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Summary

The subject of this thesis is the accurate computation of fluid flow at speeds
ranging from zero to supersonic. At low Mach number (which is the ratio
between the velocity of the flow and the sound speed) the flow is incompressible,
but when the Mach number rises (above 0.2, say, depending on the geometry)
compressibility effects make themselves felt. Because of different mathematical
properties of the governing equations, classical methods for flow computation
assume either incompressible or compressible flow. Hence, for flows containing
both compressible and incompressible flow regions, such as the flow in internal
combustion engines or flow around aircraft in take-off or landing conditions,
classical methods cannot be used, and methods with accuracy and efficiency
uniform in the Mach number (Mach-uniform methods) are required. In this
thesis, we use such a Mach-uniform method. Its principles are described in
Chapters 2 and 3. To ensure good accuracy and efficiency at low Mach numbers,
the point of departure is the classical incompressible flow method that uses
staggered grids. This method is generalized to the compressible flow case.

The major issue addressed in this thesis is the development of a Mach-
uniform method that uses a staggered scheme on planar unstructured grids
with triangular cells, that has a superlinear rate of convergence. This is the
topic of Chapter 4. In our staggered grid, the normal velocity components are
associated with cell faces, whereas scalar variables are assigned to cell centers.
In unstructured grids, the number of cells that share a vertex is arbitrary and
varying; in structured grids this number is constant. Unstructured grid schemes
are more complicated than structured grid schemes, but their important advan-
tage is that unstructured grids are much easier to generate in geometrically
complicated domains than structured grids.

In order to obtain a superlinearly convergent scheme, it is necessary to in-
terpolate vector fields from staggered components with sufficient accuracy in
a robust way. Several methods to achieve this objective are investigated in
Chapter 4.

Like all higher order methods, the superlinearly convergent scheme obtained
suffers from unphysical oscillations near discontinuities such as shocks. This
difficulty is overcome by combining two approaches. We use an upwind-biased
superlinearly convergent scheme, so that oscillations are damped in smooth
parts of the flow. Furthermore, we follow the usual flux limiting approach
to combat oscillations near discontinuities, extended to unstructured staggered
schemes. An oscillation detecting limiter function is used to switch between
the superlinearly convergent scheme and a first order scheme that generates
(almost) no oscillations. For this we adapt the limiter of Barth and Jespersen.

The resulting scheme is validated in Chapter 5. Simple incompressible invis-
cid flows for which the exact solution is known are computed, and the accuracy
is assessed. Next, the incompressible Navier-Stokes equations are solved for
the exact Kovasznay problem solution, and the behavior of the error as the
grid is refined is studied. The backward facing step and circular cylinder flows
are computed and comparison is made with some known properties. Next, the
Euler equations are solved for some compressible flow problems with our Mach-
uniform scheme. The Ringleb flow is a transonic flow with known exact solution.
The accuracy of the superlinearly convergent scheme with and without limit-
ing is assessed. Flow in a channel with a bump is computed at low and high



Mach number. A transonic airfoil flow for which the pressure distribution is
a fairly well-known test case is computed. To determine carefully whether the
Rankine-Hugoniot conditions are satisfied by the scheme, a shocktube problem
is computed.

Concluding remarks are presented in Chapter 6. An outlook to extension to
three dimensions is given. The prospects for vector field interpolation from stag-
gered components to non-triangular and non-tetrahedral grids is discussed. We
conclude that a Mach-uniform unstructured staggered scheme with superlinear
rate of convergence has been obtained.



Superlineair Convergerende Ongestructureerde

”Staggered” Schema’s voor Samendrukbare en

Onsamendrukbare Stromingen

Samenvatting

Het onderwerp van dit proefschrift is de nauwkeurige berekening van vloeistof-
stromingen met snelheden varierend van nul tot supersoon. Bij een laag getal
van Mach (dit is de verhouding tussen de stroomsnelheid en de geluidssnel-
heid) is de stroming onsamendrukbaar, maar als het Machgetal stijgt (zeg
boven 0,2) dan worden samendrukbaarheidseffecten merkbaar. Vanwege de
verschillende wiskundige eigenschappen van de bewegingsvergelijkingen wordt
bij klassieke methoden voor stromingsberekening of onsamendrukbare stroming
of samendrukbare stroming aangenomen. Derhalve kunnen klassieke metho-
den niet worden gebruikt voor stromingen waarin zowel samendrukbare als
onsamendrukbare deelgebieden voorkomen, zoals in de stroming in inwendige
verbrandingsmotoren of de omstroming van vliegtuigen in start- of landingscon-
figuratie. Voor dit type toepassingen zijn methoden vereist met nauwkeurigheid
en eficiëntie uniform in het Machgetal (Mach-uniforme methoden). In dit proef-
schrift wordt zo’n Mach-uniforme methode gebruikt. De principes van deze
methode worden weergegeven in de hoofdstukken 2 en 3. Om een goede nauw-
keurigheid en eficiëntie te waarborgen voor lage Machgetallen, wordt als ver-
trekpunt gekozen voor de klasieke methode voor onsamendrukbare stromingen,
die een ”staggered” rooster gebruikt. Deze methode wordt gegeneraliseerd naar
het samendrukbare geval.

De belangrijkste kwestie waar dit proefschrift zich op richt is de ontwikke-
ling van een Mach-uniforme methode die een ”staggered” schema gebruikt op
ongestructureerde roosters met driehoekige cellen, en die superlineair convergeert.
Dit is het onderwerp van hoofdstuk 4. In ons ”staggered” rooster zijn de nor-
maalcomponenten van de snelheid geassociërd met celwanden, terwijl de scalaire
onbekenden geassociërd zijn met de cel centra. In ongestructureerde roost-
ers is het aantal cellen dat bij een hoekpunt hoort willekeurig en variabel; in
een gestructureerd rooster is dit aantal constant. Ongestructureerde schema’s
zijn ingewikkelder dan gestructureerde schema’s, maar hebben het belangrijke
voordeel dat ongestructureerde rooster veel gemakkelijker gegenereerd kunnen
worden in geometrisch gecompliceerde gebieden dan gestructureerde roosters.

Teneinde een superlineair schema te verkrijgen is het nodig vectorvelden
te interpoleren vanuit normaalcomponenten op de celwanden. Dit dient met
voldoende nauwkeurigheid op robuuste wijze te geschieden. Enkele methoden
om dit doel te bereiken worden onderzocht in hoofdstuk 4.

Als alle hogere orde methoden lijdt het superlineair convergerende schema
aan onfysische oscillaties nabij discontinuiteiten, zols schokken. Deze moeili-
jkheid wordt overwonnen via twee wegen. We gebruiken een upwind-bias in
het superlineair convergerende schema, zodat oscillaties demping ondergaan in
gebieden waar de oplossing glad is. Voorts volgen we de gebruikelijke aanpak
om oscillaties nabij discontinuiteiten tegen te gaan, uitgebreid naar ongestruc-
tureerde ”staggered” schema’s. Een oscillatie-detecterende limiter functie wordt



gebruikt om over te schakelen tussen het superlineair convergerende schema en
een eerste orde schema dat vrijwel geen oscillaties veroorzaakt. Hiertoe wordt
de limiter van Barth en Jespersen aangepast.

Het resulterende schema wordt gevalideerd in hoofdstuk 5. Eenvoudige on-
samendrukbare niet-visceuze stromingen waarvoor de exacte oplossing bekend
is worden berekend, en de nauwkeurigheid van het schema wordt nagegaan.
Vervolgens worden de onsamendrukbare Navier-Stokes vergelijkingen opgelost
voor de exacte Kovasznay oplossing, en het gedrag van de fout als het rooster
wordt verfijnd wordt bestudeerd. De ”backward facing step” stroming en stro-
mingen om een cirkel cylinder worden berekend en er wordt vergeleken met
enkele bekende eigenschappen van deze stromingen. Vervolgens worden de Eu-
ler vergelijkingen opgelost voor enkele samendrukbare stromingsproblemen met
ons Mach-uniforme schema. De Ringleb stroming is een transone stroming met
een bekende exacte oplossing. De nauwkeurigheid van ons superlineair converg-
erende schema met en zonder limiting wordt bestudeerd. De stroming in een
kanaal met een hobbel wordt berekend voor een laag en een hoog Machgetal.
Een transone profiestroming waarvoor de drukverdeling redelijk goed bekend
is wordt berekend. Om nauwkeurig na te gaan of aan de Rankine-Hugoniot
relaties wordt voldaan wordt een schokbuis stroming berekend.

Concluderende opmerkeingen worden gepresenteerd in hoofdstuk 6. De mo-
gelijkheden voor uitbreiding naar drie dimensies worden besproken. De vooruit-
zichten voor vectorveld extrapolatie uitgaande van normaalcomponenten op cel-
wanden op niet-driehoekige en niet-tetrahedrale roosters worden besproken. We
concluderen dat een Mach-uniform ongestructureerd ”staggered” schema met
superlineaire convergentie is verkregen.
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Chapter 1

Introduction

1.1 The challenge of computational fluid dynam-

ics

The basic laws that govern most of the physical phenomena that we experience
in our everyday life have been known for more than a century. Still, in practice
we can model and predict these phenomena only to a limited extent. The reason
is that the phenomena governed by these laws are too complex. The basic laws
are expressed in the form of systems of nonlinear partial differential equations for
which mathematics does not have explicit solutions, except in a limited number
of simple cases.

It is sometimes said that mathematics is solving problems that it can solve,
while numerical mathematics is solving problems that need to be solved. Find-
ing approximate solutions for physical laws that cannot be solved exactly is
the major task of numerical analysis. Another discipline that deals with these
problems, though from a different point of view, is statistics.

However, solutions that numerical analysis is able to provide may not always
be satisfactory. Some physical phenomena are far too complex even for modern
numerical analysis. Examples can be found in fluid flows, multibody problems
involving gravity, or in biology. The discipline that deals with solving flow
problems numerically is known as computational fluid dynamics (CFD). The
equations that model flow of fluids are known as Navier-Stokes equations. An
effect of the interaction between the inertia and the sheer stress, which are
modeled by these equations, is the turbulence. This is a chaotic movement of a
fluid resulting in a huge number of eddies of very wide scale span. It is surprising
that such complexity can arise from seemingly simple conservation laws, which
the Navier-Stokes equations actually are. Even storing the information of all
these eddies is often far beyond the capabilities of computers that we nowadays
have, and the time needed to accurately compute turbulent flows is usually
longer than our lifetime.

This does not mean that CFD is not a useful tool when dealing with flow
problems, as it was actually the case few decades ago, when fluid dynamists
had to rely mainly on experiments. In the past decades we have seen a tremen-
dous increase of computational power. The processing speed and the storage
capabilities have increased thousands of times compared to the situation thirty

1



2 CHAPTER 1. INTRODUCTION

years ago. The numerical algorithms have also become much more efficient. In
order to make computations feasible, today we usually still have to simplify flow
problems. Some flows are laminar (non-turbulent) which makes them much less
complex and easier to solve, and some can be treated as laminar, even though
they are actually not. Turbulence models may be used for all flow scales, or only
the smallest eddies may be modeled. Furthermore, some problems can success-
fully be solved in two dimensions. Since fluid flow is an unstable phenomenon,
meaning that the smallest change of conditions can result in drastic changes of
the flow, the solution of such simplified problem may or may not be a useful
approximation of the real flow. For many applications, numerical methods and
computational power that we can use today are far from satisfactory.

The trend of increasing computational capabilities still continues. Compu-
tations that were not feasible few years ago are feasible today, or may become
feasible in several years. As Stephen Hawking said in [18], even if we do find a

complete set of basic laws, there will still be in the years ahead the intellectually

challenging task of developing better approximation methods.

1.2 Purpose of this thesis

The purpose of this thesis is to improve computing methods that use so-called
unstructured grids, because they are easier to generate and more flexible than
structured grids. Furthermore, we aim at a unified computing method for both
both incompressible and compressible flow, for reasons that will be given later.
To achieve this, staggered grids are used. The types of grid just mentioned will
be described later.

The outline of this thesis is as follows:

• In Chapter 2 the Navier-Stokes equations are presented. A non-dimen-
sionalization which facilitates unified treatment of the compressible and
incompressible flow case is presented. Then follows a discussion on how to
choose the domain and initial and boundary conditions properly. Finally,
a general discussion on the most popular types of flow solvers is given,
together with some basic notions such as a specification of an unstructured
staggered grid.

• In Chapter 3 we discuss time integration. We propose three schemes for
solving the flow problems. The first method is for incompressible flows, the
second one is for compressible flows, and the third one is a unified method
for both incompressible and compressible flows. The third method works
efficiently for Mach numbers from zero until hypersonic values. Therefore
the method is called Mach-uniform.

• Chapter 4 is the central part of this thesis. A novel spatial discretization
scheme is presented. It is an unstructured staggered finite-volume scheme
with order of accuracy better than 1. Several options for polynomial
reconstruction of staggered vector and scalar fields are considered. A
special method for solving systems of linear equations called hierarchical

least squares method is developed to facilitate this reconstruction. Flux
limiting is used to combat numerical wiggles.
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• Chapter 5 contains numerical results. The accuracy of the incompress-
ible and the Mach-uniform scheme is investigated using various test cases,
which include Kovasznay flow, backward facing step, flow around a cylin-
der, Ringleb flow, supersonic flow in a channel with a bump, transonic
flow around the NACA 0012 airfoil, and Sod’s shocktube problem. The
accuracy of the schemes appears to be superlinear for smooth problems,
and resolution of discontinuities is also better than obtained with first
order schemes.
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Chapter 2

Problem formulation

2.1 Summary

In this chapter the partial differential equations that govern the motion of the
fluid are given. Various basic notions of fluid dynamics are introduced, including
Newtonian fluids, Mach number and compressibility. A non-dimensionalization
that is suitable for Mach-uniform flows is presented, followed by a discussion on
how to choose the domain and boundary conditions properly. Finally, we give
a brief survey of the most common types of flow solvers.

2.2 Basic equations of fluid dynamics

The laws that govern the motion of fluids are the mass conservation law (referred
to as continuity, mass, or density equation), the Navier-Stokes equations or mo-
mentum conservation law, and the energy equation describing the conservation
of energy:

∂ρ

∂t
+ ∇ · (uρ) = 0 (2.1)

∂mα

∂t
+ ∇ · (umα) = σαβ,β + ρfα (2.2)

∂ρE

∂t
+ ∇ · (uρE) = (uασαβ),β + (kT,α),α + ρuαfα + ρq. (2.3)

Greek indices indicate coordinate directions. Cartesian tensor notation is ap-
plied, which means that φ,α = ∂φ/∂xα, and the summation convention is used:
summation takes place over Greek indices that occur twice in a term or a prod-
uct, for example vα,α = ∇ · v, or uαvα = u · v. The meaning of the symbols is
as follows:

• ρ - density, kg/m
3

• u - velocity, m/s

• t - time, s

• m - momentum, m = ρu

5



6 CHAPTER 2. PROBLEM FORMULATION

• σ - stress tensor, σαβ = −pδαβ + ταβ , N/m
2

• τ - deviatoric stress tensor, ταβ = 2µ
(

eαβ − 1
3∆δαβ

)

, N/m
2

• p - pressure, N/m
2

• δαβ - Kronecker delta symbol

• µ - dynamic viscosity coefficient, kg/ms

• eαβ - rate of strain tensor, eαβ = 1
2 (uα,β + uβ,α)

• ∆ - divergence of velocity, ∆ = uα,α

• f - body force, N/kg

• E - total energy per unit mass, J/kg

• T - temperature, K

• k - thermal conductivity, J/msK

• q - added heat per unit of mass per unit time, J/kgs

This implies that we assumed Newtonian fluid. The nonlinear terms ∇ · (uρ),
∇·(umα) and ∇·(uρE) represent the convection of mass, momentum and energy,
respectively. They are called the convective terms; in the case of momentum
one also speaks of inertia term.

Assuming a perfect gas, we have

p = ρRT (2.4)

with R a constant characteristic of the gas.
The total energy is defined as

E = e+ 1
2u · u, (2.5)

where e is the internal energy. Assuming a calorically perfect gas, we have

e = cvT (2.6)

with cv the specific heat at constant volume, assumed constant. The system of
equations is closed by the thermal equation of state p = p(ρ, T ).

The speed of sound a satisfies

a2 = γRT = γ(γ − 1)e (2.7)

where we have used R = cp − cv, γ = cp/cv, where cp is the specific heat at
constant pressure. For gases consisting of di-atomic molecules, such as N2 and
O2, and hence to a good approximation air, we have

γ = 7
5 (2.8)

which is the value we will use.
Fluids satisfying the relation between the deviatoric stress tensor ταβ and

the rate of strain tensor eαβ as specified above are called Newtonian fluids.



2.3. INCOMPRESSIBLE FLOW 7

Many fluids have Newtonian behavior. Examples are gases and water at not
too extreme conditions. Examples of non-Newtonian fluids are polymers, blood,
some greases, sludges and quicksand. We shall assume a Newtonian fluid.

In this thesis we shall neglect the body force f , and we shall also assume that
q = 0. Furthermore, we shall consider viscous flow only in the incompressible
flow case. Although most of the concepts presented here are applicable in the
three-dimensional case, we shall consider only the two-dimensional case.

In order to obtain a unified method for compressible and incompressible flow,
use will be made later of a different form of the energy equations. Assuming
a calorically perfect gas, by substituting (2.5) and the following form of the
equation of state

e =
1

γ − 1

p

ρ
(2.9)

in the energy equation (2.3), after multiplying by γ − 1 the energy equation
becomes (assuming fα ≡ 0 and q ≡ 0)

∂

∂t

[

p+
1

2
(γ − 1)ρu2

]

+ ∇ ·
[

u

(

γp+
1

2
(γ − 1)ρu2

)]

=

= (γ − 1)(uαταβ),β + (γ − 1)(kT,α),α, (2.10)

where u2 = u · u.

2.3 Incompressible flow

The flow is incompressible if the fluid is not compressed by pressure, i.e. if
variations in density in each fluid particle are negligible. This means that

∂ρ

∂t
+ (u · ∇)ρ = 0 (2.11)

From the mass conservation equation (2.1) it then follows that

∇ · u = 0. (2.12)

This is the distinguishing property of incompressible flow. Vector fields satis-
fying (2.12) are called solenoidal. If all fluid particles emanate from a region
where ρ is uniform, (2.11) tells us that ρ is constant. This is frequently the case
in incompressible flows, but not always.

Conditions under which a flow is (to a good approximation) incompressible
are discussed in [5] Sect. 3.6 and [38] Sect. 1.12. The main conditions are

M = |u|/a� 1 (2.13)

where M is the Mach number, and

L

τa
� 1 (2.14)

where L is a characteristic length scale of the flow, and τ a characteristic time
scale. The first condition limits the velocity, whereas the second condition
effectively says that τ cannot be too small, precluding acoustics.

When isothermal incompressible flow is considered, there are only four in-
dependent variables: the pressure and the three components of momentum.
Therefore, the energy equation is not needed.
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2.4 Inviscid flow

An ideal flow is a flow in which the friction and the heat conduction are negli-
gible, i.e. one can take µ = 0 and k = 0. This is a good approximation for flow
at high Reynolds number (to be defined shortly) over objects (aerodynamics)
outside a thin layer just next to the object, which is called the boundary layer.
In this case equations (2.1)–(2.3) reduce to

∂ρ

∂t
+ ∇ · (uρ) = 0, (2.15)

∂mα

∂t
+ ∇ · (umα) = −p,α, (2.16)

∂ρE

∂t
+ ∇ · (uρH) = 0. (2.17)

These are called the Euler equations. The total enthalpy H is related to the
other thermodynamical quantities in the following ways:

H = h+
1

2
u2, (2.18)

h = γe, (2.19)

where u = |u|. We have
ρH = ρE + p. (2.20)

The system of equations (2.15)–(2.17) can be written in the following form, that
will be referred to later:

∂U

∂t
+ ∇ · F (U) = 0 (2.21)

where

U =





ρ
m

ρE



 and Fα =













α

uαm1 + pδα1

uαm2 + pδα2

uαm3 + pδα3

mαH













(2.22)

Equation (2.21) is called a system of conservation laws.
The pressure-based inviscid energy equation is obtained from (2.10) by delet-

ing the right-hand side:

∂

∂t

[

p+
1

2
(γ − 1)ρu2

]

+ ∇ ·
[

u

(

γp+
1

2
(γ − 1)ρu2

)]

= 0, (2.23)

2.5 Dimensionless equations

In the remainder of this thesis, dimensional quantities will be indicated by a
hat symbol, e.g. φ̂. Quantities without a hat are dimensionless, e.g. φ. The
following reference units are chosen for velocity, length, density, temperature
and pressure: ûr, L̂, ρ̂r, T̂r, p̂r. We require that reference quantities satisfy the
equation of state p̂r = Rρ̂rT̂r. The reference Mach number is given by

Mr = ûr/

√

γRT̂r. (2.24)
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The variables are made dimensionless in the usual way, e.g. xα = x̂α/L̂, t =
t̂ûr/L̂, T = T̂ /T̂r, ρ = ρ̂/ρ̂r, uα = ûα/ûr, and p = p̂/p̂r. The mass conservation
equation (2.1) is invariant under non-dimensionalization. The dimensionless
momentum equation (2.2) is found to be, taking fα ≡ 0,

∂mα

∂t
+ ∇ · (umα) = − 1

γM2
r

p,α + ταβ,β, (2.25)

where ταβ = 2
Re (eαβ − 1

3∆δαβ) and Re = ρ̂rûrL/µ is the Reynolds number.
This equation is singular as Mr ↓ 0.

In order to obtain Mach-uniform dimensionless equations, the pressure is
made dimensionless in the following way, as in [6, 7, 32, 36]:

p =
p̂− p̂r
ρ̂rû2

r

. (2.26)

Now the dimensionless momentum equation is found to be

∂mα

∂t
+ ∇ · (umα) = −p,α + ταβ,β . (2.27)

The dimensionless equation of state can be written as

T =
1

ρ
(1 + γM2

rp), (2.28)

and the dimensionless form of the pressure-based energy equation (2.10) is found
to be

M2
r

{

∂

∂t

[

p+ 1
2 (γ − 1)ρu2

]

+ ∇ ·
[

u
(

γp+ 1
2 (γ − 1)ρu2

)]

−

(γ − 1)(uαταβ),β − γ

[

1

RePr

(

p

ρ

)

,α

]

,α

}

+ ∇ · u =

[

1

RePr

(

1

ρ

)

,α

]

,α

,(2.29)

where

Pr =
cpµ̂

k̂
(2.30)

is the Prandtl number. When Mr = 0, equation (2.29) reduces to

∇ · u =

[

1

RePr

(

1

ρ

)

,α

]

,α

. (2.31)

We see that in order to obtain the familiar solenoidality condition for incom-
pressible flow, it is not sufficient to let Mr ↓ 0. To see which additional condition
is required, we use the Mr ↓ 0 limit of the dimensionless equation of state (2.28)
to rewrite (2.31) as

∇ · u =

(

1

RePr
T,α

)

,α

. (2.32)

We see that in order to have ∇·u = 0 it is required, in addition to Mr ↓ 0, that
temperature variations are small. With q = 0 and no large heat transfer trough
the boundaries (for example, adiabatic flow), the right-hand-side can be safely
neglected.
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2.6 Choice of domain, initial conditions and bound-

ary conditions

The momentum, the continuity, and the energy equation together govern the
flow of a Newtonian fluid in any circumstances. To determine a specific flow (in a
specific domain, under specific temperature, pressure etc), initial and boundary
conditions need to be specified.

Computations are always carried out in a specified finite domain. This is
the region in space in which are computing the flow. Unless the fluid in the
domain is isolated from the outer world, as in the case of a cavity flow, there
is an inflow boundary and an outflow boundary. A simple example is the flow
inside a pipe. In this case the interior of the pipe is the computational domain,
one end of the pipe is the inflow, and another end is the outflow boundary. If
the pipe is too long, we may compute the flow only in a portion of the pipe. In
this case the domain is reduced.

Mathematical considerations determine how boundary conditions should be
prescribed along the boundaries of the domain to ensure that the problem is
well-posed. A survey of suitable boundary conditions is given in [38]. If a viscous
problem is solved, the normal stress σnn = n · σ · n and the tangential stress
σnt = n · σ · t are prescribed at the outflow boundary, where n and t are the
unit normal and the unit tangential vector at the boundary, and the momentum
is prescribed at the inflow boundary. Viscous fluids cling to solid surfaces, and
this is called the no-slip condition. In this case the momentum is set to zero
along solid walls. If there is no friction along a solid wall, then we prescribe
σnt = 0 and m · n = 0. This is called the free slip condition. There is also a
free surface condition, where we allow that the position of the boundary may
change, but we do not consider this case.

For the Euler equations the deviatoric stress is zero, so the only stress com-
ponent that may need to be prescribed is the normal stress, which reduces to
the pressure. If the flow is subsonic at the outflow boundary, the outflow pres-
sure is prescribed, otherwise no boundary condition is needed at the outflow
boundary. At the inflow boundary, momentum and density or static enthalpy
are prescribed. If the inflow is supersonic, pressure is prescribed as well.

Computations are carried out for some time interval. The flow in this interval
depends on the initial state of the fluid. This means that at the initial time
all variables must be known. Of course, this is often not the case. In real life
problems, one usually starts with a simple and possibly non-realistic solution, for
example by setting all variables to constant values, and then during the initial
state of computation these quantities hopefully evolve toward more realistic
values.

The initial solution should satisfy the boundary conditions. However, this
does not guarantee convergence, and if this condition is violated such inconsis-
tency can sometimes be resolved in the initial stage of the computation, when
the solution adapts to the boundary conditions. On the other hand, this incon-
sistency may also cause schemes to break down.

Frequently we want to compute a steady solution, i.e. a solution that does
not change in time. The steady solution is the solution of the flow equations
from which the time derivatives are deleted. However, it is hard to solve such
equations because the diagonal dominance in the related matrix comes from
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the time term. Therefore we compute steady solutions by time-stepping, and
we stop the computations when the variation in time of the solution becomes
small enough. It has been proven (see [38]) that the steady solution is unique
under some restrictions. This means that the initial solution has no influence
on the steady solution, and we may choose any initial solution that allows the
convergence to the steady solution.

The real flow domain may be infinite. An example is the flow around an
airplane. In such cases, for computational purposes one has to take a finite
portion of space around the airplane as computational domain. This domain
must be large enough to ensure that the flow at the outer boundaries is nearly
uniform, otherwise specification of the boundary conditions as being equal to
the flow state at infinity would perturb the solution too much.

2.7 Flow solvers

The systems of partial differential equations presented in the previous sections
are too complex to be solved analytically, except in a very limited number of
cases. Therefore they have to be solved approximately by numerical methods.
The usual way to achieve this is to represent the continuous scalar and vector
fields like momentum, density etc. by a finite number of their values in certain
points and in certain instants in time, or by a finite number of their local
averages, and then to approximate partial derivatives used in these equations
by linear combinations of these values. Such a process is called discretization.
It results in large systems of algebraic equations, which then have to be solved.

To facilitate the discretization, the computational domain is usually decom-
posed into small polygons called cells. Such a division is called mesh or grid.
The boundaries between the cells are the faces of the grid (or edges in the
two-dimensional case), and points where these edges meet are called vertices.

2.7.1 Structured versus unstructured grids

One of the bottlenecks in CFD is grid generation in complex domains. This is
often a time-consuming task, especially in three dimensions.

A grid is called structured if all interior vertices belong to a constant num-
ber of cells. A structured grid is called Cartesian if its cells are rectangles or
rectangular blocks.

It is much easier to discretize partial differential equations on structured
Cartesian grids than on non-Cartesian unstructured grids. An easy way to
discretize on a Cartesian grid is to use finite differences. For example,

∂φ(x, y)

∂x
≈ φ(x + h, y) − φ(x, y)

h
. (2.33)

However, complicated domains can rarely be decomposed into rectangles.
One approach is to smoothly map a Cartesian grid into the domain. This
process cannot at present be fully automated and sometimes requires much
human work. Another problem is that in some applications the mesh needs to
be finer in some areas than in the others, i.e. these areas need to be divided into
more smaller cells than the others, in order to capture the relevant flow details.
This is also hard to achieve with Cartesian grids.
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Another approach is to divide the domain into triangles. This process is
called triangulation. It is far less simple than it seems, especially when addi-
tional requirements related to the quality of the grid are imposed. For example,
many numerical schemes do not perform well with long and thin or obtuse tri-
angles. Triangulation forms a separate discipline. However, robust algorithms
have been developed that generate high-quality unstructured triangular meshes,
and generating an unstructured triangular mesh can be fully automated. There-
fore we shall use such meshes. But more complicated data structures and al-
gorithms are required compared to the schemes developed for structured grids.
The present trend in CFD is towards unstructured grids.

2.7.2 Finite volumes versus other methods

When unstructured grids are used, finite difference methods are difficult to
apply. The most popular options are to use the finite volume, finite element, or
discontinuous Galerkin method.

The finite element method is the most popular method in structural me-
chanics, as well as in some other fields. The reasons are that it works well
with meshes of low quality, and that it has a solid mathematical basis. But in
fluid dynamics the method has always suffered from a lack of overall stability
and accuracy. These problems are successfully solved by introducing so-called
penalty functions or other stabilization methods, but this makes the method
rather complicated.

Finite volume methods remain the most popular choice for computational
fluid dynamics. Most of the commercial codes used for engineering applications
use finite volume methods. The disadvantages of these methods are that they
are usually only first order accurate, that they usually require meshes of high
quality to ensure good performance, and that their mathematical foundation
is less complete than for finite element method. Spectral element methods are
higher order finite volume methods.

The discontinuous Galerkin method received much attention in recent years.
It is said to be “in between” the finite elements and the finite volumes. Like
finite elements, it is based on the standard Galerkin method.

2.7.3 Staggered versus collocated grids

A grid is called collocated if the pressure and the velocity vectors are stored in the
same points. They may be stored in mesh vertices or in cell centers. Collocated
finite volume methods for the incompressible Navier-Stokes equations suffer from
pressure-velocity decoupling. This gives rise to spurious pressure modes, namely
checkerboard type oscillations.

In staggered grids the pressure and the momentum are stored in different
points. The usual choice is to store the pressure in the cells, as well as the other
scalars, and to associate normal momentum components with the faces. This is
illustrated in Fig. 2.1.

For numerical approximation of the incompressible Navier-Stokes equations
on Cartesian grids, the classical staggered Marker and Cell scheme of Harlow
and Welch [17] is the original staggered mesh method. The reasons are absence
of spurious modes, local mass conservation (see Sect. 4.3) and the fact that
artificial boundary conditions are not needed.
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: pressure

: normal momentum component

Figure 2.1: Staggered positioning of the variables in an unstructured grid.

Several generalizations of this scheme have been proposed for unstructured
triangular meshes in [13, 14, 25, 26, 27, 28, 36, 37]. All these methods are
first-order accurate in space on irregular meshes. Except [36, 37], the schemes
described are restricted to incompressible flows.

Since the momentum vector is not known in any point, the preprocessing
and the postprocessing stages are more complicated than in the collocated case.
Additional difficulties that arise on unstructured grids may be the reason why
the staggered unstructured schemes are not widely accepted. But this is the
approach to be investigated here.
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Chapter 3

Time stepping

3.1 Summary

In this chapter we introduce three time stepping methods. These are the clas-
sical incompressible pressure-correction method, a simple compressible method,
and the Mach-uniform pressure-correction method, which is an extension of the
incompressible pressure-correction method towards the compressible flow case.

3.2 Introduction

The equations are solved using time-stepping. This means that, starting with
the initial conditions at time 0 and choosing some time step ∆t, one sequentially
computes the unknown physical quantities at times ∆t, 2∆t, etc.

For ease of exposition we restrict our considerations here to the inviscid flow
case. Extension to the viscous flow case is straightforward. This means that we
will consider the system of conservation laws (2.21):

∂U

∂t
+ ∇ · F (U) = 0 (3.1)

All equations are discretized in time with the implicit Euler scheme. The reason
is that it allows larger time steps than explicit schemes. More sophisticated time-
stepping schemes will not be considered, because our main aim is to develop a
novel spatial discretization scheme. Euler implicit time-discretization results in

Un+1 − Un

∆t
+ [∇ · F (U)]n+1 = 0. (3.2)

As the Mach-number M ↓ 0 the system (3.2) becomes extremely stiff and there-
fore hard to solve efficiently. The difficulties associated with the limit M ↓ 0 are
discussed in [38] Chapter 14, [7] and references quoted there. These difficulties
are the reason why historically methods for incompressible and compressible
flows have developed along quite different lines. We will use a Mach-uniform
method, obtained by generalizing a method for incompressible flows to the com-
pressible flow case.

15
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3.3 Pressure-correction method for incompress-

ible flow

The easiest way to see what becomes of (3.2) in the incompressible limit M ↓ 0
is to replace the energy equation (2.17) by the pressure-based energy equation
(2.29). We then see that the equation for incompressible flow becomes, adding
the viscous terms at the new time level, and supposing that the temperature
variations are small (see Sect. 2.5):

ρn+1 − ρn

∆t
+ ∇ · (un+1ρn+1) = 0, (3.3)

mn+1
α −mn

α

∆t
+ ∇ · (un+1mn+1

α ) = −pn+1
,α + τn+1

αβ,β, (3.4)

∇ · un+1 = 0. (3.5)

This system lacks a time-derivative for pn+1. Again we see why special methods
have evolved for the incompressible flow case.

An efficient way to solve (3.3)–(3.5) is the pressure-correction method. As-
sume that the density is constant (this is not necessary). A prediction m∗ of
mn+1 is computed from

m∗
α −mn

α

∆t
+ ∇ · (unm∗

α) = −pn,α + τ∗αβ,β, (3.6)

where we have used Picard linearization, i.e. un+1 is replaced by un. The
following pressure-correction is postulated:

mn+1 = m∗ − ∆t∇δp, δp = pn+1 − pn. (3.7)

The pressure correction δp is computed from

∆t∇ · (∇δp/ρn+1) = ∇ · u∗, (3.8)

where u∗ = m∗/ρn+1. Finally, the new velocity and the new pressure follow
from (3.7). For the derivation of these formulas see [38].

3.4 Time-stepping method for compressible flow

A simple way to compute compressible inviscid flows is the following:

1. Compute the new momentum from the discretized momentum equation:

mn+1
α −mn

α

∆t
+ ∇ · (unmn+1

α ) = −pn,α (3.9)

2. Compute the new density from the discretized density equation:

ρn+1 − ρn

∆t
+ ∇ · (unρn+1) = 0, (3.10)

3. Compute the new energy variable ρH from the discretized energy equation

(ρE)n+1 − (ρE)n

∆t
+ ∇ · (uρH)n+1 = 0, (3.11)

where ρE = 1
γ ρH + 1

2
γ−1
γ ρu2 follows from (2.5), (2.18) and (2.19).
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4. Compute the new pressure from the equation of state:

p =
γ − 1

γ

[

ρH − 1

2
(ρu2)

]

. (3.12)

We use ρH as the primary energy variable because the numerical experiments
presented in [36] show that this choice gives better results than the alternatives.

This scheme was implemented as an intermediate step towards the Mach-
uniform scheme because of its simplicity. It has no other advantages. It suffers
from loss of accuracy when Mach number approaches zero. Due to lineariza-
tion and uncoupling of the equations, very small time steps are required. In
general gas dynamics flow there is no reason to use staggered schemes for fully
compressible flows.

3.5 Mach-uniform pressure-correction method

In certain applications, as for example flow in internal combustion engines or
flow around aircraft in take-off or landing conditions, compressible and incom-
pressible flow regions occur simultaneously. Standard compressible flow schemes
suffer from efficiency and accuracy loss when the Mach number becomes small
(below 0.2). Such problems require methods that can handle flows at all speeds.
Staggering of the grid is attractive for unified methods because of superior prop-
erties in the incompressible flow case. Mach-uniform methods that use struc-
tured staggered grids were presented in [15, 16], and more recently in [32, 6].
The only Mach-uniform method that uses staggered unstructured grids that we
know of is presented in [36]. Below we describe the sequential update proce-
dure presented in the latter paper. It is an extension of the pressure-correction
method to the compressible flow case. We assume inviscid flow; however, viscous
terms can be added easily.

First the new density is computed from the discretized mass conservation
equation

ρn+1 − ρn

∆t
+ ∇ · (unρn+1) = 0. (3.13)

Next, as in the incompressible flow case, a prediction of the momentum field
m∗
α is computed from the momentum equation:

m∗
α −mn

α

∆t
+ ∇ · (unm∗

α) = −pn,α (3.14)

Discretizing the inviscid flow version of (2.29) in time with the implicit Euler
scheme, inserting (3.7) and substituting

m∗ = ρm+1u∗ (3.15)

in the dimensionless pressure-based energy equation (2.29) leads to

M2
r

{

δp

∆t
+ 1

2 (γ − 1)
(m∗ − ∆t∇δp)2/ρn+1 − (mn)2/ρn

∆t
+

+∇ ·
[(

u∗ − ∆t

ρn+1
∇δp

)

(

γ(pn + δp) + 1
2 (γ − 1)(m∗ − ∆t∇δp)2/ρn+1

)

]}

+

+∇ ·
(

u∗ − ∆t

ρn+1
∇δp

)

= 0. (3.16)
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Linearization and some additional simplification gives

M2
r

{

δp

∆t
+ 1

2 (γ − 1)

[

(m∗)2 − 2∆tm∗ · ∇δp
]

/ρn+1 − (mn)2/ρn

∆t

}

+

+∇ ·
[

u∗

(

1 + γM2
r(p

n + δp) +
1

2
(γ − 1)M2

r(m
∗)2/ρn+1

)]

− (3.17)

−∆t∇ ·
{[(

1 + M2
rp
n +

1

2
(γ − 1)M2

r(m
∗)2ρn+1

)

ρn+1

]

∇δp
}

= 0.

For detailed derivation of this equation see [36, 32]. It is used to compute δp.
Finally, the new pressure and momentum are computed from (3.7).

3.5.1 Boundary conditions and the equation of state

It should be noted that the equation of state is not used in the time stepping
in Mach-uniform pressure-correction method. The energy variable has been
eliminated in the derivation of the pressure-based energy equation using the
equation of state. The above time-stepping method employs only momentum,
pressure, and density.

However, due to backward compatibility with the earlier code of [36], in our
code sometimes we only specify the momentum, the pressure, and the static
enthalpy at boundaries, so we do not specify the density, which is needed at
the inflow boundary for the continuity equation. Since we do not know the new
pressure at the inflow in the subsonic inflow case, we cannot compute the new
density from the equation of state.

One should not use the density from the previous time level in such a situa-
tion. If we use the Mach-uniform pressure correction method, such an approach
completely ignores the boundary condition for the enthalpy, which is not used
anywhere else in the scheme. Therefore, even if the boundary conditions do not
change over time, if the computations are carried long enough, the solution will
certainly deteriorate at the inflow due to the round-off errors.

Therefore we compute the density from the equation of state, using the
prescribed enthalpy and the pressure from the previous time level in the subsonic
flow case, or the prescribed pressure in the supersonic flow case. This is enough
to keep the solution at the desired value at the inflow.

However, if instead of the enthalpy we we specify the density at the inflow,
the scheme converges faster to the steady state.



Chapter 4

Finite volume discretization

on staggered unstructured

grids

4.1 Summary

In this chapter we present our staggered finite volume method. Various possi-
bilities for polynomial reconstruction of scalar and staggered vector fields are
investigated here. To allow some of these polynomial reconstructions, an exten-
sion of the least squares method with constraints called hierarchical least squares

method was devised, and is presented here. The techniques of the reconstruction
of the staggered vector fields are applied in the viscous term, and the resulting
schemes are tested. The vertex-based divergence-free linear reconstruction that
gave the best results for the viscous term because it is accurate and not too
memory-consuming is later used to discretize the inertia term and the kinetic
energy terms that appear in the pressure-based energy equation. Also the pres-
sure term is discretized here. Finally, several possibilities for flux limiting are
considered.

The essentials of the material in this and the following chapter have been
published in [34] and [35].

4.2 Introduction

Consider the following scalar conservation law:

∂φ

∂t
+
∂f(φ)

∂x
= 0 in R × R

+, (4.1)

φ(x, 0) = φ0(x) for x ∈ R,

where for simplicity we restrict our considerations to the case of an unbounded
one-dimensional domain. It is known that solutions of hyperbolic conservation
laws may exhibit discontinuities. Since formally solutions of (4.1) are differ-
entiable, another form of the equation is required, that allows discontinuous

19
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solutions. This so-called weak form is obtained by multiplication by a test func-
tion ψ ∈ C∞

0 (R × R+) and integration over the domain. Here ψ ∈ C∞
0 is the

space of infinitely differentiable functions that vanish at infinity. After partial
integration one obtains
∫

R

∫

R+

[

φ
∂ψ

∂t
+ f(φ)

∂ψ

∂x

]

dtdx+

∫

R

φ0ψ(., 0)dx = 0, ∀ψ ∈ C
∞

0 (R×R
+). (4.2)

This is the weak form of (4.1), and φ ∈ L∞(R × R+) is called weak solution if
(4.2) is satisfied. Weak solutions of (4.1) are not unique. Uniqueness is obtained
by adding a condition that ensures that the solution has a physical meaning;
such a condition is called an entropy condition. Obviously, if φ ∈ C1(R × R+)
satisfies (4.2), then it satisfies (4.1) in the classical sense, and the other way
around. A consequence of (4.2) is that if φ is piecewise smooth, then at a
discontinuity it satisfies

(φL − φR)s = fL − fR, (4.3)

where L and R refer to opposite sides of the discontinuity and s is the propaga-
tion speed of the discontinuity. Equation (4.3) is called the jump condition or,
especially in gasdynamics, the Rankine-Hugoniot condition.

Unlike the case of the finite element method and other methods based on
the standard Galerkin method, for approximation with the finite volume method
one does not start from the weak form but from the strong form. Going to two
dimensions, we write

∂φ

∂t
+ ∇ · (uφ) = 0 in Ω ⊆ R

2 (4.4)

where u may depend on φ.
The domain Ω is subdivided into a set of so-called control volumes or cells

Ωi such that

Ω =
⋃

i

Ωi. (4.5)

For the time being we also suppose that

Ωi ∩ Ωj = ∅, (4.6)

although this does not hold for the control volumes for the momentum equation,
as will be seen in Section 4.11.

We integrate (4.4) over each control volume and apply the divergence theo-
rem to obtain

|Ωi|
∂φi
∂t

+

∮

∂Ωi

φ(u · n)dΓ = 0 (4.7)

where

φi =
1

|Ωi|

∫

Ωi

φdΩ. (4.8)

A finite volume scheme is obtained after approximation of the cell integral in
(4.7). Examples will follow.

Summation of (4.7) over i gives

d

dt

∫

Ω

φdΩ +

∮

∂Ω

φ(u · n)dΓ = 0 (4.9)
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which shows that
∫

Ω φdΩ can change only by transport trough the boundary
∂Ω. Schemes with this property are called conservative. The importance of this
property lies in the fact that according to the celebrated Lax-Wendroff theorem
[22], if a conservative scheme converges as max |Ωi| ↓ 0, then its solution satisfies
the jump condition (4.3). Experience shows that this is usually not the case for
nonconservative schemes.

In the present work, the cells Ωi will be triangles, because this gives maximal
flexibility in grid generation, and because triangles are a greater challenge than
for instance hexahedra, for which earlier methods developed for structured grids
are more directly applicable. In structured grids, every interior vertex belongs
to a fixed number of cells. In unstructured grids, the number of cells to which an
interior cell belongs is arbitrary. Our method will be developed for unstructured
grids, for flexibility in grid generation.

4.3 Discretization of the divergence of the ve-

locity

We integrate the continuity equation for incompressible flow (2.12) over a control
volume consisting of one triangle, and apply the divergence theorem:

∫

Ωi

(∇ · u)dΩ =

∮

∂Ωi

(u · n)dΓ = 0, (4.10)

where n is the outward normal.
Local mass conservation means that this equation should be satisfied exactly.

Therefore we choose the averaged normal velocity components

ue =
1

le

∫

le

(u ·Ne)dl. (4.11)

as primary velocity unknowns, where Ne is one of the two possible unit normal
vectors in edge e. Equation (4.10) becomes

3
∑

e=1

uele = 0, (4.12)

where le = (Ne · ne)le, ne is the outward normal in face e, and le is the length
of face e.

This implies that the average divergence of a vector v (in our case the velocity
or the momentum) in cell Ωi can be computed exactly as

(∇ · v)Ωi
=

1

|Ωi|

3
∑

e=1

vele, (4.13)

where

ve =
1

le

∫

le

(v ·Ne)dl. (4.14)

More generally, the average divergence of v in a union of cells U can be computed
as

(∇ · v)U =
1

|U |

k
∑

e=1

vele, (4.15)

where summation runs over the boundary faces of this union.
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4.4 Discretization of the continuity equation for

compressible flow

The semi-discretized density equation for compressible flow (3.13) is integrated
over each triangle of the mesh, and the divergence theorem is applied to the
convective term. Taking the triangle Ω1 depicted in Fig. 4.1 for example, one
obtains

e
1

2

Figure 4.1: Control volume used for the scalar equations.

∫

Ω1

ρn+1 − ρn

∆t
dΩ +

∮

∂Ω1

ρn+1(un · n)dΓ = 0. (4.16)

We take the triangle averages of ρ as primary density variables. After approxi-
mating the line integral in the convective term, equation (4.16) reduces to

|Ω1|
ρn+1
1 − ρn1
∂t

+
∑

e

ρn+1
e une le = 0, (4.17)

where summation takes place over the three faces.

In the first order upwind scheme [36] the density in face e is taken to be

ρn+1
e =

{

ρn+1
1 if une le ≥ 0;

ρn+1
2 if une le < 0;

(4.18)

if e is an internal face, and ρn+1
e = ρn+1

1 if e is a boundary face where ρ is
not prescribed. Note that if une le > 0 then the flow direction is out of cell 1,
otherwise into.

In order to obtain a more accurate scheme, we use upwind-biased linear
interpolation to approximate ρn+1

e . This will be discussed in Sect. 4.5.

The convecting velocity une is computed by dividing the convected momen-
tum mn

e by the density ρne , which needs to be computed. In the first order
scheme it is computed as an area-weighted average of the densities in the two
neighboring cells:

ρne =
Ω2

Ω1 + Ω2
ρn1 +

Ω1

Ω1 + Ω2
ρn2 . (4.19)

If e is a boundary face and cell 2 is missing then we take ρne = ρn1 .

In the new scheme we use face-centered linear reconstruction (see Sect. 4.5)
to compute ρne .
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4.5 Linear reconstruction of scalars

A convected scalar quantity ψ is reconstructed in face e by using the formula

ψe =

{

ψ1 + ∇ψ1,e · (re − r1) if uele ≥ 0;

ψ2 + ∇ψ2,e · (re − r2) if uele < 0,
(4.20)

where r = [x y]T is the position vector. The gradient ∇ψ is determined by least
squares approximation either from the cells surrounding the upwind cell (1 or 2)
or from the cells surrounding the upwind vertex (A or B), as illustrated in Fig.
4.2. These two methods will be called cell-based and vertex-based reconstruction,

A

B

A

B
e

1
2

i

k

l

e
1

2

i

k

l

Figure 4.2: Reconstruction stencil in the case when fluid flows into the control
volume based in the upwind cell (left) and the upwind vertex (right). Cells that
are used for reconstruction are marked by dots.

respectively. Cell-based reconstruction typically involves fewer cells (cf. Fig.
4.2), and gives a unique gradient per cell (i.e. ∇ψ2,e does not depend on e),
which does not hold for the vertex-based reconstruction. The vertex-based
reconstruction uses quantities from the upwind side of the edge only; this may
enhance monotonicity of numerical solutions. Both approaches were tested and
results are presented in Sect. 5.

We considered two ways to determine the gradient using the vertex-based
reconstruction. One possibility, assuming uele < 0, is to find a and ∇ψB = [b, c]
such that a linear polynomial

PB(r) = a+ ∇ψB · (r − rB) (4.21)

matches the values of the scalar in the cells surrounding vertex B as accurately
as possible in the least-squares sense, and to set ∇ψ2,e ≡ ∇ψB in (4.20). The
other possibility is to postulate, similarly to (4.20),

ψ(r) = ψ2 + ∇ψ2,e · (r − r2) (4.22)

and to determine ∇ψ2,e by least squares approximation. In the first case one
linear polynomial is associated with each vertex. In the second case two linear
polynomials are associated with each face, one for each possible flow direction.
Since there are roughly three times more faces then vertices, the second method
requires six times more memory, while it is found to be only a bit more accurate.

We also tried not to ignore the constant part a of the linear polynomial (4.21)
and to use it instead of ψ2. However, the resulting scheme did not converge in
time.
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4.6 Linear reconstruction of staggered vector fields

In preparation for a staggered scheme for the momentum equation, to be pre-
sented in Sect. 4.11, the following sections will be devoted to reconstruction of
vector fields from staggered components.

The scheme developed in [36, 37] uses the following reconstruction to com-
pute a vector component in a cell:

N ·m ≈ ξimi + ξjmj , (4.23)

where i and j are two faces of this cell, and ξi and ξj are chosen such that

N = ξiNi + ξjNj . (4.24)

This reconstruction is exact for piecewise constant vector fields only.
In order to obtain higher order schemes, the velocity vector field needs to

be reconstructed from staggered data with sufficient accuracy. Second order
accurate upwind-biased schemes have been developed on collocated grids using
polynomial reconstruction (see for example [4]). Reconstruction from staggered
data has not yet been much investigated. Polynomial reconstruction in the
staggered case is found in [30], which discusses reconstruction on quadrilaterals.
We will discuss the triangular staggered case.

We cannot obtain a second-order accurate reconstruction formula for the
momentum by adding the gradient part to the first order reconstruction formula
(4.23), like we did in the scalar case, because (4.23) is nowhere more than first
order accurate. In the scalar case the first order reconstruction is second order
accurate in the cell center. Second order reconstruction must be second order
accurate when the position vector is zero.

To approximate m in the vicinity of point with coordinate vector r0, we
postulate a piecewise linear approximation of the following form:

m(r) ≈ P(r) = a + bx+ cy, (4.25)

where r = [x y]T is the position vector of a point where m is to be reconstructed,
relative to point r0. Point r0 may be a face center, a cell centroid, or a vertex.
We want to determine a, b and c such that the face average of Ne ·P(r) matches
the normal components me for face e belonging to a certain set (that will be
called the reconstruction stencil) as closely as possible in the least squares sense.
Fig. 4.3 shows possible reconstruction stencils. This leads to the following linear
system:

Ne · P(re) = me, for each face e in the reconstruction stencil. (4.26)

This system can be written as
Mc = m, (4.27)

where

M =







Nx,1 Ny,1 Nx,1x1 Nx,1y1 Ny,1x1 Ny,1y1
...

...
...

...
...

...
Nx,k Ny,k Nx,kxk Nx,kyk Ny,kxk Ny,kyk






, (4.28)

c =
[

a1 a2 b1 b2 c1 c2
]T
, m =

[

m1 . . . mk

]T
, (4.29)
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0 0

0

Figure 4.3: Examples of reconstruction stencils for face-based (left), cell-based
(middle) and vertex-based (right) linear reconstruction.

and k is the number of faces in the reconstruction stencil.
If the tangential momentum component mt

e is prescribed as a boundary
condition in some of the boundary faces belonging to the reconstruction stencil,
equation

Te · P(re) = mt
e (4.30)

is added to system (4.26) where Te = (−Ny,e, Nx,e) and mt
e = Te · me. This

can be done for all faces where the tangential momentum is prescribed, or only
for the faces closer to the center of the reconstruction stencil.

In [30] it is noted that the system of equations for the reconstruction co-
efficients may become singular. Here we analyze this situation. In order to
determine the least squares solution for c it is necessary that rank(M) = 6.
If rank(M) < 6, the stencil needs to be enlarged, or the degree of P must be
lowered. We will pursue the first option only. On general unstructured grids
it is difficult to specify a priori reconstruction stencils such that rank(M) = 6.
However, we can say the following: one triangle Ω in the reconstruction stencil
suffices to determine ∇ ·m = b1 + c2 because

b1 + c2 =
1

|Ω|

∮

∂Ω

n · P(r)dΓ =
1

|Ω|

3
∑

e=1

Ne ·P(re)le (4.31)

(see 4.26). Therefore
rank(M) ≤ k − k̃ + 1, (4.32)

where k̃ is the number of triangles in the reconstruction stencil. Hence, for
the stencil in Fig. 4.4 we have rank(M) ≤ 5, so this stencil is too small, and
additional faces must be added.

An additional rank reduction may occur in special situations. Fig 4.5 shows
an enlarged vertex-based reconstruction stencil for a boundary vertex 0. Face
centers 1, 2 and 3 are collinear, so there exist coefficients α and β such that
r3 = αr1 + βr2 and α + β = 1. In the case presented in Fig. 4.5, α = 1

2 and
β = 1

2 . These faces are also parallel, and we shall suppose that N1 = N2 = N3.
By substituting this in the left hand side of the equation (4.26) for face 3 we
obtain

N3 · P(r3) = N3 ·P(αr1 + βr2) = αN1P(r1) + βN2P(r2). (4.33)

The equation for face 3 is linearly dependent on the equations for faces 1 and
2, and rank(M) ≤ k − k̃ + 1 − 1 < 6.
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0

Figure 4.4: Insufficient reconstruction stencil for vertex-based linear reconstruc-
tion.

21 3

0

Figure 4.5: Reconstruction stencil at a boundary.

If the grid is unstructured, stencils close to the stencil of Fig. 4.5 frequently
appear at boundaries, resulting in ill-conditioned linear systems. In order to
detect such situations, singular value decomposition (SVD) is used to find the
pseudo-inverse of M . The stencil is enlarged if some singular value is less than
some threshold. Because the matrices involved are small, SVD takes only a
small part of total computing time.

In order to match the normal velocities in the faces closer to the center
more closely than those in the outer part of the reconstruction stencil, we use
weight 1 for the equations related to the central faces, and 10−2 for all the
others. Central faces are the faces meeting in the central vertex in the case
of the vertex-based reconstruction, faces of the central triangle in the case of
the cell-based reconstruction, or the faces of the two central triangles in the
case of the face-based reconstruction. This gives practically absolute priority to
the nearest neighbors, but still keeps the singular values of the reconstruction
matrix relatively large. Numerical experiments have shown that in this matrix
two groups of singular values can be distinguished: those proportional to the
larger weight, and those proportional to the smaller weight. For this reason
using too small weights can have negative effect on the accuracy. On the other
hand, numerical experiments also show that the momentum matrix is better
conditioned if the nearest neighbors have much higher weights than the distant
faces. Using ratio 1/1000 gives almost the same results. Results are not very
sensitive to this parameter.

Still, matrix MTM emerging from (4.26) when the least squares or the
SVD method is used becomes very ill-conditioned as the mesh is refined. This
problem is also present in the scalar case. Requirement that a one-dimensional
polynomial of degree n − 1 has specified values in points x1, . . . , xn results in
Vandermonde matrix. Determinant of this matrix is

∏

i>j(xi − xj). As points
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xi get closer to each other, the matrix approaches a singular one. Our situation
is similar. In order to avoid growing ill-conditioning, we scale ri by some typical
length h, for example the length of the central face, the square root of the area
of the central cell, or the average length of the faces meeting in the central
vertex. Hence, in (4.25)–(4.27) instead of r and P we use

r̃ =
[

x̃ ỹ
]T

=
r

h
, P̃(r̃) = P(r) = a + b̃x̃+ c̃ỹ, b̃ = hb, c̃ = hc. (4.34)

We solve for the scaled coefficients a, b̃ and c̃, which are used to calculate b

and c.
The coefficients of the linear polynomial are obtained in the form

[a1, . . . c2]
T = M+ · [m1, . . .mk]

T , (4.35)

where M+ is the pseudo-inverse of matrix M . Matrix M+ depends only on the
grid and on the weights, and does not change in time. It can be calculated in
advance and used later in each time step. This implies that a 6×k matrix must
be stored for each vertex, cell, or face.

4.6.1 Divergence-free linear reconstruction

Since b1 + c2 = ∇ · P in (4.25), we can require that

b1 + c2 = d = ∇ ·m (4.36)

exactly, where the divergence is computed as in (4.15):

d =
1

|Ω|

∫

∇ · mdΩ =
1

|Ω|

k1
∑

α=1

lαmα. (4.37)

Let b1 = d/2 + b, c2 = d/2 − b, and

P(r) = a +

[

b c1
b2 −b

]

r. (4.38)

Note that ∇ · P = 0; therefore P will be called the divergence-free part of P.
The reconstruction polynomial with specified divergence d can be represented
in the following way:

P(r) = P(r) +
d

2
r. (4.39)

The number of free parameters has dropped from six to five.
Each face e in the reconstruction stencil contributes the following equation:

Ne ·P(re) = me −
1

2
(Ne · r)d. (4.40)

The least squares solution is given by












a1

a2

b
c1
b2













= M+ ·













m1

...
mk






− 1

2







Nx,1x1 +Ny,1y1
...

Nx,kxk +Ny,kyk






d






, (4.41)
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whereM+ is the pseudo-inverse of the matrixM of system (4.40). We substitute
(4.37) in (4.41) in order to obtain












a1

a2

b
c1
b2













= M+ ·













m1

...
mk






− 1

2 |Ω|







Nx,1x1 +Ny,1y1
...

Nx,kxk +Ny,kyk







[

l1 . . . lk1
]

·







m1

...
mk1












.

(4.42)
In this way faces used to specify the divergence d enter the reconstruction stencil.

If at least five faces meet in a vertex, they impose enough conditions to
determine the solenoidal part of a vertex-based linear polynomial (see Fig. 4.6 on
the left and in the middle). However, if fewer than five faces meet in some vertex,
the stencil is enlarged as in Fig. 4.6 on the right (or the order of interpolation
must be lowered; this option we do not pursue because we want to preserve the
accuracy).

Figure 4.6: Reconstruction stencils for the divergence-free vertex-based linear
reconstruction.

Vertex-based divergence-free linear reconstruction has several advantages.
The most important one is that it leads to a superlinearly convergent scheme
for the Navier-Stokes equations, as will be shown in the following sections, while
the non-divergence-free linear reconstruction does not. In addition, it leads to a
smaller stencil, and it requires roughly half the memory of the non-divergence-
free reconstruction. It does not need weights, thresholds or SVD whenever at
least five faces meet in a vertex or if the tangential momentum is prescribed
in a sufficient number of faces meeting in the central vertex. It is however not
required that at least five faces meet in every internal vertex. Meshes that we
used do not have this property.

4.7 Quadratic reconstruction

We postulate

m(r) ≈ P(r) = a + bx+ cy + dx2 + exy + fy2. (4.43)

We have 12 free parameters. The stencils shown in Fig. 4.3 do not contain
enough information to determine these parameters, so we must enlarge them.
An example of an appropriate cell-based stencil is shown in Fig. 4.7.
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0

Figure 4.7: Reconstruction stencil for cell-based quadratic reconstruction.

Our primary momentum variables are not the normal momenta in the face
centers but their averages along these faces. For this reason, instead of Ne ·P =
me we need to satisfy

1

le

∫

le

Ne ·Pdl = me (4.44)

The average of a linear polynomial along a face is equal to the value of the
polynomial in the center of that face, and this is why condition (4.26) was good
enough in the linear case. In order to evaluate (4.44) we need the averages of x2,
xy and y2 over the faces. Face e is parameterized as x = xe+ tlx,e, y = ye+ tly,e,
t ∈ [−1/2, 1/2], where (lx,e, ly,e) is the vector of face e and xe and ye are the
coordinates of the face center. Then

1

le

∫

le

x2dl =
1

le

∫

1
2

−
1
2

(xe + tlx,e)
2ledt = x2

e +
l2x,e
12

,

1

le

∫

le

xydl = xeye +
lx,ely,e

12
, (4.45)

1

le

∫

le

y2dl = y2
e +

l2y,e
12

.

Each face e in the reconstruction stencil contributes with the following equa-
tion:

Nx,ea1 +Ny,ea2 +Nx,exeb1 +Ny,exeb2 +Nx,eyec1 +Ny,eyec2 +

+Nx,e

(

x2
e +

l2x,e
12

)

d1 +Ny,e

(

x2
e +

l2x,e
12

)

d2 +

+Nx,e

(

xeye +
lx,ely,e

12

)

e1 +Ny,e

(

xeye +
lx,ely,e

12

)

e2 + (4.46)

+Nx,e

(

y2
e +

l2y,e
12

)

f1 +Ny,e

(

y2
e +

l2y,e
12

)

f2 = me.

If the tangential vector component is given in this face, the appropriate
equation is obtained by replacing Ne by Te and me by mt

e .
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If this reconstruction is needed for approximation of the viscous term, then it
might be advantageous to include the stress prescribed at the outflow boundary
in the linear system from which the coefficients of the reconstruction polynomial
are calculated. For the tangential stress the following equation needs to be
satisfied:

1

le

∫

le

µNe









2
∂Px
∂x

− 2

3
∆

∂Px
∂y

+
∂Py
∂x

∂Px
∂y

+
∂Py
∂x

2
∂Py
∂y

− 2

3
∆









Tedl = σnt,e, (4.47)

where σnt,e is the average of the given tangential stress over face e. This leads
to the following equation:

µ
{

( 4
3Nx,eTx,e − 2

3Ny,eTy,e)b1 + (Nx,eTy,e +Ny,eTx,e)b2+

+(Nx,eTy,e +Ny,eTx,e)c1 + ( 4
3Ny,eTy,e − 2

3Nx,eTx,e)c2 +

+( 8
3Nx,eTx,e − 4

3Ny,eTy,e)xed1 + 2(Nx,eTy,e +Ny,eTx,e)xed2 +

+
(

( 4
3Nx,eTx,e − 2

3Ny,eTy,e)ye + (Nx,eTy,e +Ny,eTx,e)xe
)

e1 + (4.48)

+
(

( 4
3Ny,eTy,e − 2

3Nx,eTx,e)xe + (Nx,eTy,e +Ny,eTx,e)ye
)

e2 +

+ 2(Nx,eTy,e +Ny,eTx,e)xef1 + ( 8
3Ny,eTy,e − 4

3Nx,eTx,e)yef2
}

= σnt.

If the normal stress is given in this face, the appropriate equation is obtained
by replacing Te by Ne and σnt by σnn.

As in the linear case, we combat rounding errors by scaling by h, and actually
use r̃ instead of r in (4.43). Later we transform the coefficients of this scaled
polynomial into the coefficients of the original one by dividing the coefficients
with linear terms by h and the coefficients with quadratic terms by h2.

4.7.1 Divergence-free quadratic reconstruction

The divergence of a quadratic polynomial is a linear function

∇ ·P(r) = b1 + c2 + (2d1 + e2)x+ (e1 + 2f2)y = α+ βx + γy. (4.49)

It is required that ∇ · P(r) matches the divergence of the reconstructed vector
in at least three triangles as closely as possible in the least squares sense. For
example, if a cell-based quadratic polynomial is being calculated, then the di-
vergence is calculated from the central and the three surrounding triangles in
Fig. 4.7. For each of these triangles the following equation needs to be satisfied
as closely as possible:

∫

Ω

(α+ βx+ γy)dΩ =
∑

e

mele, (4.50)

where the summation runs over the faces of triangle Ω. From these conditions
parameters α, β and γ are calculated. By substituting (4.49) in (4.43) one
obtains

Px(r) = a1 + (α/2 + b)x+ c1y + d1x
2 + (γ − 2f2)xy + f1y

2

Py(r) = a2 + b2x+ (α/2 − b)y + d2x
2 + (β − 2d1)xy + f2y

2 (4.51)

When the system (4.44) is formed, terms containing α, β and γ are moved to
the right hand side, and the rest is calculated in analogy with the linear case.
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4.8 Cubic reconstruction

We consider cubic polynomials:

P(r) = a + bx+ cy + dx2 + exy + fy2 + gx3 + hx2y + ixy2 + jx3. (4.52)

Here we have 20 free parameters. The stencil is obtained by choosing faces
closest to the stencil center until the rank is 20 and all singular values are
sufficiently large. Typical stencil contains around 30 faces.

In the similar manner as before, we shall need the following integrals:

Ix3 =
1

le

∫

le

x3dl = x3
e + xe

l2x,e
4
,

Ix2y =
1

le

∫

le

x2ydl = x2
eye +

lx,e
12

(lx,eye + 2ly,exe),

Ixy2 =
1

le

∫

le

xy2dl = xey
2
e +

ly,e
12

(2lx,eye + ly,exe), (4.53)

Iy3 =
1

le

∫

le

y3dl = y3
e + ye

l2y,e
4
.

For each face e in the reconstruction stencil the following equation needs to be
satisfied as closely as possible in the least squares sense:

Nx,ea1 +Ny,ea2 +Nx,exeb1 +Ny,exeb2 +Nx,eyec1 +Ny,eyec2 +

+Nx,eIxxd1 +Ny,eIxxd2 +Nx,eIxye1 +Ny,eIxye2 +Nx,eIyyf1 +Ny,eIyyf2 +

+Nx,eIx3g1 +Ny,eIx3g2 +Nx,eIx2yh1 +Ny,eIx2yh2 + (4.54)

+Nx,eIxy2 i1 +Ny,eIxy2 i2 +Nx,eIy3j1 +Ny,eIy3j2 = me,

where

Ixx = x2
e +

l2x,e
12

, Ixy = xeye +
lx,ely,e

12
, Iyy = y2

e +
l2y,e
12

. (4.55)

Equation for the tangential stress follows:

µ
{

( 4
3Nx,eTx,e − 2

3Ny,eTy,e)b1 + (Nx,eTy,e +Ny,eTx,e)b2+

+(Nx,eTy,e +Ny,eTx,e)c1 + ( 4
3Ny,eTy,e − 2

3Nx,eTx,e)c2 +

+( 8
3Nx,eTx,e − 4

3Ny,eTy,e)xed1 + 2(Nx,eTy,e +Ny,eTx,e)xed2 +

+
[

( 4
3Nx,eTx,e − 2

3Ny,eTy,e)ye + (Nx,eTy,e +Ny,eTx,e)xe
]

e1 +

+
[

( 4
3Ny,eTy,e − 2

3Nx,eTx,e)xe + (Nx,eTy,e +Ny,eTx,e)ye
]

e2 +

+2(Nx,eTy,e +Ny,eTx,e)xef1 + ( 8
3Ny,eTy,e − 4

3Nx,eTx,e)yef2 + (4.56)

+( 4
3Nx,eTx,e − 2

3Ny,eTy,e)Ixxg1 + 3(Nx,eTy,e +Ny,eTx,e)Ixxg2 +

+
[

( 8
3Nx,eTx,e − 4

3Ny,eTy,e)Ixy + (Nx,eTy,e +Ny,eTx,e)Ixx
]

h1 +

+
[

( 4
3Ny,eTy,e − 2

3Nx,eTx,e)Ixx + 2(Nx,eTy,e +Ny,eTx,e)Ixy
]

h2 +

+
[

( 4
3Ny,eTy,e − 2

3Nx,eTx,e)Iyy + 2(Nx,eTy,e +Ny,eTx,e)Ixy
]

i1 +

+
[

( 8
3Ny,eTy,e − 4

3Nx,eTx,e)Ixy + (Nx,eTy,e +Ny,eTx,e)Iyy
]

i2 +

+ 3(Nx,eTy,e +Ny,eTx,e)Iyyj1 + ( 4
3Ny,eTy,e − 2

3Nx,eTx,e)Iyyj2
}

= σnt.
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For normal stress Te is replaced by Ne and σnt is replaced by σnn.
It is possible to make divergence-free cubic reconstruction in an analogous

way to the linear and the quadratic case, although we did not do it because using
cubic reconstruction does not pay off as long as we use the trapezoid formula
to integrate over the faces.

4.9 A note on boundary conditions in recon-

struction

As we noticed before, sometimes it might be advantageous to include boundary
conditions in the linear systems that determine the reconstruction polynomials.
However, using face averages of boundary conditions for this purpose may not be
the best solution. Consider a corner of a computational domain depicted in Fig.
4.8. Suppose that the flow is directed from left to right, so that the momentum
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Figure 4.8: A corner.

vector is prescribed at the leftmost boundary, and only the normal momentum
component is prescribed at the lower (free-slip) boundary. We want to compute
a linear polynomial based in vertex A. We cannot determine such polynomial
from faces i, j and k, because we need to determine six degrees of freedom,
and we only have four momentum components in these faces, including the
boundary conditions. The reconstruction stencil needs to be enlarged with the
faces of triangle BCD. If this reconstruction polynomial is needed to evaluate
the momentum vector in face k for the convection term of momentum equation
(this will be discussed in Sect. 4.11.2), extending the stencil with downwind
faces may make the scheme unstable.

In such situation one must remember that by knowing boundary conditions,
we know much more than just face averages. We also know boundary conditions
in the vertices or in any other point on the boundary curve, and we know the
derivatives of these boundary conditions. This information should be used in
reconstruction rather than enlarging the reconstruction stencil.

In particular, we may use the momentum vector in vertices A and B, the
normal momentum in vertex C, and the normal momentum in face k. This is
enough to determine a linear polynomial.
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4.10 Hierarchical least squares method

The quality of solutions obtained with a polynomial reconstruction depends
sometimes heavily on the choice of the weights used to obtain the reconstruction
polynomials (see Sect. 4.6). The weights related to the faces near the center of
the stencil should be much larger than those related to the faces more distant,
and this can make the matrix of the least squares system ill-conditioned. For
large reconstruction stencils that are used with the quadratic and the cubic
reconstruction sometimes it is advantageous to match a few central faces as
closely as possible in the least squares sense, then to draw some additional
information from the closer surrounding faces, and at the end to treat the distant
faces. For this we need three very different groups of weights, for example 1,
10−4 and 10−8. These weights will be reflected in the singular values. Some
singular values will be of order one, some will be of order 10−4, and some of
order 10−8. But then if some faces in the second group are almost parallel,
one or more of the related singular values will be smaller. This situation is
very hard to detect because the number of singular values related to each group
depends on the particular reconstruction stencil, so this smaller singular value
may be confused with one from the third group. Therefore we do not know if the
reconstruction stencil needs to be enlarged. This makes things very complicated
and unmanageable.

There is a considerable amount of literature on using the least squares
method for reconstruction. This is called the moving least squares method

(MLS), and it appeared for the first time in [21]. It is particularly popular in
meshless methods. For example, in [24] a least squares method with constraints
is used to make a reconstruction polynomial which is exact in one point. But
this approach cannot be extended to our staggered case in a straightforward
way.

For this reason we developed a variant of MLS that does not require choosing
weights, allows us to define priority groups of equations, and offers a possibility
to easily control the singular values related to each particular group. We shall
call this method the hierarchical least squares (HLS) method.

The linear system Ay = b is decomposed into a set of linear subsystems:

Aiy = bi, i = 1, . . . , s, (4.57)

where y ∈ Rn, bi ∈ Rmi and rank(A) ≥ n. We want to find a family of sets
Y1 ⊇ Y2 ⊇ · · · ⊇ Ys such that Yi = {y ∈ Yi−1|‖Aiy − bi‖ is minimal } and
Y0 = Rn.

We calculate the SVD of matrix A1 and get A1 = U1S1V
T
1 , where U1 and V1

are unitary matrices and S1 is a diagonal matrix containing singular values of
matrix A1. We replace elements of ST1 by their inverses if they are larger than
some tolerance, set others to zero, and denote the obtained matrix by S−1

1 .
Solution y1

pr ∈ Y1 such that ‖y1
pr‖ is minimal is given by

y1
pr = V1S

−1
1 UT1 b1. (4.58)

Columns of V1 related to the zero (or below the tolerance) singular values form
the basis of the null space null(A1) = {y|A1y = 0}. We shall denote the matrix
consisting only of these columns by V null

1 . Now

Y1 = {y1
pr + V null

1 y1|y1 ∈ Rn1}, (4.59)
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where n1 = n− rank(A1). This is because {V null
1 y1|y1 ∈ Rn1} = null(A1) and

so {y1
pr + V null

1 y1|y1 ∈ Rn1} = {y ∈ Rn|A1y = A1y
1
pr}.

We proceed by induction. Suppose that we found some yi0 ∈ Yi

yi0 = Ei







b1
...
bi






, (4.60)

and that Yi is represented by

Yi = {yi0 + Fiy
i|yi ∈ Rni}, (4.61)

where ni > 0. By substituting y = yi0 + Fiy
i into equation Ai+1y = bi+1 we

obtain
Ai+1Fiy

i = bi+1 −Ai+1y
i
0. (4.62)

We calculate the SVD of Ai+1Fi = Ui+1Si+1V
T
i+1 and find

yi+1
pr = Vi+1S

−1
i+1U

T
i+1

(

bi+1 −Ai+1y
i
0

)

(4.63)

If Ai+1Fi has a nontrivial null space then columns of Vi+1 related to the zero
singular values form the basis of this null space. We shall denote the matrix
consisting only of these columns by V null

i+1 .
If yi = yi+1

pr + V null
i+1 y

i+1 where yi+1 ∈ Rni+1 , then Ai+1Fiy
i = Ai+1Fiy

i+1
pr

and so
Yi+1 = {yi0 + Fi(y

i+1
pr + V null

i+1 y
i+1)|yi+1 ∈ Rni+1} (4.64)

or
Yi+1 = {yi+1

0 + Fi+1y
i+1|yi+1 ∈ Rni+1}, (4.65)

where

yi+1
0 = Ei+1







b1
...

bi+1






, Fi+1 = FiV

null
i+1 ,

Ei+1 =
[

Ei − FiVi+1S
−1
i+1U

t
i+1Ai+1Ei FiVi+1S

−1
i+1U

T
i+1

]

. (4.66)

If Ai+1Fi does not have a nontrivial null space, then Yi+1 contains only
yi+1
0 , which is the final solution to the set of systems (4.57). In this case it

should be i+ 1 = n, otherwise the subsystems i+ 2, . . . , n do not influence the
solution. If i + 1 = n and Ai+1Fi has a nontrivial null space, this means that
rank(A) < n. In this case we can add an additional subsystem and continue
without restarting the algorithm.

We also developed a version of this method that uses an ordinary direct solver
and least squares method instead of SVD. It works well and it gives the same
result as the method with the SVD. However, it is much more complicated.
Stability is also not guaranteed, although in our experiments it was always
working. Since our systems are small and do not grow with the mesh, it is
advisable to use the SVD.

If there are only two groups of equations and if the equations of the first
group are linearly independent, this method is equivalent to the so-called least
squares method with constraints, which finds the best solution of a linear system
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in the least squares sense, while satisfying some equations (constraints) exactly.
However, the equations of the first group may be contradictory. For example,
when computing a face-based linear polynomial, the first group consists of the
five faces of the two triangles sharing the central face (see 4.3 on the left). The
rank of the related subsystem is 4, because two triangles are included, so the
divergence is specified twice. Therefore in general it is not possible to match
the prescribed normal components exactly, and the least squares method with
constraints is not applicable.

4.11 Discretization of momentum equation

In the case of the momentum equation we associate the union Ωi of two neigh-
boring triangles sharing edge i with each interior edge i, and the neighboring
boundary triangle with each boundary edge, and we use these sets as control
volumes (see Fig. 4.9). The semi-discretized momentum equation (3.6) is mul-
tiplied by Ni and averaged over these control volumes Ωi:

2

i

k
B

e
A C

m

n

3

l4

1

j

Figure 4.9: Control volume for the momentum equation.

1

|Ωi|

∫

Ωi

Ni · (mn+1 −mn)

∆t
dΩ +

1

|Ωi|

∫

Ωi

∇ · [un(mn+1 ·Ni)]dΩ =

= − 1

|Ωi|

∫

Ωi

Ni · ∇pndΩ +
1

|Ωi|
Nα,i

∫

Ωi

(ταβ,β)
n+1 (4.67)

If the pressure correction method is used, then superscript n+ 1 is replaced by
a star ∗.

The control volumes chosen have the property that summation of the inte-
grals of the inviscid momentum equation over the control volumes (specializing
to the inviscid case for brevity)

∫

Ωi

∂m

∂t
dΩ +

∮

∂Ωi

[m(u · n) + pn]dΓ = 0 (4.68)

results in three times the integral of this equation over Ω, i.e.

3

∫

Ω

∂m

∂t
dΩ + 3

∮

∂Ω

[m(u · n) + pn]dΓ = 0 (4.69)
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This shows that at this stage the discretization is conservative. However, due
to the multiplication by Ni, linear combination of equations (4.67) will never
result in a conservation law integrated over the computational domain, i.e. we
cannot prove that the discretization of the momentum equation is conservative.
Hence, the Lax-Wendroff theorem does not apply. Nevertheless, as shown in by
numerical experiments [37], numerical solutions satisfy the Rankine-Hugoniot
conditions. We also illustrate this in Sect. 5.4.4.

In order to fully specify the numerical scheme, the integrals in (4.67) need
to be approximated. We proceed term by term.

4.11.1 Viscous term

We apply the divergence theorem:

1

|Ωi|
Nα,i

∫

Ωi

ταβ,βdΩ =
1

|Ωi|
Nα,i

∮

∂Ωi

ταβnβdΓ =
1

|Ωi|
Nα,i

∑

e

ταβ,eNβ,ele,

(4.70)
where ταβ,e = 2µ

(

1
2 (uα,e,β + uβ,e,α) − 1

3∆δαβ
)

is the deviatoric stress tensor
averaged over the control volume face e. This term is discretized implicitly. For
brevity we excluded the superscript n + 1. Even if the flow is incompressible,
the velocity divergence ∆ should still be included when an implicit method is
used, because this is found to improve the properties of the global matrix. It is
computed as a linear combination of the normal velocities in faces i, j, k and l
by applying formula (4.15) to the union of cells A and B (see Fig. 4.9).

Several approximations for the rate of strain tensor 1
2 (uα,e,β + uβ,e,α) have

been explored. Their relative merit is investigated by application to the follow-
ing example.

Example 1. The following equations are solved:

τ1β,β = 2 sinx sin y, τ2β,β = 2 cosx cos y. (4.71)

on the square [−0.5, 0.5]× [−1.3,−0.3]. We take µ = 1. The exact solution

u = sinx sin y, v = cosx cos y (4.72)

is prescribed at the inflow boundaries. At the outflow boundary the exact stress
(Neumann) or the exact velocity (Dirichlet) is prescribed. The velocity vectors
are shown in Fig. 4.10.

The local truncation error of a discretized equation is the difference between
the left hand side and the right hand side when the exact discretized solution
(which is the set of face averages of the exact velocity) is substituted. We shall
denote the local truncation error of the momentum equation as τm.

The (global truncation) velocity error in face e is defined as

εu,e = ue − uex,e, (4.73)

where index ex refers to the exact discretized solution.
The l2 norm or 2-norm of an algebraic vector x ∈ Rn is defined as

‖x‖2 =

[

1

n

n
∑

e=1

x2
e

]1/2

, (4.74)
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Figure 4.10: Example 1.

whereas the l∞ or maximum norm is defined as

‖x‖∞ = max
e

|xe|. (4.75)

The order of accuracy α is estimated in the following way. It is assumed
that some norm of the error depends on h as ‖ε‖ ≈ ahα, h ↓ 0, where h is a
mesh parameter (in our case, h = 1/n, n is the number of edges along each side
of the domain), α is the order of accuracy, and a is some constant. This can be
written as

log a

log h
+ α =

log ‖ε‖
logh

. (4.76)

We estimate log a and α by least squares from a set of results obtained with
meshes of the same quality and various h.

This problem was solved on three different types of grids, shown in Fig. 4.11.
In order to preserve the properties of the unstructured grids, these grids were
not refined by adding points, but random finer grids were created independently.

Figure 4.11: Cartesian, regular and irregular grid.

Piecewise constant reconstruction

The rate of strain tensor 1
2 (uα,e,β + uβ,e,α) has to be expressed in terms of the

surrounding normal velocity components. In the scheme [36] this is done by
constructing a bilinear polynomial based on the velocity vectors in faces i, j, k
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and l (see Fig. 4.9). The gradient of this bilinear polynomial is used to compute
uα,e,β and uβ,e,α. Hence, tangential velocity components are required in faces
i, j, k and l.

The missing tangential velocity component in face i uti = ti ·ui is computed
as the average of the ti · u velocity component computed in cells A and C. In
cell A component ti ·uA is computed from normal velocities ue and uj by using
formula 4.23, and ti · uC is computed from um and un. Such average is called
central reconstruction. However, this is still a first order reconstruction on an
unstructured grid.

This leads to the computational stencil shown in Fig. 4.12. The accuracy of

i

e1

2

3

Figure 4.12: Computational stencil for the viscous term.

this method was tested on Example 1. The errors are shown in Fig. 4.13, 4.14
and 4.15. The convergence stagnates on the irregular grid.

Linear reconstruction

For linear reconstruction based in face centers, the computational stencil in the
interior of the domain is the same as in the piecewise constant case (see Fig.
4.12).

We apply the resulting scheme to Example 1 with Dirichlet boundary con-
ditions. We solve on three types of grids shown in Fig. 4.11, starting with the
irregular one. First we use weights 1 for the central face and for the surrounding
four faces, and 10−5 for the other faces. We solve the reconstruction systems
by SVD, replacing singular values below 10−10 by zero. The results are shown
in Fig. 4.16. If we use the HLS method with two groups (one for the central
five faces or fewer if the boundary is encountered, and one for the rest), we get
a very similar result. Convergence when h ↓ 0 is not satisfactory.

Sometimes the local and the global truncation errors jump. A cure for this
is to enlarge the reconstruction stencil when an unusually small singular value
appears in the reconstruction matrix. If we use weights as described (values
1 and 10−5), matrices arising from reconstruction stencils have two singular
values around 10−5. We can enlarge the stencil if a singular value is smaller
than 2 · 10−6. If we use the HLS, we can enlarge the stencil if some singular
value in the second group is less than some threshold. Results obtained with
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Figure 4.13: Example 1, piecewise constant reconstruction, Cartesian grid.
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Figure 4.14: Example 1, piecewise constant reconstruction, regular grid.
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Figure 4.15: Example 1, piecewise constant reconstruction, irregular grid.
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Figure 4.16: Example 1, Dirichlet boundary, linear reconstruction, irregular
grid.
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the HLS method where threshold is 0.4 are given in Fig. 4.17. The method
with weights gives very similar results.
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Figure 4.17: Example 1, linear reconstruction, HLS, threshold 0.4, irregular
grid.

The sharp jump in the maximum error which is visible in Fig. 4.16 does
not occur in Fig. 4.17. If we change gradually the threshold in the weighted
case from 10−10 to 2 · 10−6, the error does not change much compared to Fig.
4.16 until we cross 1.16 · 10−6. Then it drops to the value shown in Fig. 4.17.
The cause is one reconstruction stencil at the boundary that looks like the one
shown in Fig. 4.18 on the left. This is the reconstruction stencil for the face in
the middle of it. Two triangles are missing due to the presence of the boundary.
When weights are used, the reconstruction matrix has singular values 1.81, 1.49,
0.55, 0.67, 1.38 · 10−5 and 1.16 · 10−6. This stencil is close to the one shown in
Fig. 4.18 on the right, which leads to a singular reconstruction matrix, as we
showed in Sect. 4.6. This is why we have one singular value that is significantly
smaller than the weight 10−5, and it could have been even smaller if the stencil
was closer to the one shown in Fig. 4.18 on the right. However, if we add a
triangle like in Fig. 4.19, then the first four singular values do not change, but
the last two become 1.76 · 10−5 and 7.16 · 10−6, and the final result is much
better, as shown in Fig. 4.17.

Figs. 4.20 and 4.21 give the results of this method on the Cartesian and the
regular grids. On the Cartesian grids this method is second order accurate, for
both Dirichlet and outflow problems.

However, this method hardly converges on the irregular grids (cf. Fig. 4.17).
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Figure 4.18: Problematic stencil.

Figure 4.19: Adapted stencil.
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Figure 4.20: Example 1, linear reconstruction, hierarchical method, threshold
0.4, Cartesian grid.
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Figure 4.21: Example 1, linear reconstruction, hierarchical method, threshold
0.4, regular grid.

We therefore proceed with another method.

Divergence-free vertex-based linear reconstruction

For the stress in face e (see equation (4.70) and Fig. 4.9) we take the aver-
age of the stress in vertices 1 and 2, calculated by using the divergence-free
vertex-based reconstruction. The divergence for both vertices is computed from
the four faces that surround the control volume face under consideration using
formula (4.15). This method leads to a relatively small stencil (see Fig. 4.22).

The results obtained with this scheme are presented in Figs. 4.23, 4.24 and
4.25. Although there are still some problems with the finest irregular grids, the
convergence improved considerably.

Sometimes the error increases as we refine the mesh, for example in the case
of the unstructured 50 × 50 grid. The reason is found to be that the mesh
contains two neighboring vertices with only four faces meeting in each of them
(see Fig. 4.26). Reconstruction stencils for both vertices have to be enlarged.
Still, the drop of accuracy is local and limited.

Fig. 4.27 shows the error for the 40 × 40 unstructured grid. We see that it
is not quite chaotic. This error seems to be mainly rotational. This is because
the discretization of the divergence is exact.

The question how the prescribed stress should be used in the case of Neu-
mann boundary conditions is very sensitive. Improper discretization can easily
lead to an ill-conditioned system or a large drop of accuracy. In Sect. 4.11.4 we
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i

Figure 4.22: Computational stencil for viscous term with the vertex-based
divergence-free linear reconstruction.
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Figure 4.23: Example 1, linear divergence-free reconstruction, Cartesian grid,
Dirichlet.
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Figure 4.24: Example 1, linear divergence-free reconstruction, regular grid,
Dirichlet.
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Figure 4.25: Example 1, linear divergence-free reconstruction, irregular grid,
Dirichlet.

Figure 4.26: A detail of the irregular mesh.

 

Figure 4.27: The error obtained with the divergence-free linear reconstruction
on the irregular mesh.
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explain how this should be done.
An open question is: why does the divergence-free reconstruction give so

much better results than the non-divergence-free reconstruction? We do not
have an answer to this question, but only a vague idea of what may be the reason.
In Sect. 4.5 we noticed that the linear reconstruction of scalars does not lead to
a working scheme if we try to reconstruct the constant part of the reconstruction
polynomial, instead of making the polynomial exact in the upwind cell. This
suggests that it is a good idea to make the reconstruction polynomial exact for
some of the data used in the reconstruction, instead of being approximate for
all the data. In the scalar case the reconstruction polynomial is exact for the
value of the scalar in the upwind cell, and in the case of the divergence-free
linear reconstruction of a vector field it is exact for the divergence. It is possible
to determine a reconstruction polynomial of the staggered vector field that is
exact for all three faces of the upwind cell, and not only for the divergence
determined from this cell, and such reconstruction might give better results
then the presented divergence-free reconstruction. However, it would require
six times more memory, because we would have to save two polynomials per
face, instead of one polynomial per vertex.

Quadratic reconstruction

If the reconstruction polynomials are face-centered, the stencil becomes huge
with quadratic reconstruction. A remedy is not to use finite volume approxi-
mation for the viscous term, except for the divergence part. If we suppose that
µ is constant over the integration domain, we get

1

|Ωi|
Ni ·

∫

Ωi

∇ ·
[

µ
(

∇u + (∇u)T
)]

− 2

3
∇ (µ∆) dΩi = (4.77)

=
1

|Ωi|
Ni ·

∫

Ωi

µ

[

2∂
2u
∂x2 + ∂2u

∂y2 + ∂2v
∂x∂y

2∂
2v
∂y2 + ∂2v

∂x2 + ∂2u
∂x∂y

]

dΩi −
2

3

1

|Ωi|
Ni ·

∫

Ωi

µ∇∆dΩi,

where ∆ ≡ ∇ · u. The second integral is computed as before. For the first
one we use quadratic approximation (4.43) of the velocity in a cell with the
stencil shown in Fig. 4.7. Integration domain Ωi is composed of two cells,
Ω1 and Ω2. In each triangle we have a cell-based reconstruction polynomial,
and we approximate the partial derivatives in (4.77) by the coefficients of this
polynomial:

∂2Px
∂x2

= 2d1,
∂2Px
∂x∂y

= e1,

∂2Px
∂y2

= 2f1,
∂2Py
∂x2

= 2d2,
∂2Py
∂x∂y

= e2,
∂2Py
∂y2

= 2f2 (4.78)

(see 4.43). This leads to

Ni ·
∫

Ω1

µ

[

4d1 + e2 + 2f1
2d2 + e1 + 4f2

]

dΩ = µNi ·
[

4d1 + e2 + 2f1
2d2 + e1 + 4f2

]

|Ω1|, (4.79)

and the same expression is used to evaluate the integral over Ω2.
It does not prove to be advantageous to include a given boundary stress in

the reconstruction. Instead, we can use the finite volume approach only at the
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outflow boundary, and allow our stencils to be larger here by using the quadratic
reconstruction based in faces, or calculate the gradient at the control volume
faces from the quadratic reconstruction based in the control volume cells. The
first of these two approaches leads to a larger stencil at the outflow, but it seems
to be a bit more accurate. Actually we could apply the second approach also in
the interior of the domain, but this leads to an inaccurate scheme and has no
advantages.

We also tried to use cubic reconstruction in the vicinity of a boundary. This
does decrease the local truncation error a bit, but it does not improve the final
result.

We tried this scheme on Example 1 with Dirichlet boundary conditions and
the irregular grid. We used the HLS method with three groups: one for the
faces of the central triangle, the other for the faces of the surrounding three
triangles, and the third one for all other faces (cf. Fig. 4.7). When the quadratic
reconstruction is used, the reconstruction stencil is much larger than in the linear
case. Degenerate reconstruction stencils are not an exception as in the linear
case, but a rule, especially at the boundary. Without a large threshold, the
method does not converge always, and even if it does, the error is very large. It
has been noticed that the singular values of the first group in interior stencils
are smaller than the ones in the second group, and the ones in the third group
are the largest. On the other hand, there can be no parallel faces in a single
triangle, so we use 10−10 as a threshold for the first group. Experiments show
that a threshold of 0.6 in the second group and of 1.5 in the third group give
relatively good results, shown in Fig. 4.28 for the irregular grid, and in Fig.
4.29 for the regular grid.
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Figure 4.28: Example 1, quadratic reconstruction, irregular grid, thresholds
10−10, 0.6 and 1.5, Dirichlet.

We did not find any weights that would make the results obtained by the
weighted SVD comparable to these. It appears that the faces from the second
group should have more influence on the reconstruction than those from the
third group, which means that they should have higher weights if the weighted
method is used. But stencils can also degenerate in the second group, and these
bad singular values will still be larger than the ones originating from the third
group, where the weight is smaller, so they will be invisible for the threshold.
Therefore the HLS method is necessary.
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Figure 4.29: Example 1, quadratic reconstruction, regular grid, Dirichlet.

This method is more accurate on the irregular grids. On the 160 × 160
regular grid it did not converge at all. The reason might be that the regular
grid contains many parallel faces, so the rank of the reconstruction matrices
might be lost and the stencils must be enlarged too much, although we did not
find an example of this. It is possible that this could be corrected by choosing
thresholds in a different way, or by choosing a different division of faces into
groups.

If the grid is Cartesian, this scheme leads to an ill-conditioned linear system
which sometimes cannot be solved by iterative solvers. Even if it can be solved
or if we use a direct solver, the accuracy is poor. It has been observed that
the divergence of the obtained result is large, whereas the exact solution is
divergence-free. Still, the local truncation error is small.

div-curl formulation

The foregoing observation gave us the idea to treat the divergence part of the
viscous term in a different way. Some authors, see for example [14], use the
following relation, valid only in the incompressible flow case:

∇ · (∇u) = ∇(∇ · u) − curl (curlu). (4.80)

Also the following equality holds:

∇ · (∇u)T = ∇(∇ · u). (4.81)

By combining these two relations we obtain a new expression for ∇ · τ :

2µ

(

∇ ·
(

∇u + (∇u)T
)

− 2

3
∇ (∆)

)

= 2µ

(

4

3
∇ (∆) − curl (curlu)

)

. (4.82)

These relations also hold in the three-dimensional case. We shall discretize the
divergence by using formula (4.15). In equation (4.82) we do not substitute
∇ · u = 0, because this is found to make the discretization matrix less well-
conditioned. The rotational part is computed from the quadratic cell-based
divergence-free reconstruction polynomials. The divergence of the reconstruc-
tion polynomials is taken to be zero.
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The results are given in Figs. 4.30–4.32. We see that the method is still a
bit less accurate on Cartesian grids than on unstructured grids. However, the
accuracy improved considerably.
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Figure 4.30: Example 1, quadratic divergence-free reconstruction, Cartesian
grid.

It follows from (4.80) and (4.81) that

curl (curlu) = ∇ ·
(

(∇u)T −∇u
)

(4.83)

This makes it possible to apply the divergence theorem to (4.77) and to separate
the divergence part from the rotational part. By doing so we obtain

Ni ·
∫

Ωi

∇ ·
[

µ
(

∇u + (∇u)T
)]

− 2

3
∇ (µ∆) dΩi =

Ni ·
∮

∂Ωi

µ
(

∇u − (∇u)T
)

· ndΓ +
4

3
Ni ·

∮

∂Ωi

µ∆ndΓ (4.84)

We can further approximate these integrals along the control volume faces
and compute ∇u − (∇u)T from a reconstruction polynomial based in one of
the central cells. This gives almost the same result as if the finite volume
approach was not used. Note that if the divergence part is not separated from
the rotational part, such finite volume approach leads to a bad matrix.

At the outflow we cannot use such approach. Although in the incompressible
flow case ∇ ·

(

∇u + (∇u)T
)

= ∇ ·
(

∇u − (∇u)T
)

, this does not mean that
∇u + (∇u)T = ∇u − (∇u)T , so we cannot use the given stress at the outflow.
Instead we would need a special boundary condition. For this reason we do
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Figure 4.31: Example 1, quadratic divergence-free reconstruction, regular grid.
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Figure 4.32: Example 1, quadratic divergence-free reconstruction, irregular grid.
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not separate the divergence at the outflow. At the faces belonging to outflow
control volumes where the stress is not given, we compute ∇ ·

(

∇u + (∇u)T
)

,
add 4

3 of the divergence to the left hand side to improve the matrix properties,
and subtract two times the divergence from the right hand side.

The error is a couple of times larger on the Cartesian grids. However, the
method is still second order accurate. We also see that on the irregular grid the
oscillations of the error are larger for Neumann boundary conditions then in the
case of Dirichlet boundary conditions. Still, this drop of accuracy is local and
it occurs at the outflow, which is usually not so important.

Relation (4.82) allows us to make another, much less demanding scheme,
that is also second order accurate, based on the divergence-free linear recon-
struction. Unfortunately, relation (4.82) can be used only if the viscosity is
constant, although a similar relation could be derived assuming piecewise linear
viscosity variation. Furthermore, in the compressible flow case we cannot split
the divergence from the curl in the viscous term.

Conclusion on viscous term

We have seen that the quadratic reconstruction is connected with numerous
difficulties. It is not appropriate for a Cartesian grid, it requires a large stencil,
it is difficult to implement the Neumann conditions, it requires HLS to work,
and it gives usefull results only in the incompressible flow case. On the other
hand, the convergence stalls in the case of the linear non-divergence-free recon-
struction. The best results were obtained with the vertex-based divergence-free
linear polynomials. Therefore this is the method of choice. It was thoroughly
tested and the results are presented in Chapter 5.

4.11.2 Inertia term

The divergence theorem gives

1

|Ωi|

∫

Ωi

∇ · [un(mn+1 · Ni)]dΩ =
1

|Ωi|

∮

∂Ωi

(un · n)(mn+1 · Ni)dΓ ≈

≈ 1

|Ωi|
∑

e

une (m
n+1
e · Ni)le, (4.85)

where ue = me/ρe is the average normal velocity in face e. We shall omit the
superscripts for brevity.

Scheme [36, 37] uses the piecewise constant reconstruction formula (4.23)
to reconstruct me · Ni in the upwind cell, using the two faces opposite to face
e. This discretization is very robust, and the computed velocity is first order
accurate, as demonstrated in Sect. 5.2.1, 5.2.2, and 5.2.3, unless the result is
spoiled by the artificial viscosity or an improperly placed outflow boundary.

We shall use the linear vertex-based divergence-free polynomials to improve
the spatial accuracy of the discretization of the inertia term. The main reason for
this choice is that these polynomials exhibited superior performance for viscosity
comparing to all other options. It is desirable to use the same polynomials for
both inertia and viscous terms in order to save storage space.
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Term me·Ni is represented as a combination of the normal and the tangential
momentum in face e:

me·Ni = Ni·((Ne · me)Ne + (Te ·me)Te) = (Ni·Ne)me+(Ni·Te)m
t
e. (4.86)

We make the following approximation:

B
k

A

4

3

i1

2

Figure 4.33: Vertex-based reconstruction.

mt
e ≈ Te · Pup(re), (4.87)

where Pup is the reconstruction polynomial based in the upwind vertex, and re
is the position vector of the center of face e relative to the upwind vertex.

It is also possible to reconstruct the full vector me instead of mt
e, but the

scheme obtained is somewhat less accurate.
The choice of the upwind vertex depends on the direction of the flow, so

that an upwind-biased scheme is obtained. The upwind bias is introduced to
improve the condition of the matrix and to diminish numerical wiggles. One
possibility is to choose the upwind cell A or B depending on the direction of the
normal velocity in face k, to compute the divergence in this cell (it is needed
for the linear reconstruction because we are using divergence-free polynomials),
and to choose one of the vertices of this cell for the center of the polynomial.
For instance, we can choose the vertex such that the sum of the inflow fluxes
trough the two triangle faces that meet in that vertex is maximal (if the fluid
flows out, the inflow flux is negative).

However, better results were obtained when one of the vertices opposite to
face k is chosen (i.e. vertex 2 or vertex 4). This is the method of choice. If
vertex 2 is used, the divergence is calculated from triangle A, otherwise it is
calculated from triangle B. But this vertex can lie at an outflow or a free slip
boundary, and then we choose another vertex that is not at the outflow or at the
free slip boundary. It has to be one of the vertices of the upwind cell, otherwise
the scheme may break up.

Reconstruction stencil for the vertex 4 (see Fig. 4.33) does not belong to the
computational stencil of the viscous term shown in Fig. 4.12. This implies that
if we want to compute mk ·Ni implicitly, we have to enlarge the computational
stencil, or to choose some other vertex for reconstruction. We tried to choose
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between vertices 1 and 3 depending on the reconstructed tangential velocity in
face k, unless this face is at the outflow boundary, in which case we use vertex
2. Resulting scheme did not converge in time. We can also compute mk · Ni

explicitly, but this limits the time step that can be used. We also tried to
compute this term implicitly while using the normal velocity from the old time
level whenever some face does not belong to the computational stencil implied
by the viscosity. This also works well and gives the same steady solution, but
the time step is still limited as if the explicit scheme was used.

Therefore we choose to enlarge the computational stencil.
For accuracy tests of this reconstruction see Sect. 5.2.1, 5.2.2, and 5.2.3.

4.11.3 Pressure term

Several approximations of the pressure gradient were presented in [36]. Our
experience is that the path integral method with six cells gave the best results.
This method first appeared in [31] and will be presented here for completeness.
It is based on the identity

∫ b

a

∇p · dx = pb − pa, (4.88)

where a and b are two points. Therefore the following approximation makes
sense:

(∇p)ab · (xb − xa) ≈ pb − pa, (4.89)

where (∇p)ab is the pressure gradient in some point near the center of the line
connecting a and b, and xa and xb are the position vectors of points a and b,
respectively. We apply this formula to three pairs of cells (see Fig. 4.34):
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i

Figure 4.34: Path integral method with six cells.

(∇p)i · (x2 − x1) ≈ p2 − p1, (4.90)

(∇p)i · (x3 − x5) ≈ p3 − p5, (4.91)

(∇p)i · (x4 − x6) ≈ p4 − p6. (4.92)

Here p1, . . . , p6 are the pressures averaged over triangles 1, . . . , 6 which we use
as the primary pressure variables. Using these averages instead of the pointwise
pressure in circumcenters is what makes it possible to use non-Delaunay grids.
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Points 1, . . . , 6 are the centroids of the triangles. By adding (4.91) and (4.92)
we obtain

(∇p)i · (x3 − x5 + x4 − x6) ≈ p3 − p5 + p4 − p6. (4.93)

The pressure gradient (∇p)i is determined from (4.90) and (4.93).

We also tried to compute the pressure gradient by fitting a linear or a
quadratic polynomial to the pressure in the stencil shown in Fig. 4.34 by using
least squares method. Linear polynomial gave almost the same result as path
integral method with six cells, and when the quadratic polynomial was used,
the method was unstable in time.

4.11.4 Treatment of boundaries

In the subsonic flow case in each boundary face we have two boundary condi-
tions for momentum. We may prescribe the momentum vector (for example at
the inflow boundary or in the case of the no-slip condition), the normal and
tangential stress (at an outflow boundary), or the normal component of one of
these two and the tangential component of the other (as on free slip boundaries
or at an outflow boundary).

If the normal stress is prescribed, it is normally assumed that the deviatoric
stress tensor is zero, because the outflow should be placed far enough so that the
deviatoric stress is indeed zero, and the prescribed stress is used as a prescribed
pressure. However, in situations where this is not possible, we prescribe the
deviatoric stress and the pressure separately in order to preserve the accuracy.
This is mostly useful for testing purposes, because we would not normally know
the deviatoric stress at a non-trivial outflow boundary.

The deviatoric stress is only used to discretize the viscous term. Therefore
it is ignored in the case of the Euler equations.

In the supersonic flow case the momentum is prescribed at the boundaries
in the same way as in the subsonic flow case, except that we do not consider
compressible viscous flow, so we do not prescribe the deviatoric stress. The
difference with the subsonic flow case is that the pressure is given at inflow
boundaries, and not at outflow boundaries.

There is no need to integrate for faces where the normal momentum is given.
For boundary faces where the normal momentum is not given a control volume
consisting only of one triangle is used.

Inertia

If the tangential momentum mt
e is given in some of the faces of the control

volume, it is used and there is no need to reconstruct for that face. Otherwise
the first order scheme uses the one-sided reconstruction of momentum in the
boundary cell. In the case of the superlinear scheme we take the vertex belonging
to the same boundary triangle as face e which is opposite to this face for the
upwind vertex.

If the upwind vertex falls on a boundary where the full momentum was not
given, then some other vertex belonging to the upwind cell is chosen for the
upwind vertex, except if they all lie on such boundaries. This improves the
accuracy a bit.
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Viscosity

The term Nα,iταβ,eNβ,e = Ni · τe · Ne needed in (4.70) is represented as

Ni · τe ·Ne = (Ni · Ne)τnn,e + (Ni ·Te)τnt,e. (4.94)

Here
τnn,e = Ne · τ · Ne, τnt,e = Ne · τ · Te (4.95)

denote the normal and the tangential stress component, respectively.
If one of the stress components is given in face e, it is used and only the

other component is reconstructed. If τnn and τnt are given, there is no need to
reconstruct.

In the scheme that uses the vertex-based divergence-free reconstruction, the
situation where some stress component is given in vertex 1 but is not given in face
e (see Fig. 4.35) requires special care. The general rule is that one should never
reconstruct the stress which is given, otherwise the scheme becomes unstable.

t

n
i

t nee

in
e

1

Figure 4.35: Vertex at a boundary.

The deviatoric stress tensor τ is not fully determined by prescribing its
normal and tangential component, because it has three degrees of freedom (see
Sect. 2). However, we have

τ11 + τ22 = 2
3µ∆, τ12 = τ21 (4.96)

and also
τnn + τtt = 2

3µ∆, τnt = τtn, (4.97)

where τnn = n · τ · n, τnt = n · τ · t, τtn = t · τ · n, τtt = t · τ · t, and n and t are
the normal and the tangential unit vector at the boundary. Furthermore,

[

τnn τnt
τtn τtt

]

= RτR−1, R =

[

nx ny
−ny nx

]

, (4.98)

and so

τ = R−1

[

τnn τnt
τtn τtt

]

R = R−1

[

τnn τnt
τnt

2
3µ∆ − τnn

]

R. (4.99)

If τnn and τnt are given in vertex 1, we obtain the divergence from the divergence
theorem and use (4.99) to obtain the stress. Then we use it to compute Ni · τ1 ·
Ne. Hence there is no need for reconstruction at the outflow boundaries.

Of course, in the incompressible flow case one can take ∆ = 0. We compute
the divergence implicitly.

If one stress component is given in vertex 1, the other is reconstructed.
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Pressure

When the pressure is prescribed at a boundary, the derivative of the pressure
in direction Ni (see Fig. 4.36) is computed in the following way:

(∇p · N)i =
pi′ − p1

xi′ − x1
, (4.100)

where point i′ is the normal projection of point 1 to the boundary.

iN i’

1

Figure 4.36: Computing the pressure gradient at the outflow.

4.12 Pressure-correction equation in incompress-

ible flow

The discretization of equation (3.8) directly follows from the discretization of
the divergence presented in Sect. 4.3 and the discretization of the pressure
gradient presented in 4.11.3.

4.13 Mach-uniform pressure-correction equation

The Mach-uniform pressure-correction equation (3.17) is discretized in [36] in a
similar way as the continuity equation. It is integrated over the shaded control
volume shown in Fig. 4.37.

The momentum vector in the time derivative is reconstructed from the three
faces of the control volume using least squares approximation. The gradient
of the pressure correction is approximated by a least squares fit to the normal
pressure gradients in the faces of the control volume, which are computed by the
path integral method (see Sect. 4.11.3). If the normal momentum component
is prescribed in one of the control volume faces, then it follows from (3.7) that
in this face ∇δp = 0 because m∗ = mn+1.

The divergence theorem is applied to the convection and the second order
term (second and third row in the formula (3.17)). In [36], convected quantities
in the convection term are computed in an upwind manner: density, pressure and
the pressure-correction in face e are evaluated in cell 1 if the flow is outward,
or in cell 2 otherwise. The momentum vector is reconstructed from faces i
and j or from faces k and l, depending on the direction of the flow. Central
approximations of momentum, pressure and density in faces are used in the
second order term. For details see [36].

In order to obtain higher order accuracy, we modified this scheme by in-
troducing linear reconstruction. Momentum in the time derivative is computed
as the average of momenta reconstructed in the vertices of the control volume
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Figure 4.37: Control volume used for the scalar equations.

by using the divergence-free linear reconstruction polynomials based in three
vertices of the control volume. The divergence is reconstructed by applying the
divergence formula to the control volume. Momentum in the convective term in
face e (see Fig. 4.37) is obtained from the reconstruction polynomial based in
vertex A if the fluid flows into the control volume and the divergence is computed
from cell 1, otherwise vertex B and cell 2 are used. Pressure, pressure-correction
and density are reconstructed by using upwind-biased cell-based or vertex-based
linear reconstruction, which was presented in Sect. 4.5. The second order term
vanishes for the steady solution, and since our scheme is first order accurate in
time, there is no need to use linear reconstruction for this term.

4.14 Energy equation

When the fully compressible sequential update procedure is used, the energy
equation (3.11) needs to be discretized. The convection term is evaluated in the
same way as in the case of the density equation, using ρH instead of ρ. The
momentum vector in the kinetic energy term in the time derivative is computed
in the same way as in the case of the Mach-uniform pressure-correction equation.

4.15 Equation of state

The equation of state is not used in time stepping when the Mach-uniform
pressure-correction method is used. However, it is used in the form (3.12) in
the case of the fully compressible sequential update procedure. As in the case
of the energy equation and the Mach-uniform pressure-correction equation, the
momentum vector in a cell is computed in [36] by least squares from the three
faces of this cell, and we compute it as the average of momenta computed in the
vertices of this cell using the vertex-based divergence-free linear reconstruction.

4.16 Monotonicity considerations

In the vicinity of steep gradients or discontinuities, spurious oscillations may
occur. Not only are these oscillations non-physical, but if they become too
large, the density may get close to zero. The convecting velocity is computed
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by dividing the momentum by the density, and therefore it may become very
large, so the solution procedure breaks up.

These spurious wiggles are a well-known phenomenon, which was investi-
gated by Godunov in [12]. His order barrier theorem shows that linear non-
oscillatory schemes are at most first-order accurate. For this reason every
higher-order non-oscillatory scheme must be nonlinear.

Several concepts exist that ensure that a scheme is non-oscillatory. One
of them is monotonicity preservation, a requirement that new extrema cannot
appear in the solution. Another one is that the scheme is total variation dimin-

ishing (TVD), which means that the total variation of the solution cannot grow
in time. One which is easier to enforce is that a scheme is local extremum dimin-

ishing (LED), which means that local maxima cannot increase and local minima
cannot decrease. All these requirements indeed hold for the exact solution (for
scalar problems only).

Numerous authors have developed methods to enforce these requirements.
For a survey, see Sect. 9.4 of [38]. One possible way to ensure that a scheme is
LED is flux limiting. The approximation (4.20) is replaced by

ψe =

{

ψ1 + φ1∇ψ1,e · (re − r1) if une le ≥ 0;

ψ2 + φ2∇ψ2,e · (re − r2) if une le < 0,
(4.101)

where φ is so-called flux limiter, determined such that

min
j

(ψj , ψi) ≤ ψi + φi∇ψi,e · (re − ri) ≤ max
j

(ψj , ψi), ∀e, (4.102)

where the minimum and the maximum are taken over cell i and the surrounding
cells. By surrounding cells we mean the three cells that have a common edge
with cell i, or less than three, when a boundary is encountered. Quantities that
are evaluated at boundaries are not limited. This is a simplified variant of the
criterion that Barth uses in [2] and [4]. It is a necessary and, according to [23],
close to sufficient condition for a scheme to be LED. We compute the limiter of
Barth and Jespersen [2, 3] in the following way:

Θi,e = ∇ψi,e · (re − ri), (4.103)

φi,e =















min
(

1,
maxj(ψj ,ψi)−ψi

Θi,e

)

if Θi,e > 0

min
(

1,
minj (ψj ,ψi)−ψi

Θi,e

)

if Θi,e < 0

1 if Θi,e = 0

(4.104)

and a unique value of the limiter per cell is taken to be

φi = min
e

(φi,e). (4.105)

In smooth regions where oscillations usually do not appear, the value of φ is
close to one, while near discontinuities it is close to zero. In this way we switch
to the first order scheme when the second order scheme is oscillatory. If only
the density equation is solved, the first order scheme is the same as the one
presented in [2], and for this one it has been proven that it is non-oscillatory.
It is essential that ∇ψi,e in the limiter (4.103) is computed in the same way as
the gradient in the reconstruction (4.101). If we use the cell-based gradient in
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the limiter and the vertex-based gradient in the reconstruction, the oscillations
will not be successfully damped, as we have found.

One drawback of the limiter of Barth and Jespersen is that it prevents conver-
gence to a truly steady state. Venkatakrishnan suggests in [33] that the reason
for this is the non-differentiability of min and max functions, and proposes the
following modification to the limiter of Barth and Jespersen:

φi,e = Ψ(∆i,Θi,e) =
∆2
i + 2∆iΘi,e + ε2

∆2
i + ∆iΘi,e + 2Θ2

i,e + ε2
, (4.106)

∆i =







maxj(ψj , ψi) − ψi for Θi,e > 0,
minj(ψj , ψi) − ψi for Θi,e < 0,

1 for Θi,e = 0,
(4.107)

where
ε2 = (Kh)3 (4.108)

is a relaxation factor aimed to prevent limiting of smooth extrema, h is a local
mesh parameter, and K is a case-dependent constant. The original limiter of
Barth and Jespersen can also be modified to include such a relaxation factor.

However, it is noted in [23] that Venkatakrishnan’s limiter also may suffer
from stagnation in convergence to steady state, and our experience confirms this.
Therefore we use the so-called historic modification of the limiter proposed by
Delanaye [9]: after a certain number of iterations, the limiter is computed as a
minimum of the limiters in the previous and the current time step. This number
of iterations is again case dependent, and should be taken large enough. The
historic modification leads to the steady state in every case that we tried.

It should be noted that, while it is clear how to limit the convected density
in the mass equation, it is not straightforward to decide how to handle the
convective term of the energy equation (3.17). If we limit only δp and not
pn, the scheme does not work. The reason might be that it is actually the
new pressure that we are computing here, i.e. pn + δp. On the other hand,
our experiments have shown that limiting the convected kinetic energy term
1
2 (γ − 1)M2

rm
∗ · m∗/ρn+1 does not make any significant difference.

However, the concepts of monotonicity preservation, TVD and LED are not
easily extendible to staggered unstructured meshes. It is not clear what an
extremum in the discrete momentum field should be, because this field consists
of incomparable normal components. This is the reason why it is very hard
to design an oscillation detector for the momentum. Furthermore, even the
first order upwind scheme [36] is not completely oscillation-free. Very small
oscillations in the pressure and the density occur around discontinuities, though
they are usually not visible. In the example presented in Sect. 5.4.2 the Mach
number obtained by the first order scheme has an oscillation of 0.6% of the jump
in Mach.

Fortunately, oscillations typically appear in all variables simultaneously.
Therefore we can determine the oscillation indicator φ from some scalar quan-
tity. For this purpose we use the density. When strong shocks are present, it
may be advantageous to use the inverse of the density, in order to switch to the
first order reconstruction when the density becomes small, otherwise the scheme
may break down.

Another problem is that we cannot use a formula similar to (4.101) for the
momentum because we do not have the momentum vector in any point. Adding
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the gradient to a first order reconstruction (4.23) cannot result in a second order
reconstruction because there is no point where (4.23) is more than first order
accurate. If we remove the gradient part from the vertex-based divergence-free
momentum reconstruction, this does not damp the wiggles.

A higher order limited scheme for momentum is obtained as follows. We
shall denote the piecewise constant approximation of me · Ni used in scheme
[36] by (me · Ni)

1 and the piecewise linear approximation developed in Sect.
4.11.2 by (me ·Ni)

2. The approximation that we use here is a linear combination
of these two, i.e.

me ·Ni ≈ (1 − φ)(me · Ni)
1 + φ(me ·Ni)

2, (4.109)

Of course, we cannot expect that spurious wiggles will be totally eliminated
because the stencil that we use for the reconstruction of momentum is inevitably
different from the one that is used to compute the limiter, among other reasons.



Chapter 5

Numerical validation

5.1 Summary

The purpose of the numerical experiments described in this chapter is to show
improved accuracy compared to the first order upwind method described in
[36, 37].

In Sect. 5.2 we present results obtained for three inviscid incompressible
flow problems. Regardless of their simplicity, these examples elucidate some
difficulties that can arise in the presence of outflow boundaries and stagnation
points.

In Sect. 5.3 the Navier-Stokes equations for incompressible flow are solved
for some viscous incompressible flow problems. For the exact Kovasznay solution
the behavior of the error as the grid is refined is studied. The backward facing
step and circular cylinder flows are computed and comparison is made of some
properties of the obtained results with benchmark data.

In Sect. 5.4, the Euler equations are solved for some compressible flow
problems with our Mach-uniform scheme. The Ringleb flow is an irrotational
transonic flow with known exact solution. The accuracy of the superlinearly
convergent scheme with and without limiting is assessed. Flow in a channel
with a bump is computed at low and high Mach number. A transonic airfoil
flow for which the pressure distribution is fairly well-known is computed. To
determine carefully whether Rankine-Hugoniot conditions are satisfied by the
scheme, a shocktube problem is computed.

5.2 Incompressible inviscid flow

In this section the accuracy of the scheme is investigated for the Euler equa-
tions for the incompressible flow. The pressure-correction method for incom-
pressible flow that is used has been described in Sect. 3.3. For the inertia term,
upwind-biased vertex-based divergence-free linear reconstruction is used, which
was described in Sects. 4.6.1 and 4.11.2. The pressure term is discretized by
using the path integral method presented in Sect. 4.11.3. The order of accuracy
is determined by comparison with exact solutions and solutions of benchmark
problems. So the accuracy of the scheme is expected to be better than first
order.

61
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5.2.1 Converging flow

We consider the same flow as in Example 1 (cf. Fig. 4.10), but this time we solve
the incompressible flow Euler problem using the pressure-correction method for
incompressible flows described in Sect. 3.3. The exact solution is

u = sinx sin y, v = cosx cos y, p = 1 +
1

4
(cos 2x− cos 2y). (5.1)

The domain is the square [−0.5, 0.5] × [−1.3,−0.3]. The three types of grids
shown in Fig. 4.11 are used. The exact momentum is prescribed at the inflow
boundary and the exact pressure is prescribed at the outflow boundary (see Fig.
4.10). The initial solution is set to zero.

Results for the first order scheme are given in Figs. 5.1, 5.2 and 5.3. Symbols
τ and ε denote the local and the global truncation error, as defined in Example
1 in Sect. 4.11.1. For this example, the velocity converges, but convergence of
pressure stagnates on the irregular grid.
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Figure 5.1: Converging flow, Cartesian grids, first order scheme.

The results for the scheme with vertex-based divergence-free linear recon-
struction are given in Figs. 5.4, 5.5 and 5.6. Limiting is not applied in these
experiments. The estimated order of accuracy on the unstructured grid is 1.91,
on the regular grid it is 1.96, and on the Cartesian grid it is 1.79, so convergence
is superlinear. The error is not considerably larger at the outflow boundary than
inside the domain. But it is a bit larger in the vicinity of the left and the right
boundary, where the fluid flows in at very small angle. Wiggles were not de-
tected, presumably because the solution is smooth. Therefore limiting was not
necessary.
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Figure 5.2: Converging flow, regular grids, first order scheme.
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Figure 5.3: Converging flow, irregular grids, first order scheme.
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Figure 5.4: Converging flow, irregular grids, linear reconstruction.
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Figure 5.5: Converging flow, regular grids, linear reconstruction.
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Figure 5.6: Converging flow, Cartesian grids, linear reconstruction.
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5.2.2 Solid body rotation

An exact solution of the Euler equations for incompressible flow is solid body
rotation around point (x0, y0) (see Fig. 5.7):

u = y − y0, v = x0 − x, p = 1 +
1

2

[

(x− x0)
2 + (y − y0)

2
]

. (5.2)

We take (x0, y0) = (−1/4,−1/4), and we solve this problem in the [0, 1]× [0, 1]
square.

(x  ,y )0 0

y

x1

1

0

Figure 5.7: Solid body rotation.

The exact momentum is prescribed at the inflow (the upper and the left)
boundary and the exact pressure is prescribed at the outflow (the lower and the
right) boundary. The initial solution is set to zero.

The 2-norm of the local truncation error τm and maximum and 2-norms of
the global truncation error of the first order method are shown in Figs. 5.8, 5.9
and 5.10. In the case of the irregular grid the solution stops improving after
the 70 × 70 case, although the local truncation error keeps decreasing. On the
regular and irregular grids, the accuracy is less than for the preceding converging
flow example. We think this is due to the fact that the exact solution varies
more at the outflow boundaries and that the length of the outflow boundaries is
larger than in the preceding example. In many practical applications, outflow
boundaries are placed in regions of nearly uniform flow, so the influence of
outflow is negligible. We include this example to demonstrate that also here the
scheme with linear reconstruction brings significant improvement, as shown in
Figs. 5.11–5.13

The estimated order of accuracy measured in 2-norm on a irregular grid is
2.31, on regular grid it is 2.52, and on a structured grid it is 1.85. The error
is somewhat larger at the outflow boundary. The exact momentum is a linear
function, so our reconstruction is exact, although the face integrals of quadratic
convection are not. For this reason this might not be a good benchmark for the
accuracy of this method.

5.2.3 Stagnation point flow

The exact solution is

u = x, v = −y, p = 1.5 − 1

2

(

x2 + y2
)

. (5.3)



66 CHAPTER 5. NUMERICAL VALIDATION

10
−2

10
−1

10
−4

10
−3

10
−2

10
−1

||τ
m

||
2
         

          α=1.49

h
10

−2
10

−1
10

−3

10
−2

10
−1

||ε
u

||∞
          α=0.699

h
10

−2
10

−1
10

−3

10
−2

10
−1

||ε
u

||
2
     

          α=0.963

h

10
−2

10
−1

10
−3

10
−2

10
−1

||ε
p
||∞

          α=0.665

h
10

−2
10

−1
10

−3

10
−2

10
−1

||ε
p
||

2
     

          α=0.967

h

Figure 5.8: Solid body rotation, Cartesian grids, first order scheme.
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Figure 5.9: Solid body rotation, regular grids, first order scheme.
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Figure 5.10: Solid body rotation, irregular grids, first order scheme.
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Figure 5.11: Solid body rotation, linear reconstruction, irregular grids.
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Figure 5.12: Solid body rotation, linear reconstruction, regular grids.
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Figure 5.13: Solid body rotation, linear reconstruction, Cartesian grids.

The domain is the unit square. The solution is shown in Fig. 5.14.
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Figure 5.14: Stagnation point flow

This example was solved on the three types of grids shown in Fig. 4.11.
Momentum is prescribed at the inflow (upper) boundary, pressure is prescribed
at the outflow (right) boundary, and the normal momentum is set to zero at the
the left and the lower boundary. The exact solution is used as initial solution.
The errors of the solutions obtained with the first order scheme are shown in
Figs. 5.15, 5.16 and 5.17.

Even on the Cartesian grid the order of convergence is much less than one,
and the situation is not better on the unstructured grids. Fig. 5.18 shows the
error of the obtained solution. It was computed by reconstructing the error of
the velocity vector in the vertices from the errors of the normal components in
the faces. First the tangential components of the error are computed in faces
by using the central reconstruction formula. Then the error in the vertices is
computed by using the following formula:

εvertex =

∑

j ωjεm,j
∑

j ωj
, (5.4)

where summations run over the faces connected to the vertex. Weight ωj is the
inverse of the distance between the vertex and the midpoint of face j, and εm,j

is the error vector in face j that consists of the error εm,j and the reconstructed
tangential component of the error.

This error is seen to have the structure of a vortex.
We think that the cause of this error is the artificial viscosity. It is known

that for certain problems (for example the flow around a circular cylinder, see
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Figure 5.15: Stagnation point flow, irregular grids, first order scheme.
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Figure 5.16: Stagnation point flow, regular grids, first order scheme.
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Figure 5.17: Stagnation point flow, Cartesian grids, first order scheme.

Example 5.3.3) the solution when µ → 0 does not converge to the solution of
the inviscid flow problem. This problem is similar to the situation behind the
cylinder.

The results obtained with the vertex-based divergence-free linear reconstruc-
tion are given in Figs. 5.19 and 5.20. As in the first order case, the error takes a
form of a vortex (see Fig. 5.18). The accuracy is significantly improved. If the
grid is Cartesian the error is much higher, for example in the 100×100 case the
maximal error in velocity is 0.015, and the maximal error in pressure is 0.0019.
We think that the reason is that parallel faces exist in reconstruction stencils,
which may reduce the rank of the reconstruction matrix.

5.3 Incompressible viscous flow

We now turn to the numerical solution of the Navier-Stokes equations for in-
compressible flow. As in the case of the incompressible inviscid flow (see Sect.
5.2), the pressure-correction method for incompressible flow was used for time-
stepping, the upwind-biased vertex-based divergence-free linear reconstruction
was used in the inertia term, and the pressure term was approximated using the
path integral method. The viscous term was approximated using the vertex-
based divergence-free linear interpolation, presented in Sections 4.6.1 and 4.11.1.
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Figure 5.18: The error takes the form of a vortex.
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Figure 5.19: Stagnation point flow, irregular grids, linear reconstruction.

5.3.1 Kovasznay flow

This is a laminar flow behind a two-dimensional grid presented in [20] (see Fig.
5.21). The exact solution is

v(x, y) =
λ

2π
eλx sin(2πy), u(x, y) = 1 − eλx cos(2πy),

p(x, y) = c− 1
2

e2λx, λ =
Re

2
−
(

Re2

4
+ 4π2

)

1
2

, (5.5)

where Re = 1/µ. We solved this problem for Re = 10 using three types of
grids show in Fig. 5.22 on the domain [0.1, 5]× [−0.5, 0.5] shaded in Fig. 5.21.
The exact stress and the pressure were prescribed on the outflow boundary,
and the exact velocity was prescribed on the other parts of the boundary. In
order to make the tests more severe, the finer grids were not created from
the coarser grids by subdividing their triangles, but were created from scratch.
Unnecessarily irregular and stretched grids were used to test the scheme severely.

The 1-norm, 2-norm and ∞-norm of τm, εm and εp are shown in Figs. 5.23-
5.25 as functions of a mesh parameter h for the schemes with piecewise constant
and piecewise linear reconstruction.
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Figure 5.20: Stagnation point flow, regular grids, linear reconstruction.

y

x

Figure 5.21: Kovasznay flow - streamlines and the shaded computational do-
main.

 
 

 

Figure 5.22: Three types of grid used for the Kovasznay flow: the stretched
Courant grid, the unstructured grid, and the stretched unstructured grid.
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Figure 5.23: Accuracy of the computed Kovasznay flow - stretched Courant
grid. “�”: first order scheme; “×”: scheme with linear reconstruction.



74 CHAPTER 5. NUMERICAL VALIDATION

10
−2

10
−1

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

||τ
m

||∞           
          α=2.06

10
−2

10
−1

10
−5

10
−4

10
−3

10
−2

10
−1

||ε
m

||∞       
          α=1.87

10
−2

10
−1

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

||ε
p
||∞       

          α=0.965

10
−2

10
−1

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

||τ
m

||
2
                

          α=2.51

10
−2

10
−1

10
−5

10
−4

10
−3

10
−2

10
−1

||ε
m

||
2
            

          α=1.93

10
−2

10
−1

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

||ε
p
||

2
            

          α=1.57

10
−2

10
−1

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

||τ
m

||
1
                

          α=2.8

10
−2

10
−1

10
−5

10
−4

10
−3

10
−2

10
−1

||ε
m

||
1
            

          α=1.9

10
−2

10
−1

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

||ε
p
||

1
            

          α=1.72

Figure 5.24: Accuracy of the computed Kovasznay flow - unstructured grid. “�”:
first order scheme; “×”: scheme with linear reconstruction.
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Figure 5.25: Accuracy of the computed Kovasznay flow - stretched unstructured
grid. “�”: first order scheme; “×”: scheme with linear reconstruction.
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The accuracy of the scheme is seen to be less than second order, but con-
vergence is clearly superlinear. As usual for schemes for the incompressible
Navier-Stokes equations, pressure is approximated with less accuracy than mo-
mentum.

We also tested the accuracy of the vertex-based divergence-free reconstruc-
tion. The momentum is reconstructed in each vertex using the divergence free
linear reconstruction. The vector of differences between these reconstructed
momenta and the exact momenta in vertices is denoted by δm. The vector of
differences between the gradients of the reconstruction polynomials and the ex-
act momentum gradients in vertices is denoted by δ∇m. This is shown in Figs.
5.26–5.28.
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Figure 5.26: Accuracy of the vertex-based divergence-free reconstruction of the
Kovasznay flow - stretched Courant grid.

We see in these figures that the reconstruction is a bit less accurate on the
Courant grid than on the other two types of grid. This is probably because of
the rank reduction due to parallel faces in the reconstruction stencils (see Sect.
4.6). This loss of accuracy is reflected in the accuracy of the computed flow, see
Figs. 5.23-5.25.

5.3.2 Backward facing step

The flow over a backward facing step has been computed by many authors. The
length of the primary recirculation zone depends sensitively on the Reynolds
number. Underprediction of this length is a consequence of artificial numerical
dissipation. Furthermore, somewhere between Re = 400 and Re = 800 a sec-
ondary separation zone appears at the upper wall. Schemes that have too much
artificial numerical dissipation do not resolve this secondary separation zone.
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Figure 5.27: Accuracy of the vertex-based divergence-free reconstruction of the
Kovasznay flow - unstructured grid.
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Figure 5.28: Accuracy of the vertex-based divergence-free reconstruction of the
Kovasznay flow - stretched unstructured grid.
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The domain shown in Fig. 5.29 is 18.87 units long (not including the inlet)
and 1 unit wide. The inlet is 0.5 units wide and 0.5 units long. The initial
solution is zero. The inflow velocity profile is parabolic and given by 24t(1 −
y)(y − 0.5) when time t < 1 and 24(1− y)(y − 0.5) for t ≥ 1, so that the inflow
is switched on gradually.

 

7
15

first profile second profile

Figure 5.29: Backward facing step, Re = 800.

We found the steady solution to this problem using the vertex-based divergence-
free linear reconstruction and various resolutions of two types of grid (called
regular and distorted) shown in Fig. 5.30 for two different Reynolds numbers:
400 and 800. We define the Reynolds number as ρLU/µ, where L is the width
of the channel, U is the average velocity at the inflow boundary for t ≥ 1, µ is
the viscosity. Fig. 5.29 shows the steady solution for Re = 800 obtained on a
grid consisting of 3320 triangles.

 

 

Figure 5.30: Grids used for the backward facing step problem. Upper: “regular”,
lower: “distorted”.

Velocity profiles at distances 7 and 15 from the step obtained for Re = 800
with the finest regular grid that we used are given in Figs. 5.31 and 5.32, in
comparison with the benchmark data published in [11]. The accuracy in vertical
velocity in Fig. 5.31 is not as bad as it seems, because this quantity is close to
zero in magnitude.
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Figure 5.31: Velocity profiles at distance 7 from the step, Re = 800.
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Figure 5.32: Velocity profiles at distance 15 from the step, Re = 800.

We calculated the position of the primary reattachment point as a function
of a mesh parameter, and compared it to the experimental data published in
[1] and to the numerical prediction of [11] and [19]. Results are given in Fig.
5.33. For Reynolds number 400 our scheme gives a very good estimate of this
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Figure 5.33: Position of the primary reattachment point for regular (left) and
distorted grids (right).

parameter, which is known to be very sensitive to numerical dissipation.

Reynolds number 800 is very high for an upwind-biased scheme, because the
artificial viscosity becomes more influential. There is a noticeable discrepancy
between the experimental results [1] and the numerical prediction [19]. For a
coarse grid the reattachment point computed by our method is way off. However,
Fig. 5.33 shows that for fine grids our method gives a more accurate prediction
than [19]. Fig. 5.29 suggests and Fig. 5.31 shows that our scheme resolves the
secondary recirculation zone.

The observed quality of the prediction of the length of the primary recircula-
tion zone and the resolution of the secondary recirculation zone are characteristic
of a higher order scheme.
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5.3.3 Flow around a circular cylinder

Flow past a circular cylinder is a classical example of an unsteady flow. For Re >
47 vortex shedding occurs, and a so-called Karman street of vortices is formed
in the wake of the cylinder. Schemes with too much artificial dissipation show
onset of unsteadiness at higher Re, or not at all. For Reynolds numbers higher
than about 180 the flow becomes turbulent (see [39]). The vortex shedding
process is periodic in time. The dimensionless frequency is called the Strouhal
number, defined as S = D/(uT ), with D the cylinder diameter, u the upstream
velocity and T the period. Williamson and Brown in [39] give the following
relation:

S = 0.2665− 1.018√
Re

, Re =
ρuD

µ
, (5.6)

which is in good agreement with the experimental data.
We solved this problem using the vertex-based divergence-free linear recon-

struction for various Reynolds numbers on six grids, one of which is shown in
Fig. 5.34, the other has twice as many vertices along each boundary, the third
one has twice as many vertices at the cylinder as the second one, and the other
three were made by distorting the first three grids (see Fig. 5.35). Uniform
velocity u = 1, v = 0 was prescribed along the left, the upper and the lower
boundary, pressure was prescribed at the outflow (right) boundary, and the ve-
locity was set to zero along the cylinder. An instantaneous pressure distribution
for Re = 100 is shown in Fig. 5.36. Obtained Strouhal numbers in comparison

  

Figure 5.34: Regular mesh used for the flow around a cylinder; full domain (left)
and a detail (right).

  

Figure 5.35: Distorted mesh used for the flow around a cylinder; full domain
(left) and a detail (right).

with formula (5.6) are given in Fig. 5.37. Agreement is quite satisfactory on
the medium and fine grids, both regular and distorted.
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Figure 5.36: Isobars in flow around a cylinder, Re = 100, coarse regular grid.
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Figure 5.37: Strouhal numbers obtained on the regular (left) and the distorted
grids (right).

5.4 Compressible flow

In this section, numerical tests of the Mach-uniform method described in Sect.
3.5 are presented. The momentum equation was discretized in the same way as
in the incompressible flow case, see Sect. 5.3. The discretization of the density
and the pressure-based energy equation, as well as the linear reconstruction of
scalar data used here, was presented in Sects. 4.4, 4.5 and 4.13. We also used
flux limiting, which was described in Sect. 4.16. The first test concerns an exact
solution for irrotational shock-free transonic flow. The second test concerns flow
in a channel with a bump at various Mach numbers. The third test is the flow
around the NACA 0012 airfoil. The fourth test is Sod’s shocktube problem.

5.4.1 Ringleb flow

For this transonic flow in a curved duct the analytical solution of the potential
flow equations is known. It was first published in [29], and a description may be
found in [8]. This is a valuable test case to investigate the accuracy of numerical
schemes. The flow is directed upwards in Fig. 5.38. There is a small supersonic
flow region in the middle of the right wall, but there is no shock. The maximum
Mach number is 1.09. The problem was solved on regular and distorted grids
(see Figs. 5.38 and 5.40) using the first order and the second order method. The
exact Mach isolines are circular arcs. The exact velocity and the density were
prescribed along the inlet (lower boundary), normal velocity was set to zero
along the left and the right boundary, and the pressure was prescribed along
the outflow (upper) boundary. The grids with 10-100 cells along the inlet were
generated independently from each other, preserving the quality of the grids
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shown in Figs. 5.38 and 5.40. Fig. 5.39 shows the error of the solution obtained
on the regular grid. The independent parameter along the horizontal axis is the
mesh parameter, one over the number of cells along the inlet boundary.
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Figure 5.38: Ringleb flow, regular mesh (left) and Mach isolines obtained with
the first order (middle) and the second order unlimited (right) method.

Fig. 5.39 gives local (τ) and global (ε) truncation error norms of the first
order scheme and of three variants of the scheme with linear reconstruction,
described in Sect. 4.5. The best results were obtained with the vertex-based
scalar reconstruction in the density equation, and the cell-based reconstruction
in the pressure equation. If the vertex-based reconstruction is used in both
equations, the results are less accurate, probably because more artificial dis-
sipation is introduced. If the cell-based reconstruction is used in the density
equation, the scheme does not converge in time when strong shocks are present
(see Sect. 5.4.2), therefore we do not consider this variant. We see that the
limited scheme is a bit less accurate than the unlimited one, i.e. the limiter is
not completely inactive. If a non-zero relaxation factor is used (see (4.16)), the
difference in accuracy is smaller.

On distorted grids (see Figs. 5.40 and 5.41) the scheme still works, but it
is less accurate than on the regular ones. However, the linear reconstruction
improves the accuracy considerably.

5.4.2 Channel with a bump

The flow in a channel with a circular arc bump is used to evaluate the presented
method for computations of steady state solutions. We present the incompress-
ible and the supersonic flow case. In the incompressible flow case the height of
the bump is 10% of the channel height, while in the supersonic flow case it is
4%. This benchmark was proposed in [10].
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Figure 5.39: Ringleb flow, regular grids; norms of local and global truncation
errors. “+”: first order scheme; “�”: vertex-based reconstruction of all convected
variables, no limiter; “-”: vertex-based reconstruction of the density, cell-based
reconstruction of the pressure, no limiter; “.”: vertex-based reconstruction of the
density, cell-based reconstruction of the pressure, unrelaxed Venkatakrishnan
limiter. The estimate of the rate of convergence α refers to the results marked
“-”.
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Figure 5.40: Ringleb flow, distorted mesh (left) and Mach isolines obtained with
the first order (middle) and the second order unlimited (right) method.

Incompressible flow case

For M = 0 we want to demonstrate that the solution obtained with the Mach-
uniform method matches the solution obtained with the incompressible method.
The mesh is shown in Fig. 5.42. The isobars and the pressure distribution along
the lower wall obtained with the method for incompressible flow and with the
Mach-uniform method are shown in Fig. 5.43. There is no visible difference
between these two solutions. Actual differences are of order 10−5, which we
consider reasonable since we are comparing results of different codes.

Supersonic flow case

The mesh used in this case is shown in Fig. 5.44. The inflow Mach number is
1.65. The Mach number obtained by the first order scheme has an oscillation
before the first shock on the lower wall of about 0.6% of the jump in Mach.

If the vertex-based reconstruction is used for the density equation and the
cell-based reconstruction is used for the pressure equation, and limiting is ap-
plied, the oscillations are not much larger than in the first order case, and the
shock resolution is better. This especially holds for the reflected shock, which
is completely blurred in the case of the first order scheme. If the cell based
reconstruction is used for the density, the scheme does not converge in time.
The results obtained are in good agreement with [10]. The obtained solution is
less accurate at the outflow boundary than in the interior (see the left side of
Fig.5.46), but this is also visible in [10].
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Figure 5.41: Ringleb flow, distorted grids. The errors of solutions. “�”: first
order scheme; “-”: vertex-based reconstruction of the density, cell-based recon-
struction of the pressure, no limiter; “.”: vertex-based reconstruction of the
density, cell-based reconstruction of the pressure, unrelaxed Venkatakrishnan
limiter. The estimate of the rate of convergence α refers to the results marked
“-”.
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Figure 5.42: Channel with a bump, mesh used in the incompressible flow case.
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Figure 5.43: Channel with a bump, incompressible flow case. Pressure isolines
obtained with the incompressible flow (left upper) and the Mach-uniform (left
lower) method, and the pressure along the lower wall.

 

Figure 5.44: Channel with a bump, mesh used in the supersonic flow case.
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Figure 5.45: Channel with a bump, supersonic flow case. Mach number isolines.
First order scheme (top) and the scheme with linear reconstruction (bottom).
Vertex-based reconstruction was applied in the density and in the momentum
equation, and the cell based reconstruction was used in the energy equation.
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Figure 5.46: Channel with a bump, supersonic flow case. Mach number distri-
bution along the lower (left) and the upper wall (right).
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5.4.3 NACA 0012 airfoil

We have computed the flow around the NACA 0012 airfoil for M = 0.8 and
angle of attack α = 1.25◦. This transonic benchmark problem was presented
in [40]. Mach isolines obtained with the first order scheme and the superlinear
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Figure 5.47: NACA 0012 airfoil, the Mach isolines obtained with the first order
scheme (left) and with the superlinear scheme (right).

scheme on the grid shown in Fig. 5.48 is shown in Fig. 5.47. Vertex-based
scalar reconstruction was used in the density equation, and cell-based scalar
reconstruction was used in the Mach-uniform pressure-correction equation. As
expected, the shock on the upper surface of the airfoil is sharper in the case of
the superlinear scheme.

The Mach distribution along the airfoil is shown in Fig. 5.48 on the right, in
comparison with the AGARD benchmark results published in [40]. Parameter
n is the number of grid points along the upper surface of the airfoil. The weak
shock on the lower surface of the airfoil is particularly hard to capture. The first
order scheme does not see it. But the second order scheme gives an indication
of this shock even for a twice less fine grid than the one shown in Fig. 5.48.

5.4.4 Sod’s shocktube problem

In order to verify that our numerical method yields the correct entropy solution
and that Rankine-Hugoniot conditions are satisfied, we solved Sod’s shocktube
problem. The domain is a channel of length 1 and width 0.16. The unstructured
mesh that we used is shown in Fig. 5.49. The initial velocity is zero. In the
left half of the domain the initial pressure is 1 and the initial density is also 1.
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Figure 5.48: NACA 0012 airfoil, the finest mesh used, and the Mach distribution
along the airfoil.

 

Figure 5.49: The mesh used with Sod’s shocktube problem.
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In the right half the initial pressure is 0.1 and the initial density is 0.125. The
results obtained along the central horizontal line at time 0.15 are shown in Fig.
5.50 in comparison with the exact solution. We see that the the discontinuities
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Figure 5.50: Sod’s shocktube problem. Comparison of the numerical results
with the exact solution at t = 0.15.

move at the correct speed and that the entropy solution was obtained. For a
detailed explanation of this problem and the exact solution see [38].



Chapter 6

Conclusion

6.1 Possible extensions

6.1.1 Momentum reconstruction on three-dimensional

tetrahedral grids

In three dimensions we approximate the momentum field m in the vicinity of a
mesh vertex by a linear polynomial equivalent to (4.25):

m(r) ≈ P(r) = a + bx+ cy + dz, a.b, c,d ∈ R
3. (6.1)

This polynomial can be determined from the linear system

Ne ·P(re) = me, for each face e in the reconstruction stencil. (6.2)

The term faces refers to the two-dimensional surfaces of the cells (triangles),
and edges are line segments connecting the vertices. Vector Ne is one of the two
possible unit normal vectors in face e, and normal momentum me is actually
the average of the momentum component Ne ·m over triangle e.

In the same manner as in the one-dimensional case, we integrate the diver-
gence of this polynomial over some tetrahedron Θ and apply the divergence
theorem:

b1 + c2 + d3 = ∇ ·P =
1

|Θ|

∫

∇ · PdΘ =
1

|Θ|
∑

e

me|Ωe|, (6.3)

where Ωe are the faces of the tetrahedron. If the momentum is prescribed in
all faces of one tetrahedron, the divergence of the linear polynomial is deter-
mined. Therefore, if the faces of more than one tetrahedron are included in the
reconstruction stencil, the rank of the system (6.2) may be reduced.

To prevent the rank reduction due to the divergence theorem we base the
polynomial in a vertex and try to include only the faces that meet in this vertex
in the reconstruction stencil. We reconstruct only the divergence-free part P of
the linear polynomial P:

P 1 = P1, P 2 = P2, P 3 = P3 + (d− b1 − c2 − d3)z. (6.4)

There are only 11 free parameters left.
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In the interior points of typical tetrahedral meshes the number of faces meet-
ing in a vertex is usually around 30. This is clearly more than enough to deter-
mine the divergence free polynomial. Of course, as in the two-dimensional case,
additional rank reduction may occur.

6.1.2 Non-triangular and non-tetrahedral grids

It is highly desirable that a divergence-free polynomial can be determined from
the faces meeting in one vertex only. Since only four faces meet in each internal
vertex of a quadrilateral grid, they do not determine a divergence-free linear
polynomial. For the application of our scheme it is therefore advisable to convert
a quadrilateral or a mixed-element grid into a triangular grid by subdividing
each non-triangular polygon into triangles.

There are 12 faces that meet in each internal vertex of a three-dimensional
rectangular grid. They all belong to three mutually orthogonal planes, four faces
in each plane. Restriction of a normal component of a linear polynomial to one
of these planes is a scalar linear function of a two-dimensional argument, and
therefore it has three free parameters. Since there are four conditions imposed
to this linear function, one for each face, equations for these four faces must be
linearly dependent. This means that the rank of the related linear system will
be at most 9, and a divergence-free linear polynomial cannot be determined.
As in the two-dimensional case, to avoid stencil enlargement it is best to divide
non-tetrahedral polyhedra into tetrahedra.

6.2 Closing remarks

We have elucidated difficulties that arise from polynomial reconstruction of
staggered representations of vector fields, and proposed a divergence-free linear
reconstruction method that is robust and accurate.

Staggered schemes on unstructured grids for incompressible, compressible,
and Mach-uniform flows with superlinear convergence have been presented.
These schemes employ the proposed reconstruction technique. Our reconstruc-
tion method can also be used to improve the order of accuracy of other staggered
schemes, which, as noted in [27], is at present generally first order.
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chen Gasströmung. ZAAM, 20:185–198, 1940.

[30] M. Shashkov, B. Swartz, and B. Wendroff. Local reconstruction of a vector
field from its normal components on the faces of grid cells. J. Comp. Phys.,
139:406–409, 1998.

[31] P. van Beek, R.R.P. van Nooyen, and P. Wesseling. Accurate discretization
on non-uniform curvilinear staggered grids. J. Comp. Phys., 117:364–367,
1995.

[32] D.R. van der Heul, C. Vuik, and P. Wesseling. A conservative pressure
correction method for compressible flow at all speeds. Int. J. Num. Meth.

in Fluids, 40:521–529, 2002.

[33] V. Venkatakrishnan. Perspective on unstructured grid flow solvers. AIAA

Journal, 34:533–547, 1996.
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• D. Vidović and M. Todorović, Efficient Portfolio: Analytic Solution and
Economical Meaning. Proceedings of the International Symposium On
Operational Research, Belgrade, Serbia, 1999.

99



Frontispiece: An unstructured grid. Photograph by D. Vidović of Duisburg
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