
 
 

Delft University of Technology

Document Version
Final published version

Citation (APA)
Krebs, S. A., & Gavrila, D. (2025). Camera-and LiDAR-based Person Re-Identification. In Proceedings od the 36th IEEE
Intelligent Vehicles Symposium, IV 2025 (pp. 1408-1414). (IEEE Intelligent Vehicles Symposium, Proceedings). IEEE.
https://doi.org/10.1109/IV64158.2025.11097607

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
In case the licence states “Dutch Copyright Act (Article 25fa)”, this publication was made available Green Open
Access via the TU Delft Institutional Repository pursuant to Dutch Copyright Act (Article 25fa, the Taverne
amendment). This provision does not affect copyright ownership.
Unless copyright is transferred by contract or statute, it remains with the copyright holder.
Sharing and reuse
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without
the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as
Creative Commons.
Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

https://doi.org/10.1109/IV64158.2025.11097607


 

 

 

 

 

 

 

 

 

Green Open Access added to TU Delft Institutional Repository 
as part of the Taverne amendment. 

 

 

 
 

More information about this copyright law amendment 
can be found at https://www.openaccess.nl. 

 
 

Otherwise as indicated in the copyright section: 
the publisher is the copyright holder of this work and the 

author uses the Dutch legislation to make this work public. 

https://repository.tudelft.nl/
https://www.openaccess.nl/en


Camera- and LiDAR-based Person Re-identification

Sebastian Krebs1,2 and Dariu M. Gavrila1

Abstract— In this paper, we introduce a novel method for
creating appearance embeddings to identify individual persons
using an object re-identification (ReID) framework. We present
CLFormer (Camera LiDAR Transformer), a transformer-based
architecture that incorporates multi-modal data from both
camera and LiDAR sensors. We introduce the 3D Cuboid-
Inclusive Point Embedding (3D-CIPE), which leverages rich
data from LiDAR point clouds and 3D cuboids to add a
learnable embedding into the transformer structure. Addition-
ally, through ablation studies, we explore and analyze various
strategies for the early and late fusion of multi-modal input
data.

To evaluate our proposed CLFormer, we reinterpret the
nuScenes dataset [1] for ReID purposes and use it for our
experiments. Our method demonstrates a significant improve-
ment in performance, outperforming the image-only baseline
with an increase of 2.3 in mean Average Precision (mAP).

I. INTRODUCTION

In the intelligent vehicles domain the knowledge of the

vehicles surroundings and other traffic participants is a

key building block to allow safe and reliable applications,

like driver assistance systems or autonomous driving. These

tasks are generally addressed as part of the environment

perception, using the input of single or multiple sensors such

as cameras, LiDARs, and radars. In this paper, we focus

on vulnerable road users (VRUs), such as pedestrians and

riders, who are of particular interest due to their vulnerability

and dynamic behavior. A typical perception pipeline includes

the detection of objects of interest in the raw sensor data,

followed by subsequent tracking. Tracking methods are em-

ployed to mitigate errors in the detection process and allow

the integration of information over time. Tracked objects

enable subsequent processing steps, such as intention or mo-

tion prediction [2]. Numerous tracking methods exist, among

which the tracking-by-detection paradigm stands out as one

of the best performing and commonly adopted techniques

[3]. As the name suggests, detections are associated over time

with the set of existing tracks. For association, a similarity

measure between the detection and track is required. For the

tracking of persons using a learned appearance embedding

as part of the similarity measure has shown to be a good

performing choice [4], [5], [6], [7].

Person re-identification (ReID) focuses on generating such

appearance embeddings to uniquely identify individuals,

primarily in surveillance settings with multiple overlapping

static cameras. However, advances in this field can be directly

applied to tracking methods.
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Fig. 1: Schematic depiction of our proposed novel multi-

modal person ReID method. We use LiDAR point clouds,

camera images, and 3D cuboids. Aligned image and LiDAR

crops are used as input to generate an appearance embedding

for each person. LiDAR points located within the annotated

3D cuboid are used to generate the 3D Cuboid-Inclusive

Point Embedding (3D-CIPE) which is added as embedding

to the transformer.

The combination of LiDAR and camera information has

recently shown great benefits for detection methods [8].

However, extending person ReID approaches to multi-modal

information is a little explored field. LiDAR sensors are

available in most intelligent vehicle settings [1], yet there

are only a few works that use this information exclusively

[9], [10] and do not combine it with image information.

This paper presents a novel person ReID method, which

combines image and LiDAR information in an intelligent

vehicles setting, as shown in Figure 1. We introduce and

investigate different fusion strategies for combining the two

modalities to enhance our transformer-based person ReID

method. While LiDAR data may not provide detailed ap-

pearance information, such as clothing or hair color, it can

effectively guide visual attention. Additionally, the patch-

based nature of the transformer architecture facilitates an

implicit part-based approach, which is beneficial for han-

dling partial occlusions. To better utilize the multi-modal

information available to our method, we make use of ad-

ditional auxiliary tasks. Lastly, we present a novel way to

integrate object-centered information based on the LiDAR

point clouds and available 3D cuboids into the transformer.

We extract whether an image region contains a LiDAR point

from within the 3D cuboid to create an abstract object mask

and embed this information into the transformer. We coin

the resulting method CLFormer, which combines the best-
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performing fusion strategy - channel concatenation - with

our 3D Cuboid-Inclusive Point Embedding (3D-CIPE). To

benchmark CLFormer, we repurpose the nuScenes dataset

[1] for person ReID to validate our approach and compare

it to baseline and other ReID methods. The contributions of

our work are summarized as follows:

• To the best of our knowledge, we are the first to present

a multi-modal transformer-based person ReID method

that uses LiDAR in addition to camera information to

learn more robust appearance embeddings.

• We introduce the 3D Cuboid-Inclusive Point Embed-

ding (3D-CIPE) module, which embeds object-centered

information from LiDAR point clouds and 3D cuboids

into the transformer architecture.

• We propose and investigate various fusion strategies

to effectively combine LiDAR and image sensor data

within our ReID method.

II. RELATED WORK

This section reviews recent advancements in person ReID,

with a focus on deep learning applications and the integration

of multi-modal data. For foundational methods, readers may

refer to the comprehensive survey by Zheng et al. [11].

Current strategies predominantly leverage deep learning to

extract unique person features through positive and negative

sample training, often integrating triplet loss [12] with cross-

entropy loss [13] for metric learning.

CNN-based methods have been extensively explored,

including notable approaches such as BoT [14], SBS [15],

AGW [16], and MGN [17]. BoT [14] set a new baseline

by incorporating a series of enhancements into the training

strategy, which is further improved by SBS [15]. AGW [16]

extends BoT by integrating attention mechanisms into the

CNN architecture, while MGN [17] extends the CNN to

a multi-branch network structure to simultaneously learn

global and local features. Recent research has increasingly

focused on addressing occlusions, a major challenge in

the field, which introduce non-object appearances into the

learning process. To mitigate this, data augmentation-based

approaches [18] train networks to recognize and disregard

occluded regions by artificially occluding parts of the image

during training. Other approaches segment the person patch

into several parts and learn local part-based representations

[19], [20], [21], [22]. These parts can be created using

semantic networks [22], information from a pose estimation

network [20], [21], or predefined static areas such as a fixed

set of rows [19]. Part-based approaches generate a feature

embedding for each part individually, while also extracting

visibility [20], [21], [22] or quality [19] scores. Other tech-

niques address occlusion by synthesizing complete images

from sequential data [23], using human shape as additional

supervision [24], or by excluding occluded samples during

training [25].

Transformer-based methods have recently gained trac-

tion in person ReID, with models such as TransReID [26],

AAFormer [27], Performer [28], DC-Former [29], LoGoViT

[30] adapting the Vision Transformer (ViT) architecture [31]

to this task. TransReID [26] presents the first ViT-based ReID

framework incorporating enhancements such as overlapping

patches and embeddings that capture orientation or camera-

specific information. Various extensions have been proposed

[26], [27], [29], [30] to improve the models performance and

its ability to handle partially occluded persons. TransReID

[26] utilizes patch tokens in different permutations in addi-

tion to the class token, while LoGoViT [30] processes the

patch tokens through an additional transformer layer. DC-

Former [29] increases the number of class tokens, whereas

AAFormer [27] introduces new part tokens.

Multi-modal and LiDAR-only methods: The integration

of LiDAR or depth data into ReID is relatively uncharted.

Early techniques employed RGB-D data (image and depth)

to derive anthropometric features [32], [33], [34], or utilized

skeleton data from the Kinect RGB-D sensor [35], [36]. More

recent transformer-based approaches have merged RGB with

depth data [37], [38] or other auxiliary inputs like depth or

contour plots [39]. In addition to depth data, a body of work

has focused on multi-modal ReID using RGB and thermal

imagery [40], [41], [42]. These modalities can be processed

separately [40], [42] or jointly by a common backbone [41].

Information across modalities is shared using token per-

mutation [40], spatial- and frequency-based token selection

and aggregation [41], or by an unsupervised collaborative

learning strategy utilizing deep and shallow features [42].

Recently, two methods have been presented which focus on

solely using LiDAR points for re-identification [9], [10]. [10]

presents a graph-based complementary enhancement encoder

to extract features from multiple point clouds followed by a

transformer-based temporal fusion to estimate the final ReID

features. In [9] a Siamese network tracker is extended to

generate ReID features for vehicles and pedestrians using

the point cloud input.

Despite advancements in multi-modal ReID, the potential

of LiDAR data remains underutilized. While prior work

has explored depth, infrared, or camera-only modalities, to

the best of our knowledge, no method has yet combined

LiDAR and camera data for person ReID. LiDAR provides

rich spatial information that can significantly enhance ReID

performance, especially in occluded scenarios. Our work

addresses this gap by incorporating LiDAR data into our

transformer-based approach, leveraging its spatial context to

guide attention mechanisms.

III. METHODOLOGY

In this section, we explain our proposed appearance em-

bedding network for person re-identification (ReID) (see

Figure 2 for an overview). Our method transforms input

sensor data crops into a learned latent appearance space.

The distance between two appearance embeddings should

be minimal for the same person and maximal for different

persons.

A. Camera-Only Baseline

Our camera-only ReID baseline uses a transformer-based

architecture similar to [26], [29], [30]. Building on the Vision

1409
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Fig. 2: Our proposed CLFormer method for multi-modal person re-identification. Each input crop is split into N patches,

which are embedded using an initial 2D convolution, augmented by a learnable position embedding (purple box). At this

stage, we also add our 3D Cuboid-Inclusive Point Embedding (3D-CIPE, see red box). Multi-modal support is added by

concatenating the pre-processed LiDAR input to the image crop (see yellow and blue patches at the top). The final class

token after the last transformer layer is used as appearance embedding and to compute the losses.

Transformer (ViT) [31], each person crop is resized to a

fixed size, resulting in the input x ∈ R
H×W×C . The input

crop is divided into N patches, each projected into a feature

vector of dimension D using a 2D convolution F(x). To

retain spatial information, we augment each patch with a

learnable position embedding and add a class token xcls at

the beginning of the feature vector for the initial layer:

X0 = [xcls, F(xp
1), . . . , F(xp

N )] + P, (1)

with xp
i being the i-th patch, i ∈ [1, N ], and P ∈ R

N+1×D

(one position embedding for each patch, plus the class

embedding). This feature representation is processed by l
transformer encoder layers, each consisting of normalization,

multi-head self-attention, another normalization, and an MLP

layer. The features after the last transformer encoder are

normalized and used as input for the ReID tasks.

The ReID task is defined using two losses. First, we define

each unique identity in the training set as an individual class

and train the network using the cross-entropy loss LCE ,

encouraging clustering of appearance vectors for identical

identities. Second, we use the triplet loss Ltriplet as in [12],

refining the networks ability to distinguish between crops of

the same and different classes. Our final loss is calculated

using the weights λCE and λtriplet with:

Ltotal = λCE · LCE + λtriplet · Ltriplet. (2)

B. 3D Cuboid-Inclusive Point Embedding (3D-CIPE)

To enhance our model with additional 3D information

from LiDAR points and 3D cuboids, we introduce the

concept of 3D-CIPE. For each LiDAR point, we determine

whether it is contained within the 3D cuboid of the object.

This binary information is compiled for each patch xp
i pro-

cessed by our transformer-based model. Patches that contain

at least one LiDAR point identified as being inside the object

are labeled as object patches. The remaining patches are

considered as non-object patches. A visual representation of

this can be seen in Figure 1, where LiDAR points located

inside the objects 3D cuboid are depicted in red, while the

resulting patch-based object mask (i.e., the object patches)

is shown in green.

We extend our architecture, by introducing an object

mask embedding. A learnable parameter is added to each

patch to differentiate between object and non-object patches.

Specifically, we extend Equation 1 to:

X0 = [xcls, F(xp
1) + ω1, . . . , F(xp

N ) + ωN ] + P, (3)

with

ωi =

{
ωO, if xp

i is object patch,

ωB , if xp
i is non-object patch.

(4)

Here, ωO and ωB are the learnable parameters (RD) for ob-

ject and non-object patches, respectively. The augmented fea-

ture representation X0 is then fed into the subsequent trans-

former layers. Unlike typical positional encodings, which

are purely spatial or learned, 3D-CIPE captures whether

a patch is physically associated with a 3D object. This

information complements visual appearance by providing a

binary cue of geometric relevance, enabling the model to

better localize and represent objects in cluttered or occluded

environments. The resulting enriched token embeddings are

passed unchanged into the transformer encoder, allowing the

attention layers to leverage this geometric prior implicitly

during representation learning.
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C. Extension to Multi-Modal Input

We extend the image-only baseline by incorporating multi-

modal sensor data from camera and LiDAR. In the following,

we detail the necessary pre-processing and propose three

distinct fusion strategies.

To spatially align the sensors, we project LiDAR points

into the cameras image plane. We first select the LiDAR

point cloud closest in time to the camera frame. Each point

is transformed into the camera coordinate system using

extrinsic calibration (rotation and translation), yielding 3D

coordinates (X,Y, Z). These are then projected onto the 2D

image plane using the cameras intrinsic parameters, resulting

in image coordinates (u, v). Each point now has associated

(u, v), its 3D camera coordinates (X,Y, Z), and LiDAR

intensity I . Points outside the image crop are discarded. We

refer to the Z component as the points depth in the remainder

of this paper. Figure 3 provides a visual representation of this

procedure. Given the sparsity of the LiDAR data, we apply

nearest-neighbor interpolation, as shown in Figure 3c.

We propose three distinct fusion strategies to integrate this

multi-modal data into our network as shown in Figure 4. The

first strategy, channel concatenation, involves concatenating

the LiDAR data as additional channels to the input image

crop (c.f., variable ”C” in Sec. III-A), requiring the first

convolution layer to process both modalities jointly. The

second strategy uses separate embedding layers for each

modality, splitting F into Fim for the image and FL

for the LiDAR data. The resulting feature vectors can be

fused by summation, multiplication, a fully connected layer,

or concatenation. For both fusion strategies, the resulting

embedded vector X0 is used as input for the transformer

encoders, aligning with the camera-only architecture. The

third strategy, cross-modal attention fusion, employs separate

transformer backbones to embed the camera and LiDAR data

independently. A cross-attention head is used to exchange

information between the final camera and LiDAR tokens.

Either the LiDAR or camera tokens are used as the Query,

while the remaining modality tokens serve as Key and Value.

For the Query, we use only the class token, while for the

Key-Value modality, we perform experiments using the patch

tokens alone and in combination with the class token.

D. Auxiliary Tasks

We also explore auxiliary tasks to leverage the spatial

information from the LiDAR modality. First, we add a

regression task to estimate the mean depth of each person

crop, using the annotated 3D box center as the target depth.

This task is trained with the mean squared error loss Ldist.

Second, we propose estimating a patch-wise depth delta

relative to the target depth. For each patch, we calculate

the mean LiDAR point depth and determine the delta as the

difference between this mean depth and the target depth. The

L1 loss Lmask was used to compare the networks per-patch

delta estimation with the target values. The final loss function

was extended to include these auxiliary tasks using weights

(a) Projected points
and camera image.

(b) LiDAR intensity
for each point.

(c) Interpolated Li-
DAR depth map.

Fig. 3: Example camera and LiDAR crops. We show the dis-

tance value of the points with red (close) to green (distant).

Patch Embedding

Transformer

Patch
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Patch
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Patch
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Patch
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Key
Value
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* ... * ...

Cross Attention

Channel Concatenation Separate embeddings Cross-Modal Attention

Key
Value

Image LiDAR Image LiDAR Image LiDAR

Fig. 4: We propose and investigate three different multi-

modal fusion approaches to combine LiDAR and image data.

λdist and λmask:

Ltotal = λCE · LCE + λtriplet · Ltriplet

+ λdist · Ldist + λmask · Lmask.
(5)

IV. EXPERIMENTS

A. Dataset

For our experiments we focus on using the nuScenes

driving dataset [1], given its size, quality, and the availability

of image and LiDAR data. The dataset offers benchmark

protocols for the tasks of object detection, tracking, and pre-

diction among others, but no benchmark setting is provided

for person re-identification. To create our ReID dataset, we

use all annotated persons in the dataset. For each person (i.e.,

pedestrians and riders) we extract their corresponding unique

id (given by their track id), image and LiDAR crop. We

follow the train/val split provided by the nuScenes dataset,

to separate train, gallery and query splits. For the latter two,

we subdivide the validation split.

The resulting nuScenes-ReID dataset contains the images

from all cameras, and was used as the dataset for our

experiments reported in the following sections. To improve

dataset quality we only consider crops, which are larger than

40 pixel in height, 20 pixel in width, contain more than 25

LiDAR points, and are annotated with an object visibility of

40% or more. We report the final number of identities and

crops in Table I for the dataset.
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TABLE I: Statistics of our proposed nuScenes-ReID dataset

derived from the nuScenes driving benchmark [1].

Dataset Split Identities Crops Cameras

nuScenes-ReID
train 5,284 53,794 6
query 1,029 2,421 6
gallery 1,029 8,220 6

B. Evaluation Metrics

We evaluate our ReID model using the commonly used

mean average precision (mAP) and Cumulative Matching

Characteristics (CMC) [11]. Evaluation is done using the

query and gallery subsets. The appearance embeddings for

all samples from the gallery and query are generated. Each

query embedding is compared to all gallery embeddings.

The CMC metric specifies the percentage in which the

same identity as the query is contained in the closest k
selected gallery samples. Commonly, the rank-1 is used in

the ReID setting. To calculate the mAP, the average precision

(AP) for each sample is used. The AP provides a measure

of how well the network is able to identify the same person,

taking the recall and precision into account.

C. Experimental Setup

For all our experiments we use H = 256, W = 128,

D = 768, and l = 12. If not specified otherwise we

use a quadratic patch size of 16 pixel, with a stride of

16. During training we employ random input (both LiDAR

and image) augmentations, including horizontal flipping,

padding, and cropping. We use a batch size of 256. We

use SGD (momentum 0.9, weight decay 1e − 4, lr 0.032)

as optimizer. We use a cosine learning rate decay, with a

warm-up rate of 40 epochs, and train a total of 120 epochs.

Implementation is done using PyTorch. Each experiment is

run using a single NVidia RTX A6000 GPU. The weights

loaded for the ViT backbone are pre-trained on ImageNet-

21K and finetuned on ImageNet-1K. For the multi-modal

input, we load the weights for the initial convolution layer

(F) for the image channels - if applicable. LiDAR channel

weights are initialized randomly.

To ensure the reliability of our experimental results, we

conduct each training four times, each with a unique random

seed. The seed initializes the state of all random number

generators in the training process. This procedure enables

us to compute and report the mean and standard deviation

for all our evaluation metrics. Early stopping based on the

validation mAP value was used to prevent overfitting.

D. Comparison to Baselines and State-of-the-Art

We compare our proposed method CLFormer to various

baselines and state-of-the-art methods in Table II. In the first

section of the table, we present results for different configura-

tions of our image-based transformer baseline. Experiments

were conducted with different backbones (ViT [31], DeiT

[43], and CrossViT [44]) and varying patch sizes. Consistent

with our expectations and the findings in [26], we observe

the best performance with ViT using the smallest patch size

TABLE II: Experimental results of various ReID methods

on the NuScenes-ReID dataset. The first section presents

different configurations of our image-based transformer base-

line. The middle section displays the results of CNN-based

approaches, while the final section shows transformer-based

approaches. Each metric is reported as the mean and ±std
from four different training runs.

Model mAP ↑ Rank-1 ↑
Baseline - ViT 77.56 ±0.06 91.14 ±0.02
Baseline - DeiT 77.10 ±0.11 91.10 ±0.10
Baseline - CrossViT 73.91 ±0.13 89.46 ±0.06
ViT (patchsize 14) 78.26 ±0.04 91.22 ±0.09
ViT (patchsize 12) 78.52 ±0.13 91.16 ±0.29

BoT [14] 75.59 ±0.16 91.29 ±0.30
SBS [15] 76.38 ±0.02 91.26 ±0.14
AGW [16] 76.48 ±0.16 91.70 ±0.15
MGN [17] 77.23 ±0.12 91.52 ±0.21

LoGoViT w/o PM [30] 77.20 ±0.05 90.52 ±0.12
TransReID [26] 78.80 ±0.07 91.43 ±0.30
DC-Former [29] 78.89 ±0.09 91.59 ±0.23

CLFormer (ours) 79.85 ± 0.10 92.76 ±0.12

and a stride of 12 pixels, increasing the mAP from 77.56 to

78.52 points. This demonstrates the effectiveness of using

finer granularity in patch sizes for enhancing the models

discriminative power - at the cost of higher computational

cost. Additionally, the DeiT model, although slightly behind

ViT, shows competitive performance with an mAP of 77.10.

The center of the table shows results for CNN-based

methods. For all four methods — BoT [14], SBS [15], AGW

[16], and MGN [17] — we use a pretrained ResNet-50 back-

bone network and incorporate Instance-Batch Normalization

(IBN) [45]. As expected, all four methods lag behind the

transformer-based baseline (first section), given their less

efficient backbone architecture. Among these methods, MGN

achieves the best performance with its global and local

branches, yielding an mAP of 77.23 and a Rank-1 of 91.52.

In the last section, we present results for more recent

transformer-based networks. The LoGoViT network [30]

without their Patch Modification (PM) module falls behind

our transformer baseline by 0.36 mAP points, achieving

an mAP of 77.20 and a Rank-1 accuracy of 90.52. Both

TransReID [26] and DC-Former [29] demonstrate improved

ReID performance, with increases of 1.24 and 1.33 mAP

points, respectively. TransReID achieves an mAP of 78.80
and a Rank-1 accuracy of 91.43, while DC-Former achieves

the second-best mAP of 78.89 and a Rank-1 accuracy of

91.59.

The last row shows our CLFormer method, which com-

bines multi-modal input concatenation, our proposed 3D-

CIPE, and additional auxiliary losses. Our method achieves

the best results for both mAP and Rank-1 metrics, with

an mAP of 79.85 and a Rank-1 accuracy of 92.76. This

represents an increase of 0.96 in mAP over the second-best

method (DC-Former) and 2.29 over the baseline (ViT).
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TABLE III: Results for various multi-modal fusion con-

figurations using different LiDAR channels (D: Depth, I:

Intensity), input types (sparse or interpolated (Interp.)), and

fusion strategies. Fusion strategies include input channel

concatenation (Concat), separate embedding (S) with linear,

product, summation, or concatenation fusion, and CrossAt-

tention (CA) with Camera to LiDAR (C→L) or LiDAR to

Camera (L→C) attention, with or without class tokens (cls).

See Section III-C. Each metric is presented as mean ± std.

Input Ch. Fusion mAP ↑ Rank-1 ↑
Interp. D+I S-Product 65.46 ±3.68 86.61 ±1.37
Interp. D+I S-Linear 63.78 ±2.51 85.88 ±1.42
Interp. D+I S-Sum 77.81 ±0.07 91.14 ±0.25
Interp. D+I S-Concat 59.68 ±0.35 84.24 ±0.47

Interp. D+I CAC→L + cls 30.87 ±6.12 57.79 ±7.00
Interp. D+I CAL→C + cls 75.56 ±0.17 90.72 ±0.32
Interp. D+I CAL→C 75.53 ±0.07 90.73 ±0.15

Sparse D+I Concat 77.59 ±0.03 90.88 ±0.27
Interp. I Concat 77.69 ±0.09 90.89 ±0.15
Interp. D Concat 77.66 ±0.09 90.96 ±0.20
Interp. D+I Concat 77.90 ±0.05 91.14 ±0.18

TABLE IV: Results of the ablation study for additional

auxiliary tasks and our 3D-CIPE. We show the performance

for the image-only baseline, and our multi-modal model

using both LiDAR channels interpolated. The columns D,

P, and E, indicate if the distance estimation, patch-delta

estimation, and 3D-CIPE was added, respectively. For each

metric we show the mean and ±std from four different runs.

Model DPE mAP ↑ Rank-1 ↑
Image - - - 77.56 ±0.06 91.14 ±0.02
Image � - - 77.54 ±0.08 90.88 ±0.24
Image - � - 77.45 ±0.06 90.95 ±0.23
Image �� - 77.47 ±0.04 90.90 ±0.19

Multi-Modal - - - 77.90 ±0.05 91.14 ±0.18
Multi-Modal � - - 77.87 ±0.08 91.32 ±0.16
Multi-Modal - � - 77.66 ±0.05 91.15 ±0.10
Multi-Modal �� - 77.73 ±0.07 91.12 ±0.23

Image - - � 79.54 ±0.07 92.78 ±0.12
Image ��� 79.45 ±0.05 92.48 ±0.30
Multi-Modal - - � 79.68 ±0.11 92.77 ±0.25
Multi-Modal ��� 79.85 ±0.10 92.76 ±0.12

E. Impact of different Multi-Modal Fusion Strategies

Our results in Table III indicate that the fusion strategy

significantly impacts the performance of the ReID method.

Among the separate embedding strategies, summation fusion

(S-Sum) achieved the highest mAP of 77.81% and a Rank-

1 accuracy of 91.14%. We attribute this performance, and

the observed drop in the other separate fusion settings, to

the misalignment between the hidden dimensions of the

transformer and the pre-trained model weights optimized

for image-only data. Additionally, we observe a nearly

two orders of magnitude higher standard deviation in these

settings, indicating potential instabilities during training. For

CrossAttention strategies, the configuration with LiDAR to

Camera attention and class tokens (CAL→C+cls) performed

well, achieving an mAP of 75.56% and a Rank-1 accuracy of

90.72%. This aligns with our expectation: using the LiDAR

token as query enables extraction of rich features from image

tokens, unlike the reverse where LiDAR lacks appearance

detail.

The impact of including the class token in the key and

value seems statistically not significant. Overall, the CrossAt-

tention fusion strategy does not yield the best results, which

we attribute to the image-centric nature of the pretrained fea-

tures, as well as possible limitations in our chosen architec-

ture and dataset scale. Interestingly, the concatenation fusion

strategy (Concat) with interpolated input and both Depth

and Intensity channels (D+I) achieved the highest overall

performance, with an mAP of 77.90% and a Rank-1 accuracy

of 91.14%. This suggests that simple concatenation of multi-

modal inputs can be highly effective when combined with

interpolation. Consequently, we adopt input concatenation as

our preferred fusion strategy for subsequent experiments.

F. Ablation Study: Auxiliary Tasks and 3D-CIPE

The integration of depth-related auxiliary tasks into our

network was based on the hypothesis that such tasks would

steer the network towards effectively utilizing the LiDAR

data in a multi-modal context. To evaluate this, we con-

duct an ablation study using both the image-only baseline

and our multi-modal configuration, which incorporates input

concatenation with interpolation. These experiments were

performed with and without the auxiliary tasks. Furthermore,

we investigated the impact of introducing our 3D-CIPE. The

outcomes of these experiments are summarized in Table IV.

The upper and central sections of the table present the

incremental activation of the additional distance and patch-

delta estimation tasks for the image-only and multi-modal

models, respectively. Contrary to our initial expectations,

the incorporation of these tasks did not enhance the ReID

performance; rather, we observed a marginal decline. This

trend was consistent across both the image-only and multi-

modal models. Specifically, the inclusion of the distance

estimation task did not yield a notable improvement, while

the patch delta estimation task seems to contradict the train-

ing slightly, leading to decreased performance. In contrast,

the implementation of our 3D-CIPE results in a significant

improvement in mAP. The image-only baseline experiences

an increase in mAP from 77.6 to 79.5 with the integration of

3D-CIPE. A similar improvement is observed for the multi-

modal model, with an mAP rise of nearly 2 points.

We further analyzed the computational footprint of the

variants in Table IV. The baseline image-only model has

90.6M parameters and processes 39,257 samples/s. Ex-

tending to multi-modal input increases parameters slightly

to 90.97M and lowers throughput to 37,786 samples/s.

Adding the 3D-CIPE mask embedding introduces negligible

overhead (90.58M parameters, 37,227 samples/s). The final

CLFormer model, combining both extensions, totals 91.1M

parameters and processes 35,196 samples/s.
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V. CONCLUSION

This paper presented CLFormer, a novel transformer-based

method for multi-modal person re-identification (ReID) using

camera and LiDAR data. We adapted the nuScenes dataset

for the ReID task, enabling a thorough evaluation of our

proposed method. Various fusion strategies were explored,

with the early concatenation of additional LiDAR channels

found to be the best-performing approach.

Our experiments demonstrated that the integration of Li-

DAR data significantly improves ReID performance. The

proposed 3D-CIPE module, which incorporates object-

centered information from LiDAR point clouds and 3D

cuboids into our transformer architecture, yielded substan-

tial gains in mAP and Rank-1 accuracy. Conversely, the

inclusion of depth-related auxiliary tasks, intended to guide

the network to focus more on the LiDAR input, did not

result in increased ReID performance. These findings provide

valuable insights into the complexities of multi-modal data

integration and suggest areas for further optimization.

Overall, our work addresses a gap in the ReID field by ef-

fectively leveraging the complementary strengths of LiDAR

and camera data. Future work will focus on optimizing the

fusion of multi-modal inputs and exploring the integration

of multi-modal backbones to overcome current limitations

given by image-only pre-trained networks.
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