHD14A TPX2 BTG2 CDKN3 ZNF395 KIF20A

Table 2. Top 10 subnetworks. Markers from VIJVER, tested on DMFS.

13

R. P. Kooter et al

Tested Markers Chuang (PPI) Chuang (T-score) Chuang* (C2 V1.0) Chuang* (Park) Lee (C2 V1.0) Lee (PPI*) Lee (Park) Park Singles
SOS DMFS MT1X TCF1

C16orf61 KIF20A
NOP17 NAT10
HSD17B2

EPOR STAT5A
JAK1 PTK2B
CXCL12 IL6ST
FYN EVL IL6R

BCL2 STAT5A
PIK3R1 FOS
MAP2K4

STAT5B STAT5A STAT5B
BCL2 FOS JAK2
MAP3K1 PIK3R1
MAP2K4 RAF1

CX3CR1 EVL
FUCA1 DOK1
CXCL12 STAT5A
SKAP1

STAT5A STAT5B STAT5A STAT5B CCNB1

SOS DMFS CNTF IL6ST
NTRK2 VAV1
JAK1 IFNGR2
PTPN6 KIT
STAT5B

STAT5A JAK1
PTK2B IL6ST KIT
DOK1 FYN EVL

STAT5A JAK1
MAP2K4 EGF

SLC23A2 STAT5A PTK2B
JAK1 STAT5B
BCL2 PIK3R1

FIGF IGF1
CACNA1D
STAT5A ERBB4
PTK2B ATM

PGK1 UBE2A SPAG5 TMEM97 STAT5B

SOS DMFS SFN CDC2 CCNB1
LATS1 GADD45B
KRT18 ORC2L

SFN CDC2
GADD45B CCNB2
LATS1 CDK7

FOS MAP3K14
MAP2K4

PGK1 UBE2A STAT5A STAT5B
FOS JAK2 PTPN6
RAF1 EPOR

DOK1 IGF1 ITPR1
LRP2 STAT5A
ITM2B SKAP1
ERBB4 PTK2B
JAK1 ATM

SPAG5 SLC23A2 CCNB2

SOS DMFS RNF20 UBE2A
GAPDH MORF4L2
RACGAP1 C20orf4
NUP54

SYK STAT5A JAK1
IL6ST PTK2B KIT
DOK1 FYN EVL
SDC3

BCL2 IGF1
CSF2RB
PRKAR2B

SPAG5 TMEM97 STAT5A JAK1
STAT5B FOS LCK

C7 DOK1 IGF1
LRP2 STAT5A
JAK1 IL6R

GAPDH GAPDH KIF20A

SOS DMFS TRIM25 SFN PLK4
KRT18 CDC2
C8orf32

PIK3R2 DOK1
KIT JAK2 STAT5B
PTK2B EGF
ERBB4 TEC JAK1

EIF4EBP1 HK2 HNRPAB DDX41 STAT5A JAK1
STAT5B BCL2
FOS BAD PTPN6
PIK3R1 SOCS3

CX3CR1 EVL
FUCA1 DOK1
CXCL12 CCR2
ERCC1 LRP2
STAT5A SKAP1

CCNB2 KIF20A
TPX2 PRC1

PFKP SPAG5

SOS DMFS ARHGEF15 PREI3
MCM2 FADD
UBE2V2 PAICS
PRODH GIPC1

IL4 STAT5A JAK1
PTK2B IL6ST KIT
DOK1

FOS IGF1 IGF1R CX3CR1 STAT5A STAT5B
FOS JAK2 PTPN6

FIGF DOK1
CXCL12 STAT5A
SKAP1 ERBB4
PTK2B JAK1

SLC23A2 GPR56 GAPDH

SOS DMFS SORBS1 SEMA6A
EVL EFNB1 LYN

CTF1 IL6ST JAK1
VAV1 KIT IL6R
FLT3

CCNB1 GAPDH JAK1 IL6R FOS
IL6ST

EVL GJB1 STAT5A
SKAP1 PTK2B
IL6R PECAM1
TNFSF11 IL6ST
CD59 EGF PTP4A2

HNRPAB AP2S1 SAE1 PLSCR4

SOS DMFS NCK1 DOK1 KIT
EGF ERBB4 VTN
IGF1 TP53

USF2 FOS NR3C1
MYB STAT5A
JAK1 TCF1 PCAF

STAT5B FOS
CSF2RB

SAE1 AP2S1 STAT5A STAT5B
FOS JAK2
PRKCB1 PIK3R1

NTRK2 MATN2
EVL FUCA1 DOK1
CXCL12 DUSP4
GJB1 STAT5A
SKAP1

GPR56 GART DSCR2
DONSON

IGF1

SOS DMFS IGFBP2 IGF1 EGF
IGFBP6 IGF1R

PLEKHA8 ARF1
RALA DDEF2
AP1G1 ARL4D
RCC1

MAPT PTK2B
STAT5A AGTR2

CD302 CX3CR1 EDNRB
CCR2 PTGER3
ADRB2 AGTR1

MATN2 EVL GJB1
STAT5A SKAP1
FCER1A PTK2B
JAK1 IL6R

PFKP EIF4EBP1 CX3CR1

SOS DMFS TLN1 LRP2 PTK2B
CXCL12 JAK1
ITIH4 IL6ST

JAK3 STAT5A
JAK1 IL6ST VAV1
KIT DOK1

CCNB1 C16orf61 CIAPIN1
PSMD7 C16orf80
NUTF2

PFKL PFKP
TALDO1

NTRK2 EVL
FUCA1 PCAF
DOK1 STARD13
GJB1 STAT5A

SAE1 AP2S1 CD302 SLC23A2

Table 3. Top 10 subnetworks. Markers from DMFS, tested on SOS.

Tested Markers Chuang (PPI) Chuang (T-score) Chuang* (C2 V1.0) Chuang* (Park) Lee (C2 V1.0) Lee (PPI*) Lee (Park) Park Singles
SOS VIJVER ZNF622 MYBL2

SKP2 MELK
CDC34 NCOR2

PRKCI GAPDH
TK1 PGK1
MAP2K5 MAP3K3
UBE2A

PFKL PFKP
ALDOC G6PD

STAT5B PFKL GALK1
PFKP HK3 HK2
GLB1

AURKA PFKL
PSMD2 SPAG5
AARS PGK1

STAT5B STAT5B CCNB1

SOS VIJVER IFNGR2 JAK1
IGF1R STAT5A
IL6ST

PAFAH1B3
GAPDH TK1
PGK1

MAP3K14 NR3C1
DUSP1 IKBKB
CREBBP

AP2S1 BCL2 IGF1 KIT PFKL MAD2L1
PFKP SLC27A3

PLSCR4 PLSCR4 STAT5B

SOS VIJVER PAFAH1B3
GAPDH TK1
PGK1 SLC2A1

KLKB1 IGF1 INS
C1QBP SIRT1
IGFBP4 PLSCR4

BYSL PGK1
TRIP13 NP
MORF4L2 HYOU1

HNRPAB PFKL TALDO1
PFKP ALDOC

PFKP GAPDH
SLC27A3

SLC23A2 SPAG5 CCNB2

SOS VIJVER HOXB1 MEIS1
PBX3 NR3C1
STAT5A

RAD18 UBE2A
GAPDH

TPI1 CPT1A SLC23A2 FOS MAP3K1
MAP2K4 STAT5A
JAK1 PIK3CA

GAPDH SLC27A3
RNASEH2A
ALDOC

SPAG5 AP1G1 CDK8
AP1S1 GEMIN7

KIF20A

SOS VIJVER NOL5A TPX2
AURKA SMAD3
TUBA1 MLL2

HTR2A JAK2
IL6ST STAT5A
CSF3 JAK1 DLG4
FZD1 KIF13B
BRCA2

IGF1 STAT5A FOS MAP3K1
MAP2K4 STAT5A
JAK1 PIK3CA

PFKL FEN1 PFKP IGF1 STAT5A SPAG5

SOS VIJVER IGF1 NOV INS
ITGAV IRS1 LRP2

MYO7A UBE2A
GAPDH

POLD1 GMPS NP
APRT POLR2D
ATIC

SPAG5 CCNB1 CDC2
HRAS

RACGAP1 PFKL
PGK1

STAT5A CDC2 H2AFZ
MAD2L1 ZWINT

GAPDH

SOS VIJVER SOD2 MDH2 PFKL
PFKP

SFN CDC2 E2F1
SPAG5 CDK5R1

MAP2K4 FOS
ASAH1 CREB1

PLSCR4 RRM2 POLD1
GMPS NP POLR2C
PKM2

DTL KIF20A PGK1 AP2S1 HNRPAB PLSCR4

SOS VIJVER GUF1 HTRA2
PFKL PFKP KARS
PKM2 PIN1

GRB10 JAK2
IL6ST INS IRS1
PPP4R1 IFNG
STAT5A

RRM2 PGK1
NDUFC1 AGPAT3

ZWINT H2AFZ E2F1 NDRG1
CDC2

DTL KIF20A PGK1 HNRPAB SLC23A2 IGF1

SOS VIJVER HHEX CTBP2
SNAI2 BAZ2B
RAI2

TENC1 PDLIM5
HNRPH2 STAT5A

BCL2 MAP2K4
JUN PRKCQ

GPR56 PFKL TPI1 PFKP
HK3 ALDOC

TXNRD1 PFKP
GAPDH GLRX2
NDUFA4L2 GRB2

ZWINT H2AFZ TRIP13 CCT5 CX3CR1

SOS VIJVER EPOR STAT5A
SOCS2 JAK1
IL6ST CD247

IL21R JAK1 IL6ST
JAK2 STAT5A
CSF3

BCL2 IL7R
STAT5A

C12orf35 H2AFZ BUB1
TALDO1 HDGF
ADFP

STC2 MAP2K4
AKAP12 SLC9A5
ADRB2

MKI67 IGF1 SLC23A2

Table 4. Top 10 subnetworks. Markers from VIJVER, tested on SOS.

14

Supplementary Material

Tested Markers Chuang (PPI) Chuang (T-score) Chuang* (C2 V1.0) Chuang* (Park) Lee (C2 V1.0) Lee (PPI*) Lee (Park) Park Singles
VIJVER DMFS SLC25A11

COPA ARFGAP1
CDKN1A CCNB1
CCNE2 CCNB2
GADD45B MYC

DIAPH1 CENPA
BAIAP2 MAD2L1

PGK1 PFKL E2F1 H2AFZ MKI67
PSMA7 PSMD2
PSMD1

TMPO HSP90AA1
SPP1 F11R BAT3
ZG16

PKMYT1 E2F1 BIRC5 TK1 HN1 E2F1

VIJVER DMFS MYT1L PKMYT1
CCNB2 CCNB1
CCNA1 CCNE2

PRC1 E2F1 CFL1 ADAM8 PFKL PFKP
TALDO1

TMPO HSP90AA1
SPP1 F11R EN2
BAT3 ZG16

GLTSCR2 TPT1 E2F1 PKMYT1 TK1

VIJVER DMFS PRKCBP1 BIRC5
PSMD2

FBXO32 CUL1
E2F1 CDCA3
CCNA2 CCND1

E2F1 EBP E2F1 CFL1 ARF3 TMPO HSP90AA1
SPP1 F11R BAT3
ZG16

AURKA AURKA PRC1

VIJVER DMFS LIMK1 PAK4
YWHAZ
RACGAP1 LATS1

GDF8 SGTA TMPO
SPP1 HSP90AA1
BAT3 PTN F11R
EFEMP2

E2F1 BIRC5 TPI1 HK2 PMM2
PFKL PFKP SORD
PFKFB1

TMPO HSP90AA1
SPP1 F11R BAT3
ZG16

EBP EBP ESPL1

VIJVER DMFS PAK4 RACGAP1
AURKB

RUTBC1 RPS25
EIF3S4 CA12
RPL11

BIRC5 AURKA CFL1 ACTR3
BAIAP2

TMPO HSP90AA1
SPP1 F11R BAT3

CCNB2 KIF20A
TPX2 PRC1

ADAM8 BIRC5

VIJVER DMFS WBP2 PSMD2
PSMA7 ORC1L

ANKZF1 AURKB
RACGAP1 TACC1
PSMD1 PSMD7

E2F1 CCNA2 PSMD2 CDC2 MAD2L1
ATP2A2 E2F1

TMPO HSP90AA1
SPP1 F11R BAT3
ZG16

HN1 BIRC5 ADRA2B E2F2

VIJVER DMFS RACGAP1 AURKB
PAK4

USHBP1 PRC1 PSMA7 RCE1 CCNB2 TMPO HSP90AA1
SPP1 F11R BAT3
ZG16

ADAM8 PFKL TPT1

VIJVER DMFS RGS3 YWHAZ
PCTK1 BRAF
CDC25B CDC25A
PTPN13

UNC84A RRM2
EIF4G1 NEURL

E2F1 ABL1 GLTSCR2 TPT1
RPS27A

PGK1 TMPO HSP90AA1
SPP1 F11R BAT3
GJA8

PSMD2 SLC1A5 CCNB2

VIJVER DMFS BRD2 E2F1
CCNA1

RPL12L3 AARS
SEC61G RAD51

BCL2 STAT5A
PIK3R1 FOS
MAP2K4

DDX39 PGK1 CDCA3 E2F1
YWHAZ

WDR62 CENPM EBP

VIJVER DMFS PRC1 POLD1 FEN1
EXO1

E2F1 TIMP3 PGK1 UBE2A PGK1 DDX39 SNRPA1
PSMA7 PSMD2
POLR2B

STIP1 WDR62 UBE2C

Table 5. Top 10 subnetworks. Markers from DMFS, tested on VIJVER.

Tested Markers Chuang (PPI) Chuang (T-score) Chuang* (C2 V1.0) Chuang* (Park) Lee (C2 V1.0) Lee (PPI*) Lee (Park) Park Singles
VIJVER SOS ARF3 KIF23

AURKB AURKC
RACGAP1 ARF5
ARF1

TRIM37 PRC1
DLG7 APEX2
KIAA0408 PNKP

PFKP HK2 GALK1 TK1 PFKP PFKL ARF1 BUB1 ARF1
NDRG1 ARF3
PPP2R1A UTP14A

TK1 TK1 E2F1

VIJVER SOS ARHGDIA FEN1
POLD1 CDC42

TK1 GAPDH
UBE2A

PGK1 GOT1
ALDOC

DKFZp762E1312
TROAP

E2F1 ARF1 ARF3
CFL1

RRM2 PFKP PFKL DKFZp762E1312
TROAP

TROAP
DKFZp762E1312

TK1

VIJVER SOS FEN1 ARHGDIA
POLD1 CDC42

TPT1 POLD1 RRM2 E2F1 RRM2 POLD1 TK1 PFKP ACP1 E2F1
PFKL DPM2

BIRC5 BIRC5 PRC1

VIJVER SOS PRC1 BLK BCL2 ITM2B
SF1 RPS3A
BNIP3L

TRIP13 PGK1 BIRC5 PFKP TPI1 PFKL
HK2 HK3

PRC1 E2F1 E2F1 ESPL1

VIJVER SOS USHBP1 PRC1 EEF1A2 PSMD1
RACGAP1
CDC25A PSMB7
CHRM4

ARF3 E2F1 CFL1 E2F2 PFKP PFKL HK2
HK3

PRC1 PKMYT1 PKMYT1 BIRC5

VIJVER SOS GTF2H5 GTF2H4
CDC2 E2F1 TAF13
TAF4

SPG7 RALY
WDR62 PLSCR1
CPSF6 VASP
NPDC1 TXNL2

GOT1 AARS AURKA FEN1 POLD1
MSH6 EXO1

PRC1 TPT1 TPT1 E2F2

VIJVER SOS CFL1 TPI1 PGK1 PRC1 CPT1A TPI1 ADAM8 NDRG1 SLC19A1 PRC1 EBP AURKA TPT1
VIJVER SOS FENL1 FEN1

ARHGDIA POLD1
PRIM2A VCL
EXO1

DCAMKL1
GAPDH UBE2A
TK1

CPT1A TPI1 TPT1 PGK1 GOT1 PRC1 E2F2 E2F2 CCNB2

VIJVER SOS TPI1 PGK1 CFL1 USHBP1 PRC1 POLD1 MSH6
EXO1

PKMYT1 PFKP TALDO1 GPI
PFKL

PRC1 AURKA EBP EBP

VIJVER SOS POLD4 POLD2
RFC2 POLD1
PRIM2A FEN1
EXO1 CDKN1A
CCNA2 CDC45L

ARHGDIA FEN1
PRIM2A POLD1

PFKP ARF1 EBP GOT1 AARS PRC1 ADAM8 ADAM8 UBE2C

Table 6. Top 10 subnetworks. Markers from SOS, tested on VIJVER.

15

Master’s Thesis

Work Document
A comparison of supervised gene set searching algorithms for outcome

prediction of breast cancer

Thesis Committee:
Prof.dr.ir. M.J.T. Reinders
Dr. L.F.A. Wessels
Ir. M.H. van Vliet
Dr. E.A. Hendriks
Dr. G.W. Klau

Author Raul Kooter
Email Raul@xs4all.nl

Student number 1150162

Thesis supervisor Dr. L.F.A. Wessels
Ir. M.H. van Vliet

Date September 23, 2009 - 14:00

[I,C)
TInformation and

Communication
Theory Group

mailto:Raul@xs4all.nl

1 Network-based classification of breast cancer metastasis:
changelog

20th January

1.1 Results overview

1.1.1 Subnetwork significance scores

Table 1 shows the number of subnetwork which passed the test and the combined total number
of genes.

Dataset Crit. Max degree All Test 1 Test 1, 2 Test 1, 2, 3 Genes
Vijver MI Inf. 8141 332 107 107 (149) 575 (618)
Wang MI Inf. 8141 456 206 206 (249) 877 (906)
Vijver MI 1000 8141 210 100 100 496

8141 449 163 163 660
Wang MI 1000 8141 1054 290 290 1138

8141 378 215 215 878

Table 1: Subnetworks significance test overview. The greedy algorithm was run on both datasets
with Mutual Information (MI) criterion and the T-test (not shown). Also, the effect of a re-
striction on largely connected nodes (max node degree 200) was inspected. Note that the third
significance test doesn’t seem to have an effect on the selection of significant subnetworks. For
the first two experiments, the number of subnetworks and genes according to the work of Chuang
are indicated between parentheses. Also, some experiments are repeated.

The results in Table 1 are variable, the final number of subnetworks depends largely on the
first significance test. The work of Chuang does not mention a maximum node degree, but a
comparison with the cellcircuits website where their subnetworks are posted lead me to believe
that a maximum node degree is in order not to grow gene HNF4A, which has more than 1500
connections. In the following work, I will be concentrating on the the results which are most
similar to the work of Chuang, that is the 163 subnetworks from Vijver and the 215 subnetworks
from Wang (both derived with the max 1000 degree restriction).

1.1.2 Subnetwork size distribution

The distribution of the sizes of all candidates subnetworks and the significant subnetworks are
shown in Figure 1.

1.1.3 Top subnetworks

I’ve also inspected the 10 best subnetworks from the set of subnetworks selected using MI and
with the max 1000 nodes restriction. I’ve ranked the 10 best subnetworks according to Mutual
Information score. The top 10 subnetworks are listed in Table 1.1.3 and Figure 2.

The two top 10 best subnetwork only have 5 genes in common.
To compare the selection of subnetworks and the selection of single genes, I’ve included the

top 10 single genes.
For further comparison, I’ve also inspected the top 10 best subnetworks using MI and without

the max 1000 nodes restriction. The top 10 subnetworks are listed in Table 1.1.3 and Figure
3. Here we note that almost all top subnetworks according to MI score have node HNF4A in
common. Also, the MI scores are higher than the top subnetworks found in Table 1.1.3.

1

Figure 1: Distribution of the subnetwork sizes from both the Vijver and Wang dataset. The top
10 were selected by ranking the subnetworks on MI score.

2

Vijver genes MI Score T-test Wang genes MI Score T-test
ASPA, ONECUT1, E2F1, FLJ10415,
PRR1, PON1, ELOVL1, BM039,
MAP2K5, FLJ11029, CRADD

0.14907 -6.9152 DUSP3, MAPK1, COPS5, MAPK9,
NEK2, MADH3, HEY1, PSMC6,
SHC1, ITGAV, RPS6KA4, VAV1,
CDK2, CDK5, MYPT2

0.16126 -9.3513

SRC, MATK, EWSR1, ADRBK1,
RAD23A, GFAP, MUL, VEGF,
YWHAB, VTN

0.1365 -6.1917 NHP2L1, HNRPH2, SNRPA, NCL,
GNB2L1, TOP1, POLR2E, SNRP70

0.141 7.8263

MAN2A2, IKBKAP, KIAA0098,
PLP2, ITGA5, GIT1, ADRBK1,
PPFIA2, HMOX2, XIP, PXN,
PFDN1

0.13392 -7.1414 SNRPA, NHP2L1, HNRPH2, NCL,
GNB2L1, TOP1, POLR2E, SNRP70

0.141 7.8263

PTN, CPR2, PSMD2, NR4A3,
PSMD8, P4HB, SLC20A1, CDC6

0.13325 -6.3552 GTF2A1, POLR2E, NHP2L1, HN-
RPH2, NCL, TOP1, RPS5

0.12621 7.5469

KITLG, EPOR, STAT5A, USP4,
FOS, RPL4, MYB, JAK2, RB1,
TGFB1, RPS9

0.13129 7.7045 SNRP70, NHP2L1, CD69, EIF4G1,
IFNG, POLR2A, NLI-IF, NONO,
ITGB2, GTF2A1

0.12197 6.3202

APCS, ONECUT1, DK-
FZP727M231, E2F1, FLJ11029,
AKR1C4, ELOVL1, ACPP, NCOA3,
HBOA

0.13096 -5.9959 NCL, GNB2L1, NR3C1, SYT1, IF-
NAR1, TOP1, STAT3, STAT4,
RPL6, SP1, TAT, SMARCE1

0.12135 6.1034

HMMR, MAPK3, GIT1, HSF1,
MAPK9, STK3, DKFZP434D156,
AKT1, DAPK1, SHC1, PTPRR,
MAPK12

0.13055 -5.8541 STAT5A, MYC, TFAP2B, CSF1,
USF2, NMI, IL4

0.11996 5.5416

TNFRSF10C, YWHAZ, LTBR,
CDC25B, RGS3, HDAC5

0.12954 -5.8945 PPIA, PPP3CA, RB1, MAPK9,
ASGR2, TMSG1, P84, ABL1, RFP,
DKFZP564J157

0.11659 -3.398

H4FK, ONECUT1, E2F1, BCK-
DHA, PCAF, AKR1C4, 7-60, OAZ2,
APOH, PRR1

0.12831 -5.8693 HNRPH2, NHP2L1, SNRPA, NCL,
GNB2L1, PRKCA

0.11336 6.7524

PRKDC, HSF1, GTF2A2, POLR2C,
SUPT5H, TREX1, HCNP

0.1262 -5.4476 ALK, SHC1, INPPL1, GHR,
PSMC6, KRAS2, NRAS, P85SPR,
SNT-1, PIK3CA

0.11071 -6.9089

Table 2: Top 10 subnetworks

Figure 2: The top 10 subnetworks from both sets combined. The genes from the Vijver subnet-
works are indicated in blue, from Wang are indicated in red. The darker a node, the more often
it appears. Nodes from both datasets are indicated in yellow. Also, only the within-subnetwork
edges are shown, edges which connect genes between different subnetworks a hidden.

3

Vijver genes MI Score T-test Wang genes MI Score T-test
PRC1 0.065814 -6.1666 NR0B1 0.048555 2.9245
DDXL 0.064802 -5.5205 RAF1 0.045755 1.8241
DEEPEST 0.061376 -5.4321 NHP2L1 0.043553 4.8031
E2F1 0.061079 -5.9182 FLJ10998 0.042217 3.4765
BIRC5 0.058636 -5.665 EBI2 0.040824 0.4984
KIAA0165 0.057702 -5.65 KIAA0010 0.040279 -3.6297
TK1 0.057521 -6.125 GPR48 0.040172 -1.2769
PGR 0.056566 4.55 GCP60 0.039936 -3.9462
BYSL 0.054867 -3.6899 FBP2 0.038862 3.5767
ODC1 0.053988 -1.4628 ID-GAP 0.037586 -4.4431

Table 3: Top 10 single genes in both datasets. Only E2F1 and NHP2L1 also occur in the top 10
subnetworks.

Vijver genes MI Score T-test Wang genes MI Score T-test
BHMT, HNF4A, CDC45L,
HSPC164, TEAD3, ATF7, L2DTL,
HAL, TRPC5, TXNRD1, FLJ10415,
POLD4, MAP2K5

0.18343 -9.2905 FNTB, HNF4A, DKFZP566O1646,
LOC51631, LOC57107, LIMS1,
HSPC160, CDK5, pcnp, FLJ10640,
SIX2, LOC51096

0.18285 -10.4192

SLC17A2, HNF4A, FLJ13912,
PSMD7, LOC51142, NR2C2, LRN,
ADH6, DCK, LOC56834

0.17649 -4.8129 STAM2, HNF4A, HECH, LOC57109,
SPOCK, FLJ10640, FLJ10511,
HSPC166, DKFZp434E2220,
MGST3

0.17843 -8.7979

DSCR3, HNF4A, EXO1, PPGB,
TRPC5, AF093680, C2ORF1, SLPI,
NDRG1, COX7A2, GRO3

0.17034 -5.8147 HECH, HNF4A, STAM2, LOC57109,
SPOCK, FLJ10640, FLJ10511,
HSPC166, DKFZp434E2220,
MGST3

0.17843 -8.7979

PCYT1A, HNF4A, PSMD7, L2DTL,
GK001, BCS1L, GABRE, B3GAT1

0.16811 -6.3851 IRF6, HNF4A, SRP54, pcnp, LIMS1,
H326, HECH, MSMB, AKR1C2

0.17005 -8.0761

YKT6, HNF4A, EXO1, LOC55972,
FLJ20619, RAB2, RIP60, GNG5,
TDRKH, FLJ10142, NR2C2

0.16423 -4.4125 NFE2L1, HNF4A, DKFZp434E2220,
HECH, STAM2, JM23, CDK5,
ACTA2, PSMB5, AKR1C2

0.16579 -7.7002

TADA3L, USP5, HNF4A, EXO1,
CTSZ, CDC45L, SRP54, ATF7,
TAF2E, CPT2

0.15974 -7.1358 KIAA1226, HNF4A, STAM2,
LOC51096, NRAS, TUFT1, pcnp,
ERO1L, LOC57107, LOC51644,
KLRF1, HSU79274

0.16332 -9.3748

HAAO, HNF4A, RAD51, TRIP3,
GSK3B, NSEP1, LSM3, NR5A2

0.15899 -5.0782 H4F2, HNF4A, STAM2,
HECH, HSPC164, HBS1L, DK-
FZp434E2220, GCHFR, NDRG1

0.16302 -9.0797

ATP10C, HNF4A, PSMD7, FEN1,
PSMD1, CTSZ, FLJ20619, SUDD,
SF3B4

0.15888 -5.8826 DUSP3, MAPK1, COPS5, MAPK9,
NEK2, MADH3, HEY1, PSMC6,
SHC1, ITGAV, RPS6KA4, VAV1,
CDK2, CDK5, MYPT2

0.16126 -9.3513

HSPC072, HNF4A, ASGR2,
SREBF2, SCYE1, GSK3B,
HSPC160, LRP5, MDFI, UXT,
C14ORF1

0.15744 -3.683 HADH2, HNF4A, STAM2, LIMS1,
LOC51659, RPS6KC1, HEY1,
KIAA0141, DPM2

0.16112 -7.5496

MOCS3, MOCS2, HNF4A, NDRG1,
TARS, EIF4G1, PSMD7, MRPL3,
EXO1, MTHFR, KIAA0477, PZP

0.15718 -6.635 MGAT4B, HNF4A, HECH, KRT10,
LIMS1, SRP54, VSP45A, STAM2,
ACTA2, 54TM, VATD, SSBP

0.16104 -9.1553

Table 4: Top 10 subnetworks without the max node restriction. The MI scores a higher, but
HNF4A appears in almost every network.

4

Figure 3: The top 10 subnetworks from both sets combined, without the max node restriction.

5

1.1.4 Classification

To test the classification performance, I’ve inspected the method described by Chuang. For now
I’ve skipped the Double Loop Cross Validation strategy, which has a reduced bias, but I don’t
expect to see large differences in results.

Figure 4: Chuang’s classification evaluation method

Chuang’s method In Chuang’s original paper, the classification performance was measured
using a cross validation. Given subnetworks or genes and a dataset, the dataset was transformed.
After transformation, the dataset is split into 5 parts: 3 parts make up the training subset, 1
part is the validation subset and 1 part the test subset. The training subset is used to train the
logistic regression model. First, the features where ranked according to P3, the P values of the
third significance test. The number of features was optimised by evaluating the validation subset
(by optimizing the AUC of the ROC), resulting in a optimised classifier. The optimised classifier
is then tested on the test subset, also resulting in a AUC of the ROC. This entire procedure is
repeated for 5 rotations, so every part gets to be part of the training, validation or test subset.
The AUC for every rotation is then averaged resulting in a averaged AUC.

When reproducing the results, I’ve noticed that all significant subnetworks have P3 = 0,
so ranking is meaningless in my results. Instead, I’ve chosen to rank the features according to
Mutual Information score. Chuang also doesn’t mention the number of repeats, so I’ve chosen
to repeat the procedure 20 times. Also, when splitting the dataset in 5 parts, I’ve chosen to
make sure this is a stratified split, even though Chuang doesn’t mention that. I’ve limited the
maximum number of features to 100 for speed, since it never seems to crosses that limit.

The classification results evaluated according to Chuang’s validation strategy are listed in
Table 5 and Figure 5. They are not comparable to Chuang’s Figure 2B.

Input Transformed using Error Optimal feats
Wang Vijver significant subnetworks 0.4423 18
Wang Vijver top 660 genes 0.4178 10
Wang Wang significant subnetworks 0.1642 12
Wang Wang top 878 genes 0.2819 17
Vijver Wang significant subnetworks 0.3541 21
Vijver Wang top 878 genes 0.3748 23
Vijver Vijver significant subnetworks 0.2061 20
Vijver Vijver top 660 genes 0.2847 15

Table 5: Classification performance

6

Figure 5: Overview of the classification results

Figure 6: Boxplots the classification results

As an example, I’ve included the ROC curve of the logistic regression trained on Wang tested
on Vijver. This time, a fixed number of features, 19, where chosen from the transformed Wang
dataset using a forward selection while optimizing the intra-inter distance. This is the optimal
set of features when testing Wang on Wang. Using these features, a Logistic Regression Classifier
was trained on these 19 features of the transformed Wang dataset. The Logistic Regression was
tested on the transformed Vijver algorithm. See Figure 7.

1.2 Analysis

1.2.1 T-test versus MI scores

When ranking the discriminative power of the subnetworks, both the t-test and the MI score
might be used. While the t-test mostly focused on the difference of the mean and the variances,
the MI score is able to discriminate samples with the same mean, but with different variances.
The relation between MI scores and t-test scores is depicted in Figure 8. The trend between
between MI scores and t-test scores is best shown in the Wang subnetworks, where a higher MI
score is probably a higher absolute t-test score.

7

Figure 7: ROC curve of Logistic Regression trained on Wang tested on Vijver.

(a) Significant subnetworks (Vijver) (b) All subnetworks (Vijver)

(c) Significant subnetworks (Wang) (d) All subnetworks (Wang)

Figure 8: MI scores versus T-scores in the Vijver and Wang subnetworks.

8

1.2.2 Multivariate effects

The test the effect of multivariate effect inherent in subnetworks, I’ve tested how the nodes in
the best subnetworks correlate. For example, the best subnetwork in Vijver, tested against the
Vijver dataset. The axes depict a gene, or a combination of genes, the color depicts the outcome:

(a) The best subnetwork in Vijver tested against itself.

(b) The best subnetwork in Vijver tested against Wang.

Figure 9: Please note there is a mistake in the axis labeling, the lower label depicts the combina-
tion of all previously defined genes, so for example in the third graph, 8318 should be interpreted
as 635, 3172 and 8318.

9

Febuary 5th

Validation method revisited

As mentioned earlier, my validation method gives a worse validation result than mentioned in the
paper.
I've attempted to 'fix' the validation procedure. When testing the subnetworks of Chuang on Vijver, I've
noticed a strange thing. I've generated the following learning curves by fixing the number of features
(no inner loop), and reranking the features.

Each point was calculated 50 times. The errorbar indicates the variance, not standard error.

X axis: number of features (4:5:50)
Y: error, lower is better
Black line: random ranking
Red line: ranked in MI
Green line: no ranking (apparently it's alphabetic ranked on starting node)

Since alphabetic ranking seems to perform so well, I've figure it's because it's because it's a random
ranking. After all. This is not entirely true. All I can conclude is that alphabetic is just a good ranking
by accident.

The features ranked by P3 is a different story.

Light blue: P3 test with 50 permutations
Black: P3 test with 100 permutations
Magenta: P3 test with 200 permutations
Red: P3 test with 500 permutations
Green: P3 test with 2000 permutations
Dashed magenta: P3 test with 5000 permutations (maximum of 19 features due to time)

Do less permutations together with few features mean a better ranking?
Probably not. Less permutations causes more p3 values of 0, thereby making the ranking more close
the original ranking.
So why is the error around 4 features better than the original ranking? I think this is due to the fact that
a few bad genes in the original ranking are moved to the back of the list, thereby combining the
goodness of the original ranking and the ranking by p3.

What about the reciprocal test? (Vijver subnetworks tested on Wang?)

X axis: number of features (4:5:50)
Y: error, lower is better
Black line: random ranking
Red line: ranked in MI
Green line: no ranking (apparently it's alphabetic ranked on starting node)
Light blue: P3 test with 50 permutations

I think from this we can conclude the original ranking, the green line, is not better than random ranking
or sorting on MI.

So how about sorting by T?

Going back to the Wang subnetworks tested on Vijver situation:

Red line: ranked by MI
Purple line: ranked by t-test

Overall, I think it is best to use the T-test to rank markers. Probably because mutual information is not
good in combination with linear classifiers such as logistic regression.

It would also be nice to look at the P3 value of the T-test, though.

1 Changelog

February friday 13th

1.1 Classification performance

Figure 1: Overview of the classification results. Outer loop: 5 parts (4 training, 1 testing). Inner
loop: 4 parts (3 training, 1 testing). In the inner loop, the features where either ranked on the
t-test using the training part determine the t-test score, or the the markers had a fixed ranking,
by ranking the t-test score of the Wang markers on the entire Wang dataset. Ranking was done
by taking the absolute value of the t-test score. The optimum number of features was determined
by adding 1 to 100 features and generating a learning curve of the AUC on the test data. This
was repeated 8 times, after which the 8 learning curves where averaged to determine the number
of features which gives the best AUC. In the outer loop, the features where once again either
ranked using the entire training set, or had a fixed ranking. The previously number of markers
were limited to the previously determined optimum number of features. The procedure was
repeated 10 times, so 50 AUCS where averaged. Two different classifier were used, Loglc and
NMC.

Apparently using a Nearest Mean Classifier and using the reranking method instead of a
fixed ranking gives an AUC overview which looks most likes Chuang original overview. From
now on, this strategy will be used for further evaluations. Furthermore, it is not convincing yet
that subnetwork markers perform better than single genes (which where controlled for size in
this experiment), as this depends on the method of validation.

1.2 Chuang’s response

I asked about the implementation of the cross-validation method. According to Chuang herself,
her experiment consisted of only 1 repeat. The inner loop itself was also a ’on-time-shot’. This
makes me a little skeptic about her final AUC.

I also asked about how they worked with ’empty nodes’. A gene starting with an empty node
was calculated as: (sqrt(2) * genevector2 + genevector3 + genevector4) / sqrt(4). Chuang:

In such fashion of scoring, we punished a subnetwork of an empty starting node
in a less harsh way. Although the PinnacleZ package was not used in our MSB

1

paper, it implemented what we have done for network search in the paper. However,
when we did the classification evaluation, we only took the nodes of expression into
account for subnetwork activity inference. Therefore, given the same example here,
the activity would be slightly different in classification. It would be imputed as
(genevector2+genevector3+genevector4)/sqrt(3).

1.3 Implementing Lee’s algorithm

I’ve implemented the algorithm as described in Lee’s paper.
I’ve downloaded the C2 functional sets from MSigDB (both V1.0, the version they’ve used

and V2.5, the newest.)
The functional sets didn’t map perfectly to entrez id’s, therefore, my collection pathways

only consists of the genes for which I was able to find an entrez id, it didn’t matter if that entrez
id was in my datasets.

To test the function I’ve used the same datasets used in Chuang’s method, that is, using
8141 genes. This doesn’t make quite sense, since Chuang selected the 8141 to be genes in the
IPP network, but for a good comparison I will stick to this.

I’ve implemented Tian’s methods to preselect a top 10 percent pathways from the C2 function
set V1.0. This was done by calculating the t-score of each gene for which I have expression data
in the pathway. I’ve done this so I have a good comparison with Lee’s supplementary figure 2.

Of course there are a few pathways missing, but this might be due to different genesymbol-to-
entrez mapping, due to different preparation of the Wang and Vijver datasets or due to different
implementation of Tian’s method. For now, I think this is a good approximation, even though
I’m able to get a better one by playing around with the parameters.

Figure 2: Comparison of with supplementary figure 2. I’ve marked the pathways that my imple-
mentation of Tian is able to find, and the markers that are in the pathway my implementation
is able to find.

I’ve also tested the robustness of the two datasets. This wasn’t done using Lee’s comprehen-
sive 100-split method, but by comparing the markers derived from the two datasets. Overlap is
calculated as number of genes in intersection divided by number in genes of union.

Label overlap Genes overlap

2

C2 v1.0 0.0297 0.0105
C2 v2.5 0.1489 0.0610
Top 906/618 genes 0.0687 0.0687
Chuang 0.0182 0.1265

C2 v2.5 performs better in overlap than C2 v1.0, but this might be due to the fact that the
top 10 percent have 52 and 189 subnetworks derived from the v1.0 and v2.5 pathways.

1.4 Testing Lee’s subnetworks

I’ve tested Lee’s subnetworks using the classification procedure described above, using a NMC
and a reranking method, since that method was best gives me the ’best’ result (that is, results
I want to see.)

Figure 3: Comparison of all perfomances.

3

1 Changelog

February 19th

1.1 Changing the t-test

During the programming I noticed that I’ve used a two-sample t-test assuming equal variances.
I will continue the tests using a t-test assuming unequal variances, since that seems more logical.
Also, I’ve implemented an t-test assuming unequal variances which is 40 times as fast than
Matlab’s original, so obviously I’d prefer my own implementation.

Making this step makes my reproduction of Lee more different than from Lee’s original results,
unfortunately. This also has an effect on the classification procedure.

So how much does it differ?
For simplicity, let’s plot the t-test with unequal variances against t-test with equal variances

in subnetwork calculated by Lee from the Wang subnetworks.

Figure 1: T-test assuming equal variance against T-test assuming unequal variance.

As you can see, it doesn’t differ much.

1.2 Updated classification results

Figure 2: The performance of the Chuang subnetworks and single genes was untouched. The
CORGS in the Lee methods and the evaluation procedure where calculated using updated t-test.

1

1.3 Lee-Chuang comparison: raul1 algorithm

In order to make a good evaluation which searching method works better, Chuang’s or Lee’s,
I’ve compared them by modifying Chuang’s algorithm.

Chuang’s algorithm works by adding the best neighbour to a growing network as long as
a minimum improvement of 0.05 occurs. This happens in a network distance of 2. In the
new algorithm, instead of considering all direct neighbours, I consider all genes in the network
distance of 2. The genes are ranked by t-test in a way similar to Lee’s, and these are added in
the sequential order until there is no improvement.

Effectively this algorithm is the same as Lee’s algorithm, where the enforce a starting node,
and the ’pathway’ given is the set of genes in network distance 2.

One problem that remains is that of feature selection, since I’ve now ended up with 8141
subnetworks. For simplicity, I will select the top 5 percent of the subnetworks, ranked by absolute
t-score, ending up with 407 top ranking subnetworks.

Let’s look at the robustness:

Label overlap Genes overlap
C2 v1.0 0.0297 0.0105
C2 v2.5 0.1489 0.0610
C2 v1.0 (all) 1.0000 0.1944
C2 v2.5 (all) 1.0000 0.2275
Top 906/618 genes 0.0687 0.0687
Chuang 0.0182 0.1265
Raul1 0.0739 0.0970

Since the number of features differ in all of these marker sets, it is hard to draw a conclusion
from this robustness analysis. Let’s evaluate the classification performance again:

Figure 3: The performances of the aucs.

Strangely, the raul1 markers outperform all the others slightly.

1.4 Park algorithm

In order to simulate the idea of Park, I’ve employed the following method: I’ve clustered the
gene data in a dataset using correlation as a distance and average linking for clustering. I’ve set
a hard threshold on 500 subnetworks.

2

The resulting thresholds obviously have all genes in their subnetworks, so robustness analysis
is useless here. It is interesting however to inspect the distribution of the number of features in
each subnetwork.

Figure 4: The distribution of the number of features per cluster. Each marker set consists of
500 clusters.

And the performance...

Figure 5: The performances of the aucs with the 500 clusters.

It looks like my first attempt at clustering using has failed. This could be due to the distri-
bution of genes per cluster, the level of hierarchy or perhaps because of the lack of some feature
selection method. I’ve also generated the dendrograms. Since there are 8141 features, it is hard
to make a comparison visually.

3

(a) Dendrogram of Vijver features.

(b) Dendrogram of Wang features.

Figure 6: Dendrogram of the features, average linking, correlation distance.

4

1 Changelog

March 5th

1.1 Trying out the new datasets

I’ve received and integrated new datasets. Now I have a collection of 4 datasets, DMFS, SOS,
VIJVER and WANG, each having the same 10870 labels. The Vijver dataset is now different
from the dataset used in previous analyses, since the outcome labels and number of samples has
changed.

1.1.1 Classification performance

I’ve tested out the different classification performances.
All the subnetworks or genes were ranked by T-test and in advance and the top 500 selection

was taken, except for genes1000, where the top 1000 genes were taken.
For Park’s algorithm, the complete set of genes was clustered to 8000 subnetworks. Again,

from these subnetworks, the top 500 were picked. 8000 was the approximate average of all 4
optimal hierarchy levels.

There is also a new feature, doubles, which a set of subnetworks consisting of all protein-
protein pairs.

Figure 1: Classification performances

The results differs from previous work. It is hard to see which one really performs best.

1.2 Does Park really work?

I’ve plotted the cross validation error of Park’s algorithm in Figure 2. The horizontal axis depicts
the level of hierarchy, growing exponentially, and the vertical axis the number of features. The
plot below the curve indicates the lowest possible error for that level of hierarchy. No specific
trend can be found, so I’m doubting Park really improves anything here.

1

Figure 2: Park curves

1.3 Investigating biological phenomena

1.3.1 Pairs of genes

An interesting property to examine is whether how much correlation is linked to improvement
in t-test score.

1.4 Suggestion for simulation

2

(a) Correlation versus t-test. (b) Correlation versus improvement t-test.

(c) The protein pair with maximum t-ttest
when averaged: EIF4G1, RRM2

(d) The protein pair with maximum improve-
ment when averaged: CSNK1G2, CSNK1G3

Figure 3: Correlation versus t-test or correlation versus improvement in t-test. Improvement is
calculated as abs(T-test) - mean(abs(individual t-tests)).

Figure 4: Simulation. Park’s paper is a subset of this method.

3

1 Changelog

March 11th

1.1 Classification performance

Details

Figure 1: Classification performances

Figure 2: Classification performances, using CORGs trained using SOS, against single genes.

1

1 Changelog

March 24th

1.1 Classification performance

In order to start making conclusions about the various classification methods, I’ve performed a
few experiments. A complete test can be seen in Figure 1.

Chuang Lee Park Raul1 Raul2 Raul3 Singles

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Experiment

A
U

C

Classification results, tested on Vijver

Chuang Lee Park Raul1 Raul2 Raul3 Singles
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Experiment

A
U

C

Classification results, tested on Wang

DMFS markers
SOS markers
Vijver markers
Wang markers

Chuang Lee Park Raul1 Raul2 Raul3 Singles

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Experiment

A
U

C

Classification results, tested on DMFS

Chuang Lee Park Raul1 Raul2 Raul3 Singles

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Experiment

A
U

C

Classification results, tested on SOS

Figure 1: Classification performances, overview of all methods. Raul1 algorithm: Lee-searching
in Chuang-search space. Raul2 algorithm: Chuang-style search in Lee-search space. Raul3
algorithm: Chuang’s algorithm but tries to maximize average correlation among genes instead
of MI-score.

This test uses compares all method without features selection. So in single genes, all 10870
genes are selected. To see the effect of feature selection on single genes, I’d like to refer to a
simpler, earlier experiment in Figure 2.

So far, some conclusions I draw from previous observations:

• Park’s algorithm doesn’t work. I’ve noticed that the cross-validation method in order to
select the optimum number of features prefers a high level, so, the final set of subnetworks
are similar to the original set of genes, but even then it still performs worse than single
genes. This can be seen clearly when SOS or Wang is the dataset of choice, in Figure
1. Also, even when using the markers trained on the same set, the results don’t show
the expected biased improvement. I suspect that performing a feature selection prior to
Park’s algorithm will improve Park’s method. They also perform feature selection in their
example of Vijver’s dataset.

• Raul3 algorithm is a variation of Chuang’s algorithm. It doesn’t try to improve the MI
score, but the average correlation in the subnetwork. This method also fails to show
the expected biased improvement. I suspect doing anything with correlation alone won’t
improve results.

1

• In the lower-right graph, there is a slight symmetry between Chuang and Lee on one side
and Raul1 and Raul2 on the other side. The symmetry can also slightly be seen in the
lower-left graph. This might indicate that the searching method has a more important
effect than the search space.

• It is hard to conclude wether Chuang or Lee works better. By inspecting the graphs, I
would say Lee works better, even tough there are a few exceptions. If we leave out the
biased results, so the markers trained on X and tested on X, then Lee often outperforms
Chuang.

• None of the methods seem to significantly outperform the single genes. Okay, so in this
experiment all genes were selected in single genes, so for a fair comparison you would have
to control the genes for size. In Figure 2 the results can be seen when taking the top 2000
genes.

Single genes (top 100) Single genes (top 200) Single genes (top 500) Single genes (top 1000) Single genes (top 2000) Single genes (top 5000) Single genes (all)
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Experiment

A
U

C

Classification results

Vijver (Wang markers)
Wang (Vijver markers)
DMFS (SOS markers)
SOS (DMFS markers)

Figure 2: Classification performances for single genes. Here, feature selection was performed
using the training set. So for example the top 500 genes were determined using SOS and tested
on DMFS.

1.2 Feature selection

In order to investigate the effect of feature selection a little more, I’ve inspected the learning
curves with respect to preselection. The basic feature selection method is ranking by T-score
and selection the top-N genes.

From these figures I conclude that a few thousand top ranking genes should be selected for
optimum results. Also, the DMFS and SOS learning curves seem to behave different from the
Vijver and Wang learning curves.

1.3 Mysterious drop

Last report, I’ve noticed a sudden drop in performance, using the raul1 algorithm, with the top
500 ranking subnetworks from Wang tested on Vijver.

2

Figure 3: The effect of feature selection investigated. All these figures come where derived by
averaging all the inner loop learning curves from the cross validation method. In these figures,
Vijver-Wang, Wang-Vijver, SOS-DMFS, DMFS-SOS train-test method was employed. Before
each cross validation method, the top-N genes where picked by ranking on T-score.

Figure 4: Vijver’s learning curves further zoomed in. Once again, feature selection was performed
using Wang, and the curves themselves come from Vijver.

Figure 5: The
drop.

Since I’ve improved the cross validation strategy (faster and now does 20
repeats instead on 10), I was not able to reproduce the drop. So I’m guessing
some my previous plots weren’t robust enough.

1.4 The use of models

First of all, why would we bother to create models?

• We can try to simulate data given a model and compare the various
algorithms on it.

• We can try to analyze why a certain algorithm would work better in
certain circumstances compared to other algorithms.

• It may help design improved algorithms.

From an analytic point of view, I think these models can be grouped in
4 groups of increasing complexity. Each model consists of three layers: the
outcome (y), the hidden state (h) and the features (x). The outcome and

features are functions of what is happening inside the hidden state. These functions are linear
functions. See Figure 6. Model A is the single genes model. In this model we assume that the
outcome is a simple linear function of a subset of a few genes. Model B is the model which
is implied in Chuang’s, Lee’s an Park analysis. These analyses assume that the hidden state
is actually a collection of pathways or complexes. The outcome is a function of the state of

3

these pathways and the features are correlated to these pathways. A difference between the
models is that Park only allows a feature to belong to at most one pathway. Chuang’s and Lee’s
algorithm assume the same underlying model, but have slightly different approaches to find the
pathways. Model C tries to add logic effects to previous models. So far, the previous models
assumed the function to be linear. By adding extra layers within the hidden layer, we could for
example express the outcome variable as a logic expresssion y = (g1 OR g2) AND g3, which
would be impossible to do using model B. Model D incorporates interactions between hidden
nodes which influence the features. So far, the previous models assumes the feature variables to
be independent. With model D, I try to model the dependendancy between the feature values.

y=f(h)

h

x=f(h)

y=f(h)

h

x=f(h)

y=f(h)

h=f(h)

x=f(h)

y=f(h)

h=f(h)

x=f(h)

a) single genes model b) complex model

c) logic effects model d) influence model

y=f(h), x=f(h) are linear functions
h=f(h) can be nonlinear functions

Figure 6: Four basic models in increasing complexity.

Some hypotheses concerning implementations:

• Improved classification can either occur due to grouping genes which estimate pathway
values as in model B or by grouping genes to estimate higher level hidden nodes as in
model C, or by grouping unwanted genes.

• Subnetworks in the IPP network and C2 pathways give an increased chance of finding
pathways which correspond to model B pathways. C2 pathways should work better than
IPP subnetworks.

• Chuang and Lee find a combination of improvements due to model B and model C.

• Park’s method can be improved by preremoving genes which we know don’t interact in
complexes, or putting a constraint on which genes may be clustered together.

• Trying to find pathways which only correspond to model B and not model C will improve
the results, by putting constraints on correlation for example.

• Trying to estimate higher level nodes in model C using other methods instead of taking
means will improve results.

• Using more specific interactions helps finding model B.

• Subtyping improves the function connecting y = f(h).

4

1 Changelog

April 6th

1.1 Single genes analysis

First of all, let’s see what the effect is changing the number of features used in feature selection.
In the setup in Figure 1, training sets were used to rank genes by T-score and take the top N
genes. A classifier (NMC) was trained using these genes on the training set. This classifier was
tested on the training dataset. Note that no cross-validation is used in these methods, so no
standard error bars can be generated.

1 2 5 10 20 50 100 200 500 1000200050001000010870

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Numer of features

A
U

C

VIJVER

1 2 5 10 20 50 100 200 500 1000200050001000010870

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Numer of features

A
U

C

WANG

VIJVER markers
WANG markers
DMFS markers
SOS markers

1 2 5 10 20 50 100 200 500 1000200050001000010870

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Numer of features

A
U

C

DMFS

1 2 5 10 20 50 100 200 500 1000200050001000010870

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Numer of features

A
U

C

SOS

Figure 1: Classification performances using various numbers in feature selection. Each subplot
depicts a validation dataset and the bars the various training datasets. Training sets where used
for feature selection and training.

The same setup, but this time using Fisher classifier is found in Figure 2. A version using
logistic regression is in Figure 3. In logistic regression, the number of features was limited to
1000, but it seems the results are very similar to using a Fisher classifier.

Some conclusions:

• Fisher classifier may be inspected for analysis instead of the much slower logistic regression.

• Using the NMC classifier works better than using a more variant classifier, such as Fisher
and logistic regression. When using Fisher, none of the unbiased perfomances climb above
0.7.

• Fisher classifier performs worse when many features are added. NMC seems to be almost
immune to this effect.

1

1 2 5 10 20 50 100 200 500 1000200050001000010870

0.5

0.6

0.7

0.8

0.9

1

Numer of features

A
U

C

VIJVER

1 2 5 10 20 50 100 200 500 1000 2000 50001000010870

0.5

0.6

0.7

0.8

0.9

1

Numer of features

A
U

C

WANG

VIJVER markers
WANG markers
DMFS markers
SOS markers

1 2 5 10 20 50 100 200 500 1000200050001000010870

0.5

0.6

0.7

0.8

0.9

1

Numer of features

A
U

C

DMFS

1 2 5 10 20 50 100 200 500 1000 2000 50001000010870

0.5

0.6

0.7

0.8

0.9

1

Numer of features

A
U

C

SOS

Figure 2: Classification performances using Fisher.

1.2 Simulation

Why bother simulating? In addition to reasons in the previous journal, it gives possible options
for answering the questions, why does A work better than B?

Here is an example run:

Model a
H_i = Normal(0,3)
X_i = Normal(H_i,3)
Y = Normal(Beta*H, 3)
Beta = Normal(2,3)
250 Runs
100 training samples, 100 testing samples
200 features (genes)

In the example run, we see an improvement in classification performance can be gaines using
model A, so grouping genes may help improve classification even when there is no coregulation.

2

1 2 5 10 20 50 100 200 500 1000

0.5

0.6

0.7

0.8

0.9

1

Numer of features

A
U

C

VIJVER

1 2 5 10 20 50 100 200 500 1000

0.5

0.6

0.7

0.8

0.9

1

Numer of features

A
U

C

WANG

VIJVER markers
WANG markers
DMFS markers
SOS markers

1 2 5 10 20 50 100 200 500 1000

0.5

0.6

0.7

0.8

0.9

1

Numer of features

A
U

C

DMFS

1 2 5 10 20 50 100 200 500 1000

0.5

0.6

0.7

0.8

0.9

1

Numer of features
A

U
C

SOS

Figure 3: Classification performances using Logistic Regression. Number of features is limited
to 1000 since PRtools has troubles with high number of features.

y=f(h)

h

x=f(h)

y=f(h)

h

x=f(h)

y=f(h)

h=f(h)

x=f(h)

a) single genes model b) complex model

d) influence model e) combined model

y=f(h), x=f(h) are linear functions
h=f(h) can be nonlinear functions

y=f(h)

h=f(h)

x=f(h)

c) logic effects model

y=f(h)

h=f(h)

x=f(h)

Figure 4: 5 models for simulation in increasing complexity.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

Error (1−AUC)

F
re

q

Histograms of error distribution

Fisher, all feats
NMC, all feats
Fisher, NMC, mean feats

Figure 5: Result of example run.

3

1 Models

April 13th

y=f(h)

h

x=f(h)

y=f(h)

h

x=f(h)

y=f(h)

h=f(h)

x=f(h)

a) single genes model b) complex model

d) influence model e) combined model

y=f(h), x=f(h) are linear functions
h=f(h) can be nonlinear functions

y=f(h)

h=f(h)

x=f(h)

c) logic effects model

y=f(h)

h=f(h)

x=f(h)

Figure 1: 5 models for simulation in increasing complexity.

1.1 Model A: single genes

In the single genes model, there is no correlation between the measured features. This model
might be considered as a sort of null model, wherein there is no knowledge to be exploited, and
Chuang’s, Lee’s and Park’s algorithm should have no advantage. This model is meant to explore
the basic properties of the various classifiers and taking the average of features.

Note that in this model, the flow of information is from hidden nodes to the outcome label.
Also, in these simulations, I haven’t put effort in making the training or testing samples stratified,
but I expect there to be a 50/50 split in good and poor outcome.

1.1.1 Example run 1

100 runs
20 training samples, 80 testing samples
10 features(=n)

H_i = Normal(mean=0, var=5), for i=1..n
X_i = H_i+Normal(mean=0, var=2), for i=1..n
Y = BETA*H + Normal(mean=0, var=2)
BETA = {1,1,1,..1}

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

Error (1−AUC)

F
re

q

Histograms of error distribution

Fisher, all feats
NMC, all feats
Fisher, NMC, mean feats

−20

0

20

−20

−10

0

10

20
−60

−40

−20

0

20

40

Gene 2Gene 1

O
ut

co
m

e

Heat Map

1 2 3 4 5 6 7 8 9 10 Y

2

4

6

8

10

12

14

16

18

20
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−10 −5 0 5 10

−10

−5

0

5

10

 1
 2

Fisher
Nearest Mean

Figure 2: Model A, example. Shown here are a distribution of the errors. The performance of
the NMC classifier using all features overlaps with NMC classifier using averaged features. Also,
the NMC classifier and fisher classifier using averaged features have the same error distribution
when calculating the AUC. Also shown upperright is an example distribution of two genes and
their outcome of one run. The outcome labels are colored red and green. The lowerleft graph
shows a heatmap of one example run. The heatmap also contains an outcome column. The
lowerright graph shows the distribution of two genes for the testing samples, along with the
classifier line calculated using the training samples.

1.1.2 Conclusions

In this single genes model, there is a trivial situation wherein improvement in classification by
averaging of the features can be achieved if the betas are similar. Averaging the genes has
the same effect as training a regression model with all betahats being the same, thus putting
the regression line on the 1-vector. Since we’re calculating the AUC, further training of this
on-dimensional mapping is useless.

2

1.2 Model B: complex model

In the complex models, features genes are a function of genes in the hidden layer, this way, the
features belonging to the same hidden node are forced to correlate. The expected behavior here
is of course that classification will improve if the correct genes are averaged. In the following
examples, the features belong to at most 1 complex.

1.2.1 Example run

100 runs
20 training samples, 80 testing samples
10 features(=n)

H = Normal(mean=0, var=2)
BETA = {1,1,1,..1}
X_i = BETA*H_i+Normal(mean=0, var=2), for i=1..n
Y = H + Normal(mean=0, var=2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

Error (1−AUC)

F
re

q

Histograms of error distribution

Fisher, all feats
NMC, all feats
Fisher, NMC, mean feats

−20

0

20

−20

0

20
−20

−10

0

10

20

Gene 2Gene 1

O
ut

co
m

e

Heat Map

1 2 3 4 5 6 7 8 9 10 Y

2

4

6

8

10

12

14

16

18

20
−1

−0.5

0

0.5

1

−10 0 10
−15

−10

−5

0

5

10

15

 1

 2

Fisher
Nearest Mean

Figure 3: Model B, example

In this example, averaging the gene expression seems to perform just as good as using NMC
as a classifier.

1.2.2 Example run 2

100 runs
2000 training samples, 80 testing samples
10 features(=n)

H = Normal(mean=0, var=2)
BETA = {1,2,1,2,1,2...,2}
X_i = BETA*H_i+Normal(mean=0, var=2), for i=1..n
Y = H + Normal(mean=0, var=2)

3

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

Error (1−AUC)

F
re

q

Histograms of error distribution

−20

0

20

−20

0

20
−10

0

10

20

Gene 2Gene 1

O
ut

co
m

e

−5 0 5

−10

−5

0

5

Feature 1

F
ea

tu
re

 2

Fisher, all feats
NMC, all feats
Fisher, NMC, mean feats

Heat Map

1 2 3 4 5 6 7 8 9 10 Y

200

400

600

800

1000

1200

1400

1600

1800

2000 −1

−0.5

0

0.5

1

Fisher
Nearest Mean

Figure 4: Model B, example 2

In this model, I’ve added 2000 training samples, and I’ve altered betas to not lie on the
1-vector, but have different values. I expected the fisher classifier to perform better, but this is
not the case.

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Angle of regression

E
rr

or
 (

1−
A

U
C

)

−6 −4 −2 0 2 4 6

−50

−40

−30

−20

−10

0

10

20

30

40

50

Feature 1

F
ea

tu
re

 2

Figure 5: Observation. I’ve generated a two gene model dataset which are obviously correlated.
Averaging genes would put the error of the AUC at angle=π/4. When training a fisher classifier,
the error varies along this graph.

1.2.3 Conclusions

It seems that, when variables are correlated, averaging genes gives the best classifier possible.
Intuitively, I would say that given enough samples, a fisher classifier should perform better, but
I wasn’t able to reproduce this situation leading me to think that if are variables are correlated,
any regression line near the 1-vector is optimum. This observation is further examined in Figure
5. Also, from the fact that NMC classifier performs almost the same as when averaging the
genes, I’d say most of the improvement in performance is gained by using a NMC.

4

1.3 Model C: logic effects

1.3.1 Example run

100 runs
20 training samples, 80 testing samples
10 features(=n)

H_i = Normal(mean=0, var=2), for i=1..n
X_i = H_i+Normal(mean=0, var=2), for i=1..n
Y = min(H_i) + Normal(mean=0, var=2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

Error (1−AUC)

F
re

q

Histograms of error distribution

Fisher, all feats
NMC, all feats
Fisher, NMC, mean feats

−10

0

10

−10

0

10
−10

−5

0

5

Gene 2Gene 1

O
ut

co
m

e

Heat Map

1 2 3 4 5 6 7 8 9 10 Y

2

4

6

8

10

12

14

16

18

20
−1

−0.5

0

0.5

1

−5 0 5
−6

−4

−2

0

2

4

6

Feature 1

F
ea

tu
re

 2

Fisher
Nearest Mean

Figure 6: Model C, example 1

1.3.2 Conclusion

When there is a logic effect, averaging genes might also help, but I think the improvement in
performance lies is due to the same effect as in the previous sections.

1.4 Further to do

Generate simulation which contain all types of combinations of effects.
We want to find model B type groups of genes. Test how well all combinations of search crite-

ria (MI score, T score, correlations) and search methods (sequential selection, forward selection,
clustering) are able to find the correct groups of genes in these simulation.

5

1 Analyzing Park’s efficiency

April 24th

Y=c+H*A+e

H=N(mean=m,var=v)

X=c+H*B+e

Figure 1: Initial experimental setup.

H = normal(mean=0, var=1).
X = H_x + normal(mean=0, var=1).
X_noise = normal(mean=0, var=9).
Y = -H_1 + H_2 + 2 * H_3 + normal(mean=0, var=9).
Outcome = 1 if Y above 0, 0 if Y under 0.
200 training samples
200 testing samples

The 200 training and 200 testing samples where gener-
ated 200 times from this simulation data to generate Fig-
ure 2. Also, the 200 training samples where used to create
a clustering, and to train the genes and supergenes in these
clustering. The 200 testing samples where used to select
the best cutoff level and number of features.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

Error (1−AUC)

F
re

q

Histograms of error distribution

Fisher, all feats
NMC, all feats
Fisher, NMC, mean feats (perfect)

−10

0

10

−10

0

10
−10

0

10

20

Gene 2Gene 1

O
ut

co
m

e

Heat Map

1 11

20

40

60

80

100

120

140

160

180

200 −1

−0.5

0

0.5

1

−5 0 5
−6

−4

−2

0

2

4

6

Feature 1

F
ea

tu
re

 2

Fisher
Nearest Mean

Figure 2: Starting experimental setup results.

 5 6 4 12 17 14 18 7 8 9 11 15 16 13 1 3 2 10

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3: Example dendrogram.

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

Figure 4: Example learning curves for 16 runs.

Cutoff Features Clusters
18 9 [8] [9] [7] [4] [6] [1] [3] [2] [5]
11 4 [7 8 9] [4 5 6] [10] [1 2 3]
11 2 [7 8 9] [1 2 3]
10 2 [7 8 9] [1 2 3]
9 1 [7 8 9]
15 3 [7 8] [1 3] [9]
10 4 [7 8 9] [1 2 3] [10] [4 5 6]
17 7 [9] [8] [7] [3] [4] [2] [5 6]
15 5 [7] [8 9] [4 6] [5] [1 3]
9 5 [7 8 9] [4 5 6] [14] [15] [1 2 3]
11 6 [7 8 9] [4 5 6] [1 2 3] [12] [16] [10]
17 4 [7 9] [8] [2] [1]
13 6 [4 5] [7 8 9] [6] [17] [1 2 3] [14]
10 2 [7 8 9] [1 2 3]
8 3 [7 8 9] [1 2 3] [4 5 6]
12 1 [7 8 9]

Something that’s directly apparent from these data is
that the cluster [7 8 9] scores better than the other clus-
ters. This is because alfa parameter, which is 2, instead
of 1 and -1 for the other clusters. This makes this cluster
more important in the prediction of y, so it will get a higher
t score.

1

Also, only 1 out of the 16 runs contains the clustering we
would like to see. The clustering seems to work good, but
the cutoff selection not. All in all, we need a few scores to
measure how well the searching algorithms find the correct
clusters.

1.1 Cross validated Park

Using a cross-validated version of Park to find the opti-
mum cutoff level and number of features improves the re-
sults since it consists of more robust. To demonstrate, I’ve
combined the 200 training and 200 testing samples in one
set and cross validated it in 5 folds for 2 repeats.

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18
2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18
2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

Figure 5: Learning curves for cross-validated Park.

Cutoff Features Clusters
11 8 [7 8 9] [1 2 3] [4 5 6] [12] [17] [15] [10]
10 3 [7 8 9] [1 2 3] [4 5 6]
12 3 [7 8 9] [4 5 6] [1 2 3]
14 3 [7 8 9] [1 2 3] [4 5 6]

1.2 Parameters analysis

The basic architecture of the experimental setup is in Figure
1.

Once again, here is the basic setup:

H = normal(mean=0, var=1).
X = H_x + normal(mean=0, var=1).
X_noise = normal(mean=0, var=9).
Y = -H_1 + H_2 + 2 * H_3 + normal(mean=0, var=9).
Outcome = 1 if Y above 0, 0 if Y under 0.
200 training samples
200 testing samples

First of all, I’d like to know how well Park’s method be-
haves given a different number of noise genes.

The 200 training samples where used to find the best clus-
tering. Park’s method was used to find the best cutoff level.
All features at this cutoff level where returned. The 200

testing samples where used using a cross validation method
to get an average AUC. The DLCV AUC was calculated for
all single features and for the features reducted according
to the optimal cutoff level.

Park’s procedure and the DLCV procedure are the same
code I’ve used before, except for fewer runs.

0 5 10 15 20 25 30 35
0.2

0.25

0.3

0.35

0.4

0.45

Number of noise features
E

rr
or

 (
1−

A
U

C
)

Single genes DLCV
Park DLCV

Figure 6: AUCs behavior given a different number of fea-
tures.

From Figure 6 we see that Park’s method performs better
than single genes most of the time, but the difference is
small.

For the next experiment, let’s fix the number of noise
genes at 9 and let’s vary the noise caused by Xnoise with a
variance from 0 to 16.

0 1 2 3 4 5 6 7 8 9
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

Variance

E
rr

or
 (

1−
A

U
C

)

Single genes DLCV
Park DLCV

Figure 7: AUCs behavior given a different variance.

A less strong trend can be detected here. Then again,
Park’s algorithm was run only 30 times to create the graph
above. Park still works slightly better.

2

1 Method comparison using simu-
lations

May 9th

H1

X1,2

Y

Y=mean(H1,..,Hn)+N(μ=0,δ²=1)

Hi=N(μ=0,δ²=1)

X1,3X1,1 Xn1 Xn2 Xn3 Xn4 Xn5 Xn900
...

... ...

1000 features

100 signal genes 900 noise genes

#hidden
nodes:
1-10

...

Xi,j=Hi+N(μ=0,δ²=genenoise)

genenoise:
0-9

Figure 1: Simulation setup.

The simulation setup can be seen in Figure 1.

1.1 Assumptions for the simulation

One one hand, I want the simulation to be similar to the
actual data, but on the other hand, it should be fast enough
to work with and allow unknown parameters to be varied.

Here follows a list of parameter choices for the simulation:

• The number of testing and training samples are each
300, since this is the approximate number of samples in
each of the DMFS, SOS, VIJVER and WANG dataset.

• The number of features is 1000. This is less than 10
percent of the features available in the actual datasets,
but adding more features slows down the simulations.

• The number of informational features is 100. This is
10 percent of the features, and approximation of the
actual number of informational features.

• For simplicity, the hidden nodes and noise genes have
a mean of 0 and variance of 1. The signal gene has an
error noise added and is normalized to have a mean of
0 and variance of 1. This way, all features have a mean
of 0 and variance of 1, as in the actual data.

Apart from these assumptions, I want the model to be
flexible enough to simulate a range of the following param-
eters.

• The number of hidden nodes can vary from 1 to 10.
The number of signal nodes per hidden node then au-
tomatically varies from 100 to 10.

• The noise added to the signal nodes. This variance
may vary from 0 to 9.

1.2 A multivariate notation

Since the entire system consists of normal distributions and
linear functions, we can represent the system above using a
mean vector and covariance vector.

The mean vector consists of zeroes. In the follow
covariance matrix, only a few variables of the entire
system is indicated. Some of the fractions here are
caused by the normalization step. ex denotes the vari-
ance of the signal error, ey the variance of the outcome
error, n the number of hidden nodes, Xe a noise gene.

H1 H2 X1,1 X1,2 X2,1 Xe Y

H1 1 0 1
1+ex

1
1+ex

0 0 1
n

H2 0 1 0 0 1
1+ex

0 1
n

X1,1
1

1+ex
0 1 1

1+ex
0 0 1

n(1+ex)

X1,2
1

1+ex
0 1

1+ex
1 0 0 1

n(1+ex)

X2,1 0 1
1+ex

0 0 1 0 1
n(1+ex)

Xe 0 0 0 0 0 1 0
Y 1

n
1
n

1
n(1+ex)

1
n(1+ex)

1
n(1+ex)

0 1
n

+ ey

1.3 Methods used

Let’s call the above setup a dataset generator. See Figure 2.

Dataset generator

300 training samples

300 testing samplesPark Lee

Testing after Park Testing after Lee Testing

DLCV

Genenoise:
0,1,2,...9

Hidden nodes:
1,2,3...10

Figure 2: Workflow. Each combination of input variables
(genenoise and hidden noides) is fed to the dataset genera-
tor to obtain a ’performance’ landscape. This entire process
is repeated ten times to get an average performance land-
scape.

1.3.1 Park

A dendrogram was computed of the simulation data and
200 cutoffs of this dendrogram were considered. For each

1

cutoff/number of features, an approximation of the AUC
was calculated by splitting the data in 5 folds just as in the
DLCV manner. The final AUCs are an average of 25 AUCs.

An example AUC ’landscape’ can be seen in Figure 3.

AUC landscape

Number of features

Le
ve

l

100 200 300 400 500 600 700 800 900 1000

20

40

60

80

100

120

140

160

180

200

Figure 3: Example AUC landscape of Park. The simulation
was run with 5 hidden nodes and a signal error of 1. Darker
red indicates a lower error. According to this landscape, the
optimum cutoff is 1, meaning that no features are averaged
according to this this example.

Even though Park’s algorithm determines the optimum
number of features, I only use the cutoff level, not the op-
timum number of features.

1.3.2 Lee

To test Lee’s algorithm, the training data was fed to Lee
and a perfect set of subnetworks was given. So if we split
the training data in 10 parts, the subnetworks given to Lee’s
algorithm would be those 10 dataset consisting of the cor-
responding features, without incorrect or missing features.
So theorically, this algorithm should be able to return the
best feature signature possible.

1.3.3 DLCV

My DLCV code was used, using NMC as the classifier and
AUC as performance measure. The outer loop loop was
split in 5 folds and repeated 50 times (returning 50 AUC
values, not 250). The inner loop was split in 4 folds and was
repeated 10 times (returning 10 learning curves, not 40). In
the following results, I will use error=1-AUC as a measure.

1.4 Results

Figure 4 shows the average of 10 AUC landscapes.
Figure 5 compares the methods to each other.
If you inspect to experimental setup, increasing the num-

ber of hidden nodes basically has the same effect as in-
creasing the signal error and I think the results show this.
If there is low signal error, single genes do slightly better.
When there is a little higher signal error, Park performs

Signalerror (variance of error)

N
um

be
r

of
 h

id
de

n
no

de
s

DLCV error on all genes

0 1 2 3 4 5 6 7 8 9

2

4

6

8

10
0.1

0.2

0.3

0.4

0.5

0.6

Signalerror (variance of error)

N
um

be
r

of
 h

id
de

n
no

de
s

DLCV error after Park

0 1 2 3 4 5 6 7 8 9

2

4

6

8

10
0.1

0.2

0.3

0.4

0.5

0.6

Signalerror (variance of error)

N
um

be
r

of
 h

id
de

n
no

de
s

DLCV error after Lee

0 1 2 3 4 5 6 7 8 9

2

4

6

8

10
0.1

0.2

0.3

0.4

0.5

0.6

Figure 4: DLCV performances of the various methods. Blue
indicates a low error, so a good performance.

better, but when there is too much error, Lee outperforms
the rest, probably because of its inherent advantage of be-
ing given perfect geneset, rather than the algorithm. The
conslusion is that Park works best in this simple setup, but
if things get too noisy Lee might work better given perfect
pathways.

2 Improved Park on real data

2

Signalerror (variance of error)

N
um

be
r

of
 h

id
de

n
no

de
s

Single genes versus Park (yellow=Park is better)

0 1 2 3 4

1

2

3

4

5

6

7

8

9

10

−0.1

−0.05

0

0.05

0.1

0.15

Signalerror (variance of error)

N
um

be
r

of
 h

id
de

n
no

de
s

Single genes versus Lee (yellow=Lee is better)

0 1 2 3 4

1

2

3

4

5

6

7

8

9

10

−0.1

−0.05

0

0.05

0.1

0.15

Signalerror (variance of error)

N
um

be
r

of
 h

id
de

n
no

de
s

Lee versus Park (yellow=Park is better)

0 1 2 3 4

1

2

3

4

5

6

7

8

9

10

−0.1

−0.05

0

0.05

0.1

0.15

Signalerror (variance of error)

N
um

be
r

of
 h

id
de

n
no

de
s

Best methods (black=single, yellow=Park, brown=Lee)

0 1 2 3 4

1

2

3

4

5

6

7

8

9

10
1

1.5

2

2.5

3

Figure 5: Comparisons. (Last-minute remark: signalerror
varies from 0 to 9.

VIJVER

2000 4000 6000 8000 10000

50

100

150

200

250

WANG

2000 4000 6000 8000 10000

50

100

150

200

250

DMFS

2000 4000 6000 8000 10000

50

100

150

200

250

SOS

2000 4000 6000 8000 10000

50

100

150

200

250

Figure 6: Park on real data. Optimum fea-
tures/subnetworks. Vijver: 30/580. Wang: 27/7440.
DMFS: 7/9206. SOS: 64/1767.

3

H1

X1,2

Y

Y=mean(H1,..,Hn)+N(μ=0,δ²=1)

Hi=N(μ=0,δ²=1)

X1,3X1,1 Xn1 Xn2 Xn3 Xn4 Xn5 Xn900
...

...

1000 features

100 signal genes 900 noise genes

#relevant
hidden nodes:
1-10

...

Xi,j=Hi+N(μ=0,δ²=genenoise)

genenoise:
0-9#non-relevant

hidden nodes:
#relevant*9

Hn1

Figure 1: The model

1 Changelog

May 22th

Method comparison using simulations 2

1.1 Updated model

I've updated the model in order to have all features, signal and noise features, to come from a set of hidden nodes. In
this model, if there is 1 signal hidden node, there are 9 noise hidden nodes. Each of these hidden noise 'generate' 100
features. If there are 10 signal hidden nodes, then there are 90 noise hidden nodes. Each of these 'generate' 10 features.
This way, there are approximately the same number of features per hidden node.

The output, value Y, is a function of only the signal hidden nodes. A visual representation is given in Figure 1.
This model can be expressed as a combination of a mean vector and covariance matrix. This way, the relations

between the di�erent variables are clear. The mean vector in this case consists of zeroes, the covariance matrix:
H1 H2 Hnoise ... X1,1 X1,2 X2,1 Xnoise ... Y

H1 1 0 0 ... 1√
1+ex

1√
1+ex

0 0 ... 1/hrelevant

H2 1 0 ... 0 0 1√
1+ex

0 ... 1/hrelevant

Hnoise 1 ... 0 0 0 1√
1+ex

... 0

...

X1,1 ... 1 1
1+ex

0 0 ... 1
hrelevant

√
1+ex

X1,2 ... 1 0 0 ... 1
hrelevant

√
1+ex

X2,1 ... 1 0 ... 1
hrelevant

√
1+ex

Xnoise ... 1 ... 0

...

Y 1
hrelevant

+ ey

Here ey indicates the variance of the error applied to Y.

1.2 Methods

There are a few methods which attempt to �nd subnetworks. The single features method, Park and Lee are already
discussed in the previous changelog.

1.2.1 Perfect

The perfect method combines all features which belong to the same hidden node. Unlike the name, it is not 100 percent
perfect, since it also returns subnetworks derived from the noise hidden nodes. So if the model would have 1 signal
hidden node and 9 noise hidden nodes, the 'perfect' methods returns 10 subnetworks.

1.2.2 Raul2

Raul2 method is a Chuang-style searching method in a Lee-style searching space. That is, it uses forward feature
selection, unlike the predetermined feature ranking in Lee's algorithm. Also, it uses MI score as a criterium.

1

Singles vs Singles

2 4 6 8 10

2
4
6
8

10

Singles vs Park

2 4 6 8 10

2
4
6
8

10

Singles vs Perfect

2 4 6 8 10

2
4
6
8

10

Singles vs Lee

2 4 6 8 10

2
4
6
8

10

Singles vs Raul2

2 4 6 8 10

2
4
6
8

10

Singles vs LeeRnd

2 4 6 8 10

2
4
6
8

10

Singles vs Raul2Rnd

2 4 6 8 10

2
4
6
8

10

Park vs Singles

2 4 6 8 10

2
4
6
8

10

Park vs Park

2 4 6 8 10

2
4
6
8

10

Park vs Perfect

2 4 6 8 10

2
4
6
8

10

Park vs Lee

2 4 6 8 10

2
4
6
8

10

Park vs Raul2

2 4 6 8 10

2
4
6
8

10

Park vs LeeRnd

2 4 6 8 10

2
4
6
8

10

Park vs Raul2Rnd

2 4 6 8 10

2
4
6
8

10

Perfect vs Singles

2 4 6 8 10

2
4
6
8

10

Perfect vs Park

2 4 6 8 10

2
4
6
8

10

Perfect vs Perfect

2 4 6 8 10

2
4
6
8

10

Perfect vs Lee

2 4 6 8 10

2
4
6
8

10

Perfect vs Raul2

2 4 6 8 10

2
4
6
8

10

Perfect vs LeeRnd

2 4 6 8 10

2
4
6
8

10

Perfect vs Raul2Rnd

2 4 6 8 10

2
4
6
8

10

Lee vs Singles

2 4 6 8 10

2
4
6
8

10

Lee vs Park

2 4 6 8 10

2
4
6
8

10

Lee vs Perfect

2 4 6 8 10

2
4
6
8

10

Lee vs Lee

2 4 6 8 10

2
4
6
8

10

Lee vs Raul2

2 4 6 8 10

2
4
6
8

10

Lee vs LeeRnd

2 4 6 8 10

2
4
6
8

10

Lee vs Raul2Rnd

2 4 6 8 10

2
4
6
8

10

Raul2 vs Singles

2 4 6 8 10

2
4
6
8

10

Raul2 vs Park

2 4 6 8 10

2
4
6
8

10

Raul2 vs Perfect

2 4 6 8 10

2
4
6
8

10

Raul2 vs Lee

2 4 6 8 10

2
4
6
8

10

Raul2 vs Raul2

2 4 6 8 10

2
4
6
8

10

Raul2 vs LeeRnd

2 4 6 8 10

2
4
6
8

10

Raul2 vs Raul2Rnd

2 4 6 8 10

2
4
6
8

10

LeeRnd vs Singles

2 4 6 8 10

2
4
6
8

10

LeeRnd vs Park

2 4 6 8 10

2
4
6
8

10

LeeRnd vs Perfect

2 4 6 8 10

2
4
6
8

10

LeeRnd vs Lee

2 4 6 8 10

2
4
6
8

10

LeeRnd vs Raul2

2 4 6 8 10

2
4
6
8

10

LeeRnd vs LeeRnd

2 4 6 8 10

2
4
6
8

10

LeeRnd vs Raul2Rnd

2 4 6 8 10

2
4
6
8

10

Raul2Rnd vs Singles

2 4 6 8 10

2
4
6
8

10

Raul2Rnd vs Park

2 4 6 8 10

2
4
6
8

10

Raul2Rnd vs Perfect

2 4 6 8 10

2
4
6
8

10

Raul2Rnd vs Lee

2 4 6 8 10

2
4
6
8

10

Raul2Rnd vs Raul2

2 4 6 8 10

2
4
6
8

10

Raul2Rnd vs LeeRnd

2 4 6 8 10

2
4
6
8

10

Raul2Rnd vs Raul2Rnd

2 4 6 8 10

2
4
6
8

10

Figure 2: Comparions of the di�erent methods. If X vs Y is indicated, green means Y performs better than X, red means
Y performs worse than X.

1.2.3 LeeRandom

LeeRandom is Lee's method using randomnized subnetworks. Subnetworks were randomnized by randomly switching the
features between the dierent subnetworks. So if Lee's method would attempt to �nd CORGs in 1 module full of signal
features and 9 modules full of noise features, LeeRandom methods would search in in 10 modules with each a random
number of signal features. As we will see later, this method actually outperforms standard Lee's method for this model.

1.2.4 Raul2Random

Similar to LeeRandom.
The best methods are shown in in Figure 3.

2 A Lee-biased model

Most attempts at developing a model which is best solved by Lee's algorithm instead of Park's algorithm failed. It seems
that if a model is easily solved by Lee than it can be easily solved by Park.

However, a situation where Lee works better than Park is when we remove the correlation between the features and
let the hidden variables be a function of the features instead of the other way around.

Instead of varying the signal error, this time I've varied the error on the outcome label. For the model, see Figure 4
and for the resultse see Figure 5.

This model may also be expressed as a covariance matrix:

2

Best methods (Singles = Red, Park = Orange, Lee = Yellow, Raul2 = Green, LeeRandom = Blue, Raul2Random = Purple)

Signalerror (variance of error)

N
um

be
r

of
 h

id
de

n
no

de
s

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Figure 3: Singles = red, Park = orange, Lee = yellow, Raul2 = green, LeeRandom = blue, Raul2Random = purple

H1

X1,2

Y

Y=mean(H1,..,Hn)+N(μ=0,δ²=yerr)

X1,3X1,1 Xn1 Xn2 Xn3 Xn4 Xn5 Xn900
...

...

1000 features

100 signal genes 900 noise genes

#relevant
hidden nodes:
1-10

...

Hi=mean(Xi,1,Xi,2,...) yerror:
0,0.05,0.1#non-relevant

hidden nodes:
#relevant*9

Hn1

Xi,j=N(μ=0,δ²=1)

Figure 4: Lee-biased model

3

Singles vs Singles

1 2 3

2
4
6
8

10

Singles vs Park

1 2 3

2
4
6
8

10

Singles vs Perfect

1 2 3

2
4
6
8

10

Singles vs Lee

1 2 3

2
4
6
8

10

Singles vs LeeRnd

1 2 3

2
4
6
8

10

Park vs Singles

1 2 3

2
4
6
8

10

Park vs Park

1 2 3

2
4
6
8

10

Park vs Perfect

1 2 3

2
4
6
8

10

Park vs Lee

1 2 3

2
4
6
8

10

Park vs LeeRnd

1 2 3

2
4
6
8

10

Perfect vs Singles

1 2 3

2
4
6
8

10

Perfect vs Park

1 2 3

2
4
6
8

10

Perfect vs Perfect

1 2 3

2
4
6
8

10

Perfect vs Lee

1 2 3

2
4
6
8

10

Perfect vs LeeRnd

1 2 3

2
4
6
8

10

Lee vs Singles

1 2 3

2
4
6
8

10

Lee vs Park

1 2 3

2
4
6
8

10

Lee vs Perfect

1 2 3

2
4
6
8

10

Lee vs Lee

1 2 3

2
4
6
8

10

Lee vs LeeRnd

1 2 3

2
4
6
8

10

LeeRnd vs Singles

1 2 3

2
4
6
8

10

LeeRnd vs Park

1 2 3

2
4
6
8

10

LeeRnd vs Perfect

1 2 3

2
4
6
8

10

LeeRnd vs Lee

1 2 3

2
4
6
8

10

LeeRnd vs LeeRnd

1 2 3

2
4
6
8

10

Figure 5: Comparisons of the methods under the Lee-biased model. If X vs Y, then green indicates that Y performs
better than X. The vertical axis indicates the number of relevant hidden nodes, varying from 1 to 10. The horizontal
axis indicated the error on the outcome. 1 : error = 0, 2 : error = 0.05, 3 : error = 0.1;

H1

X1,2

Y
Y=mean(H1,..,Hn)+N(μ=0,δ²=1)

Hi=N(μ=0,δ²=1)

X1,3X1,1 Xn1 Xn2 Xn3 Xn4 Xn5 Xn900
...

...

1000 features

100 signal genes 900 noise genes

#relevant
hidden nodes:
1-10

...

Xi,j=mean(Hi,Hindexof(Xi,j) mod #hiddennodes)+
 N(μ=0,δ²=genenoise)

genenoise:
0-9#non-relevant

hidden nodes:
#relevant*9

Hn1

Figure 6: Another attempt at a Lee-biased model.

H1 H2 Hnoise ... X1,1 X1,2 X2,1 Xnoise ... Y
H1

1
nH

0 0 ... 1
nH

1
nH

0 0 ... 1
nHhrelevant

H2
1

nH
0 ... 0 0 1

nH
0 ... 1

nHhrelevant

Hnoise
1

nH
... 0 0 0 1

nH
... 0

...

X1,1 ... 1 0 0 0 ... 1
nHhrelevant

X1,2 ... 1 0 0 ... 1
nHhrelevant

X2,1 ... 1 0 ... 1
nHhrelevant

Xnoise ... 1 ... 0

...

Y 1
nHhrelevant

+ ey

3 Another attempt at a Lee-biased model

In order to come up with a model which is expected to be more powerful using Lee instead of Park (but isn't), I've tried
to make a model which disrupts the dendrogram so that Park can't be e�ective. See Figure 6. This model is an extension
of the �rst model. Now, more arrows have been added such that each feature node is generated by 2 (or sometimes 1)
hidden nodes. This way, the correlation between informative genes is disrupted. However, this model doesn't prefer Lee,
as I �rst expected.

4

a)

Cross validation

200 400 600 800 1000

20

40

60

80

100

120

140

160

180

200

Different dataset

200 400 600 800 1000

20

40

60

80

100

120

140

160

180

200

b)

Cross validation

200 400 600 800 1000

20

40

60

80

100

120

140

160

180

200

Different dataset

200 400 600 800 1000

20

40

60

80

100

120

140

160

180

200

c)

Cross validation

200 400 600 800 1000

20

40

60

80

100

120

140

160

180

200

Different dataset

200 400 600 800 1000

20

40

60

80

100

120

140

160

180

200

d)

Cross validation

200 400 600 800 1000

20

40

60

80

100

120

140

160

180

200

Different dataset

200 400 600 800 1000

20

40

60

80

100

120

140

160

180

200

Figure 7: Park's AUC landscape. Shown on the left is the AUC landscape using the �rst model as in the previous �gures,
generate by Park's algorithm. On the right is the AUC landscape when a classi�er is trained using the training data
and testing using all features on a independent dataset. a) Number of hidden nodes = 1, signalerror = 0. b) Number
of hidden nodes = 1, signalerror = 9. c) Number of hidden nodes = 3, signalerror = 1. d) Number of hidden nodes=7,
signalerror = 0.

4 Some general conclusions regarding the simulations.

• In the �rst model, when there is a low signal error, then Lee's method using random subnetworks works better
than other methods. This is so because every subnetwork Lee's method is likely to have some signal nodes.

• The perfect model works best in all cases, except in the �rst model, where it is outperformed in a few cases by
LeeRandom.

• In the �rst model, Raul2 performs worse than Lee.

• In the �rst method, Park outperforms the single genes method when there is a high signal error and a low number
of hidden subnetworks.

• In the second method, Lee outperforms the single genes method.

5 More on Park

I've analyzed how e�cient Park is at �nding the correct cuto� level and number of features. The problem with analyzing
this e�ciency is that a large range of cuto� levels and number of features could be the best theoretical value. To give an
impression of where Park thinks the best cuto� level is and where the best cuto� level is when considering an independent
dataset, look at Figure 7.

5

1 Changelog

July 7th

1.1 Paired T-score versus ranksum

I’ve tried to compare the paired t-score versus the paired ranksum test to see if it would make a difference.
Apparently, the paired ranksum test gives higher P-values.

1 0.018 0.02 1.3−005 3.8−014 2.2−016 0

0.98 1 0.36 0.0077 6.7−009 8.9−011 0

0.98 0.64 1 0.029 4.9−006 7.2−012 0

1 0.99 0.97 1 0.0011 7.2−009 2.8−016

1 1 1 1 1 0.052 9.1−008

1 1 1 1 0.95 1 1.6−005

1 1 1 1 1 1 1

Comparisons with paired t−score

CHUANG (C
2)

LE
E

SIN
GLE

S

CHUANG

LE
E (P

PI)

CHUANG (C
ORR)

PARK

CHUANG (C2)

LEE

SINGLES

CHUANG

LEE (PPI)

CHUANG (CORR)

PARK

1 0.19 0.13 0.017 0.000542.1−005 3.1−008

0.81 1 0.4 0.096 0.00690.000421.4−006

0.87 0.6 1 0.14 0.012 0.0009 3.2−006

0.98 0.9 0.86 1 0.13 0.022 0.00033

1 0.99 0.99 0.87 1 0.19 0.013

1 1 1 0.98 0.81 1 0.084

1 1 1 1 0.99 0.92 1

Comparisons with paired ranksum

CHUANG (C
2)

LE
E

SIN
GLE

S

CHUANG

LE
E (P

PI)

CHUANG (C
ORR)

PARK

CHUANG (C2)

LEE

SINGLES

CHUANG

LEE (PPI)

CHUANG (CORR)

PARK

Figure 1: Paired t-score vs ranksum

1.2 Paired ranksum results

Note that to get these results I’ve recompiled the datasets to have a 11601-gene signature instead of a 10870-gene
signature.

1

1 0.45 0.45 0.36 0.29 0.2 0.19 0.15 0.047 0.016 0.014 0.00980.0026

0.55 1 0.47 0.39 0.32 0.24 0.2 0.16 0.053 0.014 0.014 0.00930.0022

0.55 0.53 1 0.39 0.32 0.24 0.2 0.17 0.055 0.016 0.015 0.00980.0028

0.64 0.61 0.61 1 0.43 0.32 0.31 0.24 0.11 0.031 0.033 0.021 0.0068

0.71 0.68 0.68 0.57 1 0.38 0.4 0.3 0.15 0.061 0.06 0.042 0.015

0.8 0.76 0.76 0.68 0.62 1 0.5 0.43 0.22 0.1 0.093 0.071 0.028

0.81 0.8 0.8 0.69 0.6 0.5 1 0.42 0.24 0.11 0.11 0.076 0.032

0.85 0.84 0.83 0.76 0.7 0.57 0.58 1 0.29 0.15 0.13 0.1 0.048

0.95 0.95 0.94 0.89 0.85 0.78 0.76 0.71 1 0.32 0.28 0.23 0.13

0.98 0.99 0.98 0.97 0.94 0.9 0.89 0.85 0.68 1 0.48 0.4 0.26

0.99 0.99 0.99 0.97 0.94 0.91 0.89 0.87 0.72 0.52 1 0.42 0.3

0.99 0.99 0.99 0.98 0.96 0.93 0.92 0.9 0.77 0.6 0.58 1 0.36

1 1 1 0.99 0.99 0.97 0.97 0.95 0.87 0.74 0.7 0.64 1

Chu
an

g*
 (C

2V
2.

5)

Le
e

(P
ar

k)

Le
e

(P
er

m
ut

ed
 C

2V
2.

5)

Sing
les Le

e

Le
e

(K
EGG)

Chu
an

g
(P

er
m

ut
ed

 P
PI)

Le
e

(C
2V

1.
0)

Chu
an

g
(T

−s
co

re
)

Le
e

(G
O)

Chu
an

g

Le
e*

 (P
PI)

Par
k

Chuang* (C2V2.5)

Lee (Park)

Lee (Permuted C2V2.5)

Singles

Lee

Lee (KEGG)

Chuang (Permuted PPI)

Lee (C2V1.0)

Chuang (T−score)

Lee (GO)

Chuang

Lee* (PPI)

Park

Figure 2: Cross-dataset paired ranksums

2

0.470.430.410.260.210.190.130.0960.0710.060.0420.033

0.53 1 0.470.470.270.270.240.170.110.0890.0810.0510.041

0.570.53 1 0.510.330.270.260.180.180.0750.0760.0660.058

0.590.530.49 1 0.350.270.290.180.160.10.0990.0790.068

0.740.730.670.65 1 0.440.410.370.230.230.180.130.11

0.790.730.730.730.56 1 0.450.410.320.210.240.170.16

0.810.760.740.710.590.55 1 0.470.330.290.280.190.21
0.870.830.820.820.630.590.53 1 0.360.290.320.210.2

0.90.890.820.840.770.680.670.64 1 0.480.440.340.38

0.930.910.930.90.770.790.710.710.52 1 0.50.370.37

0.940.920.920.90.820.760.720.680.560.5 1 0.40.39

0.960.950.930.920.870.830.810.790.660.630.6 1 0.55

0.970.960.940.930.890.840.790.80.620.630.610.45

Wang markers tested on Vijver

Le
e

(P
er

m
ut

ed
 C

2V
2.

5)

Le
e

(K
EGG)

Chu
an

g*
 (C

2V
2.

5)

Chu
an

g
(P

er
m

ut
ed

 P
PI)

Le
e

Sing
les

Chu
an

g

Le
e

(P
ar

k)

Chu
an

g
(T

−s
co

re
)

Le
e

(G
O)

Par
k

Le
e*

 (P
PI)

Le
e

(C
2V

1.
0)

Lee (Permuted C2V2.5)

Lee (KEGG)

Chuang* (C2V2.5)

Chuang (Permuted PPI)

Lee

Singles

Chuang
Lee (Park)

Chuang (T−score)

Lee (GO)

Park

Lee* (PPI)

Lee (C2V1.0)

1 0.050.0490.0410.0370.0340.020.0140.0130.0130.010.00740.0028

0.95 1 0.480.560.530.440.390.250.260.330.320.240.15

0.950.52 1 0.530.540.480.370.260.270.320.260.210.14

0.960.440.47 1 0.530.440.320.230.250.310.260.170.15

0.960.470.460.47 1 0.430.350.220.250.310.280.210.13

0.970.560.520.560.57 1 0.430.280.270.320.310.260.18

0.980.610.630.680.650.57 1 0.360.4 0.4 0.40.290.23
0.990.750.740.770.780.720.64 1 0.540.580.570.490.42

0.990.740.730.750.750.730.60.46 1 0.550.520.470.36

0.990.670.680.690.690.680.60.420.45 1 0.470.390.32

0.990.680.740.740.720.690.60.430.480.53 1 0.420.36

0.990.760.790.830.790.740.710.510.530.610.58 1 0.41

1 0.850.860.850.870.820.770.580.640.680.640.59 1

SOS markers tested on Vijver

Le
e

(C
2V

1.
0)

Chu
an

g
(P

er
m

ut
ed

 P
PI)

Le
e

Le
e

(P
ar

k)

Sing
les

Chu
an

g*
 (C

2V
2.

5)

Le
e

(K
EGG)

Chu
an

g
(T

−s
co

re
)

Chu
an

g

Le
e

(G
O)

Le
e*

 (P
PI)

Le
e

(P
er

m
ut

ed
 C

2V
2.

5)
Par

k

Lee (C2V1.0)

Chuang (Permuted PPI)

Lee

Lee (Park)

Singles

Chuang* (C2V2.5)

Lee (KEGG)
Chuang (T−score)

Chuang

Lee (GO)

Lee* (PPI)

Lee (Permuted C2V2.5)

Park

1 0.480.450.440.40.390.350.320.250.220.140.090.056

0.52 1 0.460.480.430.380.350.330.230.20.160.10.05

0.550.54 1 0.490.480.460.440.430.310.30.190.140.092

0.560.520.51 1 0.490.470.460.40.310.280.210.140.084

0.60.570.520.51 1 0.520.490.420.310.30.210.170.11

0.610.620.540.530.48 1 0.450.380.30.280.20.190.098

0.650.650.560.540.510.55 1 0.430.340.310.230.190.12

0.680.670.570.60.580.620.57 1 0.420.40.320.260.16

0.750.770.690.690.690.70.660.58 1 0.470.320.270.18

0.780.8 0.70.720.70.720.690.60.53 1 0.390.310.21

0.860.840.810.790.790.80.770.680.680.61 1 0.410.29

0.910.90.860.860.830.810.810.740.730.690.59 1 0.41

0.940.950.910.920.890.90.880.840.820.790.710.59 1

DMFS markers tested on Vijver

Le
e

(P
ar

k)

Le
e

(K
EGG)

Chu
an

g
(P

er
m

ut
ed

 P
PI)

Sing
les

Le
e

(C
2V

1.
0)

Chu
an

g
Le

e

Chu
an

g
(T

−s
co

re
)

Chu
an

g*
 (C

2V
2.

5)

Le
e

(P
er

m
ut

ed
 C

2V
2.

5)

Le
e

(G
O)

Par
k

Le
e*

 (P
PI)

Lee (Park)

Lee (KEGG)

Chuang (Permuted PPI)

Singles

Lee (C2V1.0)

Chuang

Lee

Chuang (T−score)

Chuang* (C2V2.5)

Lee (Permuted C2V2.5)

Lee (GO)

Park

Lee* (PPI)

1 0.480.480.350.340.330.320.240.20.110.0540.020.015

0.52 1 0.470.370.360.370.340.270.220.120.0650.0270.025

0.520.53 1 0.390.340.440.350.250.220.110.0670.0230.021

0.650.630.61 1 0.460.540.510.360.310.170.10.0430.038

0.660.640.660.54 1 0.510.50.380.330.190.130.0530.042

0.670.630.560.460.49 1 0.490.360.30.190.110.0470.044

0.680.660.650.490.50.51 1 0.410.350.210.110.050.043

0.760.730.750.640.620.640.59 1 0.440.270.20.0930.079

0.80.780.780.690.670.70.650.56 1 0.320.240.140.12

0.890.880.890.830.810.810.790.730.68 1 0.410.270.23

0.950.930.930.90.870.890.890.80.760.59 1 0.330.3

0.980.970.980.960.950.950.950.910.860.730.67 1 0.47

0.990.970.980.960.960.960.960.920.880.770.70.53 1

Wang,SOS and DMFS markers tested on Vijver

Le
e

(C
2V

1.
0)

Chu
an

g
(P

er
m

ut
ed

 P
PI)

Le
e

(K
EGG)

Le
e

(P
ar

k)
Le

e

Sing
les

Chu
an

g*
 (C

2V
2.

5)

Le
e

(P
er

m
ut

ed
 C

2V
2.

5)

Chu
an

g

Chu
an

g
(T

−s
co

re
)

Le
e

(G
O)

Par
k

Le
e*

 (P
PI)

Lee (C2V1.0)

Chuang (Permuted PPI)

Lee (KEGG)

Lee (Park)

Lee

Singles

Chuang* (C2V2.5)

Lee (Permuted C2V2.5)

Chuang

Chuang (T−score)

Lee (GO)

Park

Lee* (PPI)

Figure 3: Markers tested on Vijver

10.450.370.00110.00110.000940.000260.000210.000133.2−0053.1−0052.1−0059.1−006

0.551 0.40.00250.00240.00180.000770.000540.000340.000118−0054.9−0053.1−005

0.630.6 10.00540.0060.00370.00140.000980.00110.000230.000360.000140.00017
1 10.9910.610.390.280.310.380.170.190.160.1
1 10.990.3910.270.190.180.260.0870.0960.0680.058
1 1 10.610.731 0.40.4210.290.280.220.18
1 1 10.720.810.6 1 0.50.630.370.350.280.25
1 1 10.690.820.580.5 10.590.340.310.220.22
1 1 10.620.741 0.370.4110.240.250.240.17
1 1 10.830.910.710.630.660.761 0.50.460.37
1 1 10.810.90.720.650.690.750.5 10.510.36
1 1 10.840.930.780.720.780.760.540.4910.37
1 1 1 0.90.940.820.750.780.830.630.640.631

Vijver markers tested on DMFS

Le
e

(P
ar

k)
Par

k

Sing
les

Chu
an

g
(T

−s
co

re
)

Chu
an

g*
 (C

2V
2.

5)

Le
e

(K
EGG)

Chu
an

g
(P

er
m

ut
ed

 P
PI)

Chu
an

g

Le
e

(P
er

m
ut

ed
 C

2V
2.

5)

Le
e

(C
2V

1.
0) Le

e

Le
e*

 (P
PI)

Le
e

(G
O)

Lee (Park)
Park

Singles
Chuang (T−score)
Chuang* (C2V2.5)

Lee (KEGG)
Chuang (Permuted PPI)

Chuang
Lee (Permuted C2V2.5)

Lee (C2V1.0)
Lee

Lee* (PPI)
Lee (GO)

10.140.120.120.110.0910.0550.0230.0150.00260.00160.00145.9−010

0.8610.520.390.480.440.260.220.160.0580.0250.0332.2−008

0.880.4810.420.470.480.310.20.160.0430.0260.036.7−008

0.880.610.5810.580.490.370.30.220.0870.0620.062.9−007

0.890.520.530.4210.490.270.20.160.0470.0240.0291.3−008

0.910.560.520.510.511 0.310.220.190.0620.0410.0382.2−007

0.940.740.690.630.730.69 10.420.350.140.110.132.4−006

0.980.780.80.70.80.780.5810.420.190.110.143.5−007

0.980.840.840.780.840.810.650.5810.270.20.24.6−006

10.940.960.910.950.940.860.810.7310.410.45.3−005

10.970.970.940.980.960.890.890.80.5910.537.1−005

10.970.970.940.970.960.870.860.80.60.4713.7−005

1 1 1 1 1 1 1 1 1 1 1 1 1

Wang markers tested on DMFS

Le
e

(P
er

m
ut

ed
 C

2V
2.

5)

Chu
an

g
(P

er
m

ut
ed

 P
PI)

Le
e

(C
2V

1.
0)

Chu
an

g
(T

−s
co

re
)

Chu
an

g*
 (C

2V
2.

5) Le
e

Le
e*

 (P
PI)

Chu
an

g

Le
e

(K
EGG)

Sing
les

Le
e

(G
O)

Le
e

(P
ar

k)
Par

k

Lee (Permuted C2V2.5)
Chuang (Permuted PPI)

Lee (C2V1.0)
Chuang (T−score)
Chuang* (C2V2.5)

Lee
Lee* (PPI)

Chuang
Lee (KEGG)

Singles
Lee (GO)

Lee (Park)
Park

1 0.20.0770.0630.0210.00760.00320.000450.000360.000240.00016.6−0061.6−007

0.8 1 0.280.220.0910.0450.0290.00620.0040.00260.00140.000121.8−006

0.920.72 1 0.30.130.0560.0430.0110.00540.00370.00330.000242.9−006

0.940.780.7 10.330.260.130.0440.0470.0330.0370.0030.00022
0.980.910.870.671 0.40.250.110.130.0760.060.0080.00036
0.990.960.940.740.6 1 0.290.140.140.110.10.0110.0005

10.970.960.870.750.71 10.270.350.250.280.0440.0063
10.990.990.960.890.860.7310.550.460.480.140.029
1 1 0.990.950.870.860.650.451 0.40.470.0950.0076
1 1 10.970.920.890.750.540.6 10.530.150.022
1 1 10.960.940.90.720.520.530.471 0.110.012
1 1 1 10.990.990.960.860.910.850.89 10.18
1 1 1 1 1 1 0.990.970.990.980.990.821

SOS markers tested on DMFS

Le
e

Sing
les

Le
e

(P
ar

k)
Par

k

Chu
an

g*
 (C

2V
2.

5)

Chu
an

g
(T

−s
co

re
)

Chu
an

g
(P

er
m

ut
ed

 P
PI)

Le
e

(K
EGG)

Chu
an

g

Le
e

(P
er

m
ut

ed
 C

2V
2.

5)

Le
e

(G
O)

Le
e

(C
2V

1.
0)

Le
e*

 (P
PI)

Lee
Singles

Lee (Park)
Park

Chuang* (C2V2.5)
Chuang (T−score)

Chuang (Permuted PPI)
Lee (KEGG)

Chuang
Lee (Permuted C2V2.5)

Lee (GO)
Lee (C2V1.0)

Lee* (PPI)

10.390.280.10.0470.0380.0270.00540.0040.00240.000774−0051.5−005

0.611 0.310.110.0450.0390.0270.00440.00440.00220.000722.1−0051.4−005

0.720.69 1 0.30.180.150.120.0330.0240.0240.00750.000880.00048
0.90.890.7 10.290.270.190.0690.0570.0520.0180.00250.00096

0.950.950.820.7110.450.380.160.130.150.0550.0120.0053
0.960.960.850.730.551 0.440.210.180.20.0780.0170.01
0.970.970.880.810.620.56 10.250.230.260.110.0330.015
0.991 0.970.930.840.790.7510.460.50.280.120.064

1 1 0.980.940.870.820.770.5410.530.310.140.079
1 1 0.980.950.850.80.740.50.4710.280.110.041
1 1 0.990.980.940.920.890.720.690.721 0.270.17
1 1 1 10.990.980.970.880.860.890.73 10.33
1 1 1 10.990.990.990.940.920.960.830.671

Vijver, Wang and SOS markers tested on DMFS

Sing
les

Le
e

(P
ar

k)
Le

e

Chu
an

g*
 (C

2V
2.

5)

Chu
an

g
(T

−s
co

re
)

Le
e

(P
er

m
ut

ed
 C

2V
2.

5)

Chu
an

g
(P

er
m

ut
ed

 P
PI)

Par
k

Le
e

(K
EGG)

Chu
an

g

Le
e

(C
2V

1.
0)

Le
e

(G
O)

Le
e*

 (P
PI)

Singles
Lee (Park)

Lee
Chuang* (C2V2.5)
Chuang (T−score)

Lee (Permuted C2V2.5)
Chuang (Permuted PPI)

Park
Lee (KEGG)

Chuang
Lee (C2V1.0)

Lee (GO)
Lee* (PPI)

Figure 4: Markers tested on DMFS.

3

1 Changelog

July 14th

1.1 Figures

Chu
an

g*
 (C

2
V1.

0)

Chu
an

g*
 (C

2
V2.

5)
 (T

−s
co

re
)

Chu
an

g*
 (C

1
V2.

5)

Chu
an

g*
 (C

2
V2.

5)

Le
e

(C
2

V2.
5)

Le
e

(P
ar

k)

Sing
les

Le
e

(C
2

V1.
0)

Chu
an

g*
 (C

3
V2.

5)

Chu
an

g*
 (P

ar
k)

Le
e

(C
1

V2.
5)

Chu
an

g*
 (C

4
V2.

5)

Chu
an

g
(T

−s
co

re
)

Chu
an

g
(P

PI)

Le
e

(C
3

V2.
5)

Le
e*

 (P
PI)

Chu
an

g*
 (C

5
V2.

5)
Par

k

Le
e

(P
PI*)

Le
e

(C
5

V2.
5)

Le
e

(C
4

V2.
5)

Chuang* (C2 V1.0)

Chuang* (C2 V2.5) (T−score)

Chuang* (C1 V2.5)

Chuang* (C2 V2.5)

Lee (C2 V2.5)

Lee (Park)

Singles

Lee (C2 V1.0)

Chuang* (C3 V2.5)

Chuang* (Park)

Lee (C1 V2.5)

Chuang* (C4 V2.5)

Chuang (T−score)

Chuang (PPI)

Lee (C3 V2.5)

Lee* (PPI)

Chuang* (C5 V2.5)

Park

Lee (PPI*)

Lee (C5 V2.5)

Lee (C4 V2.5)

Figure 1: Comparisons. Dark red indicates significance p under 0.01. Light red indicates significance p under 0.05. In
this version, Wang is included.

1.2 Conclusions

1

Chu
an

g*
 (C

2
V2.

5)
 (T

−s
co

re
)

Chu
an

g*
 (C

2
V1.

0)

Le
e

(C
2

V1.
0)

Le
e

(C
2

V2.
5)

Chu
an

g*
 (C

3
V2.

5)

Chu
an

g*
 (C

2
V2.

5)

Chu
an

g*
 (C

1
V2.

5)

Sing
les

Le
e

(P
ar

k)

Le
e

(C
3

V2.
5)

Chu
an

g*
 (P

ar
k)

Chu
an

g*
 (C

4
V2.

5)

Le
e

(C
1

V2.
5)

Chu
an

g
(T

−s
co

re
)

Chu
an

g
(P

PI)
Par

k

Le
e

(C
5

V2.
5)

Chu
an

g*
 (C

5
V2.

5)

Le
e*

 (P
PI)

Le
e

(P
PI*)

Le
e

(C
4

V2.
5)

Chuang* (C2 V2.5) (T−score)

Chuang* (C2 V1.0)

Lee (C2 V1.0)

Lee (C2 V2.5)

Chuang* (C3 V2.5)

Chuang* (C2 V2.5)

Chuang* (C1 V2.5)

Singles

Lee (Park)

Lee (C3 V2.5)

Chuang* (Park)

Chuang* (C4 V2.5)

Lee (C1 V2.5)

Chuang (T−score)

Chuang (PPI)

Park

Lee (C5 V2.5)

Chuang* (C5 V2.5)

Lee* (PPI)

Lee (PPI*)

Lee (C4 V2.5)

Figure 2: Comparisons. Wang is totally excluded.

DMFS markers tested on VIJVER

Le
e

(C
2

V1.
0)

Le
e

(P
ar

k)

Chu
an

g
(P

PI)

Le
e

(C
2

V2.
5)

Sing
les

Le
e

(P
PI*)

Chu
an

g*
 (C

2
V2.

5)

Chu
an

g*
 (C

2
V2.

5)
 (T

−s
co

re
)

Chu
an

g
(T

−s
co

re
)

Chu
an

g*
 (C

2
V1.

0)
Par

k

Chu
an

g*
 (P

ar
k)

Le
e*

 (P
PI)

Lee (C2 V1.0)

Lee (Park)

Chuang (PPI)

Lee (C2 V2.5)

Singles

Lee (PPI*)

Chuang* (C2 V2.5)

Chuang* (C2 V2.5) (T−score)

Chuang (T−score)

Chuang* (C2 V1.0)

Park

Chuang* (Park)

Lee* (PPI)

SOS markers tested on VIJVER

Le
e

(C
2

V1.
0)

Chu
an

g*
 (C

2
V1.

0)

Chu
an

g*
 (C

2
V2.

5)
 (T

−s
co

re
)

Sing
les

Le
e

(P
ar

k)

Chu
an

g*
 (P

ar
k)

Chu
an

g*
 (C

2
V2.

5)

Le
e

(C
2

V2.
5)

Chu
an

g
(P

PI)

Chu
an

g
(T

−s
co

re
)

Le
e*

 (P
PI)

Par
k

Le
e

(P
PI*)

Lee (C2 V1.0)

Chuang* (C2 V1.0)

Chuang* (C2 V2.5) (T−score)

Singles

Lee (Park)

Chuang* (Park)

Chuang* (C2 V2.5)

Lee (C2 V2.5)

Chuang (PPI)

Chuang (T−score)

Lee* (PPI)

Park

Lee (PPI*)

DMFS and SOS markers tested on VIJVER

Le
e

(C
2

V1.
0)

Chu
an

g*
 (C

2
V1.

0)

Sing
les

Le
e

(P
ar

k)

Chu
an

g*
 (C

2
V2.

5)
 (T

−s
co

re
)

Le
e

(C
2

V2.
5)

Chu
an

g*
 (C

2
V2.

5)

Chu
an

g
(P

PI)

Chu
an

g*
 (P

ar
k)

Chu
an

g
(T

−s
co

re
)
Par

k

Le
e

(P
PI*)

Le
e*

 (P
PI)

Lee (C2 V1.0)

Chuang* (C2 V1.0)

Singles

Lee (Park)

Chuang* (C2 V2.5) (T−score)

Lee (C2 V2.5)

Chuang* (C2 V2.5)

Chuang (PPI)

Chuang* (Park)

Chuang (T−score)

Park

Lee (PPI*)

Lee* (PPI)

VIJVER markers tested on DMFS

Par
k

Sing
les

Le
e

(P
ar

k)

Chu
an

g*
 (P

ar
k)

Chu
an

g*
 (C

2
V2.

5)
 (T

−s
co

re
)

Chu
an

g*
 (C

2
V1.

0)

Chu
an

g*
 (C

2
V2.

5)

Chu
an

g
(T

−s
co

re
)

Chu
an

g
(P

PI)

Le
e

(C
2

V1.
0)

Le
e

(C
2

V2.
5)

Le
e*

 (P
PI)

Le
e

(P
PI*)

Park

Singles

Lee (Park)

Chuang* (Park)

Chuang* (C2 V2.5) (T−score)

Chuang* (C2 V1.0)

Chuang* (C2 V2.5)

Chuang (T−score)

Chuang (PPI)

Lee (C2 V1.0)

Lee (C2 V2.5)

Lee* (PPI)

Lee (PPI*)

SOS markers tested on DMFS

Le
e

(C
2

V2.
5)

Chu
an

g*
 (C

2
V2.

5)
 (T

−s
co

re
)

Sing
les

Chu
an

g*
 (P

ar
k)

Le
e

(P
ar

k)
Par

k

Chu
an

g*
 (C

2
V1.

0)

Chu
an

g*
 (C

2
V2.

5)

Chu
an

g
(T

−s
co

re
)

Chu
an

g
(P

PI)

Le
e

(C
2

V1.
0)

Le
e

(P
PI*)

Le
e*

 (P
PI)

Lee (C2 V2.5)

Chuang* (C2 V2.5) (T−score)

Singles

Chuang* (Park)

Lee (Park)

Park

Chuang* (C2 V1.0)

Chuang* (C2 V2.5)

Chuang (T−score)

Chuang (PPI)

Lee (C2 V1.0)

Lee (PPI*)

Lee* (PPI)

VIJVER and SOS markers tested on DMFS

Par
k

Sing
les

Chu
an

g*
 (C

2
V2.

5)
 (T

−s
co

re
)

Chu
an

g*
 (P

ar
k)

Le
e

(P
ar

k)

Le
e

(C
2

V2.
5)

Chu
an

g*
 (C

2
V1.

0)

Chu
an

g*
 (C

2
V2.

5)

Chu
an

g
(T

−s
co

re
)

Chu
an

g
(P

PI)

Le
e

(C
2

V1.
0)

Le
e

(P
PI*)

Le
e*

 (P
PI)

Park

Singles

Chuang* (C2 V2.5) (T−score)

Chuang* (Park)

Lee (Park)

Lee (C2 V2.5)

Chuang* (C2 V1.0)

Chuang* (C2 V2.5)

Chuang (T−score)

Chuang (PPI)

Lee (C2 V1.0)

Lee (PPI*)

Lee* (PPI)

VIJVER markers tested on SOS

Chu
an

g*
 (C

2
V1.

0)

Le
e

(C
2

V1.
0)

Chu
an

g*
 (C

2
V2.

5)
 (T

−s
co

re
)

Le
e

(C
2

V2.
5)

Chu
an

g*
 (C

2
V2.

5)

Chu
an

g
(T

−s
co

re
)

Le
e*

 (P
PI)

Le
e

(P
PI*)

Chu
an

g
(P

PI)

Sing
les

Le
e

(P
ar

k)

Chu
an

g*
 (P

ar
k)

Par
k

Chuang* (C2 V1.0)

Lee (C2 V1.0)

Chuang* (C2 V2.5) (T−score)

Lee (C2 V2.5)

Chuang* (C2 V2.5)

Chuang (T−score)

Lee* (PPI)

Lee (PPI*)

Chuang (PPI)

Singles

Lee (Park)

Chuang* (Park)

Park

DMFS markers tested on SOS

Le
e*

 (P
PI)

Chu
an

g*
 (C

2
V1.

0)

Le
e

(C
2

V1.
0)

Chu
an

g*
 (C

2
V2.

5)
 (T

−s
co

re
)

Le
e

(P
PI*)

Le
e

(C
2

V2.
5)

Chu
an

g*
 (C

2
V2.

5)

Chu
an

g
(T

−s
co

re
)

Chu
an

g
(P

PI)

Chu
an

g*
 (P

ar
k)

Le
e

(P
ar

k)

Sing
les Par

k

Lee* (PPI)

Chuang* (C2 V1.0)

Lee (C2 V1.0)

Chuang* (C2 V2.5) (T−score)

Lee (PPI*)

Lee (C2 V2.5)

Chuang* (C2 V2.5)

Chuang (T−score)

Chuang (PPI)

Chuang* (Park)

Lee (Park)

Singles

Park

VIJVER and DMFS markers tested on SOS

Chu
an

g*
 (C

2
V1.

0)

Le
e

(C
2

V1.
0)

Chu
an

g*
 (C

2
V2.

5)
 (T

−s
co

re
)

Le
e*

 (P
PI)

Le
e

(C
2

V2.
5)

Chu
an

g*
 (C

2
V2.

5)

Le
e

(P
PI*)

Chu
an

g
(T

−s
co

re
)

Chu
an

g
(P

PI)

Chu
an

g*
 (P

ar
k)

Le
e

(P
ar

k)

Sing
les Par

k

Chuang* (C2 V1.0)

Lee (C2 V1.0)

Chuang* (C2 V2.5) (T−score)

Lee* (PPI)

Lee (C2 V2.5)

Chuang* (C2 V2.5)

Lee (PPI*)

Chuang (T−score)

Chuang (PPI)

Chuang* (Park)

Lee (Park)

Singles

Park

Figure 3: Comparisons split out. Wang is excluded.

2

Chu
an

g
(P

er
m

ut
ed

 P
PI(2

))

Chu
an

g
(P

er
m

ut
ed

 P
PI(3

))

Chu
an

g
(P

er
m

ut
ed

 P
PI)

Chu
an

g
(P

PI)

Chuang (Permuted PPI(2))

Chuang (Permuted PPI(3))

Chuang (Permuted PPI)

Chuang (PPI)

Chu
an

g*
 (P

er
m

ut
ed

 C
2

V2.
5(

3)
)

Chu
an

g*
 (P

er
m

ut
ed

 C
2

V2.
5(

2)
)

Chu
an

g*
 (P

er
m

ut
ed

 C
2

V2.
5)

Chu
an

g*
 (C

5
V2.

5)

Chuang* (Permuted C2 V2.5(3))

Chuang* (Permuted C2 V2.5(2))

Chuang* (Permuted C2 V2.5)

Chuang* (C5 V2.5)

Le
e

(P
er

m
ut

ed
 C

2
V2.

5(
3)

)

Le
e

(C
2

V2.
5)

Le
e

(P
er

m
ut

ed
 C

2
V2.

5(
2)

)

Le
e

(P
er

m
ut

ed
 C

2
V2.

5)

Lee (Permuted C2 V2.5(3))

Lee (C2 V2.5)

Lee (Permuted C2 V2.5(2))

Lee (Permuted C2 V2.5)

Le
e

(P
er

m
ut

ed
 P

PI*)

Le
e

(P
er

m
ut

ed
 P

PI*(
2)

)

Le
e

(P
PI*)

Le
e

(P
er

m
ut

ed
 P

PI*(
3)

)

Lee (Permuted PPI*)

Lee (Permuted PPI*(2))

Lee (PPI*)

Lee (Permuted PPI*(3))

Le
e*

 (P
er

m
ut

ed
 P

PI)

Le
e*

 (P
PI)

Le
e*

 (P
er

m
ut

ed
 P

PI(3
))

Le
e*

 (P
er

m
ut

ed
 P

PI(2
))

Lee* (Permuted PPI)

Lee* (PPI)

Lee* (Permuted PPI(3))

Lee* (Permuted PPI(2))

Figure 4: Comparisons using permutations.

3

0 0.1 0.2 0.3 0.4 0.5

Chuang (PPI)

0 0.1 0.2 0.3 0.4 0.5

Chuang (T−score)

0 0.1 0.2 0.3 0.4 0.5

Chuang* (C2 V1.0)

0 0.1 0.2 0.3 0.4 0.5

Chuang* (C2 V2.5)

0 0.1 0.2 0.3 0.4 0.5

Chuang* (C2 V2.5) (T−score)

0 0.1 0.2 0.3 0.4 0.5

Chuang* (Park)

0 0.1 0.2 0.3 0.4 0.5

Lee (C2 V1.0)

0 0.1 0.2 0.3 0.4 0.5

Lee (C2 V2.5)

0 0.1 0.2 0.3 0.4 0.5

Lee (PPI*)

0 0.1 0.2 0.3 0.4 0.5

Lee (Park)

0 0.1 0.2 0.3 0.4 0.5

Lee* (PPI)

0 0.1 0.2 0.3 0.4 0.5

Park

0 0.1 0.2 0.3 0.4 0.5

Singles

DMFS markers on VIJVER
SOS markers on VIJVER
SOS markers on DMFS
VIJVER markers on DMFS
DMFS markers on SOS
VIJVER markers on SOS

Figure 5: Some histograms.

4

0
0.

2
0.

4

C
hu

an
g*

 (
C

1
V

2.
5)

0
0.

2
0.

4

C
hu

an
g*

 (
C

2
V

2.
5)

0
0.

2
0.

4

C
hu

an
g*

 (
C

3
V

2.
5)

0
0.

2
0.

4

C
hu

an
g*

 (
C

4
V

2.
5)

0
0.

2
0.

4

C
hu

an
g*

 (
C

5
V

2.
5)

0
0.

2
0.

4

C
hu

an
g*

 (
P

ar
k)

0
0.

2
0.

4

Le
e

(C
1

V
2.

5)

0
0.

2
0.

4

Le
e

(C
2

V
2.

5)

0
0.

2
0.

4

Le
e

(C
3

V
2.

5)

0
0.

2
0.

4

Le
e

(C
4

V
2.

5)

0
0.

2
0.

4

Le
e

(C
5

V
2.

5)

0
0.

2
0.

4

Le
e

(P
ar

k)

D
M

F
S

 m
ar

ke
rs

 o
n

V
IJ

V
E

R
S

O
S

 m
ar

ke
rs

 o
n

V
IJ

V
E

R
S

O
S

 m
ar

ke
rs

 o
n

D
M

F
S

V
IJ

V
E

R
 m

ar
ke

rs
 o

n
D

M
F

S
D

M
F

S
 m

ar
ke

rs
 o

n
S

O
S

V
IJ

V
E

R
 m

ar
ke

rs
 o

n
S

O
S

Figure 6: Histograms for comparing search method against search space..

5

0.
680.
7

0.
72

0.
74

0.
76

0.
78

T
es

te
d

on
 V

IJ
V

E
R

0.
680.
7

0.
72

0.
74

0.
76

0.
78

T
es

te
d

on
 S

O
S

0.
680.
7

0.
72

0.
74

0.
76

0.
78

T
es

te
d

on
 D

M
F

S

Chu
an

g*
 (C

2
V2.

5)
 (T

−s
co

re
) Chu

an
g*

 (C
2

V1.
0)

Le
e

(C
2

V1.
0)

Le
e

(C
2

V2.
5) Chu

an
g*

 (C
2

V2.
5)

Sing
les

Le
e

(P
ar

k)
Chu

an
g*

 (P
ar

k) Chu
an

g
(T

−s
co

re
)

Chu
an

g
(P

PI)

Par
k

Le
e*

 (P
PI)

Le
e

(P
PI*)

V
IJ

V
E

R
 m

ar
ke

rs
S

O
S

 m
ar

ke
rs

D
M

F
S

 m
ar

ke
rs

Figure 7: Some barplots.

6

1 Changelog

August 3st

1.1 Effect of number of features

Since MsigDB works better than PPI in the algorithm comparison, it seems that a W with a lower number of subnetworks
performs better than a W with a large number of subnetworks. To see how large W would do with less subnetworks the
top n-subnetwork were taken. If a dataset X was used to obtain W , the markers in W were ranked according to absolute
t-score calculated in X ′. Even though it’s biased, it seems that taken the top n subnetworks in this manner overall
decreases the performance, and the overall ranking between methods stays the same. See Figure 1 for a comparison
and Figure 2 for the barplots. Table 1.1 gives a more general idea on how these subnetworks are composed of.

Le
e

(C
2

V1.
0)

 to
p5

00

Le
e

(C
2

V1.
0)

Le
e

(C
2

V1.
0)

 to
p1

00

Le
e

(C
2

V1.
0)

 to
p2

00

Sing
les

Le
e

(C
2

V1.
0)

 to
p5

0

Sing
les

 to
p5

00

Chu
an

g
(P

PI)
Par

k

Sing
les

 to
p2

00

Chu
an

g
(P

PI)
to

p1
00

Chu
an

g
(P

PI)
to

p2
00

Chu
an

g
(P

PI)
to

p5
00

Sing
les

 to
p1

00

Chu
an

g
(P

PI)
to

p5
0

Sing
les

 to
p5

0

Sing
les

 to
p1

0

Par
k t

op
50

0

Par
k t

op
50

Le
e

(C
2

V1.
0)

 to
p1

0

Par
k t

op
20

0

Par
k t

op
10

0

Chu
an

g
(P

PI)
to

p1
0

Par
k t

op
10

Lee (C2 V1.0) top500
Lee (C2 V1.0)

Lee (C2 V1.0) top100
Lee (C2 V1.0) top200

Singles
Lee (C2 V1.0) top50

Singles top500
Chuang (PPI)

Park
Singles top200

Chuang (PPI) top100
Chuang (PPI) top200
Chuang (PPI) top500

Singles top100
Chuang (PPI) top50

Singles top50
Singles top10

Park top500
Park top50

Lee (C2 V1.0) top10
Park top200
Park top100

Chuang (PPI) top10
Park top10

 p < 0.01
 p < 0.05

Figure 1: Comparisons algorithm by taking the top n subnetworks. The overall ranking between the type of algorithms
stays the same, and it seems that more subnetworks is better.

1.2 Chuang*(C2 V1.0)(T-score)

Since Chuang*(C2 V1.0) performed pretty well, as well as Chuang*(C2 V2.5)(T-score), a logical choice would be
to inspect Chuang*(C2 V1.0)(T-score). It’s performance is plotted in Figure 3. It doesn’t seem to improve over
Chuang*(C2 V1.0).

1.3 More insight in the cross validation

Figure 4 is reshown here for comparison between algorithm. The inner loop of the double-loop-cross-validation selects an
optimum number of features. If the DLCV calculates the average of 100 AUCs, 100 numbers of features are calculated.
To get a feeling of how many numbers are selected, Figure 5, Figure 6 and Figure 7 shown the distribution of markers
trained on X1 tested on X2, sorted by size. Tables 1.1 gives an idea of how the properties of the subnetworks.

Table 1.3 thru Table 1.3 shown the top 10 subnetworks for each marker set on a testing dataset. The top 10 was
compiled by running the DLCV, and counting how many times in the 100 loops of the DLCV the subnetwork was
selected by the inner loop. Some observations here are that Lee(PPI*) contains quite a few redundant subnetworks.
The top 10 VIJVER markers tested on DMFS has, for Lee(PPI*) 5 out of 10 redundant subnetworks in its top 10.
The top 10 DMFS markers tested on VIJVER has for Lee(PPI*) 8 subnetworks which are very similar, but not quite
redundant. The top 10 SOS markers tested on VIJVER has 7 instances of PRC1 for Lee(PPI*).

1

0.65

0.7

0.75

Tested on VIJVER

0.65

0.7

0.75

Tested on SOS

0.65

0.7

0.75

Tested on DMFS

Chu
an

g
(P

PI)

Chu
an

g
(P

PI)
to

p5
00

Chu
an

g
(P

PI)
to

p2
00

Chu
an

g
(P

PI)
to

p1
00

Chu
an

g
(P

PI)
to

p5
0

Chu
an

g
(P

PI)
to

p1
0

Le
e

(C
2

V1.
0)

Le
e

(C
2

V1.
0)

 to
p5

00

Le
e

(C
2

V1.
0)

 to
p2

00

Le
e

(C
2

V1.
0)

 to
p1

00

Le
e

(C
2

V1.
0)

 to
p5

0

Le
e

(C
2

V1.
0)

 to
p1

0
Par

k

Par
k t

op
50

0

Par
k t

op
20

0

Par
k t

op
10

0

Par
k t

op
50

Par
k t

op
10

Sing
les

Sing
les

 to
p5

00

Sing
les

 to
p2

00

Sing
les

 to
p1

00

Sing
les

 to
p5

0

Sing
les

 to
p1

0

VIJVER markers
SOS markers
DMFS markers

Figure 2: Barplots of top n subnetworks.

Chu
an

g*
 (C

2
V1.

0)

Le
e

(C
2

V1.
0)

Chu
an

g*
 (C

2
V1.

0)
 (T

−s
co

re
)

Sing
les

Le
e

(P
ar

k)

Chu
an

g*
 (P

ar
k)

Chu
an

g
(T

−s
co

re
)

Chu
an

g
(P

PI)
Par

k

Le
e

(P
PI*)

Chuang* (C2 V1.0)

Lee (C2 V1.0)

Chuang* (C2 V1.0) (T−score)

Singles

Lee (Park)

Chuang* (Park)

Chuang (T−score)

Chuang (PPI)

Park

Lee (PPI*)

 p < 0.01
 p < 0.05

Figure 3: Chuang*(C2 V1.0)(T-score) included.

2

subnetworks unique genes largest genes avg size doubles
Chuang (PPI) top10 DMFS 10 86 13 101 10 0
Chuang (PPI) top10 SOS 10 63 10 73 7 0
Chuang (PPI) top10 VIJVER 10 68 12 78 7 1
Chuang (PPI) top10 WANG 10 38 10 72 7 2
Chuang (PPI) top50 DMFS 50 265 13 471 9 2
Chuang (PPI) top50 SOS 50 227 12 345 6 1
Chuang (PPI) top50 VIJVER 50 202 12 349 6 10
Chuang (PPI) top50 WANG 50 214 12 394 7 3
Chuang (PPI) top100 DMFS 100 436 13 883 8 4
Chuang (PPI) top100 SOS 100 349 12 670 6 3
Chuang (PPI) top100 VIJVER 100 336 12 651 6 14
Chuang (PPI) top100 WANG 100 338 12 704 7 7
Chuang (PPI) top200 DMFS 200 650 13 1639 8 11
Chuang (PPI) top200 SOS 200 595 12 1287 6 9
Chuang (PPI) top200 VIJVER 200 577 14 1269 6 20
Chuang (PPI) top200 WANG 200 592 12 1344 6 9
Chuang (PPI) top500 DMFS 500 1239 13 3688 7 19
Chuang (PPI) top500 SOS 500 1153 12 2951 5 27
Chuang (PPI) top500 VIJVER 500 1115 14 3104 6 34
Chuang (PPI) top500 WANG 500 1141 12 3052 6 33
Lee (C2 V1.0) top10 DMFS 10 54 10 70 7 0
Lee (C2 V1.0) top10 SOS 10 27 7 43 4 0
Lee (C2 V1.0) top10 VIJVER 10 38 8 54 5 1
Lee (C2 V1.0) top10 WANG 10 64 10 73 7 0
Lee (C2 V1.0) top50 DMFS 50 181 13 300 6 3
Lee (C2 V1.0) top50 SOS 50 114 7 214 4 6
Lee (C2 V1.0) top50 VIJVER 50 130 9 218 4 7
Lee (C2 V1.0) top50 WANG 50 221 12 344 6 1
Lee (C2 V1.0) top100 DMFS 100 289 13 535 5 5
Lee (C2 V1.0) top100 SOS 100 191 7 380 3 18
Lee (C2 V1.0) top100 VIJVER 100 223 9 420 4 15
Lee (C2 V1.0) top100 WANG 100 333 15 623 6 1
Lee (C2 V1.0) top200 DMFS 200 421 13 930 4 12
Lee (C2 V1.0) top200 SOS 200 357 9 745 3 26
Lee (C2 V1.0) top200 VIJVER 200 400 12 871 4 19
Lee (C2 V1.0) top200 WANG 200 498 15 1088 5 3
Lee (C2 V1.0) top500 DMFS 500 749 13 1773 3 43
Lee (C2 V1.0) top500 SOS 500 671 9 1552 3 58
Lee (C2 V1.0) top500 VIJVER 500 704 12 1701 3 51
Lee (C2 V1.0) top500 WANG 500 822 15 2014 4 28
Park top10 DMFS 10 15 4 15 1 0
Park top10 SOS 10 51 39 51 5 0
Park top10 VIJVER 10 51 34 51 5 0
Park top10 WANG 10 13 3 13 1 0
Park top50 DMFS 50 162 81 162 3 0
Park top50 SOS 50 105 39 105 2 0
Park top50 VIJVER 50 100 34 100 2 0
Park top50 WANG 50 63 5 63 1 0
Park top100 DMFS 100 262 81 262 2 0
Park top100 SOS 100 170 39 170 1 0
Park top100 VIJVER 100 157 34 157 1 0
Park top100 WANG 100 128 5 128 1 0
Park top200 DMFS 200 411 81 411 2 0
Park top200 SOS 200 284 39 284 1 0
Park top200 VIJVER 200 272 34 272 1 0
Park top200 WANG 200 260 20 260 1 0
Park top500 DMFS 500 893 81 893 1 0
Park top500 SOS 500 606 39 606 1 0
Park top500 VIJVER 500 614 34 614 1 0
Park top500 WANG 500 724 43 724 1 0
Singles top10 DMFS 10 10 1 10 1 0
Singles top10 SOS 10 10 1 10 1 0
Singles top10 VIJVER 10 10 1 10 1 0
Singles top10 WANG 10 10 1 10 1 0
Singles top50 DMFS 50 50 1 50 1 0
Singles top50 SOS 50 50 1 50 1 0
Singles top50 VIJVER 50 50 1 50 1 0
Singles top50 WANG 50 50 1 50 1 0
Singles top100 DMFS 100 100 1 100 1 0
Singles top100 SOS 100 100 1 100 1 0
Singles top100 VIJVER 100 100 1 100 1 0
Singles top100 WANG 100 100 1 100 1 0
Singles top200 DMFS 200 200 1 200 1 0
Singles top200 SOS 200 200 1 200 1 0
Singles top200 VIJVER 200 200 1 200 1 0
Singles top200 WANG 200 200 1 200 1 0
Singles top500 DMFS 500 500 1 500 1 0
Singles top500 SOS 500 500 1 500 1 0
Singles top500 VIJVER 500 500 1 500 1 0
Singles top500 WANG 500 500 1 500 1 0

Table 1: Some numbers to give an idea on how these subnetworks are built. Shown are the number of subnet-
works (subnetworks), the total number of unique genes in these subnetworks (unique genes), the genes largest subnet-
work (subnetwork), the sum of all the subnetwork sizes (genes), the average size of a subnetwork rounded down (avg
size), number of subnetworks that are already represented (doubles). The unique number of subnetworks would be
uniquesubnetworks = subnetworks− doubles.

3

DMFS markers tested on VIJVER

Le
e

(C
2

V1.
0)

Le
e

(P
ar

k)

Chu
an

g
(P

PI)

Le
e

(C
2

V2.
5)

Sing
les

Le
e

(P
PI*)

Chu
an

g*
 (C

2
V2.

5)

Chu
an

g*
 (C

2
V2.

5)
 (T

−s
co

re
)

Chu
an

g
(T

−s
co

re
)

Chu
an

g*
 (C

2
V1.

0)
Par

k

Chu
an

g*
 (P

ar
k)

Le
e*

 (P
PI)

Lee (C2 V1.0)

Lee (Park)

Chuang (PPI)

Lee (C2 V2.5)

Singles

Lee (PPI*)

Chuang* (C2 V2.5)

Chuang* (C2 V2.5) (T−score)

Chuang (T−score)

Chuang* (C2 V1.0)

Park

Chuang* (Park)

Lee* (PPI)

SOS markers tested on VIJVER

Le
e

(C
2

V1.
0)

Chu
an

g*
 (C

2
V1.

0)

Chu
an

g*
 (C

2
V2.

5)
 (T

−s
co

re
)

Sing
les

Le
e

(P
ar

k)

Chu
an

g*
 (P

ar
k)

Chu
an

g*
 (C

2
V2.

5)

Le
e

(C
2

V2.
5)

Chu
an

g
(P

PI)

Chu
an

g
(T

−s
co

re
)

Le
e*

 (P
PI)

Par
k

Le
e

(P
PI*)

Lee (C2 V1.0)

Chuang* (C2 V1.0)

Chuang* (C2 V2.5) (T−score)

Singles

Lee (Park)

Chuang* (Park)

Chuang* (C2 V2.5)

Lee (C2 V2.5)

Chuang (PPI)

Chuang (T−score)

Lee* (PPI)

Park

Lee (PPI*)

DMFS and SOS markers tested on VIJVER

Le
e

(C
2

V1.
0)

Chu
an

g*
 (C

2
V1.

0)

Sing
les

Le
e

(P
ar

k)

Chu
an

g*
 (C

2
V2.

5)
 (T

−s
co

re
)

Le
e

(C
2

V2.
5)

Chu
an

g*
 (C

2
V2.

5)

Chu
an

g
(P

PI)

Chu
an

g*
 (P

ar
k)

Chu
an

g
(T

−s
co

re
)
Par

k

Le
e

(P
PI*)

Le
e*

 (P
PI)

Lee (C2 V1.0)

Chuang* (C2 V1.0)

Singles

Lee (Park)

Chuang* (C2 V2.5) (T−score)

Lee (C2 V2.5)

Chuang* (C2 V2.5)

Chuang (PPI)

Chuang* (Park)

Chuang (T−score)

Park

Lee (PPI*)

Lee* (PPI)

VIJVER markers tested on DMFS

Par
k

Sing
les

Le
e

(P
ar

k)

Chu
an

g*
 (P

ar
k)

Chu
an

g*
 (C

2
V2.

5)
 (T

−s
co

re
)

Chu
an

g*
 (C

2
V1.

0)

Chu
an

g*
 (C

2
V2.

5)

Chu
an

g
(T

−s
co

re
)

Chu
an

g
(P

PI)

Le
e

(C
2

V1.
0)

Le
e

(C
2

V2.
5)

Le
e*

 (P
PI)

Le
e

(P
PI*)

Park

Singles

Lee (Park)

Chuang* (Park)

Chuang* (C2 V2.5) (T−score)

Chuang* (C2 V1.0)

Chuang* (C2 V2.5)

Chuang (T−score)

Chuang (PPI)

Lee (C2 V1.0)

Lee (C2 V2.5)

Lee* (PPI)

Lee (PPI*)

SOS markers tested on DMFS

Le
e

(C
2

V2.
5)

Chu
an

g*
 (C

2
V2.

5)
 (T

−s
co

re
)

Sing
les

Chu
an

g*
 (P

ar
k)

Le
e

(P
ar

k)
Par

k

Chu
an

g*
 (C

2
V1.

0)

Chu
an

g*
 (C

2
V2.

5)

Chu
an

g
(T

−s
co

re
)

Chu
an

g
(P

PI)

Le
e

(C
2

V1.
0)

Le
e

(P
PI*)

Le
e*

 (P
PI)

Lee (C2 V2.5)

Chuang* (C2 V2.5) (T−score)

Singles

Chuang* (Park)

Lee (Park)

Park

Chuang* (C2 V1.0)

Chuang* (C2 V2.5)

Chuang (T−score)

Chuang (PPI)

Lee (C2 V1.0)

Lee (PPI*)

Lee* (PPI)

VIJVER and SOS markers tested on DMFS

Par
k

Sing
les

Chu
an

g*
 (C

2
V2.

5)
 (T

−s
co

re
)

Chu
an

g*
 (P

ar
k)

Le
e

(P
ar

k)

Le
e

(C
2

V2.
5)

Chu
an

g*
 (C

2
V1.

0)

Chu
an

g*
 (C

2
V2.

5)

Chu
an

g
(T

−s
co

re
)

Chu
an

g
(P

PI)

Le
e

(C
2

V1.
0)

Le
e

(P
PI*)

Le
e*

 (P
PI)

Park

Singles

Chuang* (C2 V2.5) (T−score)

Chuang* (Park)

Lee (Park)

Lee (C2 V2.5)

Chuang* (C2 V1.0)

Chuang* (C2 V2.5)

Chuang (T−score)

Chuang (PPI)

Lee (C2 V1.0)

Lee (PPI*)

Lee* (PPI)

VIJVER markers tested on SOS

Chu
an

g*
 (C

2
V1.

0)

Le
e

(C
2

V1.
0)

Chu
an

g*
 (C

2
V2.

5)
 (T

−s
co

re
)

Le
e

(C
2

V2.
5)

Chu
an

g*
 (C

2
V2.

5)

Chu
an

g
(T

−s
co

re
)

Le
e*

 (P
PI)

Le
e

(P
PI*)

Chu
an

g
(P

PI)

Sing
les

Le
e

(P
ar

k)

Chu
an

g*
 (P

ar
k)

Par
k

Chuang* (C2 V1.0)

Lee (C2 V1.0)

Chuang* (C2 V2.5) (T−score)

Lee (C2 V2.5)

Chuang* (C2 V2.5)

Chuang (T−score)

Lee* (PPI)

Lee (PPI*)

Chuang (PPI)

Singles

Lee (Park)

Chuang* (Park)

Park

DMFS markers tested on SOS

Le
e*

 (P
PI)

Chu
an

g*
 (C

2
V1.

0)

Le
e

(C
2

V1.
0)

Chu
an

g*
 (C

2
V2.

5)
 (T

−s
co

re
)

Le
e

(P
PI*)

Le
e

(C
2

V2.
5)

Chu
an

g*
 (C

2
V2.

5)

Chu
an

g
(T

−s
co

re
)

Chu
an

g
(P

PI)

Chu
an

g*
 (P

ar
k)

Le
e

(P
ar

k)

Sing
les Par

k

Lee* (PPI)

Chuang* (C2 V1.0)

Lee (C2 V1.0)

Chuang* (C2 V2.5) (T−score)

Lee (PPI*)

Lee (C2 V2.5)

Chuang* (C2 V2.5)

Chuang (T−score)

Chuang (PPI)

Chuang* (Park)

Lee (Park)

Singles

Park

VIJVER and DMFS markers tested on SOS

Chu
an

g*
 (C

2
V1.

0)

Le
e

(C
2

V1.
0)

Chu
an

g*
 (C

2
V2.

5)
 (T

−s
co

re
)

Le
e*

 (P
PI)

Le
e

(C
2

V2.
5)

Chu
an

g*
 (C

2
V2.

5)

Le
e

(P
PI*)

Chu
an

g
(T

−s
co

re
)

Chu
an

g
(P

PI)

Chu
an

g*
 (P

ar
k)

Le
e

(P
ar

k)

Sing
les Par

k

Chuang* (C2 V1.0)

Lee (C2 V1.0)

Chuang* (C2 V2.5) (T−score)

Lee* (PPI)

Lee (C2 V2.5)

Chuang* (C2 V2.5)

Lee (PPI*)

Chuang (T−score)

Chuang (PPI)

Chuang* (Park)

Lee (Park)

Singles

Park

Figure 4: Algorithm comparisons split out in different training-testing combination.

20 40 60 80 100

2000
4000
6000
8000

Chuang (PPI)

DMFS

20 40 60 80 100

2000
4000
6000
8000

10000
Chuang (T−score)

DMFS

20 40 60 80 100

100
200
300
400
500

Chuang* (C2 V1.0)

DMFS

20 40 60 80 100

2000
4000
6000
8000 Chuang* (Park)

DMFS

20 40 60 80 100

100
200
300
400
500

Lee (C2 V1.0)

DMFS

20 40 60 80 100

2000
4000
6000
8000

10000
Lee (PPI*)

DMFS

20 40 60 80 100

2000
4000
6000
8000

10000
Lee (Park)

DMFS

20 40 60 80 100

2000
4000
6000 Park

DMFS

20 40 60 80 100

2000
4000
6000
8000 Singles

DMFS

20 40 60 80 100

2000
4000
6000
8000

Chuang (PPI)

VIJVER

20 40 60 80 100

2000
4000
6000
8000

10000
Chuang (T−score)

VIJVER

20 40 60 80 100

100
200
300
400
500

Chuang* (C2 V1.0)

VIJVER

20 40 60 80 100

2000
4000
6000
8000 Chuang* (Park)

VIJVER

20 40 60 80 100

100
200
300
400
500

Lee (C2 V1.0)

VIJVER

20 40 60 80 100

2000
4000
6000
8000

10000
Lee (PPI*)

VIJVER

20 40 60 80 100

2000
4000
6000
8000

10000
Lee (Park)

VIJVER

20 40 60 80 100

2000
4000
6000 Park

VIJVER

20 40 60 80 100

2000
4000
6000
8000 Singles

VIJVER

Figure 5: The markers trained on DMFS and VIJVER were tested on SOS in a DLCV. The number of optimum features
are sorted according to size.

4

20 40 60 80 100

2000
4000
6000
8000

10000
Chuang (PPI)

DMFS

20 40 60 80 100

2000
4000
6000
8000

10000
Chuang (T−score)

DMFS

20 40 60 80 100

100
200
300
400
500

Chuang* (C2 V1.0)

DMFS

20 40 60 80 100

1000
2000
3000 Chuang* (Park)

DMFS

20 40 60 80 100

100
200
300
400
500

Lee (C2 V1.0)

DMFS

20 40 60 80 100

2000
4000
6000
8000

10000
Lee (PPI*)

DMFS

20 40 60 80 100

2000

4000
Lee (Park)

DMFS

20 40 60 80 100

2000
4000
6000
8000

10000
Park

DMFS

20 40 60 80 100

1000
2000
3000

Singles

DMFS

20 40 60 80 100

2000
4000
6000
8000

10000
Chuang (PPI)

SOS

20 40 60 80 100

2000
4000
6000
8000

10000
Chuang (T−score)

SOS

20 40 60 80 100

100
200
300
400
500

Chuang* (C2 V1.0)

SOS

20 40 60 80 100

1000
2000
3000 Chuang* (Park)

SOS

20 40 60 80 100

100
200
300
400
500

Lee (C2 V1.0)

SOS

20 40 60 80 100

2000
4000
6000
8000

10000
Lee (PPI*)

SOS

20 40 60 80 100

2000

4000
Lee (Park)

SOS

20 40 60 80 100

2000
4000
6000
8000

10000
Park

SOS

20 40 60 80 100

1000
2000
3000

Singles

SOS

Figure 6: The markers trained on SOS and DMFS were tested on VIJVER in a DLCV. The number of optimum features
are sorted according to size.

20 40 60 80 100

2000
4000
6000
8000 Chuang (PPI)

SOS

20 40 60 80 100

2000
4000
6000
8000 Chuang (T−score)

SOS

20 40 60 80 100

100
200
300
400
500

Chuang* (C2 V1.0)

SOS

20 40 60 80 100

2000
4000
6000 Chuang* (Park)

SOS

20 40 60 80 100

100
200
300
400
500

Lee (C2 V1.0)

SOS

20 40 60 80 100

2000
4000
6000
8000 Lee (PPI*)

SOS

20 40 60 80 100

2000
4000
6000
8000

Lee (Park)

SOS

20 40 60 80 100

2000
4000
6000
8000

10000
Park

SOS

20 40 60 80 100

2000
4000
6000
8000

10000
Singles

SOS

20 40 60 80 100

2000
4000
6000
8000 Chuang (PPI)

VIJVER

20 40 60 80 100

2000
4000
6000
8000 Chuang (T−score)

VIJVER

20 40 60 80 100

100
200
300
400
500

Chuang* (C2 V1.0)

VIJVER

20 40 60 80 100

2000
4000
6000 Chuang* (Park)

VIJVER

20 40 60 80 100

100
200
300
400
500

Lee (C2 V1.0)

VIJVER

20 40 60 80 100

2000
4000
6000
8000 Lee (PPI*)

VIJVER

20 40 60 80 100

2000
4000
6000
8000

Lee (Park)

VIJVER

20 40 60 80 100

2000
4000
6000
8000

10000
Park

VIJVER

20 40 60 80 100

2000
4000
6000
8000

10000
Singles

VIJVER

Figure 7: The markers trained on SOS and VIJVER were tested on DMFS in a DLCV. The number of optimum features
are sorted according to size.

5

subnetworks unique genes largest genes avg size doubles
Chuang (PPI) DMFS 10974 10974 13 36210 3 766
Chuang (PPI) SOS 10974 10974 13 34917 3 758
Chuang (PPI) VIJVER 10974 10974 14 35292 3 749
Chuang (T-score) DMFS 10974 10974 15 51650 4 373
Chuang (T-score) SOS 10974 10974 17 49151 4 362
Chuang (T-score) VIJVER 10974 10974 16 49472 4 355
Chuang* (C2 V1.0) DMFS 522 647 8 1213 2 99
Chuang* (C2 V1.0) SOS 521 600 6 1132 2 109
Chuang* (C2 V1.0) VIJVER 519 625 6 1158 2 122
Chuang* (Park) DMFS 8028 8440 5 8440 1 0
Chuang* (Park) SOS 10931 11001 3 11001 1 0
Chuang* (Park) VIJVER 10010 10149 3 10149 1 0
Lee (C2 V1.0) DMFS 522 775 13 1804 3 43
Lee (C2 V1.0) SOS 522 691 9 1581 3 64
Lee (C2 V1.0) VIJVER 522 735 12 1748 3 52
Lee (PPI*) DMFS 10974 3416 20 43572 3 4141
Lee (PPI*) SOS 10974 3095 14 36127 3 4862
Lee (PPI*) VIJVER 10974 3314 17 39065 3 4548
Lee (Park) DMFS 8186 8523 7 8523 1 0
Lee (Park) SOS 10962 11036 4 11036 1 0
Lee (Park) VIJVER 10215 10378 4 10378 1 0
Park DMFS 8186 11601 511 11601 1 0
Park SOS 10962 11601 138 11601 1 0
Park VIJVER 10215 11601 34 11601 1 0
Singles DMFS 11601 11601 1 11601 1 0
Singles SOS 11601 11601 1 11601 1 0
Singles VIJVER 11601 11601 1 11601 1 0

Table 2: Some numbers to give an idea on how these subnetworks are built. Shown are the number of subnet-
works (subnetworks), the total number of unique genes in these subnetworks (unique genes), the genes largest subnet-
work (subnetwork), the sum of all the subnetwork sizes (genes), the average size of a subnetwork rounded down (avg
size), number of subnetworks that are already represented (doubles). The unique number of subnetworks would be
uniquesubnetworks = subnetworks− doubles.

Tested Markers Chuang (PPI) Chuang
(T-score)

Chuang* (C2
V1.0)

Chuang*
(Park)

Lee (C2 V1.0) Lee (PPI*) Lee (Park) Park Singles

DMFS SOS ITIH4
CXCL12
PTK2B
JAK2

RPS6KA6
MAPK1
HSP90AA1
NEK2 PT-
PRR HIF1A
GRB2

CXCL12
PTK2B

TNFRSF14 ALDH1A1
ABAT
ACADS

CDC25A
CENPN
E2F1 PP-
FIA1 KRT18
RALA

TNFRSF14 CCT5 TNFRSF14

DMFS SOS WDR5
HSP90AA1
EIF2AK2
LSM1 YW-
HAZ TERT
ERBB2

HIF1AN
HDAC2
SUV39H1
EED ASH2L
HIF1A PGK1
PML

CXCL12
PTK2B

CCT5 CDC2
CCNB1

DLG7
CDC25A
CENPN
E2F1 PP-
FIA1 KRT18
HSP90AA1

CCT5 TNFRSF14 EPHX2

DMFS SOS RASGRF1
CDC2
CCNB1
CCNB2
CDKN1A
CIB2

HAL MAPK1
HSP90AA1
NEK2 PT-
PRR HIF1A
DHPS

PPFIA1
CDH3
CPNE1
BYSL AL-
CAM

EPHX2 CDC2
CCNB1

STAT5A
CXCL12
IL6ST KIT
EVL

EPHX2 EPHX2 CCT5

DMFS SOS WEE1
CCNB2
CCNB1
GADD45B
CDC25B

IER3 MAPK1
NEK2
PTPRR
HSP90AA1
HIF1A GRB2
CAMK2D
MAPK6

PPP1R12B
ADCY1
PTK2B

BTG2 STAT5B
STAT5A
MAP2K4
FOS BCL2

PDE4A KIT
EVL SKAP1
IGJ

TREM1 PARP3 BTG2

DMFS SOS VAV1 PTK2B
IL6ST
CXCL12
PIK3CG

FKBP3
HDAC2
SUV39H1
EED TOP2A
PPARD
ASH2L
GADD45B

STAT5B
JAK1

TREM1 TRIP13
CCT5 PGK1
NOL5A
PSMD14

IL6ST
KIT EVL
PDGFRA
CSF1
GOLGB1
FLT3 EPOR
ARHGEF7
IL6R

PARP3 TREM1 KIF13B

DMFS SOS IL2RA
STAT5B
STAT5A
JAK1 PTK2B

CAMK2D
MAPK1
HSP90AA1
NEK2 PT-
PRR HIF1A
DHPS

STAT5B
JAK1

PARP3 CCNB1
CDC20
TRIP13
HNRPAB
ALG3

LRP2 SYNE1
KIF13B
ERBB4

BTG2 KIF13B PARP3

DMFS SOS GYS2 CCT2
CCT6A
CCT5 GYS1

THAP4
PREI3 FADD
GIPC1
MCM2
PAICS

STAT5B
JAK1

KIF13B CCNB1
CDC20
TRIP13

DKFZp762E1312
CCT5 AP1G1

BTD BTG2 TREM1

DMFS SOS CBX5 CCT5
MKI67 TCP1

TNFRSF14
TRAF3
NRIP1
PPARG
CTBP2
NR3C1

TRIP13
PGK1

SQLE CDC2
CCNB1
CDC20
BUB1B

DKFZp762E1312
CCT5 AP1G1

KIF13B SQLE BTD

DMFS SOS CYB5R2
TRIP13
KIAA1609

HDAC1
TOP2A
PPARD RU-
VBL2 EED
GADD45B
CCNB1
MDM2
S100A9
ASH2L

IGF1 BCL2
ADCY1

BTD CDC2
CCNB1
CDC20
BUB1B

PSMD14
STMN1
KRT18 VARS
HSP90AA1
TMEM132A
PFKL
HSPA14
NDRG1

SQLE BTD SQLE

DMFS SOS INPP5D
DOK1
KIT IL6ST
PDGFRL

C8orf32
TRIP13
SEC24A SFN
KRT18 CDC2
KIAA0408

ATM BCL2 ELOVL5 CDC2
CCNB1

DKFZp762E1312
CCT5
ITGB4BP
PPFIA1

ABHD14A ELOVL5 KIF20A

Table 3: Top 10 subnetworks. Markers from SOS, tested on DMFS.

6

Tested Markers Chuang (PPI) Chuang
(T-score)

Chuang* (C2
V1.0)

Chuang*
(Park)

Lee (C2 V1.0) Lee (PPI*) Lee (Park) Park Singles

DMFS VIJVER MAD2L2
MAD2L1
BUB1B
BAT2 P4HA2
CENPA

IL6R IL6ST
JAK2
STAT5A
EPOR RPL4
AR JAK1

BYSL PGK1
TRIP13 NP
MORF4L2
HYOU1

TNFRSF14 F11R BA-
IAP2 BYSL
GP5

RPL11
KIF13B

TNFRSF14 EPHX2 TNFRSF14

DMFS VIJVER WEE1
CDCA3
CCNB2
PKMYT1
YWHAB
MAP2K1
CCNE2
CCNA2
ITGB1

KRT18
TROAP
HGS SFN
CDC2 BIRC5
MAP2K1
CDK5R1

BCL2
FCER1A
ICOS

EPHX2 CCNB2 RPL11
KIF13B

EPHX2 TNFRSF14 EPHX2

DMFS VIJVER FLJ20254
RAD54L
RAD51
PSMD7
LSM1 UPF2

HTR2A
JAK2 IL6ST
STAT5A
CSF3 JAK1
DLG4 FZD1
KIF13B
BRCA2

JAK2 CISH
JAK1 IL6R

TRIP13
CCT5

E2F1 NDRG1
CDC2

RPL11
KIF13B

BTG2 TRIP13
CCT5

CCT5

DMFS VIJVER BYSL
TROAP
TRIM37
KIAA0408
PRC1

PAK2
ARHGEF6
PDHB
TGFBR1
PIK3R1
VAV3
IRS1 INS
ARHGAP15

BCL2 IL7R
STAT5A

KIF13B BCL2 IGF1
KIT

K-ALPHA-
1 F11R
GAPDH
RGS19
SLC2A1
GRB2
NFASC
KCNA2
ITGA5 CLTC
DDEF1

TREM1 BTG2 BTG2

DMFS VIJVER SKI K-
ALPHA-1
PML CCT2
TDG

MAGEA12
STAT5A
JAK2
C10orf86
AR RPL4
EPOR JAK1

PSMD1
ABCF1
CDC20

BTG2 JAK2
STAT5A
JAK1

K-ALPHA-
1 CCT5
NFASC TAF6

BTD PARP3 KIF13B

DMFS VIJVER PIN4 TPX2
AURKA FN1
COL13A1
MMP9
LGALS3BP
COL4A1
GTPBP4
NAT10

ERCC1
CCNH
GTF2B
RRAD
POLR1B
RPL5 ESR1
RPL11
CCND2
MRPL2

TPX2
CDK2AP1
VIL2

TREM1 BCL2 JAK2
FOS

KIF20A
PSMD7

PARP3 TREM1 PARP3

DMFS VIJVER K-ALPHA-1
CCT5 THEG
CCT2

LOC158997
KPNA1 NP
GAPDH

BTG2 BCL6
IGFBP6
FHL2

PARP3 BCL2
STAT5A
JAK1
PIK3CA
IL2RG
PIK3R1

BTG2 KIF13B SQLE TREM1

DMFS VIJVER THEG CCT5
K-ALPHA-1
CCT2

ROS1 VAV3
IGF1R JAK1
JAK2 ZYX
IL6ST KIT
HOXA9

CCNB2
ERBB2
RAD51
CCNE1

BTD RRM2 PGK1
MARS

BTG2 ABHD14A KIF13B BTD

DMFS VIJVER RAE1 BUB1
BUB1B

TIAF1
JAK3 IL6ST
JAK2 JAK1
STAT5A

E2F1 IL11
BUB1B

SQLE ALDH3A2
ABAT
GAD1 DPYD
ALDH2

BTG2 SQLE COCH SQLE

DMFS VIJVER EPHX2 ARHGAP8
CTTN
ANKZF1
GRB2 FGD1
KCNA2
ACTR3

JAK2 CISH
JAK1 IFNG

ABHD14A TPX2 BTG2 CDKN3 ZNF395 KIF20A

Table 4: Top 10 subnetworks. Markers from VIJVER, tested on DMFS.

7

Tested Markers Chuang (PPI) Chuang
(T-score)

Chuang* (C2
V1.0)

Chuang*
(Park)

Lee (C2 V1.0) Lee (PPI*) Lee (Park) Park Singles

SOS DMFS MT1X TCF1
C16orf61
KIF20A
NOP17
NAT10
HSD17B2

EPOR
STAT5A
JAK1 PTK2B
CXCL12
IL6ST FYN
EVL IL6R

BCL2
STAT5A
PIK3R1 FOS
MAP2K4

STAT5B STAT5A
STAT5B
BCL2
FOS JAK2
MAP3K1
PIK3R1
MAP2K4
RAF1

CX3CR1
EVL FUCA1
DOK1
CXCL12
STAT5A
SKAP1

STAT5A
STAT5B

STAT5A
STAT5B

CCNB1

SOS DMFS CNTF IL6ST
NTRK2
VAV1 JAK1
IFNGR2
PTPN6 KIT
STAT5B

STAT5A
JAK1 PTK2B
IL6ST KIT
DOK1 FYN
EVL

STAT5A
JAK1
MAP2K4
EGF

SLC23A2 STAT5A
PTK2B JAK1
STAT5B
BCL2
PIK3R1

FIGF IGF1
CACNA1D
STAT5A
ERBB4
PTK2B ATM

PGK1
UBE2A

SPAG5
TMEM97

STAT5B

SOS DMFS SFN CDC2
CCNB1
LATS1
GADD45B
KRT18
ORC2L

SFN CDC2
GADD45B
CCNB2
LATS1 CDK7

FOS
MAP3K14
MAP2K4

PGK1
UBE2A

STAT5A
STAT5B FOS
JAK2 PTPN6
RAF1 EPOR

DOK1 IGF1
ITPR1 LRP2
STAT5A
ITM2B
SKAP1
ERBB4
PTK2B
JAK1 ATM

SPAG5 SLC23A2 CCNB2

SOS DMFS RNF20
UBE2A
GAPDH
MORF4L2
RACGAP1
C20orf4
NUP54

SYK STAT5A
JAK1 IL6ST
PTK2B KIT
DOK1 FYN
EVL SDC3

BCL2 IGF1
CSF2RB
PRKAR2B

SPAG5
TMEM97

STAT5A
JAK1
STAT5B
FOS LCK

C7 DOK1
IGF1 LRP2
STAT5A
JAK1 IL6R

GAPDH GAPDH KIF20A

SOS DMFS TRIM25
SFN PLK4
KRT18 CDC2
C8orf32

PIK3R2
DOK1
KIT JAK2
STAT5B
PTK2B EGF
ERBB4 TEC
JAK1

EIF4EBP1
HK2

HNRPAB
DDX41

STAT5A
JAK1
STAT5B
BCL2 FOS
BAD PTPN6
PIK3R1
SOCS3

CX3CR1
EVL FUCA1
DOK1
CXCL12
CCR2
ERCC1 LRP2
STAT5A
SKAP1

CCNB2
KIF20A
TPX2 PRC1

PFKP SPAG5

SOS DMFS ARHGEF15
PREI3
MCM2 FADD
UBE2V2
PAICS
PRODH
GIPC1

IL4 STAT5A
JAK1 PTK2B
IL6ST KIT
DOK1

FOS IGF1
IGF1R

CX3CR1 STAT5A
STAT5B FOS
JAK2 PTPN6

FIGF DOK1
CXCL12
STAT5A
SKAP1
ERBB4
PTK2B
JAK1

SLC23A2 GPR56 GAPDH

SOS DMFS SORBS1
SEMA6A
EVL EFNB1
LYN

CTF1 IL6ST
JAK1 VAV1
KIT IL6R
FLT3

CCNB1 GAPDH JAK1 IL6R
FOS IL6ST

EVL GJB1
STAT5A
SKAP1
PTK2B IL6R
PECAM1
TNFSF11
IL6ST CD59
EGF PTP4A2

HNRPAB AP2S1 SAE1 PLSCR4

SOS DMFS NCK1 DOK1
KIT EGF
ERBB4 VTN
IGF1 TP53

USF2 FOS
NR3C1 MYB
STAT5A
JAK1 TCF1
PCAF

STAT5B FOS
CSF2RB

SAE1 AP2S1 STAT5A
STAT5B
FOS JAK2
PRKCB1
PIK3R1

NTRK2
MATN2 EVL
FUCA1
DOK1
CXCL12
DUSP4 GJB1
STAT5A
SKAP1

GPR56 GART
DSCR2
DONSON

IGF1

SOS DMFS IGFBP2
IGF1 EGF
IGFBP6
IGF1R

PLEKHA8
ARF1 RALA
DDEF2
AP1G1
ARL4D
RCC1

MAPT
PTK2B
STAT5A
AGTR2

CD302 CX3CR1 ED-
NRB CCR2
PTGER3
ADRB2
AGTR1

MATN2
EVL GJB1
STAT5A
SKAP1
FCER1A
PTK2B
JAK1 IL6R

PFKP EIF4EBP1 CX3CR1

SOS DMFS TLN1 LRP2
PTK2B
CXCL12
JAK1 ITIH4
IL6ST

JAK3
STAT5A
JAK1 IL6ST
VAV1 KIT
DOK1

CCNB1 C16orf61
CIAPIN1
PSMD7
C16orf80
NUTF2

PFKL PFKP
TALDO1

NTRK2
EVL FUCA1
PCAF DOK1
STARD13
GJB1
STAT5A

SAE1 AP2S1 CD302 SLC23A2

Table 5: Top 10 subnetworks. Markers from DMFS, tested on SOS.

8

Tested Markers Chuang (PPI) Chuang
(T-score)

Chuang* (C2
V1.0)

Chuang*
(Park)

Lee (C2 V1.0) Lee (PPI*) Lee (Park) Park Singles

SOS VIJVER ZNF622
MYBL2
SKP2 MELK
CDC34
NCOR2

PRKCI
GAPDH
TK1 PGK1
MAP2K5
MAP3K3
UBE2A

PFKL PFKP
ALDOC
G6PD

STAT5B PFKL
GALK1
PFKP HK3
HK2 GLB1

AURKA
PFKL
PSMD2
SPAG5
AARS PGK1

STAT5B STAT5B CCNB1

SOS VIJVER IFNGR2
JAK1 IGF1R
STAT5A
IL6ST

PAFAH1B3
GAPDH TK1
PGK1

MAP3K14
NR3C1
DUSP1
IKBKB
CREBBP

AP2S1 BCL2 IGF1
KIT

PFKL
MAD2L1
PFKP
SLC27A3

PLSCR4 PLSCR4 STAT5B

SOS VIJVER PAFAH1B3
GAPDH
TK1 PGK1
SLC2A1

KLKB1 IGF1
INS C1QBP
SIRT1
IGFBP4
PLSCR4

BYSL PGK1
TRIP13 NP
MORF4L2
HYOU1

HNRPAB PFKL
TALDO1
PFKP AL-
DOC

PFKP
GAPDH
SLC27A3

SLC23A2 SPAG5 CCNB2

SOS VIJVER HOXB1
MEIS1 PBX3
NR3C1
STAT5A

RAD18
UBE2A
GAPDH

TPI1 CPT1A SLC23A2 FOS
MAP3K1
MAP2K4
STAT5A
JAK1
PIK3CA

GAPDH
SLC27A3
RNASEH2A
ALDOC

SPAG5 AP1G1
CDK8 AP1S1
GEMIN7

KIF20A

SOS VIJVER NOL5A
TPX2 AU-
RKA SMAD3
TUBA1
MLL2

HTR2A
JAK2 IL6ST
STAT5A
CSF3 JAK1
DLG4 FZD1
KIF13B
BRCA2

IGF1 STAT5A FOS
MAP3K1
MAP2K4
STAT5A
JAK1
PIK3CA

PFKL FEN1
PFKP

IGF1 STAT5A SPAG5

SOS VIJVER IGF1 NOV
INS ITGAV
IRS1 LRP2

MYO7A
UBE2A
GAPDH

POLD1
GMPS
NP APRT
POLR2D
ATIC

SPAG5 CCNB1
CDC2 HRAS

RACGAP1
PFKL PGK1

STAT5A CDC2
H2AFZ
MAD2L1
ZWINT

GAPDH

SOS VIJVER SOD2 MDH2
PFKL PFKP

SFN CDC2
E2F1 SPAG5
CDK5R1

MAP2K4
FOS ASAH1
CREB1

PLSCR4 RRM2
POLD1
GMPS NP
POLR2C
PKM2

DTL KIF20A
PGK1

AP2S1 HNRPAB PLSCR4

SOS VIJVER GUF1
HTRA2
PFKL PFKP
KARS PKM2
PIN1

GRB10
JAK2 IL6ST
INS IRS1
PPP4R1
IFNG
STAT5A

RRM2 PGK1
NDUFC1 AG-
PAT3

ZWINT
H2AFZ

E2F1 NDRG1
CDC2

DTL KIF20A
PGK1

HNRPAB SLC23A2 IGF1

SOS VIJVER HHEX
CTBP2
SNAI2
BAZ2B
RAI2

TENC1
PDLIM5
HNRPH2
STAT5A

BCL2
MAP2K4
JUN PRKCQ

GPR56 PFKL TPI1
PFKP HK3
ALDOC

TXNRD1
PFKP
GAPDH
GLRX2 ND-
UFA4L2
GRB2

ZWINT
H2AFZ

TRIP13
CCT5

CX3CR1

SOS VIJVER EPOR
STAT5A
SOCS2 JAK1
IL6ST CD247

IL21R JAK1
IL6ST JAK2
STAT5A
CSF3

BCL2 IL7R
STAT5A

C12orf35 H2AFZ BUB1
TALDO1
HDGF ADFP

STC2
MAP2K4
AKAP12
SLC9A5
ADRB2

MKI67 IGF1 SLC23A2

Table 6: Top 10 subnetworks. Markers from VIJVER, tested on SOS.

9

Tested Markers Chuang (PPI) Chuang
(T-score)

Chuang* (C2
V1.0)

Chuang*
(Park)

Lee (C2 V1.0) Lee (PPI*) Lee (Park) Park Singles

VIJVER DMFS SLC25A11
COPA AR-
FGAP1
CDKN1A
CCNB1
CCNE2
CCNB2
GADD45B
MYC

DIAPH1
CENPA
BAIAP2
MAD2L1

PGK1 PFKL E2F1 H2AFZ
MKI67
PSMA7
PSMD2
PSMD1

TMPO
HSP90AA1
SPP1 F11R
BAT3 ZG16

PKMYT1
E2F1

BIRC5 TK1
HN1

E2F1

VIJVER DMFS MYT1L
PKMYT1
CCNB2
CCNB1
CCNA1
CCNE2

PRC1 E2F1 CFL1 ADAM8 PFKL PFKP
TALDO1

TMPO
HSP90AA1
SPP1 F11R
EN2 BAT3
ZG16

GLTSCR2
TPT1

E2F1
PKMYT1

TK1

VIJVER DMFS PRKCBP1
BIRC5
PSMD2

FBXO32
CUL1 E2F1
CDCA3
CCNA2
CCND1

E2F1 EBP E2F1 CFL1
ARF3

TMPO
HSP90AA1
SPP1 F11R
BAT3 ZG16

AURKA AURKA PRC1

VIJVER DMFS LIMK1 PAK4
YWHAZ
RACGAP1
LATS1

GDF8 SGTA
TMPO SPP1
HSP90AA1
BAT3
PTN F11R
EFEMP2

E2F1 BIRC5 TPI1 HK2
PMM2 PFKL
PFKP SORD
PFKFB1

TMPO
HSP90AA1
SPP1 F11R
BAT3 ZG16

EBP EBP ESPL1

VIJVER DMFS PAK4 RAC-
GAP1 AU-
RKB

RUTBC1
RPS25
EIF3S4
CA12 RPL11

BIRC5 AURKA CFL1 ACTR3
BAIAP2

TMPO
HSP90AA1
SPP1 F11R
BAT3

CCNB2
KIF20A
TPX2 PRC1

ADAM8 BIRC5

VIJVER DMFS WBP2
PSMD2
PSMA7
ORC1L

ANKZF1
AURKB
RACGAP1
TACC1
PSMD1
PSMD7

E2F1 CCNA2 PSMD2 CDC2
MAD2L1
ATP2A2
E2F1

TMPO
HSP90AA1
SPP1 F11R
BAT3 ZG16

HN1 BIRC5 ADRA2B E2F2

VIJVER DMFS RACGAP1
AURKB
PAK4

USHBP1
PRC1

PSMA7 RCE1 CCNB2 TMPO
HSP90AA1
SPP1 F11R
BAT3 ZG16

ADAM8 PFKL TPT1

VIJVER DMFS RGS3 YW-
HAZ PCTK1
BRAF
CDC25B
CDC25A
PTPN13

UNC84A
RRM2
EIF4G1
NEURL

E2F1 ABL1 GLTSCR2
TPT1
RPS27A

PGK1 TMPO
HSP90AA1
SPP1 F11R
BAT3 GJA8

PSMD2 SLC1A5 CCNB2

VIJVER DMFS BRD2 E2F1
CCNA1

RPL12L3
AARS
SEC61G
RAD51

BCL2
STAT5A
PIK3R1 FOS
MAP2K4

DDX39 PGK1 CDCA3 E2F1
YWHAZ

WDR62 CENPM EBP

VIJVER DMFS PRC1 POLD1 FEN1
EXO1

E2F1 TIMP3 PGK1
UBE2A

PGK1 DDX39
SNRPA1
PSMA7
PSMD2
POLR2B

STIP1 WDR62 UBE2C

Table 7: Top 10 subnetworks. Markers from DMFS, tested on VIJVER.

Tested Markers Chuang (PPI) Chuang
(T-score)

Chuang* (C2
V1.0)

Chuang*
(Park)

Lee (C2 V1.0) Lee (PPI*) Lee (Park) Park Singles

VIJVER SOS ARF3 KIF23
AURKB
AURKC
RACGAP1
ARF5 ARF1

TRIM37
PRC1 DLG7
APEX2
KIAA0408
PNKP

PFKP HK2
GALK1

TK1 PFKP PFKL
ARF1

BUB1 ARF1
NDRG1
ARF3
PPP2R1A
UTP14A

TK1 TK1 E2F1

VIJVER SOS ARHGDIA
FEN1 POLD1
CDC42

TK1 GAPDH
UBE2A

PGK1 GOT1
ALDOC

DKFZp762E1312
TROAP

E2F1 ARF1
ARF3 CFL1

RRM2 PFKP
PFKL

DKFZp762E1312
TROAP

TROAP DK-
FZp762E1312

TK1

VIJVER SOS FEN1 ARHG-
DIA POLD1
CDC42

TPT1 POLD1
RRM2

E2F1 RRM2
POLD1
TK1

PFKP ACP1
E2F1 PFKL
DPM2

BIRC5 BIRC5 PRC1

VIJVER SOS PRC1 BLK BCL2
ITM2B SF1
RPS3A
BNIP3L

TRIP13
PGK1

BIRC5 PFKP TPI1
PFKL HK2
HK3

PRC1 E2F1 E2F1 ESPL1

VIJVER SOS USHBP1
PRC1

EEF1A2
PSMD1
RACGAP1
CDC25A
PSMB7
CHRM4

ARF3 E2F1
CFL1

E2F2 PFKP PFKL
HK2 HK3

PRC1 PKMYT1 PKMYT1 BIRC5

VIJVER SOS GTF2H5
GTF2H4
CDC2 E2F1
TAF13 TAF4

SPG7 RALY
WDR62
PLSCR1
CPSF6 VASP
NPDC1
TXNL2

GOT1 AARS AURKA FEN1 POLD1
MSH6 EXO1

PRC1 TPT1 TPT1 E2F2

VIJVER SOS CFL1 TPI1
PGK1

PRC1 CPT1A TPI1 ADAM8 NDRG1
SLC19A1

PRC1 EBP AURKA TPT1

VIJVER SOS FENL1 FEN1
ARHGDIA
POLD1
PRIM2A
VCL EXO1

DCAMKL1
GAPDH
UBE2A TK1

CPT1A TPI1 TPT1 PGK1 GOT1 PRC1 E2F2 E2F2 CCNB2

VIJVER SOS TPI1 PGK1
CFL1

USHBP1
PRC1

POLD1
MSH6 EXO1

PKMYT1 PFKP
TALDO1
GPI PFKL

PRC1 AURKA EBP EBP

VIJVER SOS POLD4
POLD2
RFC2 POLD1
PRIM2A
FEN1 EXO1
CDKN1A
CCNA2
CDC45L

ARHGDIA
FEN1
PRIM2A
POLD1

PFKP ARF1 EBP GOT1 AARS PRC1 ADAM8 ADAM8 UBE2C

Table 8: Top 10 subnetworks. Markers from SOS, tested on VIJVER.

10

August 21th

1 Models

(θ1)

h1 h2 h3 h4

x1 x2 x3 x4 y

Linear

Poor / good

Discretize

Poor / good

Discretize

Binary variable

Continuous variable

(θ2)

Poor Good

h1 h2 h3 h4

x1 x2 x3 x4

Linear

h1 h2 h3 h4

x1 x2 x3 x4

Linear

(θ3)
h1 h2 h3 h4

x1 x2 x3 x4

x1 x2 x3 x4

Bimodal

y

y

Logical

Poor / good

Discretize

(θ4)

Poor Good

h1 h2 h3 h4

x1 x2 x3 x4

Logical

x1 x2 x3 x4

Bimodal

h1 h2 h3 h4

x1 x2 x3 x4

Logical

x1 x2 x3 x4

Bimodal

Figure 1: Different types of models. Models θ1 and θ2 use a
normally distributed hidden layer where the features and lin-
ear combinations of these hidden variables. Models θ3 and θ4
use binary hidden layer where the features are logical func-
tions of the hidden variables, which in turn are converted
in normally distributed features. In models θ1 and θ3 the
outcome variable is modeled as being another feature, and
discretized to get a 0-1 label. Models θ2 and θ4 have two
separate models for the poor and good case.

In order of increasing complexity, the different models are:

• Model θ1. In this model, a set of normally indepen-
dent distributed variables H model the latent variables.
The features X are a linear combination of the latent
variables with added noise. The outcome variable Y is
modeled similar as the a feature of X, but discretized.
This is the model described in Park.

• Model θ2. This model is has a set of normally indepen-
dent distributed variables H for each of the poor and
good case. The features X are a linear combination of
each of these latent variables. Also, not shown in the Fig-
ure, the model should have a prior probability of good
and poor case.

• Model θ3. In this model, a set of independent Bernoulli
variables H model the latent variables. The features
X0/1 are logical functions of these latent variables. The
features X are normally distributed with parameters de-
pending on its corresponding X0/1. The outcome vari-
able Y is again regarded as a feature, but discretized.

• Model θ4. This model is similar to θ3, but with seperate
systems for the poor and good case. This model also
should have a prior probability.

More formally, the different models are noted using the
following variables. In this notation, B indicates a Boolean
function.

• Model θ1. µhi , σ
2
hi

for hi ∈ H. ~βxi , σ
2
xi

for xi ∈ X. ~βy,
σ2

y.

• Model θ2. µhy,i
, σ2

hy,i
for hy=0,i ∈ Hy=0, hy=1,i ∈ Hy=1.

~βxy,i , σ
2
xy,i

for xy=0,i ∈ Xy=0, xy=1,i ∈ Xy=1. py=0.

• Model θ3. phi
for hi ∈ H. Bxi

for xi ∈
X. By. ~µx=0,i, ~µx=1,i, ~σ2

x=0,i, ~σ2
x=1,i for xi ∈ X.

µy=0, µy=1, σ
2
y=0, σ

2
y=1.

• Model θ4. This model won’t be used since model θ3 is
complex enough for our purposes.

For the simpler models θ1 and θ2 an alternative notation
exists that directly models the relation between the features
and the outcome, which can be used for improved analysis
later. These models don’t model the hidden layer explicitly.

• Model θ1. ~µx, Σx, ~βy, σ2
y.

• Model θ2. py=0, ~µy=0, Σy=0, ~µy=1, Σy=1.

Since we’ve obtained simpler models for θ1 and θ2, we can
easily determine the optimal classifier, or Bayes classifiers
for these models. We could also attempt to find the Bayes
classifiers for the more complex models θ3 and θ4, but this
would require too complex notation and won’t probably be
easily implementable.

• Model θ1. ŷ = 1 if (X~βy > 0), ŷ = 0 otherwise.

• Model θ2. ŷ = 1 if gy=1 > gy=0, ŷ = 0 other-
wise. Here gy=c = log(py=c)− 0.5log(|Σy=c|)− 0.5(X −
µy=c)T Σ−1

y=c(X − µy=c).

1.1 Standard model θ1

The standard model θ1 has a hidden layer of 100 variables and
a feature layer with 1000 features. Every 10 features represent
a hidden variable with noise added. The outcome variable y
is the mean of the first 10 hidden variables, with noise added
to it and discretized. This model has 300 samples.

This model can be described using the following variables:

• µhi
= 0, σ2

hi
= 1 for h1...h100. ~βxi

(n) = 1 if n =
di/1000e, otherwise 0, σ2

xi
= 22 for x1...x1000. ~βy(n) = 1

if n < 11 otherwise 0, σ2
y = 1.

1

(Standard model θ1)

h1

x1 x2 x3 x1000

y

Poor / good

x3

h10

x91 x92 x3x93

h100

x991 x992 x3x993
.
.
.

.

.

.

.

.

.

Discretize

Sum + noise (σe=1)

+ Noise (σe=2) + Noise (σe=2) + Noise (σe=2)

~N(μ=0,σ=1)

Figure 2: Standard model 1.

1.2 Standard model θ2

Standard model θ2 has 100 hidden variables and a 1000 fea-
tures. There is a system for both the good and the poor
case individually. Again every 10 features are represented by
a hidden variable with noise added. The difference between
the poor and the good case is that the hidden variables have
a different mean. Also, a prior probability is defined which
determines the approximate number of poor and good cases.

(Standard model θ2)

Good

Poor

h1

x1 x2 x3 x1000x3

h10

x91 x92 x3x93

h100

x991 x992 x3x993
.
.
.

.

.

.

.

.

.

+ Noise (σe=1) + Noise (σe=1) + Noise (σe=1)

~N(μ=0,σ=1) ~N(μ=0,σ=1)~N(μ=0,σ=1)

h1

x1 x2 x3 x1000x3

h10

x91 x92 x3x93

h100

x991 x992 x3x993
.
.
.

.

.

.

.

.

.

+ Noise (σe=1) + Noise (σe=1) + Noise (σe=1)

~N(μ=0.5,σ=1) ~N(μ=0,σ=1)~N(μ=0.5,σ=1)

Figure 4: Standard model 2.

1.3 Standard model θ3

Standard model θ3 ...

(Standard model θ3)

h1

x1 x2 x3 x1000x3

h4

x41 x42 x3x43

h100

x991 x992 x3x993
.
.
.

.

.

.

.

.

.

~p(h=1) = 0.5

x1 x2 x3 x1000x3 x41 x42 x3x43 x991 x992 x3x993
.
.
.

.

.

.

.

.

.

If x1/0=0, x~N(μ=0,σ=1)
If x1/0=1, x~N(μ=2,σ=1)

y

y = (h1 AND h2) OR (h3 AND h4)

y
If y=0, y~N(μ=-1,σ=1)
If y=1, y~N(μ=1,σ=1)

Poor / good

Discretize

Figure 5: Standard model 3.

1.4 Why these models?

The rationale for choosing these models is that we can have
different datasets with different complexity, which as we will
hopefully see will have an influence on the efficiency of the
gene set searching algorithms. For example, model θ1 has the
important property that the entire model could theoretically
be modeled as one big joint multivariate guassian distribu-
tion. This means that if variable 1 is possitively correlated
with the outcome y, and variable 2 is also possitively cor-
related with y, then variable 1 must also be correlated with
variable 2. This behaviour should be advantegous to an algo-
rithm such as Park, which searches for correlated variables.

However, model θ2 models the good and poor population
as separate systems. We could model the predictors variables
in each of these population as independent variables, meaning
that two different predictor variables which are predictive for
y, will only be slightly correlated to each other. So, these
models could be used to show that Park only performs well
under certain circumstances.

2 Properties of the DLCV

In this section we will look at the basic performance of run-
ning a Double-Loop-Cross-Validation method using T-score
ranking and a Nearest Mean Classifier. To do this, we will
define three standard models which we use a starting point,
which can be varied to observe the change in performance. By
doing to so hope to find the basic properties of the DLCV. In
the following section, we will look more specifically at what
happens when genes are combined, and what the properties
are of Park and Lee.

2

2.1 The DLCV

We will employ a DLCV with a 5 fold outer loop and a 4 fold
inner loop. The outer loop is repeated 10 times, returning 50
AUC values to average, while the inner loop has 3 repeats,
determining the optimal number of features from the average
of 12 learning curves.

2.2 Signal vs noisy features

For each of the standard models, I’ve inspected the AUC
returned by crossvalidaton is we would take the first 5, 10, 15
... 1000 features. So for model θ1 and θ2, we would expect the
optimum performance when the first 100 features are selected,
which are all signal features. For model θ3 we would expect
this when the first 40 features are selected. Note that when
I talk about noisy features, I mean non-signal features, since
signal features may also be partly noisy. This experiment
leads to our first observation.

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of features

A
ve

ra
ge

 e
rr

or
 A

U
C

Standard Model θ
1

Standard Model θ
2

Standard Model θ
3

Figure 6: The first n genes where selected in each of the stan-
dard models and DLCV was applied after which an average
AUC was returned.

Observation 1 Adding signal genes improves the AUC.
Adding noisy signals worsen the AUC. Even though you would
expect the DLCV to be able to select the optimum reporter set,
the more noisy features are added, the harder this seems to
get.

2.3 Correlated vs uncorrelated signal fea-
tures

For each standard model, I’ve inspected whether uncorrelated
features are more powerful than correlated features. To in-
spect this, I’ve taken, for each model θ1 and θ2, the first 10,
20, 30 ... 100 features. The first 10 features are correlated,
that is, they come from the same hidden variable. After that,

sets of 10 genes are added which are too correlated to each
other. This ’learning curve’ was compared against a differ-
ent strategy wherein uncorrelated features were selected first.
The first feature of all the 10 hidden variables was used as the
starting set, after which the second features of the 10 hidden
variables where added, etc. In these models, noise features
were left out.

For model θ1, the first 10, 20, 30 and 40 features where
taken to inspect the correlated learning curve, and features
[1 5 9 13 17 21 25 29 33 37], [2 6 10 14 18 22 26 30 34 38],
etc where used to calculate the uncorrelated learning curve.

10 20 30 40 50 60 70 80 90 100
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of features

A
ve

ra
ge

 e
rr

or
 A

U
C

Model θ
1

Correlated first
Uncorrelated first

10 20 30 40 50 60 70 80 90 100
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Number of features

A
ve

ra
ge

 e
rr

or
 A

U
C

Model θ
2

Correlated first
Uncorrelated first

10 20 30 40 10 20 30
0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

Number of features

A
ve

ra
ge

 e
rr

or
 A

U
C

Model θ
3

Correlated first
Uncorrelated first

Figure 7: The correlated-first versus the uncorrelated-first
learning curve for the three models.

Observation 2 A subselection of uncorrelated features is
more powerful than a subselection of correlated features, even
though each feature individually is equally powerful.

3

2.4 Duplicated features

Let’s see what happens when we introduce duplicated signal
features. To do this, we inspected the AUC of all 100 signal
features, added these 100 signal features to the dataset and
rechecked the AUC, and again added these 100 signal fea-
tures. This was done for the cases where we only used the
signal features, and where the noise features were added.

1 2 3 4 5 6 7 8 9 10
0.1

0.12

0.14

0.16

0.18

0.2

0.22

Repeats of signal features

A
ve

ra
ge

 e
rr

or
 A

U
C

Signal features only
With noise features

1 2 3 4 5 6 7 8 9 10
0.2

0.21

0.22

0.23

0.24

0.25

0.26

Repeats of signal features

A
ve

ra
ge

 e
rr

or
 A

U
C

Signal features only
With noise features

1 2 3 4 5 6 7 8 9 10
0.245

0.25

0.255

0.26

0.265

0.27

0.275

0.28

0.285

0.29

0.295

Repeats of signal features

A
ve

ra
ge

 e
rr

or
 A

U
C

Signal features only
With noise features

Figure 8: For the three models, the signal genes were dupli-
cated.

Observation 3 Adding duplicated signal features affect the
AUC only if it affects the ratio of signal and noisy features.

3 Properties of combining features

In this section we will take a look at how combining features
affect the AUC.

3.1 Combining correlated features

My first experiment is to see what happens when correlated
features are combined. We would expect to see that this
improve our AUC’s. To do this, I’ve run the DLCV on all
three models. Then, I’ve taken the first 10 features, combined
them, and run DLCV on the new transformed dataset. This
was done for both the cases where all 1000 features were used
and where only the 100 or 40 signal features are used.

0 1 2 3 4 5 6 7 8 9 10

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

Number of genesets merged together

A
ve

ra
ge

 e
rr

or
 A

U
C

Model θ
1

With noise features
Signal features only

0 1 2 3 4 5 6 7 8 9 10
0.19

0.195

0.2

0.205

0.21

0.215

0.22

0.225

0.23

0.235

Number of genesets merged together

A
ve

ra
ge

 e
rr

or
 A

U
C

Model θ
2

With noise features
Signal features only

0 1 2 3 4 0 1 2 3
0.25

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

Number of genesets merged together

A
ve

ra
ge

 e
rr

or
 A

U
C

Model θ
3

With noise features
Signal features only

Figure 9: For the three models, groups of features which are
correlated were gradually combined.

Observation 4 Combining features generally improves the
AUC. However, the improvement also depends on the pres-
ence of noisy features. The best improvement of AUC comes
from removal of the noisy features rather than combination
of signal genes.

4

4 Properties of gene set searching
algorithms

4.1 Singles, Park and Lee

We will first take a look at the two basic gene set searching
algorithm, Park and Lee. We will vary the error on the fea-
tures to see how this affects the efficiency of the algorithms.
Notice that in standard model θ2, the variables are correlated
in groups of 10, making it similar to model θ1.

0 1 2 3 4 5 6 7 8 9 10
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Model 1, sigma x

σ
x

A
ve

ra
ge

 e
rr

or
 A

U
C

Singles
Park
Lee(Corr)

0 1 2 3 4 5 6 7 8 9 10

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65
Model 2, sigma x

σ
x

A
ve

ra
ge

 e
rr

or
 A

U
C

Singles
Park
Lee(Corr)

0 1 2 3 4 5 6 7 8 9 10

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55
Model 3, sigma x

σ
x

A
ve

ra
ge

 e
rr

or
 A

U
C

Singles
Park
Lee(Corr)

Figure 10: Performances of Park and Lee, depending on the
error introduced on the features.

Observation 5 Judging from the S shapes, Park’s algorithm
seems much more dependent on the σx than the other algo-
rithms. Since a higher σx blurs the correlation between the
variables, Park will have a harder time building a correct den-
drogram.

5 Conclusions

Basically, an observed performance depends on the following
factors:

• The underlying model.

• The DLCV.

• The gene set searching algorithm.

Let’s go through these factors.
The underlying model.

• Multiple methods exist in which the data can be mod-
eled. A model which has logical effects incorporated may
suffer from bias when a linear classifier is used to pre-
dict the outcome. But even within linear models we
can find different levels of complexity. For example, the
data, along with the outcome labels, may be modeled as
a joint multivariate gaussian. If two features depend on
the same latent variable, then the two features must be
correlated, which is a property that may be advantegeous
to a gene set searching algorithm that tries to exploit the
correlation structure of the data, such as Park.

• Since our models have a noise incorporated in it, every
model brings an irreducible noise with it, which can not
be solved with even the best algorithms.

The DLCV

• The DLCV may be regarded as a cross-validation of an
advanced classifier, NMC+featsel, which is a NMC with
feature selection incorporated in it. So basically, this
advanced classifier is a model which itself has a certain
bias and variance.

• A bias with the DLCV comes from the fact that it is
linear, so it will expectedly perform worse when logical
effects are incorporated.

• Another bias is introduced due to the feature selection
part. It is expected that the DLCV will work great when
the underlying data consists of data has features where
the highest ranking features are indeed signal features.

• Also, since my implementation NMC is sensitive to fea-
ture scaling and priors, this may cause additional bias.
However, due to the normalization and combination of
the genes by dividing

√
(n), the feature scaling shouldn’t

be a problem. The priors also shouldn’t cause trouble
since we’re mostly working with AUCs.

The gene set searching algorithm

• A gene set searching algorithm returns a mapping W.
This mapping may influence the performance of the
DLCV in various ways. It could for example remove
noise signals, making it less likely for the DLCV to over-
train. It may combine signal features, which produces

5

new features that are more likely to have a higher t-
score and thus will perform better in the featsel rank-
ing of DLCV. However, it may also incorrectly combine
wrong signal and/or noise features, which causes a bias
due to worsened signal.

• Gene set searching algorithms return a mapping based on
a training set. This procedure itself may show high some
variance. For example, Park’s algorithm selects an opti-
mum cut-off level, which may return a variable number
of features, while Lee’s algorithm has a predefined num-
ber of features wherein each features has a maximum
signal. In other words, Park is biased due to the fact
that only correlated genes can be combined, while Lee is
biased due to the fact that only genes within the same
predefined pathways may be combined. This pathway
bias may explain why Lee using random sets of path-
ways may perform better than ’perfect’ pathways. In
the ’perfect’ pathways scenario, we introduce bias since
we have a certain number of predefined pathways which
have no signal, no matter which subset of CORGs are
taken.

5.1 Bias-variance decomposition

I’ve attempted to make a bias-variance-error decomposition
of the observed error in this work. The reason why I’ve tried
to do this is because I believe a well-designed decomposition
would give insight in virtually all possible effects than can
occur, as can be seen from the above conclusions.

However, while trying to do this, I’ve encountered a few
problems:

• Theoretically, since for all our experimental models we
know the underlying ’true’ model, we should be able to
calculate the bayesian noise analytically. However, this
is quite difficult to do for model advanced models such
as model θ3.

• Since this is not a regression problem, but a classification
problem with a zero-one loss penalty, the decomposition
is not very natural. There is a paper that demonstrates
how to calculate this for classification problems, but the
variance, bias and error terms may not be summed, mak-
ing it harder to interpret the results.

• Approximation of the bias and variance terms would re-
quire too much artificial data and simulation time, which
is infeasible for now.

• Bias-variance-error applies to error per example, not the
AUCs.

Still, I would recommend such an approach for analysis of the
algorithms on artificial data since it immediately points out
the strong and weak points in the design of the model and
gene set searching algorithms.

6

Figure 3: Example of standard model 1. From left right, top to bottom, we see: two correlated and signal features, two
uncorrelated signal features, a signal and a noise feature, two correlated noise features, two uncorrelated noise features, a
heatmap with the first 150 samples poor and the other 150 samples good.

7

September 6th

1 Gene set searching algorithms
evaluation

1.1 Models

h1, h2, ..., h10, h11, ..., h100 h~N =0,2=1

x1, x2, ..., x10, x11, x12, ..., x20, x21, ..., x99, x100, ..., x1000

y
y=discretize [h1h2...h10] ,~N =0,2=1

x1=h1 , x2=h1 ,... , x10=h1 , x11=h2 , ... , x1000=h100 ,~N =0, 2=1

Figure 1: Standard model 1

h0, h1, ..., h9, h10

x'1, x'2, ..., x'100, x'101, ..., x'200, x'201, ..., x'1000

y'

Pr hi=0=0.5, Pr h1=1=0.5

y '=h0

x ' 101=h1, ... , x ' 200=h1, x ' 201=h2, ... x ' 1000=h9

x1, x2, ..., x100, x101, ..., x200, x201, ..., x1000

y

x i~N =2x i '−1,
2=1

y=discretize [y ' '~N =2y '−1, 2=1]

x ' 1=h0∧h1, x ' 2=h0∧h2,... , x ' 10=h0∧h10, x ' 11=h0∧h1, ... , x ' 100=h0∧h10

Figure 2: Standard model 2

1.2 Gene sets

See Figure 5.

1.3 Experiments

Each point, along with the errorbar, is generated using 5
datasets. For these 5 datasets, 5 corresponding mappings
were generated. This datasets were subjected to a cross-
dataset-cross-validation, so each point, and its variance, is
based on 5x4=20 average AUCs. Most of the graphs should
speak for themselves, altough for clarity Figure 7 and Figure 8
are visualized in Figure 6. Figure 9 are basically ’Correlated
first, combined’ and ’Uncorrelated first, combined’ experi-
ments from Figure 8, but with the remaining 100 or 1000
single genes included.

−2 0 2

−2
0
2

Feature 1

F
ea

tu
re

 2

Two corr. signals

−2 0 2
−2

0
2

Feature 1

F
ea

tu
re

 1
1

Two uncorr. signals

−2 0 2

−2
0
2

Feature 1

F
ea

tu
re

 1
01

Signal and noise

−2 0 2

−2
0
2

Feature 101

F
ea

tu
re

 1
02

Two corr. noises

−2 0 2
−2

0
2
4

Feature 101

F
ea

tu
re

 1
11

Two uncorr. noises

−2 0 2
−2

0
2

H 1
H

 2

Two latent signals

−2 0 2
−2

0
2

H 1

H
 1

1

A latent signal and noise

−2 0 2
−2

0
2

H 11

H
 1

2

Two latent noises

Figure 3: Scatterplots of standard model 1

−2 0 2

−2
0
2

Feature 1

F
ea

tu
re

 2

Two signals

−2 0 2
−2

0

2

Feature 1

F
ea

tu
re

 1
01

Semi−corr. signal+noise

−2 0 2

−2
0
2

Feature 1

F
ea

tu
re

 1
02

Uncorr. signal+noise

−2 0 2

−2
0
2

Feature 101

F
ea

tu
re

 1
02

Uncorrelated noise

−2 0 2
−2

0

2

Feature 101

F
ea

tu
re

 2
01

Correlated noise

0 0.5 1
0

0.5

1

H 1

H
 1

Signal latent

0 0.5 1
0

0.5

1

H 1

H
 2

A latent signal+noise

0 0.5 1
0

0.5

1

H 2

H
 3

Two latent noise

Figure 4: Scatterplots of standard model 2

1

x1 x11 ... x91 x101 x111 ... x191 ... x901 x911 ... x991

x2 x12 ... x92 x102 x112 ... x192 ... x902 x912 ... x992

...

x10 x20 ... x100 x110 x120 ... x200 ... x910 x920 ... x1000

x1 x11 ... x91 x101 x111 ... x191 ... x901 x911 ... x991

x2 x12 ... x92 x102 x112 ... x192 ... x902 x912 ... x992

...

x10 x20 ... x100 x110 x120 ... x200 ... x910 x920 ... x1000

x1 x11 ... x91 x101 x111 ... x191 ... x901 x911 ... x991

x2 x12 ... x92 x102 x112 ... x192 ... x902 x912 ... x992

...

x10 x20 ... x100 x110 x120 ... x200 ... x910 x920 ... x1000

x1 x11 ... x91 x101 x111 ... x191 ... x901 x911 ... x991

x2 x12 ... x92 x102 x112 ... x192 ... x902 x912 ... x992

...

x10 x20 ... x100 x110 x120 ... x200 ... x910 x920 ... x1000

x1 x11 ... x91 x101 x111 ... x191 ... x901 x911 ... x991

x2 x12 ... x92 x102 x112 ... x192 ... x902 x912 ... x992

...

x10 x20 ... x100 x110 x120 ... x200 ... x910 x920 ... x1000

Uncorrelated, signal only

Uncorrelated

Correlated, signal only

Correlated

Mixed

Figure 5: Gene sets

Experiment 1

Model 1 x1 x2 ... x10 x11 ... x991 x992 ... x1000

Model 2 x1 x2 ... x10 x11 ... x991 x992 ... x1000

Correlated first
combined x1 ... x10 x11 ... x20 ... x991 ... x1000

Correlated first
not combined x1 ... x10 x11 ... x20 ... x991 ... x1000

Uncorrelated first
combined x1 ... x91 x2 ... x92 ... x910 ... x1000

Uncorrelated first
not combined x1 ... x91 x2 ... x92 ... x910 ... x1000

Experiment 2

Figure 6: Experiment 1 and 2 visualized. The genesets shown
here are added in the order depicted.

1 100 200 500 1000
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Number of features

A
ve

ra
ge

 A
U

C

Model θ

1

Model θ
2

Figure 7: Model θ1 versus model θ2

10 20 30 40 50 60 70 80 90 100
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of features

A
ve

ra
ge

 A
U

C

Model θ
1

Correlated first, combined
Correlated first, not combined
Uncorrelated first, combined
Uncorrelated first, not combined

Figure 8: Correlated versus uncorrelated

2

10 20 30 40 50 60 70 80 90 100
0.84

0.86

0.88

0.9

0.92

0.94

0.96

Number of genesets introduced

A
ve

ra
ge

 A
U

C

Model θ
1

Correlated first, 100 features
Uncorrelated first, 100 features
Correlated first, 1000 features
Uncorrelated first, 1000 features

Figure 9: Correlated combined versus uncorrelated combined,
but with remaining features included

0 1 2 3 4 5
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

σ
x

A
ve

ra
ge

 A
U

C

Model θ
1

Park
Singles

Figure 10: Model θ1

0 1 2 3 4 5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

σ
x

A
ve

ra
ge

 A
U

C

Model θ
2

Park
Singles

Figure 11: Model θ2

0 1 2 3 4 5
0.4

0.5

0.6

0.7

0.8

0.9

1

σ
x

A
ve

ra
ge

 A
U

C

Model θ
1

Singles
Lee (Correlated)
Lee (Correlated, signal only))
Lee (Uncorrelated)
Lee (Uncorrelated, signal only)
Mixed

Figure 12: Model θ1

0 1 2 3 4 5
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

σ
x

A
ve

ra
ge

 A
U

C

Model θ
2

Singles
Lee (Correlated)
Lee (Correlated, signal only))
Mixed

Figure 13: Model θ2

3

