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Regular article
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A B S T R A C T

Flow-following sensor technology offers a method to collect information on flow patterns and local velocities in 
pilot- and industrial scale reactors, which are practically inaccessible to many measurement techniques. Such 
data is highly valuable for scale-up of bioprocesses, as well as validation of bioreactor CFD simulations. Flow- 
following sensors were applied in a pilot-scale (2 m3 filled volume) bubble column fermentor, showing that 
axially resolved data can be acquired under heterogeneous bubbly flow conditions with high gas holdup. Next 
the use of the collected data for validation of CFD simulations of the pilot-scale reactor is explored, discrimi
nating between models utilizing different interphase interaction models. The CFD simulation was found capable 
of capturing the velocity profile and circulation behavior, but full validation was found to be challenging. When 
simulating virtual sensors via Lagrangian particle tracking, differences are observed in terms of particle distri
bution and sensitivity to particle density between experimental and simulated data, indicating further devel
opment of representative CFD simulations is required.

1. Introduction

The need for non-fossil feedstocks leads to an increasing interest in 
bioprocesses and biorefineries for bulk applications. While bioprocesses 
successfully compete with some fossil counterparts, such as the pro
duction of selected organic acids and alcohols (especially ethanol), 
intensification of bioprocesses is instrumental to meet the market de
mands for many others. Intensification opportunities certainly exist, 
both regarding micro-organisms (genetic engineering) and process 
innovation, but the limitations imposed by working with living catalysts 
does result in industrial bioprocessing largely relying on the workhorses 
used since its inception: large-volume stirred tanks, airlift-loop reactors 
and bubble columns [1]. Intensification at the reactor level mainly aims 
at continuous improvements of these reactor types, relieving transfer 
limitations and improving spatial homogeneity to avoid undesired re
sponses of the micro-organisms, which may lead to scale-up production 
losses in the range of tens of percents [2].

Identification and alleviation of the above limitations requires 

hydrodynamic insights beyond standard engineering correlations, and 
hence bioprocess engineers increasingly use Computational Fluid Dy
namics (CFD) to gain more insight in large-scale multiphase hydrody
namic behavior. However, these models rely heavily on closure relations 
for turbulence and interphase exchange of mass and momentum. In
dustrial fermentations - turbulent, strongly aerated, surfactant-laden, 
and not seldom of non-Newtonian rheology [3,4] - are highly chal
lenging to simulate. This is due to the inherent complexity of the in
teractions and lack of suitable closure relations for these specific 
conditions, which leads to the available relations for air-water systems 
being used beyond their range of (guaranteed) validity. A lack of 
detailed hydrodynamic data for industrial scale bioreactors hampers 
validation of current and development of improved CFD approaches. 
Current validation relies on global quantities (gas holdup, mixing time) 
and point measurements of e.g. dissolved oxygen, or on comparison with 
lab/pilot scale data from literature for, as far as available, geometrically 
similar equipment. For some applications, this approach suffices. Using 
air-water models, good agreement in mixing time and gas holdup were 
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observed for a stirred 22 m3 yeast fermentation [5,6]. Similar ap
proaches were used to validate CFD for pilot-scale reactors [7,8]. Other 
studies, focused on inclusion of cellular dynamics, omitted complexities 
such as rheology and accepted course hydrodynamic agreement [2]. 
Such simplifications are admissible when commenting on grosso modo 
reactor performance with behavior sufficiently close to air-water, but 
not when investigating finer details for process intensification. Here, 
consideration of flow-influencing geometric details at full scale [7] and 
compositional and rheological complexities of fermentation broths [9] is 
essential.

Neutrally buoyant sensors that follow the internal flow, and register 
their behavior and surroundings (e.g. acceleration, pressure, tempera
ture, pH, dissolved oxygen concentration (DO)) over time, can provide 
insights in case-specific local hydrodynamics/conditions [10,11]. Such 
data can be used to directly troubleshoot fermentations (e.g., identifi
cation of stagnant zones or poor mixing, quantification of pH and dis
solved oxygen gradients), or for CFD validation at the relevant scale, 
providing more reliable simulations to scrutinize potential process im
provements in-silico. Consequently, several groups have devoted 
attention to developing and studying flow-following sensors; for a his
torical overview we refer to Bisgaard et al. [10]. Despite their attrac
tiveness, there are several challenges regarding the application of flow 
following sensors: 

• Their typically centimeter-range size means they have particle 
response times of O(s), leading to high Stokes numbers in relation to 
turbulent flow fluctuations [10,12]. As such, sensors may follow the 
average flow in Large reactors (>10 s circulation time) well, but do 
not capture turbulent variations or fast accelerations accurately. 
When use for CFD validation, this means direct comparison between 
sensor data and velocity fields or tracer mixing times may be flawed.

• In aerated systems, the sensor needs to be neutrally buoyant with 
respect to the average mixture (gas + liquid) density. However, this 
density may change locally, due to axial and radial gradients in the 
average gas holdup, as well gas plume oscillations. This is especially 
true in heterogeneous bubbly flows [13–15].

• Current technology does not allow to quantify the full position of the 
sensor in the reactor; typically, the registered pressure is used as a 
proxy for axial position. This does require assumptions on the (local) 
gas holdup to correlate height with pressure, which may affect the 
accuracy of the measurement [10].

Recent work by Hoffman et al. in a 15 kL stirred reactor highlights 
the potential of flow-following sensors, observing compartmentalization 
inside the reactor, and circulation times in the same range of the global 
mixing time; in terms of macroscale circulation, the sensors performed 
appropriately [16].

Comparison between CFD and sensor particle data yielded promising 
results in stirred single-phase flow [11]. Good agreement was observed 
with fluid velocities from CFD simulations in quiescent regions, while 
large offsets are noted near the impeller due to the response time of the 
sensors [10]. Reinecke et al. similarly note good performance in viscous 
glycerol, but observe an offset in circulation behavior compared to a 
liquid tracer in water. Still, good overall circulation behavior was 
observed [17]. One solution to account for the response time in CFD 
validation, is to include particles with equal characteristics to the sen
sors in the CFD simulations, and validate the resulting Lagrangian CFD 
data against experiments. This approach requires adequate interphase 
interaction models to capture response of sensors to fluid accelerations. 
As an example, Hoffman et al. studied the motion of sub-millimeter 
particles in stirred vessels both experimentally and numerically [12]. 
The size of the flow-following sensor particles challenges the typical 
assumption of point particles in Lagrangian CFD, however, while the 
spatial resolution of typical industrial scale simulations [18] is insuffi
cient to treat them as resolved objects. As such, further insight in the 
utilization of Lagrangian particles to represent flow-following sensors in 

CFD simulations is required.
A limited number of studies has applied flow following sensors in 

aerated systems, but the acquired data has not been used for comparison 
with CFD simulations. The studies did observe good macro-scale circu
lation behavior, despite the abovementioned challenges [17,19], even if 
the sensor density was not exactly matched to the mean mixture density; 
Reinecke et al. did observe an offset in positional distributions for a 2 % 
mismatch in density, but required a 6 % density difference for full 
flotation of the sensor [20], which implies using sensors with different 
densities can be used to comment on the global gas holdup, but also that 
sensors with some density offset can be used for CFD validation, pro
vided Lagrangian CFD with equal particle characteristics is employed. 
However, the flotation experiments of Reinecke were conducted in a 
stirred, single-phase liquid; industrial-scale pneumatic bioreactors often 
operate with high superficial gas velocity (> 0.05 m/s), leading to highly 
dynamic heterogeneous flow, which is more challenging to model, and 
which may impact the behavior of flow-following sensors due to gra
dients in gas holdup (and therefore apparent fluid density) [14,15].

In this study, we analyze the application of “FermSense 3D” sensor 
technology in a vigorously aerated system. Our main hypothesis is that, 
despite experimental challenges, flow following sensors can provide 
data on local hydrodynamics that can be used for the verification of CFD 
models. To evaluate this, we conducted an experimental study in a pilot- 
scale (2 m3 liquid volume) bubble column, operated by the DSM- 
Firmenich. We exhibit what data can be acquired with flow-following 
sensors and compare experimental data with Euler-Lagrange (‘sensor 
point of view’) CFD simulations, and discuss applicability of the 
approach as well as limitations and challenges regarding the application 
of mobile sensors and associated CFD simulations in high gas velocity 
bioprocesses. The focus therein is to assess whether and how we can use 
sensor data to discriminate between the performance of several CFD 
models with different assumptions related to interphase exchange 
models in simulating fluid behavior in the pilot-scale bubble column; 
further adjustment of the assumptions to improve the match between 
simulation and experiment is out of the current scope.

2. Materials and methods

2.1. Freesense “FermSense 3D” technology (incl. data processing)

The general principle of Lagrangian measurements, using mobile 
‘sensors’, has been around for decades. A range of macroscopic tracer 
particles [12], radio- and magnetic pills ([21–23]) and radioactive 
particles (e.g. [24,25]) have been used to study the fluid flows and cir
culation patterns. These methods rely on external detectors, however, 
which is typically incompatible with industrial equipment. This has led 
to the development of wireless sensor particles with a built-in posi
tioning system which can be applied in large-scale reactors; for a 
comprehensive review of wireless sensor technology, we refer to [10]. 

Fig. 1. FermSense 3D sensor.
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FermSense 3D (Fig. 1) is a flow-following sensor device particularly 
designed for spatial measurements inside pilot to industrial scale bio
reactors [11]. The device is equipped with pH or dissolved oxygen, 
pressure, temperature and accelerometer sensors with sampling rate up 
to 5 Hz. The sensors and the electronics are encapsulated in 32–55 mm 
spherical shell made of polyether ether ketone (PEEK). The device is 
designed to resist high-temperature sterilization, chemical cleaning 
procedures, pressurized conditions and collision impacts from the 
impeller and other solid internals in the bioreactor. Since the sensor is 
substantially larger than the mean bubble size, the density of the sensor 
is adjusted to match the average apparent density of the gas-liquid 
mixture to achieve neutral buoyancy [10,26], by addition of internal 
weights. The axial position y and velocity vy of the sensor device are 
determined using the pressure measurements [11].

2.2. Pilot-scale operating conditions

Experiments were conducted in a pilot scale bubble column with a 
working volume of 3.3 m3.The dimensions are listed in Fig. 2. Air is 
sparged via three pipe spargers in a triangular orientation, at an off- 
bottom clearance of approx. 0.23 m; the airflow is controlled using a 
Coriolis mass flow meter calibrated to normal condition at 1 atm and 
25 deg. C. We selected a superficial gas velocity Table 1 reports the 
operating conditions that were used for the trial reported in this work. 
The overall gas holdup was measured using an ABB/K-Tek LLT100 Laser 
level transmitter with a range of 2–330 feet providing continuous level 
measurement. It’s mounted on a 4’’ diameter sight glass. The mixing 
time was quantified through the addition of a small amount of MgSO4 
solution at vessel top, and offline quantification of the magnesium 
concentration using ICP, in samples acquired every 5 seconds at an axial 
position hsamp = 0.23m. However, this was done under operating con
ditions somewhat deviating from this study; hence the mixing study only 
serves for qualitative comparison.

2.3. FermSense application

Five FermSense devices with a diameter of 52 mm were inserted in 
the reactor, measuring pressure, pH and temperature with a frequency 
of 5 Hz. The average gas-liquid mixture density was conducted based on 
a-priori estimation of the column gas holdup using two literature cor
relations. The correlation of Heijnen and Van ‘t Riet [27], αg = 0.6 v0.7

s , 
was based on global gas holdup measurements in experiments prior to 

1984, but shows agreement with some contemporary studies [28]. Here, 
vs is the pressure-corrected superficial gas velocity. The correlation of 
Maximiano Raimundo et al., αg = 0.49 v0.41

s ⋅D− 0.047
R , was based on more 

recent experiments including local gas-holdup profiles [14,15]. While 
not stated in the paper, communication with the author indicates that vs 
is based on Qg at STP, which omits the effect of gauge pressure. To avoid 
over-estimation of the holdup, the pressure-corrected vs is currently used 
instead. The estimated gas holdup using both models is added in Table 1. 
There is a substantial disagreement between the two correlations, which 
may be due to differences in sparger geometry and water quality, 
something that deserves further scrutiny but is outside of the current 
scope. To cover the density range indicated by the a-priori estimations, it 
was decided to apply devices with three different densities: 0.77 kg/L, 
0.87 kg/L and 0.90 kg/L, matching 23, 13 and 10 % global gas holdup, 
respectively.

With the current state-of-the-art, the 3D trajectories of the devices 
cannot be directly reconstructed from the accelerometer data, and 
spatial information is limited to the axial position and velocity, based on 
pressure sensor data. Use of the accelerometer data for further insight 
remains a topic of future investigation. The axial position is based on the 
hydrodynamic information available from the pressure sensor and 
derived using the pascal’s law Pmeas = Pref + ρf gΔh, with Δh the distance 
from the reference location, and ρf as fluid apparent density. We assume 
a constant ρf in this case, omitting the notion that ρf may be a function of 
axial position due to expansion of the gas [10,29]. We expect this effect 
to be minor, and also observe no strong dependency of gas holdup on 
axial position in our CFD simulations (including variable bubble size and 
gas density). Our CFD simulations furthermore showed no radial vari
ation in total pressure resulting the radial gradient in (average) holdup, 
which is in line with the assumptions made when using differential 
pressure measurements for overall holdup determination. Besides the 
above assumption, the accuracy of height measurements may be 
affected by local pressure fluctuations (σP ≈ 30 Pa at the set conditions 
[13], translating to 3 cm), sensor resolution (0.39 Pa) and response time 
(~10 ms, translating to 1 cm displacement at 1 m/s velocity).

The axial velocity is calculated from the time derivative of position 
[11,30], assuming a constant velocity in the time between two mea
surements (0.2 s), justified by a particle response time τp > 1 second 
[10]. The circulation time distribution was determined by registering 
time intervals between consecutive passages through detection planes at 
fixed heights [11]; four planes were set up, starting at 1 m from the 
bottom, with a mutual clearance of 1 m.

Fig. 2. Illustration of the bubble column (not to scale). Right: top-down view of the sparger geometry. In reality, the sparger consists of three pipes with a single 
bend; these have been connected in the current model to avoid the meshing complexities of blunt ends.
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The following metrics can be used to compare the data of experi
mental devices with that of virtual particles in CFD simulations [11]: 

• Probability distribution of particle presence as a function of reactor 
height.

• Probability distribution of particle axial velocity as a function of 
reactor height.

• Circulation time distribution of particles in the reactor.

2.4. CFD simulations

2.4.1. CFD modelling of heterogeneous bubble columns
CFD simulations of heterogeneous bubbly flow are challenging, due 

to the presence of bubble coalescence and breakup and swarm effects in 
the system, and the wide range of interphase closure models available. 
While it is not our aim to provide a comprehensive review, we discuss 
some key aspects to support our modelling choices and facilitate later 
discussion.

2.4.1.1. Interphase interaction models. Most studies engaging in bubble 
column focus on the homogeneous flow regime, where well validated 
models are available [31,32]. The broad size distribution and prominent 
bubble size dynamics, and non-linear relation between bubble size and 
interphase forces, make modelling of heterogeneous flow highly chal
lenging and, especially in case bubble size dynamics are included, 
computationally demanding [33]. Still, promising results are reported in 
literature for air-water systems [34–38], which is the current scope. The 
selection of interphase interaction models is key in setting up bubble 
column simulations. Comprehensive reviews are available [39–42], here 
we summarize key takeaways that informed our model selection. The 
drag force is the most important interphase force, but while a plethora of 
models is available, most models produce similar and accurate bubble 
drag coefficients, provided they distinguish between shape regimes [43, 
44], and as such the specific drag model will have limited impact. The 
effective drag in highly aerated flows is strongly reduced due to swarm 
effects, originating from bubble wakes [45]. The exact impact of this is 
ill-understood, and seems to depend on size distribution [46]. McClure 
et al. also noted a dependency on sparger type, with an earlier onset and 
more pronounced effect when using spargers that introduce heteroge
neous flow even at low superficial gas velocity [47]. The lift force is a 
pseudoforce describing lateral motion of bubbles due to velocity gradi
ents; this force is relevant in heterogeneous flow columns as its magni
tude depends on bubble diameter, and the direction of motion switches 
direction from outward to inward around a bubble diameter of 5–6 mm 
[48]. While this can lead to size segregation that in turn can affect the 
holdup profile, the notion that the direction change lies close to the 
typical mean bubble diameter in heterogeneous bubble columns leads to 
limited impact [49]. The virtual mass force is only active in regions of 
high acceleration and similarly has limited impact [39,50]. Opinions on 
inclusion of turbulent dispersion, a pseudo-force that accounts for local 
bubble redistribution due to turbulence, are mixed. Some authors 
observe better agreement with the parabolic flow profile in heteroge
neous bubble columns [39] while others report ‘flattening’ of flow 
profiles [51]. McClure et al. did include turbulent dispersion in their 
models, but did not explicitly assess its impact [49].

2.4.1.2. Turbulence modelling. There is relatively little explicit attention 

to turbulence modelling for bubble columns. Most studies use a variant 
of the k-epsilon approach, with some favorably commenting on the RNG 
model [52,53]. Several studies note the importance of including bubble 
induced turbulence (BIT) [34,53,54]. In our own preliminary simula
tions (using [36] for validation) we observed highly similar behavior 
between RNG and realizable k-epsilon for liquid velocity and holdup, 
with the realizable model yielding somewhat better agreement on tur
bulent kinetic energy. The inclusion of BIT had limited impact on ve
locity profiles, but proved essential for the prediction of the global 
energy dissipation; an essential aspect in case a bubble population bal
ance model is included to predict the size distribution.

2.4.1.3. Bubble size modelling. Although bubble sizes are broadly 
distributed in heterogeneous bubble columns, the high computational 
costs of population balance models means often simplified models are 
used [34], [49,53,55]. Two-class models such as the Energy Minimiza
tion Multiphase Multi-Scale model (EMMS) have also shown promising 
results [56], but this approach is not readily available in the utilized CFD 
software. Population balance approaches have been used to predict 
bubble size distributions [46,57–59], albeit at substantial computational 
cost [33]. A dynamic single-bubble size model offers an attractive 
alternative in terms of computation time, although such models are not 
natively available in the used software [33].

Experimentally, the average bubble size in heterogeneous flow 
bubble columns was determined to be around 6–8 mm [3,14]; we do not 
have data on the bubble size in the column currently under 
investigation.

2.4.2. Selection of approaches
Based on this review of literature, we concluded the following for our 

approach: 

− The specific drag model and k-epsilon variant is of limited impact.
− Lift and virtual mass are excluded based on their limited impact.
− Drag modification (swarm effects) are essential and pronounced due 

to the heterogeneous sparger installed in the used column.
− Lacking an a-priori bubble size measurement, a bubble size model is 

preferred.

We conducted a number of preliminary simulations comparing re
sults with the vs = 0.12m/s data presented by Sanyal et al. [36], being 
similar to the conditions studied in this work. Based on this, the real
izable turbulence model with the Troshko-Hassan BIT model was 
selected as the baseline approach. The mixture turbulence formulation 
was selected, as the dispersed model exhibited stability issues when 
using higher order discretization schemes, which was observed to be 
necessary to avoid overtly flat profiles [53]. We applied QUICK dis
cretization for all equations. Turbulent dispersion was equally excluded; 
during the preliminary simulations we observed either unrealistically 
flat holdup profiles, or struggled with numerical stability.

In our first round of simulations, four cases were defined. Herein, we 
varied (1) drag reduction model/magnitude and (2) bubble size model/ 
mean diameter. 

Case A. The universal drag model is used, based on strong prior per
formance in stirred tanks [5]. Due to the built-in Richardson-Zaki drag 
reduction model underpredicting drag modification [49], a high gas 
holdup is expected. A constant bubble diameter of 7.5 mm was used 

Table 1 
overview of conditions applied and expected in this study. The estimated gas holdup based on the correlations of Heijnen and van ‘t Riet [27], and Maximiano 
Raimundo [14] have been added for the a-priori estimation of the apparent density, given in the last column.

Liquid mass (kg) Qg (l/min) Pg (kPa) vsg at mean P (m/s) αg(%) 
Van’t Riet

αg (%) 
M. Raimundo

ρeff (kg/L) 
Van’t Riet

ρeff (kg/L) 
M. Raimundo

2100 5000 27.6 0.121 13.7 20.9 0.863 0.790
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[14].

Case B. The Tomiyama drag model was used, with a deliberately high 
bubble diameter (13 mm) and a strong, constant swarm modification 
factor (CD = 0.12 CD,0). This is expected to lead to a low global gas 
holdup. In this case we additionally made changes to the turbulence 
setup; the dispersed formulation was used, following Fletcher et al. [34]; 
to facilitate numerical stability, discretization of the turbulence equa
tions was changed to 1st order, and BIT was omitted. Unpublished 
testing results show these changes have a large impact on overall energy 
dissipation, but not on velocity and holdup in case of a fixed bubble size.

Case C. The Tomiyama drag model was used, with the McClure drag 
modification, for coarse sparger columns [47]. A population balance 
model was used to predict the bubble size distribution. This setup is 
expected to lead to moderate gas holdups.

Case D. As above, but a constant swarm modification of moderate 
strength (CD = 0.175 CD,0) was used, following observed issues with 
Case C.

The specific setups deliberately selected to yield a low, moderate and 
high gas holdup, to study the possibility to discriminate between models 
based on the experimental device data, rather than as a structured study 
towards the impact of particular sub-models. It was our aim to subse
quently explore further modelling options (e.g. further variations in 
bubble diameter, drag modification and turbulence setup) but this was 
not pursued following consistent offsets between computational particle 
motion and experimental data. A complete overview of model settings 
for the four cases is provided in Table 2.The CFD simulations were 
conducted in ANSYS FLUENT 2020R1. A mesh of 215k polyhedral ele
ments, with local refinement near the sparger, was used. In all cases, the 
CFD simulations were time resolved with Δt = 0.005.

2.4.3. Bubble size modeling
As indicated above, a fixed bubble size is used in Cases A and B. Cases 

C and D use a discrete population balance approach to predict rather 
than prescribe the bubble size, with 13 bins and a size range from 0.5 to 
12.8 mm. The homogeneous population balance model is employed, 
meaning that a single flow field is used for the dispersed phase, and 
interphase forces are computed based on the local Sauter mean bubble 
diameter. The Luo & Svendsen coalescence and breakup model were 
adopted.

2.4.4. Interphase exchange models: gas-liquid flow

2.4.4.1. Drag force. A drag model is required to compute the drag co
efficient of individual bubbles of different sizes and shapes. In high- 
velocity heterogeneous gas flow, the drag force acting on individual 

bubbles is substantially affected by swarm effects, particularly drag 
reduction due to wake effects. Case A uses an interphase closure 
approach based on a fixed bubble size and the Universal drag model (Eq. 
1), based on the Ishii-Zuber drag model [60], following successful 
application in prior aerated stirred-tank studies [2,5,6]. 

CD,vis =
24
Re
(
1+ 0.75Re0.75), CDdis

=
2
3

(
dp

λRT

)

⎛

⎜
⎜
⎝

1 + 17.67 f
6
7

18.67f

⎞

⎟
⎟
⎠

2

, CD,cap =
8
3
(
1 − αg

)2 (1) 

Where f =
(
1 − αg

)1.5, λRT =
̅̅̅̅̅̅

σ
gΔρ

√
and Re 

(
ρldbub

μl

)

the bubble Rey

nolds number. The drag coefficient CD,bub = max(CD,vis, min(CD,dis,

CD,cap)). In the universal drag model swarm effects incorporated through 
the 

(
1 − αg

)m term, with m = 1.5 or 2 depending on the regime.
In Cases B-D, the Tomiyama model [43] for contaminated water is 

used to compute the drag coefficient, Eq. 2: 

CD,bub = max
(

min
(

24
Re
(
1+0.15Re0.687),

72
Re

)

,
8
3

Eo
Eo + 4

)

(2) 

Here, Eo is the Eotvos number 

(

Δρgd2
b

σ

)

. The Tomiyama model does 

not contain a swarm correction, meaning that for Cases B-D an addi
tional swarm correction model is required, with CD,swarm = f

(
αg
)
Cd,bub. 

Swarm drag models have been devised by Simonnet et al. [45], which 
includes the homogeneous-heterogeneous transition, and McClure et al. 
[47], who noted that f

(
αg
)

depends on the sparger type, and that for 
typical industrial spargers, flow is heterogeneous even at low vs. Under 
such conditions, f was found to be approximately constant in their work 
(albeit with much scatter). In the current study, the 3-tube sparger with 
a coarse hole configuration is expected to provide heterogeneous flow 
under all conditions. In Cases B, a constant value of f

(
αg
)
= 0.12 was 

applied as a scenario with strong swarm effects. In Case C, the 
volume-fraction dependent swarm modification model of McClure et al., 
Eq. 3, with n = 50 and b = 0.08 was used [47]. 

f
(
αg
)
= min

( (
1 − αg

)n
+ b,1

)
,CD = f

(
αg
)
CD,bub (3) 

As we observed unrealistic plume behavior using this model, a 
constant value f

(
αg
)
= 0.175 was again adopted for Case D.

2.4.4.2. Bubble-induced turbulence (BIT). Bubble induced turbulence 
(BIT) was included in all simulations except Case B using the Troshko- 
Hassan formulation [61], Eq. (4); 

Πk,m = CkeKgl
⃒
⃒Ug − Ul

⃒
⃒2, Πϵ,m = Ctd

1
τBIT

Πk (4) 

Where τBIT =
2CVMdp

3CD|Ug − Ul|
is the bubble induced turbulence timescale, 

and Kgl =
ρgdp

6τp

CDRe
24 Ai the interphase exchange coefficient, with Ai the 

interfacial area concentration and τp =
ρgd2

p
18μl 

the particle relaxation time.

2.4.5. Particle tracking
To emulate the motion of the FermSense sensors, the discrete phase 

model of FLUENT was utilized, which represents discrete entities as 
inertial point particles. Considering the size of the sensor devices, this is 
a major assumption, but computationally, resolved particle models are 
not feasible with the resources used in this study. As in the experimental 
run, particles of different densities (0.77 kg/L, 0.87 kg/L and 0.90 kg/L) 
were released in the simulation. Since tracking particles for hours in the 
CFD simulations is impractical, 250 particles of each density were 

Table 2 
CFD modeling settings used in this study. 1st o. upw. stands for 1st order upwind 
discretization.

Case A B C D

Drag model Universal 
drag

Tomiyama Tomiyama Tomiyama

Swarm 
modification

(
1 − αg

)m 0.12 (fixed) McClure 0.175 (fixed)

BIT Troshko- 
Hassan

None Troshko- 
Hassan

Troshko- 
Hassan

Bubble size 7.5 mm 
(fixed)

13 mm (fixed) Pop. Balance, 
Luo & 
Svendsen

Pop. Balance, 
Luo & 
Svendsen

Gas density Ideal gas Ideal gas Ideal gas Ideal gas
Turbulence Mixture Dispersed Mixture Mixture
Discretization QUICK QUICK 

(momentum) 
1st o. upw. 
(turbulence)

QUICK QUICK
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tracked for a few minutes to collect motion statistics, relying on ergo
dicity for comparison. These inert particles respond to motion of the 
mixture phase (gas and liquid). Turbulence was imposed via the discrete 
random walk model [62]. The acceleration of the inert particles is 
computed from the particle momentum balance, Eq. 5: 

mpdUp

dt
=

mp
(
Uf − Up

)

τp
+

mp
(
ρp − ρf

)

ρp
+ F (5) 

Where τp is the particle relaxation time, and F represents forces other 
than buoyancy and drag; the relevant forces are selected by the user, and 
are mainly dependent on the particle scale and density ratio to the 
surrounding. In the current study, the virtual mass force and pressure 
gradient force were included, Eq. (6): 

FVM = CVMmp
ρl

ρp

(

Up∇Uf −
dUp

dt

)

, FPG = mp
ρl

ρp
Uf∇Uf (6) 

These forces are relevant when the discrete and continuous phase 
density are close (the Fluent manual recommends inclusion ρl

ρp
> 0.1). 

Other forces, related to rotation of the particle, were currently omitted. 
The drag coefficient was based on the spherical drag law of Morsi and 
Alexander [63], not accounting for rotation of the particles.

2.4.6. Solution procedure
The gas-liquid hydrodynamics are solved in transient mode for 

approx. 100 seconds until the flow field has stabilized. The timestep size 
is varied during this period, starting with coarse steps to quickly 
establish the rough flow field, and then refining the step size for accu
racy. Eventually, a step size of Δt = 0.005s was used. Besides the dis
cretization schemes listed in Table 2 the PRESTO! Scheme for pressure 
discretization, and SIMPLE for P-V coupling. Once the flow field was 
established, the particles were released over the height of the column 
and mixed for at least 100 seconds to ensure they were fully distributed 
through the domain, as to avoid positional bias in the tracking results. 
Then, particles were tracked for at least 88 seconds, logging the position, 
velocity of the particle, velocity of the surrounding liquid, and pressure 
along the particle trajectory. In order to compare the gas holdup profiles 
with literature sources, flow variables have additionally been averaged 
over the time period.

2.4.7. Liquid phase mixing study
Liquid phase mixing was studied for Cases B, C and D using an 

Eulerian tracer. After establishing the flow field, a spherical region 
(radius 0.08 m) at a position just below the surface is patched with a 
tracer concentration of 1. For Cases B, C the location is [r, y, θ] =

[0.141m, 4.6m, 45o], for Case D [r, y, θ] = [0.141m, 5.1m, 45o],

following the higher holdup. The tracer diffusivity was set at D =

6⋅10− 10m2

s , other properties were equal to water. The simulation was 
continued with Δt = 0.005s until mixing was complete for Cases B and 
D, and for ca. 250 s in case of C. Mixing was studied by registering the 
tracer concentration as a function of time at 12 positions, with r = 0.1,
0.3 m, y = 0.5, 2.5, 4.5 m and θ = 0, 180o. The 95 % mixing time was 
quantified in two ways; first, by registering the last timepoint for which 
the dimensionless concentration Cs

Cs
< 0.95 or Cs

Cs
> 1.05, and second, by 

computing the coefficient of variation [64], Eq. 7: 

CoV =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
Npt

Σi

(
(Ci − Cs)

Cs

)√

(7) 

Since the CoV is based on a number of point-probes in this case, no 
volume weighing is applied (in contrast to Hartmann et al., who base the 
CoV on all control volumes, [65]). We do adhere to the threshold of 
Hartmann et al., CoV = 0.0283 for 95 % mixing.

2.5. Device velocity estimation in a radial density gradient

The mobile sensor device density is tuned to the average effective 
mixture density, ρeff . In reality, the gas holdup will not just be dynamic, 
but will also feature consistent axial variation (due to the static pressure 
gradient) and radial variation (due to plume formation) in the local 
average mixture density. This means the sensor device will not be locally 
neutrally buoyant, which may impact the apparent overall neutral 
buoyancy, and lead to differences in expected and observed settling 
behavior for a device with a given density as a function of gas holdup. A 
reduced settling velocity was observed by van Barneveld et al. [66], 
using a 3 cm radio pill with a density equal to water. They attributed the 
reduced settling velocity to adherence of bubbles to the sensor, 
increasing its buoyancy. However, the observed effect (~30 % reduction 
in vterm) appears too strong for this explanation; an over 10 % apparent 
density reduction is required to match the observed behavior at high 
holdup. Hence, we explore whether the radial variation in gas holdup in 
heterogeneous bubbly flow may impact the apparent neutral buoyancy. 
An estimation of the impact of the radial holdup gradient [14,36] on 
sensor motion was made, estimating the local terminal velocity of the 
sensor with respect to the liquid as a function of radial position, resulting 
from the mismatch in device density ρp and the local average mixture 
density ρmix(r). This was done through a terminal velocity model 
implemented in MATLAB. The model assumes that a device instantly 
adapts to the terminal velocity vterm (a major assumption, given the 
Stokes number [10,12]). vterm is governed by the balance between drag 
and buoyancy, Eq. 8. 

vterm(r) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4gdp

3CD

(ρp − ρmix(r)
ρmix(r)

)√

(8) 

For simplicity, turbulent flow around the sphere was assumed, giving 
CD = 0.44. This introduces some error when ρp is close to the mixture 
density, but is appropriate at most positions as Rep > 1,000, and avoids 
iterative solution. Here, ρmix(r) is the local average mixture density as a 
function of radial position, calculated as ρmix(r) = α(r)ρg + (1 − α(r))ρl. 
Maximiano Raimundo et al. [14] give a correlation for the radial gas 
holdup α(r), Eq. 9: 

αg(r) = αg⋅
[
− 1.638

(
r6 − 1

)
+1.228

(
r4 − 1

)
− 0.939

(
x2 − 1

) ]
(9) 

With αg the overall gas holdup of the reactor. The profile in Eq. 9 can 
be used to calculate the radial mixture density profile, and substituted 
into Eq. 9 to compute the terminal velocity as a function of radial po
sition. The particle velocity then follows from vpart = vliq − vterm, with Eq. 
10 describing radial profile in liquid velocity vliq [14]: 

vliq(r) =
v0

1.128
(
2.976exp

(
− 0.943 r2) − 1.848

)
, v0 = 1.35 vs⋅D0.4

R

(10) 

The average particle axial velocity is calculated by area-weighted 
averaging of the velocity profile, Eq. 11: 

< vpart > =

∫
vpart(r)⋅2πrdr
∫

2πrdr
(11) 

With this, we can judge if a device behaves as neutrally buoyant for a 
given mean gas holdup, in which case < vpart > = 0. When < vpart > is 
above 0, the device will show net. upward motion at a given gas holdup, 
indicating radial mixture density variations reduce settling, while a 
negative < vpart > signals enhanced settling.

3. Results and discussion

In this section, we will first analyze the experimental data acquired 
with the mobile sensor devices, followed by the CFD study. The section 
closes with a comparison between the experimental data and the CFD 
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simulation.

3.1. Experimental assessment: device buoyancy and gas holdup

First, we consider the motion registered by the sensor device. Fig. 3
shows an example of the axial movement of 3 sensor devices (0.77 kg/L, 
0.87 kg/L and 0.9 kg/L densities) in the tested bubble column. The 
dominant movement of the lightest device at the upper part of the liquid 
indicates lower density of the sensor compared to the fluid apparent 
density, leading to the device mostly circulating in the column top. In 
comparison, the other two devices showed more uniformly distributed 
movement through the liquid, which indicates that density of these two 
sensors is closer to the fluid apparent density under the tested condition. 
Based on the device apparent density, this translates to a gas holdup in 
the range 10–13 %, consistent with the estimation by the Van ‘t Riet 
correlation (13.7 %), and much lower than the correlation and mea
surements of Maximiano Raimundo (20.9 %, based on the pressure- 
corrected vs). However, measurements with the stationary level sensor 
were done in an earlier run under similar conditions and indicated a gas 
holdup of 21.5 %, which is consistent with the correlation of Maximiano 
Raimundo et al., and substantially higher than indicated by the Van ‘t 
Riet correlation and floating device measurements. While these obser
vations appear in conflict, they are in agreement with radio pill exper
iments by van Barneveld et al. [66] who observed settling velocities that 
were lower than expected for a given mixture density. An open question 
is why this change in settling velocity (and consequently, effective 
neutral buoyancy) occurs. Van Barneveld et al. suggest adherence of air 
bubbles inducing an additional buoyancy effect. A mechanism where 
devices preferentially reside in regions of lower holdup and hence 
higher mixture density could also be imagined. Third, we have to keep in 
mind that, on average, a radial gradient in holdup and hence mixture 
density exists; we hypothesize that this gradient would lead to neutrally 
buoyant behavior at a different gas holdup than the device density was 
tuned for; the mathematical model presented Section 2.5 was developed 
to test this hypothesis. The results detailed in Section 3.2 show that the 
indeed this may have an impact. Still, even considering this effect, there 
is a discrepancy between the estimation based on neutrally buoyant 
device measurements and the level sensor, which deserves further 
scrutiny.

3.2. Modelling the impact of the radial holdup profile on sensor movement

The (radial) holdup profile can result in a difference between the 
liquid density at which the sensor behaves as neutrally buoyant, and the 
density for which the device is calibrated. This may contribute to the 
abovementioned discrepancy between static sensor reading, and device 
behavior. The terminal velocity model was used to estimate the impact 
of the radial holdup gradient. The holdup at which the device is 
neutrally buoyant (criterion: 

⃒
⃒ < vpart >

⃒
⃒ < 0.001m/s) can be 

computed for a given vs, which is reported in Table 3 for the tested 
conditions. The holdup at which the model predicts neutral buoyant 
behavior is 2–3 % higher than the holdup associated with direct density 
matching, indicating radial gas holdup gradients are expected to lead to 
reduced settling behavior. The impact is modest, however, with a rela
tive offset of at most 20 %, not fully explaining the gap between static 
sensor and device measurements. Additionally, the mean particle ve
locity for the holdup exactly matching the device density is reported, 
with a more positive velocity (upward) meaning that the device is 
exceedingly likely to be found near the fluid surface.

3.3. CFD results

3.3.1. Global assessment of flow behavior
The four interphase closure approaches resulted in vastly different 

gas holdup and flow behavior; an overview of global quantifications is 
presented in Table 4. Case A, using the universal drag model, yielded a 
gas holdup of αg = 0.33, whereas the other approaches predict 

Fig. 3. Registered axial position of mobile sensors with three different densities; the position is derived from the pressure reading by the sensors.

Table 3 
apparent neutral buoyancy of the sensor devices accounting for the radial gas 
holdup profile. 2nd column: gas holdup when the mixture density exactly 
matches the sensor density (not accounting for radial variation). 3rd column: 
holdup required to achieve neutral buoyancy when the superficial gas velocity is 
fixed to the pressure-corrected superficial gas velocity for the provided oper
ating conditions. 4th column: the mean particle velocity when the holdup is 
fixed to the values from column 2.

ρp

(
kg
m3

)
Holdup 
matching ρP

Neutral 
buoyancy, 
vs = 0.121m/s

Mean particle velocity at 
vs = 0.121 m/s 
and holdup based on ρP

770 αg = 23.0% αg = 26.3% < vpart > = + 0.133m/s
870 αg = 13.0% αg = 15.4% < vpart > = + 0.114m/s
900 αg = 10.0% αg = 12.1% < vpart > = + 0.107m/s
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substantially lower values of αg, between 0.12 and 0.17. Based on this, 
Case A can be ruled out: the high gas holdup leads to overflow of the 
vessel (Fig. 4), also obvious from a reduction in liquid mass compared to 
the initial 2100 kg. The gas holdup of the other cases is, however, 
consistent with the range covered by the device and level sensor data. 
We do note all simulations show some decrease in liquid mass compared 
to the initialized value, due to small but non-zero liquid fraction in the 
headspace and poor closure of the mass balances in the first few time
steps. We deem these offsets sufficiently small to be inconsequential for 
further analysis. Case C exhibits a stable dual-plume structure origi
nating from the sparger, with the only difference between this case and 
Case D being the volume-fraction dependent drag reduction model. 
Recent work by Gu et al. with a similarly narrow sparger did not show 
this issue [67]; the most notable difference in model setup is the lack of 
turbulent dispersion in our case. Our hypothesis is hence that the narrow 
sparger leads to a high local holdup, which combined with the aggres
sive local drag reduction leads to stable ‘low drag’ channels; turbulent 
dispersion would work against this as it leads to radial gas distribution 
based on the hold-up gradient, which would explain why this plume 
stabilization was not observed by Gu. Additional trials with a single 
bubble size instead of a population balance, use of the dispersed tur
bulence formulation (with 1st order turbulence equations), and use of 
the Simonnet rather than McClure correction model did not affect 
behavior. Stability issues with turbulent dispersion prevented us from 
inclusion of turbulent dispersion, and we opted for using a constant 
swarm factor in Case D instead. Cases B and D both exhibit dynamic 
behavior, with roughly similar gas holdup, despite different model se
lections. Cases A and D, which include Bubble Induced Turbulence 
(BIT), reasonably predict the expected energy dissipation (ε) of 
1.32 m2/s3 based on thermodynamic considerations [68], while in Case 
B, where BIT was omitted, ε was strongly underestimated. However, as 

prior unpublished work conducted on the Sanyal et al. case [36]
revealed that the liquid velocity and gas holdup profile (at a given 
bubble size) were not notably affected by inclusion of BIT, this obser
vation cannot be used to discriminate between Cases B and D in terms of 
gas holdup and flow behavior; in sections 3.4.2 and 3.4.3 we will explore 
the potential of the sensor devices in this respect. Of course, proper 
prediction of ε will be relevant when other models which rely on ε, such 
as mixing, mass-transfer [69] and breakup kernels in population bal
ances are added, and as such the inclusion of BIT is recommended.

3.3.2. Mixing study
To further compare the predictions of the CFD simulations, a mixing 

study was conducted for Cases B, C and D, using 12-point monitors 
throughout the domain (3 axial and 4 radial positions), with a tracer 
injection at the vessel top. We do note that due to the transient nature of 
the flow, significant variation in mixing time between repeated simu
lations and experimental runs may occur [70]. Here, we consider single 
experiments and simulations, which should hence be interpreted as a 
ballpark estimation. Fig. 5 shows the tracer response curves for the three 
cases. While Cases B and D again show qualitatively similar behavior, 
mixing in Case C is distinctly slower: the simulation was stopped after 
250 s, with τ95 not yet achieved. The mixing correlation by Groen et al. 
[71] assuming heterogeneous flow in a bubble column, τ95 =

1.6 T
2
3

(gvs)
1
3

(
HL
T

)2
, predicts a mixing time of 46.0 – 56.7 s depending on 

the liquid height; for Case D good agreement is observed (Table 5). For 
Case B, mixing is notably faster than expected. The underlying reason 
seems to relate to the under-estimation of ε, which in turn leads to a 
higher value for the turbulent viscosity μt and consequently turbulent 
diffusivity D t. This observation highlights the importance of including 
BIT and proper estimation of energy dissipation.

Table 4 
gas holdup, observed flow pattern, bubble size and energy dissipation per unit volume for various models. The liquid mass varies slightly between cases due to mass 
imbalances in the first timesteps, and due to overflow in Case A.

Case Van ’t Riet estimation M. Raimundo 
Estimation

A B C D

Gas holdup αg (%) 13.7 20.9 33.0 12.6 13.0 16.4
Flow pattern Oscillating Oscillating Oscillating Oscillating Static Oscillating
Energy diss. (m2/s3) 1.32 1.32 1.14 0.4 Nd 1.20
Bubble size (mm) ​ ~7.5 7.5 13 nd 8.7
Liquid mass (kg) 2100 2100 2000 2100 2050 2070

Fig. 4. Predicted gas holdup in the bubble column for the various CFD models, instantaneous and time-averaged. For Case C, the flow field shows no substan
tial dynamics.
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Unfortunately, no experimental mixing data was collected for the 
conditions under investigation. Experimental data is available for 
[1500 kg, 1000 L/min, 15 psi], by addition of MgSO4 to the reactor top, 
and quantification of the Mg concentration through ICP of offline sam
ples acquired at hsample = 0.23m every 5 seconds. The registered tracer 
response curve is shown in Fig. 5, inset. We note that both the long tracer 
injection duration and the analysis based on offline sampling complicate 
analysis; as such, the experimental values should be considered a ball
park estimation. With homogeneity observed 45 s after injection and an 
18 s injection time (Fig. 5, inset, orange line), the ballpark mixing time is 
45 – 58 seconds. This value is consistent with Groen’s mixing 

Fig. 5. Mixing curves for CFD Case B (blue), C (red) and D (black), registered at 12 locations in the reactor. The dashed vertical lines indicate the point-maximum 
95 % mixing time, the dotted vertical lines the 95 % mixing time using the coefficient of variation. The expected mixing time based on Groen et al. is 46.0 – 56.7 s. 
Inset: experimental mixing data for Mliq = 1, 500kg, Qg = 1, 000 l/min. Orange line: MgSO4 injection curve (normalized). Blue dots: ICP measurements of Mg (liquid 
sampled from bottom).

Table 5 
mixing time registered with CFD simulations for Cases B, C and D. Col 2: 
registration by probe with the longest mixing time. Column 3: registration as the 
CoV over all 12 probes, with a threshold of 0.0283 [65]. Column 4: 95 % mixing 
time estimated by the correlation of Groen [72].

Case τmix (‘worst’ probe) τmix (CoV) τmix (Groen est.)

B 28.1 s 28.3 s 46.0 (H0 = 4.6 m)
C > 250 s > 250 s 46.0 (H0 = 4.6 m)
D 47.6 s 51.4 s 56.7 (H0 = 5.1 m)

Fig. 6. Probability distributions of observing the sensor devices at a particular axial position (left) based on the cumulative local residence time vs. total experimental 
duration, versus the distribution in CFD Case B (middle) and D (right).
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correlation, which yields τmix = 40.7s, provided the flow is heteroge

neous. Despite the low superficial gas velocity 
(

vs = 0.017 m
s

)
, it is not 

unlikely that this is the case due to the coarse, non-ideal sparger being 
used in the current geometry [27,47]. Although the experimental mixing 
study was conducted at different operating conditions, this does indicate 
that mixing is in line with expectations based on the Groen correlation. 
Based on both the observations regarding the flowfield, and the strong 
disagreement between the computed mixing time and correlation, Case 
C considered unrealistic and not analyzed further in this study; Cases B 
and D are considered for further evaluation.

3.4. CFD results compared to sensor data

3.4.1. Device distribution
Fig. 6 shows the probability of presence of the FermSense sensors at 

different liquid height compared to the simulation results from Cases B 
and D; Cases A and C were discarded based on the grounds outlined 
above. Experimentally, the lightest sensor devices predominantly reside 
in the upper part of the liquid, which indicates flotation due to their 
density being substantially lower than that of the gas-liquid mixture 
[20], while the other two devices show an approximately uniform axial 
distribution in most of the column; the sensors are hardly observed 
below the sparger (0.23 m from the bottom). In the region just above the 
sparger the probability of observation is also lower, likely due to the 
strong upward velocity of gas emitted from the sparger holes, and the 
higher mixture density due to a lack of bubbles in surrounding liquid. 
The lightest device behaves qualitatively similar in the CFD simulations, 
but both heavier devices are more prone to settling than experimentally 
observed in both CFD simulations. The device of 0.87 kg/L has a density 
close to the apparent fluid density of Case B, yet we still observe settling 
behavior. The 0.9 kg/L particles show much more pronounced settling, 
in contrast to experimental observations. Despite an only moderately 
higher gas holdup, both the 0.87 and 0.9 kg/L particles show strong 
settling behavior, although the experimental finding that the probability 
of observation reduces in the bottom 0.5 m is consistently seen. Overall, 
it appears the Lagrangian particles in the CFD simulation are much more 
sensitive to (local) conditions than experimental devices. A potential 

explanation for the stronger settling behavior in the CFD simulations is 
that the particles are highly sensitive to the axial gradient in gas holdup 
owing to the hydrostatic pressure gradient [15], and are unlikely to 
reside in the vessel top where the apparent density is below the particle 
density.

This is markedly different for the experimental devices, where the 
similar behavior of the 0.87 kg/L and

0.9 kg/L devices supports a relatively low sensitivity to local and 
even global mixture density, which is supported by other studies at high 
gas velocity [19], although based on low gas velocity data some upward 
shift in the probability distribution would be expected for the lighter 
sensor [20], which we did not observe here. Probably this is due to the 
more vigorous fluid motions currently under consideration. Further
more, we note that the aforementioned discrepancy between the laser 
level measurement and device density appears to support reduced rather 
than enhanced settling behavior, which contrasts our observations in the 
CFD simulations. Overall, there is a clear discrepancy between the 
experimental- and modelled behavior of devices, which is not just due to 
an offset in gas holdup, but evidence of shortcomings in the models used 
to simulate device motion.

3.5. Circulation time

Fig. 7 shows the profile of the circulation times for FermSense sen
sors and simulated representative particles for Cases B and D. Both the 
experimental and computational distributions are calculated based 
consecutive passages through four horizontal planes, distributed 
through the liquid height, with the first plane at 1 m height from the 
bottom of the liquid and a clearance distance of 1 m between the rest 
[11]. The circulation time for 0.87 kg/L and 0.9 kg/L sensor devices was 
similar, although the heavier devices exhibit a slightly more pronounced 
tail. To quantify the circulation behavior, we fitted a log-normal dis
tribution based on the first 100 s of each distribution using python, to 
reduce the impact of the long and poorly quantified tail; the distribution 
is parameterized with the shape σ, scale exp(μ), and location (peak 
shift), described in Table 6. The mean circulation time and standard 
deviation are calculated based on the properties of the log-normal 

Fig. 7. Circulation times of the Freesense sensors and the CFD simulated particles based on the circulation plane methodology of Bisgaard et al. For Case B, tra
jectories of massless particles are shown for reference.

C. Haringa et al.                                                                                                                                                                                                                                Biochemical Engineering Journal 215 (2025) 109623 

10 



distribution and also reported in Table 6. The mean circulation times are 
in the order of 25 – 30 s, which may seem at odds with the rule of thumb 
τmix ≈ 4 τcirc, based on the mixing time estimated using the Groen et al. 
correlation. This is in line with prior work by Bisgaard et al., who re
ported a proportionality constant of 2.2 and 2.6 for two different stirred 
tank configurations [11]. Reinecke et al. report a similar, albeit lesser, 
offset between particle-based and tracer-based circulation time [17]. An 
alternative circulation timescale can be estimated by fitting the 

downward slope of the main peak with an exponential distribution, 
exp( − t

τ). With this approach we observe typical values between 15 and 
20 s for the well-circulating devices experimentally and in Case B, and 
around 910– 14 s in Case D. These values are reasonably in line. The 
experimental circulation time of the 0.87 and 0.9 kg/L sensor matches 
well with Case B for both approximations, while Case D shows more 
rapid circulation behavior. This is likely due to the more biased move
ment of the particles at either top or bottom of the liquid, which results 
in a high frequency of short circulation times at the corresponding cir
culation planes. Interestingly, the observations made with the 
Lagrangian model disagree with the Eulerian mixing study (Section 
3.3.2), wherein Case D the mixing time was in agreement with prior 
mixing correlations, while mixing in Case B was unexpectedly fast. This 
is likely affected by the positional bias leading to shorter circulations 
times in Case D, however; a more homogeneous sensor distribution is 
required to allow for comparison between Eulerian and Lagrangian 
mixing.

3.5.1. Velocity profile
Fig. 8 compares the absolute axial velocity profile of the FermSense 

devices with that of particles in the CFD simulations. Both for the CFD 
and experimental data, the domain was divided in 100 axial compart
ments, where the average absolute axial velocity is determined over all 
velocity registrations (up- and downward) within the compartment.

Similar to the earlier analysis, the recorded axial velocity by 0.87 kg/ 
L and 0.90 kg/L sensors show a similar profile through the liquid height. 
In comparison, the measured velocities by the lightest device also 
showed a comparable profile, particularly in the liquid height above 
1.5 m. These results show the low sensitivity of the sensors’ velocity to 
their adjusted density within the specified range. All three devices 
showed a slightly higher axial velocity at vertical center of the column, 
while the velocity goes down at the top and the bottom of the liquid.

In comparison to the experimental data, both CFD models predicted 
a slightly lower absolute velocity, with Case B being slightly closer to the 
experiments than Case D. The deviation between the data and the 
simulation results by both models increases at the higher liquid levels 
which can be due to the difference between the estimated gas holdup at 

Table 6 
Characteristics of the distributions in Fig. 7, estimated assuming a log-normal 
distribution in circulation behavior. Columns 3–5 provide the characteristics 
of the fitted log-normal object in python (scipy 1.10.1), estimated from the first 
100 s of each distribution. Column 6, 7 provide the mean circulation time and 
standard deviation based on the log-normal distribution. Column 8 provides an 
alternative estimate of the circulation timescale based on fitting an exponential 
distribution to the downward slope of the circulation peak.

log-normal distribution parameters Exp. 
decay

Case Sensor Shape Scale Location Mean 
(s)

St. 
dev 
(s)

τcirc 
(s)

Exp. 0.77 kg/ 
L

0.60 32 − 7.1 38 25 23

Exp. 0.87 kg/ 
L

0.85 17 − 1.2 24 25 18

Exp. 0.90 kg/ 
L

0.84 20 − 1.4 28 29 19

CFD - 
B

0.77 kg/ 
L

0.62 34 − 7.5 41 28 34

CFD - 
B

0.87 kg/ 
L

0.79 18 − 1.4 25 23 17

CFD - 
B

0.90 kg/ 
L

0.77 20 − 2.0 27 25 17

CFD - 
D

0.77 kg/ 
L

0.91 8 0.2 12 14 8

CFD - 
D

0.87 kg/ 
L

0.88 12 − 0.4 18 19 10

CFD - 
D

0.90 kg/ 
L

0.73 16 − 2.0 21 18 14

Fig. 8. Averaged absolute axial velocity of the Freesense sensors and the simulated particles, acquired by dividing the column in 100 axial compartments. The dashed 
red line in the middle- and right figures shows the experimental data (average of all devices) for reference.
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the higher axial part of the liquid.
We can further compare the velocity profiles by looking at the local 

axial velocity distribution. Fig. 9 gives an overview of the distribution of 
the upward and downward velocities of the FermSense sensors 
compared to the simulated particles at different liquid height. The 
collected data from the FermSense sensor with density of 0.87 kg/L 
shows a profile within the range of ± 1.67 m/s, with most values 
registered in the range of ± 0.51 m/s (indicated by the yellow band) and 
uniformly along the liquid height. Although the overall range of regis
tered velocity values is similar, the CFD models show a more narrow 
velocity distribution for the Lagrangian particles with a density of 
0.87 kg/L (Fig. 9b, c), as indicated by the narrower yellow bands. As 
discussed before, both simulations predicted the dominant movement of 
0.87 kg/L particles at the bottom part of the liquid.

3.6. Discussion

The high Stokes number of FermSense devices indicates that, even 
when neutrally buoyant, they will not be ideal flow followers; something 
that already leads to some offset in device- and fluid behavior in single 
phase flows [11,12]. In addition, the non-homogeneous gas distribution 
in high gas velocity bubble columns will induce further offsets between 
device- and mixture behavior. In spite of this, both the devices with 0.9 
and 0.87 kg/L densities exhibited good and highly similar circulation 
under heterogeneous gas flow conditions, while the lighter device 
(0.77 kg/L) showed predominantly floating behavior. At first glance, 
these observations support a gas holdup in line with the Heijnen and van 
‘t Riet correlation [27] (~13 %), rather than the Maximiano Raimundo 
et al. correlation [14] (~21 %). Interestingly, however, the level sensor 
indicated a hold-up of 20.5 %. Furthermore, the observation that both 
the 0.9 and 0.87 kg/L circulated equally well contrast with the findings 
of Reinecke et al., who did note a shift in probability distribution of 
observation for a 2 % offset in device density [20], albeit in a stirred, 
single-phase environment. Both observations can be qualitatively un
derstood when considering prior work on flow-following sensors using 
radio pills by van Barneveld et al. [66], who determined the settling 
velocity of a 3 cm diameter device, density matched to water, at various 
gas hold-ups and observed a reduced settling velocity. For their device, 
the measured settling velocity was nearly constant for a 15–20 % gas 
holdup, and was equal to that expected in a 10 % holdup mixture. While 
different in details (sensor diameter, density), qualitatively these finding 
support both the magnitude of the observed effect, and the notion that 
the circulation behavior seems to only mildly sensitive to device density. 
Exactly why this reduction in settling velocity occurs is poorly investi
gated. We explored the hypothesis that radial gradients in gas hold-up 
play a role, and while indeed our terminal velocity model revealed 

some impact, the magnitude was insufficient to describe the gap fully. 
Still, this was a static model based on the average gradient, applied to a 
system that is highly dynamic in reality. One could, for example, hy
pothesize that sensor devices preferentially reside is regions of lower gas 
holdup, where friction is relatively higher. This would translate into a 
higher mixture density around the sensor (on average), and also increase 
the global gas holdup at which the sensor acts as neutrally buoyant. 
However, this effect would expect this effect to reduce upon increasing 
gas holdup, which contradicts the observations by van Barneveld et al. 
Other possible mechanisms are slipping of bubbles past the sensor, 
which could similarly increase the effective mixture density to which 
devices respond, or the adherence of bubbles to the device surface 
increasing buoyancy, as suggested by van Barneveld et al. [66]. A rough 
estimation shows a ~10 % reduction in effective density at ~20 % gas 
holdup is required for the observed reduction in settling velocity, which 
would require 50 % of the surface to be covered with a 1 mm layer of air. 
All in all, further investigation into the behavior of flow-following de
vices in aerated systems is required. A comparison against other 
experimental techniques is desirable. Ideally, optical tracking of devices 
in vigorous heterogeneous gas flow would be conducted. This may be 
challenging in 3D systems due to high holdups leading to opacity, but 
may be feasible in a 2D column. Naturally, when interpreting and using 
this data in model development, the restrictions of a 2D environment 
need to be carefully considered. Alternatively, we recommend a com
parison between floating devices and other Lagrangian techniques such 
as radioactive particle tracking (RPT), as these are not hampered by 
opacity of the fluid. It does have to be considered that millimeter sized 
RPT-particles have much lower Stokes numbers, and since they are of 
similar dimension as gas bubbles, interact differently with the gas phase 
(i.e. preferentially reside in the liquid). As such they may require density 
matching with water instead of the mixture, and while they may give 
more representative data of the liquid flow inside the column, it may be 
challenging to compare their behavior with that of centimeter-scale 
devices.

The behavior of simulated sensors was analyzed in detail in two CFD 
simulations. In agreement with experimental data, the 0.77 kg/L sensors 
showed floatation behavior in both, although they were more likely to 
reach the lower column regions than in the experiments. The 0.87 and 
0.9 kg/L particles were distributed throughout the column in both cases, 
but showed marked differences in the degree of distribution; both 
already exhibit some degree of settling in Case B, with a 12.6 % average 
holdup. This is clearly much lower than the experimental holdup ac
cording to the level sensor, and also conflicts with the experimental 
findings of van Barneveld et al. [66]: particles show somewhat stronger 
settling than expected based on the global holdup, and we do see a 
marked difference in settling behavior between the 0.87 and 0.9 kg/L 

Fig. 9. Axial velocity distributions of the 0.87 kg/L device; a) experimental, b) CFD Cases B and c) CFD Case D.
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particles which is consistent with their density difference, but not with 
experimental observations. If we zoom in further, the Fig. 6 reveals that 
the virtual particles are more prone to reside in regions with a mixture 
density equal to or higher than their own density; this is evidenced both 
by the 0.77 kg/L particles circulating deeper into the column than their 
experimental counterparts, and the heavier particles biased towards the 
column bottom, where, due to the axial holdup gradient resulting from 
gas expansion, the mean mixture density is somewhat higher.

These observations show that the current interphase interaction 
models applied to the particles are inadequate to describe the behavior 
of flow-following devices in a multiphase flow. The notion that very 
different settling behavior is observed between simulation and experi
ment suggests that indeed localized phenomena, such as very local low- 
holdup regions, bubbles slipping past the device to reduce effective 
holdup, or adherence of bubbles to reduce effective device density are at 
play – in contrast to large-scale holdup gradients and plume oscillations, 
these effects are not included in the CFD simulation. With more exper
imental insight in the behavior of flow-following devices in gas-liquid 
flow, it should be feasible to develop interaction models capturing 
such effects, e.g. a density correction based on local gas holdup. pressure 
gradient and virtual mass) should also be investigated separately to 
more insight in their contribution to the observed behavior. Of course, 
whether the other interphase interaction forces (drag, pressure gradient, 
virtual mass), which were developed for single phase fluid-particle 
flows, behave correctly in the current situation should also be subject 
to further investigation. Finally, we included the impact of turbulence 
through the dynamic random walk (DRW) model, which introduces a 
randomized velocity component to mimic the impact of turbulence on 
device behavior. Due to the substantial inertia resulting in a second- 
scale response time, this likely leads to excessive turbulent motion; a 
randomized force (instead of velocity) may lead to more realistic 
behavior, although perhaps the impact of turbulence could also simply 
be omitted. Overall, based on our current observations, the behavior of 
the experimental devices and simulated particles shows that the applied 
Lagrangian simulation approach currently does not accurately reflect 
real device behavior, and improvements in the gas-liquid-particle 
interaction model are needed if we want to use mobile sensor devices 
as a source of (circulation) validation data for CFD simulations. These 
results show that while theoretically mobile sensors can be used for CFD 
validation, but to do so, further insights are needed both in practical 
behavior of the sensors in (high-holdup) gas-liquid flows, and means of 
modelling this behavior.

Finally, we discuss some observations considering the Eulerian 
simulation results. We set out to simulate cases with high, moderate and 
low gas holdup. The gas holdup in the high-holdup Case (A) was 
excessive, leading to column overflow; the Richardson-Zaki swarm 
correction included in the universal drag model was clearly inadequate 
to capture the strong bubble drag reduction in a heterogeneous bubble 
column, in line with earlier observations [47]. In the first moderate 
holdup Case (C), we observed stable bubble plume formation, which was 
unexpected in light of prior studies [67]. The most notable difference is 
the exclusion Turbulent dispersion in our simulations due to stability 
issues, and other possible aspects (discretization schemes, mixture vs. 
dispersed turbulence, single bubble vs. population balance, McClure vs. 
Simonnet drag modification) were found to be non-influential. While the 
inclusion of turbulent dispersion seems to be essential when a 
holdup-based drag modification model is applied in this case, the gen
eral need for turbulent dispersion remains inconclusive, with some 
studies noting strong ‘flattening’ of holdup profiles compared to the 
parabolic profile observed practically [51]. However, these studies 
typically feature good initial bubble distribution due to a 
bottom-covering sparger, and do not include swarm modification 
models. Further study towards inclusion of turbulent dispersion is 
needed, both considering interaction with other interphase forces, and 
model stability. Considering the Eulerian mixing conducted in this work; 
we note that, due to the absence of bubble induced turbulence and 

consequent underestimation of energy dissipation in Case B, the rate of 
tracer mixing is over-estimated. This observation stresses that circula
tion behavior of high-Stokes inertial (Lagrangian) particles cannot be 
used to validate Eulerian mixing behavior – and that two simulations 
that are seemingly similar in terms of convective flow may differ sub
stantially in terms of turbulent mixing if bubble induced turbulence 
remains unaccounted for.

4. Conclusion

We set out to study whether hydrodynamic data acquired with flow- 
following devices in heterogeneous bubbly flow can be used for vali
dation of CFD models. In this respect, our results are ambiguous. The 
experimental work indicates that, despite high Stokes numbers and 
strong local variations in holdup, and hence apparent density, flow- 
following devices of reasonably matched density circulate through the 
entire column, and can provide relevant data for validation of (CFD) 
modelling studies. Because the devices are not perfect flow followers, 
the CFD simulations should include a Lagrangian (particle) phase to 
include non-ideal sensor behavior to facilitate comparison with experi
mental data. Our trials show we can successfully collect information on 
the circulation time, device velocity and distribution of devices among 
the axial coordinate from the timeseries of particle position, which 
provide a comprehensive dataset for validation; as the devices appear to 
act as neutrally buoyant over a range of at least several percents of gas 
holdup, the method is insufficiently sensitive to draw conclusions on 
overall gas holdup.

The approach to include the devices utilized in the current CFD 
study, with devices modeled as inertial point-like particles, does not 
seem to give an adequate representation of sensor behavior. A striking 
difference between experiment and simulation is that in practice the 
devices act neutrally buoyant at higher than expected global gas holdup, 
whilst in CFD simulations they do so at lower than expected global gas 
holdup. Part of the observed mismatch may be due to gradients in gas 
holdup, which means that global matching of the device and mixture 
density does not ensure local neutral buoyancy, but this does not explain 
why opposing trends are observed in practice and simulation. A second 
observation is that the particles in the CFD simulation are sensitive to 
small variations in (global) gas holdup, which does not align with the 
abovementioned observation that in practice, the devices act as 
neutrally buoyant over a range of at least several percents of gas holdup. 
Clearly, a better understanding of, and better models for the behavior of 
finite-size particles in gas-liquid flows is required, in particular in rela
tion to their local environment, such as bubble adherence to sensors or 
the possibility that bubbles slip past sensor devices, affecting the effec
tive density of the device and surrounding liquid, respectively.

Overall, the study indicates flow following devices have strong po
tential to provide insights in local bioreactor hydrodynamics and CFD 
validation, but that Lagrangian CFD models for the motion of sensor 
devices in gas-liquid require further study. We recommend studying the 
impact of the individual interphase forces acting on the particles as well 
– ideally with a resolved particle model - for deeper investigation with 
experimental data, and to study potential shortcomings of the inertial 
particle model. Such models additionally require much higher Eulerian 
resolution to properly resolve particle-fluid interaction, but with ad
vances in GPU-based computing, this may be within reach [73,74]. In 
addition, further experimental scrutiny of the device behavior, e.g. in 2D 
columns allowing for optical comparison [75], or in comparison with 
radioactive particle tracking studies, would provide more insight in the 
observed offset with the static level sensor, as well as in the general 
behavior of high-stokes flow following devices is heterogeneous bubbly 
flow.
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