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Abstract

We propose a framework to interpret deep convolutional
models for visual place classification. Given a deep place
classification model, our proposed method produces visual
explanations and saliency maps that reveal the understand-
ing of images by the model. To evaluate the interpretabil-
ity, t-SNE algorithm is used for mapping and visualization
of these latent visual explanations. Moreover, we use pre-
trained semantic segmentation networks to label all objects
appearing in the visual explanations for our discriminative
models. This work has two main goals. The first one is to
investigate the consistency of visual explanations by differ-
ent models. The second goal is to investigate whether visual
explanations are meaningful and interpretable or not in an
unsupervised manner. We find that varying the CNN archi-
tecture leads to variations in the discriminative visual ex-
planations, but these visual explanations are interpretable.

1. Introduction

Deep neural networks, including convolutional neural
networks (CNNs) have already achieved great performance
and breakthroughs in many computer vision fields, such as
image classification [10, [11} 25], object detection [3, |6, |9,
181/19]], semantic segmentation [2}[8,112,114], place recogni-
tion [[14127,[29130] and so on. Deep learning models are con-
sidered as black boxes, and human observers cannot know
the reason why decisions are made or why models fail be-
cause of the lack of intepretability.

To interpret the deep convolutional models, [23] pro-
posed a visualization technique, gradient-weighted class ac-
tivation mapping (Grad-CAM), to generate visual explana-
tions based on [35]], which is called class activation map-

ping (CAM) and identifies the discriminative regions that
expose the implicit attention of CNN models. Both methods
project back the weights of specific class of the output layer
on to the convolutional feature maps. Their methods suc-
ceed in interpreting most deep learning models for, such as,
image classification, image caption and visual question an-
swering. The visual explanations generated by their meth-
ods are always with labels, which makes their methods for
interpreting CNN models in a supervised manner. For ex-
ample, given a CNN model for classifying the images of
cars and houses, the labels (car & house) for images should
remain the same as discriminative visual explanations. On
the contrary, how to interpret the other deep learning mod-
els, of which the discriminative visual explanations do not
share the same labels, has not been solved. The deep con-
volutional model for visual place recognition belong to the
latter models.

Visual place recognition is a well-defined but still chal-
lenging problem [15], which is to recognize the place where
the query image was taken or return another image from
database of which the location is closed to the query image.
This kind of task can be accomplished by image classifica-
tion [29}130]], image matching [27]] and image retrieval [1].
Taking image classification as instance, there is a deep vi-
sual place recognition model that can classify the images of
Tokyo and Pittsburgh. If the visual explanations generated
by interpreting methods are meaningful, they are supposed
to be buildings, pathway, vegetation or characters in signs,
of which the labels are no longer the ones of images (Tokyo
& Pittsburgh).

Visual place recognition is not only useful to find out
where the image was taken, but also helpful for humanity
studies, architecture and even biology. The latent informa-
tion in images reveals not only the locations. Human rec-
ognize places from images by find information and objects



that are associating with location, such as signs with spe-
cific characters, famous spots, historic sites, regional ani-
mals and vegetation and so on. For urban images, buildings
contain much useful information of location, such as the
architectural style. Doersch et al. [4] attempt to find out
geo-informative elements of Paris and other cities in Eu-
rope. To find the architectural stylistic patterns from visual
place recognition may be useful to architects and urban his-
torians.

To interpret the CNN models for visual place recogni-
tion, we firstly train place classification models that are able
to classify images from Tokyo and Pittsburgh. Next we use
the visualization technique in [23]] to generate the visual ex-
planations and descriptors for each image by forwarding the
images through deep visual place recognition model. The
pipeline of generating visual explantaions is shown in Fig
At last, we apply three different methods to test the
interpretability of place classification model. (1) We ap-
ply t-distributed stochastic neighbor embedding technique
(t-SNE) [16] to cluster the descriptors of visual explana-
tions in 2-dimensional space. By replacing 2-dimensional
points with visual explanations, we can visually test the in-
terpretability of deep visual place recognition models. (2)
We apply pre-trained semantic segmentation to label all ob-
jects appearing in the visual explanations, and the distribu-
tions of all objects reflects the visual explanations, which
can be used for interpreting visual explanations. (3) We
manually annotate one or two discriminative objects in vi-
sual explanations.

There are two main aspects of contributions in our work,
one of which is that we try to interpret several deep visual
place recognition models and investigate the consistency of
visual explanations learned by different models. The other
one is that we investigate the interpretability of visual ex-
planations in an unsupervised manner.

This paper will be structured as follows. We present re-
lated work in Sec[2] And we explain our proposed frame-
work on how to interpret the deep visual place recognition
models in Sec[3] The details of our experiments and dis-
cussion is presented in SecH] and two research questions
of ’consistency’ and ’interpretability’ are also answered in
this section. The conclusion of our work will be presented
in Sec[5] Appendix presents visualization results in the last
part of this paper.

2. Related Work

Our work is based on the related work of visualiza-
tion of CNN models, visual place recognition, nonlinear
dimensionality reduction technique and interpretability as-
sessment.

2.1. Visualization of CNN models

There are many previous works focusing on how to in-
terpret deep CNNs, one of which is to visualize what con-
volutional filters have learned [23| 24126, 33\ 134} 135] 38]].

Griin et al. [7]] provide a taxonomy to classifiy and com-
pare the methods for visualizing learned features in CNNs.
The first kind of generalized methods is input modification
methods. Zeiler et al. [33] and Zhou et al. [34] cover a
portion of the input images and detect the importance of
features in the input space. Grey squares are used to oc-
clude different portions of the input images in [33]]. Zhou et
al. [34]] replace grey squares with random colored squares.
Although these methods can find out where is important in
input images and what have learned by convolutional filters,
they are not straightforward regarding finding importance
and locality.

The second kind of visualization methods is to use the
network structure itself. Zeiler et al. [33] propose Decon-
volutional Network (deconvnet) to pass activities of feature
maps back to the input images. [24] uses class-specific
scores through backpropagation to generate saliency maps.
And then Springenberg et al. [26]] present guided backprop-
agation by combining both deconvnet and backpropagation
methods and learn what the intermediate and lower layers
learn. Clearly, this second kind of methods is straightfor-
ward on finding what the convolutional layers learn and
able to generate fine-grained visualization. However, some
of these methods [26, |33]] are not class-discriminative and
generate similar maps for different classes. And the other
methods [24] visualize CNN model overall instead of visu-
alizing input images.

To visualize the model for input images and make it
class-discriminative, Zhou et al. [35] present class activa-
tion mapping (CAM) to visualize class-discriminative fea-
tures on input images. Based on the work of Zhou et al.
[35], Selvaraju et al. [23] present gradient-weighted class
activation mapping (Grad-CAM) to visualize any activation
of feature maps in the last layer by using gradients gener-
ated. Grad-CAM in [23] is model-agnostic and generates
visual explanations for each image learned by CNN mod-
els. One limitation of Grad-CAM is that it cannot visual-
ize the feature maps of intermediate convolutional layers.
However, in our work, we use Grad-CAM to generate vi-
sual explanations for deep visual place recognition models
because it produces class-discriminative visualization and
does not need to alter CNN models.

2.2. Visual place recognition

Visual place recognition is one of challenging topics
in computer vision and robotics communities, the task of
which is to recognize the place or location of a given query
image accurately and efficiently. Recently convolutional
models have already achieved state-of-the-art performance
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Figure 1. Pipe-line of generating visual explanations with Grad-CAM

on visual place recognition task. Weyand et al. [30] and
Vo et al. [29] accomplish place recognition task by image
classification, where geo-tagged images are classified into
multi-scale geographic cells of the earth’s surface, which
are partitioned by S2 cells [30] and by setting thresholds on
the number of images in a cell and physical area [29]. Tian
et al. [27] match the buildings detected by CNN models
from street view images and bird’s eye view images. Arand-
jelovic et al. [1]] provide a new CNN architecture in an end-
to-end manner for place recognition, which return an image
from database of which the location is close to the one of
the query image.

Although image classification, image matching and im-
age retrieval accomplish the visual place recognition task
through different methods with CNNgs, little work has inves-
tigated to find interpretable visual explanations for visual
place recognition CNN models. Doersch et al. [4] use ma-
chine learning methods to find local interpretable and geo-
informative features for Paris and other cities. However, the
method in [4] cannot be used to interpret deep visual place
recognition CNN models.

2.3. Nonlinear dimensionality reduction technique

Compared with traditional linear dimensionality reduc-
tion techniques, such as principal components analysis
(PCA), nonlinear techniques have the ability to deal with
complex nonlinear data, in particular for real-world data
[28]]. Clearly, the limitation of linear dimensionality re-
duction techniques like PCA cannot capture nonlinear re-
lationships defined by higher than the second order statis-
tics [32]]. Kernel PCA is an extension to nonlinear PCA
[22], which applies nonlinear mapping and kernel functions
on PCA. One weakness of kernel PCA is how to select a
proper kernel. Roweis et al. [21] propose locally linear
embedding (LLE) that reconstructs each data point from
its neighbors in high dimensional space. One major dis-
advantage of LLE is it is less accurate in preserving global

structure because it attempts to preserve local properties of
data. T-distributed stochastic neighbor embedding (t-SNE),
as a clustering technique, clusters high-dimensional data
by preserving nearest-neighbors in low dimensional space.
T-SNE is also a nonlinear dimensionality reduction tech-
nique for high-dimensional data, which lie on several dif-
ferent, but related, low-dimensional manifolds in particu-
lar [16]. Therefore, t-SNE is suitable for visually exhibit-
ing images of objects from different classes and taken from
multiple viewpoints, such as visual explanations for visual
place recognition.

2.4. Interpretability assessment

How to interpret intelligent models has always been a
problem, which concerns whether and when the users trust
the models[13} 20]. Lipton identifies the notions of inter-
pretability for machine learning models in [13]. How to
assess the trust in any classification model is introduced in
[20]. Motivated by [13}20], our framework is evaluated by
human evaluation eventually like [34], where human eval-
uation determines whether the individual units behave as
object detector in a scenes classification network.

The most relevant work to ours is the network dissection
approach presented by Bau et al. in [3]. To evaluate the in-
terpretability, Bau et al. apply binary segmentation task to
every visual concept from the dataset and then compare the
labels from segmentation with human annotation. However,
the labels of visual concepts are provided and compared
with the ones interpreted by network dissection, which is
in a supervised manner.

To sum up, we introduce a framework to interpret deep
visual place classification models based on CNNs. This
framework generates class-discriminative visual explana-
tions first for any CNN models. Because of the lack of la-
bels for visual explanations, we apply t-SNE to cluster and
map the visual explanations, which is also for investigating
whether the visual explanations are meaningful or not. At



last, we validate the interpretability of visual explanations
with semantic segmentation and manual annotations.

3. Methodology
3.1. Research questions

The main goal of this study is to interpret deep visual
place recognition models based on CNNs, which is a black
box and difficult to understand the insides. To this aim, we
study the following research questions:

Question 1: Are the features learned by different vi-
sual place recognition models consistent? Visual place
recognition task recently is accomplished by CNNs. The
convolutional models in most of deep visual place recogni-
tion models are model-agnostic. To test the consistency of
features learned by different visual place recognition mod-
els is an easy attempt to interpret place recognition mod-
els. We train four different place classification models in
advance, which are VGG11 [25], ResNet18 [10] and two
shallow networks built by ourselves.

Question 2: Are the features learned by visual place
recognition models interpretable? Interpreting deep vi-
sual place recognition models is different from interpreting
CNN:s for other tasks, such as image classification. Because
of the lack of labels of visual explanations, how to inter-
pret visual place recognition models is the major problem
through our work.

To answer these questions, we generate visual explana-
tions from four different CNN models that classify images
from two places. We compare these visual explanations for
each image. After, we generate descriptors for all images,
which are high-dimensional. We apply t-SNE on these de-
scriptors to visualize the visual explanations. To validate
the maps after t-SNE, we use semantic segmentation and
human annotation to label the visual explanations.

3.2. Generating the Visual Explanations

The most common method for interpreting convolu-
tional models is to visulaize what features the convolu-
tional layers have learned. To interpret visual place recog-
nition models, we apply Grad-CAM proposed in [23] to
generate class-discriminative visual explanations. Grad-
CAM utilizes the gradient information that flows into the
last convolutional layer of the CNN models and generates
the class-discriminative localization maps. These class-
discriminative localization maps are obtained by a linear
combination of weighted forward activation maps:

LS. = ReLU(>_ af AF). (1)
k

The class-specific weights af, are calculated by the scores
y° for class c and feature maps A* (k represents the k-th

feature map):
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=722 aj’.@j’ @
i J 2,

where Z is the size of filters of convolutional layers. Both
equations are proposed in [23]. These localization maps re-
veal class-discriminative significance for each image. To vi-
sualize the significance, the localization maps are converted
into saliency maps. Afterwards, class-discriminative visual
explanations for each image can be generated from original
image by thresholding localization maps with value as 6.
One can see the pipeline in Fig|[T]

Grad-CAM is able to generate visual explanations
from CNN-based models, which makes it model-agnostic.
Therefore, we apply Grad-CAM firstly to generate class-
discriminative localization maps and visual explanations
from four different visual place recognition CNN models,
VGGI11, ResNetl8 and two shallow models, for each im-
age.

3.3. Extracting Descriptors

Our goal is to interpret what the visual explanations are
after getting localization maps and visual explanations for
each image, but there are several problems in interpreting
visual explanations. First of all, we do not have the true la-
bels of objects appearing in visual explanations, which are
not the same as the labels of images. Next we need to extract
descriptors of visual explanations. Because of the irregular
shape of visual explanations and black areas around visual
explanations in original images, it is difficult to extract de-
scriptors only from the visual explanations.

Instead of extracting descriptors only from the visual ex-
planations of single image, we extract descriptors from the
whole image by passing single image through convolutional
layers of our place classification models. To emphasize the
visual explanation of each image, we propose two methods
to extract descriptors.

e We use the localization maps Lg_ as descriptors of im-
ages, where
Deam = Lgc 3)

These localization maps have the same size of the fea-
ture maps after the last convolutional layer. At last, the
localization maps are reshaped into high-dimensional
vectors.

e We take the sum of the products obtained by multi-
plying the localization maps Lg. and feature maps AF
element-wise, as in[d]

Dahort = Y _ (L. 0 A¥). “)
k

As above, we reshape the descriptors D into high-
dimensional vectors.



3.4. Clustering

We lack the labels of visual explanations, therefore, we
apply clustering method to find whether the visual explana-
tions are interpretable and meaningful or not. T-distributed
stochastic neighbor embedding [[16] is not only a cluster-
ing method, but also a dimensionality reduction method
that is able to present clustering results in two or three-
dimensional space.

According to results, applying t-SNE on the high-
dimensional descriptors is not a good option. Therefore,
we reduce the dimensionality of the descriptors by princi-
pal component analysis (PCA) before t-SNE. We extract di-
mensionality of descriptors in two situations. The first one
is that we extract the first 50 dominating features. The other
situation is that the sum of the variance of the features that
we extract is greater than 90%. Table [I] shows the numbers
of dimensionality of descriptors of four different models af-
ter two situations of PCA.

Table 1. Number of dimensionality of descriptors of four different
models after two situations of PCA.

Original | PCA(50) | PCA(90%)
VGGl11 196 50 17
ResNet18 | 49 49 11
Simple 324 50 40
Simpler 1764 50 91

3.5. Evaluation Method

Through our work, there exists a problem, which is we
do not have the labels of the objects appearing in visual ex-
planations that we use to interpret the visual place recog-
nition models. Although we cluster the descriptors with t-
SNE, we still need other methods to evaluate the clustering
results and to interpret the visual explanations. Because no
work has been done for this situation, we try to evaluate the
results in two different ways.

We first use pre-trained semantic segmentation [31} 36,
37] to get the labels of the objects and the distribution of
all objects appearing in the visual explanations for each im-
age. The labels of objects and distribution from semantic
segmentation can be used not only for evaluating the results
of t-SNE, but also to interpret the visual explanations. Be-
sides, we manually annotate the labels of a portion of im-
ages. These annotations can be regarded as the ground truth
and used to evaluate t-SNE and segmentation.

4. Experiments and Discussion
4.1. Datasets

We train four different place classification networks with
two different datasets, which are Pittsburgh and Tokyo
24/7 introduced in [1]].

e Tokyo 24/7 This dataset contains 76k database images
and 315 query images. Each place in the query images
is captured at different times of day, and for the same
place in the database, 12 images from different direc-
tions are taken. We only use database images that are
taken in daytime and divide them into training, valida-
tion and test datasets with the following proportions as
6:2:2.There are 15204 test images in total.

e Pittsburgh This dataset contains 250k database im-
ages from Google Street View and 24k query images
from Google Street View at different times. To avoid
unbalanced dataset, we only use 76k images from
database images. For each place, 24 images are cap-
tured from 12 different directions and 2 different an-
gles. Training, validation and test datasets are struc-
tured by the same proportions as Tokyo 24/7.

4.2. Experimental Setup
4.2.1 Visual place recognition CNN models

We train four different CNN models to classify images
taken from two different places, which are VGG11 [25]] and
ResNet18 [[10] and the other two are shallow networks. The
configurations of two shallow networks, Simple and Sim-
pler, are shown below, in Table[2| In this table, ’convNxN’
represents convolutional layer with a NxN filter, and each
convolutional layer is followed by ReLU activation func-
tion. The number after hyphen represents the number of
channels in the corresponding feature map, and the numbers
in the brackets is the size of filter in max pooling layer. The
size of input images (224 x 224 x 3) remains the same, which
makes the visual explanations comparable among these four
different models.

Table 2. Configurations of two shallow networks.

Simple \ Simpler
Input images:224 X224 x3(RGB)
conv5x5-20 \ conv9x9-20
max pooling(2x2)

conv7x7-64 \ conv9 x9-64
max pooling(2x2)

conv5x5-96 | conv9x9-96
max pooling(2x2)

conv7x7-128

max pooling(2x2)

fully connected-4096

fully connected-100

fully connected-number of classes:2

4.2.2 Training details

These four models are trained with the same training im-
ages. The loss function is cross-entropy function, and Adam



optimizer is selected. The initial learning rate is set as
0.0001, and after ever 10 epochs learning rate is multi-
plied by 0.1. The s of Adam optimizer are set as 0.9 and
0.999. And the parameter to improve numerical stability e
is 1x1078. The test error rates of four models are shown in
Table Bl below.

Table 3. Test error rates of four models
Name VGGI11 | ResNetl8 | Simple | Simpler
Test error rate | 0.0002 | 0.0004 0.0069 | 0.0182

4.3. Performance analysis

4.3.1 Experiment 1: Comparing Visual Explanations
From Four Place Recognition Models

To investigate the consistency of visual explanations gen-
erated from different visual place recognition models, we
have trained four different models, VGG11, ResNetl8,
Simple and Simpler. We use Grad-CAM to generate the
localization maps as saliency maps. The saliency maps re-
flect the important regions in the images that are dominat-
ing place recognition models to classify the images. Fig[2]
shows some examples that different visual place recognition
models generate dissimilar localization maps.

Simple Simpler ResNet18 VGG11

<
)
[
E
2
3
b=
P

Figure 2. Different visual place recognition models generate dis-
similar localization maps. The first two rows present two test
images taken from Pittsburgh and the last two rows show the
test images taken from Tokyo. From the second column to the
fifth column, the class-discriminative localization maps (saliency
maps) are shown for Simple, Simpler, ResNet18 and VGG11 place
recognition models, respectively.

Although the examples in Fig[2] have already shown that
four place recognition models classify the images based on
different visual explanations, it is hard to conclude that there
is no consistency of visual explanations for place recogni-
tion models. Therefore, we compare the localization maps

for all images among four models. For each image and each
model, we can get a localization map Lgc, which can be re-
garded as a vector. To compare the difference between any
two models, we calculate the average residual (AR) for sin-
gle image between two models:

L¢ —Lc
AR = | gc”};ﬁ v W?C’m?|, %)

where H and W are the height and width of localization
maps, and m represents place classification model. For sin-
gle image, we can calculate 6 average residuals between any
two models out of four. We compute all average residuals
for all test images, and distributions of the average residuals
between any two models are shown below in Fig[3 If two
models learn the same features from the same image, the
average residual will be 0, and if they learn totally different
features from the same image, the average residual will be
1. Therefore, large value of the average residuals mean that
the localization maps of the same image for different place
recognition models are dissimilar to a large extent, and vice
versa. From Fig 3] we can see that most of the average
residuals range from 0.2 to 0.6, and the average residuals
of most of images between any two place recognition mod-
els are located around 0.4 except the last one (Simple and
Simpler, 0.3). Therefore, we can conclude that there is little
consistency of visual explanations for different visual place
recognition models.
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Figure 3. Distributions of average residuals between different
models. The horizontal axis represents the average residuals be-
tween two place recognition models, and the vertical axis repre-
sents the number of images. The scale of average residuals is from
Oto 1.



4.3.2 Experiment 2: Clustering Visual Explanations
With t-SNE

Because of the lack of true labels of the objects appearing in
visual explanations, we need to use unsupervised method to
cluster the descriptors extracted from visual explanations.
We firstly use principal component analysis (PCA) to re-
duce the dimensionality of the descriptors of all test images
generated by Grad-CAM and visual place recognition mod-
els. Then we apply t-SNE as clustering method to cluster
the descriptors.

Since there is no need to compare the visual explana-
tions of different place recognition for investigating the in-
terpretability, from experiment 2, we take VGGI11 as ex-
ample to show the results. Fig[d]shows the scatter plots of
results after t-SNE clustering.

D_cam D_short

Pittsburgh
Tokyo 9

pca90%

Figure 4. Scatter plots of t-SNE results for VGG11 model with
different kinds of descriptors and different dimensionality of de-
scriptors after PCA.

From FigH] it can be seen that most of the visual expla-
nations of Pittsburgh images and Tokyo images are sepa-
rable regardless of the methods of extracting descriptors of
visual explanations, and the clustering results with different
numbers of dimensionality after PCA are similar with re-
spect to the same descriptor extraction method. However,
the scatter plots cannot visually exhibit the visual explana-
tions. Next we replace the points with visual explanations
generated from original images by thresholding saliency
maps by # = 0.6. Since the number of test images is consid-
erable, it is impossible to visually exhibit all visual explana-
tions. We randomly select around 500 visual explanations
to exhibit with 50 dimensionalities of descriptors after PCA,
as shown in Fig[3]

Based on the results shown in Fig 5] we can find that
different kinds of descriptors lead to different t-SNE results
and similar visual explanations gather together regardless
of the methods of descriptors extraction. For Dy, we
can see that the visual explanations of wall are gathering

at the top right corner, with the visual explanations of sky
and vegetation gathering at the top left corner, the ones of
pathways located in the bottom and the ones of buildings
located in the middle of left image of Fig[5] On the other
hand, for Dgj,..¢, it can be seen that the visual explanations
of wall are gathering in the middle of right region, with the
explanations of vegetation located in the bottom, the ones
of pathways gathering at the top, the ones of sky gathering
in the middle of left region and the ones of buildings sur-
rounded by pathways, sky, walls and vegetation.

Although we can interpret a portion of the visual expla-
nations generated by visual place recognition models based
on visually exhibiting clustering results of t-SNE, we still
cannot answer the second research question without further
evaluation or validation, because we lack the true labels of
the visual explanations and analyzing the results of cluster-
ing is subjective.

4.3.3 Experiment 3: Evaluating Results with Semantic
Segmentation and Human Annotation

In this experiment, we apply semantic segmentation and hu-
man annotation to evaluate the clustering results after t-SNE
and investigate the interpretability of visual explanations.

Semantic segmentation

Because of the lack of the labels of visual explanations, we
need to get the labels of these visual explanations to inves-
tigate whether they are interpretable and meaningful or not.
Besides the shapes of visual explanations are irregular and
there are black areas around the visual explanations, it is
difficult to label all the objects and find the most dominat-
ing one. Therefore, the first method to figure out what ob-
jects are in the visual explanations is using semantic seg-
mentation. In this experiment, we utilize one semantic seg-
mentation model trained on MIT ADE20K scene parsing
dataset [36, 37]]. This semantic segmentation model is
built on ResNet50 with pyramid pooling, bi-linear upsam-
ple and deep supervision trick and able to classify 150 dif-
ferent kinds of objects. Fig [6] shows an example of using
segmentation model. The colors of segmentation result rep-
resent different labels of objects.

To avoid missing any information of visual explanations,
we use segmentation model to classify the objects appearing
in visual explanations and record the distribution of all ob-
jects by pixel instead of the only object with the most num-
ber of pixels. For different datasets, we average the number
of pixels of 150 objects. Fig[7]shows the histograms of sev-
eral objects appearing in visual explanations that are gen-
erated by thresholding with 2 different values () for Pitts-
burgh and Tokyo datasets, as shown in Fig [T] respectively.
Only if the number of average pixels is larger than 100, the
object will be selected.
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Figure 5. t-SNE results exhibiting visual explanations by VGG11. The descriptors are reduced to 50 dimensionalities with PCA, and the
visual explanations are generated from original images by thresholding saliency maps by 6 = 0.6.

Original image

Segmentation Model

Figure 6. Example of using segmentation model.

From Fig|7|it can be seen that except building and sky,
skyscraper, floor and earth (ground) are discriminative ob-
jects appearing in visual explanations of Pittsburgh. On the
other hand, plant, fence and signboard are different discrim-
inative objects for the visual explanations of Tokyo. Build-
ing and sky are the common discriminative attributes in both
Pittsburgh and Tokyo datasets. We have shown that the fre-
quent objects are appearing as the most discriminative ele-
ments to classify a place in our setting. This indicates that
the visually discriminative clues for our VGG11 place clas-
sification model are consistent and meaningful. The results
would have been difficult to interpret if the importance of
different objects were equally distributed, which is not our
case here.

To evaluate the results of t-SNE with segmentation, we
should show the scatter plots with the distribution of visual
explanations in each image. However, the distribution can-
not be plotted. Instead, we replace the histogram with the

Segmentation result

top object, shown in Fig

From Fig (8] it can be seen clearly that two different ob-
jects gather at different locations, hence it confirms the clus-
tering results of t-SNE, which means the results of t-SNE
can reflect the interpretability of objects in visual explana-
tions according to the segmentation labels.

Manual annotation.

Although the result of semantic segmentation reveals the
fact that the visual explanations are interpretable, we still
need to evaluate the results of segmentation because the seg-
mentation model that we used is not trained specially by our
datasets. To get the labels of the objects appearing in the
visual explanations, we manually annotate the visual expla-
nations of 1000 images (500 of Pittsburgh, 500 of Tokyo).
Instead of recognize all objects appearing in visual explana-
tion, we annotate two dominating objects in a single image
at most. Fig[9] shows examples of human annotation. For
both datasets, we always select the main object appearing
in the visual explanations. If there are two main objects
appearing in the visual explanations with similar areas, we
select these two objects. No more objects will be selected
by human annotation.

Firstly, we use the manual annotation to evaluate the re-
sults of t-SNE, as in Fig[T0] We can see that images labeled
as building and images labeled as road gather at different
areas, which is consistent with the scatter plots in Fig [§]
In other words, t-SNE clusters the visual explanations and
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Figure 7. Histograms of top objects appearing in visual explanations of different datasets with different thresholds.
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Figure 8. Scatter plots of t-SNE results with the top one segmen-
tation label.

the results reflect the dominating objects appearing in visual
explanations.

Secondly, we compare the manual annotations with the
labels of segmentation. Because of the same problem that
we cannot show or compare the histograms of objects by
segmentation with one or two dominating objects by human
annotation. Therefore, we need to select one or two labels
from the segmentation histograms for each image. For all
images, we select the object with the largest number of pix-
els in one image. And we set another threshold to select
the second object. If the ratio between the sum number of
pixels of the top two objects and the number of total pixels
of all objects appearing in the visual explanations is larger
than this threshold for selecting a second object, then we
also select the second object. And we compare the labels of
visual explanations of 1000 images between segmentation
labels and human annotation in two different situations, as
in Fig[TT]and [T2}

The first situation is that the labels of segmentation are
regarded as correct only if all the selected labels are the

Visual explanation =~ Human annotation

Original image

“

Building, road

Pittsburgh

Building

Building

Tokyo

Building, signboard

- A

Figure 9. Example of human annotation.

same as human annotations for every single image, as in
Fig[TI] And the second situation is that when one of two
selected labels is consistent with human annotations, it can
be considered as correct, as in Fig[T2] Fig[IT]|shows that the
accuracy of segmentation in different datasets with different
thresholding values (#). The accuracy improves as thresh-
old for selecting a second object rising. When the threshold
is set as 100%, the accuracy of segmentation results is the
largest, around 0.6. On the contrary, Fig [I2] shows that the
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Figure 11. Comparison between segmentation and human anno-
tation only when both selected labels are consistent with human
annotations is correct. The x-axis represents the thresholds of se-
lecting the second label of segmentation, and the y-axis represents
the accuracy of segmentation with human annotation as ground
truth.

accuracy decreases as the threshold for selecting a second
object rising. We can also find that the accuracies of Pitts-
burgh images are larger than the ones of Tokyo images in
both situations. One possible reason could be the categories
of objects appearing in Tokyo images are more complicated
than the ones appearing in Pittsburgh images. Instead of la-
belling objects as delicate classes, human annotate objects
as generalized classes.

Comparing Fig [T1] and Fig we can easily find that
the trends of lines are totally different. In the first situation,
only if the second selected label of the object appearing in
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Figure 12. Comparison between segmentation and human annota-
tion when one of two selected labels are consistent with human
annotations is correct. The x-axis represents the thresholds of se-
lecting the second label of segmentation, and the y-axis represents
the accuracy of segmentation with human annotation as ground
truth.

the visual explanations is consistent with human annotation,
it can be considered as correct. When the threshold for se-
lecting the second label is large, it is difficult to select a
second label of object. The number of selected labels of
objects are more likely to be one, and the selected objects
are more likely to be consistent with human annotations.
Therefore, in Fig [IT]the accuracies go up. On the contrary,
in the second situation, if one selected label of object is the
same with human annotation, it will be considered as cor-
rect. When the threshold for selecting the second label is
small, it is easy to select a second label of object, which
provides more options to compare with human annotations.
It is more likely to be consistent with human annotations.
Therefore, in Fig[I2]the accuracies go down.

4.4. Application

From the previous experiments, we find that different vi-
sual place recognition models recognize the same image
based on different visual explanations. The visual expla-
nations are meaningful and interpretable. Our presented
framework also can be used to explore the urban symbols
and architecture styles for different cities. Here we discuss
the directions.

4.4.1 Exploring urban symbols

Our framework can used for exploring urban symbols. Ur-
ban symbolism is one of major research interests for soci-
ologists and historians [[17]. A lot of sociological and his-
torical materials from all over the world are related to ur-
ban symbolism, such as street patterns, ’sign’ language and
street names. Our framework generates visual explanations



between different cities. By comparing visual explanations
of different cities, unique discriminative objects can be re-
garded as urban symbols. Fig [[3] shows the examples of
urban symbols of Pittsburgh and Tokyo.

Original image Visual explanation Urban symbol

=
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>

2 Skyscraper
£
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O .
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Figure 13. Urban symbols of Pittsburgh and Tokyo.
Original image Visual explanation Building style

Height:High-storey
Materiality:Steel&glass

Pittsburgh

Height:Low-storey
Materiality:Wood&brick

Tokyo

Figure 14. Architecture styles of Pittsburgh and Tokyo.

When we enlarge our datasets with more images of more
places, urban symbols can be generalized for each city.
Given the city location and global positioning system (GPS)
coordinates of images, we can easily display the visual ex-
planations with urban symbols on a map. Besides, histori-
ans can also use our framework help their researches. With
images taken at the same city at different time, historians
can find out urban symbols of the same city at different time.

11

4.4.2 Exploring architecture styles

Except exploring urban symbols, our framework can also
explore the architecture styles. For images taken in urban
cities, buildings are common, and the semantic informa-
tion is meaningful. By comparing the buildings from differ-
ent cities, city-specific buildings can be found. Our frame-
work generates a lot of visual explanations that are build-
ings. These buildings can be considered as city-specific
buildings. Fig [T4] compares the building styles of Tokyo
and Pittsburgh. We can see that the buildings in Pittsburgh
are always high-storey and mostly made of steel and glass.
On the contrary, the buildings in Tokyo are low-storey and
mostly made of wood and bricks.

This application is helpful for architecture researches.
Except exploring architecture styles, architectural histori-
ans can use our framework to find out how the architecture
styles of the same city along time.

5. Conclusion

In this work, we present a framework that interprets deep
visual place recognition models. We investigate the consis-
tency of visual explanations by comparing different visual
place recognition models that classify images into different
places. Because of the lack of true labels of objects ap-
pearing in the visual explanations, we apply t-SNE as clus-
tering algorithm to cluster the visual explanations and use
semantic segmentation and human annotation to evaluate
the results and to investigate the interpretability of the vi-
sual explanations. We conclude that different visual place
recognition models recognize the place by different visual
explanations of the same image, however, these visual ex-
planations are interpretable. Besides, we also discuss the
potential usage of our framework, which is helpful for ar-
chitecture researches and architectural historians.
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Introduction

This work aims to interpret the deep visual place recognition models based on convolutional neural
networks. We present a framework to investigate the consistency of visual explanations that are
important for decisions for different models and whether these visual explanations are interpretable.
This chapter provides an overview of background and motivation of this work. Also, the research
questions of this work are presented in this chapter.

1.1. Background

Deep neural networks, especially convolutional neural networks (CNNs) have already become one pow-
erful tool in many computer vision fields due to great performance and breakthroughs, such as image
classification [1-3], object detection [4—8], semantic segmentation [9—-12], place recognition [13—-16]
and so on. However, there is one major problem with deep neural networks, which is that deep neural
networks are considered as black boxes. People who use deep convolutional neural networks will not
know the reason why decisions are made or why models fail because of the lack of interpretability,
which will result in that people doubt and distrust deep neural networks. Therefore, interpreting deep
neural networks is significant.

Because of the importance of interpreting deep neural networks, convolutional neural networks in par-
ticular, many researches have already attempted to interpret them. To interpret deep neural networks,
first of all, we should know what is interpretabililty. Lipton identifies the notions of interpretability for
machine learning models in [17]. Ribeiro et al. introduce several methods on how to assess the trust
in any classification model in [18]. Next, we should know how to interpret deep convolutional neural
networks. One common method is to visualize what convolutional filters have learned. Griin et al. [19]
provide a taxonomy to classifiy and compare the methods for visualizing learned features in CNNs. The
first kind of methods is to modify the input images. Zeiler et al. [20] and Zhou et al. [21] occlude
the input images and detect the importance and locality of features in the input space. The difference
between these two methods is that Zeiler et al. use mono colored grey squares, while Zhou et al.
use random squares and generate discrepancy map for each image. Although these methods can find
out where is important in input images and what have learned by convolutional filters, they are not
straightforward regarding finding importance and locality. The second kind of methods in [19] is to use
the network structure itself to visualize. Zeiler et al. is the first to present this kind of method in [20],
where Deconvolutional Network (deconvnet) is proposed to map activities from feature maps back to
the input pixel space through convolutional neural networks. Simonyan et al. provide a variation of
deconvnet in [22], which uses class score derivative through backpropagation to generate saliency
maps. Springenberg et al. [23] present guided backpropagation by combining both deconvnet and
backpropagation methods and get insight into the intermediate and lower learned layers. Compared
with the first kind of methods, the second kind of methods is straightforward on finding what the con-
volutional layers learn and able to generate fine-grained visualization. There are several other methods
that are able to generate class-discriminative visual explanations for individual input image. Zhou et
al. present Class Activation Mapping (CAM) to visualize class-discriminative features on input images in
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2 1. Introduction

[24]. [25] proposes gradient-weighted class activation mapping (Grad-CAM) to visualize any activation
in the last layer by using gradients generated when input images flow into the last convolutional layer
of CNNs. Grad-CAM in [25] is workable for any CNN-based models and generates visual explanations
for each image learned by CNN models.

Those methods mentioned above are tested and broadly used for interpreting image classification,
object detection and semantic segmentation. Little work has done on interpreting convolutional neural
networks for visual place recognition. Visual place recognition is one of challenging topics in computer
vision and robotics communities. The task of visual place recognition can be summarized as to recognize
the place where the query image was taken or to return another image from given database, the location
of which is closed to the query image. Recently, this task can be accomplished by convolutional neural
networks based models, such image classification models [15, 16], image matching models [14] and
image retrieval models [13].

1.2. Motivation

Many efforts have been made to interpret CNNs models, such as image classification, object detection
and semantic segmentation. Doersch et al. [26] use machine learning methods to find local inter-
pretable and geo-informative features for Paris and other cities. Although this work aims to interpret
place recognition model, the model is based on machine learning instead of deep neural networks.
However, it is difficult to those methods mentioned above to interpret visual place recognition models
directly. One major problem is we lack the true labels of visual explanations for each image. Taking
image classification as instance, there is a deep visual place recognition model that can classify the
images of Tokyo and Amsterdam. If the visual explanations generated by interpreting methods are
meaningful, they are supposed to be buildings, pathway, vegetation or characters in signs, of which
the labels are no longer the ones of images (Tokyo & Amsterdam). In this scenario, interpreting visual
place recognition models should be in unsupervised manner.

To solve this unsupervised problem, the first solution should be clustering method. Since the visual
explanations are parts of the images that are high-dimensional, there is another problem to cluster
them. High-dimensional data is always sparse, and most clustering methods are based on the distance
between each other. Because of the sparse high-dimensional data, the distances are very similar.
How to cluster the visual explanations is the second problem. Therefore, interpreting deep visual place
recognition models is challenging and useful.

This work aims to interpret deep visual place recognition models based on convolutional neural net-
works, and a framework is proposed. The pipeline of our framework is shown in Fig 1.1.

Trained Model
Class & Score
Original Image ‘ Saliency Map Visual Explanation
| M
Grad-CAM | resholding

Figure 1.1: Pipe-line of visualizing place recognition models with Grad-CAM
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1.3. Research questions

The main goal of this study is to interpret deep visual place recognition models based on CNNs, which
is a black box and difficult to understand the insides. To this aim, the following research questions are
proposed,

¢ Are the features learned by different visual place recognition models consistent?
Because most of the deep visual place recognition models based on convolutional neural networks
are model-agnostic, which means convolutional layers can be replaced, is there consistency of
features learned by different convolutional models? It is an easy attempt to interpret visual place
recognition models.

« Are the features learned by visual place recognition models interpretable?
Because of the lack of labels of visual explanations, how to interpret visual place recognition
models is the major problem through our work.

In summary, this work has two main aspects of contributions, one of which is that we try to interpret
several deep visual place recognition models and investigate the consistency of visual explanations
learned by different convolutional models.The other one is that we investigate the interpretability of
visual explanations for all images in an unsupervised manner.

1.4. Structure

This chapter presents the introduction of this work. And the rest of this thesis is organized as follows.
The second chapter presents preliminary scientific background of theoretical knowledge of deep neural
networks and algorithms. The third chapter proposes supplementary results of experiments.






Preliminary Background

This chapter presents the preliminary scientific background which is necessary for getting insight and
deep understanding of this work. The purpose of this work is to interpret deep visual place recognition
neural networks models. To provide the preliminary knowledge, this chapter presents the basic idea of
image processing and a brief introduction of neural networks and convolutional neural networks.

2.1. Basic idea of image processing

Before we use images to accomplish complex tasks, such as images classification and image match-
ing, we need to use image processing methods on images in advance. One major aspect of image
processing is image filtering.

2.1.1. Convolution

Before introducing image filtering, it is necessary to know what convolution is. Convolution is a math-
ematical operation that computes the amount of overlap of one function as it is shifted overanother
function. For continuous functions, the convolution of two functions can be written in 2.1. And for
discrete functions, it can be written in 2.2. In computer vision, we consider images as matrices of
integer values, which are discrete.

frog=| foge-nde (2.1)
frg=) fomgn-m) (22)

2.1.2. Image filtering and filters
The main purposes of image filtering are reducing noise of images and extracting useful features and
knowledge from images, which can achieved by taking convolutions between images and filters, as in

2.3.
ko k

G(i,j) = Z Z H(w, v)F(i —wu,j — v), (2.3)

u=—-kv=-k

where F represents filter and H represents image. For example, Fig 2.1 shows an image with noisy
points. The simplest method to remove the noisy points is to replace the noisy pixels by neighbourhood
average. Therefore, we can use an averaging filter over the image. Different kinds of filters are used for
different purposes, such as blurring, sharpening, edge detection and so on. Fig 2.2 shows an example
of image filtering. Among all kinds of filter, Gaussian filter is commonly used, which is because Gaussian
is the only function that does not introduce artifacts [27].
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6 2. Preliminary Background

Figure 2.2: An example of image filtering. The left image is original image. The right image is generated after convolving edge
detecting filter with original image.

2.2. Introduction of convolutional neural networks

2.2.1. Artificial neural networks

Artificial neural networks (ANNs) were created based on the inspiration of biological neural networks
in the brain in [28], like Fig 2.3. ANNs consists of a collection of simple interconnected computational
units called neurons, one major feature of which is that they are adaptive and solving problems by
learning from examples [29]. Fig 2.4 presents the structure of a pair of connected neurons. From Fig
2.4, it can be seen that neurons are connected with previous neurons and the connections between
two neurons associate with different weights. Besides, for one single neuron, it first computes the
weighted sum of all inputs and takes a threshold over the weighted sum. And then the output of one
neuron can be calculated after applying a non-linear activation function and passed to next neuron.
The standard structure of feed forward ANNs consists of one input layer, one or many hidden layers
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and one output layer, which only allow signals to travel from input to output. Each layer consists of
ohe or many neurons.

Input stimuli Synapse
Synapse Dendrites
Axon FH
— _\ {:ﬂ:t‘":fl
S

i . Sorma
: Hhe it
Dendrites (the processing unit)

Synapse

Figure 2.3: Biological neural networks in the brain

Weight, strength
Input stimuli of connection

:': 1 -\_'"—\—|_\_‘_
Az I ,.:*'
processing unit

Figure 2.4: Structure of interconnected neurons

The activation function has the biggest impact on behaviour and performance of the ANN [29]. The
major task of activation function is to map the outputs of neurons to a bounded interval such as [0, ).
One commonly used and successful activation function is rectified linear unit (ReLU), which is defined
as the positive part of the argument, as 2.4.

f(x) = max(0, x) (2.4)

ANNs solve problems by learning from examples. In the training process, the weights associating
two neurons are updated so as to minimize the error between predictions by ANNs and true labels of
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training data. The error is defined as loss function,

N
E = ;G(yp ), (2.5)

where y, represents the prediction of input data X,,, y, represents the true label of input data X,, and
G is an operator.

To minimize the total error or the loss, we can use optimization method. The gradients are along
the directions of steepest descent. During the training process, the weights are updated after each
epoch by:

w;=w; —aVE(w;),i =1,2,3,..,n (2.6)

O
VEW) = o, 2.7)

2

where « is the learning rate that influences the speed and quality of learning.

To update the weights and minimize the error, one classical algorithm is backpropagation. Back-
propagation can be summarized as two phases.

« Forward propagation: (a) propagating forward through the whole network to generate the
output (b) computing the loss (c) propagating the output activations back through the network
to genernate the difference between the targeted and actual outputs of all output and hidden
neurons

¢ Backward propagation: (a) multiplying the difference and input activation of each output and
hidden neurons to find the gradient of the weight (b) updating the weight by 2.6

The input of regular neural networks are not supporting high-dimensional data, such as image data.
One problem of using regular neural networks for image data is that it will neglect the spatial information
hidden in the image. Another problem is curse of dimensionality. Therefore, there is another kind of
neural networks that is suitable for image inputs.

2.2.2. Convolutional neural networks

Most of convolutional neural networks consist of three different types of layers, which are convolutional
layers, pooling layers and fully connected layers. Fig 2.5 shows an example of convolutional neural
networks.

pooled Fully-connected 1

feature maps pooled  featuremaps foature maps

R

plylx)

{r

0000000

Outputs
Input

Convolutional Pooling 1 Convolutional
layer 1 layer 2

Pooling 2

Figure 2.5: Example of convolutional neural networks [30].
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Convolutional layer

Convolutional layer is the most important part of convolutional neural networks. The idea of convolu-
tional layer is based on image filtering. For each channel of each convolutional layer, there is a filter
sliding over the whole image. The output of single convolutional layer can be computed by 2.3. There
are many parameters can influence the output of convolutional layers, and these parameters are called
hyperparameters. The first one is the size of the convolutional filter. The number of filters is another
hyperparameter that is determined by the number of output channels. Stride represents how many
pixels are skipped when the filters are sliding over the image. Padding means that number zeros are
added around the input image. Padding equal to one means there is one zero circle along the border
of input image.

Pooling layer

There are two main purposes of pooling layer. The first one is to reduce the size of the output of
convolutional layer. Another one is to prevent overfitting. There are two commonly-used kinds of
operations in pooling layer, which are max operation and average operation. Similar with image filtering,
we use a pooling window sliding over the output of convolutional layer. Instead of convolution operation,
max operation takes the maximum value out of all values appearing in the pooling window as output.
Average operation calculates the average of all values appearing in the pooling window and takes the
average as output.

Fully connected layer

Fully connected layers are the final part of convolutional neural networks, which are similar to regular
neural networks with neurons in different layers interconnected with each other. The convolutional lay-
ers and pooling layers extract useful features and information out of input images and fully connected
layers make different decisions based on the tasks.






Supplementary Results

Datasets

We train four different place classification networks with two different dataset, Pittsburgh and Tokyo
24/7 introduced in [13]. Here we show some examples of these two datasets, as shown below in Fig
3.1 and Fig 3.2.

Results of t-SNE

Because of the number of pages of scientific paper and the size of image, we cannot show more visual
explanations in the result of t-SNE. Fig 3.3 and Fig 3.4 show supplementary t-SNE results with more
visual explanations generated by VGG11.

Results of segmentation
Fig 3.5 presents several examples of segmentation results.

11
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Figure 3.1: Example of Pittsburgh images. These 24 images were taken from the same spot with 12 different directions and 2
angles.
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Figure 3.2: Example of Tokyo images. These 12 images were taken from the same spot with 12 different directions.
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Figure 3.3: Example of t-SNE results with more visual explanations by D.qm
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Figure 3.5: Example of segmentation results. Different colors represent different objects.
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