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A B S T R A C T 

A numerical investigation of the dynamic fluid structure interaction (FSI) of a yacht sail plan submitted 

to harmonic pitching is presented to analyse the system's dynamic behaviour and the effects of motion 

simplifications and rigging adjustments on aerodynamic forces. It is s h o w n that the dynamic behaviour 

of a sail plan subject to yacht motion clearly deviates from the quasi-steady theory. The aerodynamic 

forces presented as a function of the instantaneous apparent w i n d angle s h o w hysteresis loops. It is 

s h o w n that the hysteresis phenomenon dissipates some energy and that the dissipated energy increases 

strongly w i t h the pitching reduced frequency and amplitude. The effect of reducing the real pitching 

motion to a s impler surge motion is investigated. Results show significant discrepancies w i t h under­

estimated aerodynamic forces and no more hysteresis w h e n a surge motion is considered. However, the 

superposition assumption consisting in a decomposition of the surge into two translations normal and 

collinear to the apparent w i n d is verified. Then, simulations w i t h different dock tunes and backstay loads 

highlight the importance of rig adjustments on the aerodynamic forces and the dynamic behaviour of a 

sail plan. The energy dissipated by the hysteresis is higher for looser shrouds and a tighter backstay. 

© 2014 Elsevier Ltd. Al l rights reserved. 

1. Introduction 

W h e n analysing the behaviour of yacht sails, an i m p o r t a n t 

d i f f i c u l t y comes f r o m the f l u i d s tructure in te racdon (FSI) o f the air 

f l o w and the sails and r ig (Marchaj , 1996; Garrett, 1996; Fossad, 

2010). Yacht sails are sof t structures whose shapes change accord­

i n g to the aerodynamic loading. The resul t ing m o d i f i e d shape 

affects the air f l o w and thus, the aerodynamic loading appl ied 

t o the s tructure. This f l u i d s tructure in te rac t ion is s t rong and 

non-l inear , because sails are sof t and l i gh t membranes w h i c h 

experience large displacements and accelerations, even fo r smal l 

stresses. As a consequence, the actual sail's shape w h i l e sai l ing — 

the so-called f l y i n g shape - is d i f fe ren t f r o m the design shape 

de f ined by the sail maker and is generally no t k n o w n . Recently, 

several authors have focused o n the fluid s t ructure in te rac t ion 

p r o b l e m to address the issue o f the impac t o f the s t ructura l 

d e f o r m a t i o n on the flow and hence the aerodynamic forces 

generated (Chapin and Heppel, 2010; Renzsh and Gra f 2010). 

A n o t h e r chal lenging task i n mode l l i ng racing yachts is to 

consider the yacht behaviour i n a realistic e n v i r o n m e n t (Charvet 

e t al., 1996; Marcha j , 1996; Garrett, 1996; Fossati, 2010). Tradi t iona l 

Ve loc i ty Predic t ion Programs (VPPs) used by yacht designers 
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consider a static e q u i l i b r i u m be tween hyd rodynamic and aero­

dynamic forces. Hence, the force models classically used are 

est imated i n a steady state. However , i n realistic sai l ing condi t ions , 

the flow around the sails is mos t o f t e n largely unsteady because o f 

w i n d variations, actions o f the c rew and more i m p o r t a n t l y because 

o f yacht m o t i o n due to waves. To account f o r this dynamic 

behaviour, several Dynamic Veloc i ty Predict ion Programs (DVPPs) 

have been developed, (e.g. Masuyama et al., 1993; Masuyama and 

Fukasawa, 1997; Richardt et al., 2005 ; Keuning et al., 2005) w h i c h 

need models o f dynamic aerodynamic and h y d r o d y n a m i c forces. 

W h i l e the dynamic effects o n hydrodynamic forces have been 

largely studied, the unsteady aerodynamic behaviour o f the sails 

has received m u c h less a t tent ion . Schoop and Bessert (2001) first 

developed an unsteady aeroelastic m o d e l i n po ten t ia l flow ded i ­

cated to flexible membranes bu t neglected the iner t ia . I n a quasi-

static approach, a first step is to add the ve loc i ty induced by the 

yacht's m o t i o n to the steady apparent w i n d to b u i l d an instanta­

neous apparent w i n d (see Richardt et a l , 2005; K e u n i n g et a l , 

2005) and to consider the aerodynamic forces cor responding to 

this instantaneous apparent w i n d us ing force models ob ta ined i n 

the steady state. In a recent study, Gerhardt et al. (2011) developed 

an analyt ical mode l to p red ic t the unsteady aerodynamics o f 

in terac t ing yacht sails i n 2D potent ia l flow and p e r f o r m e d 2D 

w i n d tunne l osci l lat ion tests w i t h a m o t i o n range typ ica l o f a 90-

foo t (26 m ) racing yacht ( In te rna t iona l America 's Cup Class 33) . 

Recently, Fossati and Muggiasca (2009, 2010, 2011) s tudied the 

http://dx.doi.org/10.101S/j.oceaneng.2014.06.040 
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Nomenclature 

A p i t ch ing osci l lat ion ampl i tude (deg"") 

C sail p l a n chord at ZCE ( f r o m head-sail leading edge to 

mainsai l t ra i l ing edge) ( m ) 

Cx d r i v i n g force coeff ic ient 

Cy heel ing force coeff ic ient 

ƒ,• f l o w reduced frequency 

Fx d r i v i n g force (N) 

Fy side force (N) 

Mx heel ing m o m e n t ( N m ) 

My p i t ch ing m o m e n t ( N m ) 

PTOT to ta l p o w e r of aerodynamic forces ( W ) 

PLOOP dissipated power : power contained i n the hysteresis 

loop ( W ) 

Pvj5 useful power : power d r i v i n g the boat f o r w a r d ( W ) 

S t o t a l sail area (m^) 

{0,X,Y,Z) Iner t ia l f r ame def ined f o r an u p r i g h t boat (o r ig in 0 

at the mast step, X the yacht d i r ec t ion p o i n t i n g 

fo rward , Y athwartships (up r igh t ) p o i n t i n g por ts ide 

( l e f t ) , Z ver t ical p o i n t i n g upwards ) ( m ) 

( 0 , x , y , z ) Boat f r a m e def ined fo r a p i tched and heeled boat (x 

yacht d i rec t ion p o i n t i n g f o r w a r d , y a thwar tships 

(heeled) po in t i ng portside ( le f t ) , z a long mast p o i n t i n g 

upwards) ( m ) 

T p i t ch ing osci l la t ion per iod (s) 

VAW apparent w i n d speed (ms~^ ) 

VBS boat speed (ms~^ ) 

VTW ti 'ue w i n d speed ( m s - ^ ) 

Vr flow reduced ve loc i ty 

ZCE instantaneous a l t i tude o f the centre of aerodynamic 

forces i n the ine r t i a l f r ame ( m ) 

ZCE instantaneous z coordinate o f the centre o f aerody­

namic forces i n the boat f r ame (p i t ched and 

heeled) ( m ) 

/ï^vv apparent w i n d angle (deg"") 

fieff effect ive w i n d angle (deg^) 

t rue w i n d angle (deg ' ) 

<p heel angle (deg^) 

0 t r i m angle (deg' ') 

a heading angle (deg ' ) 

p fluid densi ty (kg m " ^ ) 

T phase sh i f t (s) 

i t (N) 

Q[M ( N m ) /i^erodynamic force m a t r i x : resul tant and 

m o m e n t w r i t t e n i n 0 

ji^ ( r a d s - ' ) 

(ms ' ) Boat k inemat ic m a t r i x : ro ta t ion a n d ve loc i ty 

w r i t t e n i n 0 

aerodynamics o f model-scale r ig id sails i n a w i n d tunne l , and 

showed tha t a p i t c h i n g m o t i o n has a s t rong and n o n - t r i v i a l e f fec t 

on aerodynamic forces. They showed t h a t the re la t ionship 

b e t w e e n instantaneous forces and apparent w i n d deviates — 

phase shif ts , hysteresis — f r o m the equivalent re la t ionship 

obta ined i n a steady state, w h i c h one could have t h o u g h t to apply 

i n a quasi-static approach. They also invest igated sof t sails i n the 

same condi t ions to h igh l i gh t the effects o f the s t ruc tura l d e f o r m a ­

t i o n (Fossati and Muggiasca, 2012). 

I n a previous w o r k (Augier et al., 2013), the aero-elastic behaviour 

o f the sail plan subjected to a simple harmonic pi tching was 

numerically investigated. This study has shown hysteresis phenomena 

between the aerodynamic forces and instantaneous apparent w i n d 

angle. A comparison between a rigid structure and a realistic soft 

structure showed that the hysteresis still exists for a rigid structure but 

i t is lower than w h e n the structure deformation is taken into account 

However, in this first w o r k (Augier et al., 2013), the question whether 

this hysteresis could be represented by a simple phase shif t between 

bo th oscillating signals was not clearly elucidated. Moreover, the 

energy exchange associated w i t h the hysteresis phenomenon was 

not dete iTnined. Hence, the first a im of the present w o r k is to 

investigate fur ther this hysteresis phenomenon, to quant i fy the phase 

sh i f t between aerodynamic forces and apparent w i n d angle, and to 

determine and analyse the associated energy. 

M o s t studies o f the unsteady effects due to yacht p i t c h i n g have 

considered a 2D s i m p l i f i e d p r o b l e m and thus approx ima ted the 

p i t c h i n g m o t i o n by a t ranslat ional osci l la t ion ahgned w i t h the 

yacht centre l ine (e.g. Fit t and Latt imer, 2000; Gerhardt et al., 2011). 

Then, the usual procedure is t o decompose this surge m o t i o n i n t o 

osci l lat ions perpendicular t o and along the d i r ec t ion o f the 

i n c i d e n t flow, w h i c h results i n oscillations o f apparent w i n d angle 

and speed respect ively (Fig. 8) . The second a i m o f this w o r k is to 

invest igate the effects o f such s impl i f ica t ions i n the yacht m o t i o n , 

' In degrees when a value Is mentioned In the text and in radians in all 

formulae. 

this is considered by compar ing the results ob ta ined w i t h the sail 

p lan subjected to d i f f e r e n t types o f m o t i o n . 

The t h i r d a im o f this w o r k is to address the e f fec t of var ious r i g 

and sail t r ims and ad jus tments c o m m o n l y used by sailors o n the 

unsteady aero-elastic behaviour o f the sail p l an subjected t o 

p i tch ing . This is invest igated by compar ing the resuhs obta ined 

w i t h several docktunes and backstay tensions w h i c h are typ ica l ly 

used w h i l e racing a 2 8 - f o o t (8 m , J80 class) cruiser-racer. 

A n unsteady FSI model has been developed and validated w i t h 

experiments i n real sailing conditions (Augier et al„ 2010, 2011, 2012). 

Calculations are made on a J80 dass yacht numerical mode l w i t h her 

standard rigging and sails designed by the sail maker DeltaVoiles. The 

FSI model is br ief ly presented i n Section 2. The methodology o f the 

dynamic investigation is given i n Section 3. In the cont inui ty o f a 

previous w o r k (Augier et al., 2013), Section 4 gives fu r the r precisions 

on the dynamic behaviour w i t h a particular at tent ion to the energy 

exchange related to the hysteresis phenomenon. The analysis o f 

pitching mot ion decomposition i n simple translations is given i n 

Section 5 and the effects o f various dock tunes and backstay loads 

are presented in Sections 6.1 and 6.2. In the last section, some 

condusions of this study are given, w i t h ideas for f u m r e work . 

2. Numerical model 

To numer i ca l ly investigate aero-elastic p rob lems c o m m o n l y 

f o u n d w i t h sails, the company K-Epsilon and the Naval Academy 

Research Inst i tute have developed the unsteady f l u i d - s t r u c t u r e 

mode l ARAVANTI made by coup l ing the inv i sc id flow solver 

AVANTI w i t h the s t ruc tura l solver ARA. The ARAVANTI code is 

able to m ode l a comple te sail boat r i g i n order to p r e d i c t forces, 

tensile stresses and shape o f sails according to t h e load ing i n 

dynamic condi t ions . For m o r e details, the reader is re fe r red to 

Roux et al. (2002) f o r the fluid solver AVANTI and t o Hauvi l l e et al . 

(2008) and Roux et al. (2008) fo r the s t ructura l solver ARA and the 

FSI coupl ing m e t h o d . 
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ARAVANTI inodel has been val idated. Numerica l and exper i ­

men ta l comparisons w i t h the mode l ARAVANTI are based o n 

measurements at f u l l scale on an ins t rumented 28 - foo t yacht 

(J80 class, 8 m ) . The t ime-resolved sails' flying shape, loads i n 

the rig, yacht's m o t i o n and apparent w i n d have been measured i n 

bo th sai l ing condit ions o f flat sea and moderate head waves and 

compared to the s imula t ion . The code has shown its abi l i ty to 

s imulate the rig's response to yacht m o t i o n forc ing , and to 

correct ly estimate the loads. Thereby, ARAVANTI is a reliable too l 

to s tudy the dynamic behaviour of a sail p l an subject to p i t ch ing 

m o t i o n . For a detailed descr ip t ion o f the exper imenta l system and 

the numer ica l and exper imenta l comparison, see Augier et al. 

(2010, 2011,2012) . 

3. Simulation procedure 

The yacht m o t i o n i n waves induces unsteady effects i n the sails' 

aerodynamics. I n this paper w e w i l l s tudy separately one degree 

o f f r eedom, by apply ing s imple ha rmonic p i t ch ing . The reference 

f r ame and the coordinate system attached to the yacht are 

i l lus t ra ted i n Fig. 1. 

3.1. Reference steady case 

First, the reference steady case is computed w i t h the f o l l o w i n g 

parameters: t rue w i n d speed at 10 m he ight VTW = 6.7 m • s" ' 

(a loga r i thmic vert ical w i n d p ro f i l e is imposed w i t h a roughness 

l eng th o f 0.2 m m (Flay 1996)), t rue w i n d angle / ? j ^ = 4 0 ° , boat 

speed UBs = 2 . 6 m - s - ' , heel angle <p = 20° and t r i m angle 6=0°. 

This first computa t ion yields the converged steady flow, the r i g 

and sails' flying shape, and enables the steady state aerodynamic 

forces and centre o f e f fo r t to be de te rmined . The centre o f e f fo r t is 

def ined as the in tersect ion o f the boat s y m m e t r y plane w i t h the 

aerodynamic forces m a t r i x central axis, w h i c h is the l ine o f points 

w h e r e the m o m e n t o f aerodynamic forces is m i n i m a l (note tha t 

there is no po in t whe re this m o m e n t is exactiy zero i n general 

because the sails' shape is n o t developable). This converged steady 

state is used as the i n i t i a l cond i t i on fo r the computa t ions w i t h 

p i t c h i n g forc ing. The he igh t o f the centre o f aerodynamic forces 

^cEs^,j, = 4.97 m is used to def ine the flow characteristic quan t i ­

ties: apparent w i n d speed V / i w = 8 . 3 9 m • s" ' , apparent w i n d 

angle fi^y^ = 2 8 . 6 4 ° and sail p l an cho rd C=4 .25 m def ined as the 

distance f r o m the head-sail leading edge to the m a i n sail t r a i l i ng 

edge at Zc£s,„„. 

Corrections o f the apparent w i n d angle /J^^y due to constant 

heel (p ( f i r s t in t roduced by Marcha j (1996)) and t r i m 6 are 

considered t h r o u g h the use o f the effect ive apparent w i n d angle 

fieff (see Jackson, 2001 fo r heel effect, and Fossati and Muggiasca, 

2011 fo r p i t c h effect) : 

fi^ff = 27 .16° i n the steady state. 

3.2. Harmonic pitctiing 

The unsteady computa t ions consist of a 18 s r u n , w i t h fo rced 

harmonic p i t c h i n g be ing imposed on the r ig , characterised by the 

osci l lat ion ampl i t ude A and per iod T (Eq. (2)) , o ther parameters 

being constant and equal to those of the reference state. 

0 = Acos(^ty (2) 

To avoid discont inui t ies i n the accelerations, the beg inn ing o f 

m o t i o n is gradual ly imposed by applying a r amp w h i c h increases 

smooth ly f r o m 0 to 1 d u r i n g the first 3 s o f imposed m o t i o n (see 

first pe r iod i n Fig. 3 ) . The invest igat ion has been made w i t h 

variables i n the range A = 3 - 6 ° , and 1 = 1 . 5 - 6 s, cor responding to 

the typica l env i ronmen ta l condit ions encountered, as s h o w n i n 

the exper iment o f Augier et al. (2012). The unsteady nature o f the 

flow is characterised by a dimensionless parameter de f ined b y 

the rat io o f the m o t i o n per iod T to the fluid advec t ion t i m e a long 

the to ta l sail p l a n cho rd C. Simi lar ly to the closely re la ted l i t e ra ture 

(e.g. Fossati and Muggiasca, 2012; Gerhardt et al., 2011), th i s 

parameter is called the flow reduced veloc i ty Vr (or the inverse: 

the reduced f requency f ) de f ined by 

Vr = ^ , f r = ^ . (3) 

The reduced f requency was s h o w n to be the re levant para­

mete r to characterise the unsteadiness o f l i f t i n g bodies aerody­

namics (e.g. Glauert, 1926; Abbot t , 1949; Gerhardt e t al., 2011). The 

case Vr <1(fr corresponds to quasi-steady aerodynamic con­

di t ions . The p i t c h i n g pe r iod values investigated correspond to a 

reduced ve loc i ty Vr f r o m 2.96 to 11.84 (reduced f r equency Jr f r o m 

0.08 to 0.34), w h i c h posit ions this numer ica l s tudy i n a s imi la r 

dynamic range to the exper iments o f Fossati and Muggiasca (2011) 

w h e r e Vr was f r o m 2.3 to 56 (reduced f requency fr f r o m 0.02 to 

0.43) cor responding to typ ica l condi t ions encountered b y a 4 8 - f o o t 

yacht (14.6 m ) . The compu ted cases are summar i sed i n Table 1. 

W h e n the yacht is subjected to p i t ch ing m o t i o n , the apparent 

w i n d is per iodica l ly m o d i f i e d as the ro ta t ion adds a n e w c o m p o ­

nen t o f apparent w i n d w h i c h varies w i t h height . F o l l o w i n g the 

Fig. 1. Coordinate, angle and motion references for ttie yacht. Z-axis is attached to 
the earth vertical. 

Table 1 

Reduced velocity VV, reduced frequency fr, phase shift T determined by cross-

correlation between Cx and fieff, phase delay, time-averaged total power Prar. time-

averaged dissipated power Pwop. time-averaged useful power Pv^. time-averaged 

driving force Fx, and time-averaged heeling moment Mj" for different pitching 

amplitudes A and periods T. 

T A Vr fr T 2)!r/T PTOT Pv„ Fx Mx 

Cs) (deg) (s) (rad) (W) (W) (W) (N) (N-m) 

1.5 5 2.96 0.34 0.16 0.670 1454 -106.43 1561 608.8 8290 

2 5 3.95 0.25 0.29 0.921 1518 -55.57 1574 613.3 8274 

2.5 5 4.94 0.20 0.50 1.257 1540 -35.60 1576 614.1 8244 

3 5 5.92 0.17 0.76 1.592 1558 -24.89 1583 616.3 8260 

5 5 9.87 0.10 2.70 3.393 1580 -9 .98 1590 618.5 8266 

6 5 11.84 0.08 4.12 4.314 1584 -7 .37 1592 619.1 8270 

5 3 9.87 0.10 2.70 3.393 1588 -3 .63 1591 619.1 8262 

5 5 9.87 0.10 2.70 3.393 1580 -9 .98 1590 618.5 8266 

5 6 9.87 0.10 2.70 3.393 1574 -14.44 1589 618.0 8268 
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analysis o f Fossati and Muggiasca (2011), the apparent w i n d and 

p i tch- induced veloci ty are considered at the centre o f aerody­

namic force a l t i tude ZCE- This centre o f e f fo r t is actually m o v i n g 

due to p i t ch oscil lat ion, and the t ime-dependent centre o f e f fo r t 

he ight is considered. This yields dme-dependent apparent w i n d 

speed and angle, given by 

VAwit)=(iVTw(ZcE) sinflnvf 

+ (VTW(ZCE) cos fijw + VBs+ZcEd cos 0 cos (/))^y^^ 

(4) 

(5) 

A „ < O = S , „ - . ( M H ) . 

A n d hence the t ime-dependent effect ive w i n d angle reads 

^ . ^ ( 0 = t a n - ' ( ^ ^ ^ cos cp). 

Fig. 2 il lustrates the dynamic vector composi t ion f o r p i t ch ing 

velocities 0 = 0max ( po in t b i n Fig. 3), 0 (points a and c i n Fig. 3 ) 

and èmin ( p o i n t d i n Fig. 3) , and Fig. 3 shows the resul t ing dynamic 

apparent w i n d veloci ty and angle computed w i t h Eqs. (4 ) and (5) . 

As s h o w n i n Fig. 3, the variat ions o f the apparent w i n d angle are i n 

phase oppos i t ion w i t h the variations o f apparent w i n d speed. 

3.3. Heeling and driving force coefficients 

Aerodynamic forces are computed by ARAVANTI as the resul­

tan t of pressures on the sails and the aerodynamic forces m a t r i x 

( resul tant and m o m e n t ) is w r i t t e n at the o r ig in 0 i n the iner t ia l 

f r ame i l lus t ra ted i n Fig. 1. 

A t rans i t ion m a t r i x [RT] can be used i n order to^get forces i n the 

boat 

Inertialframe The 

[Ra]lReIR^] w i t h 

; i 0 

using the f o l l o w i n g 

t rans i t ion m a t r i x 
equat ion F Baatframe = [RT] ~ 
[RT] is def ined by [RT] = 

cos (p 

sin (p 

0 

- s i n 

cos 4 
[Rs] = 

cos 0 

0 

- s i n 0 

sin 0 

0 

cos 0 

lRa] = 

COS a — sin a 0 

s in a cos a 0 

0 0 1 

Fig. 2. Dynamic effect of pitching on the wind triangle (top view). is the wind 

velocity, VBS is the boat speed, ZCE is the altitude of the aerodynamic centre of 

effort, Ó is the pitching velocity, p Is the apparent wind angle, subscripts TW and AW 

stand for true and apparent wind, respectively. 

9.4 

9.2 

9 

8.8 

8.4 

8.2 

7.8 

7.6 

b 
V^̂ ^ steady 

- » - V ^ ^ ^ ( t ) pitch 

V^̂ ^ steady 

- » - V ^ ^ ^ ( t ) pitch 

1: ai Ic i 

. . . 

10 12 14 16 

t(s) 

Fig. 3. Time dependent apparent wind speed VAW (a); apparent wind angle /?^n, 

and effective wind angle fieff (b), resulting from pitching oscillation at ZCE with 

period r = 3 s and ampl i tude / I=5° . We define four reference points to be identified 

in further figures: bow up for point a 0 = 0,9= -A), horizontal going down (no 

trim) for point b (fl > 0, ö = 0), bow down for point c (ö = 0, e=A), horizontal going 

up (no trim) for point d (é < 0, ö = 0). 

D r i v i n g and heel ing force coeff icients i n the boa t f r ame are 

obta ined by the normal i sa t ion w i t h the p roduc t o f the instanta­

neous apparent dynamic pressure and the to ta l sail area S: 

Fx 
Cx(t)--

0.5pVl^(t)S 

Cy(t) = 

(6) 

(7) 
0.5pViw(.t)S 

In the steady state calculation, d r i v i n g force coeff ic ient 

= 0.423 and heel ing force coeff ic ient Cy = - 1 . 0 8 0 are obta ined. 

4. Dynamic behaviour 

Previous studies (Fossati and Muggiasca, 2011 ; Augie r et al., 

2013) have s h o w n tha t the dynamic behaviour o f a yacht sail p lan 

subjected to p i t c h i n g cleariy deviates f r o m the quasi-static 

approach. Particularly, the aerodynamic forces presented as a 

f u n c t i o n o f the instantaneous apparent w i n d angle s h o w hyster­

esis loops as i l lus t ra ted i n Fig. 4. D i f f e r e n t quest ions have been 
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Fig. 4. Driving (a) and lieeling (b) force coefficients versus effective wind angle 

raised by this result, ( i ) Can the loops i n the Lissajous plots be 

represented by a simple phase s h i f t be tween the signals? This 

hysteresis phenomenon suggests tha t the unsteady behaviour 

leads to aerodynamic equivalent d a m p i n g and s t i f f en ing effects. 

The area inc luded i n the hysteresis loop was s h o w n to increase 

w i t h the m o t i o n reduced f requency and ampl i tude , bu t the 

exchanged energy was no t investigated, ( i i ) Can the energy 

associated to the hysteresis be de te rmined and analysed fo r 

d i f f e r e n t p i t ch ing frequencies and ampl i tudes? 

4.1. Phase shift r 

The values of the phase sh i f t t be tween aerodynamic forces and 

instantaneous w i n d angle have been de te rmined fo r each p i t c h i n g 

pe r iod and ampl i tude by cross-correlation (Table 1). The phase 

delay 2 ;rT / r i n radians increases (a lmost l inear ly i n the inves t i ­

gated range) w i t h the f l o w reduced veloci ty, mean ing w i t h the 

m o t i o n per iod, bu t is no t affected by the osci l la t ion ampl i tude . 

W h e n force coefficients Cxj,(t) are p lo t t ed versus the t i m e sh i f ted 

w i n d angle Peff{'^+-t), the loop area is s igni f icant ly decreased bu t 

does n o t vanish (see Fig. 5). IVIoreover, as s h o w n i n Figs. 4 and 6, 

the loops are no t pure ly e l l ip t ica l because o f non- l inear effects. 

This shows that the hysteresis phenomenon cannot be reduced to 

a s imple phase sh i f t be tween the signals. 

0.54 

0.52 

0.5 

0.48 

PilchA5T5 
PitohA5T5, 

• • = steady 

Fig. 5. Driving force coefficient vs. instantaneous apparent wind angle /3,j(t) (blue 
line with markers), and vs, tlie time shifted instantaneous apparent wind angle 
Peffit+r) (red line without marker), for a pitching period T = 5 s and amplitude 
A=5°. (For interpretation of the references to color in this figure caption, the reader 
is referred to the web version of this article.) 

4.2. Exchanged energy 

The hysteresis phenomenon observed i n the aerodynamics o f 

the p i t ch ing sail p lan corresponds to an exchange o f energy 

be tween the yacht m o t i o n and the aeroelastic system. The a i m 

of this section is to de te rmine and analyse this energy fo r d i f f e r e n t 

values o f the m o t i o n parameters. Indeed, the energy per u n i t t i m e 

is considered, i.e. the exchanged power, w h i c h is m o r e re levant 

to compare d i f f e r e n t m o t i o n frequencies. The area contained i n the 

hysteresis loop o f Fig. 4 does n o t f o r m a l l y correspond to an energy 

nor a p o w e r as fieff is the effect ive apparent w i n d angle and its 

relat ionship to a displacement or veloci ty is no t s t r a igh t fo rward . 

The d imens iona l energy i n Joules — or d imens iona l p o w e r 

in Watts — is considered instead o f dimensionless quanti t ies t o 

avoid biased effects in t roduced by normal i z ing w i t h the v a r y i n g 

dynamic pressure. 

The instantaneous mechanical power is de f ined by its general 

expression c o m b i n i n g the k inemat ic and dynamic matrices: 

PTOT(t) = " ? - + (8) 

whe re "•" denotes the scalar p roduc t be tween vectors. For the 

m o t i o n considered i n this w o r k ( f o r w a r d t rans la t ion and p i t ch ing) , 

this expression reduces to 

Pror(f) = f x V B S + l W v ö . (9) 

The first t e r m on the right hand side FXVBS = f is the usefu l 

power d r i v i n g the yacht f o r w a r d . The second t e r m M y ö = Pioop 

is the p o w e r exchanged by the system due t o the hysteresis 

phenomenon. 

Fig. 6 shows the aerodynamic force p i t ch ing m o m e n t MY as a 

f u n c t i o n o f the t r i m angle 0 f o r d i f f e ren t values o f the osci l la t ion 

per iod T f r o m 1.5 up to 6 s w i t h a p i t ch ing ampl i t ude A=5°. The 

area contained i n these loops is the energy exchanged d u r i n g one 

osci l lat ion pe r iod be tween the system and the imposed p i t c h i n g 

m o t i o n due to the hysteresis phenomenon . As s h o w n by the 

ro ta t ion d i r ec t ion i n the loops (Fig. 6) and the c o m p u t e d results 

(Table 1), this quan t i t y is negative w h i c h means t h a t some energy 

is dissipated by the hysteresis phenomenon . In the f o l l o w i n g , the 

mean power averaged over one osci l lat ion pe r iod is considered: 

PTOT d t (10) 
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' = \ j PLOOP dt = j j M , Ö dt 

(11) 

(12) 

P^T" is the usefu l mean p o w e r d r i v i n g the boat f o r w a r d and 

extracted f r o m the air flow by the sail p lan . Pvj j is p ropor t iona l to 

the m e a n d r i v i n g force Fx as the boat speed is constant. 

Pioop is the mean p o w e r dissipated by the Irysteresis p h e n o m ­

enon f r o m the imposed p i t c h i n g m o t i o n and corresponds to the 

loops area i n Fig. 6 d i v i d e d by the p i t c h i n g per iod T. A t first order, 

th i s quan t i t y is domina t ed by JJFXZCEÖ dt. 

Note tha t the p i t ch ing m o t i o n i tself introduces an added power 

t o the sys tem compared t o the steady case (no p i tch ing) . 

As s h o w n i n Fig. 7, the dissipated average p o w e r absolute value 

iPioopI s t rongly increases w i t h the m o t i o n reduced frequency, f r o m 

zero f o r the steady case (vanishing f requency) up to 106 W f o r 

/ r = 0 . 3 4 . The non-hnear i ty o f the p h e n o m e n o n is h igh l igh ted b y 

the observadon tha t the loop shape becomes dis tor ted fo r the 

h ighes t values o f the reduced f requency (Fig. 6) . The mean usefu l 

p o w e r P ^ decreases s l ight ly (about 2% i n the investigated range) 

f o r an increasing frequency, suggesting a small reduct ion o f 

ae rodynamic eff ic iency f o r a faster p i t c h i n g m o t i o n . 

Moreover, the mean d r i v i n g force Fx is d i f f e r e n t f r o m the 

d r i v i n g force i n the steady case Fx steady as aerodynamic forces i n 

the dynamic reg ime do no t f o l l o w the quasi-static assumpt ion and 

some p o w e r is exchanged due to the hysteresis. The to ta l mean 

power P ^ decreases more (about 8% i n the invest igated range) as 

the dissipated energy is h igher i n absolute value. As s h o w n i n 

Table 1, the effect o f the p i t c h i n g amphtude yields s imi la r t rends 

to the reduced frequency, i.e. increasing I P I O O P I . decreasing Pvss.Fx 

and P ^ for a h igher p i t c h i n g ampl i tude . I t shall be not iced tha t 

Pi^ and P ^ are one to t w o orders of magn i tude h igher t h a n 

\Pl^\, w h i c h means tha t the useful p o w e r Pv^s is domina n t . 

The aerodynamic behaviour is n o w clearly characterised: a 

hysteresis phenomenon is evidenced and the associated energy is 

analysed. The next sections address the various inf luences o f the 

yacht mot ions considered and o f d i f f e ren t r i g t r i m s . 

5. Pitching decomposition 

The real p i t c h i n g m o t i o n is mode l l ed i n this w o r k by an angular 

osci l la t ion a round the y-axis (Fig. 8, p i tch) , n o r m a l to the centre­

l ine w i t h a r o t a t i on centre located a t the mast step. Mos t o f 

previous studies on the in f iuence of p i t ch ing have considered a 2D 

s i m p l i f i e d p r o b l e m and thus approx imated the p i t c h i n g m o t i o n by 

a t ransla t ional osci l la t ion a l igned w i t h the yacht centre l ine (Fig. 8, 

surge). Then, the usual procedure (see e.g. Gerhardt et al., 2011) is 

to decompose this m o t i o n i n an osci l la t ion paral lel t o the apparent 

w i n d , resu l t ing i n a n osc i l la t ion o f apparent w i n d speed, and an 

osci l la t ion o r thogona l to the apparent w i n d , resu l t ing m a i n l y i n an 

osci l la t ion o f the apparent w i n d angle (Fig. 8, decompos i t ion) . 

Here, w e w a n t to test these t w o hypotheses by c o m p a r i n g the 

results o f the dynamic s imu la t i on w i t h ARAVANTI obtained w i t h 

d i f f e r e n t imposed mot ions , and investigate the effect o n t h e 

specific dynamic features h igh l igh ted above. M o t i o n s are based 

o n the reference p i t c h i n g m o t i o n w i t h ampl i t ude A = 5 ° and pe r iod 

T = 5 s (A5T5). 

5.1. Surge 

The first step is to compare the results f o r a real p i t c h i n g 

m o t i o n ( ro ta t ion) t o the results f o r a t rans la t ional surge m o t i o n 

w i t h the a m p l i t u d e o f m o t i o n at the centre o f e f f o r t he igh t ZCE 

w h i l e p i t ch ing . As s h o w n i n Fig. 9 the osci l la t ion o f aerodynamic 

forces is decreased by 30-40% and phase sh i f t ed (a round T/9) 

w h e n the p i t c h i n g is reduced to a surge m o t i o n . This resul t gives 

the order o f the e r ro r on the osci l la t ion ampl i tude o f aerodynamic 

forces in t roduced by consider ing a surge m o t i o n instead o f the 

p i t c h i n g m o t i o n . 

Decomposition^/ 

Fig. 8. Different motions considered: pitching (rotation), surge (translation), surge 

decomposition into translations collinear to the apparent wind Vc and normal to 

the apparent wind V„. 
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Fig. 9. Time series of the driving and heeling force coefficients for FSI simulations 
of the various motions considered; pitching, surge, translations collinear and 
perpendicular to the apparent wind (see Fig. 11), corresponding to a pitching 
amphtude A = 5 ° and period T=5 s. 
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Fig. 10. Driving and heeling force coefficients versus apparent wind angle for pitch 
and surge motions. The motion period and amplitude at the centre of effort are 
identical and correspond to a pitching amplitude A=5° and period T=5 s. 

Concerning t l i e dynamic behaviour, i t is in teres t ing to notice 

t ha t the case of surge does n o t showr the same hysteresis 

phenomenon . Indeed, the aerodynamic behaviour i n the case o f 

surge is m u c h closer to the quasi-steady theory t h a n i n the 

p i t c h i n g case, as clearly s h o w n i n Fig. 10. The loops o f Cx,y(figff) 

collapse and are superposed t o the steady case l ine. 

5.2. Simple translations decomposition 

The second step is to analyse separately the effects o f transla­

t iona l oscillations paral lel Vc (Fig. 11a) and or thogonal V„ (Fig. l i b ) 

to the apparent w i n d d i rec t ion . I t is observed i n Fig. 9 tha t the 

m a j o r con t r i bu t i on to the force osci l la t ion is due to the or thogonal 

osci l la t ion component , w h i c h is associated to the osci l la t ion o f 

apparent w i n d angle. W h e n the variat ions due to b o t h compo­

nents o f m o t i o n are added as s h o w n i n Fig. 12, the resul t is 

iden t ica l to w h a t is obta ined w i t h the surge m o t i o n as b o t h curves 

are superimposed, w h i c h jus t i f i es the l inear superposi t ion p r i n c i ­

p le o f th i s approach. The effect o f paral lel osci l la t ion - va r i a t ion o f 

Vyiw(t) — is small , bu t w i t h a more d is tor ted evolu t ion . 

Note tha t the or thogonal osci l la t ion is associated w i t h an 

osci l la t ion of /)fy^{t), and the effect o f angle o f attack i n a na r row 

a b 
X X 

Fig. 11. Wind triangle representation for the surge decomposition into 2 transla­

tions (a) Vc collinear to V^w and (b) V„ normal to V/iw 

range is a lmost l inear on the aerodynamic l i f t . Contrar i ly, the 

paral lel osci l ladon is associated w i t h an osc i l la t ion o f Vfiv^t), and 

the effect o f w i n d speed is quadratic on aerodynamic forces. 
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6. Influence of rig adjustments 

Before each race, sailors ad jus t the tension i n the shrouds (dock 

tune ) according to sai l ing condi t ions , and the hackstay tens ion is 

o f t e n adjusted cont inuous ly w h i l e sail ing u p w i n d . I n th is section, 

the analysis o f the effects of various dock tunes and backstay loads 

on the dynamic behaviour and the exchanged energy is presented. 

6.1. Influence of dock tune 

The inf luence o f various dock tunes on the sail p l an dynamic 

behaviour is invest igated. The reference p i t ch ing m o t i o n {A=5° 

and T = 1 . 5 s ) is s imula ted w i t h three realistic dock tunes used 

w h i l e racing i n d i f f e r e n t w i n d condi t ions. Dock tunes are de f ined 

as the number o f screw turns appl ied to the shrouds' turn-buckles . 

Tune2 is the reference dock tune used fo r the considered sai l ing 

condit ions. The th ree dock tunes are described be low: 

• tune-t: - 3 turns o n V I shrouds used i n l i g h t w i n d . 

• tune2: reference dock tune f o r Vnv = 6.7 m . s " ' (13 knots) . 

• tunes: +3 turns o n V I shrouds used i n m e d i u m w i n d . 

w h e r e V I are the outer and highest lateral shrouds. The o ther 

shrouds are n o t m o d i f i e d . 

These three dock tunes n o t o n l y m o d i f y the rigidity o f the f u l l 

r igg ing bu t have a s ign i f ican t in f luence on the camber o f the mast. 

Increasing the V I tension makes a s t i f fer rig, a reduced forestay 

sag and a more bent mast, w h i c h results i n f la t te r sails. The sails' 

shape and more precisely their camber and t w i s t are m o d i f i e d by 

the dock tune. Before the p i t ch ing s imula t ion , the m a i n sail and j i b 

are numer ica l ly t r i m m e d i n order to ensure tha t the chord at the 

centre o f e f fo r t height has the same angle o f attack f o r the 

d i f f e r en t tunes to get a relevant compar ison. 

Fig. 13 shows the energy loops o f p i tch ing m o m e n t My versus 

p i tch angle for the three tested dock tunes. The loops look similar, 

however, the exchanged energy computed as described i n Section 4 

shows variations. Table 2 presents the relative evolut ion o f the 

mean to ta l power PTOT, dissipated power Pïööp a n d j i s e f u l power 

Pv-Bs vvhich is equivalent to the average drive force Fx- Compared 

to the reference dock tune 2, the dissipated power is increased 

by 8.5% for the loosest rig and s imilar f o r the tightest r ig . The 

reduct ion o f dissipated energy w i t h the increase o f r ig tension 

seems to be due to a st iffer rig. W i t h more stresses, the rig is gett ing 

closer to a r ig id structure and comparison be tween FSI and r igid 

simulations has shown tha t the hysteresis phenomenon is s ign i f i ­

cantly lower i n the rigid case (Augier et al., 2013). Another factor 

may be tha t f lat ter sails dissipate less power. 

The useful power is sl ightly higher (1.3%) fo r the loosest rig and 

lower (2%) fo r the tightest r ig . This w o u l d suggest tha t the reference 

dock tune 2 is not opt imal and a looser r ig w o u l d be faster However, 

i t shall be recalled that this s imulat ion is based on an inviscid f l o w 

w h i c h is k n o w n to f i n d a higher drive force f o r sails w i t h more 

camber than the real o p t i m u m because flow separation is not 

model led. As a looser r ig results i n more cambered sails, this may 

be the reason w h y the mean useful power, or mean d r iv ing force, is 

predicted to be higher fo r tune 1 than fo r tune 2. Moreover, a 

performance analysis should also consider the side force, and the 
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Fig. 13. Pitching moment My vs. pitch angle O for different dock tunes, for a 

pitching amplitude A = 5 ° and period T=1.5 s. The loop area represents the energy 

dissipated during the corresponding period (T times Pioop). 

Table 2 

Ivlean total power Pjor. mean dissipated power P I O O P . mean useful power and 

mean heeling moment for different dock tunes, relative to reference case 

(tunej), for a pitching amplitude A=5' and period T = l.5s. 

Dock tune Prnop P v „ 

Prorre/ Pioopre/ Mxref 

tunei 1.008 1.085 1.013 1.017 

tune2 1 1 1 1 

tunes 0.979 0.999 0.980 0.977 
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evolu t ion o f the mean heeling momen t JWx is also given i n Table 2 

f o r in fo rmat ion . 

6.2. Influence of the backstay load 

The inf luence of a var ia t ion o f the backstay tension on the 

dynamic behaviour is investigated. The same p i t ch ing m o t i o n 

( A = 5 ° and T = 1 . 5 s ) is s imulated w i t h fou r values o f backstay 

l eng th corresponding to backstay loads of 1000 N , 1500 N , 2000 N 

and 2500 N i n the steady case. The case 2 0 0 0 N is the reference 

backstay load used for the previous s imulat ions. The sail t r ims are 

iden t ica l fo r the four backstay loads. Pre l iminary steady s imula­

t ions w i t h the four loads have shown the ab i l i ty o f ARAVANTI 

m o d e l to simulate the effect of the backstay: the mainsai l t w i s t 

increases, the mainsail camber decreases and moves baclcward 

w h e n the backstay load increases. 

Fig. 14 shows the energy loops o f p i t ch ing m o m e n t M y versus 

p i t c h angle fo r different_values o f the backstay load. As expected, 

the mean d r i v i n g force Fx ( w h i c h is p ropor t iona l to P ^ ) and the 

m e a n heel ing m o m e n t JWx are greatly affected by the backstay 

load, w h i c h changes the mainsai l camber and t w i s t (see Table 3) . 

S imi lar ly to w h a t is s h o w n i n Section 6.1, the lowest backstay 

load looks to be op t ima l i n terms o f mean d r i v i n g force or usefu l 

power . Once again, the same restr ic t ion mus t be made due to the 

inv i sc id flow model w h i c h may bias the op t imisa t ion . Moreover, 

the mean heel ing m o m e n t is 20% higher fo r the loosest backstay. 

This is consistent w i t h the sailors knowledge w h o c o m m o n l y 

tighten the backstay to reduce heel. 

The backstay load also has a great inf luence on the energy 

dissipated i n the hysteresis loop (see Table 3) . The computed mean 

dissipated power strongly increases w h e n the backstay load is 

5000 
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Fig. 14. Pitching moment My vs. pitch angle 9 for different backstay loads, for a 
pitching amplitude 4 = 5 ° and period r=1.5 s. The loop area represents the energy 
dissipated during the corresponding period (T times P^^öF). 

Table 3 

Mean total power Pror. mean dissipated power Pwop, mean useful power and 

mean heeling moment iWx for different backstay loads, relative to reference case 

(2000 N), for a pitching amplitude A=5° and period 7'= 1.5 s. 

Load 

1000 N 1.174 0.686 1.140 1,198 
1500 N 1.088 1.072 1.052 1.098 
2000 N 1 1 1 1 
2500 N 0.895 1.211 0.916 0.890 

increased (|Pioop| a lmost doubles w h e n the backstay is tighten 

f r o m 1000 N up to 2500 N) . I t is w o r t h not ic ing tha t this t r e n d is 

opposite to the one observed fo r a t ighter dock tune being closer to 

a r ig id structure as s h o w n i n Section 6.1. I n the present case, more 

tension on the backstay results i n flatter sails, bu t the m a i n sail 

leech is also looser. This may result i n more flapping o f the m a i n 

sail w h i l e p i t ch ing w h i c h can dissipate more power. 

7. Conclusions 

The unsteady fluid s t ructure in terac t ion o f the sails and r i g o f a 

28- foot (8 m ) yacht under ha rmonic p i t ch ing has been inves t i ­

gated i n order to h igh l i gh t the cont r ibut ions o f the r ig adjus tments 

and the considerat ion o f a realistic p i t ch ing m o t i o n i n the dynamic 

behaviour o f a sail p lan . The ARAVANTI model is based o n an 

imp l i c i t unsteady coup l ing be tween a vortex lattice fluid m o d e l 

and a finite e lement s t ructure model , and has been previous ly 

validated w i t h f u l l scale exper iments i n u p w i n d real condi t ions 

(Augier et al., 2012). Previous studies (Fossati and Muggiasca, 

2012; Augier et al., 2013) have s h o w n that the aerodynamic 

coefficients p lo t t ed against the instantaneous apparent w i n d angle 

exhib i t an hysteresis loop. The present results c o n f i r m tha t the 

dynamic behaviour o f a sail p lan subject to yacht m o t i o n deviates 

f r o m the quasi-steady theory and an aerodynamic equivalent 

damping effect is h igh l igh ted . Oscillations o f the aerodynamic 

forces exh ib i t an hysteresis phenomenon w h i c h increases w i t h the 

m o t i o n reduced f requency and ampl i tude . 

In this paper, i t is s h o w n that the hysteresis loop area is n o t 

only due to a phase s h i f t be tween the signals. A f t e r sh i f t i ng by the 

phase delay T , the hysteresis loop o f Cx,y=f(fieffit+T)) does no t 

collapse in to a single l ine. 

The power o f aerodynamic forces is investigated and analysed 

i n terms o f usefu l p o w e r and power exchanged be tween the 

system and m o t i o n t h r o u g h the hysteresis phenomenon . I t is 

shown that some energy is dissipated by the aeroelastic system 

f r o m the energy i n p u t by the m o t i o n . This dissipated energy 

increases w i t h the m o t i o n reduced f requency and ampl i tude . The 

useful energy associated to the d r i v i n g force is l o w e r fo r a faster 

and higher ampl i tude p i t c h i n g m o t i o n . The m o t i o n considered i n 

this w o r k is a constant boat speed and forced pure ha rmonic 

p i tch ing only, and a l l o ther degrees o f f r e e d o m are kep t constant. 

In reality, w h e n the aerodynamic forces oscillate, the heel angle 

vary accordingly, and to a smaller extent the boat speed and 

leeway, so o ther t e rms m u s t be considered i n the expression o f 

power. Further w o r k is needed to investigate the effect o f o ther 

types of m o t i o n o n the exchanged energy. I t w o u l d be in teres t ing 

to t r y and find some favourable m o t i o n resul t ing i n a h igher usefu l 

power and mean d r i v i n g force than the steady case. From sailors 

experience w h o somet imes force a r o l l i n g m o t i o n , called rocking, 

w e expect tha t th is m a y be obtained f o r a proper ty chosen r o l l 

m o t i o n o f the r i g . This in teres t ing behaviour w o u l d resemble a 

flapping w i n g p roduc ing thrus t . 

Pure harmonic surge m o t i o n is compared to p i t c h i n g m o t i o n i n 

order to h i g h l i g h t the impor tance o f a realist ic 3D m o t i o n . 

Oscillations o f the aerodynamic coefficients decrease by 30-40% 

i n the case o f an equivalent surge m o t i o n compared to the p i t c h i n g 

m o t i o n case. Moreover , i n the case o f the surge m o t i o n , the 

hysteresis p h e n o m e n o n is a lmost cancelled, so t h a t the dynamic 

behaviour is s imi la r to the quasi-steady theory. W h e n the surge 

m o t i o n is decomposed i n to t w o components , perpendicular to and 

along the apparent w i n d d i rec t ion , i t is s h o w n tha t the m a j o r 

con t r ibu t ion to force oscil lations is due to the or thogonal oscil la­

tion component , w h i c h is associated to the osci l la t ion o f apparent 

w i n d angle. 
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Finally, a p i t ch ing m o t i o n o f the s t ructure w i t h various shrouds' 

dock tunes and backstay tension loads is s imula ted i n order to 

study the inf luence o f the r igg ing stresses on the dynamic 

behaviour. 

Tighter shrouds resu l t ing i n flatter sails and a more r i g i d 

s t ructure t end to decrease the energy dissipated by the system. 

Contrari ly, m o r e load o n the backstay results i n a higher energy 

dissipat ion w h i c h m i g h t be explained by more flapping o f the sails 

because o f a looser leech, despite t he i r reduced camber. I n bo th 

cases, the useful power predicted by the s imu la t i on is higher fo r a 

looser r ig , corresponding to more cambered sails. Direct applica­

tion o f this conclusion (looser r i g / fu l l e r sails resu l t ing i n a higher 

d r i v i n g force) to the real case must be modera ted by the assump­

t i o n o f invisc id flow used i n this w o r k w h i c h is k n o w n to lead to an 

o p t i m a l sail shape w i t h more camber t h a n the actual o p t i m a l 

because flow separation is no t model led . Moreover, the side force 

and hee l ing m o m e n t mus t be considered as w e l l t o opt imise the 

sails t r i m as they affect the per formance due to leeway and heel. A 

f u l l Ve loc i ty Predict ion Program i n c l u d i n g hydrodynamic forces 

m u s t be used fo r a realistic op t imisa t ion . 
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