

Delft University of Technology

Combined capture and reduction of CO₂ to methanol using a dual-bed packed reactor

Wirner, Luca C.; Kosaka, Fumihiko; Sasayama, Tomone; Liu, Yanyong; Urakawa, Atsushi; Kuramoto, Koji

DOI

[10.1016/j.cej.2023.144227](https://doi.org/10.1016/j.cej.2023.144227)

Publication date

2023

Document Version

Final published version

Published in

Chemical Engineering Journal

Citation (APA)

Wirner, L. C., Kosaka, F., Sasayama, T., Liu, Y., Urakawa, A., & Kuramoto, K. (2023). Combined capture and reduction of CO₂ to methanol using a dual-bed packed reactor. *Chemical Engineering Journal*, 470, Article 144227. <https://doi.org/10.1016/j.cej.2023.144227>

Important note

To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy


Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

<https://www.openaccess.nl/en/you-share-we-take-care>

Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Short communication

Combined capture and reduction of CO₂ to methanol using a dual-bed packed reactor

Luca C. Wirner ^{a,b}, Fumihiko Kosaka ^{a,*}, Tomone Sasayama ^a, Yanyong Liu ^a, Atsushi Urakawa ^b, Koji Kuramoto ^a

^a National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan

^b Catalysis Engineering, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands

ARTICLE INFO

Keywords:
CO₂ hydrogenation
CO₂ utilization
CO₂ capture
Methanol synthesis

ABSTRACT

Recently, carbon capture and reduction (CCR) technology has gained interest to directly convert CO₂ to value-added products without requiring purification of CO₂ and its subsequent transportation. CCR to methanol in one dual function material (DFM) poses mechanistic and kinetic challenges. To counteract this, a process combining Na/Al₂O₃ as a capture component and Cu/ZnO/Al₂O₃ (CZA) as methanol synthesis catalyst was developed to allow CCR to methanol. With a 5 vol% CO₂ flow for capture and subsequent H₂ stream combined with a temperature swing, a methanol selectivity of 26 % was achieved at 9 bar. Further investigation found that Na/Al₂O₃ significantly increased methanol yield, while a stacked configuration of Na/Al₂O₃ followed by CZA significantly outperformed a mixed configuration of the two catalysts. With further investigation of operation at higher pressure and surface mechanism, an effective CCR to methanol process using two affordable yet readily available catalysts can be realized.

1. Introduction

With increasing momentum towards a carbon neutral future [1], the development of carbon dioxide (CO₂) capture, utilization, and storage (CCUS) technologies is crucial to facilitate the transition. Such technology captures CO₂ either from waste streams of chemical processes or directly from air (known as direct air capture (DAC) [2]) and either stores it [3] or converts it to value-added products generally via a catalytic hydrogenation reaction, known as carbon capture and utilization (CCU) [4–6]. Out of the potential products that can be formed from CCU, methanol is of high interest due to its importance as a fuel and commodity chemical [7,8], even having potential to liberate humanity's reliance on fossil fuels [1]. To minimize challenges regarding purification and transportation of captured CO₂, an approach can be taken where CO₂ capture and hydrogenation can be performed in one reactor, known as carbon capture and reduction (CCR). However, to the best of our knowledge, publications concerning CCR to methanol using heterogeneous catalysts is inexistent.

In a combined CCR process, two possible design approaches can be taken. The first is to implement a true dual function material (DFM) where CO₂ capture and reduction to methanol are both performed on

one catalyst. This approach was previously investigated for CCR to methane [9–14] and CO [15–18]. In the case of methanol synthesis, addition of a common CO₂ capture component such as Na or K on the industrial standard Cu/ZnO/Al₂O₃ (CZA) catalyst [19] is expected to result in negative effects on catalytic activity due to promoted RWGS activity [20]. The second, more practical approach is to combine two different catalysts in one reactor to induce the bifunctionality. Publications using this dual-bed reactor method are currently available for the conversion of syngas to low carbon olefins and aromatics [21], production of ethanol from dimethyl ether and syngas [22], CO₂ capture and methanation [23,24] and the oxidation of ethane to ethylene [25]. When considering CCR to methanol, one component would generally act as a CO₂ sorbent in addition to CZA for subsequent reduction. Na/Al₂O₃ especially shows promising performance as a CO₂ sorbent while maintaining a relatively low cost due to the lack of a transition metal [26].

Fig. 1 shows a CCR to methanol process that can be achieved by stacking (i.e. sequentially placing) a Na/Al₂O₃ bed with that of CZA.

In the CCR process, the reactor is first fed with CO₂ to enable exothermic CO₂ capture following Equation (1) to result in Na₂CO₃.

* Corresponding author.

E-mail address: f.kosaka@aist.go.jp (F. Kosaka).

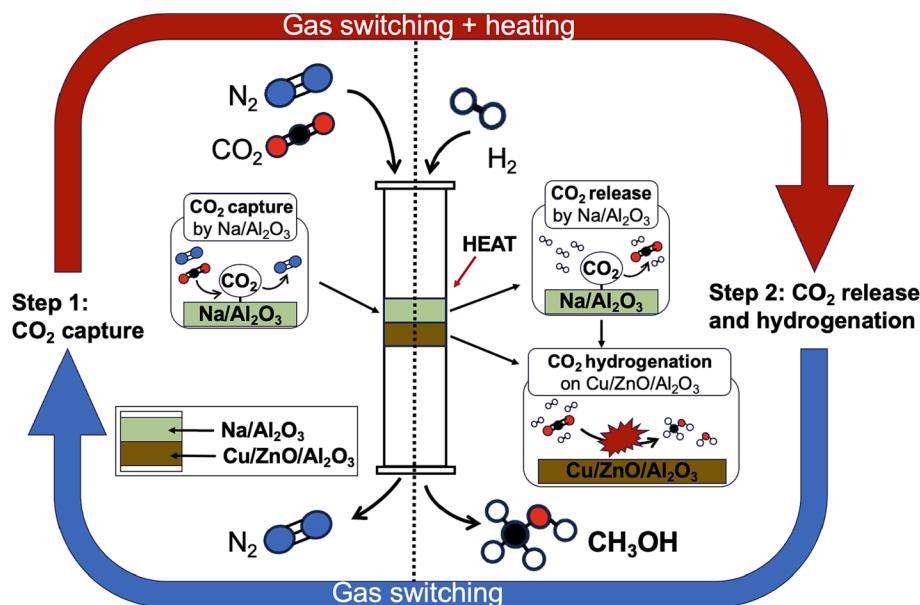


Fig. 1. Conceptual diagram of integrated CO₂ capture and conversion to methanol and other products using a dual-bed reactor.

After purging the excess CO₂ with an inert such as N₂, the reactor is fed with H₂ and heated to allow and promote endothermic CO₂ release via the reverse of Equation (1) and subsequent conversion of CO₂ to take place. Previous CO₂-TPD studies have confirmed the occurrence of CO₂ desorption from Na/Al₂O₃ under inert [27]. We believe that the addition of a different gas environment such as H₂ would provide similar or superior CO₂ desorption performance. CO₂ release can further be promoted by heating the reactor [26]. The desorbed CO₂ then travels together with (renewable) H₂ to the CZA bed, where methanol synthesis can take place. CO₂ hydrogenation to methanol undergoes two key reaction paths. One is the exothermic direct hydrogenation of CO₂ to methanol (shown in Equation (2), and the other an endothermic RWGS side reaction to CO (shown in Equation (3) followed by CO hydrogenation (shown in Equation (4)).

Operation at higher pressures in CCR to methanol are desired to increase CO₂ capture capacity [27] and to increase CO₂ conversion and methanol selectivity, provided a high H₂/CO₂ ratio is also achieved [7,8].

In this study, an initial CCR to methanol process was developed using a combination of Na/Al₂O₃ and CZA. In order to gain an initial understanding, the study focused on the nature of Na/Al₂O₃ during CO₂ capture and release, followed by the operating conditions and configurations of Na/Al₂O₃ and CZA.

2. Experimental

2.1. Preparation of catalysts

Na/Al₂O₃ (16 wt%) was synthesized using an impregnation method, following protocol from Sasayama *et al.* with precursors purchased from the same chemical suppliers [18]. Cu/ZnO/Al₂O₃ (40 wt% Cu, 40 wt% ZnO) was synthesized using a co-precipitation method [28]. A mixture of 12.2 g Cu(NO₃)₂·3H₂O (Fujifilm Wako Pure Chemical Corp.), 14.6 g Zn(NO₃)₂·6H₂O (Fujifilm Wako Pure Chemical Corp.), and 7.4 g

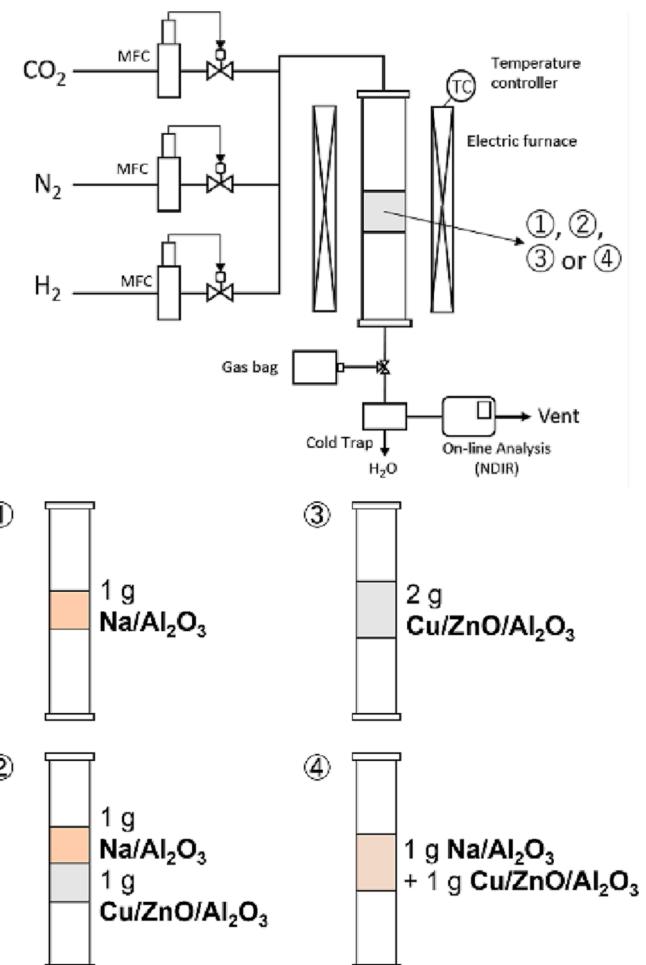
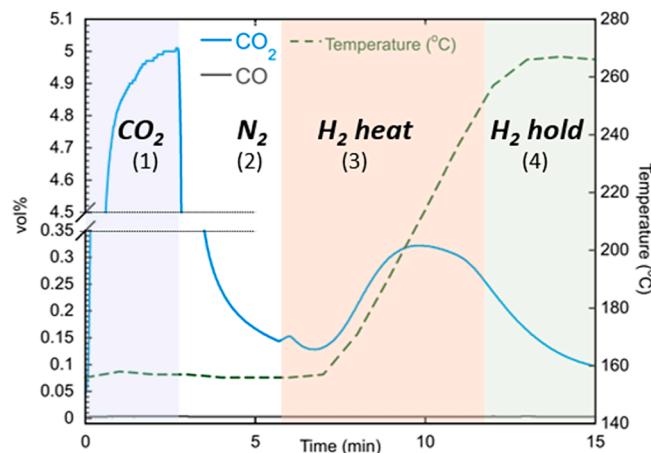



Fig. 2. Schematic of the experimental setup used during this study, as well the various configurations of catalyst beds.

Fig. 3. CO₂ concentration profile during CO₂ capture and its release under H₂ with a temperature ramp of 20 °C/min at a H₂ flow rate of 100 mL/min (p = 1 bar).

Al₂(NO₃)₃·9H₂O (Fujifilm Wako Pure Chemical Corp.) was dissolved in 200 mL of distilled water to form a mixed metal nitrate solution. Subsequently, a mixed alkali solution of 2 M NaOH and 0.5 M Na₂CO₃ was added dropwise to the mixed nitrate solution at room temperature while stirring strongly to reach a pH of around 9.5. The resulting suspension was further aged at 70 °C for 3 h under continuous stirring. The precipitate obtained by filtration was then added to a beaker containing 800 mL of distilled water. After washing while stirring at room temperature for 3 h, the precipitate was filtered, dried overnight at 110 °C, and calcined in air at 450 °C for 3 h.

2.2. Catalytic evaluation

The investigation into the CO₂ capture and release capability of Na/Al₂O₃ and the CCR experiments of Na/Al₂O₃ and CZA were performed in the experimental setup shown in Fig. 2. The setup consists of three mass flow controllers (MFCs) to supply the gases, an electric furnace surrounding the reactor and a valve that can switch the direction of the effluent stream between a continuous gas analyzer (nondispersive infrared spectroscopy (NDIR)) and a gas bag. A thermocouple was inserted into the reactor to monitor the reaction temperature. In the case of investigating the nature of CO₂ capture and release of Na/Al₂O₃, reactor configuration ① shown in Fig. 2 was used, and the valve was set towards analysis using the NDIR. Pre-treatment of Na/Al₂O₃ was performed by heating the reactor to 500 °C at 10 °C/min under 100 mL/min H₂ flow and maintained at 500 °C for 1 h.

The pre-treatment was performed to activate the CO₂ capturing capacity of Na/Al₂O₃ [18]. After completion, the reactor was allowed to cool to 150 °C under N₂. For the CCR experiments, reactor configurations ②, ③, ④ were used depending on the purpose of the experiment. Since pre-treatment of CZA at the same conditions as Na/Al₂O₃ (T = 500 °C) poses potential deactivation of CZA, pre-treatment of all relevant configurations was done by heating the reactor to 260 °C at a heating rate of 10 °C/min under 100 mL/min H₂ flow and maintained at 260 °C for 1 h. The reactor was subsequently allowed to cool to 150 °C under N₂.

All experiments underwent four key steps to simulate CCR: (1) 5 vol % CO₂ was passed at 200 mL/min for 3 min to allow CO₂ capture at 150 °C, (2) the reactor was purged with 200 mL/min N₂ to remove excess CO₂ present after step (1) at 150 °C, (3) 100 mL/min H₂ was passed into the reactor which was heated from 150 °C to 250 °C in the case of Na/Al₂O₃ alone and 230 °C in the CCR experiments with a heating rate of 20 °C/min, and (4) 100 mL/min H₂ was passed for 2 min for Na/Al₂O₃ alone and 6 min for the CCR experiments while keeping the reactor temperature set at the maximum temperature specified in step (3). After steps (1)-(4) were complete, the reactor was cooled under N₂ flow (200 mL/min) to 150 °C to purge the outlet gases formed in steps

(3) and (4). Finally, the experimental procedure was repeated from step (1). Four repeated sequences of the steps was performed, and the values shown represent their averages while considering standard deviation. Analysis of the outlet gases were performed using an NDIR for Na/Al₂O₃ alone. For the CCR to methanol experiments, the outlet gases were collected in a gas bag for 10 min upon initiating H₂ flow (step (3)) and analyzed using gas chromatography equipped with a thermal conductivity detector (Agilent 490, Agilent Technologies) and a flame ionization detector (Agilent 7890B, Agilent Technologies).

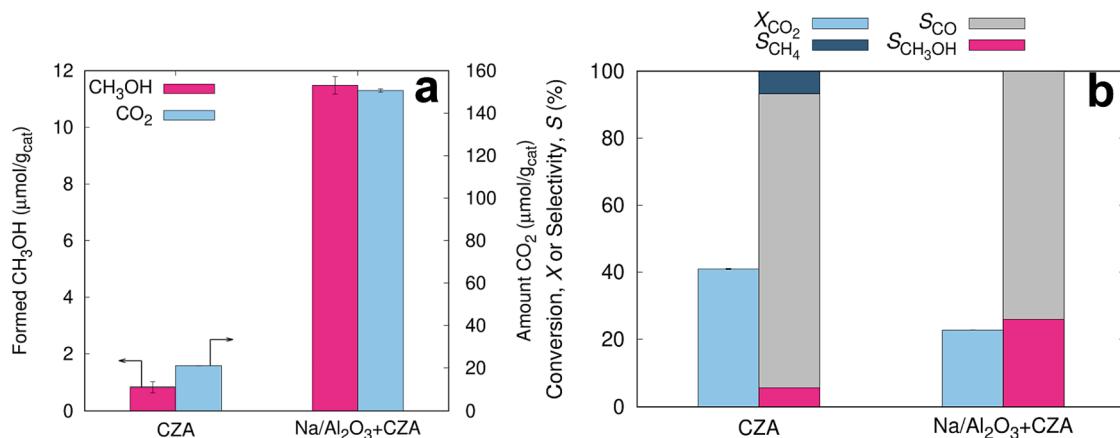
Calculation of the molar quantity of CO₂ desorbed per gram of Na/Al₂O₃ (n_{CO_2}) was calculated by integrating the CO₂ concentration profile (F_{CO_2}) during a period t_0 to t_1 and dividing by the mass of Na/Al₂O₃ (W), shown in Equation (5).

$$n_{\text{CO}_2} = \frac{1}{W} \int_{t_0}^{t_1} F_{\text{CO}_2}(t) dt \quad (5)$$

The CO₂ conversion (X_{CO_2}) and the selectivity of each respective outlet product (S_x) were calculated using Equations (6) and (7).

$$X_{\text{CO}_2} = \frac{C_{\text{MeOH}} + C_{\text{CO}} + C_{\text{CH}_4}}{C_{\text{MeOH}} + C_{\text{CO}} + C_{\text{CH}_4} + C_{\text{CO}_2}} \times 100\% \quad (6)$$

$$S_x = \frac{C_x}{C_{\text{MeOH}} + C_{\text{CO}} + C_{\text{CH}_4}} \times 100\% \quad (7)$$


Where C is the concentration of component identified in the outlet gas sample bag.

3. Results and discussion

3.1. CO₂ capture and release on Na/Al₂O₃

Since the extent of methanol synthesis is limited by the extent of CO₂ desorption from Na/Al₂O₃, studying its nature was of high importance. Fig. 3 shows the concentration profile plotted during steps (1) to (4) using Na/Al₂O₃ as a CO₂ capture component.

The delay in the increase of CO₂ concentration up to its feed concentration (5 vol%) indicated successful capture of CO₂ on the Na/Al₂O₃ surface following Equation (1). Upon purging with N₂ (step (2)), the CO₂ concentration rapidly decreased, leaving adsorbed CO₂ on the catalyst surface. Upon heating the reactor at 20 °C/min (step (3)) an increase in CO₂ concentration was observed between 7 and 14 min. The maximum release of CO₂ was observed at approximately 10 min with a CO₂ flow rate of 0.67 mL/min at approximately 200 °C, in-line with the temperature range used for current industrial CO₂ hydrogenation to methanol processes. In addition, a total of 0.1 mmol of CO₂/g-Na/Al₂O₃ was desorbed in the 7 to 14 min period following Equation (5). This quantity

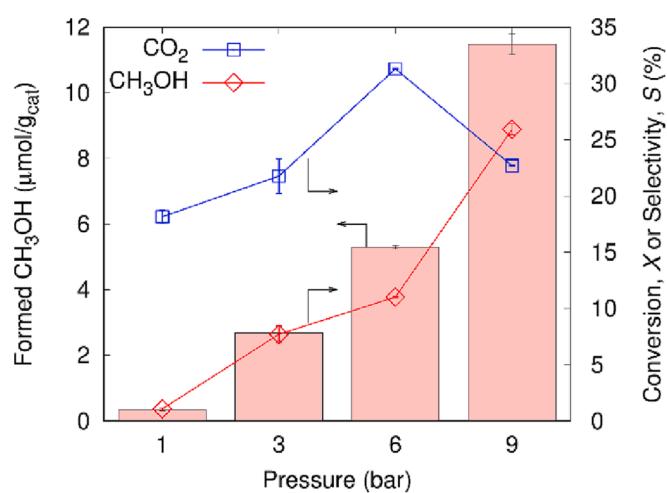
Fig. 4. Comparison in CCR-to-methanol performance between CZA alone and Na/Al₂O₃ stacked with CZA in terms of (a) molar quantity of methanol and CO₂ in the gas bag sample per gram of CZA and Na/Al₂O₃, respectively and (b) CO₂ conversion and methanol, CO and CH₄ selectivity (reaction conditions: p = 9 bar, H₂ flow rate = 100 mL/min with heating rate of 20 °C/min to 230 °C).

of CO₂ desorption was in line with that of the captured CO₂ obtained from our previous study [18]. Assuming that the surface consists of only γ -Al₂O₃ and CO₂ sorption forms monolayer adsorption [29], this amount of captured CO₂ corresponds to a CO₂ surface coverage of 34.1 %, indicating a relatively good use of the catalyst surface. Using the results obtained in Fig. 3 as a basis, a temperature ramp rate of 20 °C/min and a temperature range of 150–230 °C was chosen for CCR testing with the addition of CZA. To suppress RWGS as much as possible, the reactor was not heated beyond 230 °C.

3.2. CCR to methanol

Investigation and optimization of CCR to methanol using Na/Al₂O₃ and CZA was initiated using the knowledge gained from the previous section. Fig. 4 shows the difference in CCR performance between CZA alone (configuration ③ in Fig. 2) and Na/Al₂O₃ stacked with CZA (configuration ② in Fig. 2) on (a) the molar quantity of methanol and CO₂ in the gas sampling bag per gram of CZA and Na/Al₂O₃, respectively, and (b) catalytic performance upon reaction at 9 bar.

A successful CCR to methanol process was achieved and performance improved significantly with the addition of Na/Al₂O₃, displaying a quantity of methanol approximately 14 times higher compared to CZA alone. Furthermore, the quantity of CO₂ present in the gas bag increased from 21 μmol to 150 μmol upon addition of Na/Al₂O₃, demonstrating higher CO₂ capture capacity and thus a higher quantity available for methanol synthesis. Similar trends were observed in the catalytic performance data shown in Fig. 4b, where methanol selectivity increased from 5.7 % for CZA alone to 26 % for Na/Al₂O₃ and CZA. CO dominated the outlet stream in the case of CZA alone with a selectivity of 87.5 %, likely due to the decomposition of ZnCO₃ to CO. Generally, the decomposition of carbonates are favored at temperatures above 500 °C [30]. However, under a H₂-rich environment this decomposition of ZnCO₃ can occur at lower temperatures [30]. By adding Na/Al₂O₃, the CO₂ adsorption capacity was greatly increased, allowing higher quantities of CO₂ to enter the CZA phase for reaction. The CO₂ conversion was higher than the values obtained from previous thermodynamic studies [7,8,31] since the reaction was performed under non-stoichiometric ratio of H₂/CO₂ with a significant excess of H₂. The H₂/CO₂ ratio in the gas sampling bag was above 180 in all experiments, resulting in an environment favourable for CO₂ hydrogenation.


Fig. 5 shows the effect of reactor pressure on CO₂ conversion, methanol selectivity and quantity formed during CCR for the stacked configuration of Na/Al₂O₃ and CZA (configuration ② in Fig. 2). Tests were performed at 1, 3, 6 and 9 bar.

Methanol selectivity increased accordingly with increasing pressure;

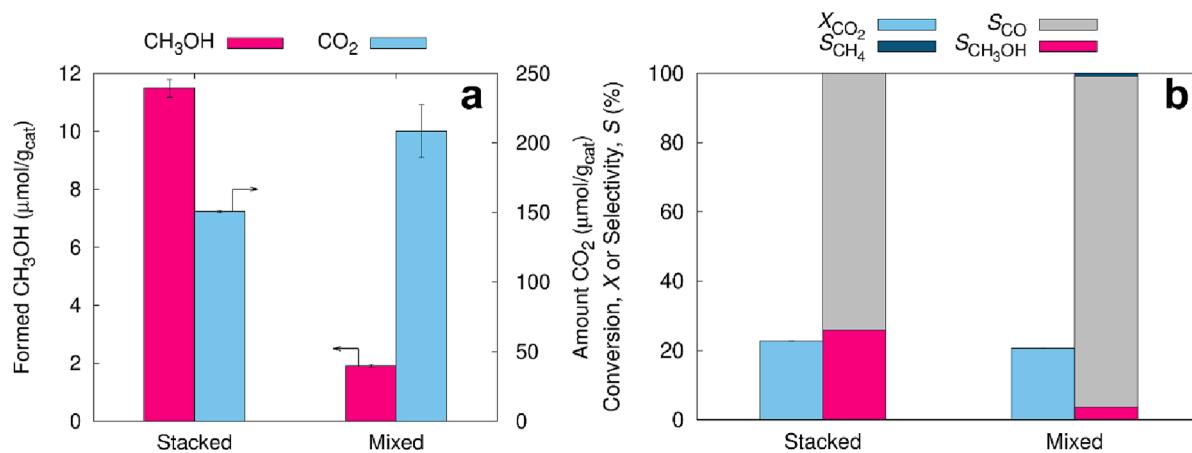

from 1 % at 1 bar to 26 % at 9 bar. The low reactor pressure resulted in a thermodynamically and kinetically challenging environment for methanol synthesis to take place despite successful capture of CO₂ [7,8,31]. The setup used during the study shown in Fig. 2 limited the maximum reactor pressure to 10 bar. However, learning from the trends seen in Fig. 5 breakthrough improvements in methanol selectivity and CO₂ conversion can be expected if the experiment were carried out at pressures close to the operating conditions of the current industrial CO₂ hydrogenation to methanol process (p = 60–100 bar) [7]. Using the results obtained in Fig. 5, all remaining experiments regarding CCR to methanol were performed at a reactor pressure of 9 bar.

Fig. 6 compares the CCR performance to methanol between a stacked configuration and mixed configuration of Na/Al₂O₃ and CZA (configurations ② and ④ in Fig. 2) at a reactor pressure of 9 bar.

Upon mixing the two catalysts the performance worsened significantly compared to the stacked configuration, with methanol selectivity being over 22 % lower despite a comparable CO₂ conversion at around 20 %. Similar results were obtained in literature when considering CO₂ methanation, where the mixed configuration of capture component and methanation catalyst resulted in higher CO selectivity [32]. The reason for the decrease in performance likely stems from the oxidizing nature of CO₂ where the Cu component in CZA becomes mildly oxidized upon

Fig. 5. Effect of reactor pressure on CO₂ conversion, methanol selectivity and quantity formed during CCR for the stacked configuration of Na/Al₂O₃ and CZA (reaction conditions: p = 1, 3, 6, 9 bar, H₂ flow rate = 100 mL/min with heating rate of 20 °C/min to 230 °C).

Fig. 6. Effect of a stacked and mixed configuration of Na/Al₂O₃ and CZA on CCR performance to methanol in terms of (a) molar quantity of methanol and CO₂ in the gas bag sample per gram of CZA and Na/Al₂O₃ respectively and (b) CO₂ conversion and methanol, CO and CH₄ selectivity (reaction conditions: p = 9 bar, H₂ flow rate = 100 mL/min with heating rate of 20 °C/min to 230 °C).

exposure, requiring reduction for activity towards hydrogenation to methanol [7,8]. When Na/Al₂O₃ and CZA are sequentially placed, upon switching to H₂ flow H₂ is expected to reach the CZA bed earlier than CO₂. This induces a time difference between the formation of active Cu sites for methanol synthesis and CO₂ desorption from Na/Al₂O₃. On the other hand, in a mixed configuration, this time difference cannot be attained, resulting in hindered formation of the Cu active sites by the presence of an oxidative molecule (CO₂) and thus a higher risk of CO formation. The configuration in which Na/Al₂O₃ and CZA is placed therefore had a significant effect on the catalytic performance for CCR to methanol.

4. Conclusion

Successful carbon capture and reduction to methanol utilizing Na/Al₂O₃ and CZA was achieved, kickstarting the potential for further investigation. In this study, it was found that higher pressure significantly improved methanol selectivity, reaching 26 % at 9 bar. Na/Al₂O₃ is a crucial component to add to CZA in a stacked configuration to result in a higher CO₂ capture capacity and methanol selectivity and molar quantity in the outlet stream. A higher quantity of captured CO₂ while maintaining a high H₂/CO₂ ratio and increasing reactor pressure would increase CCR performance further. Nevertheless, the use of two relatively accessible and affordable catalysts yielded methanol from a diluted stream of CO₂. Although precise mechanistic effects are yet to be investigated, the potential of a combined carbon capture and reduction process to methanol in one reactor is realized.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Appendix A. Supplementary data

Supplementary data to this article can be found online at <https://doi.org/10.1016/j.cej.2023.144227>.

References

- [1] G.A. Olah, Beyond oil and gas: the methanol economy, *Angew. Chem. – Int. Ed.* 44 (2005) 2636–2639, <https://doi.org/10.1002/anie.200462121>.
- [2] A. Kumar, D.G. Madden, M. Lusi, K.-J. Chen, E.A. Daniels, T. Curtin, J.J. Perry, M. J. Zaworotko, Direct air capture of CO₂ by physisorbent materials, *Angew. Chem. – Int. Ed.* 54 (48) (2015) 14372–14377, <https://doi.org/10.1002/anie.201506952>.
- [3] M. Peters, B. Köhler, W. Kuckshinrichs, W. Leitner, P. Markewitz, T.E. Müller, Chemical technologies for exploiting and recycling carbon dioxide into the value chain, *ChemSusChem* 4 (2011) 1216–1240, <https://doi.org/10.1002/cssc.201000447>.
- [4] K.M.K. Yu, I. Curcic, J. Gabriel, S.C.E. Tsang, Recent advances in CO₂ capture and utilization, *ChemSusChem* 1 (2008) 893–899, <https://doi.org/10.1002/cssc.200800169>.
- [5] Z. Yuan, M.R. Eden, R. Gani, Toward the development and deployment of large-scale carbon dioxide capture and conversion processes, *Ind Eng Chem Res.* 55 (2016) 3383–3419, <https://doi.org/10.1021/acs.iecr.5b03277>.
- [6] T.A. Atsba, T. Yoon, P. Seongho, C.J. Lee, A review on the catalytic conversion of CO₂ using H₂ for synthesis of CO, methanol, and hydrocarbons, *J. CO₂ Util.* 44 (2021), 101413, <https://doi.org/10.1016/j.jcou.2020.101413>.
- [7] A. Alvarez, A. Bansode, A. Urakawa, A.V. Bavykina, T.A. Wezendonk, M. Makkee, J. Gascon, F. Kapteijn, Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO₂ hydrogenation processes, *Chem. Rev.* 117 (2017) 9804–9838, <https://doi.org/10.1021/acs.chemrev.6b00816>.
- [8] X. Jiang, X. Nie, X. Guo, C. Song, J.G. Chen, Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis, *Chem Rev.* 120 (2020) 7984–8034, <https://doi.org/10.1021/acs.chemrev.9b00723>.
- [9] C. Jeong-Potter, M. Abdallah, S. Kota, R. Farrauto, Enhancing the CO₂ adsorption capacity of γ-Al₂O₃ supported alkali and alkaline-earth metals: impacts of dual function material (DFM) preparation methods, *Ind. Eng. Chem. Res.* 61 (2022) 10474–10482, <https://doi.org/10.1021/acs.iecr.2c00364>.
- [10] F. Kosaka, Y. Liu, S.Y. Chen, T. Mochizuki, H. Takagi, A. Urakawa, K. Kuramoto, Enhanced activity of integrated CO₂ capture and reduction to CH₄ under pressurized conditions toward atmospheric CO₂ utilization, *ACS Sustain. Chem. Eng.* 9 (2021) 3452–3463, <https://doi.org/10.1021/acssuschemeng.0c07162>.
- [11] L. Hu, A. Urakawa, Continuous CO₂ capture and reduction in one process: CO₂ methanation over unpromoted and promoted Ni/ZrO₂, *J. CO₂ Util.* 25 (2018) 323–329, <https://doi.org/10.1016/j.jcou.2018.03.013>.
- [12] A. Bermejo-López, B. Perea-Ayo, J.A. González-Marcos, J.R. González-Velasco, Ni loading effects on dual function materials for capture and in-situ conversion of CO₂ to CH₄ using CaO or Na₂CO₃, *J. CO₂ Util.* 34 (2019) 576–587, <https://doi.org/10.1016/j.jcou.2019.08.011>.
- [13] S. Bin Jo, J.H. Woo, J.H. Lee, T.Y. Kim, H.I. Kang, S.C. Lee, J.C. Kim, CO₂green technologies in CO₂ capture and direct utilization processes: methanation, reverse water-gas shift, and dry reforming of methane, *Sustain. Energy Fuels* 4 (2020) 5543–5549, <https://doi.org/10.1039/dose00951b>.
- [14] F. Kosaka, T. Sasayama, Y. Liu, S.Y. Chen, T. Mochizuki, K. Matsuoka, A. Urakawa, K. Kuramoto, Direct and continuous conversion of flue gas CO₂ into green fuels using dual function materials in a circulating fluidized bed system, *Chem. Eng. J.* 450 (2022), <https://doi.org/10.1016/j.cej.2022.138055>.

[15] L.F. Bobadilla, J.M. Riesco-García, G. Penelás-Pérez, A. Urakawa, Enabling continuous capture and catalytic conversion of flue gas CO₂ to syngas in one process, *J. CO₂ Util.* 14 (2016) 106–111, <https://doi.org/10.1016/j.jcou.2016.04.003>.

[16] T. Hyakutake, W. Van Beek, A. Urakawa, Unravelling the nature, evolution and spatial gradients of active species and active sites in the catalyst bed of unpromoted and K/Ba-promoted Cu/Al₂O₃ during CO₂ capture-reduction, *J. Mater. Chem. A Mater.* 4 (2016) 6878–6885, <https://doi.org/10.1039/c5ta09461e>.

[17] B. Shao, G. Hu, K.A.M. Alkebsi, G. Ye, X. Lin, W. Du, J. Hu, M. Wang, H. Liu, F. Qian, Heterojunction-redox catalysts of Fe: XCo_yMg₁₀CaO for high-temperature CO₂ capture and *in situ* conversion in the context of green manufacturing, *Energy Environ. Sci.* 14 (2021) 2291–2301, <https://doi.org/10.1039/d0ee03320k>.

[18] T. Sasayama, F. Kosaka, Y. Liu, T. Yamaguchi, S.Y. Chen, T. Mochizuki, A. Urakawa, K. Kuramoto, Integrated CO₂ capture and selective conversion to syngas using transition-metal-free Na/Al₂O₃ dual-function material, *J. CO₂ Util.* 60 (2022), 102049, <https://doi.org/10.1016/j.jcou.2022.102049>.

[19] M. Behrens, F. Stüdt, I. Kasatkina, S. Kühl, M. Hävecker, F. Abild-pedersen, S. Zander, F. Girsdies, P. Kurr, B. Kniep, M. Tovar, R.W. Fischer, J.K. Nørskov, R. Schlögl, *Ind. Catal.* 759 (2012) 893–898.

[20] A. Bansode, B. Tidona, P.R. Von Rohr, A. Urakawa, Impact of K and Ba promoters on CO₂ hydrogenation over Cu/Al₂O₃ catalysts at high pressure, *Catal. Sci. Technol.* 3 (2013) 767–778, <https://doi.org/10.1039/c2cy20604h>.

[21] K. Cheng, W. Zhou, J. Kang, S. He, S. Shi, Q. Zhang, Y. Pan, W. Wen, Y. Wang, Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability, *Chem* 3 (2017) 334–347, <https://doi.org/10.1016/j.chempr.2017.05.007>.

[22] X. Gao, B. Xu, G. Yang, X. Feng, Y. Yoneyama, U. Taka, N. Tsubaki, Designing a novel dual bed reactor to realize efficient ethanol synthesis from dimethyl ether and syngas, *Catal. Sci. Technol.* 8 (2018) 2087–2097, <https://doi.org/10.1039/c8cy00010g>.

[23] W. Liu, Y. Cai, M. Luo, Y. Yang, P. Li, Potential application of alkaline metal nitrate-promoted magnesium-based materials in the integrated CO₂ capture and methanation process, *Ind. Eng. Chem. Res.* 61 (2022) 2882–2893, <https://doi.org/10.1021/acs.iecr.1c04615>.

[24] L.A. Salazar Hoyos, M. Aneley Paviotti, B.M. Faroldi, L.M. Cornaglia, Coupling of CO₂ capture and methanation processes using catalysts based on silica recovered from rice husks, *Fuel* 324 (2022), <https://doi.org/10.1016/j.fuel.2022.124604>.

[25] K. Baamran, S. Lawson, A.A. Rownagh, F. Rezaei, Process evaluation and kinetic analysis of 3D-printed monoliths comprised of CaO and Cr/H-ZSM-5 in combined CO₂ Capture-C₂H₆ oxidative dehydrogenation to C₂H₄, *Chem. Eng. J.* 435 (2022), <https://doi.org/10.1016/j.cej.2022.134706>.

[26] R.R. Kondakindi, G. McCumber, S. Aleksić, W. Whittenberger, M.A. Abraham, Na₂CO₃-based sorbents coated on metal foil: CO₂ capture performance, *Int. J. Greenhouse Gas Control* 15 (2013) 65–69, <https://doi.org/10.1016/j.ijggc.2013.01.038>.

[27] T. Sasayama, F. Kosaka, Y. Liu, T. Yamaguchi, S.Y. Chen, T. Mochizuki, A. Urakawa, K. Kuramoto, Integrated CO₂ capture and selective conversion to syngas using transition-metal-free Na/Al₂O₃ dual-function material, *J. CO₂ Util.* 60 (2022), 102049, <https://doi.org/10.1016/j.jcou.2022.102049>.

[28] Y. Liu, T. Hayakawa, T. Tsunoda, K. Suzuki, S. Hamakawa, K. Murata, R. Shiozaki, T. Ishii, M. Kumagai, Steam reforming of methanol over Cu/CeO₂ catalysts studied in comparison with Cu/ZnO and Cu/Zn(Al)O catalysts, *Top Catal.* 22 (2003) 205–213, <https://doi.org/10.1023/A:1023519802373>.

[29] L. Wu, X. Guo, A. Navrotsky, Energetics of ethanol and carbon dioxide adsorption on anatase, rutile, and γ -alumina nanoparticles, *Am. Mineral.* 104 (2019) 686–693, <https://doi.org/10.2138/am-2019-6797>.

[30] M. Smyrnioti, C. Tampaxis, T. Steriotis, T. Ioannides, Study of CO₂ adsorption on a commercial CuO/ZnO/Al₂O₃ catalyst, *Catal. Today* 357 (2020) 495–502, <https://doi.org/10.1016/j.cattod.2019.07.024>.

[31] W.-J. Shen, K.-W. Jun, H.-S. Choi, K.-W. Lee, Thermodynamic Investigation of Methanol and Dimethyl Ether Synthesis from CO₂ Hydrogenation, 2000.

[32] L.A. Salazar Hoyos, M. Aneley Paviotti, B.M. Faroldi, L.M. Cornaglia, Coupling of CO₂ capture and methanation processes using catalysts based on silica recovered from rice husks, *Fuel* 324 (2022), 124604, <https://doi.org/10.1016/j.fuel.2022.124604>.