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Chapter 1

Introduction

To describe physical problems we often make use of deterministic mathematical
models. Typical constituents of such models – material properties, initial and
boundary conditions, interaction and source terms, etc. – are assigned a defi-
nite value and we seek a definite solution to the problem. In reality, however,
a physical problem will almost always have uncertain components. Material
properties, for instance, might be based on experimental data. In other words,
the input to a mathematical model of a real-life problem possesses some degree
of randomness. We are interested in modelling this uncertainty. To this end we
look for methods to quantify the effects of stochastic inputs on the solutions of
mathematical models.

The Monte Carlo method is, arguably, both the most popular as well as
the least elegant approach to model uncertainty. It is a ‘brute-force’ method of
attack: using a sample of the stochastic inputs we calculate the corresponding
realizations of the solution. From the resulting sample of solutions we then de-
termine the desired statistical properties of the solution. In most cases we have
to use a large sample size to obtain accurate estimates of these statistical prop-
erties. This makes Monte Carlo methods very expensive from a computational
point of view. Furthermore, the selection of proper (pseudo-)random number
generators needed for a Monte Carlo simulation can be a delicate matter.

Besides the statistical Monte Carlo methods a number of nonstatistical (i.e.
deterministic) approaches to modelling uncertainty have been proposed. Poly-
nomial chaos is one such nonstatistical method that has been shown to be
particularly effective for a number of problems. Polynomial chaos employs or-
thogonal polynomial functionals to expand the solution spectrally in the random
space. The method is based on Wiener’s [1] homogeneous chaos theory pub-
lished in 1938. This publication paved the path for the application of truncated
expansions in terms of Hermite polynomials of Gaussianly distributed random
variables to model (near-)Gaussian stochastic processes. In the 1960s these
Wiener-Hermite expansions were employed in the context of turbulence mod-
elling [2], [3]. Some serious limitations were encountered leading to a decrease
of interest in the method in the years that followed.

In 1991 Ghanem and Spanos [4] pioneered the use of Wiener-Hermite ex-
pansions in combination with finite element methods and effectively modelled
uncertainty for various problems encountered in solid mechanics. At this point
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2 CHAPTER 1. INTRODUCTION

in time the polynomial chaos method was capable of achieving an exponential
convergence rate for Gaussian stochastic processes only. In 2002 Xiu and Kar-
niadakis [5] made another big step forward with the introduction of generalized
polynomial chaos (gPC). It was recognized that the PDF of a number of common
random distributions is identical to the weighting function in the orthogonality
relationship of certain orthogonal polynomials from the so-called Askey scheme.
Xiu and Karniadakis established that, in order to achieve optimal convergence,
the type of orthogonal polynomials in the chaos expansion should correspond
to the properties of the stochastic process at hand, according to the connecting
between PDF and weighting function. This gPC approach has, for instance,
been applied to a number of problems in fluid flow [6]. Although the polyno-
mial chaos method was initially generalized to polynomials of the Askey scheme
(and the corresponding ‘standard’ random distributions) only, the extension
to arbitrary random distributions (and with that a true generalization of the
method) was soon to follow. Just by observing the correspondence between
PDF and weighting function in the orthogonality relation we can generate opti-
mal expansion polynomials for an arbitrary random distribution. The resulting
expansion polynomials need not necessarily come from the Askey scheme. There
exist various ways to calculate these optimal expansion polynomials. Applying
a Gram-Schmidt orthogonalization technique is one possibility [7], but there are
others options as well [8].

The gPC method has been shown to be effective for a number of problems
resulting in exponential convergence of the solution. However, there are also sit-
uations in which gPC performs unsatisfactory. A discontinuity of the solution in
the random space may, for instance, lead to slow convergence or no convergence
at all. In addition, problems may be encountered with long-term integration.
The statistical properties of the solution will most likely change with time. This
means that the particular orthogonal polynomial basis that leads to exponential
convergence for earlier times may loose its effectiveness for later times resulting
in a deteriorating convergence behaviour with time. Hence, for larger times
unacceptable error levels may develop. These errors may become practically
insensitive to an increase of the order of the polynomial expansion. To over-
come the aforementioned problems with gPC Wan and Karniadakis [9] have
developed a multi-element polynomial chaos method (ME-gPC). The main idea
of ME-gPC is to adaptively decompose the space of random inputs into multi-
ple elements and subsequently employ polynomial chaos expansions on element
level.

Vos [10] has taken a different approach to attack the long-term integration
problems with gPC. Recognizing that the initial polynomial chaos expansion
loses its optimal convergence behaviour for later times he developed a time-
dependent polynomial chaos (TDgPC) method. The main idea of TDgPC is
to determine new, optimal polynomials for the chaos expansion at a number of
discrete instants in time. These new polynomials are based on the stochastic
properties of the solution at the particular time level. In this way a (near-
)optimal convergence behaviour is retained over the complete time interval.
Vos successfully applied his TDgPC approach to a simple stochastic ordinary
differential equation. Thus far the extension to more complex problems has not
yet been made.

In this work we will apply the TDgPC method to the Kraichnan-Orszag
three-mode problem. The Kraichnan-Orszag problem is described by a system
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of three coupled ordinary differential equation with stochastic initial conditions.
Obviously, this problem is more complicated than the single differential equation
on which TDgPC has been tested by Vos. Hence, we will see that we need
to refine and develop Vos’s original TDgPC method a little bit in order to
successfully apply it to the Kraichnan-Orszag problem.

This thesis is divided into two parts. Part I, the main part, is devoted to
a TDgPC solution of the Kraichnan-Orszag problem, while Part II revisits the
model problem used by Vos.

First off, Chapter 2 concisely describes the original gPC method. Chapter 3
introduces the Kraichnan-Orszag problem and some of its properties. In Chap-
ter 4 we present results of the original gPC method applied to the Kraichnan-
Orszag problem. We will see that for some cases these gPC results are very
unsatisfactory. Chapter 5 introduces Vos’s time-dependent approach. In this
chapter we also discuss a first attempt to apply TDgPC to the Kraichnan-Orszag
problem. We will see that our initial approach is flawed. Some further modifi-
cations of Vos’s TDgPC method are necessary. These are discussed in Chapter
6 along with the now much improved results of our TDgPC approach to the
Kraichnan-Orszag problem. Finally, in Chapter 7 we look at TDgPC results for
a three-dimensional instead of a one-dimensional random input to the problem.

We have already mentioned that Vos’s original TDgPC method was refined
at some points in order to make the method applicable to the three coupled
differential equations of the Kraichnan-Orszag problem. In Part II of this thesis
we revisit the single differential equation test problem employed by Vos. We
solve this problem using the modified TDgPC method. With our refinements
we expect to achieve the same accuracy as obtained by Vos, but at a substan-
tially lower computational cost. Chapter 8 introduces Vos’s test problem: a
simple growth equation. In Chapter 9 we discuss the TDgPC algorithm for this
problem. In Chapter 10 results are presented.

Finally, Chapter 11 presents conclusions and a number of suggestions for
further research. This work has one appendix in which a collection of additional
figures can be found. As a final note, we remark that the work documented in
this thesis was presented by the author at the 2008 International Conference on
Numerical Analysis and Applied Mathematics (ICNAAM) [11].
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Chapter 2

Polynomial Chaos

A stochastic process can in many cases be expanded in terms of orthogonal
polynomials of random variables. We say that the stochastic process is repre-
sented by a polynomial chaos expansion. These polynomial chaos expansions
can be used to solve stochastic problems, i.e. problems involving some kind of
randomness. In this chapter we introduce the polynomial chaos expansion and
we outline a solution method for stochastic problems based on these expansions.

2.1 The polynomial chaos expansion

Let (Ω,F ,P) be a probability space. Here Ω is the sample space, F ⊂ 2Ω

its σ-algebra of events and P the associated probability measure. In addition,
let S ⊂ R

d (d = 1, 2, 3) and T ⊂ R be certain spatial and temporal domains,
respectively. In a physical context we frequently encounter stochastic processes
in the form of a scalar- or vector-valued random function like

u(x, t, ω) : S × T × Ω → R
b (2.1)

where x denotes position, t stands for time and ω represents an element of the
sample space Ω. The probability space can oftentimes be described by a finite
number of random variables

ξ1, ξ2, . . . , ξn : Ω → R (2.2)

In this case the stochastic process of Eq. (2.1) can equivalently be written as

u(x, t, ξ) : S × T × R
n → R

b (2.3)

where ξ = (ξ1, . . . , ξn) is an n-dimensional vector of random variables. In this
work we will exclusively be dealing with stochastic processes of the form of Eq.
(2.3), i.e. processes that can be characterized by a finite set of random variables.

The stochastic process of Eq. (2.3) can be represented by the following
polynomial chaos expansion

u(x, t, ξ(ω)) =
∞
∑

i=0

ui(x, t)Φi(ξ(ω)) (2.4)

5



6 CHAPTER 2. POLYNOMIAL CHAOS

where the trial basis {Φi(ξ)} consists of orthogonal polynomials in terms of the
random vector ξ. So, employing deterministic coefficients, the random function
u(x, t, ξ(ω)) is expanded spectrally in the random dimensions. We will see below
that the stochastic characteristics of the process at hand determine which type
of orthogonal polynomials can best be employed as a trial basis.

Historically, Wiener [1] first formulated a polynomial chaos expansion in
terms of Hermite polynomials of Gaussianly distributed random variables. It
follows from a theorem by Cameron and Martin [12] that this Hermite-chaos
expansion converges to any stochastic process u(ω) ∈ L2(Ω,F ,P) in the L2

sense. This means that a Hermite-chaos expansion can – in principle – be used
to represent any stochastic process with finite variance (a requirement that is
met for most physical processes). In practice, however, optimal convergence
is limited to processes with Gaussian inputs. This can easily be understood:
Gaussian random inputs generally result in a stochastic process that has a large
Gaussian part, at least for early times. This Gaussian part is represented by
the first order terms in the Hermite-chaos expansion. Higher order terms can be
thought of as (relatively small) non-Gaussian corrections. Hence, for Gaussian
random inputs we can expect a Hermite-chaos expansion to converge rapidly.

For general, non-Gaussian random inputs, however, the rate of convergence
of a Hermite-chaos expansion will most likely be substantially worse. Although
convergence is ensured by the Cameron-Martin theorem, we will generally need
a large number of higher-order terms in the expansion to account for the now far
more dominant non-Gaussian part. To obtain an optimal rate of convergence in
case of general random inputs we need to tailor the expansion polynomials to the
stochastic properties of the process under consideration. Although Ogura [13]
had already employed Charlier-chaos expansions to describe Poisson processes,
Xiu and Karniadakis [5] were the first to present a comprehensive framework to
determine the optimal trial basis {Φi}.

The optimal set of expansion polynomials forms a complete orthogonal basis
in L2(Ω,F ,P) with orthogonality relation

〈Φi,Φj〉 =
〈

Φ2
i

〉

δij (2.5)

where δij is the Kronecker delta and 〈. . .〉 denotes the ensemble average. To
be more specific, the optimal set {Φi(ξ)} is an orthogonal basis in the Hilbert
space with associated inner product

〈G (ξ(ω)) ,H (ξ(ω))〉 =
∫

Ω

G (ξ(ω)) H (ξ(ω)) dP(ω) =

∫

supp(ξ)

G(ξ)H(ξ)fξ(ξ)dξ (2.6)

where fξ(ξ) is the probability density function (PDF) of the random variables
that make up the vector ξ. Note that the PDF acts as a weighting function
in the orthogonality relation for {Φi(ξ)}. So, the type of orthogonal expansion
polynomials (determined by the weighting function in the orthogonality rela-
tion) that can best be used in a polynomial chaos expansion depends on the
nature of the stochastic process at hand through the PDF of the random vari-
ables that describe the probability space. The fact that the trial basis defined in
Eqs. (2.5) and (2.6) is optimal hinges on the presumption that the random func-
tion u(x, t, ξ(ω)) represented by the polynomial chaos expansion has roughly
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Distribution of ξ Expansion polynomials {Φi(ξ)}
Uniform Legendre
Gaussian Hermite

Beta Jacobi
Gamma Laguerre

Table 2.1: Orthogonal polynomials from the Askey scheme constitute an optimal
trial basis for a number of well-known random distributions

the same stochastic characteristics as the random variables in ξ, at least for
early times. Hence, the higher order terms in the expansion are expected to be
(negligibly?) small, reducing the dimensionality of the problem and resulting
in rapid convergence. As a generalization of the Cameron-Martin theorem, we
also expect this generalized polynomial chaos expansion (with {Φi(ξ)} being a
complete basis) to converge to any stochastic process u(ω) ∈ L2(Ω,F ,P) in the
L2 sense.

Xiu et al. [5] recognized that the weighting functions associated with a
number of orthogonal polynomials from the so-called Askey scheme are iden-
tical to the PDFs of certain ‘standard’ random distributions. Table 2.1 gives
some examples. Xiu et al. studied a simple test problem subject to different
random inputs with ‘standard’ distributions like the ones in Table 2.1. Expo-
nential error convergence was obtained for a polynomial chaos expansion with
an optimal trial basis (i.e. in accordance with Table 2.1 or, equivalently, Eqs.
(2.5) and (2.6)). Furthermore, it was shown that exponential convergence is
generally not retained when the optimal trial basis is not used (for example,
employing Hermite chaos instead of Jacobi chaos when the random input has a
beta distribution).

Xiu et al. focused on orthogonal polynomials from the Askey scheme and
corresponding ‘standard’ random distributions. However, there is no reason to
limit the members of possible trial bases to polynomials from the Askey scheme.
With Eqs. (2.5) and (2.6) we can determine an optimal trial basis for arbitrary,
‘nonstandard’ distributions of ξ as well. When the PDF of ξ is known we can
use various orthogonalization techniques to calculate the corresponding optimal
trial basis {Φi(ξ)}. In this work we will use Gram-Schmidt orthogonalization.
We will come back to this technique in more detail in Section 6.3.

Sometimes the probability space can be characterized by a single random
variable, i.e. n = 1 in Eq. (2.2) and the vector ξ is reduced to the scalar
ξ. In this case the index i in {Φi(ξ)} directly corresponds with the degree
of the particular expansion polynomial. For example, Φ3(ξ) is a third degree
polynomial in ξ.

In the more general situation of a multidimensional probability space (n > 1
in Eq. (2.2)) the correspondence between i and polynomial degree does not
exist and i reduces to merely a counter. To construct the multidimensional ex-
pansion polynomials {Φi(ξ)} we first calculate the one-dimensional polynomials

φ
(ξj)
p (ξj) for j = 1, . . . , n and p = 0, 1, 2, . . . using a Gram-Schmidt algorithm
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with orthogonality relation

〈

φ(ξj)
p , φ(ξj)

q

〉

=

∫

supp(ξj)

φ(ξj)
p (ξj) φ(ξj)

q (ξj) fξj
(ξj)dξj =

〈

φ(ξj)
p

2
〉

δpq (2.7)

For these one-dimensional polynomials p again corresponds to the polynomial
degree and the superscript (ξj) indicates that the polynomial is orthogonal with
respect to fξj

. The multidimensional expansion polynomials can now be con-
structed from the simple tensor product

Φi(ξ) = φ(ξ1)
p1

(ξ1) φ(ξ2)
p2

(ξ2) . . . φ(ξn)
pn

(ξn) (2.8)

with some mapping (p1, p2, . . . , pn) → i.
The procedure above assumes that ξ1, . . . , ξn are statistically independent

which implies that

fξ(ξ) = fξ1
(ξ1)fξ2

(ξ2) . . . fξn
(ξn) (2.9)

It can now easily be verified that the multidimensional expansion polynomials
{Φi(ξ)} constructed according to Eq. (2.8) form an optimal orthogonal trial
basis in agreement with Eqs. (2.5) and (2.6).

2.2 A gPC solution approach

In this section we outline a solution procedure for stochastic problems based
on the polynomial chaos expansion defined in Eq. (2.4). Consider the abstract
problem

L(x, t, ξ(ω);u) = f(x, t, ξ(ω)) (2.10)

where L is a (not necessarily linear) differential operator and f some source
function. The randomness, represented by the random vector ξ, can enter the
problem either through L (e.g. random coefficients) or f , but also through the
boundary or initial conditions or some combination of these possibilities.

We approximate the stochastic solution function u(x, t, ξ(ω)) by a truncated
polynomial chaos expansion similar to Eq. (2.4), naturally using the optimal ex-
pansion basis for the particular problem at hand. The truncation of the infinite
series is of course necessary to keep the problem computationally feasible. In
this work we will truncate the series in such a way that all expansion polynomi-
als up to a certain maximum degree, denoted by P , are included. The number
of terms (N +1) in the expansion now follows from this maximum degree P and
the dimensionality n of the random vector ξ according to

N + 1 =

(

P + n

P

)

=
(P + n)!

P !n!
(2.11)

Note that the total number of expansion coefficients equals the number of pos-
sible combinations for P picks out of a set with n + 1 elements when each of
these elements can be chosen more than once, i.e. the number of combinations
with repetitions (see, for instance, [14] for details).

We continue by substituting the polynomial chaos expansion for u into the
problem equation and execute a Galerkin projection. This means that we sub-
sequently multiply Eq. (2.10) by every polynomial of the expansion basis {Φi}
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and take the ensemble average to obtain

〈

L
(

x, t, ξ;

N
∑

i=0

ui(x, t)Φi(ξ)

)

,Φj(ξ)

〉

= 〈f(x, t, ξ),Φj(ξ)〉 , j = 0, 1, . . . , N

(2.12)
The Galerkin projection above ensures that the error we make by representing
u by a polynomial chaos expansion is orthogonal to the function space spanned
by the expansion basis {Φi}. As a result of the orthogonality of the expansion
polynomials, Eq. (2.12) can be reduced to a set of N + 1 coupled, determinis-
tic equations for the N + 1 expansion coefficients ui(x, t). So, the remaining
problem is stripped of all stochastic quantities by the Galerkin projection. The
remaining equations can now be solved by a choice of conventional techniques,
e.g. a spectral/hp element method in space and Runge-Kutta integration in
time.
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The Kraichnan-Orszag

three-mode problem
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Chapter 3

The Kraichnan-Orszag

three-mode problem

As an introduction to more complicated numerical turbulence models, in 1963
Kraichnan [2] studied a system of three interacting simple shear waves. By sim-
plifying the Fourier representation of the inviscid Navier-Stokes equations for an
infinite, incompressible fluid he obtained a set of coupled, non-linear differential
equations. Kraichnan solved this system numerically for large Gaussian samples
of initial conditions.

In 1967, also in the context of turbulence modelling, Orszag [3] studied
this same system of differential equations with Gaussianly distributed initial
conditions as a simple model problem. He concluded that a truncated Wiener-
Hermite expansion with a given fixed random basis is unsuitable to represent
the time evolution of the stochastic solution of the system.

The system of differential equations is now generally referred to as the
Kraichnan-Orszag three-mode problem. We give its definition in the next sec-
tion. We continue with the discussion of some general properties of the problem
in Section 3.2. Thereafter, in Section 3.3, we try to find an analytic solution
to the Kraichnan-Orszag problem. Finally, we use the result from Section 3.3
to make some predictions about the effectiveness of a generalized polynomial
chaos solution approach to the Kraichnan-Orszag problem in Section 3.4.

3.1 Problem Definition

The Kraichnan-Orszag problem is defined by the following system of nonlinear
ordinary differential equations

dx1

dt
= x2x3 (3.1a)

dx2

dt
= x3x1 (3.1b)

dx3

dt
= −2x1x2 (3.1c)

13



14 CHAPTER 3. THE KRAICHNAN-ORSZAG THREE-MODE PROBLEM

In this work we will consider this problem subject to stochastic initial conditions.
We will mainly be studying initial conditions of the form

x1(0) = α + 0.01ξ , x2(0) = 1.0 , x3(0) = 1.0 (3.2)

where α is a constant and ξ a uniformly distributed random variable with unit
variance (i.e. ξ is uniformly distributed on the interval [−1, 1]). In Chapter 7
we will look at more complex initial conditions defined on a three-dimensional
random space.

3.2 Properties

Multiplying Eq. (3.1a) by x1, Eq. (3.1b) by x2 and Eq. (3.1c) by x3 and adding
the three resulting equations together we get

3
∑

i=1

xi

dxi

dt
= x1x2x3 + x1x2x3 − 2x1x2x3 = 0 (3.3)

which means that
3
∑

i=1

dx2
i

dt
= 0 (3.4)

When dealing with stochastic initial conditions it follows that

3
∑

i=1

d 〈xi〉2
dt

= 0 (3.5)

must also be valid. Here 〈. . .〉 denotes the ensemble average. So, we have found

that the system (3.1) conserves
∑3

i=1 〈xi〉2.

For deterministic initial conditions the solution to Eqs. (3.1) is generally
periodic. Based on the initial conditions the solutions can be divided into four
different branches separated by the planes x1 = x2 and x1 = −x2. In Fig. 3.1
we have plotted a particular solution curve for each of these four branches.

Only for initial conditions lying on either one of the planes x1 = x2 and
x1 = −x2 the solution is aperiodic. For in that case Eqs. (3.1) become

dx1

dt
= ±x1x3 (3.6a)

dx2

dt
= x1x3 (3.6b)

dx3

dt
= ∓2x2

1 (3.6c)

From these equations we see that for initial conditions on the plane x1 = ±x2

the solution stays on this same plane. Making use of the conservation property
(Eq. (3.4)) we find from Eqs. (3.6) that solutions with initial conditions on the

plane x1 = x2 are attracted to the fixed point
(

0, 0,−
√

2x2
1(0) + x2

3(0)
)

while

solutions with initial conditions on the plane x1 = −x2 are attracted to the

fixed point
(

0, 0,
√

2x2
1(0) + x2

3(0)
)

.

A final case are initial conditions on the line x1 = x2 = 0. We see from Eqs.
(3.1) that the solution remains at the point (0, 0, x3(0)) for this case.
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Figure 3.1: Four branches of deterministic periodic solutions to the Kraichnan-
Orszag problem



16 CHAPTER 3. THE KRAICHNAN-ORSZAG THREE-MODE PROBLEM

3.3 Exact solution

Finding an analytic solution to Eqs. (3.1) is generally not straightforward since
it involves the theory of elliptic functions [15]. The analytic solution can be
obtained in terms of Jacobi’s elliptic functions. These functions are defined as
infinite summations and are therefore not easily evaluated. Use is often made of
tables. Wan [9] derives the analytic form of one of the four branches of solution
curves, namely those curves lying in the region

{(x1, x2, x3) : x2 > 0; −x2 < x1 < x2} (3.7)

Since this analytic solution helps to understand the performance of a gPC so-
lution approach to the Kraichnan-Orszag problem, we will follow the argument
of Wan and derive this analytic form below.

Let us start off by discussing some properties of Jacobi’s elliptic functions
snu, cn u and dnu. Jacobi’s elliptic functions are periodic. All three functions
depend on the parameter k, the modulus of elliptic functions, and are therefore
sometimes written as sn(u, k), cn(u, k) and dn(u, k). The periods of Jacobi’s
elliptic functions are a function of k. The real period of dnu is one half of the
real periods of snu and cnu. Also, snu and cnu oscillate around zero while
dnu does not.

The derivatives of Jacobi’s elliptic functions are given by

d

du
sn u = cn u dnu (3.8a)

d

du
cn u = − sn u dnu (3.8b)

d

du
dnu = −k2 snu cn u (3.8c)

Looking in Fig. 3.1 at the particular branch of solution curves under considera-
tion we see that x2 > 0 for all t. Also, the period of x2 is one half of the periods
of x1 and x3. Hence, we look for a solution to Eqs. (3.1) in the following form

x1 = P cn [ω (t − t0)] (3.9a)

x2 = Qdn [ω (t − t0)] (3.9b)

x3 = −R sn [ω (t − t0)] (3.9c)

Substituting these equations into Eqs. (3.1) we obtain the following three rela-
tions

Pω = QR (3.10a)

k2Qω = PR (3.10b)

Rω = 2PQ (3.10c)

The requirement to satisfy the initial conditions provides us with three addi-
tional equations

x1(0) = P cn (−ωt0) (3.11a)

x2(0) = Qdn (−ωt0) (3.11b)

x3(0) = −R sn (−ωt0) (3.11c)
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We now have 6 equations for the six unknowns P , Q, R, ω, t0 and k. Eqs.
(3.10) and (3.11) can be solved for these six unknowns using the identities

sn2 u + cn2 u = 1 (3.12a)

dn2 u + k2 sn2 u = 1 (3.12b)

An intermediate result is

P 2 = x2
1(0) +

1

2
x2

3(0) (3.13a)

Q2 = x2
2(0) +

1

2
x2

3(0) (3.13b)

R2 = 2x2
1(0) + x2

3(0) (3.13c)

ω2 = 2x2
2(0) + x2

3(0) (3.13d)

k2 =
2x2

1(0) + x2
3(0)

2x2
2(0) + x2

3(0)
(3.13e)

t0 = − 1

ω
dn−1

(

x2(0)

Q

)

(3.13f)

Obviously, Eqs. (3.13a) – (3.13e) have – in principle – two possible solutions.
Also, the inverse function dn−1(. . .) in Eq. (3.13f) is multivalued. We can, how-
ever, pick the appropriate solutions based on the signs of the initial conditions
x1(0) and x3(0). Let us clarify this by considering the example x1(0) > 0 and
x3(0) > 0.

We start off by simply choosing the positive solution for ω. Hence, we have

ω =
√

2x2
2(0) + x2

3(0) (3.14)

We require the elliptic modulus k to be positive as well resulting in

k =

√

2x2
1(0) + x2

3(0)

2x2
2(0) + x2

3(0)
(3.15)

Note that for the branch of solution curves under consideration we have

− |x2(0)| < x1(0) < |x2(0)| (3.16)

Hence, the elliptic modulus k is real and satisfies 0 < k < 1.
Since we consider solution curves with x2(0) > 0 and dnu is nonnegative for

every u, it follows from Eq. (3.11b) that Q should also be positive. Hence, we
have

Q =

√

x2
2(0) +

1

2
x2

3(0) (3.17)

We continue by selecting the appropriate solution t0 in Eq. (3.13f). To this
end we consider dx2

dt
|t=0 = x3(0)x1(0). In this example we have x3(0)x1(0) > 0.

Hence, we select t0 to be the smallest positive solution to Eq. (3.13f). With this
value of t0 our expression for x2 in Eq. (3.9b) will have the desired property
dx2

dt
|t=0 > 0.
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The correct solution P in Eq. (3.13a) now follows from dx1

dt
|t=0 = x2(0)x3(0).

In this example we have x2(0)x3(0) > 0. We therefore choose

P =

√

x2
1(0) +

1

2
x2

3(0) (3.18)

This ensures that our expression for x1 in Eq. (3.9a) will have the desired
property dx1

dt
|t=0 > 0.

Similarly, the correct solution R in Eq. (3.13c) follows from dx3

dt
|t=0 =

−2x1(0)x2(0) < 0. With

R =
√

2x2
1(0) + x2

3(0) (3.19)

our expression for x3 in Eq. (3.9c) has the desired property dx3

dt
|t=0 < 0.

Summarizing, we have determined the analytic solution to Eqs. (3.1) with
initial conditions satisfying x2(0) > 0, x3(0) > 0 and 0 < x1(0) < x2(0). The
result is

x1(t) =

√

x2
1(0) +

1

2
x2

3(0) cn

[

√

2x2
2(0) + x2

3(0) (t − t0) ; k

]

(3.20a)

x2(t) =

√

x2
2(0) +

1

2
x2

3(0) dn

[

√

2x2
2(0) + x2

3(0) (t − t0) ; k

]

(3.20b)

x3(t) = −
√

2x2
1(0) + x2

3(0) sn

[

√

2x2
2(0) + x2

3(0) (t − t0) ; k

]

(3.20c)

where t0 is the smallest positive solution of

t0 = − 1
√

2x2
2(0) + x2

3(0)
dn−1





x2(0)
√

x2
2(0) + 1

2x2
3(0)



 (3.21)

and

k =

√

2x2
1(0) + x2

3(0)

2x2
2(0) + x2

3(0)
(3.22)

Analytic solutions for other initial conditions can in principle be determined in
a similar fashion. However, we have experienced in this section that obtain-
ing a general analytic solution to the Kraichnan-Orszag problem is a pretty
cumbersome task.

Things get even more complicated for stochastic initial conditions like Eq.
(3.2). From Eq. (3.22) we see that the elliptic modulus k now becomes a function
of ξ and thus becomes a stochastic variable as well. For the case of stochastic
initial conditions we will typically be interested in quantities like the mean and
variance of x1, x2 and x3. Determining these quantities analytically would
require the evaluation of integrals of functions of sn [u(ξ), k(ξ)], cn [u(ξ), k(ξ)]
and dn [u(ξ), k(ξ)] over the random variable(s) ξ. We see that, in addition to
the first argument u, the elliptic modulus k is also dependent on the variable(s)
of integration ξ. An analytic solution to integrals of this type is unknown to this
author. Hence, the mean and variance of x1, x2 and x3 cannot be determined
analytically for stochastic initial conditions.
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3.4 Effectiveness of gPC

In this section we make use of the analytic result in Eqs. (3.20) – (3.22) to
predict the effectiveness of a gPC solution approach to the Kraichnan-Orszag
problem (Eq. (3.1)). We consider the stochastic initial conditions presented
earlier in Eq. (3.2) for three values of the constant α, namely α = 0.5, α = 0.96
and α = 0.99. Note that with either of these three choices for α Eqs. (3.20)
– (3.22) are applicable for every possible realization of the random variable ξ
in Eq. (3.2). In other words, every possible realization of the initial conditions
will satisfy x2(0) > 0, x3(0) > 0 and 0 < x1(0) < x2(0).

In the theory of elliptic functions [15] the period of Jacobi’s elliptic functions
in Eq. (3.20) is often given in terms of a quantity K termed the complete elliptic
integral of the first kind. The periods of sn(u) and cn(u) are both equal to 4K,
while the period of dn(u) equals 2K. K itself may be defined as follows

K(k) =

∫ π
2

0

1
√

1 − k2 sin2 θ
dθ (3.23)

Note from this definition that K is a function of the elliptic modulus k. For
our purposes, rather than to consider the exact definition given in Eq. (3.23),
it is more helpful to look at the general shape of the function K(k). In Fig. 3.2
we therefore provide a plot. The figure shows that on the somewhat arbitrary
interval 0 ≤ k . 0.9 K increases relatively moderately with increasing k. How-
ever, in a relatively narrow interval, say 0.9 . k < 1, K increases sharply with
increasing k and goes to infinity for k = 1.

k

K
(k

)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

Figure 3.2: Complete elliptic integral of the first kind K versus elliptic modulus k

Let us now substitute the initial conditions given by Eq. (3.2) into the
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expression for k in Eq. (3.22). We obtain

k =

√

2

3
(α + 0.01ξ)2 +

1

3
(3.24)

Remember that in the above expression α is a constant and ξ is a random
variable uniformly distributed on the interval [−1, 1]. If we now consider the case
α = 0.5 – x1(0) is uniformly distributed on the interval [0.49, 0.51] – we see from
Eq. (3.24) that all possible realizations of k are confined to the narrow interval
0.7024 . k . 0.7119. From Fig. 3.2 we see that this means that realizations
of K will also lie within a relatively narrow interval. We have discussed earlier
that the periods of Jacobi’s elliptic functions are directly related to K. So, from
Eqs. (3.20) and the argument above we conclude that for the case α = 0.5
the period of the solution will not differ much among all possible realizations
(x1(t), x2(t), x3(t)).

We illustrate this point in Fig. 3.3 where we see that different realizations
of x1(t) are – on the scale of this plot – almost identical . In this figure we have
only considered realizations of x1(t). The corresponding realizations of x2(t)
and x3(t) tell the same story. For completeness these are included in Appendix
A.1.

t
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-0.5

0

0.5

1

x1(0) = 0.49
x1(0) = 0.5
x1(0) = 0.51

Figure 3.3: Deterministic solutions x1(t) for various x1(0) around x1(0) = 0.5
(x2(0) = x3(0) = 1)

Things change somewhat for the case α = 0.96. Now all possible realizations
of k are confined to the interval 0.9670 . k . 0.9801. This interval lies much
closer to k = 1 which means (see Fig. 3.2) that realizations of K will be spread
over a much larger interval than for the case α = 0.5. So, different realizations
(x1(t), x2(t), x3(t)) of the solution will also show a much larger spread in terms
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of the period. In Fig. 3.4 we have plotted three possible realization of x1(t) for
the case α = 0.96. The difference in period can clearly be observed.
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Figure 3.4: Deterministic solutions x1(t) for various x1(0) around x1(0) = 0.96
(x2(0) = x3(0) = 1)

α = 0.99 – x1(0) uniformly distributed on the interval [0.49, 0.51] – can
be seen as an extreme case. The possible realizations of k lie in the interval
0.9867 . k ≤ 1. We have seen above that K goes to infinity for k = 1.
This means that the possible realizations of K lie on an unbounded interval.
As a consequence the periods of possible realizations (x1(t), x2(t), x3(t)) of the
solution will differ greatly as is illustrated in Fig. 3.5. The interval of possible
periods has no upper bound, so even a solution with ‘infinite’ period can be
realized. This means that this solution will be aperiodic.

From Eqs. (3.20) – (3.22) we see that, apart from an effect on k, varying
x1(0) also has an effect on the amplitude of x1 and x3. However, for small
variations of x1(0) (like we consider with the initial conditions in Eq. (3.2))
the effect on the amplitude is small. We have seen above that the effect of
variations in x1(0) on the period of the solution depends on the values of k that
are attained. If we stay away from k = 1 the effect is small, but if we come close
to k = 1 the effect suddenly becomes very large.

It is precisely in this region close to k = 1 where we expect problems with
a gPC solution approach to the Kraichnan-Orszag problem. In Fig. 3.4 we
have seen that different realizations of the solution diverge from each other with
increasing time. With the initial conditions of Eq. (3.2) with values of α around
0.96 we therefore expect difficulties for a gPC solution approach to accurately
calculate statistical moments of the solution when we integrate to larger time
values.
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Figure 3.5: Deterministic solutions x1(t) for various x1(0) around x1(0) = 0.99
(x2(0) = x3(0) = 1)

When α is increased to 0.99 we expect the problems with gPC to increase
as well. From Fig. 3.5 we have seen that different realizations of the solution
often have completely different periods and, as a consequence, diverge from each
other at a very early time.

Taking α in the region 0.99 < α < 1.01 will lead to this same problem with
the periods, but we now have the added difficulty that the possible realizations
of the solution lie on two completely different branches of solution curves (as was
illustrated in Fig. 3.1). Needless to say that we also expect serious problems
with gPC for this case.



Chapter 4

Shortcomings of a gPC

solution approach

The success of a generalized polynomial chaos (gPC) solution approach to the
Kraichnan-Orszag problem defined in Eqs. (3.1) depends to a large extent on
the initial conditions. For initial conditions of the form given in Eq. (3.2) the
value of α is very important. In this chapter we will look at gPC results for
a number of different values of α, namely α = 0.5, α = 0.96, α = 0.99 and
α = 0.995. We will discuss the accuracy of the calculated solution on the basis
of results for x1. The corresponding gPC results for x2 and x3 can be found in
Appendix A.2.

To get an idea of the character of the solutions (x1(t), x2(t), x3(t)) we present
the deterministic solution trajectories for a number of fixed, nonstochastic values
of x1(0) in Fig. 4.1. We can see that for most values of x1(0) considered
individual deterministic solutions follow a closed, repeating trajectory. The
case x1(0) = 1 is an exception: this solution does not repeat itself in time but
rather converges to a fixed point. Note that, even though solution trajectories
lie closely together (see, for instance, the trajectories for x1(0) = 0.96 and
x1(0) = 0.99 in Fig. 4.1), we have seen in Figs. 3.4 and 3.5 that the period of
the solution may still vary considerably from one trajectory to the other.

Let us first consider the case α = 0.5. In Figs. 4.2 and 4.3 we compare
the time evolution of the mean and variance, respectively, of x1 as calculated
by a gPC approach to the results from a Monte Carlo analysis. The gPC
results were obtained by using basis polynomials up to a maximum degree of
three (P = 3). For the Monte Carlo analysis a number of 10,000 samples were
considered (N = 10, 000). We observe from Figs. 4.2 and 4.3 that we can
generate pretty accurate results with a gPC solution approach when α = 0.5.
Results for the mean and variance of x2 and x3 show a similar accuracy.

Let us proceed by considering the case α = 0.96. From Fig. 4.4 we can see
that the gPC solution for the mean of x1 loses accuracy from, approximately,
t = 24 onwards. Fig. 4.5 shows that the accurate calculation of the variance of
x1 starts to break down at a slightly earlier instant in time.

The performance of the gPC solution approach further deteriorates when we
increase α to a value of 0.99. Figs. 4.6 and 4.7 provide results for this case. We

23
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Figure 4.1: Deterministic solutions of the Kraichnan-Orszag problem for various val-
ues of x1(0) (x2(0) = x3(0) = 1)
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Figure 4.2: Mean of x1 vs. time for α = 0.5: gPC solution with P = 3 compared to
a Monte Carlo analysis (N = 10, 000)
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Figure 4.3: Variance of x1 vs. time for α = 0.5: gPC solution with P = 3 compared
to a Monte Carlo analysis (N = 10, 000)
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Figure 4.4: Mean of x1 vs. time for α = 0.96: gPC solution with P = 3 compared
to a Monte Carlo analysis (N = 10, 000)
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Figure 4.5: Variance of x1 vs. time for α = 0.96: gPC solution with P = 3 compared
to a Monte Carlo analysis (N = 10, 000)

can see that for α = 0.99 the gPC solution breaks down earlier compared to the
case where α = 0.96. Two additional observations can be made from Figs. 4.6
and 4.7.

Firstly, one might wonder whether increasing the maximum degree of the
basis polynomials used in the gPC calculation results in a solution that remains
accurate up to larger time values. To investigate this we also plotted gPC results
for P = 6, P = 10 and P = 22 in Figs. 4.6 and 4.7. Although gPC results
for higher P can be seen to remain accurate up to slightly larger time values
than results for P = 3, we must conclude that the effect of increasing P is very
marginal. Even gPC results calculated with a maximum degree of the basis
polynomials as high as P = 22 are worthless after, roughly, t = 15. So, to
our disappointment we have to conclude that increasing the maximum degree
of the basis polynomials does not bring us much (apart from a serious increase
in calculation time and memory consumption).

Secondly, we check in Figs. 4.6 and 4.7 whether the number of samples N
considered for the Monte Carlo analysis is large enough. Since the results for
N = 10, 000 and N = 100, 000 are virtually identical on the scale of this plot we
are led to believe that taking N = 10, 000 is indeed sufficient for our purposes.

At this point let us also exclude the possibility that the disappointing gPC
results are due to incorrectly set integration parameters such as the number of
quadrature points Q for integration in random space or the number of stages s
and time step ∆t for the Runge-Kutta time integration. To this end we consider
the conservation property of Eq. (3.5). The (constant) value of

∑3
i=1 〈xi〉2

is known exactly from the initial conditions. In Fig. 4.8 we investigate the
error that is introduced into this constant due to inaccuracies in the numerical
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Figure 4.6: Mean of x1 vs. time for α = 0.99: gPC solutions with P = 3, P = 6,
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integration. For P = 3 the gPC algorithm requires the numerical integration of
polynomials with a maximum degree of nine. Setting Q ≥ 3

2P + 3
2 = 6 these

integrals are evaluated exactly using Gauss-Lobatto-Legendre integration [16].
The ‘benchmark’ graph in this figure corresponds to P = 3, Q = 6, s = 4
and ∆t = 0.001. All gPC results in this section were calculated with these
values of s and ∆t with Q large enough for exact integration. The ‘benchmark’
graph in Fig. 4.8 shows a very small error: within a few orders of magnitude
from machine precision for the entire time interval considered. This leads us
to believe that the integration parameters will most likely not be the cause
of the disappointing gPC results. Fig. 4.8 also shows results for integration
parameters that differ from the benchmark values. It can be seen that relaxing
the requirements on time step and number of stages results in a larger error in
∑3

i=1 〈xi〉2 that grows slowly with time. Also, taking not enough quadrature
points for exact integration in random space results in less accurate results.
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Figure 4.8: Error in 〈x1〉
2 + 〈x2〉

2 + 〈x3〉
2 vs. time for α = 0.99: comparison of

various integration parameter settings (Benchmark: P = 3; Q = 6;
s = 4; ∆t = 0.001)

Finally, we look at gPC results for α = 0.995. Fig. 4.1 shows why this case is
interesting: for x1(0) > 1 a completely different branch of solution trajectories
results. In Figs. 4.9 and 4.10 gPC results are presented. Although we still
obtain accurate results for small time values, we must conclude that the gPC
solution diverges form the Monte Carlo results even sooner than was the case
with α = 0.99.

Based on the results presented above we can conclude that a gPC solution
approach to the Kraichnan-Orszag problem with a stochastic initial condition
does not, in general, lead to satisfactory results. For at least some initial con-
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ditions the gPC solution starts to diverge from the correct solution at a certain
instant in time. Also, extending the time interval beyond the values considered
in Figs. 4.2 and 4.3, we cannot exclude the possibility that even for α = 0.5 we
will eventually reach a point in time after which the gPC solution breaks down.

Figs. 4.11 – 4.14 are included to support this presumption. In these figures
we present gPC results for the cases α = 0.7 and α = 0.8 on a more extended
time interval than we have considered so far. Notice that, even though these
gPC results remain accurate for quite some time, eventually the accuracy of
earlier times is lost. It is just a matter of integrating far enough in time. So, it
might well be that irrespective of the value of α we can always find an instant
in time at which the calculated solution starts to diverge from the correct one.
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Figure 4.11: Mean of x1 vs. time for α = 0.7: gPC solution with P = 3 compared
to a Monte Carlo analysis (N = 20, 000)

To overcome this problem we aim to improve the gPC solution approach.
We will try to apply a technique proposed by Vos [10] called time-dependent
generalized polynomial chaos (TDgPC) to the Kraichnan-Orszag problem.
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Figure 4.13: Mean of x1 vs. time for α = 0.8: gPC solution with P = 3 compared
to a Monte Carlo analysis (N = 10, 000)
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Figure 4.14: Variance of x1 vs. time for α = 0.8: gPC solution with P = 3 compared
to a Monte Carlo analysis (N = 10, 000)



Chapter 5

TDgPC solution approach:

a first try

In Chapter 2 we introduced the generalized polynomial chaos (gPC) method
of solving stochastic problems. This method involves the usage of a carefully
selected orthogonal polynomial trial basis to spectrally expand the stochastic
solution in the random space. To determine which expansion basis is optimal
the stochastic distribution of the random inputs is considered (see Eqs. (2.5)
and (2.6)).

We already noted in Chapter 2 that the thus obtained polynomial trial basis
can be considered optimal based upon the presumption that – at least for early
times – the random solution represented by the polynomial chaos expansion has
a stochastic distribution roughly identical to the distribution of the random in-
puts. However, nonlinearities in the problem will in general cause the stochastic
distribution of the solution to evolve over time. The character of the solution
distribution may therefore have changed radically when we integrate far enough
in time. Say, for example, that we have a uniformly distributed random input
to a stochastic problem. The problem may be such that the distribution of
the resulting solution evolves in time from (near-)uniform to (near-)Gaussian.
One could say that with time the uniform random input is ‘forgotten’ due to
nonlinearities in the problem.

An important consequence of this phenomenon is that the initially selected
trial basis gradually loses its efficiency. After some time the initial expansion
polynomials cannot be considered optimal, or even near-optimal, anymore. Con-
sidering that we work with a finite number terms in the solution expansion, we
not only lose efficiency but also accuracy at later times. For these later times
an optimal polynomial trial basis should be based on the current distribution
of the solution rather than the distribution of the random inputs. Hence, the
expansion polynomials should satisfy Eqs. (2.5) and (2.6) with fξ(ξ) replaced
by the current PDF of the solution. Of course, a thus calculated expansion basis
will also gradually lose its efficiency when we were to integrate the solution in
time even further.

Vos [10] was the first to develop the idea of updating the polynomial trial ba-
sis at a number of discrete points in time, i.e. calculating new optimal expansion
polynomials based upon the instantaneous stochastic distribution of the solu-

33
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tion. Vos termed this technique time-dependent generalized polynomial chaos
(TDgPC). In this chapter we will try to apply this idea to the Kraichnan-Orszag
problem. This, of course, with the hope of obtaining more satisfactory results
for long-term integration than we acquired in Chapter 4 with an ordinary gPC
approach.

5.1 Overview of the solution method

We once again consider the Kraichnan-Orszag problem defined in Eqs. (3.1)
with the initial conditions of Eq. (3.2). We start out identical to a standard
gPC solution approach. So, initially we look for a numerical approximation of
the solution in the following form

xi(t, ξ) =

P
∑

p=0

x(i)
p (t)Lp(ξ) , i = 1, 2, 3 (5.1)

where Lp is the Legendre polynomial of degree p. Since ξ has a uniform distribu-
tion, the Legendre polynomials constitute an optimal trial basis for early times
(see Table 2.1). Employing this polynomial chaos expansion of the solution and
following the method outlined in Section 2.2 we rather straightforwardly arrive
at a system of deterministic ordinary differential equations in time for the co-

efficients x
(i)
p (t). We solve this system by standard fourth-order Runge-Kutta

time integration.
From Eq. (5.1) we see that the approximate solutions xi are polynomials in

the random variable ξ. With time the nonlinear coefficients of these solution
polynomials increase in size. This is an indication that the stochastic charac-
teristics of the solution are changing. As a consequence the trial basis {Lp}
is losing its effectiveness. When the nonlinear part of the solution reaches a
certain threshold level (say at t = t1) we therefore perform a transformation of
the random variable from ξ to ζi given by

ζi = xi(t1, ξ) =

P
∑

p=0

x(i)
p (t1)Lp(ξ) , i = 1, 2, 3 (5.2)

The three new random variables ζi have associated PDFs fζi
(ζi). In Section

5.2 we address the problem of calculating these new PDFs.
For each fζi

we can, employing a Gram-Schmidt orthogonalization algorithm

(see Section 6.3 for details), calculate a set of orthogonal polynomials φ
(ζi)
p (ζi)

with p = 0, . . . , P . By φ
(ζi)
p we denote the polynomial of degree p associated

with fζi
, i.e. fζi

acts as the weighting function in the orthogonality relation. At
time level t = t1 these polynomials constitute an optimal trial basis again. We

therefore use these newly calculated polynomials φ
(ζi)
p and continue to determine

a numerical solution to the Kraichnan-Orszag problem in a new form given by

xi (t, ζ1, ζ2, ζ3) =
∑

0≤l+m+n≤P

x
(i)
lmn(t)φ

(ζ1)
l (ζ1) φ(ζ2)

m (ζ2) φ(ζ3)
n (ζ3) , t ≥ t1

(5.3)
The summation in Eq. (5.3) is over all combinations of the integers l, m and n
for which 0 ≤ l + m + n ≤ P . The total number of expansion terms (N + 1)
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follows from Eq. (2.11) with n = 3 and is given by

N + 1 =

(

P + 3

P

)

=
(P + 3)!

P !3!
=

1

6
(P + 3)(P + 2)(P + 1) ∼ P 3

6
(5.4)

Substituting Eq. (5.3) in the problem equations (3.1) we once again follow
the standard gPC procedure of Section 2.2. This means we perform a Galerkin
projection to end up with a new system of ordinary differential equations for the

new expansion coefficients x
(i)
lmn(t). In Section 5.3 the associated calculations

are written out in detail.
We proceed by marching this new system forward in time again from t = t1

onwards using our standard fourth-order Runge-Kutta solver. Note, however,
that we need to provide ‘initial’ conditions (i.e. conditions at t = t1) for all new

coefficients x
(i)
lmn. These initial conditions follow from the requirement

xi (t1, ζ1, ζ2, ζ3) = ζi , i = 1, 2, 3 (5.5)

We can arrange for the orthogonal expansion polynomials φ
(ζi)
p to all have unity

leading coefficients. Therefore, at t = t1 the coefficients x
(i)
lmn are given by

x
(1)
lmn (t1) =











−φ
(ζ1)
1,0 if l = m = n = 0

1 if l = 1 ∧ m = n = 0

0 otherwise

x
(2)
lmn (t1) =











−φ
(ζ2)
1,0 if l = m = n = 0

1 if m = 1 ∧ l = n = 0

0 otherwise

x
(3)
lmn (t1) =











−φ
(ζ3)
1,0 if l = m = n = 0

1 if n = 1 ∧ l = m = 0

0 otherwise

(5.6)

where φ
(ζi)
1,0 denotes the zeroth order term of the expansion polynomial of degree

one associated with fζi
.

Marching the new system of differential equations forward in time we again
keep a close eye on the nonlinear part of the resulting solution. When, by some
criterion, this nonlinear part has become too large (say at t = t2) we simply
repeat the above procedure in order to regain an optimal trial basis. Hence, we
start by introducing the new random variables

ζ
(2)
i = xi

(

t2, ζ
(1)
1 , ζ

(1)
2 , ζ

(1)
3

)

, i = 1, 2, 3 (5.7)

and continue to calculate their PDFs from which the new optimal trial basis
is calculated by Gram-Schmidt orthogonalization. Note that we have added
a superscript to the random variables in Eq. (5.7) corresponding to the time
instant at which they were introduced. Hence, we have rewritten the original

variables ζi as ζ
(1)
i . The process of updating the polynomial trial basis can be

performed as many times as is required for the particular problem at hand. So,
in general we have

ζ
(k+1)
i = xi

(

tk+1, ζ
(k)
1 , ζ

(k)
2 , ζ

(k)
3

)

, i = 1, 2, 3 , k = 1, 2, . . . ,K − 1 (5.8)
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with associated PDF f
ζ
(k+1)
i

and orthogonal polynomials φ

(

ζ
(k+1)
i

)

p leading to a

polynomial chaos expansion, similar to Eq. (5.3), to be used for tk+1 ≤ t ≤ tk+2.

5.2 Transformation of the PDF

In this section we address the problem of calculating the PDF of the newly
introduced random variables. We first consider a one-dimensional transforma-
tion, like each of the three transformations ξ → ζi in Eq. (5.2). After this
we look at the general, multidimensional case. This is needed to deal with the

transformation
(

ζ
(k)
1 , ζ

(k)
2 , ζ

(k)
3

)

→
(

ζ
(k+1)
1 , ζ

(k+1)
2 , ζ

(k+1)
3

)

of Eq. (5.8).

5.2.1 One-dimensional transformation

Let ξ be a stochastic variable with associated probability density function fξ(ξ).
When we transform this stochastic variable according to ζ = Z(ξ) we would like
to know the PDF associated with the transformed random variable ζ. This PDF
can be calculated by the following formula

fζ(ζ) =
∑

ξn

fξ (ξn)
∣

∣

∣

dZ(ξ)
dξ

|ξ=ξn

∣

∣

∣

(5.9)

where the summation is over all solutions ξn of the equation

ζ = Z(ξ) (5.10)

To understand the idea behind Eqs. (5.9) and (5.10) first note that a particular,
realizable value of ζ, say ζ∗, is the image of one or multiple points ξ∗n in the
domain of the transformation Z. The probability that ζ takes on a value in
an infinitesimal interval around the point ζ = ζ∗ can be denoted by fζ (ζ∗) dζ.
Naturally, this probability must be equal to the probability that ξ lies in an in-
finitesimal intervals around one of the points ξ = ξ∗n. This latter probability can
be denoted as

∑

ξ∗

n
fξ (ξ∗n) dξ. Eq. (5.9) now follows after some manipulation.

A formal proof of Eqs. (5.9) and (5.10) can be found in [17].
As long as the transformation ζ = Z(ξ) is a one-to-one increasing or decreas-

ing function, the resulting PDF fζ will be smooth and continuous. When, on
the other hand, Eq. (5.10) has multiple solutions, fζ will be less well-behaved.
Let us clarify this by an example.

Suppose ξ with PDF fξ(ξ) = 1/2 on [−1, 1] is transformed according to

ζ = Z(ξ) = −0.2ξ2 + 0.2ξ + 0.8 (5.11)

This transformation is visualized in Fig. 5.1. We see that for ζ ≥ 0.8 Eq. (5.11)
has two solutions, while for 0.4 ≤ ζ < 0.8 only a single solution exists. Also,
the transformation has a maximum at ζ = 0.85. These two properties influence
the probability density function associated with ζ (calculated according to Eq.
(5.9)) which is plotted in Fig. 5.2. We see that fζ exhibits a jump discontinuity
at ζ = 0.8 and a vertical asymptote at ζ = 0.85. The jump discontinuity is
found at the value of ζ where Eq. 5.11 changes form having one solution ξ1

to having two solutions ξ1 and ξ2. This means that for ζ ≥ 0.8 the sum in
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Eq. (5.9) consists of two terms instead of one. This sudden extra contribution
causes the jump discontinuity at ζ = 0.8. The asymptote is of course a result

of the vanishing of dZ(ξ)
dξ

at the value of ξ associated with ζ = 0.85.

ξ

ζ

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Figure 5.1: The random variable transformation ζ = −0.2ξ2 + 0.2ξ + 0.8

So, we now understand that (local) extremes in the transformation function
Z result in jump discontinuities and vertical asymptotes in the PDF associated
with the transformed random variable. Above we considered a second order
transformation. A higher order transformation can contain more local extremes
and could therefore result in a transformed PDF that has multiple vertical
asymptotes and jump discontinuities.

We already mentioned in Chapter 4 that we use Gauss-Lobatto-Legendre
numerical integration to evaluate all integrals in random space. A function with
jump discontinuities can perfectly well be treated by Gauss-Lobatto-Legendre
integration: we just have to split the integration domain at the discontinuities
and perform a piecewise integration. For functions with a vertical asymptote,
however, this integration method leads to poor results.

So, we conclude that a random variable transformation with local extremes
will lead to problems in our TDgPC algorithm since the transformed PDF is
subsequently used as a weighting function in integrals. There exist, of course,
integration methods capable of handling vertical asymptotes. However, we will
later see that there is a possibility to keep using the Gauss-Lobatto-Legendre
method and work around the difficulties discussed above.

5.2.2 Multidimensional transformation

Let us now focus on the generalization of Eqs. (5.9) and (5.10) to multiple
dimensions. This problem is discussed in [18]. In this section we briefly present
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Figure 5.2: Probability density function associated with the transformed random
variable

results from this work that can be applied to Eq. (5.8).

Let ξ1, ξ2, . . . , ξn be jointly continuous stochastic variables with joint PDF
fξ1,ξ2,...,ξn

(ξ1, ξ2, . . . , ξn). Let these random variables be transformed according
to ζ1 = Z1(ξ1, ξ2, . . . , ξn), ζ2 = Z2(ξ1, ξ2, . . . , ξn), . . ., ζk = Zk(ξ1, ξ2, . . . , ξn)
where k is some integer satisfying 1 ≤ k ≤ n. We are interested in calculating
the joint PDF fζ1,ζ2,...,ζk

(ζ1, ζ2, . . . , ζk). Let us start, however, by making two
introductory remarks.

Firstly, note that we work with joint PDFs in this section, both for the
original as well as for the transformed random variables. We have, however,
seen in Section 5.1 that we rather need the marginal distributions fζ1

(ζ1), . . .,
fζn

(ζn) for the construction of the optimal polynomial trial basis. If ζ1, . . ., ζn

are statistically independent we have the relation

fζ1,ζ2,...,ζn
(ζ1, ζ2, . . . , ζn) =

n
∏

i=1

fζi
(ζi) (5.12)

linking joint and marginal distributions. But even for statistically dependent
random variables we can always determine a particular marginal distribution
from the joint distribution by ‘integrating out’ the other random variables as
follows

fζk
(ζk) =

∫ ∞

−∞

. . .

∫ ∞

−∞

fζ1,ζ2,...,ζn
(ζ1, ζ2, . . . , ζn)dζ1 . . . dζk−1dζk+1 . . . dζn

(5.13)
Secondly, note that if k < n we can introduce auxiliary random variables

ζk+1 = Zk+1(ξ1, ξ2, . . . , ξn), . . ., ζn = Zn(ξ1, ξ2, . . . , ξn) for judiciously selected
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functions Zk+1, . . ., Zn and calculate the joint PDF fζ1,ζ2,...,ζn
(ξ1, ξ2, . . . , ξn).

By integrating out the auxiliary random variables ζk+1, . . ., ζn the desired
marginal PDF fζ1,ζ2,...,ζk

(ξ1, ξ2, . . . , ξk) can now be determined. Hence, we can
cover all transformations for which k satisfies 1 ≤ k ≤ n by assuming that
k = n. We will make this assumption from this point onwards, i.e. we consider
a transformation from n-dimensional space to n-dimensional space.

Now, let us continue with the calculation of fζ1,ζ2,...,ζn
(ζ1, ζ2, . . . , ζn). We

define the domain D of the transformation by

D = {(ξ1, . . . , ξn) : fξ1,...,ξn
(ξ1, . . . , ξn) > 0} (5.14)

Assume that D can be decomposed into subdomains D1, . . . ,Dm such that ζ1 =
Z1(ξ1, . . . , ξn), ζ2 = Z2(ξ1, . . . , ξn), . . ., ζn = Zn(ξ1, . . . , ξn) are all one-to-one
transformations from Di onto R for i = 1, . . . ,m. Let ξ1 = Z−1

1i (ζ1, . . . , ζn),
. . ., ξn = Z−1

ni (ζ1, . . . , ζn) denote the inverse transformation of R onto Di, i =
1, . . . ,m. Now define the determinants

Ji =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂Z
−1
1i

∂ζ1

∂Z
−1
1i

∂ζ2
. . .

∂Z
−1
1i

∂ζn

∂Z
−1
2i

∂ζ1

∂Z
−1
2i

∂ζ2
. . .

∂Z
−1
2i

∂ζn

...
...

. . .
...

∂Z
−1
ni

∂ζ1

∂Z
−1
ni

∂ζ2
. . .

∂Z
−1
ni

∂ζn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, i = 1, . . . ,m (5.15)

Assuming that all partial derivatives in Eq. (5.15) are continuous and the
determinants Ji are nonzero for i = 1, . . . ,m, we have

fζ1,...,ζn
(ζ1, . . . , ζn) =

m
∑

i=1

|Ji| fξ1,...,ξn

(

Z−1
1i (ζ1, . . . , ζn), . . . , Z−1

ni (ζ1, . . . , ζn)
)

(5.16)
for (ζ1, . . . , ζn) ∈ R.

Eq. (5.16) together with Eq. (5.15) are based on the same principle as their
one-dimensional counterparts Eqs. (5.9) and (5.10). The more complex math-
ematical implementation is actually very well-known from variable transforma-
tions in multiple integrals. A comprehensive discussion of these transformations
can be found in many standard calculus textbooks.

5.3 System of differential equations after a ran-

dom variable transformation

Having made the transformation of Eq. (5.2) from the single initial random
variable ξ to the three new random variables ζi – note that we have dropped the
superscript (1) again for clarity – we approximate the solution to the Kraichnan-
Orszag problem by Eq. (5.3). When we substitute this expression into Eq.
(3.1a) we obtain

∑

0≤i+j+k≤P

dx
(1)
ijk

dt
φ

(ζ1)
i φ

(ζ2)
j φ

(ζ3)
k =

∑

0≤p+q+r≤P

∑

0≤u+v+w≤P

x(2)
pqrx

(3)
uvwφ(ζ1)

p φ(ζ2)
q φ(ζ3)

r φ(ζ1)
u φ(ζ2)

v φ(ζ3)
w (5.17)



40 CHAPTER 5. TDGPC SOLUTION APPROACH: A FIRST TRY

We multiply this equation by φ
(ζ1)
l fζ1

φ
(ζ2)
m fζ2

φ
(ζ3)
n fζ3

and perform a triple inte-
gration w.r.t. ζ1, ζ2 and ζ3. Taking into account the orthogonality of the basis
functions we arrive at

dx
(1)
lmn

dt
=

1
〈

φ
(ζ1)
l

2〉〈

φ
(ζ2)
m

2〉〈

φ
(ζ3)
n

2〉

∑

0≤p+q+r≤P

∑

0≤u+v+w≤P

x(2)
pqrx

(3)
uvw

〈

φ(ζ1)
p φ(ζ1)

u φ
(ζ1)
l

〉〈

φ(ζ2)
q φ(ζ2)

v φ(ζ2)
m

〉〈

φ(ζ3)
r φ(ζ3)

w φ(ζ3)
n

〉

(5.18)

for l,m, n = 0, . . . , P with

〈I (ζi)〉 =

∫ ∞

−∞

I (ζi) fζi
(ζi) dζi (5.19)

for some function I (ζi). Substituting Eq. (5.3) into Eqs. (3.1b) and (3.1c)
gives a result similar to Eq. (5.18). Together these three equations – note that
each of these three equations in turn represents a number of scalar-valued DEs
– constitute the governing deterministic system of differential equations in time

for the coefficients x
(1)
lmn(t), x

(2)
lmn(t) and x

(3)
lmn(t) with 0 ≤ l + m + n ≤ P . As

noted above, we solve this system by standard fourth-order Runge-Kutta time
integration.

5.4 Calculation of mean and variance

We are interested in the mean and variance of x1 (t, ζ1, ζ2, ζ3), x2 (t, ζ1, ζ2, ζ3)
and x3 (t, ζ1, ζ2, ζ3). Once we have solved for the time histories of the solution

coefficients x
(i)
lmn(t) (see Eq. (5.3)) the mean and variance of xi (t, ζ1, ζ2, ζ3) can

be calculated as follows.

5.4.1 Mean

The mean of xi is defined as

x̄i(t) = E [xi (t, ζ1, ζ2, ζ3)] (5.20)

Substituting Eq. (5.3) into Eq. (5.20) we get

x̄i(t) = E





∑

0≤l+m+n≤P

x
(i)
lmn(t)φ

(ζ1)
l (ζ1) φ(ζ2)

m (ζ2) φ(ζ3)
n (ζ3)





=

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

∑

0≤l+m+n≤P

x
(i)
lmn(t)φ

(ζ1)
l φ(ζ2)

m φ(ζ3)
n fζ1,ζ2,ζ3

dζ1dζ2dζ3

≈
∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

∑

0≤l+m+n≤P

x
(i)
lmn(t)φ

(ζ1)
l φ(ζ2)

m φ(ζ3)
n fζ1

fζ2
fζ3

dζ1dζ2dζ3

=
∑

0≤l+m+n≤P

x
(i)
lmn(t)

∞
∫

−∞

φ
(ζ1)
l fζ1

dζ1

∞
∫

−∞

φ(ζ2)
m fζ2

dζ2

∞
∫

−∞

φ(ζ3)
n fζ3

dζ3

= x
(i)
000(t)

(5.21)
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Here we have assumed that ζ1, ζ2 and ζ3 are (practically) statistically indepen-
dent variables. This means we can make the following approximation

fζ1,ζ2,ζ3
(ζ1, ζ2, ζ3) ≈ fζ1

(ζ1) fζ2
(ζ2) fζ3

(ζ3) (5.22)

Furthermore, note that the last step in Eq. (5.21) follows from the orthogonality
of the basis polynomials, i.e.

∞
∫

−∞

φ
(ζi)
i fζi

dζi =

{

1 if i = 0

0 otherwise
(5.23)

5.4.2 Variance

The variance of xi is defined as

Var (xi(t)) = E
[

(xi (t, ζ1, ζ2, ζ3) − x̄i(t))
2
]

= E
[

x2
i (t, ζ1, ζ2, ζ3) − 2xi (t, ζ1, ζ2, ζ3) x̄i(t) + x̄2

i (t)
]

= E
[

x2
i (t, ζ1, ζ2, ζ3)

]

− 2E [xi (t, ζ1, ζ2, ζ3)] x̄i(t) + x̄2
i (t)

= E
[

x2
i (t, ζ1, ζ2, ζ3)

]

− x̄2
i (t)

(5.24)

Substituting the numerical approximation (Eq. (5.3)) and Eq. (5.21) into the
definition of Eq. (5.24) we obtain

Var (xi(t)) = E











∑

0≤l+m+n≤P

x
(i)
lmn(t)φ

(ζ1)
l φ(ζ2)

m φ(ζ3)
n





2





− x

(i)
000

2
(t)

=

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞





∑

0≤l+m+n≤P

x
(i)
lmn(t)φ

(ζ1)
l φ(ζ2)

m φ(ζ3)
n





2

fζ1,ζ2,ζ3
dζ1dζ2dζ3

− x
(i)
000

2
(t)

≈
∞
∫

−∞

∞
∫

−∞

∞
∫

−∞





∑

0≤l+m+n≤P

x
(i)
lmn(t)φ

(ζ1)
l φ(ζ2)
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(5.25)

The fourth line in Eq. (5.25) follows from the orthogonality of the basis poly-
nomials. Also note that again we have made use of the assumption of statistical
independence from Eq. (5.22).
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5.5 First TDgPC results

To test the TDgPC solution approach presented in this chapter we look at the
case α = 0.99. In Figs. 4.6 and 4.7 we already compared results for a gPC
solution approach to a Monte Carlo analysis for this value of α.

5.5.1 One forced transformation at t = 0.5

In Section 5.2 we have seen that calculating the PDFs of the transformed random
variables ζ1, ζ2 and ζ3 becomes more complicated when the random variable
transformations are not one-to-one. To circumvent this complicating factor for
the moment we start off with a calculation with a single forced random variable
transformation. This transformation is carried out at a preselected instant in
time when we know the transformations ξ → ζi in Eq. (5.2) to be one-to-one
for i = 1, 2, 3. We call this instant in time t = t1. So, to keep things relatively
simple, we do not yet use a transformation criterion based on the size of the
nonlinear terms in the expansion of the solution.

Figs. 5.3 and 5.4 show TDgPC results for one forced random variable trans-
formation at t = 0.5. From Fig. 5.3 we learn that the calculation of the mean of
x1 with a TDgPC solution approach remains accurate after the random variable
transformation. Unfortunately, the result for the variance of x1 is less promis-
ing. From Fig. 5.4 it can be seen that the variance calculated by the TDgPC
approach starts to deviate drastically from the correct values after the random
variable transformation. Results for x2 and x3 (which are not included) have
the same character: the mean is accurate, the variance is not. The cause for
this inaccurate variance is almost certainly the assumption of statistical inde-
pendence (Eq. (5.22)) used in Eq. (5.25). Fig. 5.4 gives a strong indication
that Eq. (5.22) does not hold for t1 = 0.5.

5.5.2 One forced transformation at other times

At this moment it would be interesting to see whether another choice of t1
leads to more accurate results for the variance. The assumption of statistical
independence of ζ1, ζ2 and ζ3 might be justified for a different value of t1. In
Figs. 5.5 and 5.6 we therefore look at two alternative cases. Fig. 5.5 shows
results for the variance of x1 for an earlier transformation, namely at t1 = 0.1.
Fig. 5.6 presents results for a later transformation at t1 = 3. Sadly, we must
conclude that for both t1 = 0.1 as well as t1 = 3 the variance is inaccurate.

5.5.3 Difficulties with variance calculation

Having established that the assumption of statistical independence of the trans-
formed random variables (Eq. (5.22)) is not justified we have to revert to the
second line in Eq. (5.25) for the calculation of the variance. Hence, we have to
calculate the variance from the joint PDF fζ1,ζ2,ζ3

rather than from the three
marginal PDFs fζ1

, fζ2
and fζ3

. From the second random variable transforma-
tion onwards (Eq. (5.7)) this would not be much of a problem. We have seen
in Section 5.2.2 that we must compute the joint PDF anyway. In other words:
it is not possible to calculate the marginal PDFs without first determining the
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Figure 5.3: Mean of x1 vs. time for α = 0.99 and t1 = 0.5: TDgPC solution with
P = 3 compared to a Monte Carlo analysis (N = 200, 000)
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joint PDF. At the first random variable transformation, however, we are faced
with some difficulty.

Since we start out at t = 0 with a one-dimensional random input, the first
transformation (Eq. (5.2)) is from one-dimensional to three-dimensional random
space. The joint PDF of the transformed variables fζ1,ζ2,ζ3

is presumably not
very well-behaved. We can use Eqs. (5.9) and (5.10) to calculate fζ1

, fζ2
and fζ3

,
but not fζ1,ζ2,ζ3

. Obviously, Eq. (5.15) and Eq. (5.16) do not apply since the
transformed random space is of higher dimensionality than the original random
space. So, after the first random variable transformation fζ1,ζ2,ζ3

cannot readily
be determined. This prevents an accurate calculation of the variance. In the
next chapter we discuss a way to overcome this problem.
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Chapter 6

Modifications to the

TDgPC approach

We have seen that the solution procedure presented in Chapter 5 leads to erro-
neous results for the variance of the solution (Figs. 5.4–5.6). Apparently, the
transformed random variables ζ1, ζ2 and ζ3 are not statistically independent
(Eq. (5.22) is not justified). Hence, the calculation of the variance according to
Eq. (5.25) leads to erroneous results. Since the joint probability density func-
tion fζ1,ζ2,ζ3

cannot readily be determined we need to look for an alternative
approach.

6.1 Integration over the original random vari-

able

The integrand in Eq. (5.25) for the variance of xi is a function of the transformed
random variables ζ1, ζ2 and ζ3. These transformed random variables in turn
are all functions of the original random variable ξ: ζ1 = Z1(ξ), ζ2 = Z2(ξ) and
ζ3 = Z3(ξ). Hence, the integrand in Eq. (5.25) can also be seen as a function
solely dependent on ξ. To avoid the calculation of fζ1,ζ2,ζ3

we can transform the
triple integral over ζ1, ζ2 and ζ3 in Eq. (5.25) to a single integral over ξ.

We do this by recognizing that the following relation should be valid for
every realisable point (ζ∗1 , ζ∗2 , ζ∗3 )

fζ1,ζ2,ζ3
(ζ∗1 , ζ∗2 , ζ∗3 ) dζ1dζ2dζ3 =

∑

ξ∗

fξ (ξ∗) dξ (6.1)

where the summation is over all points ξ∗ for which Z1(ξ
∗) = ζ∗1 , Z2(ξ

∗) = ζ∗2
and Z3(ξ

∗) = ζ∗3 . Eq. (6.1) merely states that, given the transformation ξ →
(ζ1, ζ2, ζ3), the probability that (ζ1, ζ2, ζ3) lies within an infinitesimal volume
around (ζ∗1 , ζ∗2 , ζ∗3 ) should be equal to the probability that ξ lies within the
(possibly multiple) corresponding infinitesimal interval(s) around ξ∗. It follows
that the following relation should then also be valid

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

. . . fζ1,ζ2,ζ3
dζ1dζ2dζ3 =

1
∫

−1

. . . fξdξ (6.2)

47
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Hence, with the help of Eq. (6.2) we can calculate the variance of xi according
to

Var (xi(t)) = E
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
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(6.3)

Transforming an integral over the transformed random variables to an inte-
gral over the original random variable is a technique that can be used to good
advantage more often than just for the calculation of the variance of xi. We can
also circumvent the approximation in Eq. (5.22) in the calculation of the mean
of the solution. This leads to

x̄i(t) =

∞
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−∞

∞
∫

−∞

∞
∫
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x
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m (Z2(ξ)) φ(ζ3)
n (Z3(ξ)) fξ(ξ)dξ

(6.4)

Furthermore, we can just as well transform a single integral over a trans-
formed random variable to a single integral over the original random variable.
For similarly to Eq. (6.1) we can also say that

fζi
(ζ∗i ) dζi =

∑

ξ∗

fξ (ξ∗) dξ (6.5)

so
∞
∫

−∞

. . . fζi
dζi =

1
∫

−1

. . . fξdξ (6.6)

With the help of Eq. (6.6) we can transform all integrals needed for the determi-
nation of the governing system of differential equations (Eqs. (5.18) and (5.19))
to integrals over the original random variable ξ. The integrals in the Gram-
Schmidt orthogonalization algorithm (to calculate the orthogonal polynomials

φ
(ζi)
p (ζi)) can similarly be transformed to integrals over ξ.

To conclude, we make the following important point. Performing all integra-
tions in ξ-space has a major advantage: there is no need to calculate the prob-
ability density functions of the transformed random variables anymore! This
means we do not have to deal with all the complications described in Section
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5.2. Furthermore, since the calculation of the transformed PDFs accounts for a
large portion of the total computation time, we observe a dramatic increase in
computation speed.

6.1.1 Results after modification

Performing all integrations in ξ-space and calculating the variance according to
Eq. (6.3) hopefully fixes the problem of inaccurate results for the variance after
the random variable transformation (see Fig. 5.4). We check this in Fig. 6.1.
We see that the variance is now indeed accurately calculated for t > t1 = 0.5.
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Figure 6.1: Variance of x1 vs. time for α = 0.99 and t1 = 0.5: TDgPC solution with
P = 2 compared to a Monte Carlo analysis (N = 200, 000)

With this issue resolved the question now rises whether the TDgPC solution
approach actually leads to favourable results as compared to a standard gPC
approach. In other words, do these random variable transformations (Eqs. (5.2)
and (5.8)) result in a calculated solution that remains accurate for larger values
of time? In Figs. 6.2 and 6.3 we present results for the mean and variance of
x1 over a larger time scale. A comparison is made between a TDgPC and a
gPC solution approach. Results from a Monte Carlo analysis are also shown for
reference. The TDgPC results were calculated by performing random variable
transformations at t-intervals of 0.5 starting at t = 0.5. This way the nonlinear
part of the solution expansion remains relatively small. Sadly, we must conclude
form Figs. 6.2 and 6.3 that the TDgPC results presented are, contrary to our
anticipation, even less accurate than the gPC solution shown. Also, the TDgPC
solution is seen to blow up around t = 13.
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Figure 6.2: Mean of x1 vs. time for α = 0.99: TDgPC solution with P = 2 compared
to a gPC solution with P = 3 and a Monte Carlo analysis (N = 200, 000)
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6.2 Transforming every time step

Do the results from Figs. 6.2 and 6.3 mean we have to close the curtain on the
TDgPC solution approach to the Kraichnan-Orszag problem? Not quite yet.
We can, of course, increase the maximum degree of the expansion polynomials
and see what this brings us. But first, let us investigate another option.

Remember that the transformation of all integrals to ξ-space led to a huge
reduction of the computation time. Since we do not need to calculate new PDFs
with a random variable change anymore, we are now in a position to transform
the random variables much more often. We can let go of our original idea
of performing a random variable change every time the nonlinear part of the
solution reaches a certain threshold value. In fact, it now has become practically
feasible to execute a random variable transformation at every time step! The
following section presents some results with this modification to the TDgPC
solution approach.

6.2.1 Results after modification

Figs. 6.4 and 6.5 show results for the mean and variance, respectively, of x1 cal-
culated using the aforementioned modification to the TDgPC solution approach
(again, results for x2 and x3 can be found in Appendix A.3). Adjusting the ran-
dom variables and corresponding expansion polynomials at every time step can
be seen to have a dramatic effect on the accuracy of the solution. Not long after
t = 13 the results generated with a gPC solution approach stop to bear any re-
semblance to the correct solution. However, using a TDgPC solution approach
with expansion polynomials having a maximum degree of only two (P = 2)
already leads to pretty accurate results. The calculated solution can be seen to
have the same characteristics as the results from the Monte Carlo analysis for
the entire range of t displayed. Increasing the maximum degree of the expansion
polynomials to P = 3 can be seen to results in a significantly higher accuracy.
In fact, the TDgPC results with P = 3 are graphically indistinguishable from
the Monte Carlo results on the scale of these plots.

In Figs. 6.6 and 6.7 the time evolution of the ‘error’ in the mean and
variance, respectively, of x1 is shown for various values of P . We write error
with quotation marks since the exact solution of the problem is unknown. So,
we rather take the results from a Monte Carlo analysis with 200,000 samples as
a reference. Hence, we calculate the ‘error’ in the mean according to

ǫx̄i
(t) = x̄TDgPC

i (t) − x̄MC
i (t) (6.7)

and likewise for the error in the variance. The error plots more clearly show the
accuracy we gain by going from P = 2 to P = 3. The accuracy of a TDgPC
solution with P = 4 can be seen to be almost exactly equal to a solution with
P = 3. Presumably, the higher accuracy that is to be expected from the use
of higher degree expansion polynomials is nullified due to inaccuracies in the
numerical time and/or random space integration that now become the dominant
source of error. Also, remember that our reference solution is not exact. So,
it may be that the TDgPC results for P = 3 and P = 4 already lie within the
margin of error of this the Monte Carlo reference solution. Then it would make
little sense to compare the accuracy of these TDgPC solutions on the basis of
Eq. (6.7).
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Figure 6.4: Mean of x1 vs. time for α = 0.99: TDgPC solutions with P = 2 and
P = 3 compared to gPC solutions with P = 3 and P = 22 and a Monte
Carlo analysis (N = 200, 000)
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6.3 Modified Gram-Schmidt algorithm

Up to this point all TDgPC results presented were calculated using a classical
Gram-Schmidt algorithm to compute the expansion polynomials. Thus, taking
φ0 = 1, all higher order monic orthogonal polynomials are generated recursively
according to

φp(ζ) = ζp −
p−1
∑

k=0

cpkφk(ζ) , p = 1, 2, . . . , P (6.8)

with

cpk =
〈ζpφk(ζ)〉
〈φ2

k(ζ)〉 (6.9)

Note that cpkφk is the orthogonal projection of ζp onto φk. Hence, the sum-
mation in Eq. (6.8) removes the components of ζp in the direction of all lower
order expansion polynomials φ0, φ1, . . . , φk−1. As discussed in Section 6.1 the
ensemble averages 〈. . .〉 are numerically evaluated in ξ-space.

It is well known (see, for instance, [19]) that the classical Gram-Schmidt
algorithm presented in Eqs. (6.8) and (6.9) is numerically unstable, i.e. finite-
precision arithmetic can result in a computed set of polynomials (φ0, φ1, . . . , φP )
that is not completely orthogonal. Fortunately, numerical stability can be
achieved in a number of ways.

We can, for instance, incorporate a reorthogonalization step (see [19]) in the
Gram-Schmidt algorithm: we feed back the first series of calculated ‘orthogonal’
polynomials into Eqs. (6.8) and (6.9) (replacing the monomials ζp) and carry out
the orthogonalization process a second time. Since the first series of calculated
polynomials is already close to orthogonal, the second series of polynomials will
be truly orthogonal. However, the reorthogonalization step obviously doubles
the computing time required.

Another, computationally cheaper way to achieve numerical stability is the
modified Gram-Schmidt algorithm introduced below (see, for instance, [20]).
To compute a set of P + 1 orthogonal polynomials φp both the classical as well
as the modified Gram-Schmidt algorithm start out with a set of monomials
(

1, ζ, ζ2, . . . , ζP
)

. The classical algorithm of Eqs. (6.8) and (6.9) first considers
φ1 and updates this polynomial to become orthogonal to all polynomials of
lower degree. This process is then repeated all the way up to φP . Following the
modified algorithm, on the other hand, we take the lowest degree polynomial φ0

and update all polynomials of higher degree φ1, . . . , φP to become orthogonal
to φ0. We proceed by making the updated polynomials φ2, . . . , φP orthogonal
to the updated φ1. This process is repeated until, in the final step, we only
have to update φP to become orthogonal to φP−1. Using exact arithmetic
the orthogonal polynomials calculated according to both algorithms would be
identical. The modified algorithm, however, is less sensitive to rounding errors
and produces more accurate results using finite-precision arithmetic.

Do we get more accurate TDgPC results if we use the modified Gram-
Schmidt algorithm instead of the classical one? Does an extra reorthogonal-
ization step improve the accuracy? In Figs. 6.8 and 6.9 we show the errors in
TDgPC calculations with P = 2 using the three different options above for the
Gram-Schmidt orthogonalization. At least for P = 2 we do not observe any
difference between the various options. However, it could be that the modified
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Gram-Schmidt algorithm proves to be more accurate for computations employ-
ing basis polynomials of higher maximum degree. In any case, it does not hurt
to use the modified algorithm instead of the classical one.
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Figure 6.8: Error in the mean of x1 vs. time for α = 0.99: TDgPC results using
various Gram-Schmidt orthogonalization algorithms

For both the classical as well as the modified Gram-Schmidt algorithm we
have the possibility of adding a normalization step. This results in expansion
polynomials that are not only orthogonal but also have the property

〈

φ2
p(ζ)

〉

= 1 , (p = 1, 2, . . . , P ) (6.10)

Hence, the expansion polynomials are orthonormal. As can be seen in Figs. 6.8
and 6.9 such a normalization step has a negative influence on the accuracy of
the results.

Witteveen and Bijl [7] suggest that the Gram-Schmidt orthogonalization can
be done efficiently by first calculating the ensemble averages of the monomials
ζp, for p = 1, 2, . . . , 2P . All more complicated ensemble averages, like, for in-
stance, in Eq. (6.9), can then be calculated by a summation of the ensemble
averages of the monomials ζp. For our purposes this works fine for P = 2.
However, if we set P = 3 this strategy leads to the breakdown of the orthogo-
nalization algorithm due to rounding errors.

〈

φ2
3(ζ)

〉

in Eq. (6.9), for instance,
is typically very small for our problem. Using the strategy of Witteveen and Bijl
in combination with double precision arithmetic, this ensemble average is some-
times calculated to be zero, leading to a division by zero and the breakdown
of the algorithm. Luckily, the approach of calculating all ensemble averages
directly, rather than as the summation of the ensemble averages of monomials,
does not suffer from this problem.
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6.4 Effect of integration parameters

In this section we examine the effect of the number of Gauss-Lobatto-Legendre
quadrature points Q (for integration in the random space) and the time step
∆t on the accuracy of a TDgPC solution of the Kraichnan-Orszag problem.

6.4.1 Number of quadrature points

We have mentioned before that we use Gauss-Lobatto-Legendre numerical in-
tegration [16] to evaluate all integrals in random space. In Chapter 4 we noted
that for a plain gPC solution approach taking a number of quadrature points
Q ≥ 3

2P + 3
2 results in exact integration in the random space. This follows from

the fact that all integrands are polynomials with a maximum degree of 3P . For
a TDgPC solution approach, however, the situation is different.

In our TDgPC algorithm all integrations in the random space are executed
in terms of the original random variable ξ. After the first random variable
transformation (Eq. (5.2)) new expansion polynomials of maximum degree P

are determined in terms of the transformed random variables ζ
(1)
1 , ζ

(1)
2 and ζ

(1)
3 ,

which are themselves polynomials of degree P in terms of ξ. Hence, the expan-
sion polynomials after the first random variable transformation can also be seen
as polynomials of maximum degree PP in terms of ξ. By the same reasoning
we find that the expansion polynomials after the kth random variable trans-
formation can both be seen as polynomials of maximum degree P in terms of

ζ
(k)
1 , ζ

(k)
2 and ζ

(k)
3 as well as polynomials of maximum degree P kP in terms of

ξ. So, after k random variable transformations we need to evaluate integrals of
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polynomials with a maximum degree of 3P kP in ξ-space. Obviously, employing
enough quadrature points to evaluate these integrals exactly (Q ≥ 3

2P kP + 3
2 )

ceases to be practically feasible after only a couple of random variable transfor-
mations. We will have to settle for less quadrature points and approximate the
required integrals rather than to evaluate them exactly. However, we expect this
approximation to be very good as long as we increase the number of quadrature
points somewhat over the values of Q we used for the gPC calculations.

In Figs. 6.10 and 6.11 we compare the error evolution of TDgPC calculations
with P = 2 for various numbers of quadrature points. We see that taking Q = 10
is clearly not sufficient. Setting Q = 20 shows a big improvement; Q = 30 is
perhaps still a little bit better. We also see that increasing Q above a value
of (approximately) 30 has no additional effect and does not lead to a further
reduction of the error.
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Figure 6.10: Error in the mean of x1 vs. time for α = 0.99: TDgPC results with
P = 2 using various amounts of quadrature points Q

6.4.2 Time step

In Figs. 6.12 and 6.13 we investigate the effect of the time step on the error
evolution of TDgPC calculations with P = 3. Note that we employ a semilog-
scale in these figures so that we can better discriminate between the various
curves. We see that reducing the time step from ∆t = 0.1 to ∆t = 0.01 results
in a large improvement in accuracy. A further reduction of the time step to
∆t = 0.001 results in an even more accurate solution, albeit that the gain in
accuracy is smaller. Up to this point all gPC and TDgPC results presented in
this work were calculated using ∆t = 0.001.
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P = 2 using various amounts of quadrature points Q
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Figure 6.13: Error in the variance of x1 vs. time for α = 0.99: TDgPC results with
P = 3 for various time steps ∆t

6.5 Distribution functions

Statistical moments of the solution (x1(t), x2(t), x3(t)) like the mean or the

variance can be computed from the solution coefficients x
(i)
lmn(t) only, as we

have seen in Eqs. (6.4) and (6.3). But suppose now that we are interested in
the distribution functions of x1, x2 and x3 at a certain time level tk. Remember
that we calculate the solution in terms of polynomials of the random variables

ζ
(k)
1 , ζ

(k)
2 and ζ

(k)
3 (see Eq. (5.3)) which are transformed with every time step.

We noted before that with our TDgPC algorithm there is no need to compute
the probability density functions of these transformed random variables. But
how then can the distribution functions of x1 x2 and x3 be determined without
knowledge of the PDFs of the transformed random variables?

One probability density function that is known is the PDF of the original
random variable ξ. In Section 6.4.1 we already discussed that all transformed

random variables ζ
(k)
1 , ζ

(k)
2 and ζ

(k)
3 are ultimately polynomial functions of ξ.

These polynomial functions get very complex after only a couple of time steps, so
it is unpractical to exactly keep track of these functional relationships between
the transformed and the original random variables. Rather, we only calculate
the transformed random variables at a limited number of points ξq (q = 1 . . . Q):
the Gauss-Lobatto-Legendre quadrature points. With the help of Eq. (5.3) we
can now construct graphs like Fig. 6.14: the value of x1 corresponding to the
points ξq at a certain instant in time (t = 6 in this figure).

Since the exact function x1(ξ) is too complex we interpolate between the
points (ξq, x1(ξq)). In Fig. 6.14 we compare two interpolation methods: a
polynomial fit of degree 10 and a natural cubic spline. Polynomial fitting is
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computationally cheaper but can be seen to lead to undesired wiggles. The
natural cubic spline interpolation results in a far more natural fit. From the
interpolation function – preferably the natural cubic spline – and the PDF of
ξ we can now calculate the distribution function of x1, denoted by Fx1

(x1), at
any desired point. A plot of Fx1

(x1) at t = 6 can be found in Fig. 6.15.
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Figure 6.14: TDgPC calculation for α = 0.99 with P = 2: x1 as a function of ξ at
t = 6
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Figure 6.15: TDgPC calculation for α = 0.99 with P = 2: Distribution function of
x1 at t = 6

6.6 Results for α = 0.995

In this section we look at TDgPC results for α = 0.995 in Eq. (3.2). We have
seen in Fig. 4.1 that for x1(0) > 1 the solution curve belongs to a completely
different branch of trajectories than for x1(0) < 1 . Note that P (x1(0) > 1) =
0.25 and P (x1(0) < 1) = 0.75 for α = 0.995. Hence, this is a challenging
problem and we have seen in Figs. 4.9 and 4.10 that a plain gPC solution
breaks down very quickly.

In Figs. 6.16 and 6.17 TDgPC results are presented for the mean and vari-
ance of x1, respectively. We again compare the TDgPC solutions with results
from a Monte Carlo simulation. Also for α = 0.995 TDgPC can be seen to
produce very decent results. The accuracy of the solution with P = 2 is compa-
rable to the case α = 0.99. Again there is a significant improvement going from
P = 2 to P = 3. However, the solution for P = 3 is not quite as accurate as in
the case α = 0.99, presumably due to the higher complexity of the problem with
α = 0.995. In Figs. 6.18 and 6.19 we consider the ‘error’ in the mean and vari-
ance of x1, respectively, taking the Monte Carlo simulation with N = 100, 000
as a reference. These figures more clearly show that for α = 0.995, going from
P = 2 to P = 3, the gain in accuracy is not as large as for the case α = 0.995
(cf. Figs. 6.6 and 6.7).
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Figure 6.16: Mean of x1 vs. time for α = 0.995: TDgPC solutions with P = 2 and
P = 3 compared to a gPC solution with P = 10 and a Monte Carlo
analysis (N = 100, 000)
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Figure 6.17: Variance of x1 vs. time for α = 0.995: TDgPC solutions with P = 2
and P = 3 compared to a gPC solution with P = 10 and a Monte Carlo
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Chapter 7

A three-dimensional

random space

In the previous chapters we have studied the Kraichnan-Orszag problem (Eq.
(3.1)) subject to initial conditions depending on a single random variable (Eq.
(3.2)). Another interesting set of initial conditions is the following

x1(0) = α + 0.01ξ1 , x2(0) = β + 0.01ξ2 , x3(0) = γ + 0.01ξ3 (7.1)

where α, β and γ are constants and ξ1, ξ2 and ξ3 are uniformly distributed
random variables on the interval [−1, 1]. ξ1, ξ2 and ξ3 are statistically indepen-
dent. Can the TDgPC solution approach discussed in Chapters 5 and 6 also be
successfully applied to Eq. (3.1) subject to Eq. (7.1)? In this chapter we study
this problem taking α = 0.99, β = 1 and γ = 1.

7.1 Alterations to the solution approach

Conceptually we do not need to adapt the solution approach very much. Of
course we now directly start out with a three-dimensional expansion in terms
of ξ1, ξ2 and ξ3 analogous to Eq. (5.3). We introduce transformed random
variables according to Eq. (5.8) and calculate new expansion polynomials just
like for the single random variable case. Also similar to the singular random
variable case we transform all integrals occurring in the solution algorithm to
integrals over the original independent random variables ξ1, ξ2 and ξ3. Since we
now have three original random variables instead of one Eq. (6.1) is rewritten
as

fζ1,ζ2,ζ3
(ζ∗1 , ζ∗2 , ζ∗3 ) dζ1dζ2dζ3 =

∑

(ξ∗

1 ,ξ∗

2 ,ξ∗

3)

fξ1,ξ2,ξ3
(ξ∗1 , ξ∗2 , ξ∗3) dξ1dξ2dξ3

=
∑

(ξ∗

1 ,ξ∗

2 ,ξ∗

3)

fξ1
(ξ∗1) fξ2

(ξ∗2) fξ3
(ξ∗3) dξ1dξ2dξ3 (7.2)

for every realisable point (ζ∗1 , ζ∗2 , ζ∗3 ). The summation in Eq. (7.2) is over
all points (ξ∗1 , ξ∗2 , ξ∗3) for which Z1 (ξ∗1 , ξ∗2 , ξ∗3) = ζ∗1 , Z2 (ξ∗1 , ξ∗2 , ξ∗3) = ζ∗2 and
Z3 (ξ∗1 , ξ∗2 , ξ∗3) = ζ∗3 . Note that in Eq. (7.2) we have made use of the statistical
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independence of ξ1, ξ2 and ξ3. It follows from Eq. (7.2) that integrals over the
new random variables can be transformed according to

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

. . . fζ1,ζ2,ζ3
dζ1dζ2dζ3 =

1
∫

−1

1
∫

−1

1
∫

−1

. . . fξ1
fξ2

fξ3
dξ1dξ2dξ3 (7.3)

Unlike the single random variable case we still have to deal with a three-
dimensional integral after transformation. We will treat this integral as a re-
peated one-dimensional integral. Obviously this will lead to a serious increase
in computation time. To counteract this effect we bring back the number of
Gauss-Lobatto-Legendre quadrature points to 20. This, in turn, results in a
significant reduction of the computation time. Also, as we will see later, it
appears that the accuracy of the calculation results does not suffer from this
reduction of the number of quadrature points.

7.2 Results

In Figs. 7.1 and 7.2 we compare the results from a TDgPC solution approach
to gPC results and a Monte-Carlo analysis. We choose values of P = 2 and
P = 3 for the two TDgPC solutions in this comparison. It is immediately
clear that the TDGPC approach performs a lot better than the gPC solution
approach. From approximately t = 12 onwards the gPC results for the mean of
x1 lose any resemblance to the correct solution. When looking at the variance
of x1 this point is already reached at t = 4. From our experience of Section 3.4
and Chapter 4 we know that increasing the maximum degree of the expansion
polynomials will not lead to significantly better gPC results.

The TDgPC results with P = 2 remain reasonably close to the Monte Carlo
analysis results for the entire time interval considered, although the curves can
be seen to lose some of their accuracy as time progresses. Raising P from P = 2
to P = 3 results in an increase in accuracy: TDgPC results for the mean of
x1 are now graphically indistinguishable from the Monte Carlo results for the
entire time interval displayed. The accuracy of the variance of x1 goes up as
well, but the TDgPC curve is not precisely on top of the Monte Carlo curve as
was the case for a one-dimensional random input (cf. Fig. 6.5). A comparison of
TDgPC, gPC and Monte Carlo results for x2 and x3 shows similar characteristics
as the results for x1 (see Appendix A.4).

7.2.1 Varying solution parameters

There are a number of parameters that can be adjusted when performing a
TDgPC calculation, for instance:

• the maximum degree of the expansion polynomials P

• the number of Gauss-Lobatto-Legendre quadrature points Q

• the time step ∆t in the numerical integration

Obviously, all of these three parameters have a profound effect on the computa-
tion time. Furthermore, it is of course interesting to look at the effect of these
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Figure 7.1: Mean of x1 vs. time for α = 0.99, β = 1 and γ = 1: TDgPC solutions
(P = 2 and P = 3) compared to a gPC solution (P = 2) and a Monte
Carlo analysis (N = 1, 000, 000)
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parameters on the accuracy of the calculated solution. Rather than conducting
an exhaustive study on this issue we will compare the results for a couple of
different sets P , Q and ∆t in Figs. 7.3 and 7.4. For these figures we have
assumed that the Monte Carlo result is the most accurate representation of the
exact solution. In Figs. 7.3 and 7.4 we consider the evolution of the ‘error’ (in
the sense of Eq. (6.7)) in the mean and the variance of x1, respectively. Taking
the case P = 2, Q = 20 and ∆t = 0.01 as a (computationally relatively cheap)
reference solution we can make the following observations:

• Doubling the number of quadrature points to Q = 40 does not result in a
more accurate solution. The result for the mean with Q = 40 is practically
identical to the reference solution with Q = 20. The result for the variance
differs somewhat from the reference solution but is of the same accuracy.
Increasing Q is also very unattractive from a computational viewpoint
since this leads to a sharp rise of the computation time. Therefore we
only calculated the solution with Q = 40 up to t = 10.

• Increasing the maximum degree of the expansion polynomials to P =
3 does result in a significantly more accurate solution. A comparable
increase in accuracy can be obtained by decreasing the time step by a
factor 10 to ∆t = 0.001, with the former option of increasing P perhaps
performing slightly better. Also, increasing P by one brings with it only
roughly 50% of the rise in computation time that we experience due to a
reduction of the time step to ∆t = 0.001.

• A calculation with both third degree expansion polynomials as well as a
time step of ∆t = 0.001 is hardly more accurate than the results for the
cases P = 2, ∆t = 0.001 and P = 3, ∆t = 0.01.

• Increasing P further to P = 4 does not lead to a significantly more accu-
rate solution than for P = 3. It is remarkable, however, that the curves
for P = 4, ∆t = 0.01 and P = 3, ∆t = 0.001 are almost exactly on top
of each other. This may indicate that the Monte Carlo calculation on
which the ‘error’ calculation in Figs. 7.3 and 7.4 is based is in fact more
inaccurate than these higher accuracy TDgPC solutions. In other words,
imagine a situation where the TDgPC solutions with P = 4, ∆t = 0.01
and P = 3, ∆t = 0.001 have converged strongly to the exact solution
and the Monte Carlo solution is still a little bit off this exact solution.
This situation would also result in an ‘error’ plot similar to Figs. 7.3 and
7.4. Perhaps N = 1, 000, 000 are still too little samples to obtain Monte
Carlo results that are more accurate than the higher accuracy TDgPC so-
lutions. Remember that we have a three-dimensional random input. So,
N = 1, 000, 000 can also be seen as only 3

√
1, 000, 000 = 100 samples in

each dimension. A more thorough investigation is needed before we can
say anything decisive on this matter.
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Figure 7.3: Error in the mean of x1 vs. time for α = 0.99, β = 1 and γ = 1: TDgPC
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Part II

The growth equation

71





Chapter 8

Problem definition

In Chapter 6 we have refined Vos’s original TDgPC method in order to make
it applicable to the Kraichnan-Orszag three-mode problem. In the remaining
chapters of this work we revisit the single differential equation test problem
employed by Vos. We solve this problem using our modified TDgPC algorithm.
With our refinements we expect to achieve the same accuracy as obtained by
Vos, but at a substantially lower computational cost.

8.1 The growth equation

While Vos [10] was in the process of developing his time-dependent generalized
polynomial chaos solution technique he concerned himself with the the following
stochastic ordinary differential equation

du(t, ξ)

dt
+ k(ξ)u(t, ξ) = 0 , u(0) = 1 (8.1)

Since this equation can be thought of as modelling exponential population
growth (with k representing the reproduction rate) we will call Eq. (8.1) the
growth equation. Vos considers the case where the randomness enters the prob-
lem through k according to

k(ξ) =
1

2
ξ +

1

2
(8.2)

where ξ is a uniformly distributed random variable on the interval [−1, 1].
Hence, ξ has the following PDF

fξ(ξ) =
1

2
, −1 ≤ ξ ≤ 1 (8.3)

In contrast to the Kraichnan-Orszag problem, the exact solution to Eq. (8.1)
can of course be determined in a straightforward manner. We almost trivially
find

u(t, ξ) = e−k(ξ)t (8.4)

Taking note of Eqs. (8.2) and (8.3) the exact mean and variance can also easily
be calculated according to

uexact(t) = E [uexact(t)] =

1
∫

−1

e−k(ξ)tfξ(ξ)dξ =
1 − e−t

t
(8.5)
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and

σexact(t) = E
[

(uexact(t) − uexact(t))
2
]

=
1 − e−2t

2t
−
(

1 − e−t

t

)2

(8.6)

We have plotted these exact results for u and σ as a function of t in Figs. 8.1
and 8.2, respectively.
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Figure 8.1: Mean of u vs. time for u0 = 1: exact solution
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Chapter 9

Vos’s solution algorithm

Vos [10] does not adapt the expansion basis of the calculated solution at every
time step. Instead, he employs a reinitialisation criterion: a new expansion
basis is calculated when the nonlinear part of the solution reaches a certain size
relative to the linear part of the solution. The reinitialisation process starts
with the introduction of a new random variable ζ = Z(ξ) being equal to the
solution at the reinitialisation time u (t1, ξ). Vos then proceeds by calculating
the PDF of this new random variable according to

fζ(ζ) =
∑

ξn

fξ (ξn)
∣

∣

∣

dZ(ξ)
dξ

|ξ=ξn

∣

∣

∣

(9.1)

where the summation is over all solutions ξn of the equation

ζ = Z(ξ) (9.2)

The transition from the original random variable ξ to the first new random
variable ζ can be performed smoothly with the help of these equations. However,
the use of Eq. (9.1) for subsequent transformations of the random variable
becomes less and less attractive from a computational point of view. This can
be understood as follows.

After a couple of random variable transformations the associated PDF be-
comes a very complex function. During the TDgPC computation the PDF is
not stored into memory as a function. Instead the PDF is evaluated (and sub-
sequently stored into memory) at a limited number of points only, the so-called
Gauss-Lobatto-Legendre quadrature points. Note that this makes sense since
the PDF is only needed as a weighting function in a number of integrals. But
what happens when we want to evaluate the PDF for the random variable after,
say, five transformations? From Eq. (9.1) we see that this ‘new’ PDF can be
expressed in the ‘previous’ PDF, i.e. the PDF for the random variable after four
transformations. We need values for this ‘previous’ PDF at the solutions to Eq.
(9.2). However, the ‘previous’ PDF has only been calculated at the quadrature
points. In general, this set of quadrature points does not contain the solutions
to Eq. (9.2). Vos overcomes this problem by repeatedly applying Eq. (9.1).
The value of a PDF at a certain point can always be expressed in the ‘previous’
PDF. So, to evaluate the PDF for the random variable after five transformations
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at a certain quadrature point one can ‘backtrack’ all the way to the PDF of the
original variable in Eq. (8.3). Being a constant, this original PDF is of course
known at every point and not only at the quadrature points. Note that this
‘backtracking’ can become very costly from a computational point of view: the
set of old PDFs to track back through gets longer and longer with every new
random variable transformation.

Luckily, we have learned in Section 6.1 that there is absolutely no need to
calculate the PDF of the newly introduced random variables! In the TDgPC
solution algorithm of the Kraichnan-Orszag problem all integrals can be evalu-
ated in ξ-space. There is no reason to assume that this trick would not work
for the TDgPC solution of the growth equation.

In the next section we will present TDgPC solutions of the growth equation
with all integrals evaluated in ξ-space. We will initially use Vos’s reinitialisation
criterion

max (|u2(t)| , . . . , |uP (t)|)
|u1(t)|

≥ θ (9.3)

where ui(t) are the expansion coefficients of the calculated solution u(t). Vos
uses θ = 1/6. We will use almost the same value and set θ = 0.15.



Chapter 10

Results

In this section we compare TDgPC computations for Eq. (8.1) together with
Eqs. (8.2) and (8.3) using various amounts of quadrature points, setting a
number of different time steps and employing different maximum degrees of
the expansion polynomials. Also, we will try to establish if it is preferable
to use a reinitialisation criterion (like Vos did) or to just adapt the expansion
polynomials at every time step (as we did in the case of the Kraichnan-Orszag
problem).

We will compare the different TDgPC computations on the basis of the error
in both mean and variance of the calculated solution. We define these errors as
follows

ǫmean(t) =

∣

∣

∣

∣

u(t) − uexact(t)

uexact(t)

∣

∣

∣

∣

(10.1)

and

ǫvar(t) =

∣

∣

∣

∣

σ(t) − σexact(t)

σexact(t)

∣

∣

∣

∣

(10.2)

10.1 Different quantities of quadrature points

Vos used a number of Q = 300 for his TDgPC computations on the growth equa-
tion. Setting Q this high may have been motivated by the idea to have enough
resolution near the boundaries of the domain. This might have been important
since the corresponding PDF has a tendency to form a sharper and sharper peak
at one boundary of the domain through the random variable transformations.

Remember that, contrary to Vos, we do not calculate these PDFs of the
transformed random variables. We evaluate all integrals in ξ-space using the
original PDF (Eq. (8.3)). So, it may very well be possible to achieve accurate
TDgPC results with fewer quadrature points. We investigate this in Figs. 10.1
and 10.2 where we show the error in the mean and variance, respectively, of
TDgPC calculations using different numbers of quadrature points.

From these two figures it becomes clear that as long as Q ≥ 10 the pre-
cise number of quadrature points is largely immaterial to the accuracy of the
solution. The only exception is the ǫmean curve for Q = 10 which exhibits a
strange spike around t = 25. Setting Q < 10 can be seen to result in a loss in
accuracy for both mean and variance of the solution. The results in Figs. 10.1
and 10.2 are for P = 3. It may well be that we need more quadrature points
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Figure 10.1: Error in the mean of u vs. time for u0 = 1: TDgPC solutions with
P = 3 for different amounts of quadrature points Q
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Figure 10.2: Error in the variance of u vs. time for u0 = 1: TDgPC solutions with
P = 3 for different amounts of quadrature points Q
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when P is set to a higher value. We can conclude, however, that we can do with
substantially less quadrature points than Vos’s Q = 300 resulting in an increase
in computation speed. To be on the safe side, also for higher values of P , we
have used Q = 5P to compute the results in the following sections.

10.2 Different time steps

In Figs. 10.3 and 10.4 we investigate the influence of the time step ∆t used
in the fourth-order Runge-Kutta time integration on the accuracy of a TDgPC
computation with P = 4. We see that if we are only interested in later time
values the time step can be set as high as ∆t = 1 without compromising the
accuracy of the results for mean and variance. Reducing the time step, however,
leads to a large increase in accuracy for early times. Setting ∆t = 0.001 (the
value that we have used for the rest of this chapter) can be seen to deliver the
most accurate results. Decreasing the time step beyond this value has no effect
on the accuracy.
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Figure 10.3: Error in the mean of u vs. time for u0 = 1: TDgPC solutions with
P = 4 for different time steps ∆t
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Figure 10.4: Error in the variance of u vs. time for u0 = 1: TDgPC solutions with
P = 4 for different time steps ∆t

10.3 Different maximum expansion polynomial

degrees

In Figs. 10.5 and 10.6 we compare the accuracy of mean and variance, respec-
tively, for different values of the maximum degree of the expansion polynomials.
Vos presented results for P = 2, . . . , 6. In this range of P our results are prac-
tically identical to Vos’s calculations. However, since we do not calculate the
PDF of the transformed random variable, our solution algorithm is substan-
tially faster. This means that calculations with higher values of P become more
attractive. In Figs. 10.5 and 10.6 we therefore present results for selected values
of P in the range P = 2, . . . , 18. It can be seen that, for larger time values,
increasing P reduces the error in both mean and variance. We can see this more
clearly in Fig. 10.7 where we have plotted the error in both mean and variance
at t = 30 against P . For smaller time values (roughly under t = 10) we see
that the accuracy first increases with P, but for values larger than P = 9 the
accuracy starts to slightly decreases again. Fig. 10.7 also shows that at t = 30
the calculated mean of the solution converges exponentially to the exact value
with increasing P . The calculated variance shows exponential P -convergence in
the lower P -range only. For higher values of P the speed of convergence of the
variance diminishes.

Finally, to get an idea of the gain in computation speed when using the
present solution algorithm instead of Vos’s, consider the following. Every graph
in Figs. 10.5 and 10.6 has been calculated in less than one minute. Results
for P = 2 took 4.9 seconds to generate, for instance. Setting P = 18 led to a
calculation time of 53.4 seconds. If we would use Vos’s algorithm to generate
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Figure 10.7: Error in the mean and variance of u at t = 30 vs. maximum degree of
the expansion polynomials P (u0 = 1)

results for P = 4 we would already be looking at a calculation time around 10
minutes. Setting P = 6 would increase the calculation time further to several
hours. Of course, actual computation times depend a lot on machine specifi-
cations. However, we merely want to give an indication of the huge gain in
computation speed that results when performing all integrations in ξ-space.

10.4 Comparing different reinitialisation crite-

ria

Up to this point we have used the reinitialisation criterion proposed by Vos (Eq.
(9.3)) with θ = 0.15 to generate the TDgPC solutions of the growth equation. In
this approach new expansion polynomials are calculated only when this criterion
is met. In Section 6.2, however, we came to the conclusion that in the case of
the Kraichnan-Orszag problem the accuracy of the calculated solution increases
when we just compute a new set of expansion polynomials every time step.
Would this also be the case for a TDgPC solution of the growth equation? Yet
another, sort of in-between way to approach this issue of expansion polynomial
reinitialisation would be to calculate new expansion polynomials after a certain,
fixed time interval ∆tReinit, letting go of the idea behind Eq. (9.3) that we need
to reinitialise when the nonlinear terms reach a certain size.

In this section we will compare the error in mean and variance of TDgPC
solutions calculated using different reinitialisation criteria, either in the form of
Eq. (9.3) (type I ) or using a fixed ∆tReinit (type II ). We have experimented with
different values for θ and ∆tReinit. The optimal values of these parameters were
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found to be dependent on the maximum degree of the expansion polynomials
P . In this section we present results for P = 3, P = 10 and P = 17. Also,
it became clear that reinitialising every time step (as we did in the case of the
Kraichnan-Orszag problem) does not lead to the most accurate results. We
come back to this point at the end of this section.

In Figs. 10.8 and 10.9 we look at the case P = 3. Both for reinitialisation
criterion type I as well as type II we have plotted one or two graphs correspond-
ing to those values of θ or ∆tReinit that lead to the most accurate results on
the time interval 0 ≤ t ≤ 100. Results from a gPC calculation (where we do
not reinitialise the polynomial expansion basis) are also shown for comparison.
From t = 10 onwards the TDgPC results are roughly an order of magnitude
more accurate than the gPC calculation. It can also be seen that the ‘optimal’
reinitialisation criterion depends on the time interval we find most important.
The calculation with ∆tReinit = 2 seems to perform best on average.
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Figure 10.8: Error in the mean of u vs. time for u0 = 1: TDgPC solutions with
P = 3 for various reinitialisation criteria

The case P = 10 is considered in Figs. 10.10 and 10.11. We again have only
plotted results for the ‘optimal’ values of θ and ∆tReinit. Note that these optimal
values are higher than they were for P = 3. So, when increasing P we get the
most accurate results when the frequency of polynomial basis reinitialisation is
decreased. Also note the different shape of the gPC error curves compared to
the TDgPC curves. If we would mainly be interested in the mean of the solution
on the interval 0 ≤ t ≤ 40 the gPC calculation would be more accurate than
the TDgPC calculations for P = 10.

Finally, we look at the case P = 17 in Figs. 10.12 and 10.13. To achieve
optimal results we once again need to decrease the frequency of polynomial
basis reinitialisation. Since this is easier to accomplish by using a type II reini-
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Figure 10.9: Error in the variance of u vs. time for u0 = 1: TDgPC solutions with
P = 3 for various reinitialisation criteria
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Figure 10.10: Error in the mean of u vs. time for u0 = 1: TDgPC solutions with
P = 10 for various reinitialisation criteria
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Figure 10.11: Error in the variance of u vs. time for u0 = 1: TDgPC solutions with
P = 10 for various reinitialisation criteria

tialisation criterion (and since we have seen that with both types roughly the
same accuracy can be achieved) we only present calculation results using ‘op-
timal’ values of ∆tReinit. For comparison gPc results are plotted as well. We
see that for P = 17 using a gPC instead of a TDgPC approach leads to more
accurate results for large parts of the time interval considered. Performing the
first expansion polynomial reinitialisation can be seen to result in a sudden in-
crease of the error. However, once this first reinitialisation has been executed
the error remains approximately at the same level, even through subsequent
polynomial basis reinitialisations. The error of the gPC solution, on the other
hand, remains low for a substantial time interval for this high value of P = 17.
Eventually, however, the error of the gPC solution starts to increase at a faster
rate than the error of the TDgPC solution. Based on these characteristics we
expect that there always is an instant in time beyond which a TDgPC solution
is more accurate than a gPC solution. So, which approach leads to the best
results depends on the time interval we are interested in.

To conclude let us come back to the fact that a TDgPC solution of the
Kraichnan-Orszag problem produces the most accurate results when we reini-
tialise the expansion polynomials every time step, while a TDgPC solution of the
growth equation is more accurate when we reinitialise less often. This difference
may (in part) stem from the fact that the randomness enters the Kraichnan-
Orszag problem through the initial conditions, while for the growth equation
the randomness enters the problem through the parameter k. This issue would
require further investigation, for instance by considering the growth equation
with deterministic k and random initial condition. We have found, however,
that this problem is already accurately solved by a plain gPC approach. Hence,



88 CHAPTER 10. RESULTS

t

ε m
ea

n

0 20 40 60 80 10010-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

∆tReinit = 20
∆tReinit = 4
gPC

Figure 10.12: Error in the mean of u vs. time for u0 = 1: TDgPC solutions with
P = 17 for various reinitialisation criteria

t

ε va
r

0 20 40 60 80 10010-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

∆tReinit = 20
∆tReinit = 4
gPC

Figure 10.13: Error in the variance of u vs. time for u0 = 1: TDgPC solutions with
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it would be necessary to look at other problems to shed some more light on this
issue, for instance a Kraichnan-Orszag-type problem with random parameters
instead of random initial conditions.
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Chapter 11

Conclusions and

recommendations

11.1 Conclusions

In this work we have successfully developed a time-dependent generalized poly-
nomial chaos method (TDgPC) for a system of coupled stochastic differential
equation. The solution technique is an extension of the generalized polynomial
chaos method (gPC). From a computational point of view TDgPC is a poten-
tially attractive alternative to Monte Carlo simulations that typically require
immense amounts of computer power. We have applied the TDgPC method to
the Kraichnan-Orszag three-mode problem.

A gPC method approximates the solution of a stochastic problem by a poly-
nomial expansion employing deterministic coefficients in combination with mu-
tually orthogonal expansion polynomials in terms of random variables. With
TDgPC these expansion polynomials are adapted over time based on the cur-
rent stochastic properties of the solution. This constantly updated expansion
basis helps to generate accurate results for long-term integration.

The Kraichnan-Orszag problem can be very sensitive to small changes in
the initial conditions. Small fluctuations in the initial conditions can in this
case lead to solutions with substantially different frequencies. It is also possible
that a discontinuity occurs. We have seen that a plain gPC solution approach
(employing a fixed polynomial expansion basis) is not capable of calculating
accurate long-term results for mean and variance of the solution when the initial
conditions are randomly distributed over such a sensitive area. Increasing the
maximum degree of the expansion polynomials is not a solution to this problem.
TDgPC, on the other hand, produces accurate long-term results in these difficult
situations by adapting the polynomial expansion basis at every time step. There
is no need to employ expansion polynomials of high degree with the TDgPC
method. Furthermore, we have established that the TDgPC method works
accurately for both one- as well as multidimensional random inputs.

Vos [10] introduced the idea of adapting the expansion expansion basis over
time. He also developed the first TDgPC algorithm for the solution of a single
stochastic differential equation. For the TDgPC solution method developed
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in this work – applicable to systems of differential equations – a number of
modifications were made to Vos’s TDgPC algorithm, the most important being
a different way of integrating in random space which renders the calculation of
the PDF of the solution unnecessary. These modifications result in a spectacular
speed-up of the algorithm when applied to Vos’s test problem: the growth
equation. We have established exponential P -convergence for the mean of a
TDgPC solution of the growth equation. For this growth equation we have also
shown that, even for later times, TDgPC results for mean and variance of the
solution can achieve an accuracy of O

(

10−4
)

.
Contrary to the Kraichnan-Orszag problem a TDgPC solution of the growth

equation does not produce its most accurate results when we adapt the expan-
sion polynomials every time step. At the moment the reason for this has not
been researched well enough. We have established that an expansion basis with
polynomials of higher degree needs to be updated less frequently to lead to
optimal TDgPC results for the growth equation.

11.2 Suggestions for further research

In this section we propose a number of directions for future research. First off, we
have only considered uniformly distributed random inputs on bounded domains
in this work. This was motivated by the fact that we have the Gauss-Lobatto-
Legendre numerical integration scheme to adequately integrate on bounded do-
mains in the random space. It might be useful to also look at random inputs with
distributions on unbounded domains (a Gaussian distribution, for instance).
This should not be too difficult to implement, either through a transformation
of the random variables to a bounded domain or a different quadrature scheme.

Secondly, it would be useful to apply the TDgPC method to a system of
stochastic differential equations for which the exact solution is known in ana-
lytical form. This would help with the assessment of accuracy and convergence
behaviour of the TDgPC algorithm. In case of the Kraichnan-Orszag problem
we can never be completely sure about the accuracy of the Monte Carlo anal-
yses. Too small a number of samples or inaccuracies in the time integration
introduce errors in the Monte Carlo results. This makes it harder to verify the
accuracy of the TDgPC results.

A third issue on which some further research is welcome is the frequency of
expansion polynomial updates. Examples of questions that still need an answer
are the following. What determines the optimal instants in time to update the
expansion polynomials? How is this dependent on the type of problem (random
initial conditions vs. random problems parameters)? In which cases does up-
dating every time step lead to the best results? Can an optimal reinitialisation
criterion be constructed for a certain problem?

We noted in the introduction to this work that Wan [9] has constructed a
multi-element generalized polynomial chaos method in order to deal with the
long-term integration issues of plain gPC. It would be very interesting too com-
bine the multi-element approach of Wan with the time-dependent gPC approach
discussed in this work. In Wan’s approach as time progresses larger elements
are split into smaller elements on which a new expansion basis is constructed.
Wan, however, bases this new expansion polynomials on the original random
input, while we have seen in this work that it might be beneficial to base the
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new expansion polynomials on the current statistical properties of the solution.
Finally, a very interesting direction for further research would be to apply

the TDgPC approach discussed in this work to partial differential equations.
The heat equation might be a good candidate to start on. Vos developed his
solution algorithm for a single stochastic DE. In this work we have extended
the approach to a system of coupled, stochastic DEs. So, applying TDgPC to
a PDE is the natural yet very exciting next step.
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Appendix A

Additional figures

A.1 Kraichnan-Orszag: deterministic solutions

In Section 3.4 we have presented deterministic solutions to the Kraichnan-
Orszag problem for various initial condtions. However, in this section only
results for x1 were plotted. In this appendix plots of the corresponding solu-
tions x2(t) and x3(t) can be found.
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Figure A.1: Deterministic solutions x2(t) for various x1(0) around x1(0) = 0.5
(x2(0) = x3(0) = 1)
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Figure A.2: Deterministic solutions x3(t) for various x1(0) around x1(0) = 0.5
(x2(0) = x3(0) = 1)
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Figure A.3: Deterministic solutions x2(t) for various x1(0) around x1(0) = 0.96
(x2(0) = x3(0) = 1)
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Figure A.5: Deterministic solutions x2(t) for various x1(0) around x1(0) = 0.99
(x2(0) = x3(0) = 1)
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Figure A.6: Deterministic solutions x3(t) for various x1(0) around x1(0) = 0.99
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A.2 Kraichnan-Orszag: gPC approach

In Chapter 4 we have discussed results of a gPC solution approach to the
Kraichnan-Orszag problem, presenting results for x1 only. In this appendix
the corresponding gPC results for x2 and x3 can be found.
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Figure A.7: Mean of x2 vs. time for α = 0.5: gPC solution with P = 3 compared to
a Monte Carlo analysis (N = 10, 000)
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Figure A.8: Mean of x3 vs. time for α = 0.5: gPC solution with P = 3 compared to
a Monte Carlo analysis (N = 10, 000)
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Figure A.9: Variance of x2 vs. time for α = 0.5: gPC solution with P = 3 compared
to a Monte Carlo analysis (N = 10, 000)
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Figure A.10: Variance of x3 vs. time for α = 0.5: gPC solution with P = 3 compared
to a Monte Carlo analysis (N = 10, 000)
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Figure A.11: Mean of x2 vs. time for α = 0.96: gPC solution with P = 3 compared
to a Monte Carlo analysis (N = 10, 000)
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Figure A.12: Mean of x3 vs. time for α = 0.96: gPC solution with P = 3 compared
to a Monte Carlo analysis (N = 10, 000)
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Figure A.13: Variance of x2 vs. time for α = 0.96: gPC solution with P = 3
compared to a Monte Carlo analysis (N = 10, 000)
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Figure A.14: Variance of x3 vs. time for α = 0.96: gPC solution with P = 3
compared to a Monte Carlo analysis (N = 10, 000)
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Figure A.15: Mean of x2 vs. time for α = 0.99: gPC solutions with P = 3 and P = 4
compared to Monte Carlo analyses (N = 10, 000 and N = 100, 000)
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Figure A.16: Mean of x3 vs. time for α = 0.99: gPC solutions with P = 3 and P = 4
compared to Monte Carlo analyses (N = 10, 000 and N = 100, 000)
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Figure A.17: Variance of x2 vs. time for α = 0.99: gPC solutions with P = 3 and
P = 4 compared to Monte Carlo analyses (N = 10, 000 and N =
100, 000)
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Figure A.18: Variance of x3 vs. time for α = 0.99: gPC solutions with P = 3 and
P = 4 compared to Monte Carlo analyses (N = 10, 000 and N =
100, 000)
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Figure A.19: Mean of x2 vs. time for α = 0.995: gPC solution with P = 3 compared
to a Monte Carlo analysis (N = 10, 000)
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Figure A.20: Mean of x3 vs. time for α = 0.995: gPC solution with P = 3 compared
to a Monte Carlo analysis (N = 10, 000)
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Figure A.21: Variance of x2 vs. time for α = 0.995: gPC solution with P = 3
compared to a Monte Carlo analysis (N = 10, 000)
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Figure A.22: Variance of x3 vs. time for α = 0.995: gPC solution with P = 3
compared to a Monte Carlo analysis (N = 10, 000)
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Figure A.23: Mean of x2 vs. time for α = 0.7: gPC solution with P = 3 compared
to a Monte Carlo analysis (N = 20, 000)
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Figure A.24: Mean of x3 vs. time for α = 0.7: gPC solution with P = 3 compared
to a Monte Carlo analysis (N = 20, 000)
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Figure A.25: Variance of x2 vs. time for α = 0.7: gPC solution with P = 3 compared
to a Monte Carlo analysis (N = 20, 000)
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Figure A.26: Variance of x3 vs. time for α = 0.7: gPC solution with P = 3 compared
to a Monte Carlo analysis (N = 20, 000)
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Figure A.27: Mean of x2 vs. time for α = 0.8: gPC solution with P = 3 compared
to a Monte Carlo analysis (N = 10, 000)
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Figure A.28: Mean of x3 vs. time for α = 0.8: gPC solution with P = 3 compared
to a Monte Carlo analysis (N = 10, 000)
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Figure A.29: Variance of x2 vs. time for α = 0.8: gPC solution with P = 3 compared
to a Monte Carlo analysis (N = 10, 000)
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Figure A.30: Variance of x3 vs. time for α = 0.8: gPC solution with P = 3 compared
to a Monte Carlo analysis (N = 10, 000)
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A.3 Kraichnan-Orszag: TDgPC approach

In Chapter 6 we have discussed results of a TDgPC solution approach to the
Kraichnan-Orszag problem, presenting results for x1 only. In this appendix the
corresponding TDgPC results for x2 and x3 can be found.
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Figure A.31: Mean of x2 vs. time for α = 0.99: TDgPC solutions with P = 2 and
P = 3 compared to gPC solutions with P = 3 and P = 22 and a Monte
Carlo analysis (N = 200, 000)
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Figure A.32: Mean of x3 vs. time for α = 0.99: TDgPC solutions with P = 2 and
P = 3 compared to gPC solutions with P = 3 and P = 22 and a Monte
Carlo analysis (N = 200, 000)
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Figure A.33: Variance of x2 vs. time for α = 0.99: TDgPC solutions with P = 2
and P = 3 compared to gPC solution with P = 3 and P = 22 and a
Monte Carlo analysis (N = 200, 000)
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Figure A.34: Variance of x3 vs. time for α = 0.99: TDgPC solutions with P = 2
and P = 3 compared to gPC solution with P = 3 and P = 22 and a
Monte Carlo analysis (N = 200, 000)
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Figure A.35: Error in the mean of x2 vs. time for α = 0.99: TDgPC solutions with
P = 2, P = 3 and P = 4
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Figure A.36: Error in the mean of x3 vs. time for α = 0.99: TDgPC solutions with
P = 2, P = 3 and P = 4
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Figure A.37: Error in the variance of x2 vs. time for α = 0.99: TDgPC solutions
with P = 2, P = 3 and P = 4
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Figure A.38: Error in the variance of x3 vs. time for α = 0.99: TDgPC solutions
with P = 2, P = 3 and P = 4
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Figure A.39: Error in the mean of x2 vs. time for α = 0.99: TDgPC results using
various Gram-Schmidt orthogonalization algorithms
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Figure A.40: Error in the mean of x3 vs. time for α = 0.99: TDgPC results using
various Gram-Schmidt orthogonalization algorithms
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Figure A.41: Error in the variance of x2 vs. time for α = 0.99: TDgPC results using
various Gram-Schmidt orthogonalization algorithms
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Figure A.42: Error in the variance of x3 vs. time for α = 0.99: TDgPC results using
various Gram-Schmidt orthogonalization algorithms
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Figure A.43: Error in the mean of x2 vs. time for α = 0.99: TDgPC results with
P = 2 using various amounts of quadrature points Q
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Figure A.44: Error in the mean of x3 vs. time for α = 0.99: TDgPC results with
P = 2 using various amounts of quadrature points Q
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Figure A.45: Error in the variance of x2 vs. time for α = 0.99: TDgPC results with
P = 2 using various amounts of quadrature points Q
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Figure A.46: Error in the variance of x3 vs. time for α = 0.99: TDgPC results with
P = 2 using various amounts of quadrature points Q
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Figure A.47: Error in the mean of x2 vs. time for α = 0.99: TDgPC results with
P = 3 for various time steps ∆t
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Figure A.48: Error in the mean of x3 vs. time for α = 0.99: TDgPC results with
P = 3 for various time steps ∆t
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Figure A.49: Error in the variance of x2 vs. time for α = 0.99: TDgPC results with
P = 3 for various time steps ∆t
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Figure A.50: Error in the variance of x3 vs. time for α = 0.99: TDgPC results with
P = 3 for various time steps ∆t
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Figure A.51: TDgPC calculation for α = 0.99 with P = 2: x2 as a function of ξ at
t = 6
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Figure A.52: TDgPC calculation for α = 0.99 with P = 2: Distribution function of
x2 at t = 6
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Figure A.53: TDgPC calculation for α = 0.99 with P = 2: x3 as a function of ξ at
t = 6
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Figure A.54: TDgPC calculation for α = 0.99 with P = 2: Distribution function of
x3 at t = 6
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Figure A.55: Mean of x2 vs. time for α = 0.995: TDgPC solutions with P = 2 and
P = 3 compared to a gPC solution with P = 10 and a Monte Carlo
analysis (N = 100, 000)
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Figure A.56: Mean of x3 vs. time for α = 0.995: TDgPC solutions with P = 2 and
P = 3 compared to a gPC solution with P = 10 and a Monte Carlo
analysis (N = 100, 000)
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Figure A.57: Variance of x2 vs. time for α = 0.995: TDgPC solutions with P = 2
and P = 3 compared to a gPC solution with P = 10 and a Monte
Carlo analysis (N = 100, 000)
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Figure A.58: Variance of x3 vs. time for α = 0.995: TDgPC solutions with P = 2
and P = 3 compared to a gPC solution with P = 10 and a Monte
Carlo analysis (N = 100, 000)



A.3. KRAICHNAN-ORSZAG: TDGPC APPROACH 127

t

ε m
ea

n(
x2

)

0 10 20 30 40

-0.02

0

0.02

0.04

0.06

P = 2
P = 3

Figure A.59: Error in the mean of x2 vs. time for α = 0.995: TDgPC solutions with
P = 2 and P = 3
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Figure A.60: Error in the mean of x3 vs. time for α = 0.995: TDgPC solutions with
P = 2 and P = 3
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Figure A.61: Error in the variance of x2 vs. time for α = 0.995: TDgPC solutions
with P = 2 and P = 3
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Figure A.62: Error in the variance of x3 vs. time for α = 0.995: TDgPC solutions
with P = 2 and P = 3
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A.4 Kraichnan-Orszag 3D: TDgPC approach

In Chapter 7 we have discussed results of a TDgPC solution approach to the
Kraichnan-Orszag problem with a three-dimensional random input, presenting
results for x1 only. In this appendix the corresponding TDgPC results for x2

and x3 can be found.
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Figure A.63: Mean of x2 vs. time for α = 0.99, β = 1 and γ = 1: TDgPC solutions
(P = 2 and P = 3) compared to a gPC solution (P = 2) and a Monte
Carlo analysis (N = 1, 000, 000)

t

M
ea

n(
x 3)

0 10 20 30 40

-1.5

-1

-0.5

0

0.5

1

1.5 TDgPC P = 2
TDgPC P = 3
gPC P = 2
MC N = 1,000,000

Figure A.64: Mean of x3 vs. time for α = 0.99, β = 1 and γ = 1: TDgPC solutions
(P = 2 and P = 3) compared to a gPC solution (P = 2) and a Monte
Carlo analysis (N = 1, 000, 000)
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Figure A.65: Variance of x2 vs. time for α = 0.99, β = 1 and γ = 1: TDgPC
solutions (P = 2 and P = 3) compared to a gPC solution (P = 2) and
a Monte Carlo analysis (N = 1, 000, 000)
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Figure A.66: Variance of x3 vs. time for α = 0.99, β = 1 and γ = 1: TDgPC
solutions (P = 2 and P = 3) compared to a gPC solution (P = 2) and
a Monte Carlo analysis (N = 1, 000, 000)
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Figure A.67: Error in the mean of x2 vs. time for α = 0.99, β = 1 and γ = 1:
TDgPC solutions with different P , Q and ∆t
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Figure A.68: Error in the mean of x3 vs. time for α = 0.99, β = 1 and γ = 1:
TDgPC solutions with different P , Q and ∆t
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Figure A.69: Error in the variance of x2 vs. time for α = 0.99, β = 1 and γ = 1:
TDgPC solutions with different P , Q and ∆t
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Figure A.70: Error in the variance of x3 vs. time for α = 0.99, β = 1 and γ = 1:
TDgPC solutions with different P , Q and ∆t
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