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1
Introduction

1.1. Synthesizer
A synthesizer, in the context of music, is an electronic music instrument that generates sound signals.
Traditional synthesis methods are built up on hand-designed components like oscillators and filters that
can be tuned to generate their accompanying characteristic sounds.

Technological breakthroughs with incorporating electronic components into themusic instruments, such
as the Telharmonium, Trautonium, Ondes Martenot, theremin and Hammond, gave rise to the synthe-
sizer [2]. In 1952, Harry Olson and Herbert Belar of the RCA (Radio Corporation of America) created
the first synthesizer capable of artificially creating sound. The synthesizer consisted of a room filled
with interconnected sound synthesis components.

Synthesizers were initially regarded as avant-garde instruments, with electronic compositions such as
Edgard Varèse: Poème électronique (1958) 1, and Hugh Le Caine: Dripsody (1955) 2. The 1960s
valued the synthesizer in psychedelic and counter-cultural scenes, such as Fifty foot hose: Cauldron
(1968) 3, but it promised little commercial potential. However, the unexpected commercial and critical
succes of Bach compositions for synthesizer, Switched-On Bach (1968) 4 by Wendy Carlos incited the
synthesizer’s recognition as a usable musical instrument. The synthesizer was further popularized in
the late 1960s and 1970s by electronic acts, pop and rock groups.

With the introduction of software that offered device simulation, synthesizers tended to dematerialize
gradually towards digital variants. As a result, computers and synthesizers came together to provide
the musician with an extensive instrumental palette. The synthesizer is now used in almost every genre
of music and is regarded as one of the most important instruments in the music industry. 5

1.2. Synthesizer as a Parametric Function
The components within synthesizers are shaped and modulated by envelopes, filters, and oscillators,
which creates the characteristic artificial and, ”synthetic” perception of the synthesizers 6. Clearly, con-
trolling the individual components to create precise and complex sounds by hand is a hard task and
involves numerous decisions to be made on a microscopic time scale, hence the use of signal con-
trollers such as oscillators and envelopes.

1Edgard Varèse: Poème électronique (1958)
2Hugh Le Caine: Dripsody (1955)
3Fifty foot hose: Cauldron (1968)
4No online publication is available, however there is a version by Leonard Bernstein
5According to Fact magazine in 2016
6Electric Samurai Tomita, Switched On Rock 1974 (vinyl record)

1

https://www.youtube.com/watch?v=MmrchX7qYpU&ab_channel=pelodelperro
https://www.youtube.com/watch?v=zvHSvSBwFYM&ab_channel=TheWelleszCompany
https://www.youtube.com/watch?v=1cq-A8BouRg&ab_channel=lidiaglass
https://www.youtube.com/watch?v=J8sS5NkADBE&ab_channel=soupsoup
https://www.factmag.com/2016/09/15/14-most-important-synths/
https://www.youtube.com/watch?v=g1D4brEhxWw&t=1272s&ab_channel=vinylrecord
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Approaching the synthesizer component controls as input variables, a synthesizer can be represented
as the result of a function 𝑠 of time 𝑡 and the synthesizer controls 𝑧.

𝑠(𝑡, 𝑧) = 𝑥(𝑡)
For example, the following function desribes a single sine oscillator synthesizer generator with 𝑎 being
the amplitude of the wave and 𝑓 the frequency, i.e. 𝑧 = {𝑎, 𝑓},

𝑠(𝑡, 𝑎, 𝑓) = 𝑎 sin(𝑓𝑡) = 𝑥(𝑡)
Limiting the output signal to a fixed length, a synthesizer can be written as a fixed length signal gener-
ator, omitting time dependency 𝑡. In that case, a synthesizer 𝑠 can be written as a mapping from the
synthesizer controls to a fixed length signal, 𝑥 = 𝑠(𝑧), solely dependent on the synthesizer controls 𝑧.

1.3. Generative Model as Synthesizer
In mathematics, a generative model can be used to ”generate” instances of a data distribution given
an input. Given a collection of audio 𝐶, for which the instances are produced by a sound synthesizer
𝑠. Then, generating audio signals with the usage of 𝑠(𝑧) can be interpreted as the generative model of
the collection of audio 𝐶.

While the term ”modelling” is used in different contexts with different definitions and can raise some
confusion at times, its usage in this study is to conform to the usage in the field of machine learning re-
search 7. When we consider the term modelling, multiple interpretations can be followed. In this study
we define the term modelling as the ”analyzing” and ”generalizing” of a data set. Its behaviour amounts
to the interepreting of characteristics and approximating them in reproductions. Although more appro-
priate terms could be chosen for this behaviour, we favour the conformity with the research field. When
we refer to a ”generative model” in particular, we can use the term ”generator” interchangeably.

Let 𝑔𝜃 ∶ 𝒵 → 𝒳 be a target function parameterized by 𝜃 that represents our generator. We wish to
obtain a value for 𝜃 such that we can generate random instances of our target space 𝒳 given an input
attribute from 𝒵.

In answering the question of why to use a generator for sounds, we can view the reprehension of a
collection of sounds in two paradigms. The first one is a collection of points representing the fixed
length audio waveforms directly, i.e. the collection itself, from which we can observe every individual
element of that collection. The second one is a generator, or generative model, for that collection of
audio waveforms, i.e. a function that is able to generate fixed length audio waveforms similar to the
audio waveforms in the collection based on some input attribute.

For example, in context of synthesized sounds, a collection of audio recordings from a synthesizer
𝑠 can be interpreted as individual fixed length audio waveforms. Clearly, a perfect generator for this
collection then is the synthesizer 𝑠(𝑧) it self. With the synthesizer we are able to easily generate the
audio waveforms that are present in the collection.

However in the case of complex, or natural, sounds, such as speech, the collection would be audio
recordings of speech, but the ’synthesizer’ of speech would be your voice. This is inevitably hard to
reproduce synthetically with hand-tuned synthesizer components.

Another scenario is where sounds in the data set have limited correlation. That is, the collection of
sounds contains different sources, such as a collection of environmental sounds. Providing a tradi-
tional synthesizer to produce audio from this collection is inheritely hard as the environmental sounds
can be arbitratily different and the scope of the synthesizer is limited to its components. A generator
for this collection of audio, however, should be able to produce singals with characteristics from all
7In [9], the introduction of GAN, ”generative modelling” is used to define the behaviour of a generator.
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individual classes of audio within the collection.

In general, the modelling of a collection of audio waveforms requires an audio synthesis method that
is able to produce audio waveforms similar to that of the collection. A generator for a collection of
sounds should be able to produce arbitrarily complex sounds with similar charateristics to sounds in
the collection. That is, the produced sounds are not limited by the scope of synthesizer components.

1.4. Machine Learned Generative Model
Machine learning is a data analysis technique that allows the creation of models. It is a subfield of
artificial intelligence that is based on the idea that systems can recognize patterns and make decisions
with limited human intervention. Using machine learning to obtain a generator for audio, allows us to
build synthesizers that model collections of audio data with parameters which are too complex, too
sensitive or too high in quantity to model, or even define, manually.

Given a large amount of data, the parameters 𝜃 of a generative model 𝑔𝜃 can be precisely optimized
to represent the data set using machine learning methods. One method to obtain a generative model
is the use of a generative adversarial network, or GAN [9]. This method is based on an adversarial
training process between two competing networks: one is trying to generate material, while the other
is classifying the generated material and data set material as ’real’, or as ’fake’.

1.5. Research Overview
In this study we design and train such a generative adversarial network, with inspirations from DCGAN
[29], GANSynth [6], and GAN [9], to obtain a generator that is able to model sounds from a collection
of recordings of electronic pianos 8 playing note middle c. (Chapter 2, 3, 4).

With this system we inspect the quality of the generated sounds in comparison to the sounds in the
data set by visually comparing the spectral information. Furthermore, we observe the effects of ”latent
space interpolation” on audio. That is, the inference of a trained generator on interpolated points in the
input space of the generator, as is demonstrated in [9] and [29]. (Chapter 5)

After this, we perform experiments with the resulting generator network to test its modelling abilities with
respect to the original collection of audio. We measure and compare audio signal qualities of material
produced by the generator and that of the data set with the help of low level signal descriptors. That is,
the signals produced from generator network and signals from the dataset are compared w.r.t. to a set
of audio characteristics. At last, we quantify the performance of the generator throughout adversarial
training with a perfomance metric based on the previously defined audio characteristics. This specifi-
cally aims to quantify the effect of training the network. (Chapter 6)

8For example a Rhodes Mark I 1975

https://www.youtube.com/watch?v=cnzICutH_sE&ab_channel=jazzijazzfuljazzijazzful


2
Audio, Image-like Representation and

Processing
While this study globally focusses on generating audio signals, the modelling processes actually take
place in the image-domain. This is a reasonable choice since audio can be bidirectionally represented
with image-like time-frequency information.

The representation illustrates the characteristics of sounds in a conceptually easier way. For example,
the fundamental frequency, timbre and loudness of a sound can be seen directly from the image. When
representing audio signals in a waveform, the fundamental frequency and timbre are hard to capture
directly.

Overview
In this chapter we will descibe the characteristics of sound that can be perceived within the image-
like time-frequency information, and the processing that allows us to bidirectionally represent an audio
signal in this image.

2.1. Audio
Sound is physically defined as a vibration that propagates through a transmission medium. Typically,
this refers to a vibration in air pressure, caused by a sound source. When the vibration reaches the
ear, an impulse is created to the brain resulting in an audible perception of the sound source.

2.1.1. Characterizing Sound
Describing sound, without hearing, is a teadious and subjective process. In this study we limit the
characterization of the perception of sounds to pitch, loudness and timbre.

Pitch The frequency of a cyclical vibration determines the perception of pitched sound. It is the
essential quality that allows distinguishing between low and high sound. Pitch allows musician to use
expression in tonality, such as in melodies, scales, and chords. In case of a non cyclical vibration, pitch
is indetermined. For example, no pitch is perceived in noise, because there is no cyclical vibration in
noise.

Loudness The amplitude of a vibration determines the perceived loudness of a sound. This char-
acteristic defines differences in loud and soft sounds. Controlling loudness allows musicians to utilize
expression in the field of dynamics. Dynamics on a micro scale in sound is often referred to as the
envelope of a sound. The envelope of a sound categorizes it into a plucky sound like a guitar, and a
swelling sound like a violin.

4
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Timbre The timbre of a sound is the perceived quality of a sound or tone. Timbre is determined by the
spectral information of the sound. That is, the distribution of amplitudes frequency multiples of the pitch
(hamonic and non-harmonic frequencies). Timbre differentiates sounds that have a similar pitch and a
similar envelope. For example, the difference between a piano and a harpsichord or a saxophone and
a clarinet playing the same note with the same envelope,.

2.1.2. Audio Signal
An audio signal is a representation of sound. As sound in nature is a continuous sequence, in digital
audio, the audio signal is a numerical estimate of the sequence. Audio signals typically contain frequen-
cies in the range of 20 to 20,000 Hz. This corresponds to the lower and upper bounds of human hearing.

Discrete-time signals are represented mathematically as a sequence of numbers. Given a sequence
of numbers 𝑥, the 𝑛th number in the sequence is denoted by 𝑥[𝑛]. Audio signals as entire sequences
are refered to as 𝑥.

The rate at which samples from the continuous sequence are extracted by the numerical estimation is
called the sample rate. The sample rate also corresponds to the rate at which samples are converted
in order to (re)create a sound. Common choices for sample rates lie in the tens of thousands, e.g. 44.1
kHz.

The methods in this study will be implemented with a collection of fixed length audio signals 𝔇 1.
Therefore, the choices made in the audio processing are dependent on the audio length and sampling
rate of the singals in that collection. The audio signals in 𝔇 have a sample rate of 16 kHz and a length
of 4 seconds, corresponding to 64000 samples in total. Let𝒳 refer to the space of signals 𝑥 with length
64000, than 𝔇 ⊂ 𝒳. According to these constants, choices related to transformations of the signals
are made in the upcoming sections.

2.1.3. Frequency Domain
The frequency domain of a signal refers to the analytical space in which a signal is represented in terms
of frequency, rather than time.

Fourier Transform The Fourier transform is able to convert a signal from the time domain into the
frequency domain. The signal in time domain is transformed into a sum of sine waves of different fre-
quencies, each of which represents a frequency component. The spectrum of frequency components
is the frequency-domain representation of the signal.

The discrete Fourier transform [1], relevant as utilize digital signals, transforms a signal 𝑥 into a se-
quence of complex numbers 𝑋, where 𝑋[𝑘] is defined by

𝑋[𝑘] =
𝑁−1

∑
𝑛=0

𝑥[𝑛] ⋅ 𝑒−
𝑖2𝜋
𝑁 𝑘𝑛

=
𝑁−1

∑
𝑛=0

𝑥[𝑛] ⋅ [cos(2𝜋𝑁 𝑘𝑛) − 𝑖 ⋅ sin(
2𝜋
𝑁 𝑘𝑛)]

(2.1)

Within the frequency domain, pitch can be interepreted by the fundamental frequency (the lowest
promiment frequency), loudness can be interpreted by the overall magnitudes of frequencies, and at
last timbre can be interpreted from the amplitude distribution of harmonic frequencies that are present.
1Further elaboration will be provided in chapter 5
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Figure 2.1: Sine and cosine decomposition of a waveform. Red represents the signal wave form. Blue represents the sines and
cosines. (image adapted from [37])

(a) (b)

Figure 2.2: Time (red) and frequency domain (blue) representation of a wavefrom signal. (image adapted from [37])

2.2. Processing Image-like Representation of Signals
In order to transform the audio signals to and from the image-like time-frequency representation, ap-
propriate processing is necessary.

In this section the audio signal-to-image transformation Φ and image-to-signal transformation Φ−1 will
be discussed in detail. In short, the signal-to-image transformation of audio signals converts a signal
(64000 samples) to 2 stacked 256×256 images containingmel scale log magnitude spectrograms and
instantaneous frequency representations. Whereas, the image-to-signal transformation amounts to
the inverse: 2 stacked 256 × 256 images are converted to a 4 second audio signal, again sampled at
16 kHz.

Figures 2.3 and 2.4 visualize the signal-to-image and image-to-signal transformations.

2.2.1. Signal to Image
The signal-to-image transformation in 2.3 can be written as a mapping Φ that maps the signal space
of 64000 samples 𝒳 to the 2 stacked image space of 256 × 256 × 2 𝒮,

Φ ∶ 𝒳 ↦ 𝒮 (2.2)
The function Φ is a composition of the following functions
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Figure 2.3: Given a signal 𝑥 ∈ 𝒳, the short-time Fourier transform is calculated (ℎ) and split in to the argument and magnitude
components (𝜏). Then from the magnitude components the log spectral magnitude is calculated (𝑞) and from the argument
components the instantaneous frequency is calculated (𝑝). At last, mel frequency scaling is applied on both components (𝑚).
The result is a 256 × 256 × 2 image-like structure in 𝒮 containing mel frequency scaled log spectrograms and instantaneous
frequencies.

Φ = (𝑚 ∘ 𝑞𝑚 ∘ 𝑝) ∘ 𝜏 ∘ ℎ (2.3)

ℎ, in section 2.2.3, is the short-time Fourier transform calculation, giving the sinusoidal frequencies and
phase content of local sections of a signal. This is a time dependent variation on the discrete Fourier
transform from section 2.1.3. A signal in 𝒳 is mapped to a complex valued 256 × 256 array, where
the complex values represent information on phase and amplitude at a given frequency and time. One
axis represents time, the other represents frequency. 𝜏, section 2.2.3, seperates a complex number
into magnitude and argument. A complex valued 256 × 256 array is split into a real valued 256 × 256
array, and a 256 × 256 array containing values in [0, 2𝜋). The seperated parts represent magnitudes
and phase information respectively. 𝑝, in section 2.2.5, is the instantaneous frequency calculation. It
maps a 256×256 array of values in [0, 2𝜋) to a real valued 256×256 array by taking the temporal rate
of unwrapped phase. 𝑞, in section 2.2.4, is the spectral magnitude calculation. It maps a real valued
256×256 array to a real valued 256×256 by taking squares and logarithms. 𝑚, in section 2.10, is the
scaling of the frequency axis to a mel [36] scale, such that they better represent human hearing.

2.2.2. Image to Signal
Inversely, the image-to-signal transformation Φ−1 in figure 2.4 converts the stacked-images 𝑠𝑥 ∈ 𝒮 to
an audio signal 𝑥 ∈ 𝒳.

Figure 2.4: Given a 𝑠 ∈ 𝒮, inverse frequency scaling is applied on both compoments of 𝑠 (𝑚−1). Then inverse of spectral mag-
nitude calculation is applied on the spectral magnitude component (𝑞−1) and the argument is calculated from the instantaneous
frequency (𝑝−1). From the magnitude and argument components a 256 × 256 complex grid is given (𝜏−1). At last the inverse
short-time Fourier transform is applied (ℎ−1) to obtain signal 𝑥 ∈ 𝒳.

The inverse operation Φ−1 from 2.4 can be written as a mapping Φ−1 ∶ 𝒮 ↦ 𝒳.

Φ−1 = ℎ−1 ∘ 𝜏−1 ∘ (𝑞
−1 ∘ 𝑚−1
𝑝−1 ∘ 𝑚−1) (2.4)
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ℎ−1, in section 2.2.3, is the inverse short-time Fourier transform calculation that maps a 256 × 256
complex valued array to a singal in 𝒳. 𝜏−1, in section 2.2.3, gives a complex valued 256 × 256 array
from a real valued magnitude array and a [0, 2𝜋) valued argument array of similar dimensions. 𝑝−1,
in section 2.2.5, is the calculation of phase from instantaneous frequency. 𝑞−1, in section 2.2.4, is the
inverse of the spectral magnitude calculation. 𝑚−1, in section 2.10, is the conversion from mel scale to
hz scale.

2.2.3. Short-Time Fourier Transform
The short-time Fourier transform of signal 𝑥 is a derivation of the Fourier transform used to determine
sinusoidal frequency and phase content of local sections of a signal over time.

In practice, this procedure consists of dividing a signal into shorter segments of equal length and then
compute the discrete Fourier transform separately on each shorter segment. [1, 16]

Window Function These shorter segments are obtained with the use of a window function 𝑤. A
window function is non-zero within a specified interval and zero outside of the interval. For 𝑤 we
choose to use a Hann window function [10],

𝑤[𝑛] = 0.5 (1 − cos( 2𝜋𝑛
𝑀 − 1)) (2.5)

𝑀 is the size of the interval the window function. This corresponds to the length of the resulting win-
dowed signal, as outside of the window inteval the signal is zero.

STFT Calculation The short-time Fourier transform of a signal 𝑥, STFT{𝑥}, gives a two-dimensional
representation of the signal and is calculated as follows, [1]

STFT{𝑥}(𝑚,𝜔) =
∞

∑
𝑛=−∞

𝑥[𝑛]𝑤[𝑛 − 𝑚]𝑒𝑖𝜔𝑛 (2.6)

Where𝑤 is a window function, 𝑥[𝑛] is the value of discrete signal 𝑥 at position 𝑛, and𝑚 and𝜔 represent
the position on the time and frequency axis respectively.

The mapping ℎ ∶ 𝒳 ↦ ℂ256×256, found in figure 2.3, can be defined by the calculation of the short-time
Fourier transform for all time frames, and frequency bins. This amounts to the calculating equation 2.6
for all 𝑚,𝜔, such that 1 ≤ 𝑚 ≤ 256, 1 ≤ 𝜔 ≤ 256, resuling in the following 256 × 256 complex valued
array.

ℎ(𝑥) = (
STFT{𝑥}(1, 1) … STFT{𝑥}(256, 1)

⋮ ⋱ ⋮
STFT{𝑥}(1, 256) … STFT{𝑥}(256, 256)

) (2.7)

Inverse STFT Calculation To obtain an inverse for the calculation of the STFT (iSTFT), we use the
following procedure. [1]

Let 𝑋 be a complex valued array of 256 × 256, that we interpret as an STFT of a signal, then for fixed
𝑚,

𝑥[𝑛]𝑤[𝑛 − 𝑚] = 1
2𝜋

256

∑
𝜔=1

𝑋𝑚,𝜔𝑒𝑖𝜔𝑛 (2.8)

Here for 𝑚 > 1, with equation 2.8 we calculate a window of signal 𝑥[𝑛] at position 𝑚. Then since by
the choice of the window function 𝑤, ∑∞𝑚=1𝑤[𝑛 −𝑚] = 1,
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Figure 2.5: A signal 𝑥 (left) is segmented into 256 pieces. Than, at segment 𝑚, STFT{𝑥}(𝑚,𝜔) = 𝑐𝑚,𝜔, where 𝜔 is the
frequency bin. This results into a 256×256 grid of complex values 𝑐𝑚,𝜔. Each value represents the amplitude and phase of the
frequency bin 𝜔 in the signal at time segment𝑚.

𝑥[𝑛] =
∞

∑
𝑚=1

𝑥[𝑛]𝑤[𝑛 − 𝑚] (2.9)

The inverse operation iSTFT then amounts to,

𝑥[𝑛] = 1
2𝜋

256

∑
𝑚=1

256

∑
𝜔=1

𝑋𝑚,𝜔𝑒𝑖𝜔𝑛 (2.10)

The inverse mapping of ℎ, ℎ−1 ∶ ℂ256×256 ↦ 𝒳, as found in figure 2.4, gives a sequence of numbers
ℎ−1(𝑋) of length 64000. For position 𝑛 in signal ℎ−1(𝑋),

ℎ−1(𝑋)[𝑛] = 1
2𝜋

256

∑
𝑚=1

256

∑
𝜔=1

𝑋𝑚,𝜔𝑒𝑖𝜔𝑛 (2.11)

𝑋𝑚,𝜔 refers to the value of 𝑋 at row 𝜔 and column 𝑚, i.e. at frequency 𝜔 and time step 𝑚.

Argument and Magnitude The calculation of short-time Fourier transform gives complex values. In
order to further process the short-time Fourier transform for phase and spectral magnitude information,
we split the complex values into its argument and magnitude.

Let 𝑧 = 𝑥 + 𝑦𝑖 be a complex number, which can be split into its magnitude 𝑟,

𝑟 = |𝑧| = √(𝑥2 + 𝑦2) (2.12)

and argument 𝜑,

𝜑 = arg(𝑥 + 𝑦𝑖) =
⎧⎪
⎨⎪⎩

2arctan( 𝑦
√𝑥2 + 𝑦2 + 𝑥

) if 𝑥 > 0 or 𝑦 ≠ 0,

𝜋 if 𝑥 < 0 and 𝑦 = 0,
undefined if 𝑥 = 0 and 𝑦 = 0.

(2.13)

Let 𝜏 ∶ ℂ256×256 → ℝ256×256 × [0, 2𝜋)256×256, as found in figure 2.3, be the complex function that splits
a 256 × 256 array of complex numbers into an 256 × 256 array of magnitudes and arguments.

Accordingly let 𝜏−1 ∶ ℝ256×256 × [0, 2𝜋)256×256 ↦ ℂ256×256, as found in figure 2.4, be the inverse oper-
ation. Let 𝑅 be a 256 × 256 array of real values. Let 𝑃 be a 256 × 256 array of real values in [0, 2𝜋).
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Then this operation creates a complex value from 𝑅𝑚,𝜔 and 𝑃𝑚,𝜔 as its magnitude and argument, i.e.
𝑅𝑚,𝜔𝑒𝑖𝑃𝑚,𝜔 for row 𝜔 and column 𝑚.

2.2.4. Spectral Magnitude Information
A spectrogram is a visual representation of the frequency spectrum of a signal as it varies with time. It
is obtained from the magnitudes of the short-time fourier transformation. Given the short-time fourier
transform magnitudes 𝑅 ∈ ℝ256×256, calculated by 𝜏, the spectrogram representation of the signal can
be obtained as follows,

spectrogram{𝑥}(𝑚,𝜔) ≡ 𝑅2𝑚,𝜔 (2.14)

𝑚 and 𝜔 represent time step and frequency bin, and

𝑅𝑚,𝜔 = |STFT {𝑥 [𝑛])} (𝑚,𝜔)| (2.15)

as obtained in the previous section 2.2.3 by 𝜏.

Figure 2.6: Plot of the waveform of a signal

Figure 2.6 shows the waveplot of signal 𝑥. The spectrogram of the same signal 𝑥 is seen in 2.7. How-
ever as seen in the comparison in figure 2.7, the log magnitudes of frequencies gives a better visual
representation for frequencies than regular frequency magnitudes. With log magnitudes, more subtle
spectral information is visualized.

(a) (b)

Figure 2.7: A side by side comparison of (a) a regular spectrogram and (b) a log magnitude spectrogram. Visually, a log
magnitude spectrogram (b) yields more information on what frequencies are audible at a time.

The composition 𝜏 ∘ ℎ ∶ 𝒳 ↦ ℝ256×256 × [0, 2𝜋)256×256 decomposes the complex values in the result of
ℎ(𝑥) for 𝑥 ∈ 𝒳 into magnitudes 𝑅 and arguments 𝑃. The log magnitude spectrogram of a signal 𝑥 is
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obtained from 𝑅 by elementwise log square of 𝑅. This gives us a definition for 𝑞, as found in figure 2.3.
Namely, given a time step 𝑚 and an frequency bin 𝜔,

𝑞(𝑅)𝑚,𝜔 = log𝑅2𝑚,𝜔 (2.16)
Consequently the inverse 𝑞−1, as found in 2.4, amounts to

𝑞−1(𝑆)𝑚,𝜔 = 𝑒√𝑆𝑚,𝜔 (2.17)
for a log magnitude spectrogram in 𝑆 ∈ ℝ256×256

2.2.5. Phase Information
Let the phase 𝜙 of a signal 𝑥 at position 𝑛 be denoted by 𝜙[𝑛] = arg{𝑥[𝑛]}. Phase information is not
easily represented in an image. In fact, the result is often noisy similar to that in figure 2.8 which is the
phase representation of the signal in figure 2.6 and spectrograms in figure 2.7.

(a) (b)

Figure 2.8: Phase of signal 𝑥[𝑛] with (a) wrapped between [0, 2𝜋) and (b) unwrapped

Instantaneous Frequency For unwrapped 𝜙, that is not wrapped in [0, 2𝜋) as seen in figure 2.8,
the instantaneaus frequency 𝑓 is defined as the temporal rate of the phase, in other words, the finite
difference of 𝜙 at position 𝑛 with respect to 𝑛 with step size ℎ = 1,

𝑓[𝑛] = 𝜙[𝑛 + 1] − 𝜙[𝑛] (2.18)

Unwrapping Phase By unwrapping 𝜙 discontinuities can be removed by adding 2𝜋 to 𝜙[𝑛]whenever
𝜙[𝑛 + 1] − 𝜙[𝑛] ≤ −𝜋, and subtracting 2𝜋 from 𝜙[𝑛] whenever 𝜙[𝑛 + 1] − 𝜙[𝑛] > 𝜋.

𝑢(𝜙)[𝑛] = {
𝜙[𝑛] if −𝜋 < 𝜙[𝑛 + 1] − 𝜙[𝑛] ≥ 𝜋,
𝜙[𝑛] + 2𝜋 if 𝜙[𝑛 + 1] − 𝜙[𝑛] ≤ −𝜋,
𝜙[𝑛] − 2𝜋 if 𝜋 < 𝜙[𝑛 + 1] − 𝜙[𝑛]

(2.19)

Due to the periodic nature of phase, the instantaneous frequency 𝑓 gives a more structured display of
phase information. Given that the phase in figure 2.7 gives a noisy display, we find that the instanta-
neous frequency from figure 2.9 is more suitable for pattern recognition. [6]

From 𝜏 in section 2.2.3 we obtain the phase information 𝑃 ∈ [0, 2𝜋)256×256. 𝑃 has phase information
𝜙𝜔[𝑚] for every frequency bin 𝜔 (row), and time step 𝑚 (column).
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Figure 2.9: Instantaneous frequency of signal 𝑥

The function mapping 𝑝 ∶ [0, 2𝜋)256×256 ↦ ℝ256×256, as found in 2.3, amounts to the finite difference of
unwrapped 𝜙𝜔. This gives us a 256 × 256 array of instantaneous frequencies 𝑝(𝑃) given a 256 × 256
array of phases 𝑃. For time step 𝑚, and frequency bin 𝜔,

𝑝𝑚,𝜔(𝑃) = 𝑢(𝜙𝜔)[𝑚 + 1] − 𝑢(𝜙𝜔)[𝑚] (2.20)

Inversely, given an array of instantaneous frequencies �̃� ∈ ℝ256×256, the phase at frequency bin 𝜔
and time 𝑚 amounts to the cumulative sum of 𝑓𝜔[𝑖] (or �̃�𝑖,𝜔), where 0 ≤ 𝑖 ≤ 𝑚, modulo 2𝜋. So,
𝑝−1 ∶ ℝ256×256 ↦ [0, 2𝜋)256×256, with

𝑝−1𝑚,𝜔(�̃�) =
𝑚

∑
𝑖=0
�̃�𝑖,𝜔 mod 2𝜋 (2.21)

2.2.6. Frequency Scaling
Figure 2.7 shows that the most dominant frequencies lie in the bottom part of the frequency axis, that
is ranging from 0 Hz to Nyquist frequency 𝐹𝑁 =

𝐹𝑠
2 Hz, where 𝐹𝑠 is the sample rate. The upper part of

the spectrogram contains little information.

Therefore we use an alternative frequency scale of mel spectrograms (Mel) [36] along the frequency
axis. Given the linear scale frequency values of 𝑓Hz, the mel scale values of 𝑚𝑒𝑙 can be calculated to
by [32],

𝑚𝑒𝑙(𝑓Hz) = 1127 × ln(1 + 𝑓Hz
700) (2.22)

Figure 2.10 shows the effect of frequency scaling on the visual appearance of spectral components
depicted by spectrogram and instantaneous frequency images.

The mel scale corresponds to the process of expanding the lower frequency range features (about 0–2
kHz), and at the same time, contracting the higher frequency range features (about 2–8 kHz). There-
fore, the application of mel scale effectively provides the network more and less-detailed information
about the lower or upper range of the frequency spectrum, respectively.
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(a) (b)

(c) (d)

Figure 2.10: Comparison of spectrograms an instantaneous frequencies at Hz scale and mel scale. (a) shows Hz scale log
magnitude spectrogram. (b) shows mel scale log magnitude spectrograms; (c) shows Hz scale instantaneous frequency. (d)
shows mel scale instantaneous frequency.

These images are calculated by applying the frequency scaling on the frequency bins, i.e. the rows in
the spectrogram images. Then given we have a frequency axis of 256 steps, the row 𝑓𝑏𝑖𝑛 correspoding
to frequency in Hz, 𝑓Hz, is

𝑓𝑏𝑖𝑛(𝑓Hz) = floor(256 × 𝑓Hz𝐹𝑁
)

And the inverse,

𝑓Hz(𝑓𝑏𝑖𝑛) = 𝐹𝑁 ×
𝑓𝑏𝑖𝑛
256

Since 𝐹𝑁 is the maximimum frequency in the Hz scale spectrograms, and the maximum bin is 256, the
maximum 𝑚𝑒𝑙 value is equal to,

𝑚𝑒𝑙𝑚𝑎𝑥 = 1127 × ln(1 + 𝐹𝑁
700)

This gives us the row in the mel spectrogram 𝑚𝑒𝑙𝑏𝑖𝑛 from the 𝑚𝑒𝑙 value,

𝑚𝑒𝑙𝑏𝑖𝑛(𝑚𝑒𝑙) = 256 ×
𝑚𝑒𝑙

𝑚𝑒𝑙𝑚𝑎𝑥
And then finally the row in the mel scale spectrogram 𝑚𝑒𝑙𝑏𝑖𝑛 corresponding to the row in the Hz scale
spectrogram 𝑓𝑏𝑖𝑛,
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𝑚𝑒𝑙𝑏𝑖𝑛(𝑓𝑏𝑖𝑛) = 256 ×
1127 × ln(1 + 𝐹𝑁×

𝑓𝑏𝑖𝑛
256

700 )
𝑚𝑒𝑙𝑚𝑎𝑥

Then for 𝑎 = 256×1127
𝑚𝑒𝑙𝑚𝑎𝑥

and 𝑏 = 𝐹𝑁
179200

𝑚𝑒𝑙𝑏𝑖𝑛(𝑓𝑏𝑖𝑛) = 𝑎 × ln(1 + 𝑏𝑓𝑏𝑖𝑛)
and the inverse scaling,

𝑓𝑏𝑖𝑛(𝑚𝑒𝑙𝑏𝑖𝑛) =
𝑒
𝑚𝑒𝑙𝑏𝑖𝑛

𝑎 − 1
𝑏

With a samplerate of 16 kHz, the Nyquist frequency 𝑓𝑁 =
16000
2 = 8 kHz,the maximum mel value is

𝑚𝑒𝑙𝑚𝑎𝑥 = 1127× 𝑙𝑛(1+
8000
700 ) ≈ 2840.03. Then given 𝑎 ≈ 101.59 and 𝑏 ≈ 0.045, the scaling of the log

spectrogram bin scaling to log mel spectrogram scaling amounts to

𝑚𝑒𝑙𝑏𝑖𝑛(𝑓𝑏𝑖𝑛) ≈ 101.59 × ln(1 + 0.045𝑓𝑏𝑖𝑛)
and the inverse,

𝑓𝑏𝑖𝑛(𝑚𝑒𝑙𝑏𝑖𝑛) ≈
𝑒
𝑚𝑒𝑙𝑏𝑖𝑛
101.59 − 1
0.045

Then the function mapping 𝑚 ∶ ℝ256×256 ↦ ℝ256×256, as found in 2.3, that scales the log spectrogram
in to a log mel spectrograms amounts to the shifting of row 𝑓𝑏𝑖𝑛 in the log spectrogram to the row
𝑚𝑒𝑙𝑏𝑖𝑛(𝑓𝑏𝑖𝑛) in the log mel spectrogram.

The inverse mapping 𝑚−1, as found in 2.4, then amounts to the shifting of row 𝑚𝑒𝑙𝑏𝑖𝑛 in the log mel
spectrogram to the row 𝑓𝑏𝑖𝑛(𝑚𝑒𝑙𝑏𝑖𝑛) in the log spectrogram.

Figure 2.11: Relation between mel scale spectrogram rows and Hz scale spectrogram rows for sample rate 16 kHz.
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Summary
In this chapter we covered topics related to sound and its characteristics:

• Sound is physically defined as a propagating wave. In context of musical notes, sound can be
characterized by a pitch, an amplitude, and a timbre. (Section 2.1.1)

• Sound can be represented by a discrete signal 𝑥. The value 𝑥[𝑛] of 𝑥 at time step 𝑛 is sampled
at a position in the corresponding sound wave with a specified samplerate. In this study, signals
are restricted to lenght 64000 represenging 4 seconds of sound sampled at 16 kHz. The space
of such signals is refered to as 𝒳. (Section 2.1.2)

• We can represent sound in the frequency domain by the sinusoidal frequencies that make up the
sound. (Section 2.1.3)

We covered the processes that are used to transform signals into desired representations:

• Φ (figure 2.3) transforms signals from 𝒳 into 2 stacked 256 × 256 image-like frequency time
representation of signals, containin spectral magnitude and phase information. (Section 2.2.1)

• Φ−1 (figure 2.4) represents the inverse transformation. (Section 2.2.2)

At last we covered the components that make up processes Φ and Φ−1:

• Local sinusoidal frequencies and phase information can be obtained by calculating the short-time
fourier transform, which gives a matrix of complex numbers with rows representing frequency
bins and columns representing time segments. Denoted by ℎ and ℎ−1. (Section 2.2.3)

• The spectral magnitude information can represented by a log spectrogram. This can be obtained
from the magnitude of the complex numbers in the short-time fourier transform matrix. Denoted
by 𝑞 and 𝑞−1. (Section 2.2.4)

• Interpreting phase information directly from the short-time fourier transform matrix yields noisy
result. Instead, we represent phase information with the instantaneous frequency, which equals
to the temporal rate of unwrapped phase. Denoted by 𝑝 and 𝑝−1. (Section 2.2.5)

• Themel scaling of a frequency axis for the instantaneous frequency and log spectrogram gives a
frequency scale that is more coherent to human hearing. Denoted by𝑚 and𝑚−1. (Section 2.2.6)



3
Generative Model with a Generative

Adversarial Network
In order to obtain a generative model for a collection of audio, we need a parametric function 𝐺𝜃 that is
able to generate audio and whos parameters 𝜃 can be adapted to model the collection of audio. Or in
other words, make 𝐺𝜃 produce audio similar to that of the collection it is derived from.

Overview
In this chapter we will discuss how we can use a generative adversarial network to obtain a generative
model for a collection of audio. We discuss the inference of a generator that results in an audio signal.
Also, we cover the training procedure required to obtain a generator that models a collection of audio.
At last, we elaborate on the theoretical result of [9] by highlighting the convergence in function space
and parameter space.

3.1. Generative Adversarial Network
A generative adversarial network, or GAN, is a method used to obtain a generative model. The network
resembles a competition between a generator and a discriminator. 1 The generator is producing fake
material, while the discriminator is distinguishing the fake material from the real material. This way it
obtains a generative model for a data distribution. [9]

Generating material from scratch has inadequate criteria to be improved on. E.g. when trying to gen-
erate images of dogs, it is hard to find a performance evaluation for the generator to improved the
parameters on, other than classifying the produced material as ‘a dog’ or ‘not a dog’ (‘real’, or ‘fake’).
This is what a generative adversarial networks aims to do.

We have seen from the previous chapter that, with appropriate transformations Φ and Φ−1, we can
obtain an 256 × 256 × 2 image representation for fixed length audio signals. Representing audio as
images allows us to more mature image-based GAN technology. [29]

3.2. Inference of a Generator
The inference of a generator is similar to playing a synthesizer in that an input is given to the generator
from which the generator creates sound. A synthesizer’s input are, other than the note played, controls
for the synthesizer components such as filters and oscillators. When inferencing our generator the
”control” is a multi-dimensional value 𝑧, from a latent space 𝒵.

1The neural network architectures of the generator and discriminator will be covered in chapter 4

16
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A latent space refers to an abstract multi-dimensional space containing feature values that we cannot
interpret directly. However the latent space encodes a meaningful representation of the observed out-
puts, e.g. generated audio.

In order to demonstrate the analogy between a synthesizer and a generator in GAN, we can view the
synthesizer’s controls as a hand-designed input space for the produced audio while the generator’s
input space represents an abstract input space, the latent space 𝒵.

In figure 3.1 the schematic of inferencing the generator network is shown. Instead of directly generating
audio, the generator produces 256 × 256 × 2 images which can be interpreted by the image-to-signal
transformation 𝜙−1. Let 𝒵 and 𝒮 be an input space and an output space for a generator 𝐺𝜃 parame-
terized by 𝜃.

Recall 𝒳 is the space of signals with length 𝑁 = 64000 and 𝒮 is the space of 2 stacked 256 × 256
images. Then given input 𝑧 ∈ 𝒵, the output of parametric function 𝐺𝜃 on 𝑧 is in 𝒮, 𝐺𝜃(𝑧) ∈ 𝒮. Such, that
with the image-to-signal transformation Φ−1 a signal Φ−1(𝐺𝜃(𝑧)) ∈ 𝒳 can be obtained from 𝐺𝜃(𝑧) ∈ 𝒮.

Figure 3.1: Generator inference: Given a 𝑧 ∈ 𝒵 and a generator network 𝐺𝜃, than inference of 𝐺𝜃, 𝐺𝜃(𝑧) gives generated
image-like representations 𝑆𝑥. Then image-to-signal transformation Φ−1 transforms the image-like representation into an audio
signal 𝑥 = Φ−1(𝐺𝜃(𝑧)).

3.3. Adversarial Training
To obtain parameters 𝜃 for 𝐺𝜃(𝑧) such that the produced signal Φ−1(𝐺𝜃(𝑧)) has characteristics similar
to that of a target collection of audio 𝔇 we use an adversarial network.

3.3.1. Classifying Real and Fake
In order to obtain a trained generator. We introduce another parametric function 𝐷𝜙 that functions as a
discriminator and is parametrized by 𝜙. The discriminator is simply a classifier for 2 classes, real and
fake, which can be trained according to a loss function for binary classification called cross entropy [9].

Let 𝑦 be the true label and �̂� be the predicted label, than the cross entropy loss function for binary
classification ℒ is:

ℒ(�̂�, 𝑦) = −(𝑦 log(�̂�) + (1 − 𝑦) log(1 − �̂�))
This amounts to − log(�̂�) if 𝑦 = 1 and − log(1 − �̂�) if 𝑦 = 0. Suppose �̂� is bounded between 0 and 1.
If 𝑦 = 1, the minimum of ℒ(�̂�, 1) = − log(�̂�) is 0 at �̂� = 1. On the other hand, if 𝑦 = 0 the mimimum of
ℒ(�̂�, 0) = − log(1−�̂�)) is 0 at �̂� = 0. Figure 3.2 shows the cross entropy loss function ℒ for both cases.

3.3.2. Turn-wise Training
The two functions, 𝐺𝜃 , 𝐷𝜙 are trained turn-wise. The function parameters the discriminator are trained
on real samples labeled as real and on generated fake samples labeled as fake. Then, the discrimina-
tor parameters are frozen, meaning that they will not be updated in the next step, as we will now train
the generator. The parameters of the generator are trained on points from the latent space labeled
as real, where the loss function for the training is the prediction of the discriminator on the generated
result. In other words, the generator’s material is labeled as real to train the generator in fooling the
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Figure 3.2: The figure shows the cross entropy loss function for binary classification ℒ(�̂�, 𝑦), where 𝑦 is the true label with two
classes {0, 1} and �̂� is the predicted label bounded between 0 and 1. A minimum for ℒ is achieved at �̂� = 0 if 𝑦 = 0 and �̂� = 1 if
𝑦 = 1.

discriminator, however the parameters of the discriminator are not influenced by this fooling.

In figure 3.3 a schematic for the adversarial training of the generator 𝐺𝜃 and discriminator 𝐷𝜙, pa-
rameterized by 𝜃 and 𝜙 respectively, is visualized. Signals from our database 𝔇 are subject to the
signal-to-image transformation Φ such that for signal 𝑦 ∈ 𝒳, Φ(𝑦) is conform to the format of 𝑠𝑦 ∈ 𝒮,
e.g. Φ(𝑦) ∈ 𝒮. Φ turns signals into image-like representation, whereas the image-to-signal transfor-
mation Φ−1 turns these images into signals.

Figure 3.3: Adversarial training of generator 𝐺𝜃: image-like signal representations 𝑆𝑌, from real sound samples, are compared
to synthetically generated image-like signal representations 𝑆𝑋 by a discriminator 𝐷𝜙. 𝑆𝑌 and 𝑆𝑋 are labeled with 𝑟𝑒𝑎𝑙 and 𝑓𝑎𝑘𝑒
classes. Then the combination of the two provides a labeled data set, against which 𝐷𝜙 is subject to supervised training. Given a
𝑠𝑥 ∈ 𝒮, resulting 𝐷𝜙(𝑠𝑥) is the classification of 𝑟𝑒𝑎𝑙 and 𝑓𝑎𝑘𝑒 classes by trained 𝐷𝜙. In its turn the performance of discriminator
𝐷𝜙 provides a training criterion for generator 𝐺𝜃, with the target of increasing the resemblance between generated image-like
signal representations 𝑆𝑋 and real image-like signal representations 𝑆𝑌.
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Training Iteration One iteration of adversarial training of the discriminator and generator is produced
by the following steps:

• First, 𝑚 data points (audio signals) are sampled from our data set 𝔇,

{𝑥(𝑖)|1 ≤ 𝑖 ≤ 𝑚, 𝑥(𝑖) ∈ 𝔇} (3.1)

signal-to-image transformation is applied to obtain 𝑚 image-like signal representations from the
audio signals

{Φ(𝑥(𝑖))|1 ≤ 𝑖 ≤ 𝑚, 𝑥(𝑖) ∈ 𝔇} (3.2)

, such that Φ(𝑥(𝑖)) ∈ 𝒮 ∀𝑖 ≤ 𝑚.

• 𝑚 points, {𝑧(𝑖)}𝑚𝑖=1, are sampled from a multivariate normal distribution𝒩4096(0, 1) (𝑧(𝑖) is a stan-
dard normal random vector), such that inferencing network 𝐺𝜃 on 𝑧(𝑖), {𝐺𝜃(𝑧(𝑖))}𝑚𝑖=1, 𝐺𝜃(𝑧) ∈ 𝒮 is
diversely distributed between and within batches.

• Now, the following loss functions are calculated and optimized w.r.t. the parameters accordingly,

– min ℒ(𝐷𝜙({Φ(𝑥(𝑖))}𝑚𝑖=1),1) w.r.t parameters 𝜙
– min ℒ(𝐷𝜙({𝐺𝜃(𝑧(𝑖))}𝑚𝑖=1),0) w.r.t parameters 𝜙
– min ℒ(𝐷𝜙({𝐺𝜃(𝑧(𝑖))}𝑚𝑖=1),1) w.r.t parameters 𝜃

3.3.3. Gradient Descent
In order to optimize functions 𝐺𝜃 and 𝐷𝜙 w.r.t. their parameters 𝜃 and 𝜙 descending or ascending
along gradients calculated w.r.t. to the parameters introduces an algorithm for finding local minima, or
maximima, given the function is differentiable. [41]

The algorithm is based on the notion that if a multi-variable function 𝑓(𝑥) is defined and differentiable
in a neighborhood of a point 𝑎, then 𝑓(𝑥) decreases the fastest from 𝑎 in the opposite direction of
the gradient at 𝑎. Accordingly, the algorithm amounts to taking repeated steps in the direction of the
negative gradient of 𝑓 at 𝑎𝑛, −∇𝑓(𝑎𝑛), updating the position of 𝑎𝑛 each step with −𝛾∇𝑓(𝑎𝑛), given a
𝛾 ∈ ℝ.

𝑎𝑛+1 = 𝑎𝑛 − 𝛾∇𝑓(𝑎𝑛)
Conversely, stepping in the direction of the gradient will lead to a local maximum of that function:

𝑎𝑛+1 = 𝑎𝑛 + 𝛾∇𝑓(𝑎𝑛)

3.4. GAN as Minimax Optimization
In order to illustrate how the adversarial training process theoretically [9] comes to an optimimum, we
identify GAN as a minimax optimization. That is, a function is minimized according to one parameter
and maximized according to an other parameter. Or in other words, minimizing the maximum of a
function.

3.4.1. Function Space Minimax Optimization
Suppose we are able to optimize w.r.t. 𝐷 and 𝐺 directly in function space. 2 Let 𝑦 be a from the data
set. We wish 𝐷(𝑦) to be indicating real, or 1. Accordingly, an optimal discriminator would be obtained
by,
2Upon till now, we have interpreted the discriminator and generator as parametric functions𝐷𝜙 and 𝐺𝜃. Accordingly optimizations
have been done w.r.t. to the parameters. This does not withstand in the theorethical foundation of GAN [9].
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argmin
𝐷
ℒ(𝐷(𝑦), 1) (3.3)

Also output generator by the generator 𝐺 should be indicated by the discriminator as fake, or 𝐷(𝐺(𝑧)) =
0. This introduces a second criteria for an optimal discriminator,

argmin
𝐷
ℒ(𝐷(𝐺(𝑧)), 0) (3.4)

Let 𝐷∗ be an optimal discriminator, then following from equation 3.3 and 3.4,

𝐷∗ = argmin
𝐷
ℒ(𝐷(𝐺(𝑧)), 0) + ℒ(𝐷(𝑦)), 1) (3.5)

An optimal generator would be able to fool a discriminator into predicting the output of the generator,
𝐺(𝑧), as real, or 𝐷(𝐺(𝑧)) = 1. Optimal generator 𝐺∗ would be obtained by minimizing the following w.r.t
function 𝐺,

𝐺∗ = argmin
𝐺
ℒ(𝐷(𝐺(𝑧)), 1) (3.6)

Rewriting the minimization in equation 3.6 to a maximization gives us,

𝐺∗ = argmax
𝐺
ℒ(𝐷(𝐺(𝑧)), 0) (3.7)

At last, the term ℒ(𝐷(𝐺(𝑧)), 0) in equation 3.5 and 3.7 can be joined to obtain the minimax optimization
for both optimal discriminator 𝐷∗ and 𝐺∗ simultaneously:

𝐷∗, 𝐺∗ = argmin
𝐷

max
𝐺
ℒ(𝐷(𝐺(𝑧)), 0) + ℒ(𝐷(𝑦)), 1) (3.8)

The theorethical result in [9] shows that the improving of the minimax optimizatation in GAN resembles
minimizing the Jensen-Shannon divergence [20] between the data and the model distribution. 3 Ac-
cordingly, the minimax converges to its equilibrium if both functions can be updated directly in function
space [9].

3.4.2. Convergence in Parameter Space
Upon till previous section, we have interpreted the optimization within GAN w.r.t. parameters 𝜃 for 𝐺𝜃
and 𝜙 for 𝐷𝜙. However, the theory described in previous section does not hold for optimizations in
parameter space rather than function space.

In [9] the theoretical result rely on 𝐺 and 𝐷 being updated in the function space directly. In practice,
𝐺 and 𝐷 are approximated by neural networks with parameters 𝜃 and 𝜙 respectively. Accordingly,
instead of optimizing the functions 𝐺 and 𝐷 directly, the minimax in equation 3.9 is optimized w.r.t. to
the parameters 𝜃 and 𝜙 for generator 𝐺𝜃 and discriminator 𝐷𝜙. This should give optimal parameters
𝜃∗ for 𝐺𝜃 and 𝜙∗ for 𝐷𝜙, where 𝜙∗, 𝜃∗ are obtained as follows,

𝜙∗, 𝜃∗ = argmin
𝜙

max
𝜃
ℒ(𝐷𝜙(𝐺𝜃(𝑧)), 0) + ℒ(𝐷𝜙(𝑦)), 1) (3.9)

Using neural network to define the generator and discriminator and optimize in parameter space is
cutting corners. Currently, there is neither a theoretical argument that GAN should converge when the
updates are made to parameters of deep neural networks, nor a theoretical argument that GAN should
not converge [8]. However, the excellent performance of multilayer perceptrons in practice suggests
that they are a reasonable model to use despite their lack of theoretical guarantees [9].
3The Jensen-Shannon divergence is a rate for similarity between two data distributions. [20]
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Summary
In this chapter we covered topics related to Generative Adverserial Networks

• Generative Adverserial Networks introduce a method to obtain a generative model by turnwise
training of a generator, producing fake data, and a discriminator, classifying real data from a data
set and fake data from a generator. (Section 3.1)

• A generator generates data by inferencing (figure 3.1) a generator function 𝐺𝜃 with a point from
multi-dimensional space 𝑧 ∈ 𝒵 to ”control” the generators behaviour. (Section 3.2)

• Generator 𝐺𝜃 are is trained adversarially (figure 3.3) with a discriminator 𝐷𝜙 to obtain a generative
model for a data set by improving the parameters 𝜃 and 𝜙 according to a specified loss function
ℒ. (Section 3.3)

Also, we covered theorethical results from [9] and the limitations of the theory when GAN is put to
practice

• Optimizing GAN can be seen as a minimax optimization. (Section 3.4)

• When a discriminator and generator are improved directly in function space, [8] shows that im-
proving the minimax optimization amounts to increasing similarity between the data set and the
generator produced data. (Section 3.4.1)

• However, in practice these functions 𝐺 and 𝐷 are approximated by neural networks with param-
eters 𝜃 for 𝐺𝜃 and 𝜙 for 𝐷𝜙. Currently there is no proof for convergence of the optimization in
parameter space, but practical performance suggests reasonable usage of neural networks as
function estimators. [9] (Section 3.4.2)



4
Neural Network as a Synthesizer

With a generative adversarial network we obtain a trained generator 𝐺𝜃 that is able to produce data that
is similar to data in the training data set. Similar to that we are able produce sound with a synthesizer
with specified controls, we are able to inference the generator 𝐺𝜃 with abstract controls given by a point
𝑧 ∈ 𝒵.

However as of yet we have not given a structural architecture for how a generator 𝐺𝜃 is able to paramet-
rically map points from a latent space 𝒵 to an image-like log mel spectrogram of shape 256 × 256 × 2,
nor how the discriminator 𝐷𝜙 parametrically maps the image-like signal representations to a class in-
dicator of real or fake.

In fact, 𝐺𝜃 supposedly maps 𝒵 to 𝒮,

𝐺𝜃 ∶ 𝒵 ↦ 𝒮 (4.1)

And, 𝐷𝜙 maps 𝒮 to (0, 1),

𝐷𝜙 ∶ 𝒮 ↦ (0, 1) (4.2)

Overview
In this chapter we discuss the architectural choices for a middle c electric piano log mel spectrogram
producing generator and a discriminator indicating real and fake spectrograms. We will briefly discuss
the fundamental building block of neural networks, the neuron. After which we will discuss how a net-
work of layers of neurons can be trained to be used as a function approximator [19]. At last the use of
convolution neural networks will be demonstrated to attain to the use of the image representation for
audio signals from chapter 2 .

4.1. Feedforward Neural Network as a Parametric Function
Feedforward neural networks, networks that form a acyclic directed graph1, can be interpreted as func-
tion approximaters. They can be used to map a domain to a specific subspace in the co-domain by
adapting the network parameters according to a specified loss function applied on the networks output
and desired output [8]. In this section we will discuss how the parameters 𝜃 of a feedforward neural
network 𝐹 influence the function behaviour and how they are adapted to conform to the desired function
approximation.
1The network has a directed flow from the input to the output with no cycles within the network.
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4.1.1. Neuron
In artificial neural networks, the main building blocks, neurons can be defined as a mapping from ℝ𝑛 to
ℝ, i.e. 𝑓 ∶ ℝ𝑛 ↦ ℝ. The neuron 𝑓 takes a multivariable input 𝑥 and gives a single output. The passing of
𝑥 ∈ ℝ𝑛 through neuron 𝑓 is the result of a composition of an activation function and a weighted sum
with bias. It is exactly the weights and biases of all the neurons in the neural network that collectively
constitute the network function parameters.

Weighted Sum Let 𝑤 ∈ ℝ𝑛 be the weights for neuron 𝑓, than we call the calculation of the weighted
sum in 𝑓 the parametric function ̂𝑓, such that:

̂𝑓(𝑥; 𝑤) =
𝑛

∑
𝑖=1
𝑤𝑖𝑥𝑖 (4.3)

Bias The bias of a neuron is the addition of a constant term to the weighted sum. This initialy gives
us the parametric function �̃� with parameters 𝑤 ∈ ℝ𝑛 and 𝑏 ∈ ℝ,

�̃�(𝑥; 𝑤, 𝑏) =
𝑛

∑
𝑖=1
𝑤𝑖𝑥𝑖 + 𝑏 (4.4)

Activation Function The activation function decides whether a neuron should be ”activated” or not
by the value of the calculated weighted sum and addition of bias. The purpose of the activation function
is to introduce non-linearity into the output of a neuron.

A neuron without an activation function is essentially just a linear regression model. As the neurons
then remains to be a combination of summations and constant multiplications. The identity activation
function, for example, does not satisfy this property. When multiple layers use the identity activation
function, the entire network is equivalent to a single-layer model.

When the activation function is non-linear, then a two-layer neural network can be proven to be a
universal function approximator.[11] This is known as the Universal Approximation Theorem of neural
networks 2

In this study we consider the use of the following activation functions:

• Sigmoid: 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1
1+𝑒−𝑥

• Hyperbolic Tangent: 𝑡𝑎𝑛ℎ(𝑥) = 2
1+2𝑒−2𝑥−1

• Rectified Linear Unit:𝑅𝑒𝐿𝑢(𝑥) =max(0, 𝑥)

• Leaky Rectified Linear Unit: 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑢(𝑥; 𝛼) =max(𝛼𝑥, 𝑥)
2Under this assumption the use of neural networks is an adequate choice for modellinig the generator function and discriminator
function in GAN covered in section 3.4.1.
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Figure 4.1: Four suitable activatition functions: Sigmoid (top left), Tanh (top right), ReLu (bottom left), and Leaky ReLu (bottom
right).

The composition of a valid activation function 𝜎 and �̃� from equation 4.4 gives us the function definition
of a neuron parametrized by weights and biases.

𝑓(𝑥;𝑤, 𝑏) = 𝜎(
𝑛

∑
𝑖=1
𝑤𝑖𝑥𝑖 + 𝑏) (4.5)

Figure 4.2: A schematic of neuron 𝑓. The neuron has input 𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5 and output 𝑦. Parameters for the neuron are weights
𝑤 and bias 𝑏.

If we redefine the neuron function to take inputs 𝑥0, 𝑥1, … , 𝑥𝑛 by adding 𝑥0 and setting it to 1, we get a
function for a neuron as follows,

𝑓(𝑥;𝑤) = 𝜎(
𝑛

∑
𝑖=0
𝑤𝑖𝑥𝑖) (4.6)

Where 𝑤0 = 𝑏. By setting this identity we are able to replace the bias, 𝑏 with the 0th entry of the
weights, 𝑤0, since it is multiplied by 𝑥0 = 1, i.e. 𝑥0𝑤0 = 𝑏.
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Figure 4.3: A schematic of neuron 𝑓 without bias. The neuron has input 𝑥0 = 1, 𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5 and output 𝑦. Parameters for
the neuron are weights 𝑤. The bias 𝑏 is replaced by adding input 𝑥0 = 1 and 𝑤0.

4.1.2. Network
A feedforward neural network is a network of neurons which can be organized into multiple layers. The
layer that receives external data is the input layer. The layer that produces the result is the output layer.
In between them are zero or more hidden layers.

Between two neighbouring layers of neurons, multiple connection patterns are possible. They can be
fully connected, with every neuron in one layer connecting to every neuron in the other. They can be
pooling, where a group of neurons in one layer connect to a single neuron in the next layer, thereby
reducing the number of neurons in that layer.

Networks where the connections and neurons form a directed acyclic graph are known as feedforward
networks. That is, the network consists of vertices (neurons) and directed edges (connections) such
that following the directions of the connections will never form a closed loop.

Layers of Neurons A layer of neurons can be written as the multivariate function 𝑓 ∶ ℝ𝑛 ↦ ℝ𝑚,
where 𝑚 is the amount of neurons in the layer and 𝑛 the amount of neurons in the layer before it. 3

Then for 0 < 𝑗 ≤ 𝑚, 𝑓𝑗 is the function of the 𝑗th neuron of the layer. Then given the weights and biases
for neuron 𝑗 with corresponding 𝑤 and 𝑏, the function definition for neuron 𝑗 amounts to,

𝑓𝑗(𝑥; 𝑤) = 𝜎(
𝑛

∑
𝑖=0
𝑤𝑖𝑥𝑖) (4.7)

Where 𝑤𝑖 represents the weight for input 𝑖 at neuron 𝑗. Note that we use a similar encapsulation of the
bias in the weights in equation 4.7 as in equation 4.6.

Now, we have a value for weights for each combination of 0 ≥ 𝑗 ≥ 𝑚 and 0 ≥ 𝑖 ≥ 𝑛, inciting us to write
this as a 𝑚× 𝑛 + 1 matrix𝑊. Where𝑊𝑗𝑖 is the weight that the output of neuron 𝑖 (or bias if 𝑖 = 0) con-
tributes to the weighted sum of neuron 𝑗. If there is no connection between 𝑖 and 𝑗, then𝑊𝑖𝑗 equals zero.

𝑓𝑗(𝑥;𝑊) = 𝜎(
𝑛

∑
𝑖=0
𝑊𝑗𝑖𝑥𝑖) (4.8)

3or 𝑛 is the amount of inputs if 𝑓 is an input layer.
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The multivariate output of layer-wise function 𝑓 parametrized by𝑊 amounts to all the individual neuron
outputs of 𝑓𝑗. For 𝑥 ∈ ℝ𝑛,

𝑓(𝑥;𝑊) = (𝑓1(𝑥;𝑊), 𝑓2(𝑥;𝑊),… , 𝑓𝑚(𝑥;𝑊)) (4.9)

Figure 4.4: A schematic of a layer of neurons 𝑓 with 3 neurons: 𝑓1, 𝑓2, 𝑓3. Each neuron has 5 inputs from the previous layer.

Feedforward Network A feedforward network can be considered as a stack of layers of neurons. If
we would define the network function 𝐹 that has an input in ℝ𝑁 and an output in ℝ𝑀, than 𝐹 ∶ ℝ𝑁 ↦ ℝ𝑀
amounts to the composition of layer-wise functions 𝑓𝑘, where 𝑘 is the layer. We write 𝜃 as the network
parameters, where 𝜃𝑘 corresponds to the neuron weights𝑊 at layer 𝑘 as in equation 4.9. Then,

𝐹𝜃 = 𝑓𝑘𝜃𝑘 ∘ 𝑓
𝑘−1
𝜃𝑘−1 ∘ … ∘ 𝑓

1
𝜃1 (4.10)

or,

𝐹𝜃(𝑥) = 𝑓𝑘𝜃𝑘(𝑓
𝑘−1
𝜃𝑘−1(… )) (4.11)

We write the paramaters 𝜃 of a network 𝐹 in subscript, so 𝐹𝜃 instead of 𝐹(•; 𝜃), as we will refer to
network functions without input often.
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Figure 4.5: A schematic of a feedforward neural network. The network has 5 inputs, 2 hidden layers of three neurons and an
output layer with two neurons. This is a fully connected network as every neuron is connected to every neuron in the previous
layer.

4.1.3. Parameter Learning
Learning is the adaptation of the network to better handle a the function approximation by considering
sample observations and desired outputs. Learning involves the adjusting of network weights of to im-
prove the accuracy of the result. This is done by minimizing the observed errors between the network
result and the desired output. Learning is complete when examining additional observations does not
contibrute to reducction of the error rate. Even after learning, the error rate typically does not reach 0.
A network serves as a function approximator after all. If after learning, the error rate is too high, the
network typically must be redesigned or adjusted to be improved.

A network 𝐹 has a multivariable parameter 𝜃, which represents all the weights and biases for each
neuron at each layer.

Given a 𝑥, the learning of network 𝐹 amounts to minimizing the value of some function that takes the
result of 𝐹𝜃(𝑥) and the desired outcome 𝑦.

Backpropagation is a method used to adjust the connection weights to compensate for each error
found during learning. The error amount is effectively divided among the connections. Technically,
backpropagation calculates the gradient (the derivative) of the cost function from a network output
and a label with respect to the weights. [30] This allows the use of gradient descent algorithm briefly
described in 3.3 to be used with neural networks.

4.2. Image-like Signal RepresentationConvolutional Neural Network
Fully connected feedforward neural networks, that is layers of neurons that are all connected to each
other, can be used to learn features and classifications. However, the architecture is generally imprac-
tical for larger inputs such as images4. Convolutional neural networks aim to solve this problem by
making effective use of hierarchical information of the position of elements inside an image.

4.2.1. Image Convolution
In image processing, convolution is a general purpose filter effect for images. It is used to modify the
spatial frequency characteristics of an image. Convolution is performed by applying simple matrix op-
4Or, image-like signal representations
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erations segmentwise on images. These filters can be used to extract information, or feature maps,
from images.

In CNNs the filters are the neurons in the networks and the numerical values in the filters are the
weights. The CNN learns important weights for the kernel convolution as result from amachine learning
objective. This way it learns to extract important features from images specifically aimed at solving
the corresponding machine learning task. In figure 4.6 the information extraction from images with
convolutional filters is shown serving a specific classification task.

4.2.2. Network Architecture
Training and designing a convolutional neural network from scratch involves a lot of decision making.
This is regarding both the architecture and learning hyperparameters 5. Design processes behind CNN
architectures are often based on heuristics.

The use of convolutional neural networks with GAN in this study is mainly based on the ideas from
DCGAN [29], but adapted to attain to the image shape specified in chapter 2.

CNN architectures are often designed to reduce the dimensionality in order to make a classification.
This is conform to the behaviour of discriminator 𝐷𝜙, where the network aims to classify real and fake
images. However, convolutional operations can also be combined with upsampling in order to create
a CNN architecture that maps a smaller dimensional space to a larger one. This is conform to the
behaviour generator 𝐺𝜃, where the network generates image-like signal representations from a smaller
dimensional space, the latent space.

Conventional architecture of convolutional neural networks, or CNNs, can (often) be dissected into
three segments: input, convolution, and output segment.

The input segment of a CNN consists predominantly of a fixed size input layer. In some cases re-
shaping operations, such as flattening, or restructuring images, are applied.

The convolution segment is characterized by the use of convolutional layers and up and down sam-
pling operations.

Passing of a convolutional layer amounts to the abstraction of a feature map of the image from con-
volutional operations. The feature map has a shape of (𝑛, ℎ, 𝑤, 𝑐). Where 𝑛 is the number of inputs, ℎ
is the height of the feature map, 𝑤 is the width, and 𝑐 the amount of channels, or sometimes refered
to as depth. In contrast to fully connected neural networks, where each neuron receives input from all
the neurons in the previous layer, in a convolutional layer, each neuron receives input from a restricted
area of the previous layer, which corresponds to the size of the convolution kernel size.

Another important element used in CNNs are pooling, or downsample, layers. These are characterized
by their ability to reduce the dimensions of data. In other words, the pooling layers shrink the image by
mapping a section of an image, typically 2 by 2 pixels, to a single pixel. e.g. this can be done by taking
the average of the pixels (average pooling), or the maximum value (max pooling). Upsampling layers
are opposite to the pooling layers in that they increase the dimensions of the data. E.g. an image of
32 x 32 is upsampled to 64 x 64. The interpolation type for the newly generated pixels can be bilinear,
or nearest.

The output segment of a CNN transforms, or classifies, the featuremaps obtained from the convolution
segment into a desired output. In the case of a CNN classifier, the feature maps are typically classified
with a collection of fully connected layers, reshaping, and activation layers. When the CNN is used to
produce images from a smaller dimensional space, the feature maps are used to create material of the
desired structure. e.g. features maps are fully connected to a 32 × 32 × 3 output, an RGB image with
a width and height of 32.
5In machine learning, hyperparameters are parameters whose value is used to control the learning process, such as the amount
of hidden layers, the convolution kernel size, or the leaky ReLu activation slope.
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Figure 4.6: Visualization of feature maps learned by a CNN classification network. The classification network is a person re-
identification (re-ID) [33], which aims at spotting a person of interest across multiple camera views. Each row represents some
typical feature maps from low-level to high-level of a person image. First row: anchor image; second row: positive image; last
row: negative image. It demonstrates how the convolution kernels that process images can be used to learn to extract specific
feature maps.

Discriminator The architectural choices for the discriminator network 𝐷𝜙 are mostly borrowed from
DCGAN [29], specified for 256 × 256 × 2 images, a stack of 2 greyscale images of width and height
256 pixel.

𝐷𝜙 ∶ 𝒮 ↦ (0, 1) (4.12)

𝐷𝜙 maps the image-like signal representation space 𝒮 to a value in (0, 1). Indicating the predicted class
of images from generator 𝐺𝜃, with 1 and dataset 𝔇, with 0.

Figure 4.7 shows a schematic for discriminator network 𝐷𝜙. The network is build from convolutional
blocks, which contain the following elements:

• Convolution layer with a kernel size of 3 by 3.

• Batch normalization layer [12] with momentum of 0.7 to stabilize the learning by normalizing the
input to each unit to have zero mean and unit variance. This is omitted in the first block, similar
to [29].

• LeakyReLu [38] activation with the slope of the leak at 0.2. [29]

• Dropout layer [35] with dropout rate 0.2 to combat overfitting.

• Average pooling layer to downsample the feature maps.

The network consists of 6 of such blocks with doubling its amount of filters each block and halfing its
dimensions. Furthermore, the 6th convolution block outputs a shape of 4× 4× 256, which is flattened,
fed into a fully connected layer of width 128 with an LeakyReLu activation (also leak at 0.2), and then
fed into a single sigmoid output, bounding the output between 0 and 1.

At last, the gaussian noise is added to the input to combat overfitting. [39]

Generator Similar to the discriminator, the architecture for the generator is also borrowed from DC-
GAN [29], but adapted to take input of a 4096 sized array and output 256×256×2 images. Generator
𝐺𝜃 takes input 𝑧 from input space 𝒵 and outputs a 𝑠𝑥 in image-like signal representation space 𝒮. This
results in the function definition for 𝐺𝜃,
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Figure 4.7: Discriminator network 𝐷𝜙: 𝐷𝜙 is a convolutional neural network that takes as input data points of size 256×256×2
and outputs a class from {𝑟𝑒𝑎𝑙, 𝑓𝑎𝑘𝑒}. Each layer in 𝐷𝜙 consists of a convolution layer, a downsampling operation (average
pooling), dropout [35], batch normalization (except for block 1), and a leakyReLu activation. Two fully connected layers are used
to classify the feature maps and are fed into a single sigmoid output. Gaussian noise is added to prevent overfitting at before
convolution block 1.

𝐺𝜃 ∶ 𝒵 ↦ 𝒮 (4.13)

Figure 4.8 shows a schematic for generator network 𝐺𝜃. Similar to the discriminator network, the
generator is build from convolutional blocks, which contain the following elements:

• Convolution layer with a kernel size of 3 by 3.

• Batch normalization layer [12] with momentum of 0.7 to stabilize the learning by normalizing the
input to each unit to have zero mean and unit variance. This is omitted in the last block, similar
to [29].

• ReLu [38] activation. [29]

• Up sampling layer that doubles the dimensions of the feature maps each block.

At last, the network transforms the last convolution block to the output of 256×256×2 after which tanh
activation is applied.

Figure 4.8: Spectrogram generator network 𝐺𝜃: 𝐺𝜃 is a convolutional neural network that takes as input from 𝒵 and outputs
an image-like data point with dimensions 256 × 256 × 2. Each layer in 𝐺𝜃 consists of a convolution layer and an upsampling
operation.

Size of the Latent Space Specification of input space 𝒵 can vary. In order to effectively transform
the flat-array input of shape 4096 to a structure of shape 4×4×256, the shape of the first convollutional
block we us a transposed convolution layer. Transposed convolutions are generally used when there
us a need for a transformation going in the opposite direction of a normal convolution [4]. Since the
first layer of our network maps to 4 × 4 × 256, as seen in figure 4.8, we consider dimensions for 𝒵
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of similar magnitude, under the assumption this is helpfull. A lower dimension of 𝒵, requires a more
compressed representation, a higher dimension gives more freedom to the network. Specification of
the latent dimension has influence on the training progression, and could be subject to improvement
and is often chosen on heuristics.

Optimization Algorithm The networks 𝐺 and𝐷 are trained according to training schematic described
in section 3.3. ADAM [17], or Adaptive Moment Estimation, is a method for stochastic gradient descent
that we use to find optimal parameters 𝜙 and 𝜃 for network 𝐷 and 𝐺, respectively. [29]

Summary
In this chapter we covered topics related to feedforward neural networks

• A feedforwared neural network 𝐹 is a composition of layers of neurons. The weights in the
weighted sum and biases in each neuron at each layer constitute the networks parameters. (Sec-
tion 4.1)

• Neurons are the building blocks of neural networks. A neuron is a function 𝑓𝑖 (𝑖th neuron of a
layer 𝑓) mapping a multivariable input to a single output. The output is result from a weighted
sum with bias, after which a non-linear activation function is applied. (Section 4.1.1)

• With non-linearity in the activation function, a neural network can be proven to be a universal
function approximator. [11] (Section 4.1.1)

Following this we described the network architectures for our generator 𝐺 and discriminator 𝐷 in use:

• In image processing, convolution is a general purpose filter effect for images that can be used to
modify spatial frequency characteristics of an image. (Section 4.2.1)

• Convolutional neural network use image kernel convolution where the values in the filters are
considered as the weights of the network. Following this the network learns to extract information
from images by applying the filters. This way, CNNs make use of the hierarchical information of
position of elements inside an image. (Section 4.2.2)

• Discriminator 𝐷 is a convolution neural network that has an input of shape 256×256×2 coherent
to the image-like representation of audio signals from 𝒳 from chapter 2. The output of 𝐷 is a
value between (0, 1) indicating 1 with the image predicted as real and 0 as fake. (Section 4.2.2)

• Generator 𝐺 is a convolutional neural network that takes input of size 4096 representing the
dimension of latent space 𝒵. The output of 𝐺 is of shape 256 × 256 × 2, similarily as the image-
like representation in chapter 2. (Section 4.2.2)



5
Qualitative Performance

Before any training of the generator network the output is considerably noisy, as seen in figure 5.1.
Little structural patterns are visible. 1

Figure 5.1: 32 (8 by 2) generated images from inferencing generator 𝐺𝜃 on 32 different latent points before any training. The
vertical axis wihtin each log mel spectrogram is the frequency axis and the horizontal the time axis.

To test the adversarial training of GAN from figure 3.3 of our generator network, we train a generator
and discriminator adversarially for 3000 iteratations on a collection of sounds containing electric pianos
playing the note middle c. That is, 3000 batches of image-like signal representations are generated, or
extracted from the dataset with the signal-to-image transformation from 2.3, and classified as real or
fake by the discriminator.

Overview
In this chapter we discuss the the audio collection that is used to train generator 𝐺𝜃 as described in
section 3. Furthermore, we inspect the resulting log mel spectrograms from the methods qualitatively
and compare them with the log mel spectrograms from the audio collection. At last, we cover the
results of latent space interpolation with a trained generator 𝐺𝜃 similarily as the latent space intepolation
demonstrated in [9]

5.1. Training Database
The result of a trained GAN, as in many machine learning problems, is highly dependent on the input
data. The methods are implemented using a subsection of the NSynth data set [5]. The NSynth data
1There are some incidental and negligible effects of the convolutional neural networks components, however, that refrain it from
being truely random.

32
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set contains 305,979 recordings of musical notes. It is created from 1006 acoustic and digital instru-
ments originating from commercial sample libraries. Each recording is 4 seconds long, has a sample
rate of 16 kHz, and has a unique combination of pitch, velocity, and timbre.

To minimize the scope of the methods in this study, a subset of the dataset is taken where the pitch is
limited to midi note 60, or middle c, and the instrument type is limited to electronic pianos 2.

Despite the variety within different types of electronic pianos (rhodes, wurlitzers, digitally sampled pi-
anos), their main characteristics are relatively similar. The electronic piano has structured harmonic and
time information, electronic pianos decay similarily and their harmonic distributions only differ slightly,
which makes it easier to recognize patterns and promises therefore better a functioning method. Suc-
cesses in training GAN on electronic pianos, validates the investigation of training GAN on more com-
plex audio.

The restricted audio collection we use contains 658 electronic pianos playing a middle c. It should be
noted that using a more varied data set, with different notes and different instruments, could yield a
similar result with sufficient conditioning on the different pitch and timbre classes during the adversarial
training process as refered to in [24] 3.

We refer to the data set in use as 𝔇, where audio signals in 𝔇 are refered to with 𝑦 (in contrast to gen-
erated signals 𝑥) and a batch of audio signals from 𝔇 with 𝑌. Consequently, the data set is a subspace
in the signal space 𝒳, i.e. 𝔇 ⊂ 𝒳 s.t. for 𝑦 ∈ 𝔇, the image-like signal representation 𝑠𝑦 = Φ(𝑦) ∈ 𝒮. A
batch of image-like signal representations of 𝑌 ⊂ 𝔇 is refered to as 𝑆𝑌.

Figure 5.2: Log mel spectrograms of 32 electronic piano samples from the training data set. The vertical axis wihtin each log
mel spectrogram is the frequency axis and the horizontal the time axis.

5.2. Generated Log Mel Spectrograms
In this section we will investigate the training process of the generator network by looking at the gener-
ated log mel spectrograms. While our generator network produces an image-like signal representation
consisting of a stack of 2 256 × 256 images, one representing log mel spectrograms and the other
respresenting mel instantaneous frequencies as derived from chapter 2, we limit visual inspection to
the log mel spectrograms. After all, the spectral information is most prominent audible perception in
the reconstructed audio signal.
2The selection from NSynth yields the following tags: note c, instrument family, keyboard, instrument source electronic. The
resulting data set is a combination of different electronic piano sounds, including rhodes, wurlitzers and digitally sampled pianos.

3More on variety of audio and conditional GAN in chapter 7



5.3. Latent Space Exploration 34

Figure 5.3: 32 generated images from inferencing generator 𝐺𝜃 on 32 latent points after training of GAN. The vertical axis wihtin
each log mel spectrogram is the frequency axis and the horizontal the time axis.

In figure 5.3 we see log mel spectrograms from a trained generator. We see clear structural similari-
ties to log mel spectrograms originating from the training data set displayed in 5.2. The generated log
mel spectrograms appear to have similar fundamental frequency and indicate a note stopping at three
quarters of the time, i.e. 3 seconds. Furthermore, we see diversity in harmonic distribution and decay
similar to what is seen in 5.2.

The progression made in modelling the log mel spectrograms of electronic piano notes from 𝔇 by
generator 𝐺𝜃, as seen from the before (5.1) and after training (5.3) results, is huge. However, the
generators result often contain artifacts such as noisy structures in high frequencies, blurry areas in
the middle to high frequencies and wobbly partial amplitudes. The artifacts are demonstrated in figure
5.4.

Figure 5.4: This figure shows a result from the generator (left) compared to a similar training data set sample (right). General
form and structure of a log mel spectrogram is learned by the generator, however the generator result has artifacts such as noisy
structures in high frequencies, blurry areas in the middle to high frequencies and wobbly partial amplitudes.

5.3. Latent Space Exploration
The position of a point in the latent space 𝒵 determines the output of generator 𝐺𝜃. By backtracking
latent points from instances of the generator output, qualitative insight in the generators range can be
achieved.

Figure 5.5 shows three generated log mel spectrograms 𝐺𝜃(𝑧1), 𝐺𝜃(𝑧2), 𝐺𝜃(𝑧3), with 𝑧1, 𝑧2, 𝑧3 ∈ 𝒵.
Clearly, the log mel spectrograms show similarity in fundamental frequency, but variation in timbre.
That is different distributions of frequencies. Figure 5.5 (c) has more high frequencies than figure 5.5
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(b). Also the note in 5.5 (b) appears to fade away faster than 5.5 (c) and 5.5 (a). This suggests the
generator projects at least some variety from the latent space on the image-like signal representation 𝒮.

(a) (b) (c)

Figure 5.5: Three generated spectrogram show different timbres, but similar pitch; (a) 𝐺𝜃(𝑧1); (b) 𝐺𝜃(𝑧2); (c) 𝐺𝜃(𝑧3)

Traditional Audio Interpolation
In traditional audio interpolation, the process is essentially overlapping waveforms, or in dynamic con-
text a cross-fade. In log mel spectrogram this operation yields the overlap of two spectrograms. In
figure 5.6 we see two images of log mel spectrograms spectrograms of our dataset overlapping, which
is the result of overlapping the log mel spectrograms.

(a) (b) (c)

Figure 5.6: Two log mel spectrograms and their sum. An example of traditional audio interpolation. The log mel spectrogram in
(c) is obtained from the sum of log mel spectrogram (a) and (b).

Latent Space Interpolation
As seen in [9, 29], latent space interpolation introduces a different approach to interpolating between
two points. GAN introduces a novel method of interpolating between two points in the codomain of the
generator. As seen in figure 5.7, [29] shows a visual turn of faces in images by latent interpolation. The
latent space interpolation is a key element in the motivation to use GANs for audio synthesis.
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Figure 5.7: Latent space interpolations along two axes between random samples transforms facial poses in a face image gen-
erating GAN. [29]

Given the latent points 𝑧1, 𝑧2, 𝑧3 from the generated log mel spectrograms in figure 5.5, a 2 dimensional
grid can be constructed from the three points. Inferencing the network 𝐺 on this grid gives us a projec-
tion of the latent space grid in 𝒵 on the codomain 𝒮 as seen in figure 5.8.

It shows the ability of the generator to morph between log mel spectrograms. Specifically in this grid
the morphing is found in the quantity of high frequency information, differentiating its timbre.

A morph along these axes visually yields similarity to the a combination of a low pass filter filtering out
high frequencies, and shortening decay time of the notes.

Figure 5.8: Latent space visualization of a 2D grid produced from three points 𝑧1 , 𝑧2 , 𝑧3 ∈ 𝒵. The points 2D grid in the latent
space are fed as input to the generator 𝐺𝜃. Every log mel spectrogram in the figure corresponds to an output of 𝐺𝜃(𝑧) where 𝑧
is positioned on the latent space grid similar to how the log mel spectrogram is positioned in the figure.
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Summary
In this chapter we covered the specifications for the collection of audio:

• The collection of audio is a restricted version of the NSynth [5] dataset. NSynth contains musical
notes playing for 3 seconds and 1 second of decay. The recordings are sampled at 16 kHz. The
musical notes in this study are limited to electronic pianos playing middle c. (Section )

Also, we investigated the generated logmel spectrograms generated by the generator 𝐺𝜃 after a training
procedure:

• Seen by the progression before and after the training of generator in figure 5.1 and 5.3, the
generator has learned to produce structural similarities to the log mel spectrograms in the training
data set. This ismostly visible in the presence of fundamental frequency coherent tomiddle c. The
generator does produce artifacts such as noisy and blurry areas, as seen in figure 5.4. (Section
5.2)

At last, we inspected the effects of latent space interpolation as seen in [9] on the log mel spectrograms.

• The effect of latent space interpolation is clearly visible. In figure 5.8 interpolation along axes
yields audibly and visually similarity to the a combination of a low pass filter filtering out high
frequencies, and shortening decay time of the notes. (Section 5.3)



6
Quantitative Perfomance

As we have seen in the previous chapter, we are able to visually evaluate the generators performance.
A recurring criticism of GANs however is the lack of robust and consistent evaluation methods. There
is no single valuable way to determine the performance of GAN other than observing the generator’s
output and qualitatively assign a value with respect to the specific task.

Ironically, it is a problem that is present in any assesment of a generative model and one of the prob-
lems GAN solves. No requirement or objective for the generators result needs to be specified in GAN to
obtain high quality example similar to the data set. This solves the lack of supervised quantifications of
certain domains. It is difficult to compactly quantify audio, to evaluate generated instances on similarity.
Audio signals can have similar characters, but sound completely different. We can measure charac-
teristics of audio, but the audio is not defined by them. GAN’s criteria is that the audio yields similarity
with the collection of audio it is trained on. No engineered audio characteristic has to be specified in
order to train GAN.

However, as the collection of audio 𝔇 is restricted in its variety there are audio characteristics that are
commonly present within every signal. For example, we have restricted the collection of audio to only
contain pitched notes of middle c. Accordingly, the generator should be producing audio signals with
a pitch of middle c.

This idea can be extended further. Viewing the audio signal characteristics as numeric properties
describing the signal, rough comparisons between collections of signals can be made.

Overview
In this chapter we measure and compare audio qualities of generated signals and that of the audio
collection 𝔇. Signals generated by 𝐺𝜃 and signals from 𝔇 are compared w.r.t. to a set of audio char-
acteristics derived from low level signal descriptors.

Furthermore, we quantify the performance of 𝐺𝜃 throughout adversarial training. A performance metric
based on the audio characteristics between two sets of audio signals is calculated through out the
training procedures to quantify the effect of training on the generated signals in comparison to the
singals in 𝔇.

6.1. Audio Signal Characteristics
In order to evaluate audio, a quantitative method for audio description is required. Sound can be sub-
jectively assigned a list of qualities, such as loud or soft, and bright or dark. Acquiring meaningfull
statements about these high level decriptors however, would require a lot of human resources in as-
sessing these qualities. To evaluate audio efficiently, quantitative comparisons of low level descriptors
and accompanying global functionals are used instead.

38
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6.1.1. Low Level Descriptors
Acoustic low level descriptors (LLDs) of signals are often used in speech analysis [31]. They provide
directly measured descriptions of the signals. Signal LLDs are calculated frame by frame, resulting in
a time dependent contour that describes the signals property throughout time.

For signal 𝑥 ∈ 𝒳 we can define a LLD 𝑑 by,

𝑑 ∶ 𝒳 → ℝ𝑚 (6.1)

Where integer 𝑚 with 1 ≤ 𝑚 ≤ 𝑁 is the amount of frames used to analyze signal 𝑥 and 𝑁 = 64000 is
the length of 𝑥.

For example, figure 6.1 shows the pitch contour of two audio signals.

(a) (b)

Figure 6.1: Pitch contour of two audio signals.

6.1.2. Global Functionals
The low level descriptors, such as pitch contours as seen in 6.1, provide time dependent details on
the audio characteristics. These sequences are still difficult to compare directly, e.g. a shift along the
time axis of two similar contours, could be interpreted as a large difference. In order to extract valuable
quantitative information from the audio signals, we need a comparison that is invariant to these timing
differences. A simple way to circumvent this, is to extract these numeric values from the contours with
global functionals.

Insight in the characteristics of audio signals can be obtained by applying global functionals on mea-
sured low level descriptors. This allows us to obtain information on batches of generator produced
signals and comparing them to batches of signals from the audio collection 𝔇. While neglecting the
time dependency of the LLD contours, applying global functionals on the calculated LLDs of a signal
provides a robust brute force method for audio signal analysis.

Let 𝑁 ∈ ℕ. Then, we define ℛ𝑁 as a space that is the union of ℝ,ℝ2, … , ℝ𝑁, or ∪1≤𝑖≤𝑁ℝ𝑖. This can
represent the space of real number time series of arbitrary length from 1 to 𝑁. Or in other words, the
low level descriptor contours independent of the size of the time steps used for the calculations.

We define a global functional 𝑓 that can be applied to any time series of length smaller than 𝑁 and
maps to a single real number in ℝ.

𝑓 ∶ ℛ𝑁 ↦ ℝ (6.2)

This allows the composition of a low level descriptor 𝑑 and a global functional 𝑓, independently of the
framing used in calculation of 𝑑.

𝑓 ∘ 𝑑 ∶ 𝒳 ↦ ℝ (6.3)

An example of a global functional 𝑓, could be the the mean of entries in a ∈ ℝ𝑚, for 𝑚 ≤ 𝑁.
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𝑓(a) = 1
𝑚

𝑚

∑
𝑖=1

a𝑖 (6.4)

(a) (b)

Figure 6.2: Spectral centroid contour of an audio signal and the mean, std., min, max of the contour. This demonstrates the
process of calculating the numeric audio characteristics. From a signal 𝑥 ∈ 𝑚𝑎𝑡ℎ𝑐𝑎𝑙𝑋 a low level descriptor 𝑑 is calculated
which gives us the contour (red). Than, the global functionals 𝑓1 , 𝑓2 , 𝑓3 , 𝑓4 representing mean, std., min, max are calculated on
the contour resulting in 4 numeric values for signal 𝑥.

Fixing Inaccuracies in Pitch Contour Statistics Since pitch information is an important character-
istic in answering to our research, we must ensure that pitch measurements correctly reflect the reality.
Pitch information in the audio collection𝔇 only consists of pitched notes of middle c. There are no pitch
deviations in the audio collections, like slides, or glides. So the calculation of pitch can be restricted to
accurately represent the pitches that are found in audio signals.

For example figure 6.3(a) shows an inaccuracy in measuring the pitch. The audible pitch is clear, but
the interuptions and silences in audio cause the pitch measurement to be lower. To solve this problem,
we ignore silent parts and achieve a better representation of the pitch such as in figure 6.3(b).

(a) (b)

Figure 6.3: Pitch contour and mean; (a) with inaccuracies; (b) without.

6.1.3. Calculation of a Feature
The composition of a LLD 𝑑 and a global functional 𝑓 on a signal 𝑥, gives us a single numeric value that
describes some property for signal 𝑥. We refer to such a value as a feature. A feature is an individual
measurable property of a phenomenon. An example of a feature in analyzing audio signals, could be
the maximum of the pitch, which can be calculated by the application of the low level descriptor pitch
and the global functional maximum.

Convergence of Features Throughout the training of GAN the mean and std of measured pitch
contours (seen in section 6.1.1) converge to that of the data set 𝔇, as seen in figure 6.4.
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(a) (b)

Figure 6.4: Batch results (mean, std.) of pitch contour statistics (mean, std.).

Provided that we limited data set 𝔇 to only contain notes with a constant pitch (middle c, midi 60), the
convergence suggests that generator 𝐺𝜃 is able to learn to create pitched notes similar to that in a given
data set.

(a) (b)

Figure 6.5: Batch results (mean, std.) of spectral centroid statistics (mean, std.).

(a) (b)

Figure 6.6: Batch results (mean, std.) of rms statistics (mean, std.).

Figures 6.5 and 6.6 show similar results w.r.t. spectral centroid contour mean and std and rms contour
mean and std, respectively. This convergence however, in comparison to the representation of pitch
contours 𝐺𝜃 in figure 6.4, is less evident.

That pitch contour mean and std have a higher convergence rate than rms (mean and std) and spectral
centroid (mean and std) can be explained by the homogeneous pitch contours in the data set and the
relatively hetereogeneous rms and spectral centroid. There are loud and soft notes, wide and narrow
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ranged-frequency notes, but only notes with pitch midi 60 (equivalent with 261.63 Hz).

However results with the most extreme outliers in rms and spectral centroid at the start of training of
𝐺𝜃, are discarded to some extent during training.

6.2. Feature Sets
We have covered the convergence of individual features that yield high importance w.r.t. to the gener-
ation of musical audio signals, such as the pitch of a signal. However, to characterize the signals along
other criteria we need more features to describe the signals in its entirety.

Applying a set of global functionals on a set of low level descriptors of a signal, gives us a large array
of values that describes the audio signal we refer to as a feature set of the signal. Given a collection
of LLDs 𝐷 = {𝑑|𝑑 is a lld } and global functionals 𝐹 = {𝑓|𝑓 is a global functional}. We define a feature
set f of a signal 𝑥 ∈ 𝒳 as a function,

f ∶ 𝒳 → ℝ𝑀 (6.5)

Where 𝑀 = |𝐹| × |𝐷|. Then for 𝑥 ∈ 𝒳, f(𝑥) amount to the application of a set of global functionals 𝐹
(from 6.3) on a set of low level descriptors 𝐷 (from 6.2).

Then, feature f𝑖 mod |𝐹|+|𝐹|×𝑗 of signal 𝑥 ∈ 𝑚𝑎𝑡ℎ𝑐𝑎𝑙𝑋 is defined as

f𝑖 mod |𝐹|+|𝐹|×𝑗(𝑥) = 𝑓𝑖(𝑑𝑗(𝑥)) (6.6)

Then f(𝑥) amounts to the row vector,

f(𝑥) = [𝑓0(𝑑0(𝑥)) 𝑓1(𝑑0(𝑥)) … 𝑓|𝐹|−1(𝑑|𝐷|(𝑥)) 𝑓|𝐹|(𝑑|𝐷|(𝑥)) ] (6.7)

6.2.1. Batch Feature Set
Extending the feature set calculation to work for a batch of signals gives the following defition for batch
feature set F,

F ∶ 𝒳𝑁 ↦ ℝ𝑁×𝑀 (6.8)

where ℝ𝑁×𝑀 represents a real valued array of 𝑁 rows and 𝑀 = |𝐹| × |𝐷| columns.

Than for a batch of 𝑁 signals 𝑋 ⊂ 𝒳 and a feature set f,

F(𝑋) =
⎡
⎢
⎢
⎢
⎣

f(𝑋1)
f(𝑋2)
⋮

f(𝑋𝑁−1)
f(𝑋𝑁)

⎤
⎥
⎥
⎥
⎦

(6.9)

𝑋𝑛 is the 𝑛th signal of batch 𝑋, such that 𝑋𝑛 ∈ 𝒳.

F(𝑋) is amatrix which the rows represent the individual signals in the batch 𝑋 and the columns represent
the feature in the feature set 𝑓. A feature 𝑘 of signal 𝑛 is the value in F(𝑋) at row 𝑛 and column 𝑘.
Given that 𝐹 is a collection of global functionals and 𝐷 is a collection of low level descriptors, the values
in F(𝑋) represent the value of unique global functional 𝑓 ∈ 𝐹 applied on unique low level descriptor
𝑑 ∈ 𝐷 of unique signal 𝑥 ∈ 𝑋. The 𝑁 × 𝑀 matrix F(𝑋) is written in its entirety by combining equation
6.9 and equation 6.7 as follows,

F(𝑋) =
⎡
⎢
⎢
⎢
⎣

𝑓0(𝑑0(𝑋1)) 𝑓1(𝑑0(𝑋1)) … 𝑓|𝐹|−1(𝑑|𝐷|(𝑋1)) 𝑓|𝐹|(𝑑|𝐷|(𝑋1))
𝑓0(𝑑0(𝑋2)) 𝑓1(𝑑0(𝑋2)) … 𝑓|𝐹|−1(𝑑|𝐷|(𝑋2)) 𝑓|𝐹|(𝑑|𝐷|(𝑋2))

⋮ ⋮ ⋱ ⋮ ⋮
𝑓0(𝑑0(𝑋𝑁−1)) 𝑓1(𝑑0(𝑋𝑁−1)) … 𝑓|𝐹|−1(𝑑|𝐷|(𝑋𝑁−1)) 𝑓|𝐹|(𝑑|𝐷|(𝑋𝑁−1))
𝑓0(𝑑0(𝑋𝑁)) 𝑓1(𝑑0(𝑋𝑁)) … 𝑓|𝐹|−1(𝑑|𝐷|(𝑋𝑁)) 𝑓|𝐹|(𝑑|𝐷|(𝑋𝑁))

⎤
⎥
⎥
⎥
⎦

(6.10)
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6.3. Mean Batch Feature Distance
Since these feature sets give a large array of numeric values describing a signals characteristics, it
is difficult to interpret the convergence of feature sets of generated signals and signals from the data
set directly. Therfore we propose a metric, that calculates the column mean of the feature sets for two
batches of signals 𝑋 and 𝑌 and calculates the distance between the means.

Let 𝑋 and 𝑌 be two 𝑁 sized batches of fake and real audio signals respectively, so 𝑋, 𝑌 ⊂ 𝒳 and 𝑌 ⊂ 𝔇.
Then given a batch feature set F, as derived in section 6.2.1, and a distance measure 𝑑 we define the
mean batch feature distance MBFD between 𝑋 and 𝑌 as,

𝑑(F(𝑋),F(𝑌)) (6.11)

where A represents the column mean for a 𝑁 ×𝑀 matrix A

A = [a1 a2 … a𝑀] (6.12)

With,

a = 1
𝑁

𝑁

∑
𝑖=1

a𝑖 (6.13)

In other words, the column mean of a batch of feature sets gives a mean per feature. This results in
that F(𝑋) and F(𝑌) are two row vectors in ℝ𝑀, where each element in the row vector represents the
mean of the feature value measured in the batch of signals 𝑋 or 𝑌 respectively.

To calculate the distance between F(𝑋) and F(𝑌), we use euclidean distance. That is for x,y ∈ ℝ𝑛

𝑑(x,y) = ||x− y|| = √|𝑥1 − 𝑦1|2 + |𝑥1 − 𝑦1|2 +⋯+ |𝑥1 − 𝑦1|𝑛 (6.14)

6.3.1. Decline of Mean Batch Feature Distance
Now that we have defined the MBFD, we calculate it through out the GAN training procedure for a
variety of feature sets.

In order to evaluate the metric w.r.t. to the produced image-like signal representations, we introduce
figure 6.7 containing a generated log mel spectrograms from the same latent point through out the
training procedure. Given a fixed 𝑧 ∈ 𝒵, every 100th iteration 𝐺𝜃(𝑧) is calculated and the log mel
spectrogram is shown. This gives an indication of at what iteration certain structures described in
chapter 5 began to occur in the generated log mel spectrograms. The most promiment information
from figure 6.7 is that the most impressive development occur in the first 1000 iterations.

Composition of Feature Sets in Use The variety of feature sets gives perspective on how different
combinations of signal characteristics (features) constitute similarity between generated signals and
signals from the collection. The feature sets we use to calculate the MBFD are given in table 6.1.

Table 6.2 shows the used LLDs in set 𝐴 and set 𝐵. Every LLD in table 6.2 represents a time dependent
contour similar to the pitch contour in figure 6.1, but for different properties of the audio signals. The
description of the property that the LLD gives is also given in table 6.2. The exact definitions and
calculation methods of the LLDs are omitted in this study, but can be found in [18]. LLD set 𝐴 in table
6.2 resembles a minimal representation of audio characteristics, while LLD set 𝐵 is more exhaustive.
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Figure 6.7: Generated log mel spectrograms through training. Given a fixed 𝑧 ∈ 𝒵, every 100th iteration 𝐺𝜃(𝑧) is calculated and
the log mel spectrogram is shown. The most impressive development occurs in the first 1000 iterations (row 1).

Feature Set LLD Set (Table 6.2) Global Functional Set (Table 6.3) Size (*)
f𝐴,𝐴 𝐴 𝐴 69
f𝐴,𝐵 𝐴 𝐵 12
f𝐴,𝐶 𝐴 𝐶 6
f𝐵,𝐴 𝐵 𝐴 515

Table 6.1: Table showing feature sets. (*= sizes are approximately equal to correspoding |𝐷|×|𝐹|. Any deviations can be caused
by inability to calculate LLD or functionals for LLD)

Audio Quality Low Level Descrip-
tor

Description Set A Set B

Pitch Pitch Contour Curve that tracks the perceived pitch of
the sound over time

� •

Dynamics Root Mean Squared Root mean squared of signal amplitude
during frame

• •

Timbre MFCC (1-14) Mel Frequency Cepstrum Coefficients •
Spectral Centroid Center of mass of the spectrum • •
Spectral Measures (Slope, Flux, Entropy, Spread, Skew-

ness, Kurtosis, Rolloff, Flatness)
•

Harmonics to Noise
Ratio

The ratio between periodic and non-
periodic components.

•

Formants Local maxima in the spectrum. •
Other Zero Crossing Rate The rate at which a signal crosses the

zero.
•

Table 6.2: Table showing sets of low level descriptors. All frames used during the LLD calculations are obtained with
n_fft_seconds=0.04, hop_length_seconds=0.01 where necessary. The methods are implemented with the surfboard
audio analysis toolkit. [18].

Table 6.3 shows global functionals that are applied on the LLDs from 6.2. Three sets 𝐴, 𝐵, 𝐶 of global
functionals are used. These sets vary in exhaustiveness, similarily to the LLD sets in 6.2.
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Global Functional Set A Set B Set C
Min, Max • •
Mean, Std. • • •
Skewness, Kurtosis •
First Derivative (Mean, Std, Skewness, Kurtosis) •
Second Derivative (Mean, Std, Skewness, Kurtosis) •
1st, 2nd, 3rd Quartile •
Interquartile Ranges (2-1, 3-2, 3-1) •
Percentile Range (1%) •
Percentile Range (99%) •
Interpercentile Range (1-99%) •

Table 6.3: Table showing sets of global functionals. Calculated with surfboard [18]

RegularMeanBatch Feature Distance Figure 6.8 showsmean batch feature distancesMBFDs from
four feature sets as seen in table 6.1. The feature sets are calculated in batches of signals, denoted
with batch feature sets as in section 6.2.1: F𝐴,𝐴,F𝐴,𝐵 ,F𝐴,𝐶 ,F𝐵,𝐴. The batch feature sets correspond to
the feature sets f𝐴,𝐴, f𝐴,𝐵 , f𝐴,𝐶 ,F𝐵,𝐴 from table 6.1 respectively.

Given a generator 𝐺𝜃 at a training iteration. Let 𝑌 be a batch of signals from the sound collection𝔇. Let
𝑋 be a batch of signals generated by generator 𝐺𝜃. Then in figure 6.8 we see theMBFD as defined in
section 6.3,

𝑑(F(𝑋),F(𝑌)) (6.15)

The horizontal axis in figure 6.8 reperesents the training iteration. The vertical axis represents 𝑑(F(𝑋),F(𝑌))
for a batch 𝑋 sampled from 𝔇 and a batch 𝑌 generated by generator 𝐺𝜃 at training iteration 𝑡.

The trajectory of theMBFD during training in figure 6.8 suggest some decline in the distance between
generated signal characteristics and signal characteristics from the sound collection 𝔇. While the ab-
solute difference between the MBFD given different feature sets is large, they all appear to decline
through out the training procedure at some point. The MBFD with batch feature set F𝐵,𝐴 has a dras-
tically higher value and higher relative decline compared to the other MBFDs. This can be explained
by the high amount of features that are present in batch feature set F𝐵,𝐴, as seen in table 6.1 (515,
compared to 69, 12, 6).

The most dramatic decline in figure 6.8 occurs in the first 1000 iterations. This corresponds to the
inspected visual developments in figure 6.7.

Figure 6.8: Mean batch feature distance during training with different feature sets. The absolute difference between the different
MBFDs is large. EveryMBFD appears to decline through out the training procedure at some point.

Scaled Mean Batch Feature Distance While figure 6.8 shows an impressive decline for theMBFD
with batch feature set F𝐵,𝐴, the decline of the other MBFDs are slightly obscured by its scale. This
incites us to introduce a scaled version of the MBFD to obtain more insight in the relative declines of
each of the MBFDs.
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In order to achieve the scaled version of the MBFD the trajectory from figure 6.8 is devided by its
maximum value,

𝑑(F(𝑋),F(𝑌))
max𝑑(F(𝑋),F(𝑌))

(6.16)

Figure 6.9 shows the scaled MBFD from figure 6.8. In this figure a decline in each of the MBFDs is
clearly visible. Similar to regular MBFD the decline of the scaled MBFD is most promimently present
in the first 1000 iterations. Again, this corresponds to the visual inspection of generated log mel spec-
trograms through the generator training, as seen in figure 6.7.

Figure 6.9: Scaled mean batch feature distance during training with different feature sets. A decline in each of the MBFDs is
clearly visible.

Mean Batch Normalized Feature Distance A different limitation of the regular MBFD in figure 6.8
is are the unnormalized features heavily influencing the result. Features with high variance can cause
the distances between column means F(𝑋) and F(𝑌) to be distorted. To mitigate this, we introduce the
MBFD with normalized features,

𝑑( ̂F(𝑋), ̂F(𝑌)), (6.17)
Here the unit normalziation of u is depicted with û, such that û = 𝑢

||𝑢|| (unit normalization).

At last, as seen in figure 6.10, the mean batch normalized feature distance has a slight decline. While
the decline is less clear to the declines in figures 6.8 and 6.9, there is definitely a drop from theMBFDs
for each batch feature set at iteration 0 to iteration 3000. Again, the most promiminent contribution to
the drop in value is present in the first 1000 iterations, similar as in the figures 6.8, 6.9 and figure 6.7.

Figure 6.10: Mean batch normalized feature distance during training with different feature sets. A slight decline is seen in for all
feature sets. MBFD with feature set F𝐵,𝐴 appears to remain in high value.

It remains questionable which of the variants of a MBFD yields the most importance w.r.t. evaluating
the perfomance of our generator. However, each of the variants had some amount of decline. This is
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coherent with the visual inspection of the generator at iteration 3000 in chapter 5 and the progression of
generated log mel spectrograms in figure 6.7. We can value each of these metrics w.r.t. some amount
of measuring similarity. The declines of theMBFD variants in figures 6.8, 6.9, 6.10 suggest that at least
some generated audio signal characteristics are approaching the audio collection characteristics.

Summary
In this chapter we covered topics related to extracting numerical audio characteristics through feature
engineering:

• Low level descriptor provide characteristic contours for a signal, such as the pitch contour of a
signal. (Section 6.1.1)

• Global functionals are used to extract global information of a contour, such as the mean or stan-
dard deviation of a contour. (Section 6.1.2)

• The composition of a collection of low level descriptors and global functionals gives us a feature
set that can be calculated for a signal. The feature set gives a objective global indication of singal
properties. (Section 6.2)

Furthermore, we covered the convergence of features calculated on the generated audio throughout
the training of generator to features calculated on the audio in the data set.

• The pitch contour mean and standard deviation of generators converge clearly, as seen in figure
6.4. The mean spectral centroid and rms however converge only slightly, as seen in figures 6.6
and 6.5. (Section 6.1.3)

At last we constructed a metric based on mean of batches of feature sets, called mean batch feature
distance MBFD.

• While being a rough derivative of initial signal characteristics, the metric declines steadily through-
out the training of a generator for a variety of feature sets and variations on the MBFD (including
unit normalized and scaled variations) (Section 6.3)

• Also the decline in MBFD shows coherence with the inspected progression in generated log mel
spectrograms as seen in figure 6.7 (Section 6.3)



7
Conclusion

7.1. Summary
In this study we worked towards a proof of principle (PoP) for GAN driven audio generation with the
use of an image-like representation for audio, and convolutional neural networks. The methods were
implemented for modelling 1 a collection of audio consisting of electric pianos playing 4 second notes of
middle c. With this, we obtain a generative model that is able to generate sound similar to the sounds
it is trained on.

While the goal in this study is to generate audio, the modelling component takes place in the image
domain. Accordingly, in chapter 2 we convert audio signals into an image-like representations of time
and frequency. The signal-to-image transformation Φ, as seen in figure 2.3, converts a 4 second long
and 16 kHz sampled signal to 2 stacked 256 × 256 images. The representation displays frequency
magnitudes and phase information at time segments in the signal. The frequency axis is scaled to mel
scale, a better representation of human hearing. On the other hand, the image-to-signal transformation
Φ−1, as seen in 2.4, amounts to the inverse: 2 stacked 256×256 images, interpreted as time-frequency
information, are converted to a 4 second audio signal, again sampled at 16 kHz.

In order to obtain a generative model for a collection of audio, we need a parametric function 𝐺𝜃 that is
able to generate audio with appropriate processing and whose parameters 𝜃 can be adapted to model
the collection of audio. 𝐺𝜃 needs to produce audio similar to that of the collection it is based on. A
generative adversarial network, or GAN, is a method used to obtain such a model. The GAN network
resembles a competition between a generator and a discriminator. The generator is producing fake
material, while the discriminator is distinguishing the fake material from the real material. This way we
obtain a generative model for a collection of audio [9]. In chapter 3 we discuss the design of GAN in
context of generating audio. We show how audio generation is the result from the inference of 𝐺𝜃 on a
point in latent space 𝒵, as in figure 3.1. Furthermore, we show how the generator’s parameters 𝜃 are
optimized through an adversarial training scheme, as seen in figure 3.3.

Now that we described a method to obtain a generative model from parametric function 𝐺𝜃 for a collec-
tion of audio, we need to define 𝐺𝜃. We need to design 𝐺𝜃 such that its able to produce the image-like
representation of the audio signals and be trained by the adversarial network. For this, we design a
convolutional neural network. In chapter 4, we discuss the fundamental building block of neural net-
works, the neuron. After which we will discuss how a network of layers of neurons can be trained
to be used as a function approximator [19]. Furthermore, the use of convolution neural networks will
be demonstrated to attain to the generation of image-like signal representations defined in chapter 2.
At last, we give an architectural overview of the discriminator network 𝐷𝜙, that has an input of shape
256 × 256 × 2, and generator network 𝐺𝜃, that has an output of shape 256 × 256 × 2, that are used in
GAN to model the collection of audio.

1as defined in the introduction.

48
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In chapter 5, we inspect the generators output after following a training procedure. The trained gen-
erator network 𝐺𝜃 generates similar spectral information to the spectral information of signals from the
dataset 𝔇, as seen in figure 5.2. The structural similarities in the spectrum, such as the distribution of
harmonics and note envelopes, suggest an effective approach to modelling electric piano notes. Also
there appears to be a similar amount of diversity in the generated material as in the data set material,
seen in figure 5.3. However, visual (and audible) artifacts are present in the generated spectra, such as
noisy structures in high frequencies, blurry areas and wobbly harmonic magnitudes, as seen in figure
5.4. At last, we observe the effects of latent space interpolation on audio in figure 5.8. The effects
of latent space interpolation between points in latent space 𝒵 and inferencing 𝐺𝜃, yields the morphing
between spectral information analoguous to the morphing of faces in [29].

To quantitatively assess the effect of the generator training process, we measure and compare audio
qualities of signals produced by the generator and that of the data set in chapter 6. Signals produced
from trained generator network 𝐺𝜃 and signals from the dataset 𝔇 show similarities w.r.t. a set of audio
low level descriptors, such as pitch. These comparisons show a convergence throughout training of
the generator to the characteristics of the training data set. Following this, we quantify the performance
of 𝐺𝜃 throughout adversarial training in chapter 3. We define a quantitative performance, named mean
batch feature distance (MBFD), for evaluating the difference between audio characteristics of two sets
of audio signals. The metric is based on audio characteristics and declines throughout training, as seen
in figures 6.8, 6.9, and 6.10.

7.2. Interpretation of Results
The results suggest that the generative adversarial network is able to produce audio signals that yield
some limited similarity to the signals of the audio collection it was trained on. The similarities are not
only perceived visually by inspecting the image-like representations. They can also be quantified by
measuring low level audio signal characterstics of the generator produced signals and signals from
the audio collection. From these audio characteristics a declining performance metric can be derived
throughout the training iterations of the generator. Viewing the dramatic improvement in visual resem-
blance and performance metric before and after training, suggests a functioning training architecture
and training process for modelling the audio collection.

The most promising result from measuring the audio characteristics is the prominent convergence of
the pitches of the generated audio throughout network training. The pitches in the audio collection were
all middle c, so the characteristic had a clear aimed value, which the generator was able to achieve.
Furthermore, the capability of producing a pitched note is a fundamental element in traditional synthe-
sis, or musical instruments in general.

At last, the generative adversarial network introduces a method to non-linearily interpolate between
points in the codomain as a result of latent space interpolation and inferencing the trained generator
network on the latent points. This establishes a conceptual difference in morphing between two sounds.
Every point in the latents space interpolation produces a modelled sample from the audio collection as
interpreted by the generator.

7.2.1. Implications
Given these abilities, using a generative adversarial network trained on a specified audio collection
to model it, gives us a controllable synthesizer that is able to produce audio with characteristics from
that collection, where the content is from arbitrary source. The capabilities of the synthesizer are not
limited by the available synthesis components, such as oscillators and filters, and the ability to tune
these components by hand, but rather the pattern recognition capabilities of neural networks and the
generative modelling capabilities of GAN.

This introduces a branch of audio synthesis methods where potentially the training of a generator based
on a user specified collection yields the form of expression, rather than tuning parameters by hand to
obtain a sound as desired. For example, a synthesizer that is able to produce bird sounds can be
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obtained by training the generator network with GAN on a collection of bird sounds. Whereas the
hand-tuning of synthesizer controls to obtain bird sounds can be a difficult task. Also, the training of
a generator on a diverse sound collection, such as that of drum kit sounds, allows the latent space
interpolation between different extremes within the collection, such as a kick and a hi hat, such that
the resulting interpolated audio is not a sum of the two, but rather an other learned sound that yields
similarites to the sound collection.

7.2.2. Limitations
Allthough serving as a proof of principle (PoP), the validity for generalization of this study has some
limitations. These limitations are mainly the result of limited resources, such as computational power
and time. Following this, we have little insight in how the method performs with more varied data. Also,
as we have only investigated a limited amount of neural network architectures, audio representations,
and processing methods, we can hardly differentiate the bottlenecks within the system that influence
the artifacts that are present in the generated audio. In fact, it is probable that each component in the
system contributes to the presence of the artifacts in some way, shape, or form. At last, the evaluation
of our method has been simplified to serve the PoP. However, using different evaluation methods, and
evaluating on different domains, is necessary to establish valuable decisions in improving the PoP.

Limited Diversity The results in this study have been obtained by training on a restricted sound col-
lection, namely the electric piano notes playing middle c. Results on training the generator with more
diverse or complex sound collections could give a better indication on the generalized performance of
the method. For example, we have trained the generator network to produce a single pitch, middle
c. This serves the PoP, but extending the pitch and instrument producing capabilities by training on a
sound collection with multiple pitches and multiple instruments, is necessary for further development
of the PoP. The high quality human face generation [15] does suggest that GAN is able to learn with
a diverse data set. With appropriate adaptations to our method, the ability to increase the generation
diversity looks promising.

Inadequate Insight in Source of Artifacts Another limitation of this study, is that the artifacts that
are present in the generated log mel spectrograms and audio are difficult to appoint to a source. In this
study we have used audio processing methods to produce image-like audio representations and con-
volutional neural networks to generate and discriminate these representations. In the design of each of
the singal representation, processing and networks causes for the artifacts can be introduced. The log
mel spectrograms give a versatile way of representing audio, but it neglects a lot of structures that are
naturally present in some sounds, such as the differentiation between harmonic information and noise
present in many musical instruments. Log mel spectrograms deliver value when arbitrary spectra of
audio need to be learned to produce, but for generating electric pianos representing the audio as a
sum of harmonics and filtered noise, for example, could eliminate a lot of artifacts while still maintaining
more than adequate representation capabilities.

Furthermore, while the audio to image transformation on its own is a nearly reversible process, con-
serving the phase information with the spectral information together might be of negative influence in
the capabilities of a neural network to model the audio effectively. At the same time the conserving of
phase information has not been investigated in the positive effects of the audio generation. Different
approaches to recovering the phase information could yield more or less artifacts.

At last, different neural network architectures yield structural differences in the output, potentially re-
moving artifacts. In this study, little experimentation has been done with different network archictures.

These three examples show how many factors influence the generation and modelling of the audio.
Extending the research to other network architectures and processing can give more insight into what
causes certain artifacts. Consequently, this gives more insight in the modelling capabilities of GAN
rather than the processing or network architectures.
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Limited Evaluation While attempts have been made to evaluate the PoP, extending the variety of
evaluation methods and evaluation criteria yields is of high value. In this study, we have only focused
on measuring the similarity between the data set and the genarator signals. This serves our purpose,
as we restricted the data set heavily. However, investigating the diversity of the produced signals in
comparison to the diversity of the data set could give more insight when using different and more var-
ied collections of audio. On one hand we wish the model to generate audio that yields similarities to
the sound collection. On the other hand we want to generate audio with similar diversity to the audio
collection.

As we have focussed on using low level signal descriptors, the resulting quantifactions are heavily in-
fluenced by the representation capabilities of these signal descriptors. The use of different methods to
represent the signals in measuring similarity and diversity is recommended.

At last, similarity and diversity are not the only criteria that can evaluate the PoP. Especially in context
of music, qualitative metrics, such as human evaluation, or metrics for creative use can have the upper
hand in decisions for future development of the GAN driven audio synthesis.

7.3. Research Suggestions
During the research and development of teh PoP a variety of actions and questions emerged to com-
bat the limitations of the study. The research recommendations can be divided into three categories:
research w.r.t. obtaining insight in the performance of the PoP, research w.r.t. quality improvements
of the audio processing, research w.r.t. investigating different neural network architectures.

The following actions relate to experimental improvements that aim to better investigate performance
of the PoP directly:

• Diverse audio data sets: The methods in this study have been solely tested with electric pianos
playing a middle c (from NSynth [5]). Extending the tests of the framework to different instruments
and sounds can give a better perspective on how the framework performs. NSynth offers a
variety of instrument sounds playing different notes. Different instrument classes, such as strings,
and different pitches, can be easily chosen to extend the insight in results. However, especially
percussive oriented sounds [34], environmental sounds [28], bird sounds [25], or human speech
[26], can give insight in how the PoP deals with more complex and varied sound data sets.

• Amplitude Weighted MBFD: The performance metric MBFD introduced in this study uses in-
formation of low level signal descriptors to analyze generated audio and audio from the audio
collection. However, these low level signal descriptors give descriptor contours, such as the
pitch contour, throughout the entire signal. This can give false information in the case audio is
interpretably silent or soft, potentially obscuring valuable information or cluttering with invaluable
information. Using the amplitude of signals to weigh the contribution of a descriptor contour to
the performance metric, we can obtain a better representation of what characteristics the audible
parts of the signal have.

• GAN Performance Metrics: Other performance metrics introduced with GAN can be used such
as Frechet Inception Distance (FID) and Inception Score (IS) [3]. FID and IS are metrics for
evaluating GANs on the perceptual quality and diversity on synthetic distributions. The metrics
penalize models whose generated examples are not each classified into a single class, as well
as models whose generated examples collectively belong to only a few of the possible classes.
However both FID and IS rely on a pretrained image classifier, this is of little value when using
it for audio generation. By replacing the pretrained image classifier with an log mel spectrogram
classifier convolutional neural network, for example, the FID and IS metrics could be used. [6]
implemented these two metrics by using a pitch classifier.

The following actions and questions relate to quality improvement of audio processing:

• Filtering logmel spectrograms: A simple way to potentially improve the quality of the audio from
the generated log mel spectrograms, is by manually filtering and cleaning unwanted artefacts.
Experimentation with AI adapted filters [40] and noise removal [21] could yield interesting results.
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• Phase reconstruction methods: In this study we have trained the generator to also generate
phase information, in order to retrieve audio signals from the generated output. Other methods
to generate audio from log mel spectrograms with phase reconstruction, such as other time-
frequency modelling methods [22] and deep Griffin-Lim [23], could potentially increase the quality
of the audio.

The following actions and questions relate to improvement of architecture of GAN:

• Conditioning GAN: The conditioning of audio qualities, such as instrument type or pitch, in GAN
[15, 24], allows the generation of audio based on a set of conditions. This gives users ability to
control the characteristics of generated audio better. Also [27] promises to introduce qualitative
improvements with the use of conditional GANs.

• Differentiable Synthesis: Replacing upsampling convolutional network in the generator with
flexible differentiable synthesizers as proposed in [7], proposes a different approach to generating
audio than generating log mel spectrograms. If the synthesizers are flexible enough, the gener-
ator’s synthesis components are able to reproduce arbitrary sounds, while potentially producing
high quality audio a lot earlier in the training process. Differentiable digital signal processing
components, such as oscillators and filters, are provided by [7]

• GAN Architectures: Explore different GAN architectures, such as progressive GAN [14], which
allows the generation of higher quality images of larger resolutions. This visual improvement
directly correlates to the improvement of audio quality, as the log mel spectrograms can have
higher frequency resolution and higher time resolution. The progressive GAN architecture is
used in GANSynth [6].

• Different length audio: At last, in this study we have focussed on audio of fixed length (4 sec-
onds, or 64000 samples), investigating the ability to generate longer, or shorter audio signals
could yield different results. Also the ability to work with audio of arbitrary length, such as with
[13, 15], allows the easier combining of different datasets to achieve more general performative
results.

7.4. Predictions
The system introduced here in its current state is rough around the edges and has little artistic or com-
mercial use. The effort, time, and hardware that are currently requiered to train and use the method
introduced in this study are out of proportion with the intended effect of using a generative adversarial
network to model an audio collection for musical deployment.

When comparing the state of our system to the first synthesizer build by the RCA in 1952 2 similarities
can be seen in their rigid, unpolished and immovable properties. Where the RCA synthesizer required
a room filled with hardware, our system requires days of processing and high electricity bills for a mea-
ger variety of sounds rich in unwanted artifacts. Luckily, the development of artificial intelligence, deep
learning in particular, has a high and steadfast velocity. The future of the GAN driven audio synthe-
sis benefits from the efforts of these developments. Optimizations and improvements within neural
networks and GAN in particular directly influence in the audio modelling capabalities. With time, opti-
mizations might decrease training times and hardware requirements. These optimizations are vital for
the ability of user-tailored training of a GAN driven synthesizers on customly defined data sets. User-
tailored training unlocks the complete tool the GAN driven audio synthesis aims to offer.

Advancement in GAN driven audio synthesis with respect to directly improving the creative use can
quickly incite the embracement of the method among experimental musical and artistic users. Predic-
ticably, this will be no different to how the avant garde embraced early synthesizers in the 1960s.

2As stated in the introduction : in 1952 Harry Olson and Herbert Belar of the RCA (Radio Corporation of America) created the
first synthesizer capable of artificially creating sound.
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Figure A.1: Log mel spectrograms of 32 electronic piano samples from the training data set. The vertical axis wihtin each log
mel spectrogram is the frequency axis and the horizontal the time axis.
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Figure A.2: 32 generated images from inferencing generator 𝐺𝜃 on 32 latent points after training of GAN. The vertical axis wihtin
each log mel spectrogram is the frequency axis and the horizontal the time axis.
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