
Faculty of Electrical Engineering, Mathematics and Computer Science

Circuits and Systems
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ens.ewi.tudelft.nl/

CAS-2011-03

M.Sc. Thesis

High-Quality, Real-Time HD Video Stereo
Matching on FPGA

Guanyu Yi B.Sc.

Abstract

Stereo matching is an important computer vision technique, which
extracts the depth information of the scene by matching a pair of
stereo images. It has numerous applications, such as view-point in-
terpolation, 3DTV, object detection, etc. In the past decades, many
algorithms have been proposed to improve the matching quality or
to increase the speed. Due to the high computational complexity, it
is still quite challenging to attain high matching-quality at real-time
speed.

In this thesis, we propose a hardware design of stereo matching,
which is capable of producing high-quality disparity maps at real-time
speed. A high-quality stereo matching algorithm is efficiently imple-
mented and hardware-oriented optimized, attaining huge speedup by
parallel computing. The whole algorithm is implemented in a single
EP3SL150 FPGA. The experimental results show that our design is
capable of matching high-definition videos at real-time speed, i.e. 60
frame per second at 1024×768 resolution. In terms of matching qual-
ity, our design is among the leading real-time methods, evaluated in
the Middlebury stereo benchmark. As an application of the stereo
matcher, we also build up a depth-scaling system for 3DTV, working
together with a view synthesis module. The SoC system synthesizes
high-quality virtual views at real-time speed.





High-Quality, Real-Time HD Video Stereo Matching
on FPGA

Thesis

submitted in partial fulfillment of the
requirements for the degree of

Master of Science

in

Microelectronics

by

Guanyu Yi B.Sc.
born in Jilin, China

This work was performed in:

Circuits and Systems Group
Department of Microelectronics & Computer Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology



Delft University of Technology

Copyright c© 2011 Circuits and Systems Group
All rights reserved.



Delft University of Technology
Department of

Microelectronics & Computer Engineering

The undersigned hereby certify that they have read and recommend to the Faculty
of Electrical Engineering, Mathematics and Computer Science for acceptance a thesis
entitled “High-Quality, Real-Time HD Video Stereo Matching on FPGA” by
Guanyu Yi B.Sc. in partial fulfillment of the requirements for the degree of Master
of Science.

Dated: 2011-August-29

Chairman:
prof.dr.ir. A.J. van der Veen

Advisors:
dr.ir. Gauthier Lafruit

dr.ir. Rene van Leuken

Committee Members:
dr.ir. Georgi Kuzmanov



iv



Abstract

Stereo matching is an important computer vision technique, which extracts the depth
information of the scene by matching a pair of stereo images. It has numerous ap-
plications, such as view-point interpolation, 3DTV, object detection, etc. In the past
decades, many algorithms have been proposed to improve the matching quality or to in-
crease the speed. Due to the high computational complexity, it is still quite challenging
to attain high matching-quality at real-time speed.

In this thesis, we propose a hardware design of stereo matching, which is capable
of producing high-quality disparity maps at real-time speed. A high-quality stereo
matching algorithm is efficiently implemented and hardware-oriented optimized, at-
taining huge speedup by parallel computing. The whole algorithm is implemented in
a single EP3SL150 FPGA. The experimental results show that our design is capa-
ble of matching high-definition videos at real-time speed, i.e. 60 frame per second at
1024×768 resolution. In terms of matching quality, our design is among the leading
real-time methods, evaluated in the Middlebury stereo benchmark. As an application
of the stereo matcher, we also build up a depth-scaling system for 3DTV, working to-
gether with a view synthesis module. The SoC system synthesizes high-quality virtual
views at real-time speed.

v



vi



Acknowledgments

This thesis work is performed at Imec (Leuven, Belgium) with support from the Circuit
and System (CAS) group of Delft University of Technology (Delft, the Netherlands). I
would like to take this opportunity to thank everyone who has helped me during my
MSc thesis year.

First of all, I want to thank Dr. Gauthier Lafruit, Dr. Francesco Pessolano and Prof.
Alle-Jan van der Veen for their agreement to provide and offer me the chance to perform
my MSc thesis project in Imec. Their rich experience and scientific insights have
led the entire search and development into the correct direction - dedicated hardware
implementation of high performance dynamic programming stereo matching.

In the period of my MSc thesis year, I thank Ke Zhang for his excellently in develop-
ing the stereo matching algorithms with line-based dynamic programming and region
growing. Ke also guided me into the stereo vision world and inspires me much on algo-
rithm principles, computing data flow and hardware implementation. I thank Christine
Lin in Imec-Taiwan for her advices on ASIC orientated hardware design. I thank Geert
Vanmeerbeeck and Eddy De Greef for their collaboration on constructing hardware and
software environments. I would like to thank Prof. Rene van Leuken for his invaluable
suggestions for design optimization and improvements as well as all the hours he has
spent on proofreading my thesis. I thank CK Liao and Josh Tu in Imec-Taiwan for
their advices on algorithm improvements and synthesis tools advanced usage. I also
would like to thank Gauthier Lafruit, Francesco Pessolano and Peter Lemmens for their
outstanding management.

Special thanks are given to Gauthier Lafruit, Prof. Tian-Sheuan Chang and Hsiu-
Chi Yeh. Without their support and contributions out 3D depth range adjustment
system cannot work properly. Gauthier generates the idea of this system according to
the 3D TV trend, and his ambition and enthusiasm is exactly the engine and power
of the entire research and development. Gauthier guides, trusts and supports me no
matter on the thesis work and life, and I faithfully appreciate his help offered over the
whole year. Prof. Chang has proposed the view synthesis kernel and its implementation
which is another key kernel in our system, and Hsiu-Chi Yeh has implemented the DDR2
SDRAM access scheduler which plays an important role in accessing DDR2 SDRAM
with zero latency for frame-based storage. I am grateful to their collaboration on
building our system.

The study and research in Delft and Leuven in the current two years is like a
piece of music, which is composed by the melodies in TU Delft and Imec. The notes
of international talented people make the melodies graceful, and the rhythms of my
around friends make the melodies vivid. My wife and parents is exactly the main
theme to make the melodies continue. The music will not be complete without anyone,
and I appreciate encountering them in my life.

Finally I thank all my thesis defense committee members including Prof. Alle-
Jan van der Veen, Prof. Rene van Leuken, Dr. Gauthier Lafruit and Prof. Georgi
Kuzmanov.

vii



Guanyu Yi B.Sc.
Delft, The Netherlands
2011-August-29

viii



Contents

Abstract v

Acknowledgments vii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Target of Stereo Matching . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Solutions and Contributions . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Overview of Chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Stereo Matching Algorithm 9
2.1 Related Existing Stereo Matching Instances . . . . . . . . . . . . . . . 9
2.2 Our Stereo Matching Algorithm . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Matching Cost Computation . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Disparity Computation/Optimization . . . . . . . . . . . . . . . 12
2.2.3 Disparity Refinement . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Design Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Stereo Matching Algorithm Hardware-Oriented Optimization and Im-
plementation 17
3.1 Parallel and Pipeline Architecture of Stereo Matching . . . . . . . . . . 17
3.2 Algorithm Modification from Software to Hardware . . . . . . . . . . . 19

3.2.1 Vertical Cost Aggregation Modification . . . . . . . . . . . . . . 20
3.2.2 Census Transform Vector Modification . . . . . . . . . . . . . . 21
3.2.3 Parameters and Multipliers Modification . . . . . . . . . . . . . 23

3.3 Stereo Matching Design . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.1 Median Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.2 Census Transform & Support Region Builder . . . . . . . . . . . 28
3.3.3 Reorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.4 Raw Cost Scatter . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.5 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.6 Bypass FIFO and Disparity Output Logic . . . . . . . . . . . . 38
3.3.7 Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Stereo Matching Proposed Hardware Design Evaluation 47
4.1 Evaluation of Hardware Algorithm . . . . . . . . . . . . . . . . . . . . 47

4.1.1 Support Region Builder Parameters . . . . . . . . . . . . . . . . 47
4.1.2 Dynamic Programming Parameters . . . . . . . . . . . . . . . . 49
4.1.3 Refinement Parameters . . . . . . . . . . . . . . . . . . . . . . . 51
4.1.4 Final Middlebury Results . . . . . . . . . . . . . . . . . . . . . 52

4.2 Evaluation of Stereo Matching Implementation . . . . . . . . . . . . . . 54

ix



4.2.1 FPGA Hardware Resources Utilization . . . . . . . . . . . . . . 54
4.2.2 Real-Time Performance . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Comparison with Related Instances . . . . . . . . . . . . . . . . . . . . 57

5 A Real-Time View Synthesis System with Stereo Matching on FPGA 61
5.1 Real-Time System Architecture on FPGA . . . . . . . . . . . . . . . . 61
5.2 View Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3 DDR2 SDRAM Access Scheduler . . . . . . . . . . . . . . . . . . . . . 64

6 Conclusions and Future Work 69
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 Chapters Summary and Contributions . . . . . . . . . . . . . . . . . . 69
6.3 Possible Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

x



List of Figures

1.1 Tsukuba disparity map . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Eyes see in 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Eyes see in 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Dual cameras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Imec proposed personalized 3D depth range adjustment . . . . . . . . . 4
1.6 Not rectified frames and not aligned corresponding lines . . . . . . . . . 4
1.7 Rectified frames and epipolar lines . . . . . . . . . . . . . . . . . . . . 5
1.8 Basic concepts of stereo matching in epipolar geometry . . . . . . . . . 5
1.9 Complete setup system with FPGA on DE3 board . . . . . . . . . . . . 8

2.1 Fundamental stereo matching computation method . . . . . . . . . . . 11
2.2 Scan-line optimization dynamic programming . . . . . . . . . . . . . . 13
2.3 Half-occlusion point in tsukuba . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Sequential stereo matching data flow . . . . . . . . . . . . . . . . . . . 18
3.2 Parallel stereo matching data flow . . . . . . . . . . . . . . . . . . . . . 18
3.3 Pipelined stereo matching functions . . . . . . . . . . . . . . . . . . . . 19
3.4 Vertical cost aggregation in support region . . . . . . . . . . . . . . . . 20
3.5 Census transform in a 3×3 window . . . . . . . . . . . . . . . . . . . . 21
3.6 Tsukuba census transform in a 3×3 window . . . . . . . . . . . . . . . 22
3.7 Mini-census transform sampling pattern . . . . . . . . . . . . . . . . . 22
3.8 Replacement of vertical cost aggregation with census vector concatenation 23
3.9 Stereo matcher high level architecture . . . . . . . . . . . . . . . . . . . 25
3.10 Noise removed by median filter . . . . . . . . . . . . . . . . . . . . . . 25
3.11 Median filter function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.12 Sliding window in median filter in scan-line order . . . . . . . . . . . . 26
3.13 Median filter RTL architecture . . . . . . . . . . . . . . . . . . . . . . . 27
3.14 Median filter sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.15 Support region of the anchor pixel p . . . . . . . . . . . . . . . . . . . . 29
3.16 Reordered order of pixels . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.17 Raw cost scatter RTL architecture . . . . . . . . . . . . . . . . . . . . 32
3.18 Smooth minimum selector RTL architecture . . . . . . . . . . . . . . . 34
3.19 Minimum selector tree structure . . . . . . . . . . . . . . . . . . . . . . 35
3.20 Back tracker RTL architecture . . . . . . . . . . . . . . . . . . . . . . . 36
3.21 Tsukuba left and right depth maps generated by dynamic programming 38
3.22 Tsukuba left and right occlusion maps . . . . . . . . . . . . . . . . . . 40
3.23 Consistency check RTL architecture . . . . . . . . . . . . . . . . . . . . 40
3.24 Tsukuba left and right depth maps after consistency check . . . . . . . 41
3.25 2D Voting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.26 2×1D Voting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.27 Horizontal voting RTL architecture . . . . . . . . . . . . . . . . . . . . 43
3.28 Vertical voting RTL architecture . . . . . . . . . . . . . . . . . . . . . . 44

xi



3.29 Tsukuba left and right depth maps after voting . . . . . . . . . . . . . 45
3.30 Comparison of 2×1D voting and 2D voting . . . . . . . . . . . . . . . . 45
3.31 Tsukuba final depth maps . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Middlebury error rate and maximum support region arm length L . . . 48
4.2 Middlebury error rate and luminance difference threshold τ . . . . . . . 49
4.3 Middlebury error rate and neighboring pixels continuity check threshold

thc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4 Middlebury error rate and Potts model discontinuous smooth cost C . . 51
4.5 Middlebury error rate and reliability check threshold thcc . . . . . . . . 52
4.6 Final Middlebury benchmark results . . . . . . . . . . . . . . . . . . . 53
4.7 High-level block diagram of Stratix III ALM . . . . . . . . . . . . . . . 54
4.8 FPGA resource utilization of various disparities . . . . . . . . . . . . . 56
4.9 Stereo matcher implementation disparity scalability . . . . . . . . . . . 56

5.1 On-chip system architecture . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 Depth map and interpolated anaglyph frame with original frames . . . 63
5.3 View synthesis architecture . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.4 3D depth range adjustment from full 3D to full 2D . . . . . . . . . . . 65
5.5 DDR2 SDRAM access scheduler architecture . . . . . . . . . . . . . . . 66

xii



List of Tables

3.1 Median filter latency and memory usage . . . . . . . . . . . . . . . . . 28
3.2 Census transform and support region builder latency and memory usage 30
3.3 Census transform and support region builder configurable parameters . 30
3.4 Reorder latency and memory usage . . . . . . . . . . . . . . . . . . . . 31
3.5 Reorder configurable parameters . . . . . . . . . . . . . . . . . . . . . . 32
3.6 Raw cost scatter latency and memory usage . . . . . . . . . . . . . . . 33
3.7 Smooth minimum selector latency and memory usage . . . . . . . . . . 35
3.8 Smooth minimum selector configurable parameters . . . . . . . . . . . 36
3.9 Back tracker latency and memory usage . . . . . . . . . . . . . . . . . 37
3.10 Back track reorder latency and memory usage . . . . . . . . . . . . . . 38
3.11 Bypass FIFO latency and memory usage . . . . . . . . . . . . . . . . . 39
3.12 Disparity output logic latency and memory usage . . . . . . . . . . . . 39
3.13 Consistency check latency and memory usage . . . . . . . . . . . . . . 41
3.14 Consistency check configurable parameters . . . . . . . . . . . . . . . . 41
3.15 Horizontal voting latency and memory usage . . . . . . . . . . . . . . . 43
3.16 Vertical voting latency and memory usage . . . . . . . . . . . . . . . . 45

4.1 Hardware algorithm configurable parameters . . . . . . . . . . . . . . . 47
4.2 Support region builder configurable parameters . . . . . . . . . . . . . 47
4.3 Middlebury error rate and maximum support region arm length L . . . 48
4.4 Middlebury error rate and luminance difference threshold τ . . . . . . . 49
4.5 Dynamic programming configurable parameters . . . . . . . . . . . . . 49
4.6 Middlebury error rate and neighboring pixels continuity check threshold

thc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.7 Middlebury error rate and and Potts model discontinuous smooth cost C 51
4.8 Refinement configurable parameters . . . . . . . . . . . . . . . . . . . . 51
4.9 Middlebury error rate and reliability check threshold thcc . . . . . . . . 52
4.10 EP3SL150 on-chip memory features . . . . . . . . . . . . . . . . . . . . 55
4.11 EP3SL150 hardware resource utilization summary . . . . . . . . . . . . 55
4.12 Stereo matcher 64 pipeline latency summary . . . . . . . . . . . . . . . 57
4.13 VGA signal timing format for various resolutions . . . . . . . . . . . . 57
4.14 Stereo matching algorithm Middlebury benchmark evaluation . . . . . 58
4.15 Stereo matching implementation processing speed evaluation . . . . . . 58
4.16 Hardware resource utilization between our implementation and Zhang . 59

xiii



xiv



Introduction 1
Stereo matching has traditionally been one of the most attractive research topics in
computer vision domain, and is still being paid attention to from many researchers.
The main function of stereo matching is to obtain depth information from a pair of
images or videos whose corresponding pixels have displacement, that varies according
to the depth of objects from the camera pair. The displacement in number of pixels is
called Disparity. Normally disparity spans a certain range, called disparity range, which
is an important parameter of any stereo matcher. The calculated depth map is often
displayed as gray-scale intensities, as shown in Figure 1.1. Stereo matching extracts

(a) Left camera image (b) Right camera image (c) Ground left truth disparity map

Figure 1.1: Tsukuba disparity map

depth information for each pixel, and actually that is the 3D information from image
or video pair. Therefore, the depth information can be further used in 3D applications,
such as HD-3DTV, 3D reconstruction, virtual reality and so on.

A standard to evaluate and compare the results of different stereo matching algo-
rithms is Middlebury stereo benchmark evaluation[38]. In this website evaluation, the
generated depth maps is compared with the ground truth depth maps. The not identi-
cal depth map pixel values in the comparison will be considered as incorrect matched
pixel, therefore the average error rate of the entire depth map are produced. The pic-
tures shown in Figure 1.1 are the Tsukuba standard image pair and truth disparity
map from the Middlebury stereo correspondence algorithms evaluation website.

1.1 Motivation

The main motivation of this thesis research and design is to implement real-time stereo
matching on HD-3DTV with an FPGA prototype to pave the way for an ASIC imple-
mentation.

3DTV is an exciting technology developed since the late-1890’s, which is now leading
a new trend in the consumer household entertainment. The main difference between

1



3DTV (stereoscopic TV) and 2DTV (regular TV) is that the former uses depth infor-
mation, thus the image will appear to consist of solid 3D objects and persons located
in 3D space. The TV then looks like a true window to the real world and gives the
audience a new experience of entertainment.

3DTV is becoming more and more popular, and it is estimated that by the end of
2015 there will be 22.2 million homes across 53 countries watching 3D programming.
Therefore people will take more and more time on watching 3DTV. Then the problem
comes: is it harmful to people who watches 3D programs for a long time?

When looking to 2D programs people’s eyes are focused on the subject, while the
visual cortex of the brain analyzes the retinal disparities and then fuses the 2D images
into 3D, as shown in Figure 1.2.

Figure 1.2: Eyes see in 2D

When looking to 3D programs people’s eye-sight are parallel with 2.5 inch apart,
which is shown in Figure 1.3. However, when objects are even further away with having
left and right images too far apart, it will make the eyes diverging, which will cause
eye strain and nausea. There are also other disparities that may cause eye strain and
headache, for example, vertical disparity of the stereoscopic images of an object might
cause one eye to track upward and the other downward, which probably is caused by
imperfect lenses of dual cameras, as shown in Figure 1.4.

The eye strain and headache happens due to the mismatch between the 3D-display
(eye focus) and real object locations in watching 3D video. Therefore, Imec proposed
’Personalized 3D Depth Range Adjustment’, which is a nice solution to the problem,
as shown in Figure 1.5. With this solution, users can easily modify the 3D depth range
using a remote controller to satisfy personal visual comfort, furthermore, reduce eye
strain headache and nausea.

Moreover, the most comfortable depth is also relative with the screen size, viewing
distance and display type, which also makes it necessary to modify the 3D depth range
according to the viewers’ personalized visual comfort.

The proposed personalized 3D depth range adjustment system totally contains suc-

2



Figure 1.3: Eyes see in 3D

Figure 1.4: Dual cameras

cessively image acquisition, camera calibration, image rectification, stereo matching,
DDR interface construction, view interpolation and video display. This thesis work fo-
cuses on the stereo matching part, which is the major processing bottleneck discussed
in the following section.

1.2 Target of Stereo Matching

In the stereo videos, there should be one pixel in the right frame corresponding to a
pixel in the left frame, which is the basis of stereo matching. The main task of stereo
matching is to find the corresponding pixels (stereo pair). However, the stereo pairs in
raw stereo videos taken from stereo cameras are often not on the same specific pixel
line, as shown in Figure 1.6, which means that under this condition it has to complete
a 2D search. Consequently, image rectification technology is imported to reduce the
2D search into 1D search, as shown in Figure 1.7, meaning that Epipolar Geometry is
applied onto the stereo frames to perform image rectification, where the stereo pairs

3



Figure 1.5: Imec proposed personalized 3D depth range adjustment

Figure 1.6: Not rectified frames and not aligned corresponding lines

can be matched on one specific line, called epipolar line.
In Epipolar Geometry, some essential concepts in stereo matching are shown in

Figure 1.8. The object point P corresponds to the pixel p from the left frame and the
pixel p′ from the right frame. Ot is the target optical center (left camera) and Or is the
reference optical center (right camera). The distance between the two optical centers
is defined as the Baseline represented by B, which is parallel with by epipolar lines,
and the length f from frame plane to B is the focal distance. In the case shown in
Figure 1.8, the distance from P to B is defined as the depth Z which is the actual
distance between cameras and object point, and the distance from p to p′ is defined as
the disparity d = (Xt−Xr), which is the displacement of one stereo pair’s locations in
the stereo frames. According to Figure 1.8 and considering the similar triangles (POrOt

and Ppp′), we obtain the relationship between depth Z and disparity d:

B

Z
=

(B +Xr)−Xt

Z − f
⇒ Z =

B·f
Xt −Xr

=
B·f
d

(1.1)

4



Figure 1.7: Rectified frames and epipolar lines

Figure 1.8: Basic concepts of stereo matching in epipolar geometry

The equation above basically demonstrates that the more deep the object lies, the less
disparity it has between the stereo pair in the input videos, and this principle is also
the basis of stereo matching.

Image rectification is a very important procedure before stereo matching, because
of its reduction on correspondence searching complexity from 2D into 1D. Since this

5



thesis work is mainly about the subject of stereo matching, the technology of image
rectification will not be discussed further, and in the following discussion we will take
for granted all the input stereo videos has already been rectified according to epipolar
geometry.

1.3 Problem Definition

Last section lists the processing stages, in which stereo matching is the most time
consuming part. Recently, only a marginal number of implementations could meet
satisfactory quality with the constraint of real-time application, because of the high
computational complexity of the stereo matching. For example, a three camera view-
point interpolation prototype system[32] proposed by Sharp Corporation in 2009 could
only meet a couple of frames per second for low-resolution images. The bottleneck of
stereo matching has to be solved for real-time and high-quality interpolation results,
particularly for our 3D depth range adjustment implementation, which should run at
high frame rate and high definition - 1920×1080@60FPS.

Nowadays, a number of platforms such as multi-core CPU, GPU, DSP, FPGA and
ASIC could be utilized for stereo matching design and implementation. At the same
time, a lot of algorithms corresponding to each platforms have also been developed,
however, almost none of them could satisfy both real-time and high-quality require-
ments. For instance, an implementation proposed by Zhang et al.[45] on GeForce8800
GTX GPU in 2009 meets high quality with an averaged Middlebury benchmark error
rate 7.65%, but only reaches 12 frames per second with 450×375 resolution. In con-
trast, an FPGA implementation proposed by Jin et al.[20] in 2010 achieves 230 frames
per second with 640×480 resolution, however, the accuracy reduces too much with
averaged Middlebury benchmark error rate of 17.24%.

1.4 Solutions and Contributions

We propose a hardware friendly high-accuracy dynamic programming algorithm and
a complete 3D depth range adjustment real-time system to meet the requirements.
The high-accuracy algorithm is based on Accurate and Efficient Stereo Processing by
Semi-Global Matching and Mutual Information proposed by Heiko Hirschmuller[16]
and Cross-Based Local Stereo Matching Using Orthogonal Integral Images proposed by
Zhang et al.[44] The former paper provides a basic dynamic programming method for
stereo matching calculation, while the later paper offers a consistency check and refine
method for post processing. We merge them together to create a new Scan-line Opti-
mization Dynamic Programming algorithm for stereo matching. The whole design of
this prototyping system, including image data synchronization, stereo matching, DDR
interface, view interpolation and video display, is implemented on a single EP3SL150
FPGA from Altera.

Compared with Lu’s implementation[47] which only uses a cross-based local stereo
matching algorithm without dynamic programming on the same FPGA, our new im-
plementation improved the averaged Middlebury benchmark error rate from 8.2% to

6



6.6%. Moreover, our new implementation supports high-definition video, which means
it can support the resolution of 1920×1080@60FPS instead of 1024×768@60FPS in
Lu’s implementation.

We make the following main contributions, separated into two aspects, releasing a
new algorithm and implementing the system on FPGA:

releasing a new algorithm that:

• Preserves high stereo matching accuracy with 6.6% averaged Middlebury bench-
mark error rate.

• Modifies Mini-Census Transform proposed by Chang et al.[4] to improve robust-
ness near the object edges.

• Generates more smooth boundary depth maps due to scan-line optimization dy-
namic programming.

• Creates consistent real-time video using timing consistency over successive frames.

Implementing the algorithm on FPGA that:

• Builds real-time stereo matching system to generate high-definition video on the
resolutions of 1024×768@60FPS and 1920×1080@60FPS.

• Constructs a parallel and pipelined hardware architecture to meet the require-
ments of timing and resource usage.

• Makes the system structure independent on the disparity range. We have imple-
mented on the FPGA EP3SL150 with maximum disparity range of 16, 32 and
64.

• Discarding the avalon interface used in Lu’s implementation[47] to prepare a stereo
matching core without industry IP for ASIC platform.

• Provides a complete system which could use the imported stereo videos to generate
depth map videos (results from stereo matcher) or anaglyph videos (results from
viewpoint interpolater) on standard DVI/HDMI monitors.

We utilize the DE3 board developed by Terasic to implement the whole system
design. The board includes the EP3SL150 FPGA and a lot of peripherals, such as
DDR2 SDRAM, USB and SD card. Two DVI extension boards are used to receive
the stereo videos and transfer output videos to the monitor. In the setup system
shown in Figure 1.9, the JTAG link is used to burn the configuration file compiled
from PC into FPGA; DDR2 link is used to connect DDR2 SDRAM to save frames
for timing consistency and viewpoint interpolating; HSTC interface is used to connect
DVI extension boards for videos in and out. The main procedure is first configuring
FPGA, and then the stereo videos comes into FPGA by dual link cable and two DVI
extension boards, after that the output videos processed by FPGA goes out into the
monitor from one DVI extension board.

7



Figure 1.9: Complete setup system with FPGA on DE3 board

1.5 Overview of Chapters

In this thesis work, Chapter 1 gives a brief introduction about our problem, solution and
contribution. Chapter 2 introduce the stereo matching instances and our algorithm.
Chapter 3 presents a dynamic programming algorithm and corresponding hardware
modules design using a top-down approach. Chapter 4 evaluates the hardware algo-
rithm and stereo matcher design, and compares our results with other state-of-the-art
related implementations. Chapter 5 presents the complete real-time system design us-
ing stereo matcher as a block on FPGA and introduces other important kernels, such
as view synthesis and DDR2 SDRAM access scheduler. Chapter 6, as the final chapter,
gives the summary and conclusion of our thesis work and provides relative suggestions
and developments for the future design and application.

8



Stereo Matching Algorithm 2
Approximately 20 years ago, stereo matching algorithms began to fast develop, and
nearly all these different algorithms have been generally evaluated by Scharstein and
Szeliski[35], who classified those algorithms into two main kinds: local and global al-
gorithms. Local algorithm is the short name from local area based stereo matching
algorithms, which emphasizes the cost of every pixel is aggregated from a local area
formed by its neighboring pixels. While global algorithm stands for global optimization
based stereo matching algorithm, which emphasizes the cost of every pixel is extracted
from a frame or a line by some minimum cost selection method.These two kinds of
algorithms are both robust for they both generate the cost by referring to other pixels,
but compared with local algorithms, global algorithms often take more computational
complexity and more storage resources.

We take the advantages of both local and global algorithms to generate our own
algorithm in this thesis work. It is efficient for us to use local algorithms to deal
with consistency check and refine processing which is less important than the stereo
matching core part but has almost the same computational complexity as the core, while
it is accurate for us to utilize global algorithms to perform stereo matching core part
(dynamic programming part) to provide as precise results as possible. We can hence
take the advantage from local algorithm to reduce computational complexity and save
storage resources, and from global algorithm to obtain accurate stereo matching results.

Section 2.1 categories the related existing instances according to various hardware
platforms. Section 2.2 presents the our stereo matching algorithm, including computa-
tion flow, cross-based local algorithm and scan-line optimization dynamic programming
global algorithm. Section 2.3 lists the targets of our stereo matching design and im-
plementation on FPGA, and introduces briefly the benefits of FPGA platform and
implementation.

2.1 Related Existing Stereo Matching Instances

As mentioned before, the challenge of stereo matching is to solve the complex com-
putation while keeping the highly accurate results. Based on such challenge a lot of
methods approaching real-time and efficient stereo matching computation have been
developed in the past two decades, while recently, some of them have obvious achieve-
ments towards either computational speed or matching accuracy. They will be shown
in the following paragraphs by categories of different implementation platforms.

CPU implementation is the first prototyping platform for different algorithms
developed, and its main disadvantage is the processing speed, but till now there are
a lot of aggregation methods being able to accelerate its processing speed. An effi-
cient segmentation-based cost aggregation strategy for local algorithm was proposed

9



by Tombari et al.[37], which achieves 384×288@5FPS with a disparity range 16
(Dmax = 16) on an Intel Core Duo 2.14GHz; and it only reaches 450×375@1.67FPS
with Dmax = 60. A dynamic programming algorithm proposed by Salmen et al.[34]
achieves 384×288@5FPS with Dmax = 16 on a 1.8GHz CPU platform. Later a method
of combining a multi-level adaptive technique with a multi-grid approach proposed by
Kosov et al.[24] achieves 450×375@3.5FPS with Dmax = 60. Another local algorithm
of variable cross algorithm and orthogonal integral image technique for accelerating
the aggregation over irregularly shaped regions proposed by Zhang et al.[44] achieves
384×288@7.14FPS with Dmax = 16 and 450×375@1.21FPS with Dmax = 60. Al-
though the processing speed performance of CPU is pretty bad, it has the advantage
of very good matching accuracy, which is often less than 10% average error rates.

GPU implementation is another platform for various algorithms development.
Yang et al.[42] proposed a global optimizing real-time algorithm (hierarchical belief
propagation) on a GeForce 7900 GTX GPU, which achieves 320×240@16FPS with
Dmax = 16; and its average error rate is 7.69%. Wang et al.[40] proposed an algorithm
based on adaptive aggregation and dynamic programming, achieving 320×240@43FPS
with Dmax = 16 on an ATI Radeon XL1800 GPU; but its average error rate is increased
a little to 9.82% compared with Yang’s work. Zhang et al.[46] implemented a vari-
able cross algorithm and an orthogonal integral image technique on GeForce GTX8800
GPU, which reached 384×288@100.9FPS with Dmax = 16 and 450×375@12FPS with
Dmax = 60 and error rate 7.60%. In current years, Humenberger at el.[17] improved
the Census Transform on GeForce GTX 280 GPU and reached 450×375@105.4FPS
with Dmax = 60 and error rate 9.05%. GPU implementations perform well till now,
but it is not the suitable solution for highly integrated embedded systems because of
the GPU’s high power and memory consumption.

DSP implementation is also investigated for applying stereo matching algo-
rithms. Chang et al.[3] propose a 4×5 jigsaw matching template and parallel process-
ing method to improve stereo matching performance on a VLIW DSP, which reaches
384×288@50FPS with Dmax = 16 and 450×375@9.1FPS with Dmax = 60, however,
the average error rate is high to above 20%.

The implementation types mentioned above are all software based platform, so that
the computing logic and data paths related with hardware resource and utilization
cannot be changed and configured, which means they do not have the potential for op-
timizing the existing algorithms. Moreover, these kinds of implementations all require
very high clock frequency and data throughput. Compared with these obvious disadvan-
tages, dedicated hardware design is taken into consideration for performance revolution
recently. A high performance stereo matching algorithm with mini-census transform
and adaptive support weight, as well as its corresponding real-time VLSI architecture
was proposed by Chang et al.[4], which is implemented with UMC 90nm ASIC and
achieves 352×288@42FPS with Dmax = 64. Jin et al.[20] designed a complete pipeline
hardware architecture with census transform and sum of hamming distances, which
achieves 640×480@230FPS with Dmax = 64 and average error rate 17.24%. Seen from
these two hardware implementations, their bottleneck is the on-chip memories which
limits the image resolutions, although they have notable performance. Zhang et al.[47]
implemented variable cross algorithm on FPGA, which achieves 1024×768@60FPS

10



with Dmax = 64 and average error rate 8.2%. Zhang’s work is excellent on both com-
putational speed and matching accuracy aspects, but the algorithm he uses is a local
algorithm, therefore it still has space for matching accuracy improvement. We list and
compare all of the above implementations with ours in Chapter 4.

2.2 Our Stereo Matching Algorithm

Most stereo matching algorithms generally perform the following steps or a subset
thereof, according to the taxonomy proposed by Scharstein and Szeliski[35]:

1. Matching cost computation

2. Cost aggregation

3. Disparity computation/optimization

4. Disparity refinement

For local algorithms, they often follow the steps as 1→2→3→4 with a simple Winner
Takes All (WTA) strategy. However, for global algorithms, they often follow the steps
as 1(→2)→3→4 to skip step 2 with global or semi-global reasoning. In our algorithm,
dynamic programming is a kind of global one, so we will omit step 2 and describe other
steps in the following subsections.

2.2.1 Matching Cost Computation

As introduced in the previous sections, the stereo pairs are matched in 1D along the
epipolar line. In fundamental stereo matching cost computation method, the corre-
sponding points in the reference frame to the points in the target frame are searched
pixel by pixel along the epiploar horizontal line within a certain disparity range, as
shown in Figure 2.1. In this fundamental searching method, the disparity range is

Figure 2.1: Fundamental stereo matching computation method

[0 . . . dmax], while dmax = 7 and total disaprity levels Dmax = 8. According to Equation
1.1, the disparity range d depends on the depth Z, the length of baseline B and the
focal length f . For a stereo pair, estimating the matching cost is defined as evaluating
the probability of each match in the disparity range, which means the matching cost is

11



inverse to the probability. In the fundamental pixel by pixel method, the matching cost
could be defined as Absolute difference, Squared Difference, Hamming Distance and so
on, no matter the frames are gray or RGB colored.

The absolute difference matching cost is measured by Equation 2.1;

Cost(x, y, d) = |I(x, y)− I ′(x− d, y)| (2.1)

The squared difference matching cost is defined by Equation 2.2;

Cost(x, y, d) = (I(x, y)− I ′(x− d, y))2 (2.2)

In the equation above, I refers to the gray-scale intensity of a pixel from the target
frame, while I ′ from the reference frame, and they have the relationship with the
disparity d as the equation shows. In the basic example, the stereo pairs are determined
by the minimum cost value as the Winner in WTA strategy, and the corresponding d
is the chosen disparity of the pixel p(x, y) in the target frame.

The hamming distance matching cost is what we use in our algorithm, which is
normally obtained from converted frames. The conversion procedure is performed by
converting the gray-scale intensity of each pixel into some kind of bit vectors. In
our algorithm we modify the Mini− CensusTransform proposed by Chang et al.[4]
to create our own Census Transform to do the conversion, and more detailed of the
converting algorithm are introduced in Chapter 3.

2.2.2 Disparity Computation/Optimization

This step is to search the best disparity assignment which minimizes a cost function
over the whole or subset of the whole stereo pair. We use a kind of semi-global algo-
rithm - scan-line optimization dynamic programming - to perform this procedure. This
algorithm searches for the best path within the Disparity Space Image (DSI) over the
stereo pair in one line using the pixel-based matching cost, as shown in Figure 2.2.

The parameter {pj|j ∈ [0,W − 1]} is defined as the pixels in one row of the target
frame, where W is the image width, and in this example W = 16. The chosen disparity
d(pj) is in a range of [0, D − 1], and D = 8 in this example. The matching cost of
pj at each disparity d is C(j, d), therefore, we obtain a W×D cost matrix, as shown
in Figure 2.2. The purpose of dynamic programming is to find an optimal path in the
matrix with following two stages.

First stage is updating the matrix from left to right (j = 1 to j = W − 1) in one
line according to Equation 2.3:

C(j, d) = C(j, d) + min
d′∈[0,D−1]

{C(j − 1, d′) + S(|d− d′|)} (2.3)

The cost term C(j, d) is to measure how well the assignment fits to the stereo pair,
while the smoothness term S(|d− d′|) is to penalize the disparity variations and large
variations are only allowed at depth borders, where d′ is the disparity of the previous
pixel. In the detailed case, the smoothness cost S(|d− d′|) has different computational
equations depending on different models. For the Potts model, the smoothness cost is

12



Figure 2.2: Scan-line optimization dynamic programming

computed as Equation 2.4:

S(|d− d′|) =

{
0, d = d′

C, d 6= d′
(2.4)

We see from Equation 2.4 that the smoothness cost of the Potts model depends only
on whether the disparity from the previous pixel is the same as the disparity from the
current pixel, so that the smoothness cost only has two possible values. For linear
model the smoothness cost is shown in Equation 2.5:

S(|d− d′|) = α|d− d′| (2.5)

We see that smoothness cost of the linear model depends on the difference between the
disparity from the current pixel and each disparity from the previous pixel, so that the
smoothness cost has D possible values, which is much more complex than the Potts
model on implementation especially for a parallel structure. The main target for this
first stage is utilizing Equation 2.3 to establish links between (j, d) and (j−1, d∗), where
d∗ is the chosen minimum d′.

Second stage is to track the so-obtained matrix from right to left to get the
optimized path. First, we obtain the entry point at the end of each line (W−1, d(pW−1))
according to Equation 2.6:

d(pW−1) = arg min
d′∈[0,D−1]

C(W − 1, d′) (2.6)

Starting from the chosen disparity of the entry point we traverse backward (from j =

13



W − 1 to j = 0) along the path built in the first stage, assigning a disparity at each
pixel, as shown in Figure 2.2. Then we obtain the disparity of every pixel and further
the whole depth map.

The computational complexity of the first stage is O(D2) utilizing a parallel struc-
ture according to Equation 2.4. Computational complexity directly affects hardware
resource usage, especially logic combinational circuit usage, so it is better to reduce it
by some optimization method. There is an envelope algorithm proposed by Pedro F.
Felzenszwalb et al.[11] to reduce the computational complexity from O(D2) to O(D),
however, this algorithm is computed in a serial way, which means we have to adopt a
serial structure to implement it. Considering our main bottleneck of implementation is
the calculation speed not the hardware resource, it has more benefit for us to choose the
parallel structure in the trade-off between hardware computational speed and hardware
resource usage.

2.2.3 Disparity Refinement

There is a limitation about disparity estimation, because there may not always exist
correspondences for every pixel in the target frame, such as Half-Occlusion pixels shown
in Figure 2.3. In Figure 2.3, the pixels of the camera legs in target frame of Tsukuba

Figure 2.3: Half-occlusion point in tsukuba

have no corresponding pixels in reference frame, because they are occluded by some
front objects, and we called them half-occlusion pixels. In this case, Consistency Check
procedure is often utilized to check these areas and make up them consistent. Before
consistency check, it is necessary to make sure the depth map from the reference frame
is also generated by the stereo matcher, then we could perform a target frame consis-
tency check (correcting left depth map with right depth map) and a reference frame
consistency check (correcting right depth map with left depth map) to fix detected
mismatches by surface fitting or distributing neighboring valid disparity estimates[35].

After the consistency check, the disparity map is not nice enough for use, there-
fore some additional techniques are utilized to improve the reliability and accuracy of
disparity map, such as Sub-Pixel Estimations [36] or Disparity Voting [28]. We choose
disparity voting in a support region for our system, and the support region is based

14



on luminance difference before dynamic programming, which we introduce in detail in
Chapter 3. Later after voting, it often has a final procedure of median filter to reduce
the salt and pepper noise and make the disparity map more smooth.

Our dynamic programming algorithm can generate the high-quality of depth maps
with the trade-off of increasing the computational complexity, however the computa-
tional complexity can be implemented and optimized on FPGA platform, therefore it
is possible to create a real-time and high-quality stereo matcher on FPGA using our
algorithm, and we have successfully performed it, whose evaluation is shown in Chapter
4.

2.3 Design Targets

For our total system has both real-time and accuracy requirements, we need to consider
several aspects to suit our design targets on FPGA platform:

1. Real-time implementations

Our design should at least process 60 frames per second with configurable resolu-
tions including high-definition resolution.

2. Accurate matching

Our design should achieve less than 7% average error rate

3. Implementation complexity

Our implementation should utilize only basic arithmetic blocks such as adders and
comparators, and not employ complex blocks such as multipliers and dividers.

4. Memory usage

Our FPGA prototyping implementation should reduce the memory utilization as
low as possible for aiming at further ASIC implementation, and in detail the usage
should not be over 50% of total memory on FPGA.

5. Implementation without IP

Our architecture should be built on transparency models without IP for aiming
at ASIC implementation and customers.

The advantage of FPGA or ASIC platform is the excellent flexibility in architecture
design which decides the logic and data path. Therefore it provides the potential
optimization and possible most efficient design environment. According to the related
research and investigation, it is the customized hardware design that could lead us
to the most suitable approach for our dynamic programming algorithm and parallel
pipelined architecture. We choose the FPGA prototyping platform because of its highly
configurable properties and great hardware resources for our huge parallel structure.
Our FPGA board is Terasic DE3, which contains an Altera EP3SL150 FPGA core chip
and a lot of peripherals such as JTAG UART port, DDR2-SDRAM, DVI extension
borad, usb port, SD card port etc.

15



16



Stereo Matching Algorithm
Hardware-Oriented
Optimization and
Implementation 3
This chapter discusses in detail the algorithm we adopt for stereo matching, which is a
mixture of a global[16] and a local algorithm[44]. The global one is applied on dynamic
programming part, while the local one is utilized on refinement part. We do some
modification on our algorithm to make it more hardware friendly, such as modifying
census transform, changing architecture, reconfiguring parameters etc. For our whole
hardware architecture, we take the pipeline structure to obtain the best data processing
throughput across all the blocks under the pixel rate clock frequency, which means in
such clock frequency there is one pixel going into the stereo matcher while there is one
depth result coming out of the stereo matcher every clock cycle. That whether the
processing is in scan-line order or not depends on our hardware critical path, which we
discuss in detail in later sections.

We will discuss our algorithm modification and hardware architecture design in
a top-down approach. Section 3.1 introduces the complete parallel and pipeline data
processing structure of our stereo matcher. Section 3.2 introduces the algorithm modifi-
cation of the hardware model compared with the software model. Section 3.3 introduces
our design of stereo matcher function block one by one.

3.1 Parallel and Pipeline Architecture of Stereo Matching

The basic stereo matching processing is a nesting loop on pixels and disparities, which is
shown in Figure 3.1. Obviously the disparity loop of computing costs is the bottleneck of
an effective computation, and it is also this loop that makes stereo matching very slow,
especially when the stereo videos have large disparities. However, the sequential data
flow has advantages: on one hand it saves hardware resources because every disparity of
each pixel has to reuse the same resources, on the other hand it is a friendly structure for
algorithm optimization and data compression. Consequently, such sequential structure
is widely used in software based platform for not real-time application.

The content is different in configurable hardware platforms, rich in hardware re-
sources and flexible architecture building, so that it is not necessary to reuse the hard-
ware resources as the sequential structure does. We hence unroll the computational
loop and adopt a parallel architecture as shown in Figure 3.2. Seen from the parallel
structure, we unroll the disparity loop for each pixel and compute the corresponding
costs independently at the same time in parallel to speed up our total computation
procedure. The number of parallel paths is the maximum disparity, which is unlimited
in the algorithm, but limited by the total hardware resources on FPGA board.

17



Figure 3.1: Sequential stereo matching data flow

Figure 3.2: Parallel stereo matching data flow

The structure shown is only for stereo matching part, and actually the total system
is more complex including synchronization, RGB-YUV converter, stereo matcher, DDR
scheduler, viewpoint interpolater, anaglyph creator, etc., which is discussed in Chapter
5. The total system is also used for stereo matching verification, and we are assuming
here the other parts work fine to provide an ideal environment of pipeline processing.
Under such conditions, the functions of stereo matcher is shown in Figure 3.3. Take
Tsukuba as an example, the rectified stereo gray-scale frames go into the stereo matcher,
and the data width of pixels from left and right frames are 16 bits. After median filter,
support region builder and census transform, the 84 bits data of transformed census
vectors and support region arms from left and right frames are passed to reorder for
further processing. Reorder, raw cost scatter, dynamic programming, post reorder and
disparity output logic are main function blocks of dynamic programming; they work
out the depth map together using scheduled dynamic programming algorithm which
is hardware and resource usage friendly. The 64 bits data generated by the scheduled

18



Figure 3.3: Pipelined stereo matching functions

dynamic programming goes into the refinement procedure, which is mainly used to
make up the raw depth map, i.e. check and correct occlusion parts and voting for
most frequently used disparity. After that the left and right depth maps are generated
as the luminance 16 bits data. The total stereo matching is configurable for run-time
parameters using control registers, which is convenient for setting resolution, maximum
disparity and some threshold used in algorithm.

In the following section, we discuss the modification from the original algorithm of
the software model to the hardware friendly algorithm. These modifications change the
functions of algorithm because of hardware limitation or optimization, and we provide
the comparison and evaluation of each modification.

3.2 Algorithm Modification from Software to Hardware

The software model is suitable for algorithm development or research, because it is
a very flexible platform to make your thought into reality model without considering
anything else. However, for the hardware model it is often considered more, such as
computation complexity, hardware limitation and hardware optimization, so there are
a lot of differences between software and hardware model. The disparity loop unrolling
introduced in the last section is also a type of difference, but that doesn’t change the
main function of algorithm. In this chapter, what we discuss is called a modification,

19



which is actually changing the function to be more hardware friendly.

3.2.1 Vertical Cost Aggregation Modification

The software model proposed by Zhang et al.[44] computes the four direction arm
lengths of each pixel to construct the support region for voting, which we discuss
in detail in Section 3.3. The support region is shown in Figure 3.4. The vertical

Figure 3.4: Vertical cost aggregation in support region

cost aggregation is one step before dynamic programming processing, which is used
to include more vertical relative luminance values to improve the quality of dynamic
programming. In Figure 3.4, the aggregation area is the shadowed rectangular, whose
number is a parameter limited by hardware resources, and after aggregation the total
value need to be weighted by aggregated pixel numbers:

C(p, d) =

∑v+p

i=−v−p
C(p+ i, d)

v+p + v−p
, d∈[0, dmax] (3.1)

In hardware implementation, building vertical windows will cost lots of line buffers,
whose number depends on the vertical span of the window size, which we introduce
in Section 3.3. The default vertical span for vertical cost aggregation is 5, so it has
to spend 4 line buffers for that. Moreover, the structure we would like to implement
on FPGA is parallel, which means it will cost at least 4×Dmax line buffers for vertical
cost aggregation. Assuming the frame width is 1024 and the cost is 3 bits using mini-
census transform[4], the total on-chip memory usage on vertical cost aggregation will
be Dmax×12Kbits. For a classical stereo matcher, the maximum disparity Dmax should
be at least 64, so that it will cost 768Kbits on-chip memory totally, which is not a small
memory usage in our FPGA board.

Considering the point above, the hardware implementation doesn’t adopt vertical

20



cost aggregation, and utilizes the concatenation census vector instead with the com-
pletely same result, which we are going to introduce next.

3.2.2 Census Transform Vector Modification

3.2.2.1 Census Transform

Census transform is a kind of non-parametric local algorithm, which depends on the
local pixel luminance values in a relative local window, and not on the pixel lumi-
nance itself, as shown in Figure 3.5. The direct result of census transform is that the

Figure 3.5: Census transform in a 3×3 window

transformed vector attaches the structure information, as shown in Figure 3.6.
The main advantages of the census transform is increasing the robustness near

the edge of objects where depth discontinuities occur. The stereo videos from stereo
cameras often have gain and bias variations, and in such conditions the census transform
is also good to reduce the effects of these variations. The main disadvantage of census
transform is the original information attached to each pixel is weakened, but for our
scan-line dynamic programming algorithm, the structure information is more important
to increase the area smoothness than the luminance value itself. Another disadvantage
is that the census transform often generates a long vector consuming many data, which
depends on the window size and sampling pattern. For instance, a 3×3 window shown
in Figure 3.5 will generate 8 bits census vector, however, a 5×5 window will generate 32
bits vector. The increase of vector length is exponential to the increase of window size
when referring to all the neighboring pixels, which will consume too much hardware
resources, so it is necessary to choose a hardware-friendly window size and census
sampling pattern. In this thesis work, we take the window size by 5×5 for a single

21



(a) Tsukuba original image (b) Tsukuba census transform vector

Figure 3.6: Tsukuba census transform in a 3×3 window

central pixel, while take the sampling pattern by mini-census transform, which we
introduce in detail next.

3.2.2.2 Census Transform Hardware Friendly Modification

The census transform hardware friendly modification has two separated parts, one is the
sampling pattern selection, the other is the census vector concatenation optimization
to replace the vertical cost aggregation.

In this work, we use the mini-census transform sampling pattern proposed by Chang
et al.[4], as shown in Figure 3.7. Utilizing this mini-census transform, the luminance

Figure 3.7: Mini-census transform sampling pattern

value of each pixel is converted into a 6 bits vector, which saves very much data width
compared with the full neighbor sampling pattern (32 bits). Moreover, the mini-census
consumes less data width of raw cost which is the result of the following function block.
For instance, the maximum raw cost extracted from luminance difference is 255 (8
bits), while the one extracted from the mini-census vector is only 6 (3 bits). So the
data width for raw cost is significantly reduced using mini-census transform vector.

22



For the memory hungry vertical cost aggregation block mentioned in Section 3.2.1,
we could also use census vector concatenation method instead:

CT (v1) + CT (v2) + CT (v3) + CT (v4) + CT (v5) = CT (v1&v2&v3&v4&v5) (3.2)

In Equation 3.2 CT is the census transform calculation. Because the raw cost cal-
culation of the census vector is hamming distance calculation, the cost aggregation
procedure is the hamming distance aggregation, which could be replaced perfectly by
computing the hamming distance of concatenation census vector once according to the
property of the hamming distance. This equivalent replacement is shown in Figure 3.8.

Figure 3.8: Replacement of vertical cost aggregation with census vector concatenation

3.2.3 Parameters and Multipliers Modification

Stereo matching is a complex system, and there are a lot of parameters configurable for
it. In the software model performed by C++, a number of weighted or floating point
parameters are applied to the stereo matching, furthermore, many multipliers as the
attachment are adopted for setting them. However, those floating point parameters
and multipliers are not friendly to our hardware implementation at all, which also obey
our original target of building a simple system for ASIC. So the hardware friendly
modification here is to convert weighted parameters to unweighted ones, and use the

23



shifter and adder to build a basic multiplier, thus we could control the priority of more
complex multiplier structure or more accurate result, which is a resource-accuracy
trade-off.

In the following section, we divide the total algorithm by blocks and present them
together with the related hardware design. We also provide every possible parameters
setting, corresponding latency and on-chip memory usage for reference of each block.
The latency computation is based on the required delay and pipeline stages, and the
former is related with block functions such as line buffer delay and read latency, while
the latter is related with timing analysis of each block to schedule critical paths. The
on-chip memory usage from each block is useful for further memory optimization in
ASIC design.

3.3 Stereo Matching Design

The high level architecture of stereo matcher is shown in Figure 3.9, including data
flow, data width and colored function segment sets. The yellow set is the image source
and sink, where the luminance values go into stereo matching while depth map (dis-
played by luminance) comes out. Considering left and right frames and depth maps
of real-time video, the throughput of stereo matching is 16 bits at 65MHz pixel rate
(1024×768@60FPS) or more. The green set is some optional segments which could
help to improve the performance when encountering particular bottlenecks, e.g. the
median filter in the beginning could remove noise if the input stereo video is imperfect,
and the reorder could improve critical path problems when the disparity range is pretty
high. Adding or removing these optional segments will not effect the final result if there
are not such bottlenecks. The blue set is pre-processing part for stereo matching, for
the census transform generates census vectors prepared for dynamic programming while
the support region builder generates arm lengths and 2D regions prepared for voting.
The orange set is the core processing part: the dynamic programming. Its incoming
is concatenated census vector from left and right census transform, while its outgoing
is fundamental depth map for refinement. The pink set is the refinement part, which
makes up the fundamental depth map to generate the final left and right depth map.
The gray set is synchronization part used to bypass the arm lengths and synchronize
them with corresponding pixels in order to make sure the correct information arrives
at the correct place at the correct time.

3.3.1 Median Filter

The median filter is utilized to filter speckle noise such as ’salt and pepper’ noise, as
shown in Figure 3.10. If a 3×3 window is applied, the abstract function of a median
filter can be seen in Figure 3.11. The input data stream of median filter is luminance
value from original stereo video in scan-line order, and after being processed the noise
filtered luminance value comes out also in scan-line order synchronized with the input
pixel rate. The left and right data flows are processed independently using two parallel
median filters. The implementation of median filter should be divided into two main
parts: one is building a window, the other is obtain the median value in this window.

24



Median Filter

(Optional)

Median Filter

(Optional)

Census Transform 

& Support Region 

Builder

Census Transform 

& Support Region 

Builder

Luminance 

(Left & Right)

8 bits8 bits

8 bits 8 bits

(30+16) bits (30+16) bits

Reorder

(Optional)

Bypass 

FIFO

16*2 bits
30*2 bits

Raw Cost Scatter Raw Cost Scatter

30*2 bits 30*2 bits

Smooth Minimum 

Selector

Smooth Minimum 

Selector

Back Tracker Back Tracker

Back Track 

Reorder

Back Track 

Reorder

Disparity Output 

Logic

8 bits

5*D_MAX bits

(6*D_MAX+6) bits

8 bits

5*D_MAX bits

(6*D_MAX+6) bits

8 bits

16*2 bits 8 bits

Left-Right 

Consistency Check

Right-Left 

Consistency Check

Left Horizontal 

Disparity Voting

Right Horizontal 

Disparity Voting

Left Vertical 

Disparity Voting

Right Vertical 

Disparity Voting

Median Filter Median Filter

Left Depth 

Map

Right Depth 

Map

(8*2+16) bits (8*2+16) bits

(16+8) bits (16+8) bits

(8+8) bits (8+8) bits

8 bits 8 bits

8 bits 8 bits

Image Source & Sink

Optional Blocks

Pre-Processing

Dynamic Programming

Refinement

Synchronization

Stereo Matcher High Level Architecture

Figure 3.9: Stereo matcher high level architecture

Figure 3.10: Noise removed by median filter

25



3 9 1

2 18 16

1 7 11

3 111 2 7 181 9 16

Register Window & 

Anchor Pixel

Median Value

Figure 3.11: Median filter function

In this thesis work, the window size of our median filter is 3×3, and in order to keep
a continuous data flow we use the sliding window pixel by pixel, as shown in Figure
3.12. The 3×3 window slides over the complete frame and generates a new 3×3 pixel

1 9 8 7 0 6 0 9 3 5 1 1 5 ...

3 5 1 1 2 3 0 6 9 3 7 4 5 ...

1 9 8 6 0 4 0 8 1 3 5 1 1 ...

8 9 5 7 4 6 3 2 0 7 3 5 7 ...

6 8 3 4 8 2 4 7 9 0 3 2 7 ...

5 3 3 7 8 9 9 0 2 5 0 2 1 ...

... ... ... ... ... ... ... ... ... ... ... ... ... ...

Horizontal Pixel Order

Vertical

Pixel

Order

Figure 3.12: Sliding window in median filter in scan-line order

array in every valid pipeline cycle, and the boundary pixels are skipped over the sorting
part therefore not filtered. It is necessary to utilize line buffers to save pixels in whole
lines in order to construct the vertical part in a sliding window, as well as shift registers
to build the horizontal part. The detailed RTL architecture is shown in Figure 3.13.

For building a 3×3 window, 2 line buffers of on-chip ram and 3×3 shift register array
are used. The 2 line buffers are used to store 8 bits luminance of 2 lines corresponding
to the top 2 lines of the window, and the depth of a line buffer depends on the maximum
possible frame width (FW), e.g. the depth of the line buffer we used is 1024 so that
any frame width lower than 1024 could be supported by this line buffer. The register
array is adopted to save luminance value of the window for further use, where WinReg4
saves the anchor pixel. The registers near the input are for balancing the read latency
of on-chip ram (2 cycles). The counter cyclically counts (0∼FW − 1) to read data out
and write data in by providing read and write addresses for line buffers. The delay line

26



Delay Line
Row Index 

Counter

Reg Reg

WinReg0 WinReg1 WinReg2

WinReg3 WinReg4 WinReg5

WinReg6 WinReg7 WinReg8

Line Buffer

D_Wr

A_Wr

D_Rd

A_Rd

Line Buffer

D_Wr

A_Wr

D_Rd

A_Rd

Data

(x,y)

(x+1,y-1) (x,y-1) (x-1,y-1)

(x+1,y) (x-1,y)

(x+1,y+1) (x,y+1) (x-1,y+1)
Median Filter

Figure 3.13: Median filter RTL architecture

is utilized for avoiding to overwrite the unread data in the same line buffer.
After building sliding window, the 9 luminance values in it go into a module to

obtain their median value. The RTL architecture utilized by us is proposed by Vega-
Rodriguez et al.[39], as shown in Figure 3.14. Totally 19 comparators 38 multiplexers

WinReg0

WinReg4

WinReg8

WinReg1

WinReg2

WinReg3

WinReg5

WinReg6

WinReg7

Median

A

B

Larger

Smaller

Pipeline Stage 1 Pipeline Stage 2 Pipeline Stage 3

Figure 3.14: Median filter sorting

are used in this structure to sort the median value, and the basic segment shown in
the top-right corner is composed of 1 comparator and 2 multiplexers for 2 unsigned
inputs. The whole procedure is divided into 3 pipeline stages, which means this sorting

27



segment has 3 cycles latency.
The total latency (the valid cycles used to obtain output from input) and memory

usage for median filter are shown in Table 3.1. The latency is the valid cycles used to

Latency (cycles) Memory usage (bits)

Line Buffers FW 2×2×FW×8

Input Registers 2 0

Buffer Window 2 0

Sorting Array 2 0

Total FW + 6 32×FW

Table 3.1: Median filter latency and memory usage

obtain output from input for each block, while the memory usage includes the parallel
median filter, and in the next blocks the memory usage calculated in the tables includes
all the parallel segments, not the single one. The complete quantitative reports about
the latencies and memory usage of every stereo matcher segments are listed in Chapter
4.

3.3.2 Census Transform & Support Region Builder

According to our concatenated census transform shown in Figure 3.8, the input lumi-
nance is transformed into a 30 bits vector considering vertical concatenation, which
needs also a sliding window. The implementation of the census transform is also di-
vided into two steps: one is constructing sliding window using line buffers and shift
register array, the other is obtaining the census vectors by comparing neighboring pix-
els with vertical center anchor pixels according to the mini-census transform pattern
and concatenating them. The first step uses the same architecture with median filter
to build the sliding window, while the second step just applies comparators onto the
register array obtained in the first step. Moreover, the first step shares the hardware
resources with support region builder, because they share the same sliding window.

The support region builder is used to build a region with similar luminance for
refinement, so it does not contribute to the dynamic programming. The key procedure
of building a support region for an anchor pixel p is to determine its arm length in four
directions, as shown in Figure 3.15. The intersection pixel of two orthogonal lines is
called the anchor pixel, for which the support region is building. In the figure the anchor
pixel p is the intersection of V (p) and H(p). Each anchor pixel has four direction arm
lengths, i.e. {h−p , h+p , v−p , vp+} for p are the arm length of the left, right, up and down
directions. The support region building depends on the luminance difference between
the pixels in the two orthogonal lines and the anchor pixel, therefore the largest span
in four directions is determined as:

r∗ = max
r∈[1,L]

(r
∏

i∈[1,r]

δ(p, pi)) (3.3)

In Equation 3.3, r∗ is the largest span; pixel pi = (xp − i, yp) and constant L is the
maximum allowed arm length, which is a configurable parameter of support region

28



Figure 3.15: Support region of the anchor pixel p

builder; δ(p, pi) is the luminance difference between pixel p and pi based on another
configurable parameter τ , which controls the luminance difference degree:

δ(p1, p2) =

{
1, |Y (p1)− Y (p2)| ≤ τ
0, otherwise

(3.4)

The parameter τ has various performance implications according to the applications
and image texture. According to the four arms provided, the total horizontal span and
vertical span of anchor pixel p are:{

H(p) = {(x, y) |x ∈ [xp − h−p , xp + h+p ], y = yp}
V (p) = {(x, y) |x = xp, y ∈ [yp − v−p , yp + v+p ]} (3.5)

Therefore, assembling all the horizontal arm lengths of the pixels on the vertical V (p)
builds the complete support region U(p) of pixel p. The built arm lengths then passes
dynamic programming by a bypass FIFO to prepare for voting.

The implementation of the support region builder is also divided into two main
parts: one is the building window and the other is comparing candidates with the
central pixel in the window to obtain the arm lengths.

The first window building step is similar with the window building of the median
filter, and the number of required line buffers depends on the parameter L. The maxi-
mum arm length L needs 2×L line buffers to provide a (2·L+ 1)× (2·L+ 1) window,
which is composed of shift register arrays. The optimized algorithm takes L = 15,
so the hardware implementation has to select 30 line buffers to build a 31×31 window
which is used by both the support region builder and the census transform. The second
step of these two segments are processed in parallel.

The second step is computing every δ(p, pi) in each direction in parallel by comparing
every pi with p simultaneously, and then passing the result into parallel priority encoders

29



to work out the largest span of each direction. The boundary problem occurs when the
central pixel is near the boundary, e.g. the anchor pixel is in the last line of one frame.
In such condition the window includes the pixels not belonging to the current frame,
and the row counter and the column counter are adopted to avoid those incorrect pixels
being processed.

The latency of census transform and support region builder is determined by the line
buffers and operation pipeline stages, and the detailed value is listed in Table 3.2. The
configurable parameters are listed in Table 3.3, and the effect of adjusting parameters
is discussed together in Chapter 4.

Latency (cycles) Memory usage (bits)

Line Buffers L×FW 2×2×L×FW×8

Input Registers 2 0

Buffer Window L 0

Comparators + Encoders 2 0

Total L×FW + L+ 4 32×L×FW

Table 3.2: Census transform and support region builder latency and memory usage

Parameters Current Value Description

L 15 maximum support region arm length

τ 15 luminance difference threshold

Table 3.3: Census transform and support region builder configurable parameters

3.3.3 Reorder

There is a loop for scan-line optimized dynamic programming, which cannot be un-
rolling to a parallel structure. The reorder kernel provides loop unrolling preparation
if the critical path of that loop cannot meet the pixel rate frequency. It is optional
because in most cases the maximum disparity is not too large and the pixel rate fre-
quency is not too high. However in some special applications or conditions such as
stereo matching for 1080p video with maximum disparity 256 or more, reorder is a nec-
essary kernel performing static scheduling to improve the critical path with the cost of
increasing on-chip memory utilization. In principal this loop unrolling is a space-time
trade-off.

In this design, the reorder is used after census transform to change the pixel (census
vector) flow order from scan-line order into line-based rotational order, as shown in
Figure 3.16. In this figure four lines are reordered, which means three other pipeline
stages are inserted into the loop, and each of these three stages is the point of other
loops, so the four loops are unrolled by each other. Pixel order is changed into this
line-based rotational order because dynamic programming uses pixel loop for each line.

The implementation of reorder is line buffers and counters. Assuming the number
of reordered lines is r, which is a configurable parameter to control the unrolling stages,
and r also influences the following design including the loop in dynamic programming.

30



A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 ...

... ... ... ... ... ... ... ... ... ... ... ... ... ...

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 ...

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 ...

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 ...

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 ...

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 ...

Horizontal Pixel Order

Vertical

Pixel

Order

Original Order: A1 A2 A3 A4 ... B1 B2 B3 B4 ... C1 C2 C3 C4 ... D1 D2 D3 D4 ... E1 E2 E3 E4 ...

New Order: A1 B1 C1 D1 A2 B2 C2 D2 A3 B3 C3 D3 A4 B4 C4 D4 ... E1 F1 ...

Figure 3.16: Reordered order of pixels

Then the number of line buffers is 2r to provide ping-pong buffering, and the depth of
the line buffers depends on the frame width, while the length of them is determined by
the width of census vector. The counters are the key segments used to write and read
pixels in the line buffers to change the data flow order, therefore the writing counter is in
scan-line order in the front buffer, while the reading counter is in line-based rotational
order in the back buffer.

The latency of reorder is determined by the line buffers and r, while the memory
usage depends on the line buffers, r and data width of census vector (DW CV), and the
detailed value is listed in Table 3.4, The configurable parameters are listed in Table 3.5,
and r = 1 means currently reorder is not used in our system, thus there is no latency
and memory usage for this kernel.

Latency (cycles) Memory usage (bits)

Line Buffers r×FW 2×r×FW×2×DW CV

Buffers Reading 2 0

Total (for r > 1) r×FW + 2 4×r×DW CV×FW
Total (for r = 1) 0 0

Table 3.4: Reorder latency and memory usage

31



Parameters Current Value Description

r 1 reordered line number

Table 3.5: Reorder configurable parameters

3.3.4 Raw Cost Scatter

The raw cost scatter is used to calculate all the raw costs between left frame and right
frame pixels in the disparity range, thus the disparity parallel structure starts with this
kernel. It prepares for dynamic programming, and its structure is influenced by the
reorder parameter r, as shown in Figure 3.17. We assume in Figure 3.17 the maximum

CV[B(x+1)] CV[A(x+1)] CV[B(x+2)] CV[A(x+2)]

CV[A(x-2)] CV[B(x-1)] CV[A(x-1)] CV[Bx]

Reordered 

Left Frame

Reordered 

Right Frame

CV[Ax]

Hamming Distance

Rawcost 

d0

Rawcost 

d1

Rawcost 

d2

CV[A(x-2)] CV[B(x-1)] CV[A(x-1)] CV[Bx] CV[Ax]

RegL0RegL1RegL2RegL3RegL4

RegR4RegR5RegR6RegR7RegR8 RegR0RegR1RegR2RegR3

CV[A(x-2)] CV[B(x-1)] CV[A(x-1)] CV[Bx]

Reordered 

Right Frame

Reordered 

Left Frame

CV[Ax]

Hamming Distance

Rawcost 

d2

Rawcost 

d1

Rawcost 

d0

CV[A(x-2)] CV[B(x-1)] CV[A(x-1)] CV[Bx] CV[Ax]

RegL0RegL1RegL2RegL3RegL4

RegR4 RegR0RegR1RegR2RegR3

Left Frame Parallel Raw Cost Scatter

Right Frame Parallel Raw Cost Scatter

Figure 3.17: Raw cost scatter RTL architecture

disparity Dmax = 3 and reordered lines r = 2. The raw cost kernel generates costs
for all disparities in parallel, and the structures are different for left and right frame
because the searching ranges for left and right frame pixels are in different direction
i.e. left searching direction for target frame pixels and right searching direction for
reference frame pixels, but the principle of them are the same, and in this section the
left frame parallel raw cost scatter is taken as the instance. The input data stream for
this module is the reordered census vector cvp(x, y) from left frame pixel p(x, y) and
cvp′(x

′, y′) from right frame pixel p′(x′, y′). Because the x′ is in the searching range from
x to x − (Dmax − 1) in the left direction of x, the cvp(x, y) goes into a r×(Dmax − 1)
length shift register array, while the cvp′(x

′, y′) goes into a 2r×(Dmax − 1) length shift
register array for parallel hamming distance calculation. After a certain pipeline cycle,
the raw costs for p(x, y) for all disparities from 0 to (Dmax − 1) is obtained:

C(p, d) = HammingDistance(cvp(x, y), cvp′(x− d, y)), d ∈ [0, Dmax − 1] (3.6)

32



The first r×Dmax shift registers for left and right census vectors input in the left frame
parallel raw cost scatter is for synchronization to make sure the pipeline latency is the
same with right frame parallel raw cost scatter, because for the anchor pixel p′(x′, y′)
in the right frame the x is in the searching range from x′ to x′ + Dmax in the right
direction of x′.

The synchronized final latency of raw cost scatter is determined by Dmax and r,
as shown in Table 3.6. In addition, the neighboring pixels continuity check prepared

Latency (cycles) Memory usage (bits)

Shift Registers r×(Dmax − 1) 0

Hamming Distance Calculation 2 0

Total r×(Dmax − 1) + 2 0

Table 3.6: Raw cost scatter latency and memory usage

for dynamic programming is performed in this kernel using a configurable parameter
continuity threshold thc, which is listed in the dynamic programming parameter table.

3.3.5 Dynamic Programming

3.3.5.1 Smooth Minimum Selector

Smooth minimum selector is the first step of dynamic programming:

C(j, d) = C(j, d) + min
d′∈[0,Dmax−1]

{C(j − 1, d′) + S(|d− d′|)} (3.7)

It is used to construct every smooth paths of every pixels in each disparity by configuring
the smoothness term. There is a loop in the Equation 3.7 that the cost of current pixel
C(j, d) is determined by the sum of the cost of previous pixel in every disparity C(j, d′)
and smoothness term S(|d− d′|). In this real-time implementation, we adopt the pixel
rate frequency which is 65MHz for 1024×768@60FPS, so that in one cycle we need to
perform the function of C(j, d)+mind′∈[0,D−1]{C(j−1, d′)+S(|d−d′|)}, which includes
adders and comparators, as shown in Figure 3.18. It is disparity parallel structure for
calculation, so all the array signals include the corresponding signals in all disparities.

For the Potts model design, the upper part is the main loop composed by adder
array, minimum selector array and registers, and the minimum selector has a tree
structure, as shown in Figure 3.19. The coming in data stream for this tree structure
minimum selector is all costs in disparity range, and for each cost a disparity value as a
property is attached. After log2Dmax levels of comparison, the final minimum cost as
well as its attached disparity is obtained in the output. Therefore in one pixel rate cycle,
dynamic programming performs one loop including two levels of adders and log2Dmax

levels of comparators. In normal cases, the Dmax is not very large, e.g. Dmax = 64
in our system meets the most applications, and then this loop could be completed in
one cycle. However for special applications which require a very large disparity range,
e.g. Dmax = 256 or more, the reorder kernel needs to be adopted to unroll this loop
into more clock cycles, and correspondingly more pipeline stages need to be designed
in the loop to fit the unrolling pixel order. From the Synplify report, our worst path

33



Adder Array Smooth Array

Minimum 

Selector Array

Adder Array Cost ArrayDisp Array

Reg

Cost Array

Cost Array

Smooth Minimum Selector

(Linear Model)

Adder Array Smooth Array

Comparator

Array

Adder Array Cost Array

Minimum 

Selector

Reg

Disp Array

Reg

Disp Array

Cost Array

Disp of Current 

Minimum Cost

Cost Array

Cost Array

Smooth Minimum Selector

(Potts Model)

Minimum 

Selector

Reg

Minimum 

Selector

Reg

Disp Array

Cost Array

Disp of Current 

Minimum Cost

Reg

Figure 3.18: Smooth minimum selector RTL architecture

is this loop whose propogation time is 13.812ns, which means the estimated frequency
of our stereo matcher is 72.4MHz. Currently the stereo matcher operates on 65MHz
pixel rate frequency for 1024×768@60FPS, therefore only one pipeline stage (register)
in the loop is enough for operation and we don’t need the reorder kernel to optimize
the critical path.

For the linear model design, the basic principle of the loop is the same, and the only
difference is the minimum selecting part, because their smoothness term is different.
The smoothness term for the linear model has Dmax different values for all disparities
d′ ∈ [0, Dmax − 1] in Equation 3.7, so that Dmax parallel tree structure minimum
selectors are used to implement the equation, which includes D2

max comparators, and
the computational complexity is O(D2).

The smoothness term for the Potts model only has two 2 different values for all
disparity d′ ∈ [0, Dmax−1], so that we optimize the parallel structure into a more serial
one, which is firstly using a tree structure to select minimum cost and then starts the
parallel comparison with original values for d′ ∈ [0, Dmax − 1]:

C(j, d) = C(j, d) + min
d′∈[0,Dmax−1]

{C(j − 1, d′), min
d′∈[0,Dmax−1]

{C(j − 1, d′)}+ C} (3.8)

34



Disp 0 Cost 0 Disp 1 Cost 1 Disp 2 Cost 2 Disp 3 Cost 3

Disp m Cost m Disp n Cost n

Disp x Cost x Minimum Selector

Figure 3.19: Minimum selector tree structure

This modified implementation only includes 2·Dmax comparators with the computa-
tional complexity O(D), however, it will increase the length of critical path by adding
a level of comparators, which is a time-resource trade-off. In our system, the modi-
fied longer critical path can still meet the pixel rate clock cycle, so that we adopt this
optimized implementation to save hardware resources. The constant C is a parameter
for smooth cost in the Potts model and depends on the continuity threshold thc that
checks neighboring pixel continuity. Its main function is to reduce the smoothness near
the boundary.

The bottom part is preparing for the second step of dynamic programming and is
completely the same for the Potts model and linear model, which is used for outputting
disparity matrix and selecting the minimum cost in the disparity range of every pixel.
This minimum cost is only used in the last pixel of each line, because the second step of
dynamic programming is a back tracking procedure along the saved disparity matrix,
which means every disparity selection of each pixel depends on the previous selected
value, and this value provides the beginning value of this tracking.

The latency of smooth minimum selector depends on the pipeline stages designed
in the whole calculation procedure and there is no memory usage in smooth minimum
selector, as shown in Table 3.7, and the parameters of smooth minimum selector is
listed in Table 3.8.

Latency (cycles) Memory usage (bits)

Loop 1 0

Minimum Cost Selector 1 0

Total 2 0

Table 3.7: Smooth minimum selector latency and memory usage

35



Parameters Current Value Description

thc 15 neighboring pixels continuity check threshold

C 25(continued)/5(discontinued) smooth cost for Potts model when d6=d′

Table 3.8: Smooth minimum selector configurable parameters

3.3.5.2 Back Tracker

Back tracker is the second stage of dynamic programming:

d(pW−1) = arg min
d′∈[0,D−1]

C(W − 1, d′) (3.9)

It is used to track the disparity matrix obtained by the first stage backward to fetch a
smooth disparity path for one line. In the first stage every disparity of every pixel in
one scan-line has a corresponding smooth disparity of the previous pixel. This disparity
matrix is saved in the back tracker and is tracked from the minimum cost disparity of
the last pixel in one scan-line, which is also obtained in the first stage. So in this
kernel a lot of on-chip memory is used to save the disparity matrix and minimum cost
disparity, and the RTL architecture of back tracker is shown in Figure 3.20.

Back Tracker

Memory for 

minimum disp 

& Reorder

Memory for 

disp array & 

Reorder

Selector

Reg

Disp Selector

Reg

Reg

Disp Array

Disp

Disp of Current Minimum Cost Disp Array

Minimum Disp

Sel

Last Selected 

Disp

Figure 3.20: Back tracker RTL architecture

36



The top two on-chip memory is used to store the results of smooth minimum selector,
where the left RAM is to store the minimum costs of every pixel and the right RAM is to
save the disparity matrix for tracking. In the left RAM, only the last pixel of each line
refers to its value, however the minimum costs of a whole scan-line is stored to easily
keep synchronization with the right RAM using the same address counter. Another
function of these two RAMs is to change back the modified pixel order into backward
scan-line order because the procedure of back tracking is tracking from the last pixel of
each line to the first pixel of this line using ping-pong buffering. The selector under the
left RAM is a multiplexer to choose between minimum cost disparity at the last pixel
of each line and last selected smooth disparity at the other pixels of each line. Here it
is another loop for back tracking one after another to select the smoothest path, and
the input is not the unrolled order but the normal scan-line order, so that it has only
one pipeline stage in the loop. Thereafter, disparity selector chooses the next smooth
neighboring pixel disparity according to the disparity matrix and last selected disparity
to start the next cycle. The bottom register is used to store the last selected disparity
as well as the minimum disparity of the last pixel of each line, because the latter is not
chosen by the disparity selector but the selector under the minimum disparity memory.
Accordingly for the last pixel of each scan-line, the selector also offers its result to the
bottom register to keep this minimum disparity.

The latency of the back tracker depends on FW , r and the pipeline stages, and
there is a lot of memory usage in this kernel, which is determined by FW , Dmax and
r, as shown in Table 3.9. There is no configurable parameters for back tracker.

Latency (cycles) Memory usage (bits)

Buffers r×FW 2×2×r×FW×(Dmax× log2Dmax + log2Dmax)

Buffers Reading 2 0

Tracking Selection 1 0

Total r×FW + 3 4×r×(Dmax× log2Dmax + log2Dmax)×FW

Table 3.9: Back tracker latency and memory usage

3.3.5.3 Back Track Reorder

The output of the back tracker is the backward order of scan-line, and this back track
reorder is used to change the backward order back into forward order in one scan-line
using ping-pong buffering. The implementation is just line buffers and counters, which
is almost the same with reorder. But unrolling has been terminated in the back tracker
block, so the parameter r has no influence with the latency and memory usage in back
track reorder, as shown in Table 3.10.

The result of the back track reorder are the left and right depth maps of dynamic
programming, as shown in Figure 3.21. We see from the depth maps there are some
stripe noise and point noise, and the former is produced by the incorrect matching of
this scan-line optimized dynamic programming, while the latter is generated by the
incorrect matching in the occlusion areas. The quality of the depth maps is improved
in refinement by removing these two kinds of noise.

37



Latency (cycles) Memory usage (bits)

Buffers FW 2×2×FW× log2Dmax

Buffers Reading 2 0

Total FW + 2 4× log2Dmax×FW

Table 3.10: Back track reorder latency and memory usage

(a) Tsukuba left original image (b) Tsukuba right original image

(c) Tsukuba dynamic programming left depth map (d) Tsukuba dynamic programming right depth map

Figure 3.21: Tsukuba left and right depth maps generated by dynamic programming

3.3.6 Bypass FIFO and Disparity Output Logic

The arm lengths generated in the support region builder is not used in dynamic pro-
gramming, and bypass FIFO is used to pass the eight arm lengths (32 bits) for both left
and right frame pixels by dynamic programming for refinement. Actually, the bypass
FIFO is a two port RAM without read address and write address, but read enable and
write enable instead following the first in first out order.

The latency of bypass FIFO mainly depends on the sum of reorder latency, raw cost

38



scatter latency and dynamic programming latency:

lfifo = r×FW + 2 + r×(Dmax − 1) + 2 + 2 + r×FW + 3 + FW + 2

= r×(2×FW +Dmax − 1) + FW + 11
(3.10)

The memory usage of the bypass FIFO is determined by its latency, which is the number
of data it needs to store at least, as shown in Table 3.11.

Latency (cycles) Memory usage (bits)

FIFO lfifo lfifo×32

FIFO reading 1 0

Total lfifo + 1 lfifo×32

Table 3.11: Bypass FIFO latency and memory usage

Bypass FIFO has no write latency, which is the same with reorder, so that the
input data for both of them is synchronized. However bypass FIFO has one cycle of
read latency when the read enable signal goes high, and back track reorder has no read
latency when its valid signal goes high, therefore the output data is not synchronized.
Disparity output logic is used to synchronize them by increasing one cycle latency for
the data from back track reorder. Its implementation is just using shift registers, and
its latency and memory usage is listed in Table 3.12. After the disparity output logic,
the synchronized data is then used for refinement.

Latency (cycles) Memory usage (bits)

Shift Registers 2 0

Total 2 0

Table 3.12: Disparity output logic latency and memory usage

3.3.7 Refinement

Refinement is the kernel sets making up the depth maps generated from dynamic pro-
gramming. It takes the left and right depth maps as well as the arm lengths of left and
right pixels to remove the stripe and point noises, and finally generates the smoother
left and right depth maps. It mainly includes consistency check, horizontal voting,
vertical voting and median filter.

3.3.7.1 Consistency Check

The stereo frames have occlusion areas both for left and right images, and we can show
these areas using occlusion map, as shown in Figure 3.22. In the occlusion maps, the
light areas are occlusion parts and are not reliable, thus the disparities in these areas
are not reliable either. The function of consistency check is to detect these occlusion
areas and modify them with the closest reliable disparities. The adjustment of reliable
disparity is given in Equation 3.11. In addition, the consistency check also makes up

39



(a) Tsukuba left occlusion map (b) Tsukuba right occlusion map

Figure 3.22: Tsukuba left and right occlusion maps

the corresponding unreliable boundaries (left boundary of left depth map and right
boundary of right depth map) by replacing them with the nearest reliable disparities
in the same scan-line.{

|D(x, y)−D′(x−D(x, y), y)|≤thcc, left
|D′(x, y)−D(x+D′(x, y), y)|≤thcc, right

(3.11)

The RTL architecture of the consistency check for both left and right is shown in
Figure 3.23. The difference between left and right consistency check is that the left and

Read Address 

Generator

Right Disp

Left Disp

Delay Line

Consistency 

Check
Disp_cc

Disparity 

Buffer Left

D_Wr

A_Wr

D_Rd

A_Rd

Disparity 

Buffer Right

D_Wr

A_Wr

D_Rd

A_Rd

Circular 

Address 

Counter

L-R Consistency Check

Figure 3.23: Consistency check RTL architecture

right input is exchanged, and we take the left one as the instance. The circular address
counter generates addresses to write left and right disparities into disparity buffers.
The length of disparity buffers must not be shorter than Dmax to make sure x−D(x, y)
can be obtained. The read address generator fetch D(x, y) from left disparity buffer

40



and then uses the fetched value to obtain D′(x−D(x, y), y) from right disparity buffer.
However, this serial procedure generates a reading time difference between these two
disparity buffers, and the delay line is used to synchronize them for consistency check.
The consistency check segment is composed of comparators and multiplexers to realize
the comparison and replacement as well as update the closest reliable disparity. In
addition, the arm lengths for voting is bypassed by buffers and shift registers.

The latency and memory usage of the consistency check depends on Dmax and
implemented pipeline stages, as shown in Table 3.13. The parameters of the consistency
check is shown in Table 3.14.

Latency (cycles) Memory usage (bits)

Disparity Buffers Dmax 2×2×Dmax× log2Dmax

Buffers Reading 2 0

Delay Line 2 0

Consistency Check 1 0

Bypass Buffer Dmax + 5 (parallel) Dmax×32

Total Dmax + 5 (4× log2Dmax + 32)×Dmax

Table 3.13: Consistency check latency and memory usage

Parameters Current Value Description

thcc 2 reliability check threshold

Table 3.14: Consistency check configurable parameters

The depth maps refined by the consistency check is shown in Figure 3.24. Compared

(a) Tsukuba consistency check left depth map (b) Tsukuba consistency check right depth map

Figure 3.24: Tsukuba left and right depth maps after consistency check

with the depth maps generated by dynamic programming in Figure 3.21, its quality
is significantly improved by removing point noises caused by incorrect matching in
occlusion areas. However the stripe noise is still there, and its removal is performed by
voting.

41



3.3.7.2 Voting

The main function of voting is to select the most frequently used disparity in the
support region where pixels have similar luminance. In our system it is used to remove
the stripe noise to improve the quality of depth maps. Normally the voting is performed
to build a histogram ϕp over all the disparities from 0 to Dmax− 1 in a 2D region U(p),
which is called 2D voting, as shown in Equation 3.12 and Figure 3.25.

D(p) = arg maxϕp(d), d ∈ [0, Dmax − 1] (3.12)

Figure 3.25: 2D Voting

However, building a 2D region histogram is not hardware friendly, which consumes
a lot of memory resources and combinational logic resources because of parallelism.
Therefore, we replace the 2D voting with a more serial 2×1D voting to save hardware
resources and simplify the logic design, as shown in Figure 3.26. This simplification

Figure 3.26: 2×1D Voting

divides voting into two separate votes in horizontal and vertical direction, which makes
the voting design much simpler and generates not worse result than 2D voting, and the
comparison is shown later.

42



3.3.7.3 Horizontal Voting

Horizontal voting is used to select the most frequently used disparity of one pixel in
the horizontal arm length searching range. This kernel is composed by Dmax parallel
segments corresponding to all disparities, whose implementation is based on compara-
tors, counters and registers, as shown in Figure 3.27. This segment is for disparity

(2 x L + 1) Shift Register Array

Reg

0

Reg

1

Reg

L

Reg 

L+1

Reg

2L
disp_cc(x,y)disp_cc(x+1,y)

Disparity dv Comparator

Support Region Mask

Population Counter

hp+ (x,y)

hp- (x,y)

hp+ (x+1,y)

hp- (x+1,y)
Delay Line

...

...

...... ......

Histogram of Current 

Disparity dv

Horizontal Voting

Figure 3.27: Horizontal voting RTL architecture

dv. The shift registers store all the disparities in horizontal direction, and the range is
2×L + 1 where L is the maximum arm length. Then all the disparities are compared
with dv to check whether they are equal or not to assign a corresponding flag value ’1’
or ’0’. The support region mask is used to filter out the flag values out of the range
of horizontal arm length, and the left candidates are passed to a parallel counter to
compute the number of flag values ’1’, therefore the histogram value of disparity dv is
obtained. Then all the parallel histogram values corresponding to all the disparities
are compared by a tree structure completer to select the largest one as the horizontal
voting result. The delay line composed by shift registers is used to synchronize the
horizontal arm lengths with the anchor pixel stored in Reg L to make sure the current
arm lengths are the corresponding one.

The latency and memory usage of horizontal voting is listed in Table 3.15.

Latency (cycles) Memory usage (bits)

Shift Registers L 0

Registers reading 1 0

Population Counters 2 0

Tree Structure Completer 4 0

Output Registers 1 0

Delay Line L+ 1 (parallel) 0

Total L+ 8 0

Table 3.15: Horizontal voting latency and memory usage

43



3.3.7.4 Vertical Voting

Vertical voting is used to choose the most frequently used disparity of one pixel in the
vertical arm length searching range. Its main operation procedure is almost the same
with horizontal voting, but one significant difference is the vertical voting needs many
line buffers to provide disparities in vertical direction, because the disparities comes in
scan-line order. The RTL architecture of vertical voting implementation is shown in
Figure 3.28. 2×L line buffers are used to provide vertical window, which is the same

Delay Line
Row Index 

Counter

Reg Reg

D_Wr

A_Wr

D_Rd

A_Rd

D_Wr

A_Wr

D_Rd

A_Rd

Voted Disparity in 

Horizontal Segments

Line Buffer

2L

D_Wr

A_Wr

D_Rd

A_Rd

D_Wr

A_Wr

D_Rd

A_Rd

..
..
..
.

Comparators

&

Support 

Region Mask

&

Population 

Counters

&

Tree Structure 

Completer

..
..
..
.

Voted Disparity in 

Vertical Segments

Horizontal Voting

Line Buffer

2L-1

Line Buffer

1

Line Buffer

0

Synchronization Buffer

Vertical Arm Lengths

Figure 3.28: Vertical voting RTL architecture

structure with median filter architecture, and the processing part after fetching vertical
disparities is the same with horizontal voting, including comparators, support region
mask, population counters and tree structure completer. This vertical voting kernel
requires a lot of memory as line buffers and the synchronization buffers which provides
the delay of the synchronization between the anchor pixel stored in line buffer L and
corresponding vertical arm length.

The latency and memory usage of vertical voting is listed in Table 3.16. The
depth maps refined by horizontal voting and vertical voting are shown in Figure 3.29.
Compared with the depth maps after consistency check in Figure 3.24, their stripe
noises are removed by this 2×1D voting. Although the normal voting is performed

44



Latency (cycles) Memory usage (bits)

Line Buffers L×FW 2×2×L×FW× log2Dmax

Buffers Reading 2 0

Population Counters 2 0

Tree Structure Completer 4 0

Output Registers 1 0

Synchronization Buffer L×FW + 2 (parallel) 2×L×FW×8

Total L×FW + 9 (16 + 4× log2Dmax)×L×FW

Table 3.16: Vertical voting latency and memory usage

(a) Tsukuba voting left depth map (b) Tsukuba voting right depth map

Figure 3.29: Tsukuba left and right depth maps after voting

in 2D region, this 2×1D voting is not worse than 2D voting, and their comparison is
shown in Figure 3.30.

(a) 2×1D voting (error rate : 2.49%) (b) 2D voting (error rate : 2.56%)

Figure 3.30: Comparison of 2×1D voting and 2D voting

45



3.3.7.5 Median Filter and Final Depth Map

The median filter in refinement is used to remove the spike noise in the depth maps
refined by voting in order to increase the quality and reliability of depth maps. It is
exactly the same with the median filter in 3.3.1, and it is the final step of refinement.
The final depth maps are shown in Figure 3.31.

(a) Tsukuba final left depth map (error rate : 2.42%) (b) Tsukuba final right depth map

Figure 3.31: Tsukuba final depth maps

46



Stereo Matching Proposed
Hardware Design Evaluation 4
In this chapter we evaluate the modified hardware-friendly stereo matching algorithm
and the implementation of stereo matcher on FPGA. The detailed comparison with
state-of-the-art stereo matching implementations is presented. Section 4.1 presents
hardware algorithm evaluations according to parameters configuration in each main
function segments. Section 4.2 introduces stereo matcher implementation evaluations,
including resources and timing. Section 4.3 compares our stereo matcher with other
state-of-the-art implementations on every aspects.

4.1 Evaluation of Hardware Algorithm

Evaluating the modified hardware-friendly algorithm is mainly configuring parameters
of each functional segments in the stereo matcher, including the support region builder,
dynamic programming and refinement. All the algorithm configurable parameters are
listed in Table 4.1. In the following parts, we finetune these parameters separately to

Segments Parameters Current Value Description

SR Builder
L 15 maximum support region arm length
τ 15 luminance difference threshold

DP
thc 15 neighboring pixels continuity check threshold
C 25(c.)/5(d.) smooth cost for Potts model when d6=d′

Refinement thcc 2 reliability check threshold

Table 4.1: Hardware algorithm configurable parameters

check their influence with the Middlebury stereo benchmark average error rate[38].

4.1.1 Support Region Builder Parameters

The configurable parameters of support region builder are listed in Table 4.2.

Segments Parameters Current Value Description

SR Builder
L 15 maximum support region arm length
τ 15 luminance difference threshold

Table 4.2: Support region builder configurable parameters

The parameter L controls the maximum support region size. By increasing it,
the support region includes more neighboring pixel information, but has also more
possibility to contain incorrect pixels and consumes more line buffers, and vice versa.
The Middlebury separated and average error rate of four standard pictures are shown

47



in Table 4.3, and the curve of average error rate following the parameter L is shown in
Figure 4.1. According to the chart we set L = 15.

L
Error Rate

Tsukuba Venus Teddy Cones Average

11 2.72 0.22 6.43 4.14 6.69

12 2.60 0.22 6.39 4.18 6.65

13 2.50 0.21 6.38 4.22 6.63

14 2.47 0.20 6.37 4.28 6.61

15 2.42 0.20 6.38 4.32 6.60

16 2.42 0.19 6.39 4.44 6.63

17 2.49 0.19 6.43 4.59 6.72

18 2.51 0.19 6.47 4.72 6.78

19 2.55 0.20 6.46 4.83 6.82

Table 4.3: Middlebury error rate and maximum support region arm length L

6.45

6.50

6.55

6.60

6.65

6.70

6.75

6.80

6.85

11 12 13 14 15 16 17 18 19

M
id

d
le

b
u

ry
 a

ve
ra

ge
 e

rr
o

r 
ra

te
 (

%
)

Maximum support region arm lenth (L)

Figure 4.1: Middlebury error rate and maximum support region arm length L

The parameter τ is also used to control the support region, however it does not
control the region size, but rather the candidate pixels. It sets a luminance difference
threshold and builds the region consisting of similar luminance pixels. Therefore in-
creasing this threshold, the support region includes more neighboring pixels and texture
information but also includes more incorrect pixel values, and vice versa. The error rate
following the change of parameter τ is shown in Table 4.4 and Figure 4.2. According
to them we set τ = 15.

The curves of L and τ is similar for their similar function, which is building the
support region for refinement.

48



τ
Error Rate

Tsukuba Venus Teddy Cones Average

11 2.45 0.27 6.33 4.28 6.65

12 2.47 0.24 6.37 4.24 6.63

13 2.43 0.22 6.41 4.26 6.62

14 2.41 0.21 6.39 4.31 6.60

15 2.42 0.20 6.38 4.32 6.60

16 2.44 0.19 6.42 4.47 6.67

17 2.50 0.20 6.46 4.56 6.77

18 2.51 0.19 6.44 4.63 6.78

19 2.53 0.20 6.46 4.71 6.83

Table 4.4: Middlebury error rate and luminance difference threshold τ

6.45

6.50

6.55

6.60

6.65

6.70

6.75

6.80

6.85

11 12 13 14 15 16 17 18 19

M
id

d
le

b
u

ry
 a

ve
ra

ge
 e

rr
o

r 
ra

te
 (

%
)

Luminance difference threshold (τ)

Figure 4.2: Middlebury error rate and luminance difference threshold τ

4.1.2 Dynamic Programming Parameters

The configurable parameters of dynamic programming are listed in Table 4.5.

Segments Parameters Current Value Description

DP
thc 15 neighboring pixels continuity check threshold
C 25(c.)/5(d.) smooth cost for Potts model when d6=d′

Table 4.5: Dynamic programming configurable parameters

These two parameters are adopted to constrain the smoothness degree when choos-
ing the smooth path in dynamic programming. If the smoothness degree is high, the
continuous disparities (i.e. flat areas) processing is better. However, if the smoothness

49



degree is low, the discontinuous disparities (i.e. boundaries) processing is better. The
ratio of continuous smooth cost and discontinuous smooth cost is 5, which is used to
distinguish the continuous and discontinuous disparity areas, and the fine-tuning of this
ratio has only slight difference on the result of differentiation, therefore we skip this
unimportant parameter. Because the ratio is fixed, we use the discontinuous smooth
cost as the index. The error rate versus the parameter thc is shown in Table 4.6 and
Figure 4.3, and the parameter C in Table 4.7 and Figure 4.4. According to the charts,
we set thc = 15 and C = 25(c.)/5(d.).

thc
Error Rate

Tsukuba Venus Teddy Cones Average

11 2.54 0.18 6.36 4.30 6.63

12 2.42 0.18 6.35 4.31 6.61

13 2.46 0.18 6.33 4.28 6.60

14 2.32 0.18 6.39 4.41 6.61

15 2.42 0.20 6.38 4.32 6.60

16 2.38 0.19 6.43 4.31 6.62

17 2.49 0.19 6.38 4.33 6.65

18 2.47 0.21 6.36 4.34 6.64

19 2.52 0.21 6.43 4.33 6.71

Table 4.6: Middlebury error rate and neighboring pixels continuity check threshold thc

6.54

6.56

6.58

6.60

6.62

6.64

6.66

6.68

6.70

6.72

11 12 13 14 15 16 17 18 19

M
id

d
le

b
u

ry
 a

ve
ra

ge
 e

rr
o

r 
ra

te
 (

%
)

Neighbor pixels continuity check threshold (th_c)

Figure 4.3: Middlebury error rate and neighboring pixels continuity check threshold thc

Both increasing the smooth cost and decreasing the continuity check threshold can
increase the smoothness of the optimized path, so these curves are correspondingly
similar because of their similar function.

50



C
Error Rate

Tsukuba Venus Teddy Cones Average

1 2.56 0.21 6.79 4.38 6.82

2 2.39 0.23 6.60 4.22 6.67

3 2.44 0.21 6.43 4.26 6.63

4 2.36 0.21 6.42 4.32 6.62

5 2.42 0.20 6.38 4.32 6.60

6 2.44 0.18 6.34 4.36 6.62

7 2.57 0.17 6.23 4.43 6.60

8 2.54 0.18 6.22 4.51 6.61

9 2.63 0.19 6.22 4.54 6.67

Table 4.7: Middlebury error rate and and Potts model discontinuous smooth cost C

6.45

6.50

6.55

6.60

6.65

6.70

6.75

6.80

6.85

1 2 3 4 5 6 7 8 9

M
id

d
le

b
u

ry
 a

ve
ra

ge
 e

rr
o

r 
ra

te
 (

%
)

Potts model discontinuous smooth cost

Figure 4.4: Middlebury error rate and Potts model discontinuous smooth cost C

4.1.3 Refinement Parameters

The configurable parameters of refinement are listed in Table 4.8.

Segments Parameters Current Value Description

Refinement thcc 2 reliability check threshold

Table 4.8: Refinement configurable parameters

This parameter thcc is utilized to obtain the occlusion map by judging disparity
differences between stereo pairs. Because the disparity maps obtained by dynamic
programming is based on the cost of neighboring pixels information, the disparities of
corresponding pixels may have a slight difference, and if we take them as the incorrect

51



corresponding instances, we will obtain a worse result. Therefore this thcc is set to
increase the fault tolerance of stereo matching, and the error rate versus the parameter
thcc is shown in Table 4.9 and Figure 4.5. According to the chart, we set thcc = 2.

thcc
Error Rate

Tsukuba Venus Teddy Cones Average

1 2.57 0.20 6.37 4.42 6.68

2 2.42 0.20 6.38 4.32 6.60

3 2.38 0.19 6.39 4.33 6.61

4 2.54 0.23 6.39 4.35 6.75

5 2.54 0.24 6.46 4.36 6.80

Table 4.9: Middlebury error rate and reliability check threshold thcc

6.50

6.55

6.60

6.65

6.70

6.75

6.80

6.85

1 2 3 4 5

M
id

d
le

b
u

ry
 a

ve
ra

ge
 e

rr
o

r 
ra

te
 (

%
)

Reliability check threshold (th_cc)

Figure 4.5: Middlebury error rate and reliability check threshold thcc

4.1.4 Final Middlebury Results

In a sense, the quality of stereo matching based on difference parameters depends on
the texture of stereo images, therefore in the tables above tuning a certain parameter
generates different error rate trends for different images. The four Middlebury standard
images have various texture characters, i.e. complex objects in Tsukuba, bevel edges
in Venus, arc-shaped edges in Teddy and sharp edges in Cones, so that the average
Middlebury error rates reflects the common quality of the stereo matching in normal
cases. Our final Middlebury results is shown in Figure 4.6.

52



(a) Tsukuba (b) Truth disparity (c) Error rate 2.42%

(d) Venus (e) Truth disparity (f) Error rate 0.20%

(g) Teddy (h) Truth disparity (i) Error rate 6.38%

(j) Cones (k) Truth disparity (l) Error rate 4.32%

Figure 4.6: Final Middlebury benchmark results

53



4.2 Evaluation of Stereo Matching Implementation

4.2.1 FPGA Hardware Resources Utilization

Our implementation platform - FPGA EP3SL150 belongs to Altera 65nm Stratix III
L family, and the basic building block of logic in the Stratix III architecture, the
adaptive logic module (ALM), provides advanced features with efficient logic utilization.
Each ALM contains a variety of look-up table (LUT) based resources that can be
divided between two combinational adaptive LUTs (ALUTs) and two registers. With
up to eight inputs to the two combinational ALUTs, one ALM can implement various
combinations of two functions. One ALM can also implement any function of up to six
inputs and certain seven-input functions. The high-level block diagram of Stratix III
ALM is shown in Figure 4.7[8].

2–6 Chapter 2: Logic Array Blocks and Adaptive Logic Modules in Stratix III Devices
Adaptive Logic Modules

Stratix III Device Handbook, Volume 1 © February 2009 Altera Corporation

Figure 2–5. High-Level Block Diagram of the Stratix III ALM 

D Q To general or
local routing

reg0

To general or
local routing

datae0

dataf0

reg_chain_in

reg_chain_out

adder0
dataa

datab

datac

datad

datae1

dataf1

D Q To general or
local routing

reg1

To general or
local routing

adder1

carry_in

carry_out

Combinational/Memory ALUT0

6-Input LUT

6-Input LUT

shared_arith_out

shared_arith_in

Combinational/Memory ALUT1

labclk

Figure 4.7: High-level block diagram of Stratix III ALM

The memory blocks on EP3SL150 FPGA are divided into two main kinds: memory
logic array blocks (MLABs) and dedicated memory blocks (BRAMs). MLABs is a
superset of the ALM including SRAM memory, so that it has all ALM characters. It is
distributed over the entire FPGA, therefore it is very suitable for small delay lines and
shift registers. There are two kinds of BRAMs, M9K and M144K, including 9K SRAM
bits and 144K SRAM bits correspondingly. Both of them support the single port and
dual port mode, and they are suitable for general purpose memory applications, i.g.
Bypass FIFO, line buffer etc. The aspect ratios of all these memory blocks are listed
in Table 4.10[7].

Based on the architecture of ALM and block memory, the resource utilization of our
stereo matcher (Dmax = 64) main kernels is listed in Table 4.11. The Table 4.11 lists the
resource utilization when Dmax = 64, however, the utilized hardware resources depends
on the disparity range because the parallelism of dynamic programming is Dmax. We

54



Feature MLABs
M9K
Blocks

M144K
Blocks

Maximum Performance 600MHz 580MHz 580MHz

Aspect Ratios

16×8 8K×1 16K×8
16×9 4K×2 16K×9
16×10 2K×4 8K×16
16×16 1K×8 8K×18
16×18 1K×9 4K×32
16×20 512×16 4K×36

512×18 2K×64
256×32 2K×72
256×36

Table 4.10: EP3SL150 on-chip memory features

Dmax = 64

Combinational
ALUTs

Memory
ALUTs

Dedicated Logic
Registers

Block
Memory Bits

Total:
113600 Util.

Total:
56800 Util.

Total:
113600 Util.

Total:
5630976 Util.

CT &
SRB 2916 2.57% 0 0% 1451 1.28% 498704 8.86%

Bypass
FIFO 24 0.02% 0 0% 24 0.02% 131072 2.33%

Raw Cost
Scatter 6065 5.34% 0 0% 3991 3.51% 2672 0.05%

Dynamic
Programming 16717 14.72% 0 0% 4452 3.92% 1630208 28.95%

Disparity
Output Logic 9 0.01% 0 0% 38 0.03% 0 0%

Consistency
Check 622 0.55% 1024 1.08% 1429 1.26% 0 0%

Horizontal
Voting 10782 9.49% 0 0% 9168 8.07% 624 0.01%

Vertical
Voting 10602 9.33% 0 0% 8704 7.69% 753664 13.38%

Median
Filter 448 0.39% 0 0% 389 0.34% 32768 0.58%

Stereo
Matcher 49376 43.46% 1024 1.80% 29703 26.15% 3049712 54.16%

Table 4.11: EP3SL150 hardware resource utilization summary

have also implemented Dmax = 16 and Dmax = 32 separately, and their corresponding
resource utilization is shown in Figure 4.8. Because the computational complexity
of dynamic programming is O(D), which is the main logic and memory consumption
part, so that the disparity scalability of the entire FPGA hardware resource is almost

55



16.69%

21.84%

43.46%

1.60% 1.67% 1.80%

12.54%
14.42%

26.15%

22.11%

29.10%

54.16%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

Stereo Matcher 16 Stereo Matcher 32 Stereo Matcher 64

FPGA Resource Utilization

Combinational ALUTs

Memory ALUTs

Dedicated Logic Registers

Block Memory Bits

Figure 4.8: FPGA resource utilization of various disparities

linear, as shown in Figure 4.9. In practice, Dmax is determined by the depth of objects

16.69%

21.84%

43.46%

1.60% 1.67% 1.80%

12.54%
14.42%

26.15%

22.11%

29.10%

54.16%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

Stereo Matcher 16 Stereo Matcher 32 Stereo Matcher 64

FP
G

A
 R

e
so

u
rc

e
 U

ti
liz

at
io

n

Implementation Disparity Scalability

Combinational ALUTs

Memory ALUTs

Dedicated Logic Registers

Block Memory Bits

Figure 4.9: Stereo matcher implementation disparity scalability

and baseline length varies according to Equation 1.1, hence changing with various
applications and stereo camera setup. Apart from Dmax, the frame size also determines
the resource utilization, especially for the memory consumption, which is shown in the
memory usage tables in Chapter 3.

4.2.2 Real-Time Performance

The stereo matcher supports the real-time video in/out function because of its pipeline
architecture, and the latency of the entire stereo matching is listed in Table 4.12, taking
the current parameters and Dmax = 64.

56



Kernels Pipeline Latency
Frame Resolution

1024×768 1920×1080

CT & SRB 15×FW + 19 15379 28819

Raw Cost Scatter 65 65 65

Dynamic Programming 2×FW + 7 2055 3847

Disparity Output Logic 2 2 2

Consistency Check 69 69 69

Horizontal Voting 23 23 23

Vertical Voting 15×FW + 9 15369 28809

Median Filter FW + 6 1030 1926

Total 33×FW + 200 33992 63560

Table 4.12: Stereo matcher 64 pipeline latency summary

However the real-time video source is not just pixels but blanking according to VGA
signal timing format, as shown in Table 4.13, where the pixel clock required by each
frame resolutions are also listed. From the report of Synplify, the worst path of stereo

Resolution 800×600 1024×768 1280×720 1280×1024 1920×1080

Refresh Rate (Hz) 75 60 60 60 60

Pixel Clock (MHz) 49.5 65 74.2 108 182.5

H Sync Pulse 80 136 80 112 696

H Front Porch 16 24 72 48 32

H Back Porch 160 160 216 248 32

V Sync Pulse 2 6 5 3 11

V Front Porch 1 3 3 1 22

V Back Porch 21 29 22 38 22

Table 4.13: VGA signal timing format for various resolutions

matcher located in the loop of the first step of dynamic programming, whose estimated
frequency is 72.4MHz. Therefore under the condition of running pixel clock on FPGA,
our real-time stereo matcher works on a resolution not higher than 1024×768 with 33
lines and 200 pixels latency without reorder optimization, which has already fulfill the
requirement of real-time high-definition video.

4.3 Comparison with Related Instances

As mentioned in Chapter 1, the Middlebury stereo benchmark evaluation website[38]
provides the error rate of all the pixels in the entire depth map. In addition, Middlebury
evaluation also provides nonocc and disc error rate results, which stands for the non-
occlusion areas and discontinue areas, and the former is always located near occluded
regions that is the most tricky areas for the stereo matching algorithm.

The benchmarked evaluation of our implementation and some other related in-
stances are listed in Table 4.14. However, the Middlebury benchmark evaluation does

57



Stereo Matching Error Rates (%)

Images Tsukuba Venus Teddy Cones
Average
Bad Pixel
Rate

Image Size 384×288 434×383 450×375 450×375
Disparity Range 16 20 60 60
Evaluation nonocc all disc nonocc all disc nonocc all disc nonocc all disc

Our Method 2.42 2.78 10.9 0.20 0.47 2.07 6.38 11.7 16.1 4.32 10.6 11.3 6.60

VariableCross[44] 1.99 2.65 6.77 0.62 0.96 3.20 9.75 15.1 18.2 6.28 12.7 12.9 7.60

RealtimeBFV[46] 1.71 2.22 6.74 0.55 0.87 2.88 9.90 15.0 19.5 6.66 12.3 13.4 7.65

RealtimeBP[42] 1.49 3.40 7.87 0.77 1.90 9.00 8.72 13.2 17.2 4.61 11.6 12.4 7.69

Chang et al. 2010[4] N/A 2.80 N/A N/A 0.64 N/A N/A 13.7 N/A N/A 10.1 N/A N/A

Zhang el al. 2010[47] 3.84 4.34 14.2 1.20 1.68 5.62 7.17 12.6 17.4 5.41 11.0 13.9 8.20

FastAggreg[37] 1.16 2.11 6.06 4.03 4.75 6.43 9.04 15.2 20.2 5.37 12.6 11.9 8.24

OptimizedDP[34] 1.97 3.78 9.80 3.33 4.74 13.0 6.53 13.9 16.6 5.17 13.7 13.4 8.83

RealtimeVar[24] 3.33 5.48 16.8 1.15 2.35 12.8 6.18 13.1 17.3 4.66 11.7 13.7 9.05

RTCensus[17] 5.08 6.25 19.2 1.58 2.42 14.2 7.96 13.8 20.3 4.10 9.54 12.2 9.73

RealTimeGPU[40] 2.05 4.22 10.6 1.92 2.98 20.3 7.23 14.4 17.6 6.41 13.7 16.5 9.82

Jin et al. 2010[20] 9.79 11.56 20.29 3.59 5.27 36.82 12.5 21.5 30.57 7.34 17.58 21.01 17.24

Chang et al. 2007[3] 21.5 21.7 48.7 16.5 17.8 29.9 26.3 33.6 35.1 24.2 32.4 31.0 N/A

Table 4.14: Stereo matching algorithm Middlebury benchmark evaluation

not include the processing speed evaluation although it provides the fair comparison
between various algorithms. Therefore the concept of million disparity evaluation per
second (MDE/s) is imported to measure the processing speed of different systems im-
plementation, as computed in Equation 4.1.

MDE/s = frame width × frame height × Dmax × FPS (4.1)

The processing speed comparisons between our proposed implementation and other
reported implementations are listed in Table 4.15.

Stereo Matching Implementation Processing Speed

Algorithm Implementation Dmax Frame Rate MDE/s

Jin et al. 2010[20] FPGA Virtex-4 64 640×480@230 4521

Our Method FPGA Stratix III 64 1024×768@60 3019

Zhang el al. 2010[47] FPGA Stratix III 64 1024×768@60 3019

RTCensus[17] GPU Geforce GTX 280 60 450×375@105.4 1067

Chang et al. 2010[4] ASIC UMC 90nm 64 352×288@42 272

RealtimeBFV[46] GPU GeForce GTX 8800 64 450×375@12 129

Chang et al. 2007[3] DSP TMS320C64x 60 450×375@9.1 92

RealTimeGPU[40] GPU Radeon XL1800 16 320×240@43 53

RealtimeVar[24] CPU Pentium 2.83GHz 60 450×375@3.5 35

RealtimeBP[42] GPU GeForce GTX 7900 16 320×240@16 20

FastAggreg[37] CPU Core Duo 2.14GHz 60 450×375@1.67 17

OptimizedDP[34] PC 1.8GHz 60 450×375@1.25 13

VariableCross[44] CPU Pentium IV 3.0GHz 60 450×375@1.21 13

Table 4.15: Stereo matching implementation processing speed evaluation

The three FPGA platform implementations are all fully pipelined designs, therefore
there frame rates are not limited by the computing pipeline itself. Zhang’s work[47]
and our proposed implementation both achieve real-time high-definition performance
and better stereo matching accuracy than Jin’s work[20]. Furthermore, our implemen-

58



tation has higher accuracy than Zhang’s work, as shown in Table 4.15. In addition
our implementation consumes less hardware resources than Zhang’s work, as shown in
Table 4.16, where the comparison is performed by percentage because both Zhang’s im-
plementation and our implementation are using the same FPGA Stratix III EP3SL150.

Combinational ALUTs Memory ALUTs Registers DSPs SRAM

Our Method 44% 2% 26% 0% 54%

Zhang el al. 2010[47] 52% 36% 84% 67% 67%

Table 4.16: Hardware resource utilization between our implementation and Zhang

For FPGA implementations the limitation is hardware resources, e.g. on-chip mem-
ories and combinational ALUTs, and for CPU and GPU implementations the limitation
is serial computation procedure, therefore FPGA platforms often have higher process-
ing performance at lower clock speed, while CPU and GPU platforms often have more
highly accurate results. Our implementation achieves very high frame rates compared
with most of the other implementations as well as highly accurate results. To the best
of our knowledge, our implementation has achieved the fastest processing performance
on high-definition images with high accuracy.

59



60



A Real-Time View Synthesis
System with Stereo Matching
on FPGA 5
The system implemented on FPGA is our proposed 3D Depth Range Adjustment Sys-
tem. The technique used for adjusting the depth range is depth scaling, where a new
left and right stereo image pair is calculated and rendered on the (anaglyph or polaroid
glasses) 3D display. The original left and a new right image corresponding to an in-
termediate viewpoint is created, reducing the 3D effect. Consequently depth scaling
needs the depth information between stereo pairs, requiring a stereo matching tech-
nique to create a pixel/object displacement/re-positioning which is inverse proportional
to depth. The original RGB stereo frames have to be stored in a DDR2 SDRAM and
its scheduler is adopted to provide a large storage space and data exchange synchro-
nization. The processing pipeline therefore consists of view synthesis, stereo matcher
and a DDR2 SDRAM access scheduler which will be further described in this chapter.

The structure of this chapter is organized as follows: Section 5.1 presents the on-
chip system architecture based on the Stratix III FPGA[8] and introduces its function
kernels briefly. Section 5.2 presents the view synthesis kernel. Section 5.3 introduces the
DDR2 SDRAM access scheduler and estimates our DDR2 SDRAM bandwidth usage.

5.1 Real-Time System Architecture on FPGA

The real-time on-chip system architecture includes stereo matcher, view synthesis,
DDR2 SDRAM access scheduler and other processing modules, as shown in the dashed
line rectangle in Figure 5.1. The function of each segment in this system is as following:

• VI Adaptor/Sync makes the output pixels start at the first pixel of one frame as
well as synchronize the left and right pixels.

• RGB2YUV422 is the function block which convert RGB value of one pixel into
YUV422 format.

• Stereo Matcher processes the luminance (Y) value from RGB2YUV422 and the
current frame luminance, previous frame luminance and previous frame depth
map to generate current frame depth map with timing consistency which makes
the video more consistent between current frame depth map and previous frame
depth map. Finally the stereo matcher generates left and right depth map.

• VS Adaptor (View Synthesis Adaptor) is used between the stereo matcher and
view synthesis to synchronize the depth maps and original YUV frames. Because
the depth map of stereo matcher is separated by blanking signals according to
VGA signal timing format. This VS Adaptor is used to adjust the timing of
depth map to suit the requirement of view synthesis.

61



Figure 5.1: On-chip system architecture

• View Synthesis takes the depth maps from stereo matcher, original YUV frames
from DDR2 and some extra control signals from VS Adaptor to generate the
3D depth range adjustable interpolated frames, and the scaling range can be
configured by buttons on the FPGA board.

• DDR2 SDRAM access scheduler is used as a mini custom DMA to provide our
on-chip system a platform to write and read multiple stream data simultaneously
without delay. It takes original image value as well as depth maps and offers

62



image value and depth maps simultaneously.

• YUV422RGB is used to convert YUV422 format video signals back into RGB
signals for further use.

• Anaglyph is the converter that changes RGB video signals to anaglyph 2D image,
which shows the 3D effect with red-cyan glasses.

• VO Adaptor generates the video timing signals for display.

There are various clock domains in our on-chip system, as also shown in Figure 5.1.
The main kernels run at 65MHz to meet the real-time video requirements. The interface
between DDR2 SDRAM access scheduler and DDR2 high performance controller[6]
operates at 150MHz (half rate of DDR2) to improve the critical path. Currently our
bandwidth usage is less than a quarter of the total available DDR2 bandwidth of 300
MHz maximum clock rate.

Our final depth map and interpolated anaglyph frame together with original left
and right input frames are shown in Figure 5.2 for the typical HHI test sequences.

(a) Left camera image (b) Right camera image

(c) Depth map (d) Interpolated anaglyph image

Figure 5.2: Depth map and interpolated anaglyph frame with original frames

63



5.2 View Synthesis

View synthesis acts the role of adjusting the 3D depth range in our system, and its
design and implementation is performed by NCTU and Imec-Taiwan. The high level
structure of view synthesis is shown in Figure 5.3. Left and right camera parameters

Figure 5.3: View synthesis architecture

are used to warp the depth maps obtained from stereo matcher, and to generate the
interpolation frame towards the target viewpoint by using pixel color (texture) infor-
mation. Pixels around the object edges are often in occlusion region, which could only
be seen from either the left image or the right one, and they are handled by the last
hole-filling module.

The view synthesis is used to configure the 3D depth range from full 3D (anaglyph
100%) to full 2D (anaglyph 0%) gradually based on the depth map generated by stereo
matcher, as shown in Figure 5.4.

5.3 DDR2 SDRAM Access Scheduler

There are three levels in hierarchical storage system, including register level, on-chip
SRAM level and off-chip SDRAM level. Registers are the fastest storage units which
promise zero latency for both reading and writing, therefore in our system they are
used for holding the time critical data, and sometimes it is convenient using shift
registers as short FIFOs. The on-chip SRAMs are slower than registers but support
large data storage, thus they are used as line buffers and long bypass FIFOs in the
system. Compared with them, off-chip SDRAMs are the slowest ones but provide very
huge data storage, so that in our system they are used as image buffers and depth map
buffers.

The off-chip SDRAM we used is the external DDR2 SDRAM which is a 1GB DDR2-
667 dual-rank SO-DIMM module. The DDR2 SDRAM Access Scheduler allows the
whole system kernels to get access to DDR2 SDRAM easily and simultaneously with
zero delay, and it behaves like a huge on-chip memory with the pre-fetch technique.
However, because SDRAM has internal access latencies, the DDR2 SDRAM cannot
work as efficient as the on-chip RAMs. This kernel is implemented by Hsiu-Chi Yeh

64



(a) Anaglyph 100% (b) Anaglyph 75% (c) Anaglyph 50%

(d) Anaglyph 25% (e) Anaglyph 12% (f) Anaglyph 0%

Figure 5.4: 3D depth range adjustment from full 3D to full 2D

who is also from Delft University of Technology for MSc thesis in Imec, and the detailed
high-level architecture of DDR2 SDRAM access scheduler is shown in Figure 5.5. It
serves several reading and writing tasks simultaneously:

• Writing the left and right original images in YUV422 format

• Reading the left and right previous frame images and current frame images in
luminance as well as the left and right previous depth maps for timing consistency
in stereo matching

• Writing the left and right depth maps generated by the stereo matcher

• Reading the left and right current frame images in YUV422 format as well as the
left and right current depth maps for view synthesis

The arbiter here is a complex manager to balance the timing and throughput of each
task to make sure there is no conflicts between tasks. The DDR2 SDRAM is working
at 300MHz which is high enough for the data transfer in our system, and the interface
between scheduler and DDR2HPC is working at 150MHz which is half the rate of
DDR2 SDRAM frequency to reduce power consumption. Therefore the data reading
and writing is much faster than the SoC working frequency 65MHz, and this feature
makes it possible to transfer a large mount of data at the same time. However there
is efficiency problems when transferring the data. The worst efficiency is frequently
switching between short reads and short writes, which causes the memory address access
the same row on every transfer[6]. Therefore it is efficient to utilize the technique of

65



Figure 5.5: DDR2 SDRAM access scheduler architecture

long read and write bursts to continually access the address space. This architecture
utilizes that technique, for DDR2 access scheduler packages the multiple stream data
in its buffers and bursts writing them to DDR2, meanwhile it pre-fetches stream data
from DDR2 in burst package and readies to serve any block requests, realizing long
read and write bursts.

DDR2 SDRAM supports twice higher bus speed as well as dual rate of the bus
speed caused by transferring data at both the rising and falling clock edge, therefore
the DDR2 SDRAM provides the bandwidth in Equation 5.1.

Bandwidth = memory clock rate × bus clock multiplier × dual rate

× burst data width
(5.1)

Assuming the data burst is 64 bits at one time, and the memory clock frequency is
300MHz, then the theoretical maximum data bandwidth is:

Bandwidth = 300M/s×2×2×64bits = 76.8Gbits/s (5.2)

In our system architecture, the writing and reading blocks are listed above to con-
sume bandwidth. The bandwidth consumption of one reading or writing buffer is:

66



BandwidthR/W = FPS × required frame number

× frame width × frame height × data width
(5.3)

The required frame number is two for left and right frames. Therefore the YUV422
image reading and writing buffers consume the same bandwidth:

Bandwidth16bits = FPS × 2 × frame width × frame height × 16bits (5.4)

while the depth and luminance image reading and writing buffers consume the same
bandwidth:

Bandwidth8bits = FPS × 2 × frame width × frame height × 8bits (5.5)

Assuming our real-time video is 1024×768@60FPS, then the results are:{
Bandwidth16bits = 60/s×2×1024×768×16bits = 1.51Gbits/s
Bandwidth8bits = 60/s×2×1024×768×8bits = 0.755Gbits/s

(5.6)

There are two YUV422 image buffers and five depth and luminance image buffers in
all, so that the entire bandwidth usage of our system is:

Bandwidth usage =
2×Bandwidth16bits + 5×Bandwidth8bits

Bandwidth

=
2×1.51Gbits/s+ 5×0.755Gbits/s

76.8Gbits/s
= 8.85%

(5.7)

67



68



Conclusions and Future Work 6
6.1 Conclusions

In this thesis, an hardware-efficient stereo matching algorithm is proposed based on
Dynamic Programming, Variable Cross and Mini-Census Transform algorithms. These
algorithms are implemented on an FPGA based on a full pipeline architecture. We
utilize the stereo matcher as a kernel together with View Synthesis kernel and DDR2
SDRAM Access Scheduler kernel to build a real-time 3D depth range adjustment sys-
tem. The test results of the experiments demonstrate that our stereo matcher has
reached high speed real-time processing with various video resolutions while keeping
highly accurate results. In detail our stereo matcher achieves the known fastest pro-
cessing speed for high-definition resolution 1024×768@60FPS and preserving excellent
Middlebury benchmark evaluation average error rate of 6.60%. Therefore our imple-
mented stereo matcher on FPGA has fulfilled our original design targets set up in
Section 2.4.

6.2 Chapters Summary and Contributions

The 3D depth range adjustment application system is our motivation for performing
the stereo matching hardware algorithm and real-time implementation. This system is
utilized to satisfy personal visual comfort when watching 3D TV for a long time, as
presented in Chapter 1. The major contribution of this thesis is that we have scheduled
the computational loop of Scan-Line Dynamic Programming and realized the parallel
structure of this serial Dynamic Programming, while preserving excellent accuracy.

In Chapter 2, we presented various stereo matching algorithms and different imple-
mentation platforms, including high performance CPU, GPU, DSP, FPGA and ASIC.
However these platforms have their own advantages and disadvantages, and are not suit-
able for both highly accurate and real-time requirements, especially for high-definition
video processing applications. We take the algorithm of Dynamic Programming and
the platform of FPGA for our solution. Dynamic Programming has high accuracy but
complex loops and computations, while FPGA platform has fast processing speed but
relative low accuracy, therefore we employ them together to compensate the disadvan-
tages of each other.

Chapter 3 discussed the entire software-hardware co-design and implementation of
stereo matching using a top-down approach. Firstly we introduce the parallel and
pipeline processing architecture, which replaces the disparity loop serial architecture
used in software implementation. Then the algorithm is modified to a more hardware
efficient version in the aspects of vertical cost aggregation, census transform, parameters
and multipliers. Then we go deep into the RTL level to discuss our design block by

69



block in the data flow order. In our entire design, the parallel structure is used to
speed up the computation and the fully pipelined structure is to enable the highest
throughput.

In Chapter 4, the entire 3D depth range adjustment system on FPGA was presented
in detail. The implemented stereo matching is used as a kernel to provide depth maps
for view synthesis to generate the viewpoint interpolated anaglyph frames, and DDR2
SDRAM access scheduler is adopted to provide the large storage space for frames and
buffer between stereo matcher and view synthesis. The main function of view synthesis
is to adjust anaglyph 3D effects from full 2D to full 3D gradually by adjusting the
viewpoint interpolation scale, and this kernel is co-developed by NCTU and Imec-
Taiwan. The main principle of DDR2 SDRAM access scheduler is pre-fetching the data
into on-chip memory buffers and burst read/write those data from/to DDR2 in order
to realize the zero latency access to DDR2 SDRAM, and this kernel is implemented
by Hsiu-Chi Yeh who is also from Delft University of Technology for MSc thesis in
Imec. Our final on-chip system implemented on FPGA demonstrates the function of
3D depth range real-time adjustment successfully with good video quality.

Chapter 5 evaluated the entire design and implementation in various aspects. We
evaluate the modified hardware efficient algorithm by configuring all the parameters
as the single variables and finally obtain a set of parameters with lowest Middlebury
benchmark evaluation error rate. Evaluation of stereo matching implementation is
performed in hardware resource utilization and real-time performance. After comparing
with other state-of-the-art implementations, ours is a fastest stereo matcher for high-
definition resolution 1024×768@60FPS with excellent Middlebury average error rate
6.60%.

6.3 Possible Future Work

According to our current algorithm, implementation and evaluation, there are several
possible plans for future improvements of the stereo matcher performance.

• The Dynamic Programming kernel consumes much on-chip memory to store the
large disparity matrix for tracking, which will be a huge number of gate counts
for ASIC. One possible method to reduce this burden is performing data compres-
sion by encoding and decoding according to the features of the selected Dynamic
Programming model.

• The support region builder and vertical voting kernels use a lot of line buffers,
and separated buffers will increase the difficulty of ASIC layout. We can use a
large buffer to replace these separated buffers, however it needs the redesign of
data flow and memory address counters.

• Current Dynamic Programming is not very robust to luminance bias although it
has high accuracy, because the Dynamic Programming depends much more on
the luminance information than the structure information. One possible solution
is to optimize the style of the Dynamic Programming, such as dividing Dynamic
Programming and orthogonal Dynamic Programming. Another possible solution

70



is to optimize the census transform sampling pattern to include more texture
information and improve its weight, because the census transform increases the
robustness to luminance deviation for Dynamic Programming.

Utilizing the real-time depth maps generated by our stereo matching processing,
a number of other applications except the 3D depth range adjustment system can be
developed and improved, such as free-viewpoint TV, virtual reality, object tracking,
gesture detection, video games etc.

71



72



Bibliography

[1] K. Ambrosch, M. Humenberger, W. Kubinger, and A. Steininger. SAD-based
stereo matching using FPGAs. Embedded Computer Vision, pages 121–138, 2009.

[2] M.Z. Brown, D. Burschka, and G.D. Hager. Advances in computational stereo.
IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 993–1008,
2003.

[3] N. Chang, T.M. Lin, T.H. Tsai, Y.C. Tseng, and T.S. Chang. Real-time DSP
implementation on local stereo matching. In Multimedia and Expo, 2007 IEEE
International Conference on, pages 2090–2093, 2007.

[4] N.Y.C. Chang, T.H. Tsai, B.H. Hsu, Y.C. Chen, and T.S. Chang. Algorithm and
Architecture of Disparity Estimation With Mini-Census Adaptive Support Weight.
IEEE Transactions on Circuits and Systems for Video Technology, 20(6):792–805,
2010.

[5] P.P Chu. RTL hardware design using VHDL: coding for efficiency, portability, and
scalability. Wiley-IEEE Press, 2006.

[6] Altera Corporation. The Efficiency of the DDR & DDR2 SDRAM Controller
Compiler. http://www.altera.com/literature/wp/wp_ddr_sdramefficiency.
pdf, December 2004.

[7] Altera Corporation. TriMatrix Embedded Memory Blocks in Stratix III
Devices. http://www.altera.com/literature/hb/stx3/stx3_siii51004.pdf,
May 2009.

[8] Altera Corporation. Stratix III Device Handbook. http://www.altera.com/

literature/hb/stx3/stratix3_handbook.pdf, March 2011.

[9] Altera Corporation. Video and Image Processing Suite User Guide. http://www.
altera.com/literature/ug/ug_vip.pdf, May 2011.

[10] Ahmad Darabiha, Jonathan Rose, and W. James MacLean. Video-Rate Stereo
Depth Measurement on Programmable Hardware. In IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, volume 1, pages I203–
I210, 2003.

[11] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient Belief Propagation
for Early Vision. Technical report, Department of Computer Science, Cornell
University, 2004.

[12] A. Fusiello, V. Roberto, and E. Trucco. Efficient stereo with multiple windowing. In
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
pages 858–863. Citeseer, 1997.

73

http://www.altera.com/literature/wp/wp_ddr_sdramefficiency.pdf
http://www.altera.com/literature/wp/wp_ddr_sdramefficiency.pdf
http://www.altera.com/literature/hb/stx3/stx3_siii51004.pdf
http://www.altera.com/literature/hb/stx3/stratix3_handbook.pdf
http://www.altera.com/literature/hb/stx3/stratix3_handbook.pdf
http://www.altera.com/literature/ug/ug_vip.pdf
http://www.altera.com/literature/ug/ug_vip.pdf


[13] M. Hariyama, T. Takeuchi, and M. Kameyama. VLSI processor for reliable stereo
matching based on adaptive window-size selection. In PROC IEEE INT CONF
ROB AUTOM, volume 2, pages 1168–1173, 2001.

[14] H. Hirschmueller, P.R. Innocent, and J. Garibaldi. Real-time correlation-based
stereo vision with reduced border errors. International Journal of Computer Vi-
sion, 47(1):229–246, 2002.

[15] H. Hirschmueller and D. Scharstein. Evaluation of cost functions for stereo match-
ing. In IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8,
2007.

[16] Heiko Hirschmuller. Accurate and Efficient Stereo Processing by Semi-Global
Matching and Mutual Information. IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, 2:807–814, 2005.

[17] M. Humenberger, C. Zinner, M. Weber, W. Kubinger, and M. Vincze. A fast
stereo matching algorithm suitable for embedded real-time systems. Computer
Vision and Image Understanding, 2010.

[18] H. Jeong and S.C. Park. Trellis-based systolic multi-layer stereo matching. In
IEEE Workshop on Signal Processing Systems, pages 257–262, 2003.

[19] Y. Jia, X. Zhang, M. Li, and L. An. A miniature stereo vision machine (MSVM-III)
for dense disparity mapping. In Proceedings of the 17th International Conference
on Pattern Recognition, volume 1, 2004.

[20] S. Jin, J. Cho, XD Pham, KM Lee, S.K. Park, M. Kim, and JW Jeon. FPGA De-
sign and Implementation of a Real-time Stereo Vision System. IEEE Transactions
on Circuits and Systems for Video Technology, 20(1), 2010.

[21] Ratheesh Kalarot and John Morris. Comparison of FPGA and GPU implemen-
tations of Real-time Stereo Vision. In Computer Vision and Pattern Recognition
Workshops, pages 9–15, 2010.

[22] T. Kanade, A. Yoshida, K. Oda, H. Kano, and M. Tanaka. A stereo machine for
video-rate dense depth mapping and its new applications. In CVPR, page 196. the
IEEE Computer Society, 1996.

[23] P. Kauff, N. Brandenburg, M. Karl, and O. Schreer. Fast hybrid block-and pixel-
recursive disparity analysis for real-time applications in immersive tele-conference
scenarios. In Proceedings of WSCG. Citeseer, 2000.

[24] S. Kosov, T. Thormahlen, and H.P. Seidel. Accurate real-time disparity estima-
tion with variational methods. In Advances in Visual Computing, pages 796–807.
Springer, 2009.

[25] M. Kuhn, S. Moser, O. Isler, F.K. Gurkaynak, A. Burg, N. Felber, H. Kaeslin,
and W. Fichtner. Efficient ASIC implementation of a real-time depth mapping
stereo vision system. In Proceedings of the of the 46th IEEE Midwest International
Symposium on Circuits and Systems, pages 1478–1481. Citeseer, 2003.

74



[26] Chia-Kai Liang, Chao-Chung Cheng, Yen-Chieh Lai, Liang-Gee Chen, and
Homer H. Chen. Hardware-Efficient Belief Propagation. In Circuits and Systems
for Video Technology, pages 525–537, 2011.

[27] J. Lu, S. Rogmans, G. Lafruit, and F. Catthoor. High-speed stream-centric dense
stereo and view synthesis on graphics hardware. In IEEE 9th Workshop on Mul-
timedia Signal Processing, pages 243–246, 2007.

[28] Jiangbo Lu, Gauthier Lafruit, and Francky Catthoor. Anisotropic local high-
confidence voting for accurate stereo correspondence. In SPIE, volume 6812, page
68120J, 2008.

[29] D. Masrani and W. MacLean. A real-time large disparity range stereo-system using
FPGAs. Computer Vision - ACCV 2006, pages 42–51, 2006.

[30] Y. Miyajima and T. Maruyama. A real-time stereo vision system with FPGA. In
Field-Programmable Logic and Applications, pages 448–457. Springer, 2003.

[31] John Morris and Georgy Gimel’farb. Dynamic Programming Stereo in Reconfig-
urable Hardware. Technical report, Department of Computer Science, The Uni-
versity of Auckland, August 2006.

[32] S. Mukai, D. Murayama, K. Kimura, T. Hosaka, T. Hamamoto, N. Shibuhisa,
S. Tanaka, S. Sato, and S. Saito. Arbitrary view generation for eye-contact com-
munication using projective transformations. In the 8th International Conference
on Virtual Reality Continuum and its Applications in Industry, pages 305–306.
ACM, 2009.

[33] Sungchan Park and Hong Jeong. Real-time Stereo Vision FPGA Chip with Low
Error Rate. In International Conference on Multimedia and Ubiquitous Engineer-
ing, pages 751–756, 2007.

[34] J. Salmen, M. Schlipsing, J. Edelbrunner, S. Hegemann, and S. Luke. Real-Time
Stereo Vision: Making More Out of Dynamic Programming. In Computer Analysis
of Images and Patterns, pages 1096–1103. Springer, 2009.

[35] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. International Journal of Computer Vision, 47(1):7–42,
2002.

[36] Q. Tian and M.N. Huhns. Algorithms for subpixel registration. Computer Vision,
Graphics, and Image Processing, 35(2):220–233, 1986.

[37] F. Tombari, S. Mattoccia, L. Di Stefano, and E. Addimanda. Near real-time stereo
based on effective cost aggregation. 19th International Conference on Pattern
Recognition, pages 1–4, 2008.

[38] Middlebury University. Middlebury Stereo Evaluation - Version 2. http://

vision.middlebury.edu/stereo/, September 2009.

75

http://vision.middlebury.edu/stereo/
http://vision.middlebury.edu/stereo/


[39] M.A. Vega-Rodriguez, J.M. Sanchez-Perez, and J.A. Gomez-Pulido. An FPGA-
based implementation for median filter meeting the real-time requirements of auto-
mated visual inspection systems. In the 10th Mediterranean Conference on Control
and Automation. CiteSeer, 2007.

[40] L. Wang, M. Liao, M. Gong, R. Yang, and D. Nister. High-quality real-time
stereo using adaptive cost aggregation and dynamic programming. In 3D Data
Processing, Visualization, and Transmission, Third International Symposium on,
pages 798–805, 2006.

[41] J. Woodfill and B. Von Herzen. Real-time stereo vision on the PARTS reconfig-
urable computer. In IEEE Symposium on FPGAs for Custom Computing Ma-
chines. Citeseer, 1997.

[42] Q. Yang, L. Wang, R. Yang, S. Wang, M. Liao, and D. Nister. Real-time global
stereo matching using hierarchical belief propagation. In The British Machine
Vision Conference, pages 989–998, 2006.

[43] R. Yang, M. Pollefeys, and S. Li. Improved real-time stereo on commodity graphics
hardware. In Conference on Computer Vision and Pattern Recognition Workshop,
pages 36–36, 2004.

[44] K. Zhang, J. Lu, G. Lafruit, R. Lauwereins, and L. Van Gool. Cross-based local
stereo matching using orthogonal integral images. IEEE Transactions on Circuits
and Systems for Video Technology, 19(7):1073–1079, 2009.

[45] K. Zhang, J. Lu, G. Lafruit, R. Lauwereins, and L. Van Gool. Real-time accu-
rate stereo with bitwise fast voting on CUDA. 5th IEEE workshop on embedded
computer vision, held in conjunction with ICCV, 2009.

[46] K. Zhang, J. Lu, G. Lafruit, R. Lauwereins, and L. Van Gool. Real-time accu-
rate stereo with bitwise fast voting on CUDA. 5th IEEE workshop on embedded
computer vision, held in conjunction with ICCV, 2009.

[47] Lu Zhang, Ke Zhang, Tian Sheuan Chang, Gauthier Lafruit, Georgi Krasimirov
Kuzmanov, and Diederik Verkest. Real-time High-definition Stereo Matching on
FPGA. In the 19th ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, pages 55–64. ACM, 2011.

76


	Abstract
	Acknowledgments
	Introduction
	Motivation
	Target of Stereo Matching
	Problem Definition
	Solutions and Contributions
	Overview of Chapters

	Stereo Matching Algorithm
	Related Existing Stereo Matching Instances
	Our Stereo Matching Algorithm
	Matching Cost Computation
	Disparity Computation/Optimization
	Disparity Refinement

	Design Targets

	Stereo Matching Algorithm Hardware-Oriented Optimization and Implementation
	Parallel and Pipeline Architecture of Stereo Matching
	Algorithm Modification from Software to Hardware
	Vertical Cost Aggregation Modification
	Census Transform Vector Modification
	Parameters and Multipliers Modification

	Stereo Matching Design
	Median Filter
	Census Transform & Support Region Builder
	Reorder
	Raw Cost Scatter
	Dynamic Programming
	Bypass FIFO and Disparity Output Logic
	Refinement


	Stereo Matching Proposed Hardware Design Evaluation
	Evaluation of Hardware Algorithm
	Support Region Builder Parameters
	Dynamic Programming Parameters
	Refinement Parameters
	Final Middlebury Results

	Evaluation of Stereo Matching Implementation
	FPGA Hardware Resources Utilization
	Real-Time Performance

	Comparison with Related Instances

	A Real-Time View Synthesis System with Stereo Matching on FPGA
	Real-Time System Architecture on FPGA
	View Synthesis
	DDR2 SDRAM Access Scheduler

	Conclusions and Future Work
	Conclusions
	Chapters Summary and Contributions
	Possible Future Work


