
Finite element analysis of two-
dimensional reinforced concrete 
structures, taking account of non­
linear physical behaviour and the 
development of discrete cracks 

H. J. GROOTENBOER 

Delftse Universitaire Pers 



r 

P1150 
4273 

C10027 
32327 



Finite element analysis of two-dimensional reinforced 
concrete structures, taking account of non-linear 
physical behaviour and the development of discrete cracks 



Finite element analysis of two-
dimensional reinforced concrete 
structures, taking account of non­
linear physical behaviour and the 
development of discrete cracks 

PROEFSCHRIFT 
terverl<rljging van degraad van doctor 
in te teclinisclie wetenschappen aan de 
Technische Hogeschool Delft, op gezag 
van de rector magnificus 
prof. dr. ir. F.J. Kievits 
vooreen commissie aangewezen 
door het college van del<anen te 
verdedigen op woensdag 21 maart 1979 
teie.OOuur 

door 

HENDRICUS JOHANNES GROOTENBOER 

civiel ingenieur 
geboren te Amsterdam 

yy<^~~<D ^ -^P<? 

Delftse Universitaire Pers, 1979 

BIBLIOTHEEK TU Delft 

P 1150 4273 

C 273232 



Dit proefschrift is goedgekeurd 
door de promotor 
PROF. IR. A.L. BOUMA 
endecopromotor 
LECTOR DR. ING. H.W. REINHARDT 



Aan mijn Ouders 
Aan Marjan 



CONTENTS 

1 INTRODUCTION 
1.1 Motive and scooe of the research 
1.2 Behaviour of materials and structures 
1.3 Non-linear analysis of reinforced concrete structures 

the finite element method 
1.4 Aim of the MICRO model 

2 FUNDAMENTALS 
2.1 Introduction 
2.2 Elements used, schematization of cracks 
2.3 Method of analysis 

3 DERIVATION OF THE EQUATIONS 
3.1 Introduction 
3.2 Galerkin's method 
3.3 Additional system of equations 
3.4 Triangular thin olate element 
3.5 Bar element , 
3.6 Taking account of cracks in the stiffness matrix 

4 MATERIAL MODELS 
4.1 Introduction 
4.2 Non-linear stress-strain relationship of concrete 

4.2.1 Link's model 
4.2.2 Buyukozturk ' s mode I 

4.3 Cracking criterion for concrete 
4.4 Crushing of concrete 

4.4.1 Link's model 
4.4.2 Buyukozturk 's mode I 

4.5 Shrinkage of concrete 
4.6 Creep of concrete 
4.7 Aggregate interlock in a crack 
4.8 Behaviour of the steel 

4.8.1 Ideal elasto-plastia model 
4.8.2 Non-linear elasto-plastia model 

4.9 Bond 
4.10 Dowel action 

5 COMPUTER PROGRAM 
5.1 Sequence of cracking 
5.2 Curved bars 
5.3 Scatter of material properties in a structure 
5.4 Program 



6 ANALYSES PERFORMED , 67 
6.1 Introduction 67 
6.2 Beam loaded in bending 67 
6.3 Plate loaded at upper edge _ 73 

5.4 Beam-to-column connection 79 

7 CONCLUSIONS " 93 

SUMMARY 95 

REFERENCES 97 

SAMENVATTING 101 

Acknowledgements 

The author thanks all who have contributed to the completion of this 
study, in particular dr. ir. J. Blaauwendraad and the direction of the 
Bridge departement of the Rijkswaterstaat. 

VIII 



INTRODUCTION 

1.1 MOTIVE AND SCOPE OF THE RESEARCH 

In the course of this century the material called concrete, reinforced or 
prestressed with steel, has become one of the most important building 
materials in civil and structural engineering. The design and execution of new 
structures which - in respect of shape, method of construction or manner of 
loading - are outside the range of standard experience make it necessary 
continually to investigate the behaviour of concrete structures. 
Exemples of such structures are: offshore structures, nuclear power stations, 
and water engineering structures in or closely associated with the sea, such 
as the surge tide barrier in the Eastern Scheldt (Oosterschelde). 
Increase in dimensional scale and the introduction of new techniques in the 
building of bridges and tunnels, however, also necessitate further research. 
In addition, the rise in the cost of all types of structure makes it essential 
to go on seeking less expensive alternative designs, materials and construction 
methods without lowering of safety standards. 

Closely bound up with scale increase is the corresponding increase in the 
seriousness of the consequences of a disaster, so that careful and detailed 
structural safety analysis becomes more and more necessary. The central 
feature of such an analysis is an investigation of the loading and of the 
behaviour of the structure under all kinds of conditions such as cyclic 
loading (alternating loads), its time-dependent behaviour and especially its 
behaviour under overloading. 

Investigation of the behaviour of concrete structures has hitherto chiefly 
been based on the results of tests performed on model structures or on 
structural components in the laboratory. Such tests provide good insight into 
the deformation of the structure and the magnitude of its failure load. But 
they yield only limited information on the strains and relative displacements 
of the embedded steel. Because of this, the interpretation of the behaviour 
and the detection of the causes thereof are made much more difficult. 
Knowledge of the causes of a certain behaviour is important in order to 
predict the behaviour of other structures or of similar structures under 
different loads. 

The possibilities of mathematically predicting the behaviour of a concrete 
structure have been greatly extended as a result of the development of the 
computer. What are needed, besides a numerical model for describing the 
structure, are mathematical models embodying our knowledge of the behaviour 
of the constituent materials (steel and concrete) and of their manner of 
co-operation. One important condition for the attainment of an optimum 
result is the collaboration of investigators in these two fields of research. 
On the basis of these considerations the research project "Concrete analysis" 
has been initiated in the Netherlands within the framework of the Netherlands 
Committes for Concrete Research (C.U.R.). Collaborating in this project are 
the Technological Universities of Delft and Eindhoven, the Institute for 



Applied Scientific Research on Building Materials and Building Structures 
(IBBC-TNO) and Rijkswaterstaat, a division of the Netherlands Ministry of 
Transport and Public Works. 

The aim of the project is to achieve the further development of numerical 
models with the aid of which a deeper insight into the behaviour of concrete 
structures can be obtained and to make, on the basis thereof, a contribution 
to establishing new design rules and codes for practical use. The research 
will, for the time being, be confined to the static behaviour of two-dimensiona 
concrete structures subject to in-plane loading. In addition to a study of the 
literature, the program of work comprises the following sub-projects: 

- Experimental investigation of the transfer of force at a crack in a 
reinforced concrete structure. 

- I Investigation of a numerical model for describing the bond between steel 
I and concrete. 

-'[Development of a computer program for the analysis of two-dimensional framed 
! structures (MACRO model). 

- { Development of a computer program for the analysis of the behaviour of 
; two-dimensional thin plate structures (MICRO model). 

\ 
The present thesis is the result of the above-mentioned research on a numerical 
model for the analysis of reinforced concrete plate structures subject to 
in-plane loading. In order to emphasize that, in the model developed here, each 
crack is described separately and that the displacements and forces are 
calculated in it, the name "MICRO" model has been applied. The numerical 
models, such as the above-mentioned program for framed structures, which are 
based on average properties of a reinforced concrete plate cracked in one or 
more places are called "MACRO" models in the "Concrete analysis" project. 

1.2 BEHAVIOUR OF MATERIALS AND STRUCTURES 

The behaviour of the material concrete is particularly complex. This is 
apparent from the following points: 

The maximum tensile stress that concrete can resist is much less than the 
maximum compressive stress that it can resist. 

- The relation between compressive stress and strain deviates already at a 
relatively low level of stress from the linear relation in accordance with 
Hooke's law. Besides, this compressive strain is dependent not only on the 
stress acting at any particular instant, but also on the previous history 
of the stress. 

- Concrete shrinks and swells. The magnitude and rate of these phenomena 
depend on, among other factors, the humidity of the environment and the 
dimensions of the structure. 
The creep deformation of concrete is considerable and may be as much as 
four times the elastic deformation. On removal of load, part of the creep 
is recoverable and part of it is irrecoverable. 
If a crack develops in concrete, transfer of shear forces across the crack 
nevertheless continues to be possible because the faces of the crack are 
not smooth, so that the irregularities on them will interlock if the width 
of the crack is small (aggregate interlock)(see Fig. 11). The magnitude of 
the maximum shear stress that can thus be transferred across a crack 
depends on the width of the latter, [l.l] 
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FIGURE 1.1 : Aggregate interlock . 

To compensate for its low tensile strength, concrete is reinforced with steel 
bars and/or prestressed with tendons (high-tensile steel wires or bars). In 
the composite material formed in this way the steel, by virtue of its quality 
and shape, largely determines the co-operation of the two materials. Bond 
between concrete and steel, slip of the reinforcement and plastic deformation 
of the steel are important aspects with regard to this. In an unreinforced 
concrete structure, cracks develop already at low values of the loading. 
Cracks may consideraibly reduce the stiffness of the structure. When they are 
formed, the internal stress distribution is greatly changed. The reinforcing 
steel, which in the uncracked structure contributes only little to the actual 
loadbearing capacity, is now loaded to a high stress, as are also the contact 
surfaces between the steel and the concrete. The co-operation of the two 
materials now depends greatly on the quality of their bond and on the dowel 
action of the reinforcement at a crack in the concrete (see Fig. 1.2). The 
directions of the reinforcement and of the cracks have a major effect on the 
anisotropic behaviour of the cracked composite material. 

FIGURE 1.2 : Dowel action of a reinforcing bar . 
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Failure of a reinforced concrete structure may result from the occurrence of 
large deformations and thus exhibit a "ductile" character. Alterna'tively, how­
ever, it may be of a "brittle" character. This last-mentioned form of failure 
Ccin be particularly dangerous because it is not initiated by large crack widths 
or deflections. In that case, too, the possibility of redistribution of 
forces vrfiich exists in a statically indeterminate structure cannot be suffic­
iently utilized. 
Calculations for the design and analysis of reinforced concrete and prestress­
ed concrete structures are usually based on linear elastic theory. This 
approach takes no account of the non-linear behaviour of the constituent 
materials, the reduction in stiffness due to cracking and the transition from 
isotropic to anisotropic properties for the composite material. Such calcula­
tions can therefore only provide insight into the behaviour of a structure at 
low values of loading. This is not necessarily a disadvantage with regard to 
structures within the conventional range of experience. The codes of practice 
often contain design rules to ensure that structures continue to conform to 
the relevant safety requirements also at higher loads. 

A different situation exists with regard to new types of structures with which 
experience is as yet lacking. In most cases there are no codes or established 
design rules for them, and to test a prototype is often impracticable. For 
designing such structures and assessing their safety it is essential to have 
information on their behaviour under loads of large magnitude up to and 
including failure load. Since this behaviour is to a great extent determined 
by the above-mentioned non-linear behaviour of the materials, the analysis of 
these structures has to be based on models which take this behaviour into 
account. The calculations do indeed become much more complex in consequence of 
this and practically impossible to perform without the aid of a computer. The 
evolution that non-linear analysis models for reinforced concrete structures 
have undergone in the period from 1967 to the present time will be briefly 
outlined in the next section of the present chapter. All the models mentioned 
here are based on the finite element method. This numerical technique has 
proved to be particularly suitable for solving many kinds of problems in 
structural analysis with the aid of a computer. 

1.3 NON-LINEAR ANALYSIS OF REINFORCED CONCRETE STRUCTURES BY 

THE FINITE ELEMENT METHOD 

The purpose of this review of the subject is to give a general idea of the 
models that have been developed for the analysis of two-dimensional reinforced 
concrete structures loaded in their own plane. Confining the present treatment 
to these structures corresponds to the limitation of the scope of this study, 
as its title indicates. In the work of all the investigators in this field the 
emphasis is on the treatment of cracking. This is not surprising, since 
crack formation is of major influence on the stiffness, the internal stress dis­
tribution and the maximum loadbearing capacity of the structure. The first 
investigators to include cracking in their model were Ngo and Scordelis [1.2]. 
In their analysis of reinforced concrete beams they took account of the cracks 
by detaching the elements at their boundaries (see Fig. 1.3). 
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1 
steel 

crack crack 

FIGURE 1.3 : Subdivision of a beam into elements by Ngo and Scordelis. 

This schematization of cracking was later also used by Nilson [l.3] and by 
Stauder et al. [I.4]. In this method a crack is treated as a line on either 
side of which the displacements may differ in magnitude. This model offers the 
advantages that the displacements at a crack can be calculated and that these 
displacements can be taken into account in determining the effects such as 
aggregate interlock, dowel forces and yielding of the reinforcement. This 
model nevertheless was abandoned, the resons for this being: 

- the limitation that cracks can occur only along the element boundaries. 
This results in a high degree of schematization of the cracking pattern and 
considerable dependence on the subdivision into elements. In Fig. 1.4 the 
cracking pattern calculated by Stauder for one of the concrete plates repor­
ted in [1.5] is compared with the actual experimental results. This compar­
ison clearly illustrates the above-mentioned inflexibility of this approach; 

the second drawback relates to the method of analysis. In consequence of the 
detachment of the elements the system of equations must each time be 
established afresh and inverted or decomposed. In addition, the altered 
number of degrees of freedom has to be taken into account. 

FIGURE 1.4 : Cracking pattern in a plate : 
left : experimentally determined ; 
right : as calculated by Stauder et al. [l.4] 
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In general, the discrete crack model has been abandoned in favour of the 
approach in which a crack is smeared or spread out over a whole element or over 
part of an element. The crack is thus incorporated into the stiffness proper­
ties of the concrete, which becomes anisotropic in consequence. The crack 
directions determine the principal directions of this anisotropy. One of the 
first investigators to use this method for the analysis of plates was Franklin 
[1.6]. Its great advantage is that cracking is conceived as a phenemenon like 
plastic deformation and can therefore be analysed by the same methods, with 
which a good deal of experience has already been gained. In this way, it 
becomes possible to use standard programs also for the analysis of reinforced 
concrete structures. The disadvantages of this method are due to "smearing out" 
the cracks. It is thus not possible to deal with displacements at the cracks 
in the aspects already mentioned, namely, aggregate interlock, dowel action 
and yielding of the steel. With this model the crack spacings and crack widths 
are difficult to calculate, even if a fine-meshed network of elements is used. 
Whether these drawbacks constitute a serious objection will depend on the 
kind of structure to be analysed. Experience shows that structures in which the 
bending moment is the determining quantity with regard to loadbearing capacity 
(ultimate strength) and which have a ductile load-deformation diagram can 
very suitable be analysed with these models. On the other hand, structures 
displaying brittle failure" behaviour, which is frequently determined by one 
or a few dominant cracks, are not so suitable amenable to analysis on the 
basis of this model with "smeared-out" cracks. This frequently relates to 
shear cracks or flexural cracks in sRörtr~canlinëvers and comparable other 
structures. 

Besides, not all the investigators adopt the same manner of schematization for 
the reinforcement. In those models that are based on discrete cracks the bars 
are always described with the aid of separate elements. These reinforcements 
elements are in many instances connected to the concrete elements by springs. 
The latter represent the behaviour at the boundary layer between steel and 
concrete (see Fig. 1.5). 

Transmission of force at the Spring model for the 
boundary layer according to boundary layer. 
Goto [1.7] . " ' •" 

FIGURE 1.5 

With this schematization it is possible to take proper account of the slip of 
the reinforcement in the concrete when the shear stresses between the bar and 
the concrete have attained a maximum value. 

In the models with "smeared-out" cracks the reinforcement is often incorporated 
into the properties of the plate element. For this element the aeolotropic 
properties of the composite material comprising concrete plus steel are then 
introduced into the analysis [1.8]. 
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In that case, however, it is not possible to take account of displacement of 
the steel in relation to the concrete. 

direction of reinforcement 

reinforcement layers 

FIGURE 1.6 ; Composite reinforced concrete element 

The method of dealing with the non-linear behaviour of concrete in the analysis 
presents less of a problem than does the choice of the model for describing 
this behaviour. Many different models to describe the behaviour of concrete 
under two-dimensional and three-dimensional states of stress are to be found 
in the literature. The results obtained with these respective models often 
differ considerably from one another, the reason being that as yet not 
enough is known concerning this behaviour. Lack of knowledge exists also with 
regard to the behaviour at a crack in the transfer of shear stresses 
(aggregate interlock) and the behaviour at the bounary layer between steel and 
concrete. 

The main features of some important analytical models are summarized in Table 
1.1. It indicates how the cracks are dealt with and what aspects of material 
behaviour are taken into account. A notable fact to emerge from these data 
is how little attention has hitherto been paid to aggregate interlock, shrink­
age and creep, bond and -.in particular - dowel action. 
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1.4 AIM OF THE MICRO MODEL 

First and foremost in connection with the development of the MICRO model was 
the desire to devise a model with which the behaviour of a structure can be 
analysed under various loads, enabling both the overall behaviour (e.g., a 
load-deflection diagram or a moment-curvature diagram for a portion of a beam) 
and the local occurrences within the structure to be described. The aim is to 
devise an instrument which can take the place of very expensive laboratory 
tests (with much internal recording of data) or which can assist in the 
interpretation of laboratory measurements with a limited number of recorded 
data. Of particalar interest is the behaviour after the occurrence of the 
first cracks and on attainment of the failure load. The model must be able to 
indicate the failure load, the cause of failure and the deformations that 
occur. In reinforced concrete structures the collapse mechanism is determined 
by the system of cracks that develops in the concrete, and the collapse load 
or, more generally, the failure load will depend on the stresses in the 
concrete and steel in the vicinity of the cracks. 
Of special interest are those problems in which the structure, on reaching 
the failure load, displays brittle behaviour. Such behaviour occurs in 
failure due to shear or to a combination of shear and bending. 
In these types of failure the dowel action of the reinforcement and the 
transfer of shear stresses at a crack play a major part. The deformation of 
the structure on attainment of the failure load will, in such cases, depend 
to a great extent on the slip of the reinforcement and the deformations of 
the concrete. Brittle failure of a structure is often the result of one 
dominant crack. The displacements at that crack determine the above-mentioned 
dowel forces, the shear stresses at the crack and the steel stresses in the 
vicinity of the crack. 

It was endeavoured to find a model with discrete cracks, because in this way 
the displacements at a crack can suitably be determined and the effects of 
these displacements on the internal stresses can be taken into account. Also, 
this model can be expected to make the dominant crack distinctly discernible. 
The respective shares that the various forces have in the transfer of load 
at a section along a crack can then be analysed. An example of the various 
forces and stresses that may act at such a section is given in Fig. 1.7 for a 
beam loaded in bending and shear. 

It should also be possible to use the model for the evaluation of the effects 
of the various types of non-linear material behaviour,in the boundary layer 
between steel and concrete and at a crack, upon the behaviour of a structure. 

9 



part A 

1^ 

1 L_ 
7^ 

CjT Stresses in uncracked concrete 

T shear stress at a crack s 

F force in stirrup reinforcement 

F force in tensile reinforcement 

D dowel force in tensile reinforcement 

FIGURE 1.7 : Forces and stresses at a section across a shear crack in 
a beam loaded in bending and shear. 
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FUNDAMENTALS 

2.1 INTRODUCTION 

The MICRO-model is a finite element analysis program based on the displacement 
, method. This latter feature means that, in the system of equations ultimately 
I to be solved, the displacements (degrees of freedom) of a number of points 

(nodes) are the unknowns. 
This method has been chosen for the following reasons: 

a good deal of experience has already been gained with it, 
the system matrix of the system of equations is always positively 
definite, 
the number of degrees of freedom can be freely chosen, 
the equations can often be so arranged that a band matrix is obtained. 

The hybrid mixed element model is used for the derivation of the force-
deformation relations per element. In this model an assumption is made with 
regard to the distribution of the stresses in the element. The distribution of 
the displacements of the element boundaries is likewise assumed. 
This model offers the following advantages: 

the distribution of the stresses in the various types of element can be 
suitably interadjusted, 
discontinuous distribution of the displacements in an element can be taken 
into account quite simply in this model. Such discontinuity occurs if a 
crack passes through the element, 
the favourable experience previously gained with this type of finite 
element model, 
the model offers the possibility of adding extra stress functions for des­
cribing special situations to the stress functions already existing, 
by adjusting the description of the displacements of element boundaries to 
the stress distribution at these boundaries it is ensured that the condi­
tions of equilibrium are exactly satisfied at the boundaries. The advantage 
of this is that the stresses at a section along the element boundaries are 
always exactly in equilibrium with the external loads. 

11 



2.2 ELEMENTS USED, SCHEMATIZATION OF CRACKS 

The structure is split up into two kinds of element, namely, a thin plate 
element for describing the concrete and a bar element by which the reinforcing 
steel (or prestressing steel) plus the boundary layer between steel and con­
crete are schematized. 

boundary layer 

steel 

V77777777777777Z. 

FIGURE 2.1 : Thin plate element and bar element 

The bar elements must lie along the sides of the plate elements to enable 
transfer of stresses between the two types of element to occur. 

The analysis takes account of the non-linear and time-dependent behaviour of 
the concrete, the non-linear behaviour of the steel and the behaviour in the 
boundary layer between steel and concrete. For a description of the various 
behaviour models for the materials and the boundary layer see Chapter 4. 

If the stresses in a plate element attain the magnitudes at which, according 
to the cracking criterion, the concrete cracks a discrete crack is assumed to 
form, extending in a straight line from one boundary of the element to another. 
Not more than two cracks per plate element are permitted. For these cracks the 
limiting condition imposed is that they must intersect each other at an 
element boundary and that they must, from this point of intersection, each 
extend to a different side of the triangle. This requirement results from the 
rule applied in this progrsun, namely, that at each side of the triangle only 
one point of intersection with a crack is allowed to occur. 

FIGURE 2.2 : Possible cracks in the triangular elements 
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The crack direction is taken to be perpendicular to the principal tensile 
stress. The position of a crack within a triangular element is so determined 
that the crack links up with a crack already present in an adjacent element. 
If the boundaries of the element under consideration have not yet been encoun­
tered by a crack in adjacent elements, the crack is assumed to pass through the 
centre of gravity of the triangle. 

In each iteration only one new crack is applied. The next crack is not intro­
duced into the model until the stresses perpendicular to the applied crack 
have become sufficiently small. This procedure is adopted in order to take 
account of the effect of the new crack on the internal stress distribution in 
the structure. In this way, with a sufficiently fine-meshed network of elements, 
it is possible to calculate the spacing of the cracks. 

In a cracked element the three possible ways in which the parts thereof can 
undergo displacement as a rigid body are taken into account. To this end, the 
following are considered at a crack: 

the displacement of the two crack faces relatively to each other perpendi­
cularly to the direction of the crack, 
the displacement of the two crack faces relatively to each other in the 
direction of the crack, 
the rotation of the two crack faces relatively to each other. 

FIGURE 2.3 : Displacement possibilities at a crack 

A crack, once it has been introduced into the model, remains in existence. The 
procedure does, however, take account of the possibility that, on further 
loading the structure, it may occur that a crack closes up again by compression, 
but as soon as tensile stresses act across a closed crack, the latter opens 
again. Transfer of compressive stresses across a crack is possible only for 
zero crack width. 

In the uncracked element the stresses are assumed to be linearly distributed 
across it. Associated with this is the assumption of a quadratic distribution 
for the normal force and shear force in a bar element. The stress distribution 
diagrams corresponding to these assumptions - for the distribution along the 
plate element boundaries and in the bar element respectively - are indicated 
in Fig. 2.4. 

13 
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a = novmdl stress on side 

T = shear stress along side 
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T t 
F = normal force 

3 = shear force 

FIGURE 2.4 : Stress distribution along the plate element boundaries 
and in and along the bar element 

The displacements of an element boundary are described independently of the 
displacements of the other element boundaries. In this way it is ensured that 
the equilibrium equations, which are always established for each displacement 
unknown, will relate only to the stresses at one element boundary. Now if the 
number of displacement unknowns per boundary is so chosen that the generalized 
nodal forces at these degrees of freedom uniquely represent the stresses at 
the boundary, this will ensure that, after solution of the system of equilibrium 
equations, the conditions of equilibrium are exactly satisfied at every point 
of a boundary. 

This method of choosing the boundary displacements is called the method of 
natural boundary displacements [2.l]. For uniquely describing the linearly 
distributed stresses at the element boundaries it is necessary to describe 
Both the normal displacement and the tangential displacement of the boundary 
likewise with a linear function. The degrees of freedom of the uncracked 
triangular element are indicated in Fig. 2.5 (a). 
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FIGURE 2.5 : Degrees of freedom of uncracked elements 

In the case of the bar element a distinction is drawn between the degrees of 
freedom at the outside of the boundary layer (u,v) and the degrees of free­
dom at the end of the steel core (u,v). The first-mentioned degrees of 
freedom link up with those at the boundary of the thin plate element, while 
those at the ends of the steel core ensure continuity of connection with 
other bar elements (see Fig. 2.5(b)). In this way it is possible, in the model, 
to take account of the slip of the steel in relation to the surrounding con­
crete. 

The stresses may vary greatly in the vicinity of a crack. This is most 
strikingly manifested in the dowel forces in the bar and in the associated 
stresses in the concrete. These forces and stresses are of maximum magnitude 
at a crack and are of opposite algebraic sign on either side thereof(see Fig. 
2.6(b)). 
The shear stresses acting between a reinforcing bar and the concrete may, if a 
crack intersects at an oblique angle the bar, display a disconuity in their 
distribution at the crack (see Fig. 2.6(c)). 

Without extra arrangements these stress variations, and thus the effect of 
dowel action upon the loadbearing capacity, would be insufficiently expressed 
in the analysis. Therefore in the MICRO model, if a crack develops in an element, 
the number of possible stress fields is increased by fields which extend dis-
continuously across the crack. This applies to the bar element and the thin 
plate element (see Fig. 2.7). To make it possible to continue to satisfy 
exactly the equilibrium conditions at the boundaries of the elements also with 
these extra stress fields, it is necessary to increase the number of degrees 
of freedom at a boundary which is crossed by a crack and upon which discon-
tinuously distributed boundary stresses may therefore act. These additional 
displacement quantities represent the discontinuity in the displacements at a 
crack. 
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FIGURE 2.6 : Distribution of the stresses between the bar and the 
concrete in the vicinity of a crack 
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FIGURE 2.7 : Extra stress fields and degrees of freedom in a 
cracked thin plate element or bar element •• 
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The equilibrium equations for these extra degrees of freedom are assembled in 
a separate system of equations. In this way it is not necessary to modify the 
original system, which is highly advant^igeous from the viewpoint of computer 
efficiency. 

2.3 METHOD OF ANALYSIS 

In the MICRO model the "initial strain method" is used for dealing with the 
non-linear behaviour of the materials. To this end, the various stress-strain 
relationships are all written in the form: 

a= D ( E- £""") 

where: O = stress(es) 
D = initial modulus of elasticity (matrix) 
E = total strain(s) 
e = initial strain(s) 

The initial strains may be due, inter alia, to the non-linear stress-strain 
relationship or the occurrence of displacements at cracks, but may also be 
caused by shrinkage and creep. An analysis by this method is based on an 
iterative procedure, as follows. 
For the first iteration the initial strains are taken as zero. For a given 
load the stresses (o ) at the various points of the structure are calculated. 
Then the initial strains (£ ) associated with these stresses are determined 
from the stress-strain diagram (Fig. 2.8). On the basis of these new initial 
strains the structure is again analysed for the same load. Next, with the new 
stresses (a ) at the various points of the structure the initial strains (E ) 
associated with these are calculted. Now if these newly calculated initial 
strains differ greatly from the previously calculated initial strains, the 
iteration process comprising the calculation of stresses and initial strains 
is continued until the difference between the newly calculated strains and 
those calculated in the previous iteration is sufficiently small. The way in 
which the iteration process proceeds depends on the structure and the way in 
which it is loaded and supported. In a statically determinate structure only 
one iteration is needed to reach the exact solution. For a statically indeter­
minate structure in which the total strain E is prescribed the iteration 
process is given in Fig. 2.8. Successively the stresses and the initial strain? 
<̂ / E , a, e , a, £ , a, £ , etc. are calculated until the difference 

between E. and E. is sufficiently small. 
The rate of convergence in this case can be increased by using a relaxation 
method with a relaxationfactor between zero and one. 
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FIGURE 2.8 : Successively calculated initial strains for a structure in 
which the total strain E_ is prescribed 

This method is employed because the modulus of elasticity (D) is kept constant 
in the analysis, the advantage being that the stiffness relationships need 
then be established only once and that the system of equations need be decom­
posed only once. The drawback of this method is that it cannot directly be 
used with materials having an ideal elasto-plastic behaviour (see Fig. 2.9) 
because for such materials the initial strains is not uniquely defined for 
each stress. 

a iv 

FIGURE 2.9 : Ideal elasto-plastic material behaviour 
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For determining the initial strain of an ideal plastic material the latter is 
conceived as being replaced by a visco-plastic material model. This means in 
effect that a viscous damper is placed parallel to the plastically deformable 
part (see Fig. 2.10). 

slip connection 
maximum force that 
can be resisted = S 

1 

77777777 

vtscous 
damoer 

77777777777777777777 

ideal plastic model visco-plastic model 

FIGURE 2.1C 

If this visco-plastic model is loaded by a force P larger than the yielding 
force S, a force P-S will act upon the viscous damper. The rate of strain 
(£- ) of this damper is dependent on the load and on the viscous stiffness K: 

vp 
K(P - S) 

If the iteration process is conceived as a fictitious creep process with a 
time interval At between each two successive iterations, then the increase in 
visco-plastic strain per iteration is: 

AE = E At = KAt(P 
vp vp 

S) 

The iteration process (creep process) is continuied untill the difference 
P - S of the two forces has become sufficiently small. The viscous damper 
serves merely as a means for determining the initial strain. The viscous stiff­
ness K and the time intervals At are therefore only auxiliary quantities. 
The magnitude of the product KAt determines whether the calculation converges 
and how rapidly. Carmeau, in [2.2], indicates what values should be adopted 
for KAt for the various plastic material models. In general, the process is 
found to converge satisfactorily if the following is conformed to: 

AE < 
vp 

2(P - S) 

(where 
or: 

D is the modulus of elasticity of the material) 

KAt 
2 

A disadvantage sometimes attributes to the initial strain method is that it 
has a more restricted range of convergence than the initial stress method. 
The stability of the iteration process is greatly increased by ensuring that 
the increments of the initial strains per iteration are not taken too large. 
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A guiding criterion for this is: 

AE < -

Alternatively to the possibility of incorporating the crack displacements in 
the initial strains, these displacements can be accommodated directly in the 
system of equations. This does not necessitate recalculating the stiffness 
relationships per element, but it will be necessary to re-establish and 
decompose the whole system of equations. Every time a number of cracks have 
formed, these are commodated in the equations. This procedure makes for more 
rapid iteration. 
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3 

DERIVATION OF THE EQUATIONS 

3.1 INTRODUCTION 

The equations for the triangular thin plate element and for the bar element 
will be derived in this chapter. For this purpose tensor notation will be used 
because it enables the equations to be written in a compact form and clearly 
indicates the directions of the quantities concerned and their various partial 
derivatives. In the derivation it is assumed that the displacements remain 
small in relation to the dimensions of the structure and that the partial 
derivatives of the displacements are small in relation to unity. This means 
that the structure is presupposed to display geometrically linear behaviour. 
Five basic equations are applicable in stress analysis. Three of these relate 
to each point of the structure, and two to its perimeter (boundaries). 
The three equations that are valid for each point of a structure are: 

1. The conditions of equilibrium: 

O . . . + q. = 0 /T 1=1 
1],] 1 (3.1a) 

Ö . , - O . . = 0 
1] 11 (3.1b) 

These equations indicate the relationship between the volume load q 
and the stresses O. 

2. The constitutive equations: 

"ij = °ijkl\l (3-2) 

The stiffness tensor D for a particular material expresses the relation­
ship between the strains e at a particular point and the stresses o. 

3. The kinematic equations: 

E. . = i5(u. , + u. . ) (3.3) 
1] 1,1 3,1 ^ ' 

If the partial derivatives of the displacements u at a point are small in 
relation to unity, the strains are linearly dependent on them. 

These three equations establish the relationships between the volume load, the 
stresses and the stress gradients, the strains and the displacement gradients 
at every point of the structure. 
For every point of the perimeter of a structure, one of the following two 
conditions is always applicable separately in one direction. 

4. The kinematic boundary conditions: 

u. = u ° on A (3.4) 
1 1 u 
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For these points this means that, in the direction concerned, the magnitude 
of the displacement (u) is preassigned ( u ). The external force in this 
direction at the boundary is then unknown. A is the portion of the peri­
meter to which this condition applies. 

5. The dynamic boundary conditions: 

C [ . e = p o n A (3.5) 
13 3 1 P 

At these points of the boundary this means that, in the direction con­
cerned, the external force is preassigned ( p ) and that the displacement 
is unknown. The vector e is the normal vector to the boundary at the point 
under consideration. A is the portion of the perimeter to which this 
condition applies. 

The equations 3.4 and 3.5 relate the displacements and the stresses in the 
structure, respectively, to the conditions at the structure boundaries. 

In the finite element method these five basic equations are used for the 
derivation of the equations. If the calculated stresses, strains and displace­
ments for each point of the volume and the perimeter satisfy these conditions, 
then this solution is unique and exact. In general, it is possible only for 
one-dimensional structural components thus to satisfy all these conditions 
exactly. For two-dimensional or three-dimensional components (elements) a 
number of conditions can be satisfied exactly , the others approximately. 
Which conditions are satisfied exactly, and which only approximately, will ^ 
depend on the element model employed. 

The model that satisfies exactly the constitutive equations 3.2 and the 
kinematic equations 3.3 and 3.4 is called the compatible model. The counterpart 
to this is the so-called equilibrium model, which satisfies exactly the con-
stituve equations 3.2 and the equilibrium conditions 3.1 and 3.5. Models which 
satisfy exactly neither the equilibrium conditions 3.1 nor the kinematic 
equations 3.3 are sometimes referred to as mixed models. 

In the finite element method, interpolation functions and a number of 
parameters are used for describing the magnitude and distribution of the stres­
ses, the strains and/or the displacements in an element. If, besides these 
functions which are valid over the whole element, interpolation function^ and 
associated parameters are used which are valid only for the boundaries of an 
element, such a model is called a hybrid model. For a review of the various 
possible element models the relevant literature should be referred to [2.l]and 
[3.1] . 
For describing the element behaviour the hybrid mixed model is used here. This 
is a generalization of the eibove-mentioned equilibrium model. It is based on 
cm assumption for the distribution of the stresses in the element and for the 
distribution of the displacements of the element boundaries. For the triangular 
plate element the assumed stress distribution only approximately satisfies the 
moment equilibrium condition in equation 3.1b. The equations for the hybrid 
mixed model will here be established with the aid of Galerkin's method. This 
method is preferred to methods which make use of a variation principle, because 
with Galerlcin's approach the element relationships cam be derived directly from 
the five basic equations. Which conditions are satisfied exactly, and which 
only approximately, distinctly emerges from this derivation. 
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3.2 GALERKIN'S METHOD 

Galerkin's method is based on the method of weighted residues [3.2]. With 
this approach the requirement that for every point of the element area it is 
necessary to satisfy each of the first three basic equations is eased. 
The equations which cannot be satisfied exactly are replaced by the conditions 
that the integrals over the area of the original equation, multiplied by a 
number of weighting functions, must become zero. By using several weighting 
functions it is not only possible to ensure that the stated condition is satis­
fied on average over the surface, but also that first-order and higher-order 
moments of the residue become zero. 
The special feature of Galerkin's method is that for the weighting functions 
the same functions are used as for the description of the magnitude and distri­
bution of the various quantities. This has the advantage that the formulas 
derived in this way are the same as those derived with the aid of the corres­
ponding variation principle and that the stiffness matrix remains symmetric. 
The product of residue and weighting function always has the character of 
"work". Thus, residual forces are always weighted with displacement fields and 
residual strains are weighted with stress fields. What has been stated here 
with regard to the three conditions in the element is also valid for the 
boundary conditions : in the case of the latter it will be necessary to inte­
grate over the perimeter instead of over the area. 

The derivation of the equations starts from the consideration of one element. 
If the force-deformation relationships per element are known, the procedure for 
establishing an overall stiffness matrix and a load vector and for calculating 
the displacements conforms to the standard displacement method, which will not 
be further discussed. 
For describing the stresses and displacements in an element, and also for 
describing the displacements of the element boundaries, separate functions and 
parameters are used in the hybrid mixed model. 

Thus, the stresses are dependent on m parameters g and the co-ordinate functions 
P: 

kl kla a 
(a = 1, ., m) (3.6) 

The displacements u in the element depend on k parameters V and the functions 
Q: 

2i6^6 
(6 = 1 , .., k) (3.7) 

And the displacements u of the element boundaries are described as a function 
of n displacements v : 

0 o 
u. = L. V 
1 ly Y 

(Y = 1, ., n) (3.B) 

Of the two types of boundary condition, only one always has to be exactly 
satisfied at each point and for each direction. Here the kinematic boundary 
condition (equation 3,4) is used for all the boundaries of the element in all 
directions. In choosing the displacement quantities V and the interpolation 
functions L it is ensured that the displacements of each point of a boundary is 
the same for all the elements meeting at that boundary. The constitutive 
equations 3.2 are used for calculating the strains from the stresses. For the 
purpose of the method gf analysis envisaged here, the strains are split up 
into an elastic part e and an initial part E . The elastic strains are those 
which would occur if the material displayed ideal linearly elastic behaviour 
(see Section 2.3). 
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E I . 
E. . = E. . + E. . 
13 13 1] 

r ^ = F C = F P B 
^ij ijkl kl ijkl kla'^a (3.9) 

I 
E = F P B + E. . 
i] ijkl kla a 13 

For linearly elastic materials the flexibility tensor F is the inverse of the 
stiffness tensor D in equation 3.2. The displacements in the element should 
satisfy the kinematic equations 3.3 and 3.4. In general, the chosen displace­
ment field cannot exactly satisfy these equations. Therefore these two condi­
tions are replaced by the condition that the integrals of the product of 
these conditions with a number of weighting functions must become zero. Since 
we are here concerned with the weighting of strains and displacements, the 
co-ordinate functions P of the stress field are chosen for the weighting 
functions. The substitutive kinematic conditions per element are: 

ƒ,ƒ{£ . - h(u. . + u. .)}P. . dV + ƒ (u. - u°)e.P. . dA = 0 (3.10) 
V i] 1,3 ],i ija A 1 1 3 13a 
^ ^ (a = l,..,m) 

where Ve denotes the volume of the element and Ae denotes the area of the 
boundaries. 
For the purpose of further working out the volume integrals, 3.10 is re­
written as: 

/,ƒ£.. P. . d V - ƒ / u. . P. . dV + ƒ r 4 (u. . - u . . ) P. . dV + (311) 
V in iia V ±,j 1301 V 1,] ],i i]a V J . H ; 
e e e 

/ u , e P . . d A - / u ° e . P . . d A = 0 
A 1 1 11 a A 1 1 1] a 
e e 

After partial integration, the second term on the left-hand side becomes: 

ƒƒ„ u. .P dV = ƒ, u e.P. , dV - ƒƒ u.P. . .dV (3.12) 
V 1,1 iia A 1 ] 13a V 1 i]a,i 
e e e 

Substitution of the equations 3.6, 3.7, 3.8, 3.9 and 3.12 into 3.11 gives: 

S,//„ P, ,,F, , . .P. . dV + .r/ £. . P, . dV + V r/ Q ,P ,dV + 
C V klC kli] i]a V 1] ija & V i6 i:a,i (3.13) 

o 
^/^ff„ '5(Q-''.-Q.x.)P..dV-V ƒ L, e.P..dA=0 
0 V 10,] 30,1 13a Y A ly : 130 

The equations 3.13 represent the relationships between the stress parameters 
3 and the displacement quantities V and V^. For the sake of obtaining a com­
pact notation, the various integrals are substituted into 3.13, 

F^ = ƒƒ„ P, ,^F, , . .P. . dV 
Ca V kl5 kli3 13a 

Z = ƒƒ„ £.. P.. dV 
a v^ 13 13a 

B^^ = -/"A, 2. .P. .̂  .dV + ƒƒ„ i5(Q._, . - Q.J. .)P. . dV oa V 16 13a,1 V i6,3 36,1 i3a 

D = ƒ L e .P. . dA 
yx A 1Y 3 1301 

e 
With these expressions, 3.13 can be written as follows: 

g^F + Z + V, B, - V° D = 0 (3.14) 

After the constitutive equations and the kinematic conditions there still re­
main the equilibrium conditions to be satisfied. In conformity with the pro­
cedure followed with regard to the kinematic conditions, the equilibrium 
conditions for each point are replaced by the requirement that the integrals 
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(over the volume of the element) of the equilibriiom equations multiplied by a 
number of weighting functions must be zero. The interpolation functions of the 
displacements in the element are used as weighting functions: 

^^vj 1j , i - "" i'^iS'"'' ^ ^^^ij '^ 'ÖiS,! " SS , ! " ' ^ = ° (3.15) 
(6 = l , . . , fc) 

The f i r s t i n t eg ra l r e l a t e s to the equil ibrium of forces and the second i n t e g r a l 
r e l a t e s t o the equi l ibr ium of moments. Subs t i tu t ion of equation 3.6 (for the 
s t r e s s e s ) into equation 3.15 g ives : 

3 B, - R, = 0 (3.16) 
a oa 0 

For t h e meaning of B„ see equation 3.14. 

Rr = /ƒ„ q.Q..dV 
0 V 1 10 

e 
By combination of the equations 3.14 and 3.16 the displacement quantities V 
can be eliminated from the relations between the stress parameters B and the 
displacement quantities V at the element boundaries: 

(3.17) 
3 = H {D V ° - Z } + Y,j,R. 
5 Ca Yx Y a c6 5 

where: 

H = F~ - F~ B, (B. F~ B^)~ B, F" 

Y . = F~ B, (B, F" B, ) ~ 
C(S ?v Av Ay •>?: 6£ 

In this derivation it is clearly manifest that per element the calculated 
stresses and the volume loadings need not to be in exact equilibrium at every 
point and that the displacements, too, only approximately need to satisfy the 
kinematic conditions. If the volume loadings are zero and if the chosen 
stress functions always satisfy the equilibrium conditions exactly, then the 
tensors B and R are zero. The distribution of the displacements in the element 
will then have no influence at all on the derivation and on the relationships 
finally arrived at. The displacement fields in the element here only perform 
the function of weighting the errors in the equilibrium equations. This is 
taken into account in making the choise of these displacement fields. In the 
displacement method the relationships between the displacements of a number of 
points at the element boundaries and the stress resultants at those points are 
utilized. These stress resultants K are uniquely determinable from the 
stresses. The requirement is that, for a small displacement of the element 
boundaries, these resultants do the same work as is done by the stresses at the 
boundaries. 

ƒ G,e.5u°dA = KfiV-̂  (3.18) 
A 13 3 1 y y 
e 

On substitution into this equation of the equations 3.6 and 3.8 it becomes: 

B D 6V° = K 5V° (3.19) 
a ay y y Y vj- ^ 

This must be valid for any variation SV , so that: 

^a^ay = ^Y (3.20) 
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Substitution of the equations 3.17 gives: 

(3.21) 
D H j,D,,V° = K + D H -Zj. - D Y -R. 

ayaó óA A y ayaö o o y a5 o 

The choise of the number of stress parameters (m) and the numbers of displace­
ment quantities {n) and (fe) are closely interconnected. This clearly emerges 
on considering the eqjaations 3.14. In these, m stress parameters S are 
dependent on n + Z: displacement quantities V and V . if n + k exceeds m, there 
are at least n + k - m non-zero combinations of displacement quantities for 
which all the stress parameters become zero. In reality there are I of these 
displacement possibilities, these being the possibilities of displacement of 
the element as a rigid (undeformed) body. If it is desired to restrict the 
stressless displacement possibilities to these (Z.) rigid-body displacements, 
then the minimum requirement is expressed by: 

n + k - m <, I (3.22) 

3.3 ADDITIONAL SYSTEM OF EQUATIONS 

In Chapter 2.2 it was already stated that, if an element is intersected by 
one or two cracks, extra stress fields and extra displacement unknowns at the 
element perimeter are used for describing the stresses distributed disconti-
nuously across the crack. 
These extra degrees of freedom are not included in the original system of 
equations, but in a separate (additional) system. In this section the rela­
tionships between the various types of degrees of freedom and the types of 
stress parameters will be derived. Since the directions and patial derivatives 
are sufficiently evident from the tensor notation used in the preceding 
section in connection with general derivation given there, here only the even 
more compact matrix notation will be adopted. The designations of the 
matrices and vectors employed here correspond entirely to those of the tensors 
previously employed. 

For the description of the stresses in a cracked element an extra stress field 
P.Bp is added to the stress field P.B,: 

c= P^B^ + P2B2 (3.23) 

The displacements of the element boundaries which are intersected by a crack 
are described in terms of the general displacement distribution L V and an 
extra distribution L V : 

B B 

''° = V A + V B (3-24) 

Substitution of these functions into the equations 3.14 gives: 

Sl^l ^ V 2 I " ̂  " ̂ ^ - ̂ A^A - °1B^B = ° (3.25a) 

Sl^2 ' e/22 ̂  ̂ 2 ̂  «2^ - °2A^A - °2B^B = ° (̂ -̂ b̂) 

The interpolation functions P and L are so chosen that in the equations the 
matrices F,^ and D, become zero. 

12 IB 

In Section 3.2 the displacement quantities V were eliminated from the 
equations 3.14 with the aid of the generalized equilibrium conditions 3.16. 
For the sake of splitting up the stress parameters B, and g as much as 
possible, it is here required that the field P B is approximately in 
equilibrium with the volume loading q. 
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The generalized equilibrium conditions 3.16 thus becomes: 

^1^^ - R = 0 (3.26a) 

^2^2 ° ° (3.26b) 

With the aid of these equations the equations 3.25 can be rewritten as follow: 

6, = H,,{ D, V° - Z,} + Y R . (3.27a) 
1 11 lA A 1 1 

^•> = H„{ D, V° + D„ V° - Z,} (3.27b) 
2 22 2A A 2B B 2 

The generalized nodal forces K can be calculated from the stress parameters 
with the aid of equation 3.20: 

°ll̂  ̂  <\ = ̂ A '̂•'̂ '̂ 
T „ (3.28b) 

°2B^2 = '̂ B 
The relationships between the generalized nodal forces and the displacement 
quantities at the element boundaries now become: 

°lI«ll°lÂ A = \ ^ °ll"ll^ - °1^1« - ''IKH (3.29a) 

°2B«22°2B^B = -̂B ̂  °2B«22'2 " ° 2 B « 2 2 ° 2 A < ''•'''=' 

These two systems of equations are separately established and solved. In each 
fresh iteration, first the displacements v/̂  are calculated with the aid of the 
initial strains Z and the secondary stresses B, from the preceding iteration. 
Then the displacements V are calculated with tne aid of the initial strains 
Z from the preceding iteration and the newly calculated displacements V . 
This procedure of splitting up into two systems of equations has been chosen 
in order to avoid having to establish the original system of equations 
afresh every time a crack occurs. 
Choosing the interpolation functions P and L so that the matrices F and 
D become zero is done by adopting the following expressions for these 
functions: 

^2 " *^1^ * ^2' (3.30) 

The matrices A and A can always be so determined that the matrices F and 
D are zero. This is done in order to have the least possible intercoupling 
between the various stress fields and the various displacement quantities. 

3.4 TRIANGULAR THIN PLATE ELEMENT 

In the uncracked element, linear interpolation functions are used for the 
stresses and the displacements of the boundaries. In order to satisfy the 
condition 3.22 with the numbers of stress parameters and displacement quanti­
ties, it is not presupposed that o is equal to a . This is allowed 

xy yx 
because the weighting function for this moment equilibrium condition 
(a - o = 0) is already incorporated in the derivation given in Section 

3.2 . 
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FIGURE 3.1 : Triangular thin plate element 

The stresses at any particular point of the element are expressed in the 12 
stress parameters B, (D to B (12). 
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(12) 

(3.32) 

The functions A^ (x,y) are first-degree polynomials in x and y. 

A^(x,y) = a^x + b.y + c^ 

The coefficients a^, b, and c, have been so determined that A, has the 

value unity at the corner I and is zero at the other corners. 
As a result of formulating the interpolation functions P with these polyno­
mials Aj the parameters B become equal to the stresses at the corners of 
the element. 

f n l T r i 1 1 1 - 3 3 3 3 k 
1 I XX yy xy yx XX yy xy yx XX , a yy 

k k 
a , a 
xy yx 

The displacements of the element boundaries are written for each boundary as 
linear functions of the four displacement quantities at the boundary concerned. 
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FIGURE 3.2 : Displacement unknowns at the plate element boundary 
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o o 
u (s) = L^V^ (3.33) 

The functions for the description of the displacements in the element are used 
only for the weighting of the equilibrium conditions. These functions have 
been taken as follows: 

u (x,y) 

v(x,y) 

1 0 -y 

0 1 X 
(3.34) 

u(x,y) = QV 

Only the three possibilities of deformation as a rigid body have been included 
in these displacement functions. For the equilibrium conditions this has the 
consequence that these conditions are satisfied, on an average, over the 
element. Since a linear distribution is adopted for the stresses, the equili­
brium conditions are nevertheless exactly satisfied for a volume loading that 
is constant over the element. These equilibrium conditions are: 
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a + a = q 
XX, X xy, y ^x 

a + a 
yx,x yy,y 

'^ 

For the shear stresses the following remains valid: 

•J (a - o )dv 
V xy yx 

FIGURE 3.3 : Degrees of freedom of an uncracked plate element 

If a crack forms in the element, extra stress fields are added to the fields 
P B already present in the element. Apart from the addition P A (see 

section 3.3) needed for making the matrix F zero, these extra fields P„Bo 

have been so chosen that they produce a constant boundary stress along the 
various laoundary portions; this boundary stress is not equal on either side 
of a crack (see Fig. 3.4). 

(Ji 

FIGURE 3.4a : Distribution of stresses along the boundaries of a plate 
element with one crack 
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FIGURE 3.4b : Distribution of stresses along the boundaries of a plate element 
with two cracks 

If there is one crack in the element the extra stress fields are: 

yy 

xy 

yx 

C 0 0 0 

0 C 0 0 

COS a(D-A., 

sin a(D-A ) 

COS B(D-A^^^) 

sin B(D-A 
III 

C O C O sinacosa(D-A ) sinBcosB(D-A ) 

0 0 0 C sinacosa(D-A^ sinBcosB(D-A ) 

.(1) 

B2(6) 

extra 2 2 (3.35) 

FIGURE 3.5 : Plate element with one crack 
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The functions C, D, A and A used in equation 3.35 are defined thus: 

- C = 1 in the quadrilateral i, I, III k 
outside this quadrilateral : C = 0. 

D = 1 in the triangle I, j. III 
outside this triangle: D = 0 

- A is a linear function defined in the triangle I, j. III and has 
the magnitude 1. at point I and the magnitude 0 at points j and III. 

- ^TTT •'"̂  ̂  linear function defined in the triangle I, j. III and has the 
magnitude 1. at point III and the magnitude 0. at points I and j. 

If the element is intersected by two cracks, then the extra stress fields are: 

p —1 
a 

XX 

0 
yy 

0 
xy 

0 
yx 

I— _J 

r 

^ 

L 

C 0 0 0 

0 C 0 0 

0 0 C 0 

0 0 0 c 

COS a(D-A ) 

2 
sin a(D-A ) 

sinacosa(D-A^) 

sinacosa(D-A ) 

cos 6(D-A^^^) 

sin B(D-A^^^) 

sinBcosB(D-A ) 

sinBcosB(D-A ) 

extra ^2^2 

2 * < cos a(E-A ) 

2 * 
sin a(E-A^) 

sinacosa(E-A ) 

sinacosa(E-A ) 

cos y(E-A ) 
' II 

2 
sin Y(E-A ) 

sin Y;os y(E-A ) 

siny:osy(E-A ) 

,(1) 

B2(8) 

(3.36) 

FIGURE 3.6 : Plate element with two cracks 

32 



The functions C, D, E, A , A , A and A used in equation 3.36 are defined 
as follows: 

C = 1 in the quadrilateral II, I, III, k; outside it: C = 0. 

E = 1 in the triangle i, I, II; outside it: E = 0. 

the definations of D, A and A are the same as in equation 3.35. 

- A is a linear function defined in the triangle i, I, II which has 
the magnitude 1. at point I and the magnitude 0. at points i and 
II. 

II 
is a linear function defined in the triangle i, I, II which has 
the magnitude 1. at point II and the magnitude 0. at points i and 
I. 

In Section 3.3 it has already been noted that the matrix F can be made zero 
by the addition of the functions P A to the functions P . 
This is the case if the following is adopted for the matrix A: 

The stress field (PA + P ) g is then orthogonal with respect to the strain 
in consequence of the stresses P B,. 
In order to continue to satisfy exactly the equilibrium at the element bounda­
ries, the displacement functions for the boundaries intersected by a crack 
should be extended with an extra displacement. Just as at uncracked boundaries, 
this displacement should agree with the stress distribution at these boundaries 
The interpolation function for these extra boundary displacements is: 

Au (s) 

Av°(s) 

<s - a> + c + c s 

<s - a> + c + c_s 

where: 

Av 
n3.37) 

FIGURE 3.7 : Element boundary intersected by a crack 
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FIGURE 3.8 : Extra degrees of freedom at cracked element boundaries 

The extra displacements in equation 3.37 are orthogonal with respect to the 
boundary stresses due to the function P g , so that the matrix D 

1 ̂ 1' IB 
becomes 

3.5 BAR ELEMENT 

A bar element is used for the schematization of the embedded steel, i.e., 
the reinforcing bars and/or prestressing tendons. This element has a stiff­
ness with respect to change in length (extensional stiffness) and with respect 
to deformation by shear force. Also, the properties of the contact zone 
between steel and concrete are included in the relationships for this element, 
so that no additional boundary layer elements are required. For this boundary 
layer a stiffness with respect to shear deformation and a stiffness with 
respect to indentation are taken into account. These last-mentioned stiffness 
characteristics of the boundary layer have been included in the model in order 
to enable it to deal with dowel forces and the consequences of non-linear 
bar geometry. The distribution of the forces in the bar element is adjusted 
for the distribution of the stresses along the boundaries of the triangular 
plate element with which these bar elements are to be associated. A linear 
stress distribution has been adopted in the uncracked plate element; to this 
corresponds a quadratic distribution for the normal force (F) and shear force 
(S) in the bar element. The functions P 

1 '"̂1 
in an uncracked bar element are: 

1 s s 0 0 

2 2 2 
0 Q 0 1 - 3s 2sl - 3s 

Sjd) 

B (5) 
.1 

(3.38) 

The distribution of the shaer force in an element has been so chosen that the 
average shear force is always zero. This ensures that the bending moments in 
the bar remain small and that they are zero at the ends of the bar. According­
ly, no rotational degree of freedom is needed at the ends. The constitutive 
equations for the combined steel/boundary layer element are 
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E 

A , 

Y 

^1 

1_ 
AE 

0 

0 

0 

0 

1 
K 

0 

0 

0 

0 

1 _ 
GD 

0 

0 

0 

0 

1 
B 

F 

dF 
d s 

S 

dS 
d s 

(3.39) 

where: £ = strain of the steel 
A// = displacement in boundary layer 
y = deformation due to shear force 
Aĵ  = indentation of boundary layer 
A = cross-sectional area of steel 
E = modulus of elasticity of steel 
K = elastic stiffness of boundary layer with respect to displacement 
D = dowel rigidity 
G = shear modulus of steel 
B = elastic stiffness of boundary layer with respect to indentation 

The displacements at the element boundaries are descripted with the aid of 
o o o o 

the displacement quantities u , v., u,, v. on the outside of the boundary 

layer and the displacements u. 
steel bar. 

-o -o 
u. and u. of the extreme points of the 
3 3 

FIGURE 3.9 : Degrees of freedom of an uncracked bar element 

If the bar element is intersected by a crack, then - as in the plate element 
the stress functions and displacement functions are extended by the addition 
of extra fields. ^ 
The extra stress field P_B_ is: 

<s-a> 

0 2<s-a> - (1 - f̂ )̂ l 

"R ( ! > ' 
^2 

R (2) 
. 2 

(3.40) 
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<s - a> s<a 

<s a> = (s a) s>a 

For this function, too, the average shear force per element is zero. In order 
to ensure that the matrix F becomes zero, the field P,AB2 is added to this 
field P*g , in the same way as is done in the case of the plate element. The 
matrix A is: 

A = -F ^ff P.FP*dV 
11 V 1 2 

The extra displacement field along the boundary layer corresponds entirely to 
the extra displacement fields along the boundaries of a cracked triangular 
element. 

, s 

1 
a 

/\v°^ 
1. 

'' 

f 
1=̂  

FIGURE 3.10 : Extra degrees of freedom at a cracked boundary layer 

Au°(s) 

Av°(s) 

<s-a> + C^ + C2S 

<s-a> + C + C s 

Au" 

Av" (3.37) 

(see Section 3.4) 

Here it is not necessary to choose a displacement distribution in the 
element, since the assumed stress fields exactly satisfy the equilibrium 
conditions. 

3.6 TAKING ACCOUNT OF CRACKS IN THE STIFFNESS MATRIX 

In order to speed up the iteration process, whenever a number of new cracks 
have formed, the normal displacements in these are incorporated into the 
stiffness matrices. In applying this adjustment it is necessary to bear in 
mind that it must be possible to correct negative crack widths and that 
uniqueness of the crack widths is desirable. 

In this procedure the normal displacements in a crack are split up into two 

parts: 

1 „ 2 
V = V + V 
cr cr cr 

(3.41) 

The part V is, according to the normal procedure, accommodated in the 
initial strain vector Z and the contribution of the part V is written 
explicitly in the formulas 3.27a for the stress parameters B : 

\ - «II°IA\ 11 1 cr «11^ ^ ^ ^ 
(3.42) 
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where C is the boundary integral over the crack of the interpolation 

functions P . 
1 

The stress resultants in the directions of the crack displacements V are 
cr 

<8i = C>,iD^^V° - C^H^^C^v;^ - C^H^^Z^ + C^Y^R (3.43) 

It is assumed that when the crack width is non zero the normal stresses in a 
crack and consequently these stress resultants vanish. 

Equations 3.43 are split up into 

^>11°1A^A - V u ^ l ^ c r = ° (3-44a) 

- Ĉ Hjî l "̂  S''l'* " ° (3.44b) 

This means that the crack displacement V only depend on the element boundary 

displacements V . The part V only depends on the other initial strains in 

the element and the volume load. 

From equation 3.44a it follows that 

V = <^lS'' Vll°lA< (3-45) 

Substitution of 3.45 into 3.42 gives 

^ = [^1 - "iiS'<«iiS'"'^Xi jv^A - «11^" '̂̂  (3-̂ '̂ 

For the equations 3.29a which indicate the relationship between the generalized 

nodal for 

equation 

nodal forces K and the nodal displacements V is now substituted the 

( 3 . 4 7 ) 

R) + ol B^ 
2A^2 

T r T —1 T I o T 
D , . H,, - H, C, (C H, ,C, ) C,H, . D, V = K + D. (H. Z. - Y. 

lA I 11 1 1 1 1 1 1 1 1 l l j lA A A I A M I 1 1 

2 
Analysis of the part V is performed with the visco-plastic model described in 

cr ' 
Section 2.3. After each iteration the total displacements V are calculated 

cr 

with equation 3.41. These total crack displacements are incorporated as a whole 

in the initial strains for the determination of Z (see equation 3.29b). 

This ensures that the same crack displacements are taken into account in both 

systems. If the crack widths V become negative, this will be compensated by 
2 ^^ 

the part V without necessitating re-adaption of the matrices. 
cr 
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4 

MATERIAL MODELS 

4.1 INTRODUCTION 

The behaviour of a material is always described with the aid of a number of 
models, each of which describes a particular aspect of the behaviour. These 
models are here called the basic or material models, in order to distinguish 
them from the overall models for the analysis of a structure, such as the 
MICRO model, in which the basic models are used. The latest knowledge 
concerning the behaviour of the materials is embodied in the basic models. 
More particularly with regard to concrete, however, the available knowledge 
of its behaviour under various conditions is still very incomplete, and 
research on the subject is still in full swing. The MICRO model has therefore 
been so conceived that the basic models can quite simply be replaced by 
others or be increased in number. 

The MICRO model comprises basic models for the following material properties: 

for concrete: 
a non-linear stress-strain relationship; 
a cracking criterion; 

- a crushing criterion; 
- a shrinkage model; 

a creep model; 
a model for aggregate interlock in a crack. 

for steel: 
a non-linear stress-strain relationship. 

for the boundary layer between steel and concrete: _ 
- a non-linear shear stress-displacement relationship; 

a linear normal stress-displacement relationship 

For some material properties alternative models have been included, from 
among which the user can make a choice according to his own judgment. No 
experimental research into the behaviour of the materials has been undertaken 
within the context of this study. With the exception of the model for 
aggregate interlock in a crack have the basic models for the description of 
the concrete properties been taken from the literature. Where several models 
are reported in the literature, a choice has been made on the basis of agree­
ment with experiments and of the serviceability of such models in the MICRO 
model. Pending the results of research after the force-displacement relations 
in a crack and after the co-operation between steel and concrete which are 
performed within the framework of the project "Concrete Analysis" (see Section 
1.1), simple linear elastic and elasto-plastic models for these properties 
have been adopted. No models have been included for describing the relaxation 
of prestressing steel and the time-dependent deformations at a crack and in 
the boundary layer. The reason for not (yet) taking account of the two last-
mentioned creep deformations is the existing lack of knowledge concerning these 
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deformations. In comparison with the creep of concre te , the r e l axa t ion of 
s t e e l i s such a rapid process t h a t i t i s assumed to have been completely 
accomplished before the concrete s t a r t s i t s creep. 

4 . 2 NON-LINEAR STRESS-STRAIN RELATIONSHIP OF CONCRETE 

4 . 2 . 1 LINK'S MODEL 

This model is based on results of experimental research by Kupfer et al. [4.l] 
concerning the behaviour of concrete under two-dimensional states of stress. 
Basing himself on these results. Link [4.2] developed formulas for the 
calculation of the strains ( £ ) associated with any (arbitary) two-dimensional 
state of stress. These formulas define the total strains depending on the 
actual stresses, the uniaxial compressive strength of concrete, the initial 
modulas of stiffness and the initial value of Poisson's ratio. Presupposing 
coincidence of the orientation of the principal directions of the stress 
tensor and the strain tensor, and assuming symmetry of the stress-strain 
relationship. Link formulates the constitutive relationship as follows: 

'11 

'22 

11 

22 

(4.1) 

On account of the above-mentioned symmetry, the following expression holds: 

s 
V, 
1 

\)„ 
(4.2) 

1 

s 
E. 

The symbols in the formulas 4.1 have the following meanings; 

secant modulus of stiffness in the principal direction i 

secant value of Poisson's ratio in the principal direction i 

principal stress in the direction i q . 
1 1 

principal strain in the direction i 

s s 
For the very elaborate formulas for E. and v. the relevant literature should 
be referred to [4.2] . 
The model is in good agreement with the experimental results of various 
investigators. Besides this advantage, it has some disadvantages, however, na­
mely: 

- the model is purely elastic and therefore takes no account of the 
permanent deformations that remain on unloading, nor of the dependence of 
the strains upon the stress path followed; 
the assumptions made in deriving the formulas have yet to be investigated 
as to their validity; 
the elaboration and precision of the formulas suggests an accuracy which 
is decidedly unrealistic with reference to a material such as concrete. 
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4.2.2 BUYUKOZTURK'S MODEL 

Link's model (see Section 4.2.1) may prove inadequate for analysing the 
behaviour of structures which, after being loaded, are unloaded'or on which 
the various loads are not simultaneously increased monotonically. A constituti­
ve model for concrete which does take account of permanent deformations and 
also of the dependence of the strains upon the "stress history" is that of 
Buyukozturk [I.I7]. This model is based on the conception of elasto-plastic 
material behaviour supplemented with istotropic strain hardening in consequence 
of plastic deformations. For the yielding surface (F) Buyukozturk uses what he 
calls a "generalized Mohr-Coulomb" formula: 

F = 3 ( 3 J 2 + 
— 2 h — 
OJj + Jj/5) - O 

(4.3) 

For two-dimensional states of stress the symbols in this formula denote: 

J = a + 0 
1 XX yy 

2 2 
J„ =(C + C - 0 0 ) / 3 + a o 
2 XX yy XX yy xy xy 

o = equivalent stress 

The strain hardening rule adopted here is that the equivalent stress ( 0 ) is 
dependent on the equivalent plastic strain (Ë ): 

^ = H( £ ) (4.4) 

p 
For the increase of the plastic strains ( E ) the following formula is used: 

, p ^^> r3F , 
dE*̂  = dE {r— } 

0 o 

d£ :; 0 als F<0 (4.5) 

de^ > 0 als F>0 

This formula is based on the Prandtl-Reuss assumption with isotropic 
hardening. This means that the plastic strain increases (dE ) are perpendicular 
to the surface(F). In his model Buyukozturk takes account of the plastic defor­
mations only if one or both of the principal stresses are negative (compression) 
and uses a^relationship between the equivalent stress (a ) and the equivalent 
strain ( E ) which depends on the two principal stresses and the "stress 
history" (see Fig. 4.1). 

(J k 

biaxial compression 

monoaxial compression 

FIGURE 4.1 : Relationship between a and ^F for different stress conditions 
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In his description of the model Buyukozturk gives no formula for the strain 
hardening function H. Therefore in the MICRO program a parabalic relation 
between the equivalent stress ( O) and the equivalent plastic strain ( £ ) has 
been assumed. Also has the calculation of the equivalent plastic strain been 
modified so that the dependence of the strain hardening on the state of stress 
has been taken account of and the model can be used for all states of stress. 
With these modifications, Buyukozturk's plastic model has been implemented as 
a visco-plastic model. The formula for the rate of visco-plastic deformations 
is: 

"VP ^ F 3F - , . r^ 

o 

• vp 
where: £ = visco-plastic strain rate 

Y = viscous conètant 

F = reference value of F to make the expression dimensionless 
o 

If the state of stress is within the yielding surface, the material will 
behave elastically. Therefore the following must hold: 

< F > ^ 0 
F 
O 

< ^- > = i^) 
F F 
o o 

if F < O 

if F > O 

(4.7) 

It has already been pointed out that the strain hardening function H 
depends on the state of stress and on the stress history. In order to take 
account of these two aspects in the strain hardening model, the equivalent 
strain is calculated, not from the total visco-plastic strains, but from a 
summation of all the increases in (n) stages of analysis: 

£ = r ,a.(d£ 
1=1 1 

(4.8) 

The increase of the equivalent strain (dE ) per stage is here defined as: 

a^ = V'^£^d£^ (4.9) ^£:^d£:'r 
3 13 13 

The interdependence of the hardening and the state of stress is incorporated 
in the multiplying factor a, for which the following formula is employed: 

a / Vc 
11 

1,5 
^1-^2 

(4.10) 

In Fig. 4.2 the magnitude of 1/a has been plotted in the two-dimensional 
principal stress space. 
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FIGURE 4.2 : Function 1/a 

The smaller the value of 1/a, the greater is the kinematic hardening and the 
smaller will the plastic deformations remain. The function a has been so 
chosen that in the case of biaxial compressive loading the plastic deformations 
are about 20% less than in the case of monoaxial compressive loading. For any 
particular value of the equivalent stress C the plastic deformations in the 
case of tensile loading are between 5 and 10% of the plastic deformations in 
the case of compressive loading. 

— —P 
The relationship between O and £ (see equation 4.4) is described in the 
MICRO model by a second-order polynomial: 

-^ ,-P 2 
a^E + a2(E ) 

(4.11) 

It is assumed that when a state of stress attains the crushing criterion (see 
Section 4.4.2) the concrete can nevertheless still transmit some stress. On 
attainment of the crushing criterion there occurs a transition from an 
isotropic hardening model to an isotropic softening model. For this the same 
procedure and formulas are used as for the hardening model, except for 
formula 4.11, which now becomes: 

0 = <H (E ) > <̂  
—p 

+ a,(2E 
1 max -^) + a,( max 

^ ^ 2 V 
£ ) > (4.12) 

The value £ corresponds to the crushing criterion. For the equivalent 
stress O in formula 4.12 the following holds: 

— - *, I O = H (E 

0 E 0 

if 

if 

H (E ) > 0 
* -P 

H (£ ) < 0 

43 



FIGURE 4.3 : Stress- strain diagram for uniaxial state of stress analysed with 
the modified Buyukozturk''s model 

It must be pointed out that the validity of the various assumptions adopted in 
the analysis has not yet been sufficiently verified by experimental results. 
From the limited amount of comparative information available it does, however, 
already emerge that the supposed orthogonality of the increase of the plastic 
strains and the yielding surface is not correct. 

4.3 CRACKING CRITERION FOR CONCRETE 

In considering the behaviour of concrete subjected to two-dimensional states 
of stress a distinction is drawn between the crushing and the cracking of the 
concrete. By cracking is here understood the formation of cracks in the 
concrete perpendicularly to the plane of the two-dimensional state of stress. 
These cracks develop if one of the principal stresses is positive (tensile 
stress) or if both of them are positive. Many authors [1.17, 4.3, 4.4] make 
use of a stress envelope as shown in Fig. 4.4 for describing the states of 
stress for which these cracks arise. 

The values SB, SA and tan(a) are needed for describing this criterion. The 
points A mark the transition from the cracking criterion to the region where 
crushing of the concrete occurs. Experimental results indicate for tan(a) 
value ranging from 1/10 (Nelissen [4.4] ) to 1/15 (Kupfer [4.1.] ). 
For the calculations performed for this thesis the following have been adopted: 

S = f = uniaxial tensile strength of concrete 
A c 

I 

S = f = uniaxial compressive strength of concrete 
1 

tan (a) = "TS" 
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FIGURE 4.4 : Criterion for cracking 

It is assumed that if the stresses attain a value located on this cracking 
stress envelope, a crack is formed perpendicularly to the larger principal 
stress (= tensile stress) and the stresses at right angles to this crack have 
to become zero. 

4 .4 CRUSHING OF CONCRETE 

By crushing of concrete is here understood the formation of cracks both in and 
perpendicularly to the plane of the two-dimensional state of stress. This 
type of cracking occurs if one or both of the principal stresses are 
approximately equal to the monoaxial compressive strength of concrete. As a 
result of such cracking the ability of the concrete to transmit large 
compressive stresses reduce. In the original constitutive models of concrete 
by Link and Buyukozturk no account have been taken of this post crushing 
strength. The model of Buyukozturk has therefore been modified to this. A 
modification of the constitutive model by Link has been omitted. Just as 
was done for describing the constitutive behaviour of concrete, so here too the 
models of Link [4.2] and Buyukozturk [1.17] will be used for describing the 
criterion for crushing. In both models the shape of the crushing envelope is 
independent of the concrete quality. 

4.4.1 LINK'S MODEL 

The model for the failure criterion of concrete according to Link [4.2] is, 
like his constitutive model, based on the tests of Kupfer et al. [4.1] . 
This criterion is valid both for failure in cracking and for failure in 
crushing. In the MICRO model this model according to Link is used only to 
describe the crushing of concrete. The transition from cracking criterion to 
crushing criterion is located at the points A for which the value of tan (a) is 
equal to 1/15 (see also Section 4.3). Using the method of "curve fitting", 
Link has established a number of formulas for the failure envelope for 
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various kinds of concrete. As a generally-applicable formula for normal weight 
concrete he recommends: ' . 

2 3 4 5 

Y = 0.1203 + 0.3682X - 0.1910X + 2.8430X - 5.4875X + 3.7567X + 

- 1.0154X^ + 0.06664X^ + 0.4335 *(0.594SIN(1.847996X) -

+ 0.00192TAN(.951998X)) 

X = 0.5 /2(0, , +0^„)/f' 

^̂  22 c (4_j3j 
Y = - 0 . 5 /2(0^j -022)/f; 

FIGURE 4.5 : Link's failure envelope 

The model is in good agreement with the experimental results of Kupfer et al. 
However, this model likewise has the drawback of taking no account of the 
stress history and of giving an exaggerated impression of accuracy. 

4.4.2 BUYUKOZTURK'S MODEL 

Buyukozturk's failure criterion ties up with his constitutive model. If the 
equivalent stress a becomes equal to the compressive strength f', the yielding 
criterion (4.3) turns into the failure criterion: 

3J, + f'j, + 0.2J^ = (f')2/9 (4.14) 
2 c 1 1 c 
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FIGURE 4.6 : Buyukozturk''s failure envelope 

In the relationship between the equivalent stress and the equivalent strain, 
as employed here, the attainment of the crushing criterion corresponds to a 
maximum value for the equivalent strain (£ = £ ). Buyukozturk tests this 

max 
formula against Kupfer's experimental results. He applies this criterion only 
in the case where both principal stresses are negative (compression). For the 
compressive/tensile and the tensile/tensile region he adopts the cracking 
criterion of Section 4.3. In this approach the transition from crushing with 
cracks is considered to occur at a value of -15 and -1/15, respectively, for 
the ratio O /o (see point A in Fig. 4.4). 

4.5 SHRINKAGE OF CONCRETE 

The shrinkage deformation of concrete is here considered independently of the 
state of stress and of the creep deformation. Recent research shows that there 
is indeed a connection between shrinkage and creep. These investigations have, 
however, not yet resulted in a model that can be incorporated into an overall 
model. The model for shrinkage employed here is based on CEB Report 111 (1975) 
[4.5, 4.6]. 

The shrinkage deformation is determined with the formula: 

£ , . . (3) = 2 , E^ V, . , {R(i)}=;< K (F,,,t , {i + 1} ) + 
shrinkage i=l b shrinkage s dk' cl 

K ( F dk^^cl^^^ '] (4.15) 
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where: 

e V, • V (3) shrinkage 
.th. 

bshrinkage 
F 
dk 

t , (i) 
cl 

s dk cl 
R(i) 

j and i 

= shrinkage strain after the j day 

{R(i)}= basic shrinkage (final shrinkage value) 

= corrected fictitious thickness 

= corrected age 

= function describing shrinkage behaviour 

= relative humidity at day i 

= time in days 

The corrected fictitious thickness is calculated with the formula: 

F „ = k * actual thickness 
dk w 

The factor k is dependent on the humidity of the environment (see [4.6]). 
The basic shrinkage E is dependent on the degree of drying of the concrete, 
which in turn depends to a great extent on the relative humidity of the 
environment of the structure.. No tables or formulas for the basic shrinkage 
are included in the program. This shrinkage has to be stated for each period 
of time by the user of the program. The function K with which the shrinkage 
behaviour is described is dependent on the corrected fictitious thickness F 
and the corrected age t . The program comprises tables for determining K ; 
these tables are based on the graphs published in [4.6] (see Fig. 4.7) 

1000 10000 

FIGURE 4.7 : Function K 

The corrected age is determined with the formulas: 

^o 

^l'3' 

3 

z 
i=l 

T(i) + 10 

30= 

(4.16) 

At. 
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where T(i) is the temperature in degrees centigrade on day i. 

For each period of time the following quantities have to be introduced into 
the program: 

the basic shrinkage 
the temperature T 
the end time of the period j 
the correction factor for the thickness k 

b shrinkage 

4.6 CREEP OF CONCRETE 

Like the model for shrinkage (see Section 4.5), the model for creep is based 
on CEB Report 111 (1975) [4.5, 4.6] . Creep deformation is determined by 
applying a multiplying factor <}) to the non-time-dependent non-linear 
deformation. By basing the calculation of creep deformation on the total non-
time -dependent deformation it is ensured that at high compressive stresses 
(> 0.5 compressive strength) the creep deformation is no longer proportional 
the stress, but increases progressively. 

The creep model comprises two parts; 
the recoverable creep, sometimes referred to as the delayed elastic 
deformation; 
the irrecoverable creep. 

The creep deformation after day j is determined with the formula (4.17) 

£ (j) creep = L^*(^'[' (t) * (K {F ,t .(i+1)} - K {F,. ,t ,(i)}) + 
p p dk c2 p dk c2 

t, *(K {t „(i+D- t „(i)})*(l-K {t ,(j + l)- t ,(i+l)}) 
•̂r r c2 c2 r c2 c2 I 

where: 
£ 
creep 

£{i) 

(j) 

K (F,, ,t _) 
p dk c2 

K (t ,) 
r c2 

dk 

= vector with creep strains after day j ' . 

= vector with non-time-dependent non-linear strains at day i 

= final value of irrecoverable creep deformation 

= final value of recoverable creep deformation 

= function describing irrecoverable creep behaviour 

= function describing recoverable creep behaviour 

= corrected fictitious thickness 

= corrected age 

The quantities (^ and F are dependent on the relative humidity of the 
environment of the structure. As in the case of shrinkage, no tables or 
formulas for the values (J) and (() have been included in the program. The 
program user has to state these quantities for each period of time. The 
corrected fictitious thickness is calculated with the formula: 

dk 
k * actual thickness w (4.18) 

49 



The factor k is dependent on the hiimidity of the environment. The corrected 
age t - is dependent on the temperature and on the type of cement. 

c2 
The following formula has been adopted for determining t : 

t -(j) = 1̂  c2 z 
T(i) + 10 

At. (4.19) 
i=l 30 

where T(i) is the temperature in degrees centigrade on day i and k is a 
factor depending on the type of cement employed. 
Graphs for the functions K and K are given in [4.6]. The graphs for K are 
incorporated in the form or a table in the program. 

0,5 -

100 1000 10000 iogt(days) 

FIGURE 4.8 : Function K 

The graph representing the behaviour of K has been converted into the formula: 

, , -a (t ,- t ) 
K = ( 1 - e c2 o 
r 

(4.20) 

The numerical value of the factor a can be stated by the user; a= 0.09 is 
recommended. 
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- equation 4.20 with a = 0.09 

- graph published in [4.6] 

^ - t o ) 

10 100 1000 10000 

FIGURE 4.9 : Function K 

By describing the recoverable creep with the aid of a Kelvin element this 
creep can, per period of time, be completely determined from the stresses and 
the recoverable creep that has already occurred at the beginning of the period. 
Hence it is not necessary to rememiier the whole stress history. The increase 
in creep deformation thus becomes: 

£ (j+1) - £ (j) = AE (j+1) 
creep creep creep 

= E*(j + 1) L *{K 

LP I 
• ^^^^.' t ^(3+2)} p dk c2 

- K {r , t „(j + 1)}) 
p dk c2 

-at „(j+2) at _( 
, c2 c2 
(e >t:e '^'H I * r 

-at (i+1) at (i) 
*(l-e ° *e "̂  ) 

-at -(j+1) at „(i+1) at „( 
, c2 , c2 c2 "J 

(4.21) 

• » -at (j+2) at (j+1) 
AE (j+l) = E(j+1) (j) * AK + £(j+l) (f) * (l-e '^ *e '^^ ) 

creep P P 

-at (j+2) -at (j+1) 
£ (j)*(e "̂ ^ -e ° ) 

(4.22) 

In this formula for the creep deformation increase the symbol £ (j) denotes 
the recoverable creep deformation after the j day. For each period of time 
the following quantities have to be introduced into the program: 

the final value of the irrecoverable creep 

the final value of the recoverable creep 

the temperature 

the correction factor for the thickness 

the correction factor for fictitious time 

T 

k 
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4.7 AGGREGATE INTERLOCK IN A CRACK 

A crack that develops in concrete is never completely straight, nor are its 
two faces smooth. As a result, sliding of the crack faces relatively to each 
other encounters a resistance, the magnitude of which will depend on the width 
of the crack because with increasing width fewer and fewer irregularities on 
the faces are able to resist parallel displacement. At the Technological 
University of Delft a research project [l.l, 4.7] currently in progress, is 
concerned with finding out the relationships between, inter alia, the crack 
width, the parallel displacement and the forces required for producing this 
displacement. Pending the results of those investigations, a rigid-plastic 
model will here be adopted for the parallel displacement at a crack (see Fig. 
4.11) . 

ack 

FIGURE 4.10 : Irregularities on crack faces 

TA 

FIGURE 4.11 : Rigid-plastic model for aggregate interlock in a crack 

The following formula is adopted for the magnitude of the maximum shear stress 
(T ) that can be transmitted in a crack: 
m 

T = 1 
max —-

KU 
(4.23) 
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where: u 
K 

width of the crack 
a constant 

U (crack width ) 

FIGURE 4.12 : Maximum shear stress as a function of crack width 

4.8 BEHAVIOUR OF THE STEEL 

The program incorporates two different models for describing the behaviour of 
the reinforcing steel or prestressing steel, namely: 

- the ideal elasto-plastic model for steel with a pronounced yield range; 
- the non-linear elasto-plastic model for steels without a pronounced yield 

range. 
Any flexural stresses that may be acting in the steel are not taken into 
account in either model. 

4.8.1 IDEAL ELASTO-PLASTIC MODEL 

It is assumed that yielding of the steel bar can occur only at a crack in the 
concrete. Here the yield deformation of the steel is highly concentrated 
locally, so that in the program a delta function is used to describe the 
plastic strain behaviour over the length of the bar. 

Ok 

i tania) - E 
¥ a 

FIGURE 4.13 : Ideal elasto-plastic model for reinforcement 
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v i 
crack + yield of steel 

bar 

crack 

FIGURE 4.14 : Discontinuous behaviour of the displacements at a crack when 
yielding of the steel occurs 

4.8.2 NON-LINEAR ELASTO-PLASTIC MODEL 

The relationship between the stress (O) and the strain (E) is introduced for 
the purpose of this model. This relationship is represented in the form of a 
polygon. 

FIGURE 4.15 : Relationship between o and £ in the non-linear elasto-plastic 
model for the reinforcement 

Just as in the ideal elasto-plastic model, in the non-linear elasto-plastic 
model the tangent modulus of stiffness on unloading is taken as equal to the 
tangent modulus (E ) at the origin. 
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4.9 BOND 

The behaviour of the boundary layer between steel and concrete under a shear 
stress is descripted by an ideal elasto-plastic model. 

Ti 

f 
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FIGURE 4.16 : Ideal elasto-plastic model for bond 

4.10 DOWEL ACTION 

Pending further research into the effect and magnitude of the dowel forces, 
only the linear elastic relationship between relative displacements perpendicu­
lar to the centre-line of the bar and forces acting on this centre-line has 
been adopted in the program. 

tan(a) = 

A^i 

FIGURE 4.17 : Elastic model for dowel forces 
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COMPUTER PROGRAM 

5.1 SEQUENCE OF CRACKING 

In order to take account of the effect of cracking upon the stresses in the 
vicinity of the crack, only one crack in one element is introduced per 
iteration. In which element a new crack must be assumed is determined with 
the aid of the cracking potential. For each triangular element a cracking 
potential is calculated on the basis of the stresses at the centre of gravity 
of the triangle and the cracking criterion stated in Section 4.3. This 
potential indicates the factor by which the stresses are to be calculated in 
order to conform to the cracking criterion. Zero value of the cracking 
potential indicates that the stresses are in the range where crushing, not 
cracking, constitutes the maximum criterion (points A and B in Fig. 5.1). 
A potential of less than unity indicates that the stresses are still too small 
for exceeding the cracking criterion (point C in Fig. 5.1). A crack can 
develop only in an element having a cracking potential of not less than 
unity, i.e., > 1 (point D in Fig. 5.1). A new crack is introduced into the 
element with the highest cracking potential of not less than unity. 

B 

Cracking potential (P) 

Point 

A P(A) = 0 

B P(B) - 0 

C P(C) = ÖC / ÖÜ < 1 

D P(D) = Ob / ob > 1 

! A L or, 

cracking s t r e s s enve lope 

FIGURE 5.1 : Calculation of cracking potential 
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Local stress peaks are formed at the end of a crack. These cause further 
spreading of the crack, even if the average stresses in the vicinity therof 
- apart from the stress peaks - are below the cracking criterion. The highly 
localized stress fields associated with the notch stresses are not calculated 
in the MICRO model. The effect that, in an element adjacent to the end 
of an existing crack, a crack will develop at lower average stresses than 
it would if there were no crack present is here dealt with by multiplying the 
cracking potential of these elements by a factor larger than unity. The 
calculations that have been performed show a value of between 1.3 and 1.5 for 
this factor to be satisfactory. 

5 . 2 CURVED BARS 

Additional linear relationships between various degrees of freedom (displace­
ments) can be introduced into the computer model. These relationships are 
specially intended to enable features of detailing, such as curves in bars and 
hooks at bar ends, to be suitably schematized. A curved bar is schematized to 
an assembly of straight linear portions (see Fig. 5.2). 

reality 

model 

FIGURE 5.2 : Curved bar 

In this way the curves or bends are reduced in the model to angular changes of 
direction located on the junction of two straight bar elements (see Fig. 5.3). 

(A) ?a) 

^0(28) 

FIGURE 5.3 : Oblique junction of two bar elements 
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If the two bars A and B are interconnected at point 2, the equilibrium 
conditions for this point are: 

^2A) *=-(f^' ^2B) ^=^"'2' °(2B) = ° <5-^' 

°(2A) - =^"(S) F^^^j + cos(g) D,2B, = ° (5-2) 

Since the developed bar length at an angular junction point in the model is 
equal to zero, it is presupposed that the slip resistance at that point is 
likewise zero. In that case, however, the condition F = F,„ . must be 
satisfied^ 
The above-mentioned extra condition for the junction point is duly taken care 
of by_adding to the_eguilibrium conditionsT~arrëadv"mentioned, the further 
condition that: 

cos(B) + 1 

5.3 SCATTER OF MATERIAL PROPERTIES IN A STRUCTURE 

The properties of concrete and steel are not constants, but stochastic 
quantities. Particularly for concrete it is true to say that its composition 
is liable to vary from one point to another in a structure. The effect that 
this scatter has upon the behaviour of a structure varies greatly according 
to the type of structure and according to the aspect of behaviour under 
consideration. Thus, the scatter in the tensile strength of the concrete has 
a different effect on the results of a series of direct tensile tests than 
on the results of a series of splitting tensile tests. If the dimensions of a 
structure are much larger than those of the inhomogeneities, it will in 
general be permissible to base the analysis of the overall structural 
behaviour upon a homogeneous material model. On the other hand, if the 
analysis is concerned with a small structure or with particular aspects of 
structural behaviour, the scatter will indeed have to be taken into account. 
This is exemplified by the effect of the scatter in the tensile strength of 
concrete and in the bond strength of concrete to steel upon crack spacings 
and crack widths. 

Fig. 5.4b illustrates the pattern of cracks that was formed when a reinforced 
concrete tie member as shown in Fig. 5.4a was tested in tension. The order in 
which the cracks developed is indicated by the numbers written beside them. 
The diagram clearly reveals the differences in the crack spacings and the 
irregularity in the order in which cracking occured. These effects are due to 
the scatter in the tensile strength of the concrete both in the longitudinal 
and in the transverse direction of the test specimen. 
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FIGURE 5.4 : Tie member with pattern of cracks 

This tie member was analysed as one of the tests for the MICRO program. In 
the first analysis the tensile strength of the concrete was taken as equal in 
all the elements. The result was a very regular crack pattern and a practical­
ly unvarying crack width in all parts of the specimen (see Fig. 5.5). 
In the second analysis, each element is assumed to have a different tensile 
strength, determined with the aid of the Monte Carlo method from a normal 
distribution of these strengths. The generated strengths together with the 
results of the analysis are presented in Fig. 5.6. The standard deviation of 
the normal distribution has been taken as 0.15 times the mean tensile 
strength. 

In Fig. 5.6 the generated tensile strength per element is indicated as the 
quality designation. The "plus" sign denotes a tensile strength above, the 
"minus" sign a tensile strength below the mean. 
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Comparison of the results of the two analyses shows the effect of the 
scatter in the tensile strength of the concrete upon the force-deformation 
behaviour to be slight. Of greater influence are the number of cracks, the 
crack spacing and the crack widths. The properties of steel and concrete 
adopted in these analyses where taken from [S.l] , while the most suitable 
maximum bond stress (f ) was determined by preliminary calculations. 

CONCRETE: 

STEEL: 

BOND: 

2 
f, = 2.5 N/mm 
^ 2 
E, = 28000. N/mm 
b 

, 2 
E = 192300. N/mm 

2 
f = 7.5 N/mm 
= 3 

G = 1590. N/mm 
s 

For studying the effect of scatter upon the behaviour of small structures 
this simulation method is an acceptable technique. For larger structures, how­
ever, it is impracticable because it involves a number of non-linear analyses. 
Fortunately, the effect of the scatter in the properties of the materials 
upon the overall structural behaviour is usually quite small. 

5.4 PROGRAM 

The MICRO program operates as a so-called subsystem under the conctrol of 
the Genesys system [5.2]and is programmed in Gentran. Input of this program 
is done with tables and commands which are defined in the Genesys manner and 
which can be stated unformated. For a detailed description of input and out­
put the reader is referred to [5.3]. 
The numbering of the degrees of freedom and the manner of solving the 
ultimate system of equations are based on the wave front method [2.l] . The 
modified Crout algorithm [5.4] is used for solving the system of equations. 
This algorithm is so programmed that during decomposition only the system 
triangle is present in the working storage. The output is selective and may 
take the form of tables and/or diagrams. Fig. 5.7 presents an overall 
flowchart. 
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START + 
initialize 

read-in input tables and commands 
test input 

X 
generate numbers of primary degrees of freedom 

31 
process numbers of primary degrees of freedom 
in tables for loading and support 

X 
generate error messages 

set up primary element matrices 

set up and decompose primary system of equations 

20) 

set up primary loading vector 

forward and back substitution in primaru sustem of equatior, 

has an element cracked 
in the foregoing analysis?7'^'^^^ 

are cracked elements\_ 
present? / ^ 

generate numbers of secondary 
degrees of freedom 

set up and decompose secondary 
system of equations 

X 
set up secondary loading vector 

X 
forijard and back substitution 

calculate primary stresses plus crack widths of the 
cracks incorporated in the stiffness matrix 

. 4 
no (^are cracked elements present? /-yes —r 

calculate secondary stresses 

calculate visco-plastic strains 
X 

determine cracking potential per element 

I 
• no (^formation of new cracks? -yes 

FIGURE 5. 7a : Overall flowchart of the MICRO program 
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adapt element matrices 
and right-hand terms 
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(stop V-

-(^formation of new cracks?') yes —r 

calculate crack position 
1 

calculate secondary element 
matrix 

\ are there cracked elements? )—yes 1 
estimate displacements 
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has the maximim number of 
iterations been performed yet? 

has a sufficient degree of 
accuracy been attained? 

must another loading 
stage be applied? -yes^ 

must the element matrices and 
the right-hand terms be adapted 
to ne'J crack elements? 

go to 20 for performing 
fresh iteration with 
possibly modified loading 

must time-dependent 
deformations be applied? yes 

Calculate time-devendent deformations 
X 

go to 20 to perform iterations 

FIGURE 5. 7b : Continuation overall flowchart of the MICRO program 
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6 

ANALYSES PERFORMED 

6.1 INTRODUCTION 

In order to test the MICRO model with regard to its serviceability and ability 
to meet the objectives, a number of structures whose experimental behaviour 
has been described in the literature were analysed with the aid of the model. 
Since only a limited number of analyses were performed, it was not practicable 
to check all the possibilities of the model. In the analyses the time-dependent 
behaviour and the behaviour under alternating load were not considered. 
Although the possible occurrence of dowel forces in the reinforcement and of 
parallel displacement at a crack was allowed for in the model, neither of 
these phenomena occurred to any significant extent in the four structures 
analysed. 
In Section 5.3 the results of the analysis of a tie member, i.e., a structural 
member loaded in tension only, have already been compared with the experimental 
data. As distinct from the approach adopted in analysing that tie member, in 
the present chapter no variations of the parameters have been introduced, 
because parameter studies can be performed better and more quickly on 
appropriately selected structural details than on the examples described here. 
Just as in performing an experiment, an analysis based on a prescribed dis­
placement offers advantages in comparison with an analysis based on a 
prescribed loading. Thus, in the prescribed displacement method any retrograde 
changes in the load-deflection diagram can be detected, where as this is not 
possible in an analysis based on a prescribed loading. Also, the first-mention­
ed method is advantageous in a case where the structure develops ideally 
plastic or very nearly ideally plastic behaviour. In an analysis based on a 
prescribed displacement the iteration process will, in such a case, still 
converge reasonably rapidly, whereas in the prescribed loading method there 
will be very poor convergence or indeed none at all. 

Unfortunately, an analysis based on a prescribed displacement is not always 
possible. If a structure is subjected to a number of point loads or a uniform­
ly distributed load which are of variable magnitude, it will be necessary to 
perform the analysis with a prescribed magnitude of the loading. 

6.2 BEAM LOADED IN BENDING 

One condition for successfully employing a computer program for the analysis 
of structures having a complex internal pattern of forces is that a numerical 
model of his kind should correctly analyse the basic cases with regard to 
loadbearing capacity. 
After the tie member already described in Section 5.3, the second basic case 
to be analysed was a reinforced concrete beam loaded in bending. This beam was 
one of a series of beams with varying percentages of reinforcement and subject­
ed to four-point loading tests as reported by Monnier in [6.1 ] . The beam 
selected for the present purpose was No. 8 with a proportion of tensile 
reinforcement equivalent to 0.47% of the cross-sectional area of the beam. 
The dimensions of this test specimen and the manner of loading are indicated 
in Fig. 6.1. 
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FIGURE 6.1 : Four-point bending test on beam No. 
(dimensions mm ) 

In order not to have to consider the effect of shear force in this analysis, 
the latter was confined to the behaviour of the region between the two 
point loads, where the bending moment is constant. 
For analysing the behaviour in pure bending it will suffice to consider only 
a short portion of the beam. This portion should, however, be chosen 
sufficiently large to ensure that several cracks will develop in it, so that 
both the state of stress at a crack and the state of stress between two cracks 
are comprised in the analysis. Accordingly, for an expected maximum crack 
spacing of 140 mm, a 350 mm long portion of beam was adopted for the analysis. 
At its left-hand end this portion is loaded with a prescribed angular rotation 
(j), whereas rotation is prevented at the right-hand end. In order to be able 
to apply this angular rotation i|J without imposing restraint upon change in 
length of the beam and without affecting the position of the neutral axis or 
causing a disturbance in behaviour in consequence of the introduction of the 
bending moment, the beam portion under consideration is assumed to be extended 
by a 160 mm long rigid portion at its left-hand end. The network of elements, 
the manner of support and the loading on the rigid portion (shown shaded) are 
indicated in Fig. 6.2. In order to keep the stresses and strains in the rigid 
portion small in relation to the rest of the beam and in order to obviate 
cracking in this portion, the thickness of the elements in it is 1000 times 
the thickness of the elements in the (non-shaded) rest of the beam. The effect 
of the concrete cover to the bottom reinforcement has not been taken into 
account in the analysis. This omission can result in 13% over-estimation of 
the concrete stresses in the uncracked beam. When cracks develop in the beam, 
however, the effect of ignoring the bottom cover is negligible. 
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/V7Z, 

V (imposed displacement ) 

FIGURE 6.2 : Element model and manner of loading 

The experiment was, in the main, based on an imposed load, so that the 
decline in loadbearing capacity in consequence of cracking was not recorded. 
During load increase, up to the point where yielding of the reinforcement 
began, the beam was unloaded once. Since this once-only load alternation can 
have had little effect on the subsequent behaviour, it has been ignored in the 
analysis. Instead, a monotonically increasing angular rotation of the end of 
the beam has been assumed. 

Furthermore, the analysis has been based on the under-mentioned material proper­
ties, as reported in [6.l]. The properties of the boundary layer between 
steel and concrete have been estimated. 

CONCRETE: non-linear behaviour: Link's model 
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The experimentally determined and the calculated moment-curvature relationships 
are presented in Fig. 6.3. The bending moment at which the first crack occurs 
is 10 kNm in the experiment and 11 kNm in the analysis (see Fig. 6.6). 
Whenever a crack is formed, there is, according to the analysis, a slight 
decrease in the magnitude of the moment for a somewhat greater angular 
rotation. These decreases in bending moment are not manifest in the experiment 
because it was performed under load-controlled conditions. The bending moment 
at which yielding of the tensile reinforcement occurs is 32 kNm in the 
experiment and 33.5 kNm in the analysis. 

EXPERrtENT 

ANALYSIS 

I I I I I I I , 

5 1° 5̂ 20 n{%,^/m) 

FIGURE 6. 3 : Moment-curvature diagram 

The relation between the average (tensile) stress in the bottom reinforcement 
and the bending moment as determined in the experiment and in the analysis is 
indicated in Fig. 6.4. On comparing experiment and analysis, the abrupt 
increase in the average steel stress as calculated in the analysis after the 
occurrence of the first crack is notable. This difference betweien experiment 
and analysis is due to the fact that in the experiment a longer portion of the 
beam is considered and the cracks develop only gradually between a moment of 
10 kNm and 24 kNm (see Fig. 6.6). In the analysis, on the other hand, the three 
big flexural cracks all occur at the same bending moment of 11 kNm. The fact 
that in the experiment these cracks do not all occur at the same load must 
be due to internal scatter (variation) in the tensile strength of the concrete 
and/or to scatter in the bond between concrete and steel. 

iM(kNm) 
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FIGURE 8.4 : Average stress in the bottom reinforcement as a 
function of the bending moment 

The relationship between the bending moment and the average compressive stress 
in the concrete at the top of the beam is indicated in Fig. 6.5. 
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FIGURE 6.5 : Average stress in the concrete at the top of the 
beam as a function of the bending moment 
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The average crack spacing and maximum crack spacing a re indica ted in F ig . 6 .6 . 
According to the a n a l y s i s , the cracks are spaced regu la r ly a t 150 mm, a value 
ïrtiich i s very c lose t o the maximum spacing of 140 mm found experimental ly. 
This agreement i s a l so manifest in Fig. 6 . 7 , where the r e l a t i o n s h i p between 
the maximum crack width and the bending moment i s presented for experiment 
and ana lys i s r e spec t i ve ly . 
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With regard to the stress in the bottom reinforcement it has already been 
mentioned that in the experiment the cracks were formed at different external 
loads. This was attributed to scatter in the properties of the concrete in 
the beam. The effect of this scatter manifests itself not only in the differ­
ences in bending moment at which the cracks occur, but also in the scatter in 
the crack spacings. The crack patterns obtained experimentally and by analysis, 
at a load at which yielding of the bottom reinforcement occurs, are shown in 
Fig. 6.8. It is notable that in both erases there are horizontal cracks high 
up in the beam. The reason why, in the analysis, there is an absence of 
smaller vertical cracks between the large cracks has already been discussed 
above. 

Crack pattern in the region of 
constant bending moment 
according to experiment 

Crack pattern according to 
analysis 

FIGURE 6. 

CONCLUSION 

Crack pattern associated with yielding of the bottom 
reinforcement 

From the comparison of analysis and experiment it appears that the behaviour 
of a beam loaded in bending can be satisfactorily analysed with the MICRO 
model. In making this comparison, much attention has been paid to the 
differences between the calculated and the experimentally determined results 
in consequence of the scatter in the actual material properties. This scatter, 
however, has little effect on the overall behaviour and on the magnitude of 
the steel and concrete stresses. It is significant only in so far as the 
average crack spacing and crack widths are concerned. The homogeneous material 
model gives good results for the maximum crack spacing and maximum crack 
widths. 

6.3 PLATE LOADED AT UPPER EDGE 

In Section 1.3 it was stated, as one of the aims of the MICRO model, that this 
model should be suitable for the analysis of structures in which only a few 
dominant cracks determine the behaviour. The reason for this aim is that models 
with "smeared-out" cracks do not do sufficient justice to these dominant 
cracks. With reference to such models, Schnobrich states in [l.ll]:"This added 
flexibility is paid for by the tendency of the procedure to diffuse the 
cracking system and constrain it so that no one crack could dominate the beha­
viour. This has some implications in investigating shear failure development 
in some members." 
An example of a structure in which only a few dominant cracks determine the 
behaviour is the plate WT2 in the series of tests on various types of plate 
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structure described by Leonhardt and Walther in [l.5]. 
The plate in question is loaded along its upper edge, as shown in Fig. 6.9. 
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FIGURE 6.9 : Shape, reinforcement and manner of loading the 
plate WT2 reported in [l.5] 

On account of symmetry of the s t ruc tu re and of the boundary condi t ions , i t i s 
s u f f i c i e n t to confine the ana lys i s to one half of the s t r u c t u r e . For analys ing 
the half p l a t e the boundary condit ion on the r ight-hand s ide i s the symmetry 
condi t ion t h a t the hor izon ta l displacement of the p l a t e midway between the 
two bear ing must be zero . The network of elements for the concrete and for the 
re in forc ing b a r s , r e spec t i ve ly , i s indica ted in F ig . 6.10, a s well as t h e 
mcinner of loading and support . 
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Concrete elements Reinforcement elements 

FIGURE 6.10 : Element model for the analysis of half the plate 

S i n c e t h e s t r u c t u r e i s s u b j e c t e d t o a u n i f o r m l y d i s t r i b u t e d l o a d , t h e a n a l y s i s 
h a s had t o be per formed w i t h a s t e p w i s e i n c r e a s i n g l o a d a p p l i e d t o t h e t o p of 
t h e p l a t e . The drawbacks of t h i s method of l o a d i n g have a l r e a d y been d e s c r i b e d 
i n S e c t i o n 5 . 1 . The f o l l o w i n g m a t e r i a l p r o p e r t i e s have been a d o p t e d i n t h e 
a n a l y s i s : 

CONCRETE: n o n - l i n e a r b e h a v i o u r : L i n k ' s model 

f ' = - 3 0 . 1 N/mm 
b 

2 
f, = 3 .5 N/mm 

E^ = 32000. N/mm 
b 

V, = 0 .2 

b 

STEEL: n o n - l i n e a r e l a s t o - p l a s t i c model ( s ee F i g . 6 .11) 

2 210000. N/mm 

BOND: 4 . 7 N/mm 

4 7 . N/mm 
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Stress-strain diagram for bottom reinforcement 

The analytically calculated and the experimentally determined load-deflection 
diagrams have been plotted in Fig. 6.12. The analysis was terminated at a load 
of 1075 kN on the plate. According to the analysis, large plastic strains 
occurred in the bottom reinforcement at that value of the load, and with the 
next load increment of 25 kN there was found to be insufficient convergence 
even after 25 iterations, indicating practically ideal plastic behaviour of 
the structure under load of that magnitude. The failure load determined in 
the experiment was 1195 kN. 
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FIGURE 6.12 : Load-deflection diagram 
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The crack patterns found in the experiment and in the analysis are shown in 
Fig. 6.13. 
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load 700 kN load 1075 kN 

FIGURE 6.13 : Crack patterns according to experiment and analysis 
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Both patterns clearly reveal the formation of a few dominant flexural cracks 
which start beside the middle of the plate and curve upwards towards the axis 
of symmetry of the plate. In consequence of the relative course network of 
elements and the adopted rule of only one crack crossing per element boundary 
the analysis shows fewer minor cracks at the bottom edge of the plate than the 
experiment. The higher value calculated for the maximum crack width at the 
bottom of the plate is bound up with the smaller number of these cracks in the 
analysis (see Fig. 6.14a ). 

The relationship between the load and the sum of the widths of all the bottom 
cracks in the plate is indicated in Fig. 6.14b. It appears that for this 
relationship the agreement between experiment and analysis is better than for 
the maximum crack width already referred to. On account of the smaller number 
of cracks, as determined in the analysis, the crack deformations are evidently 
concentrated at this smaller number of cracks. At a load of 1000 kN the widths 
of the dominant cracks begin to predominate considerably. 
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FIGURE 6.14 : Maximum crack width (W ) and summed crack widths 
m 

(W ) as a function of the load 
s 

In the experiment the strain in the bottom reinforcement was measured at the 
axis of symmetry. The stresses calculated from these strain measurements 
have been plotted in Pig. 6.15,together with the stresses found in the analy­
sis. The fact that in the analysis a somewhat lower steel stress is found at 
higher loads is due to the fact that here no crack occurs at the axis of 
symmetry, whereas such a crack does occur in the experiment (see Fig. 6.13). 
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FIGURE 6.15 : Stress in bottom reinforcement at the axis of 
symmetry as a function of the load 

CONCLUSION 

Analysis and experiment both reveal only a few dominant cracks which start at 
the bottom of the plate, between the axis of symmetry and the support, and 
which in the upward direction bend towards the centre of the plate. The 
analytically calculated width of these cracks is likewise in sufficiently good 
agreement with the measured widths. It does, however, emerge from the crack 
pattern determined by analysis and by experiment, respectively, that the 
number of elements in the analysis is to small to prescribe the correct crack 
spacing in the bottom edge of the plate. Since the number of smaller cracks 
which would develop at the bottom edge of the plate have only little effect 
on the overall behaviour, the load-deflection curves according to experiment 
and according to analysis are in excellent agreement. 

6.4 BEAM-TO-COLUMN CONNECTION 

As the final check for the MICRO model a structure has been analysed in which, 
besides flexural cracks, there also occur shear cracks. 
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This structure is one which was investigated in the Stevin Laboratory in a 
program of research on the strength and rigidity of various types of beam-to-
column connections. These tests are more particularly of interest because they 
showed these specimens to fail at a lower value of the load than had been 
anticipated on the basis of the failure loads of the sections of the beam and 
of the connected columns. Test specimen No. 1402 in this series of beam-to-
column connections described in [6.2] has been analysed. The structural 
dimensions and the manner of loading and support are shown in Fig. 6.16. 
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FIGURE 6.16 : Shape and manner of loading of specimen 1402 

as described in {6.2\ 

The reinforcement in the column and beam i s i l l u s t r a t e d in Fig. 5.17. 
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FIGURE 6.17 : Reinforcement of beam and column in the specimen 

In the test the load (N) on the column and the load (F) on the end of the 
beam were increased simultaneously. The horizontal load (H) on the end of the 
beam was made so large that point A on the outside of the column (see Fig. 
6.16) underwent no horizontal displacement. From the load-deflection diagram 
for the beam end B (see Fig. 6.20) it appears that in the experiment the 
tangential rigidity of the structure decreases greatly when the load (F) 
exceeds 85% of the failure load (F ). 

u 
In the introduction to this chapter it has already been pointed out that, if 
the tangential rigidity becomes low, it is advisable to base the analysis on 
an imposed displacement instead of a given external force. Since the magnitude 
of the load is not known in advance in a case where a prescribed displacement 
is applied, the loading procedure applied in the test cannot be adopted in 
the analysis. For the above-mentioned reasons, the analysis, as distinct 
from the experiment, has been based on a constant load (N) of 45 kN acting on 
the column, restraint of horizontal displacement at the beam end at mid-depth 
of the beam (point B, Fig. 6.16), and a monotonically increasing vertical 
displacement of the beam end. Restraint to prevent horizontal displacement 
at point B is, if this structural connection is assumend to be attached to a 
rigid core, in better agreement with reality than restraint to prevent 
horizontal displacement at point A. The network of elements employed in 
this analysis and the manner of support and loading are shown in Fig. 5.18. 
Where the beam reinforcement is bent, it has been assumed in the analysis 
that the normal force in the bar is equal on each side of the point of 
change of direction (see Section 5.2). 
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FIGURE 6.18 : NetWork of elements 

Reinforcement elements 

The following mate r ia l p rope r t i e s have been adopted in the ana lys i s : 

CONCRETE: non- l inear behaviour: Link 's model 

2 
f, = -24.7 N/mm 
^ 2 

f̂  = 2.38 N/mm 
^ 2 

E^ = 24000. N/mm 
b 

V, = 0.15 
b 

K = 5. 82 



STEEL: ideal elasto-plastic model 

2 
420. N/mm 

, 2 
210000. N/mm 

2 
5.5 N/mm beam reinforcement 

2 
6.75 N/mm column reinforcement 

55. N/mm beam reinforcement 

67.5 N/mm column reinforcement 

G 
s 

The failure loads according to the experiment and the analysis are given in 
Table 6.1. 

N 
u 

H 
U 

failure load 

exoeriment 

65.3 kN 

48.0 kN 

9.1 kN 

analysis 

61.5 kN 

4 5.0 kN 

18.5 kN 

TABLE 6.1 : Failure load according to experiment and analysis 

It appears from this table that according to the analysis a larger force H is 
required for preventing horizontal displacement of point B in Fig. 6.16 than 
according to the experiment is required for preventing horizontal displacement 
of point A. 
On considering the analytically calculated deformation of the structure (see 
Fig. 5.19a) this difference in the force H seems plausible because according 
to the analysis, with the boundary conditions to be satisfied there, point A 
is displaced to the left in consequence of cracking. Directly associated with 
the magnitude of the horizontal force H is the distribution of the bending 
moment from the beam to the upper and lower column. At the failure load this 
distribution was in the proportions of 31% and 59% according to the experiment 
and of 40% and 60% according to the analysis. As a result of this difference 
in distribution of the beam moment to the connected columns, the failure 
moment of the lower coluimi was 8% higher in the analysis than in the experiment, 
whereas the failure load (F ) was 5% lower in the analysis than in the experi­
ment. A calculation of the failure load of the structure based on the failure 
loads of the sections of the beam and columns and a distribution of the inter­
nal forces in accordance with the linear elastic theory gives a failure load 

(F ) of 90 kN. 
u 

f 
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FIGURE 6.19 

The directions and magnitudes of the principal stresses in the concrete at 
failure load are indicated in Fig. 5.19b. The compression diagonal in the 
connection, and the absence due to cracking of large tensile stresses, are 
distinctly discernible in this diagram. 
In Fig. 6.20 the load-deflection diagrams for the end of the beam have been 
plotted. There is seen to be very good agreement between the diagrams for the 
experiment and for the analysis. 
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FIGURE 6.20 : Load-deflection diagram 

The analysis was terminated at 7 mm deflection of the beam, because for this 
value the analysis indicates that crushing occurs in the concrete in the 
compressive zone of the lower column directly under the beam. Such crushing 
in that region is also found to occur in the test specimen, as Fig. 6.21 
shows. Besides the above-mentioned crushing, at failure of the specimen the 
concrete cover to the left-hand column reinforcement is detached by spalling. 
This phenomenon is not manifested in the analysis, since the latter does not 
take the cover into account. 
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FIGURE 6.21 : Details of the specimen after failure 

In Fig. 6.22 the crack pattern determined in the experiment and the crack 
pattern found in the analysis are shown side by side. In both cases the 
pattern after failure of the structure is illustrated. Both distinctly reveal 
the diagonal shear cracks which developed in the connection. In comparison 
with the experiment the analysis shows more flexural cracks in the lower 
coluimi and fewer of such cracks in the upper column. This is very probably 
due to the heavier loading of the lower column in the analysis, a feature 
what has already been noted in the discussion of the moment distribution. 
Also, in both crack patterns there is a vertical flexural crack in the beam 
at its junction with the column. Both in the experiment and in the analysis 
this is the first crack to be formed. 
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FIGURE 6.22 : Crack patterns according to experiment and analysis 

In the experiment the width of the crack a t the upper corner of the junct ion 
of beam and column was recorded. In Fig. 6.23 the width of t h i s crack i s 
compared with the a n a l y t i c a l l y ca lcula ted width for var ious values of the 
load applied a t the end of the beam. 

87 



WA(mm) 

-- EXPERIMENT 

ANALYSIS 

F(kN) 

FIGURE 8.23 : Width of crack at upper corner of junction 
between beam and column 

The analytically calculated forces and stresses in the bottom reinforcement 
and top reinforcement of the beam are presented in Figs. 6.24 and 6.25. In 
these figures is also indicated which part of the reinforcement slips in the 
concrete. Comparison with the test specimen in this respect is not possible 
because no steel strains were measured in the experiment. From the steel 
stress diagrams it appears that the yield stress of the reinforcement 
(420 N/mm ) is nowhere exceeded. For 3.5 mm deflection of the end of the 
beam the maximum bond stress occurs along the top reinforcement in the beam 
in the region where this reinforcement is anchored horizontally in the column. 
Any further increase in the tensile force in this reinforcement is resisted 
by the bond of the vertically bent-down end portions of these bars in the 
column. 
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FIGURE 6.24 : Forces and stresses in top reinforcement of beam 
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FIGURE 6.25 : Forces and stresses in bottom reinforcement of beam 

In the experiment the s t r e s s e s in the column reinforcement were not measured. 
The s t r e s ses in t h i s reinforcement and the pa r t which s l i p s in the concrete as 
ca lcula ted in the ana lys i s are presented in Fig. 5.26. This diagram shows t h a t 
a t the fa i lure load there was s l i p of both the lef t -hand and r ight-hand column 
reinforcement a t the beam, so t ha t the maximum compressive forces in these 
bars occur, not a t the most severely loaded sec t i ons , but higher up in the 
upper and lower down in the lower column. 
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For all loads the maximum tensile stress in this reinforcement at the most 
severely loaded sections occurs at the upper face and lower face of the beam 
respectively. Obviously, the magnitude of the maximum bond stress between steel 
and concrete (f ) will greatly affect the extent to which the compressive re­
inforcement in the column contributes to the internal stress distribution. 

(kN) 

100 200 100 200 3°o (N/^m^-'oo 
FIGURE 6.26 : Forces and stresses in left-hand and right-hand 

reinforcement in the column 

300 
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CONCLUSION 

Despite the somewhat adjusted boundary conditions and the manner, of loading, 
there is very good agreement between experiment and analysis. The latter 
clearly reveals the effect of reinforcement slip upp^ the internal stress 
distribution. In consequence of this slip it is not possible to rely on the 
development of steel stresses of such magnitude as would be calculated from 
an analysis of the sections of the structural members concerned. 
Fig. 6.26 shows that more particularly the compressive reinforcement in the 
lower column at the most severely loaded section contributes only little to 
the loadbearing capacity. As a result, the concrete at that section is more 
severely loaded than had been anticipated, so that failure of this concrete 
occurs. 
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CONCLUSIONS 

As stated in Section 1.4, the aim of this study has been the development of a 
numerical model with which the behaviour of two-dimensional structures loaded 
within their own plane can be analysed. 

By this behaviour to be analysed is understood: 
the deformation of the structure at a particular magnitude of the load; 
the magnitude of the load at which cracks are formed in the structure; 
the crack spacing and crack widths; 
the slip of the reinforcement; 
the stresses in the concrete and in the reinforcing steel at a particular 
magnitude of the load; 

- the magnitude of the failure load. 

In the analysis it is necessary to take account of the non-linear and possibly 
time-dependent behaviour of concrete, the non-linear behaviour of steel, the 
non-linear behaviour in the zone of contact between these two materials, and 
the possibility of transfer of stress across a crack in the concrete. On 
comparing the results of analyses with those of experiments it appears that 
the MICRO model can provide a good insight into the above-mentioned behaviour 
characteristics. This is true both of structures with fairly well distributed 
cracking (such as the tie member in Section 5.3 and the beam loaded purely in 
bending in Section 6.2) and of structures with only a few dominant cracks 
(such as the plate loaded at its upper edge in Section 6.3). From the analysis 
of the beam-to-column connection (Section 5.4) it emerges that the slip of 
the reinforcement is of major influence upon the. internal stress distribution, 
the magnitude of the failure load and the deformation of the structure. 
Also, jthe development of^a^ew dpjni,nant_cracks, with large widths, in the 
plate loaded at its upper edge is possible only because the bottom reinforce­
ment in this plate can slip in relation to the concrete. 

The slip of the reinforcing steel as well as the associated development of 
dominant cracks are well reproduced in the analyses. From the results of the 
analyses it furthermore appears that the elements developed on the basis of 
the hybrid method with natural boundary displacements provide a good insight 
into the stresses and deformations even if the structure is divided into a 
limited number of elements. The scatter of the tensile strength of the 
concrete in the structure is found to be of major influence on the scatter in 
the crack widths and crack spacings. On the other hand, the effect of this 
scatter in the tensile strength upon the overall deformation of the structure 
is not significant. When a number of identical experiments are performed, the 
scatter in the measured crack widths will, however, likewise be greater than 
the scatter in the deformation. 

On judging the differences between experiment and analysis it is necessary to 
take account of this scatter. An analysis based on the assumption that the 
tensile strength of the concrete does not vary from one part of the structure 
to another will suffice only if the object of the analysis is to obtain 
Insight into the deformation, the average crack width and the average crack 
spacing. 



The method adopted in the analyses, where the elements at the end of a crack 
will undergo cracking at lower stresses than elements not so situated, gives 
values for the crack penetration depth which are in good agreement with 
reality. It also appears that the continuity of the cracks in "the analysis 
agrees well with the experimentally determined cracking behaviour. TlSS 
satisfactory performance of the MICRO model with regard to the structures 
analysed here does not mean that this model or the material models employed do 
not require any further refinement. Since only a limited number of structures 
have been analysed, not all the possibilities of the model have been tested to 
an equal degree. Dowel action and transfer of shear across a crack were 
practically absent in the structures analysed. 

For the analysis of the structures in which these latter aspects are of major 
influence it is to be expected that the material models in question will have 
to be adapted to the results of the "Concrete analysis" research project 
mentioned in Chapter 1. 
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SUMMARY 

The increase in scale of civil engineering structures built of reinforced 
concrete or prestressed concrete, and the desire to construct them economically 
without detriment to structural safety, give rise to the need for a deeper 
insight into the behaviour of concrete structures and of the causes of this 
behaviour. 
Numerical models with which the behaviour of such structures can be analysed 
are able to contribute substantially to gaining the necessary insight. 
The object of the present study is to develop a numerical model with which the 
static behaviour of two-dimensional reinforced concrete or prestressed 
concrete structures with in-plane loading can be analysed. The behaviour of a 
structure can, inter alia, be understood to comprise: 

the deformation of the structure at a particular magnitude of the load; 
the magnitude of the load at which cracks are formed in the structure, as 
well as the position and direction of these cracks; 
the spacing of the cracks, their widths and the parallel displacement 
occuring at a crack; 
the displacement (slip) of the reinforcement in relation to the concrete; 

- the stresses in the concrete and the reinforcing steel or prestressing 
steel; 

- the magnitude of the failure load and the mechanism of failure. 

Numerical models for the analysis of two-dimensional structures, as described 
in the literature,are briefly reviewed in Section 1.3. In general, the finite 
element method is adopted for these models, all of which devote considerable 
attention to cracking, since this is of major influence upon the behaviour of 
the structures. Two methods of schematizing the cracks are to be distinguished, 
namely: a method based on the possibility of discrete cracks along the bound­
aries of the elements, and a method in which the cracks are permitted to pass 
through the elements, but are assumed to be distributed over the element or 
over part thereof. The principal differnces between the two methods are: 

The method with discrete cracks along the element boundaries 
- gives better insight into the relative displacements at a crack; 

offers the possibility of describing the stress peaks and the dowel 
forces in the steel at a crack; 
can take account of the relationship between aggregate interlock and 
displacements at a crack; 
is often better able to schematize dominant cracks and their effect on 
behaviour. 

The method with cracks "smeared out" in the element 
- offers greater freedom with regard to possible crack directions; 
- does not make it necessary to establish the system matrix over and over 

again and to invert or decompose it; also, the number of degrees of 
freedom remains constant throughout the analysis. 
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In the method of crack schematization developed in this thesis the advantages 
of both methods are combined. The model is based on the finite element approach. 
For describing the structure, two types of element have been developed: a 
triangular plate element for schematizing the concrete, and a bar element for 
describing the reinforcing steel or prestressing steel plus the bond zone with 
the surrounding concrete. Both these elements are based on the hybrid method 
with natural boundary displacements. The element relationships have been 
derived with the aid of Galerkin's method in Chapter 3. It is characteristic 
of these elements that the stresses at their boundaries are always in 
equilibrium with one another and with the internal loading. In the model, 
discrete cracks are considered, which may extend in any direction through the 
elements and which continue as much as possible across the element boundaries. 
Besides taking account of the discontinuity in the displacements on each side 
of a crack, the model also takes account of discontinuity across a crack of 
the normal stresses in the direction of the crack. Once they have formed, 
cracks remain present in the model. Transfer of compressive stresses across a 
crack is not possible except for zero crack width. A crack that has been 
squeezed shut will open immediately, as soon as a tensile stress acts across 
it. A crack width of less than zero is not possible. The method of initial 
strains is used for deeling with the non-linear behaviour of the materials, the 
displacement at the cracks and the slip of the reinforcement. Besides the 
possibility of treating the displacements at the cracks as initial displace­
ments, in the MICRO model the element matrices of the cracked elements can, 
after a number of cracks have formed, be adapted to the dynamic boundary 
conditions which apply at the line of the crack. 

Chapter 4 contains a description of the material models with which, in using 
the program, the behaviour of the materials can be explicitly described. 
These material models are: 
- a non-linear stress-strain relationship for concrete; 
- the cracking criterion for concrete; 
- the crushing criterion for concrete; 
- the shrinkage of concrete as a function of time; 
- the creep of concrete as a function of time; 
- the aggregate interlock in a crack; 
- a non-linear stress-strain relationship for steel; 

a yielding criterion for steel; 
- the bond between steel and concrete; 
- the dowel action of the reinforcing steel. 

Furthermore, the program can take account of angular changes in direction of 
the reinforcing bars and with scatter of the properties of concrete and steel 
in the structure. 
The comparison, in Chapter 5 and 5, of structures analysed with the aid of 
the program, on the one hand, and the results of experiments, on the other, 
show that with the model developed in this thesis it is possible to obtain a 
good insight into the deformation, the crack pattern, the crack widths, the 
crack spacing, the intern stress distribution and the failure load of two-
dimensional structures under in-plane static loading. 
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SAMENVATTING 

Door de schaalvergroting bij civiel-tecHnlsche constructies, van gewapend be­
ton of voorgespannen beton, en de wens deze economisch te construeren zonder 
de veiligheid geweld aan te doen, ontstaat de behoefte aan een verdieping van 
het inzicht in het gedrag van betonconstructies en in de oorzaken van dit 
gedrag. Numerieke modellen waarmee het gedrag van betonconstructies kan 
worden berekend, kunnen in belangrijke mate bijdragen aan dit beoogde inzicht. 
Doel van deze studie is de ontwikkeling van een numeriek model waarmee het 
statisch gedrag van tweedimensionale in hun vlak belaste constructies, van 
gewapend beton of voorgespannen beton, kan worden geanalyseerd. 
Onder het gedrag van een constr'uctie wordt ondermeer verstaan: 

de vervorming van de constructie bij een bepaalde belasting, 
de grootte van de belasting waarbij in de constructie scheuren ontstaan 
alsmede de plaats en de richting van deze scheuren, 

- de onderlinge afstanden tussen de scheuren, de scheurwijdten en de parallel 
verplaatsing in een scheur, 

- de relatieve verplaatsing (slip) van de wapening ten opzichte van het beton, 
de spanningen in het beton en het wapeningsstaal of het voorspanstaal, 
de grootte van de bezwijklast en het bezwijkmechanisme. 

In paragraaf 1.3 is een kort overzicht gegeven van in de literatuur beschreven 
numerieke modellen voor de berekening van tweedimensionale betonconstructies. 
Voor deze modellen wordt algemeen uitgegaan van de eindige elementenmethode. 
Aangezien de scheurvorming grote invloed heeft op het gedrag wordt in alle 
modellen hieraan veel aandacht geschonken. 
In de wijze van schematisering van de scheuren zijn twee methoden te onder­
scheiden. Een methode gebaseerd op de mogelijkheid van discrete scheuren 
langs de randen van de elementen en een methode waarbij de scheuren door de 
elementen mogen lopen maar waarbij deze over een deel van het element of het 
gehele element verdeeld worden aangenomen. 
De belangrijkste verschillen tussen de beide methoden zijn: 

De methode met discrete scheuren langs de elementenranden, 
geeft meer inzicht in de relatieve verplaatsingen in een scheur, 
biedt de mogelijkheid tot het beschrijven van de spanningspieken en de 
deuvelkrachten in het staal ter plaatse van een scheur, 
kan rekening houden met het verband tussen de haakweerstand en de verplaat­
singen in een scheur, 
kan dominante scheuren en hun invloed op het gedrag veelal beter schemati­
seren. 

De methode met in het element uitgesmeerde scheuren, 
biedt een grotere vrijheid ten aanzien van de mogelijke scheurrichtingen, 
vraagt niet telkenmaal de systeemmatrix op te stellen en te inverteren of 
te decomponeren. Tevens blijft het aantal vrijheidsgraden tijdens de gehele 
berekening constant. 
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In de hier ontwildcelde methode van scheurschematisering worden de voordelen 
van beide methoden gecombineerd. Het model is gebaseerd op de eindige elemen­
tenmethode. Voor de beschrijving van de constructie zijn ontwikkeld een drie­
hoekig schijfelement voor de schematisering van het beton en een staafelement 
voor de beschrijving van het wapeningsstaal of voorspanstaal plus de aanhecht-
z5ne met het omhullende beton. Beide elementen zijn gebaseerd op de Hybride 
methode met natuurlijke randverplaatsingen. De elementrelaties zijn in hoofd­
stuk 3 afgeleid met behulp van de methode Galerkin. Kenmerkend voor deze 
elementen is dat de spanningen op de randen van de. elementen altijd in even­
wicht zijn met elkaar en met de uitwendige belasting. 

In het model wordt gerekend met discrete scheuren die in een willekeurige rich­
ting door de elementen kunnen lopen en over de elementranden zo veel mogelijk 
doorlopen. Naast de discontinuïteit in de verplaatsingen aan weerszijden van 
een scheur wordt eveneens rekening gehouden met een discontinuïteit over een 
scheur van de normaalspanningen in de richting van de scheur. 

Scheuren die eenmaal zijn ontstaan blijven in het model aanwezig. Overdracht 
van drukspanningen via een scheur is eerst omgelijk bij een scheurwijdte van 
nul. Een dichtgedrukte scheur opent zich onmiddellijk zodra er een trekspan-
ning op gaat werken. Een scheurwijdte kleiner dan nul is niet mogelijk. 

Voor de verwerking van het niet lineaire gedrag van de materialen, de ver­
plaatsingen in de scheuren en de slip van de wapening wordt de initiële rekken-
methode gebruikt. Naast de mogelijkheid om de verplaatsingen in de scheuren te 
verwerken als initiële verplaatsingen kunnen in het MICRO-model na het ontstaan 
van een aantal scheuren de elementmatrices van de gescheurde elementen worden 
aangepast aan de op de scheurlijn geldende dynamische randvoorwaarden. 

In hoofdstuk 4 zijn beschreven de materiaalmodellen waarmee bij gebruik van 
het programma het gedrag van de materialen expliciet kan worden omschreven. 
Deze materiaalmodellen zijn: 

een niet lineaire spannings-rek relatie voor beton, 
het scheurcriterium voor beton, 

- het criterium voor het verbrijzelen van beton, 
- de krimp van beton in de tijd, 

de kruip van beton in de tijd, 
de haakweerstand in een scheur, 
een niet lineaire spannings-rek relatie voor staal, 
een vloeicriterium voor staal, 
de aanhechting tussen staal en beton, 
de deuvelwerking van het wapeningsstaal. 

Verder kan in het programma rekening worden gehouden met geknikte vormen van 
de wapening en een spreiding van de beton en de staaleigenschappen in de 
constructie. 

De vergelijking in hoofdstuk 5 en 6 van de met het programma berekende con­
structies met de uitkomsten van experimenten toont dat met het ontwikkelde 
model een goed inzicht kan worden verkregen in de vervorming, het scheurenpa-
troon, de scheurwijdten, de scheurafstanden, de interne spanningsverdeling en 
de bezwijlcbelasting voor tweedimensionale in hun vlak belaste constructies 
onder een statische belasting. 
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