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Camera- and LiDAR-based Person Re-identification
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Abstract—In this paper, we introduce a novel method for
creating appearance embeddings to identify individual persons
using an object re-identification (ReID) framework. We present
CLFormer (Camera LiDAR Transformer), a transformer-based
architecture that incorporates multi-modal data from both
camera and LiDAR sensors. We introduce the 3D Cuboid-
Inclusive Point Embedding (3D-CIPE), which leverages rich
data from LiDAR point clouds and 3D cuboids to add a
learnable embedding into the transformer structure. Addition-
ally, through ablation studies, we explore and analyze various
strategies for the early and late fusion of multi-modal input
data.

To evaluate our proposed CLFormer, we reinterpret the
nuScenes dataset [1] for ReID purposes and use it for our
experiments. Our method demonstrates a significant improve-
ment in performance, outperforming the image-only baseline
with an increase of 2.3 in mean Average Precision (mAP).

I. INTRODUCTION

In the intelligent vehicles domain the knowledge of the
vehicles surroundings and other traffic participants is a
key building block to allow safe and reliable applications,
like driver assistance systems or autonomous driving. These
tasks are generally addressed as part of the environment
perception, using the input of single or multiple sensors such
as cameras, LiDARSs, and radars. In this paper, we focus
on vulnerable road users (VRUs), such as pedestrians and
riders, who are of particular interest due to their vulnerability
and dynamic behavior. A typical perception pipeline includes
the detection of objects of interest in the raw sensor data,
followed by subsequent tracking. Tracking methods are em-
ployed to mitigate errors in the detection process and allow
the integration of information over time. Tracked objects
enable subsequent processing steps, such as intention or mo-
tion prediction [2]. Numerous tracking methods exist, among
which the tracking-by-detection paradigm stands out as one
of the best performing and commonly adopted techniques
[3]. As the name suggests, detections are associated over time
with the set of existing tracks. For association, a similarity
measure between the detection and track is required. For the
tracking of persons using a learned appearance embedding
as part of the similarity measure has shown to be a good
performing choice [4], [5], [6], [7].

Person re-identification (ReID) focuses on generating such
appearance embeddings to uniquely identify individuals,
primarily in surveillance settings with multiple overlapping
static cameras. However, advances in this field can be directly
applied to tracking methods.
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Fig. 1: Schematic depiction of our proposed novel multi-
modal person RelD method. We use LiDAR point clouds,
camera images, and 3D cuboids. Aligned image and LiDAR
crops are used as input to generate an appearance embedding
for each person. LiDAR points located within the annotated
3D cuboid are used to generate the 3D Cuboid-Inclusive
Point Embedding (3D-CIPE) which is added as embedding
to the transformer.

The combination of LiDAR and camera information has
recently shown great benefits for detection methods [8].
However, extending person RelD approaches to multi-modal
information is a little explored field. LiDAR sensors are
available in most intelligent vehicle settings [1], yet there
are only a few works that use this information exclusively
[9], [10] and do not combine it with image information.

This paper presents a novel person RelD method, which
combines image and LiDAR information in an intelligent
vehicles setting, as shown in Figure 1. We introduce and
investigate different fusion strategies for combining the two
modalities to enhance our transformer-based person RelD
method. While LiDAR data may not provide detailed ap-
pearance information, such as clothing or hair color, it can
effectively guide visual attention. Additionally, the patch-
based nature of the transformer architecture facilitates an
implicit part-based approach, which is beneficial for han-
dling partial occlusions. To better utilize the multi-modal
information available to our method, we make use of ad-
ditional auxiliary tasks. Lastly, we present a novel way to
integrate object-centered information based on the LiDAR
point clouds and available 3D cuboids into the transformer.
We extract whether an image region contains a LiDAR point
from within the 3D cuboid to create an abstract object mask
and embed this information into the transformer. We coin
the resulting method CLFormer, which combines the best-
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performing fusion strategy - channel concatenation - with
our 3D Cuboid-Inclusive Point Embedding (3D-CIPE). To
benchmark CLFormer, we repurpose the nuScenes dataset
[1] for person RelD to validate our approach and compare
it to baseline and other RelD methods. The contributions of
our work are summarized as follows:

« To the best of our knowledge, we are the first to present
a multi-modal transformer-based person RelD method
that uses LiDAR in addition to camera information to
learn more robust appearance embeddings.

e We introduce the 3D Cuboid-Inclusive Point Embed-
ding (3D-CIPE) module, which embeds object-centered
information from LiDAR point clouds and 3D cuboids
into the transformer architecture.

o We propose and investigate various fusion strategies
to effectively combine LiDAR and image sensor data
within our RelD method.

II. RELATED WORK

This section reviews recent advancements in person RelD,
with a focus on deep learning applications and the integration
of multi-modal data. For foundational methods, readers may
refer to the comprehensive survey by Zheng et al. [11].
Current strategies predominantly leverage deep learning to
extract unique person features through positive and negative
sample training, often integrating triplet loss [12] with cross-
entropy loss [13] for metric learning.

CNN-based methods have been extensively explored,
including notable approaches such as BoT [14], SBS [15],
AGW [16], and MGN [17]. BoT [14] set a new baseline
by incorporating a series of enhancements into the training
strategy, which is further improved by SBS [15]. AGW [16]
extends BoT by integrating attention mechanisms into the
CNN architecture, while MGN [17] extends the CNN to
a multi-branch network structure to simultaneously learn
global and local features. Recent research has increasingly
focused on addressing occlusions, a major challenge in
the field, which introduce non-object appearances into the
learning process. To mitigate this, data augmentation-based
approaches [18] train networks to recognize and disregard
occluded regions by artificially occluding parts of the image
during training. Other approaches segment the person patch
into several parts and learn local part-based representations
[19], [20], [21], [22]. These parts can be created using
semantic networks [22], information from a pose estimation
network [20], [21], or predefined static areas such as a fixed
set of rows [19]. Part-based approaches generate a feature
embedding for each part individually, while also extracting
visibility [20], [21], [22] or quality [19] scores. Other tech-
niques address occlusion by synthesizing complete images
from sequential data [23], using human shape as additional
supervision [24], or by excluding occluded samples during
training [25].

Transformer-based methods have recently gained trac-
tion in person RelD, with models such as TransRelD [26],
AAFormer [27], Performer [28], DC-Former [29], LoGoViT
[30] adapting the Vision Transformer (ViT) architecture [31]

to this task. TransRelD [26] presents the first ViT-based RelD
framework incorporating enhancements such as overlapping
patches and embeddings that capture orientation or camera-
specific information. Various extensions have been proposed
[26], [27], [29], [30] to improve the models performance and
its ability to handle partially occluded persons. TransRelD
[26] utilizes patch tokens in different permutations in addi-
tion to the class token, while LoGoViT [30] processes the
patch tokens through an additional transformer layer. DC-
Former [29] increases the number of class tokens, whereas
AAFormer [27] introduces new part tokens.

Multi-modal and LiDAR-only methods: The integration
of LiDAR or depth data into RelD is relatively uncharted.
Early techniques employed RGB-D data (image and depth)
to derive anthropometric features [32], [33], [34], or utilized
skeleton data from the Kinect RGB-D sensor [35], [36]. More
recent transformer-based approaches have merged RGB with
depth data [37], [38] or other auxiliary inputs like depth or
contour plots [39]. In addition to depth data, a body of work
has focused on multi-modal ReID using RGB and thermal
imagery [40], [41], [42]. These modalities can be processed
separately [40], [42] or jointly by a common backbone [41].
Information across modalities is shared using token per-
mutation [40], spatial- and frequency-based token selection
and aggregation [41], or by an unsupervised collaborative
learning strategy utilizing deep and shallow features [42].
Recently, two methods have been presented which focus on
solely using LiDAR points for re-identification [9], [10]. [10]
presents a graph-based complementary enhancement encoder
to extract features from multiple point clouds followed by a
transformer-based temporal fusion to estimate the final RelD
features. In [9] a Siamese network tracker is extended to
generate RelD features for vehicles and pedestrians using
the point cloud input.

Despite advancements in multi-modal RelD, the potential
of LiDAR data remains underutilized. While prior work
has explored depth, infrared, or camera-only modalities, to
the best of our knowledge, no method has yet combined
LiDAR and camera data for person RelD. LiDAR provides
rich spatial information that can significantly enhance RelD
performance, especially in occluded scenarios. Our work
addresses this gap by incorporating LiDAR data into our
transformer-based approach, leveraging its spatial context to
guide attention mechanisms.

III. METHODOLOGY

In this section, we explain our proposed appearance em-
bedding network for person re-identification (RelD) (see
Figure 2 for an overview). Our method transforms input
sensor data crops into a learned latent appearance space.
The distance between two appearance embeddings should
be minimal for the same person and maximal for different
persons.

A. Camera-Only Baseline

Our camera-only RelD baseline uses a transformer-based
architecture similar to [26], [29], [30]. Building on the Vision

1409

Authorized licensed use limited to: TU Delft Library. Downloaded on November 04,2025 at 09:13:51 UTC from IEEE Xplore. Restrictions apply.



> Channel
Concatenation

Class
Token

3D-CIPE
Position
Embedding

*

b,
_

Image

i~

¥
4

Sl
|
0900

Patch N @

|
00

depth l

Linear Embedding

Transformer Layer

Transformer Layer

| o om)— o

Ltriplet
L:dist
ﬁmask

*
vvyyvY

Fig. 2: Our proposed CLFormer method for multi-modal person re-identification. Each input crop is split into /N patches,
which are embedded using an initial 2D convolution, augmented by a learnable position embedding (purple box). At this
stage, we also add our 3D Cuboid-Inclusive Point Embedding (3D-CIPE, see red box). Multi-modal support is added by
concatenating the pre-processed LiDAR input to the image crop (see yellow and blue patches at the top). The final class
token after the last transformer layer is used as appearance embedding and to compute the losses.

Transformer (ViT) [31], each person crop is resized to a
fixed size, resulting in the input z € R¥>*Wx*C The input
crop is divided into IV patches, each projected into a feature
vector of dimension D using a 2D convolution F(z). To
retain spatial information, we augment each patch with a
learnable position embedding and add a class token x5 at
the beginning of the feature vector for the initial layer:

Xo = [zas, F(2), ..., F(zR)] + P, (1)

with 2 being the i-th patch, i € [1, N], and P € RN +1xP
(one position embedding for each patch, plus the class
embedding). This feature representation is processed by [
transformer encoder layers, each consisting of normalization,
multi-head self-attention, another normalization, and an MLP
layer. The features after the last transformer encoder are
normalized and used as input for the RelD tasks.

The RelD task is defined using two losses. First, we define
each unique identity in the training set as an individual class
and train the network using the cross-entropy loss Lok,
encouraging clustering of appearance vectors for identical
identities. Second, we use the triplet 10ss Lyyipie as in [12],
refining the networks ability to distinguish between crops of
the same and different classes. Our final loss is calculated
using the weights Acg and Agpiprer With:

»Ctotal = AcE - ECE + )\triplet : £triplet~ (2)

B. 3D Cuboid-Inclusive Point Embedding (3D-CIPE)

To enhance our model with additional 3D information
from LiDAR points and 3D cuboids, we introduce the
concept of 3D-CIPE. For each LiDAR point, we determine
whether it is contained within the 3D cuboid of the object.

This binary information is compiled for each patch z? pro-
cessed by our transformer-based model. Patches that contain
at least one LiDAR point identified as being inside the object
are labeled as object patches. The remaining patches are
considered as non-object patches. A visual representation of
this can be seen in Figure 1, where LiDAR points located
inside the objects 3D cuboid are depicted in red, while the
resulting patch-based object mask (i.e., the object patches)
is shown in green.

We extend our architecture, by introducing an object
mask embedding. A learnable parameter is added to each
patch to differentiate between object and non-object patches.
Specifically, we extend Equation 1 to:

XO = [x(:lSa ‘F(ljl))+w17 RS ‘F(‘T%)+WN]+P7 (3)

with

w@, if 2¥ is object patch,
w,; =
" | wB, if 2 is non-object patch.

“4)

Here, w® and w® are the learnable parameters (R”) for ob-
ject and non-object patches, respectively. The augmented fea-
ture representation X} is then fed into the subsequent trans-
former layers. Unlike typical positional encodings, which
are purely spatial or learned, 3D-CIPE captures whether
a patch is physically associated with a 3D object. This
information complements visual appearance by providing a
binary cue of geometric relevance, enabling the model to
better localize and represent objects in cluttered or occluded
environments. The resulting enriched token embeddings are
passed unchanged into the transformer encoder, allowing the
attention layers to leverage this geometric prior implicitly
during representation learning.
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C. Extension to Multi-Modal Input

We extend the image-only baseline by incorporating multi-
modal sensor data from camera and LiDAR. In the following,
we detail the necessary pre-processing and propose three
distinct fusion strategies.

To spatially align the sensors, we project LiDAR points
into the cameras image plane. We first select the LiDAR
point cloud closest in time to the camera frame. Each point
is transformed into the camera coordinate system using
extrinsic calibration (rotation and translation), yielding 3D
coordinates (X,Y, Z). These are then projected onto the 2D
image plane using the cameras intrinsic parameters, resulting
in image coordinates (u,v). Each point now has associated
(u,v), its 3D camera coordinates (X,Y,Z7), and LiDAR
intensity /. Points outside the image crop are discarded. We
refer to the Z component as the points depth in the remainder
of this paper. Figure 3 provides a visual representation of this
procedure. Given the sparsity of the LiDAR data, we apply
nearest-neighbor interpolation, as shown in Figure 3c.

We propose three distinct fusion strategies to integrate this
multi-modal data into our network as shown in Figure 4. The
first strategy, channel concatenation, involves concatenating
the LiDAR data as additional channels to the input image
crop (c.f., variable ”C” in Sec. III-A), requiring the first
convolution layer to process both modalities jointly. The
second strategy uses separate embedding layers for each
modality, splitting F into F;,, for the image and Fp,
for the LiDAR data. The resulting feature vectors can be
fused by summation, multiplication, a fully connected layer,
or concatenation. For both fusion strategies, the resulting
embedded vector X; is used as input for the transformer
encoders, aligning with the camera-only architecture. The
third strategy, cross-modal attention fusion, employs separate
transformer backbones to embed the camera and LiDAR data
independently. A cross-attention head is used to exchange
information between the final camera and LiDAR tokens.
Either the LiDAR or camera tokens are used as the Query,
while the remaining modality tokens serve as Key and Value.
For the Query, we use only the class token, while for the
Key-Value modality, we perform experiments using the patch
tokens alone and in combination with the class token.

D. Auxiliary Tasks

We also explore auxiliary tasks to leverage the spatial
information from the LiDAR modality. First, we add a
regression task to estimate the mean depth of each person
crop, using the annotated 3D box center as the target depth.
This task is trained with the mean squared error loss Lg;st.
Second, we propose estimating a patch-wise depth delta
relative to the target depth. For each patch, we calculate
the mean LiDAR point depth and determine the delta as the
difference between this mean depth and the target depth. The
L1 loss L,,qsk Was used to compare the networks per-patch
delta estimation with the target values. The final loss function
was extended to include these auxiliary tasks using weights

(a) Projected points
and camera image.

(b) LiDAR intensity
for each point.

(c) Interpolated Li-
DAR depth map.

Fig. 3: Example camera and LiDAR crops. We show the dis-
tance value of the points with red (close) to green (distant).

Image LiDAR Image LiDAR Image LiDAR
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Fig. 4: We propose and investigate three different multi-
modal fusion approaches to combine LiDAR and image data.

>\dist and /\mask:

L:total = )\CE . ACCE + )\triplet . »Ctm'plet
+ /\dist : £dist + /\mask : Emask-
1V. EXPERIMENTS

&)

A. Dataset

For our experiments we focus on using the nuScenes
driving dataset [1], given its size, quality, and the availability
of image and LiDAR data. The dataset offers benchmark
protocols for the tasks of object detection, tracking, and pre-
diction among others, but no benchmark setting is provided
for person re-identification. To create our RelD dataset, we
use all annotated persons in the dataset. For each person (i.e.,
pedestrians and riders) we extract their corresponding unique
id (given by their track id), image and LiDAR crop. We
follow the train/val split provided by the nuScenes dataset,
to separate train, gallery and query splits. For the latter two,
we subdivide the validation split.

The resulting nuScenes-RelD dataset contains the images
from all cameras, and was used as the dataset for our
experiments reported in the following sections. To improve
dataset quality we only consider crops, which are larger than
40 pixel in height, 20 pixel in width, contain more than 25
LiDAR points, and are annotated with an object visibility of
40% or more. We report the final number of identities and
crops in Table I for the dataset.
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TABLE I: Statistics of our proposed nuScenes-RelD dataset
derived from the nuScenes driving benchmark [1].

Dataset Split Identities Crops Cameras
train 5,284 53,794 6
nuScenes-ReID  query 1,029 2,421 6
gallery 1,029 8,220 6

B. Evaluation Metrics

We evaluate our ReID model using the commonly used
mean average precision (mAP) and Cumulative Matching
Characteristics (CMC) [11]. Evaluation is done using the
query and gallery subsets. The appearance embeddings for
all samples from the gallery and query are generated. Each
query embedding is compared to all gallery embeddings.

The CMC metric specifies the percentage in which the
same identity as the query is contained in the closest k
selected gallery samples. Commonly, the rank-1 is used in
the RelD setting. To calculate the mAP, the average precision
(AP) for each sample is used. The AP provides a measure
of how well the network is able to identify the same person,
taking the recall and precision into account.

C. Experimental Setup

For all our experiments we use H = 256, W = 128,
D = 768, and [ = 12. If not specified otherwise we
use a quadratic patch size of 16 pixel, with a stride of
16. During training we employ random input (both LiDAR
and image) augmentations, including horizontal flipping,
padding, and cropping. We use a batch size of 256. We
use SGD (momentum 0.9, weight decay le — 4, Ir 0.032)
as optimizer. We use a cosine learning rate decay, with a
warm-up rate of 40 epochs, and train a total of 120 epochs.
Implementation is done using PyTorch. Each experiment is
run using a single NVidia RTX A6000 GPU. The weights
loaded for the ViT backbone are pre-trained on ImageNet-
21K and finetuned on ImageNet-1K. For the multi-modal
input, we load the weights for the initial convolution layer
(F) for the image channels - if applicable. LIDAR channel
weights are initialized randomly.

To ensure the reliability of our experimental results, we
conduct each training four times, each with a unique random
seed. The seed initializes the state of all random number
generators in the training process. This procedure enables
us to compute and report the mean and standard deviation
for all our evaluation metrics. Early stopping based on the
validation mAP value was used to prevent overfitting.

D. Comparison to Baselines and State-of-the-Art

We compare our proposed method CLFormer to various
baselines and state-of-the-art methods in Table II. In the first
section of the table, we present results for different configura-
tions of our image-based transformer baseline. Experiments
were conducted with different backbones (ViT [31], DeiT
[43], and CrossViT [44]) and varying patch sizes. Consistent
with our expectations and the findings in [26], we observe
the best performance with ViT using the smallest patch size

TABLE II: Experimental results of various RelD methods
on the NuScenes-ReID dataset. The first section presents
different configurations of our image-based transformer base-
line. The middle section displays the results of CNN-based
approaches, while the final section shows transformer-based
approaches. Each metric is reported as the mean and +std
from four different training runs.

Model mAP 1 Rank-1 1

Baseline - ViT 77.56 +0.06 91.14 +0.02
Baseline - DeiT 77.10 +0.11 91.10 £0.10
Baseline - CrossViT 7391 £0.13 89.46 +0.06
ViT (patchsize 14) 78.26 +0.04 91.22 4+0.09
ViT (patchsize 12) 78.52 +0.13 91.16 £0.29
BoT [14] 75.59 +0.16 91.29 +0.30
SBS [15] 76.38 +0.02 91.26 +0.14
AGW [16] 76.48 +0.16 91.70 £0.15
MGN [17] 77.23 +0.12 91.52 +0.21
LoGoViT w/o PM [30]  77.20 4+0.05 90.52 +0.12
TransRelD [26] 78.80 +0.07 91.43 4+0.30
DC-Former [29] 78.89 4+0.09 91.59 £0.23
CLFormer (ours) 79.85 + 0.10 92.76 +0.12

and a stride of 12 pixels, increasing the mAP from 77.56 to
78.52 points. This demonstrates the effectiveness of using
finer granularity in patch sizes for enhancing the models
discriminative power - at the cost of higher computational
cost. Additionally, the DeiT model, although slightly behind
ViT, shows competitive performance with an mAP of 77.10.

The center of the table shows results for CNN-based
methods. For all four methods — BoT [14], SBS [15], AGW
[16], and MGN [17] — we use a pretrained ResNet-50 back-
bone network and incorporate Instance-Batch Normalization
(IBN) [45]. As expected, all four methods lag behind the
transformer-based baseline (first section), given their less
efficient backbone architecture. Among these methods, MGN
achieves the best performance with its global and local
branches, yielding an mAP of 77.23 and a Rank-1 of 91.52.

In the last section, we present results for more recent
transformer-based networks. The LoGoViT network [30]
without their Patch Modification (PM) module falls behind
our transformer baseline by 0.36 mAP points, achieving
an mAP of 77.20 and a Rank-1 accuracy of 90.52. Both
TransReID [26] and DC-Former [29] demonstrate improved
RelID performance, with increases of 1.24 and 1.33 mAP
points, respectively. TransReID achieves an mAP of 78.80
and a Rank-1 accuracy of 91.43, while DC-Former achieves
the second-best mAP of 78.89 and a Rank-1 accuracy of
91.59.

The last row shows our CLFormer method, which com-
bines multi-modal input concatenation, our proposed 3D-
CIPE, and additional auxiliary losses. Our method achieves
the best results for both mAP and Rank-1 metrics, with
an mAP of 79.85 and a Rank-1 accuracy of 92.76. This
represents an increase of 0.96 in mAP over the second-best
method (DC-Former) and 2.29 over the baseline (ViT).
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TABLE III: Results for various multi-modal fusion con-
figurations using different LiDAR channels (D: Depth, I:
Intensity), input types (sparse or interpolated (Interp.)), and
fusion strategies. Fusion strategies include input channel
concatenation (Concat), separate embedding (S) with linear,
product, summation, or concatenation fusion, and CrossAt-
tention (CA) with Camera to LiDAR (C—L) or LiDAR to
Camera (L—C) attention, with or without class tokens (cls).
See Section III-C. Each metric is presented as mean =+ std.

Input Ch.  Fusion mAP 1 Rank-1 1

Interp. D+I  S-Product 65.46 +3.68  86.61 +1.37
Interp. D+l  S-Linear 63.78 £2.51  85.88 £1.42
Interp. D+I  S-Sum 77.81 £0.07  91.14 +0.25
Interp. D+I  S-Concat 59.68 £0.35 84.24 +0.47
Interp. D+l  CAS—~L fcls 3087 £6.12 5779 £7.00
Interp. D+l CAL=C fcls 7556 £0.17  90.72 £0.32
Interp. D+l CAL—C 75.53 £0.07  90.73 +0.15
Sparse D+l Concat 77.59 £0.03  90.88 +0.27
Interp. I Concat 77.69 £0.09  90.89 +0.15
Interp. D Concat 77.66 £0.09  90.96 £0.20
Interp. D+I  Concat 7790 £0.05 91.14 £0.18

TABLE IV: Results of the ablation study for additional
auxiliary tasks and our 3D-CIPE. We show the performance
for the image-only baseline, and our multi-modal model
using both LiDAR channels interpolated. The columns D,
P, and E, indicate if the distance estimation, patch-delta
estimation, and 3D-CIPE was added, respectively. For each
metric we show the mean and =£std from four different runs.

Model DPE mAP 1 Rank-1 1

Image --- 7156 £0.06 91.14 +0.02
Image vV-- 7754 £0.08 90.88 +0.24
Image -V - 7745 40.06 90.95 +0.23
Image vV - T147 £0.04 90.90 £0.19
Multi-Modal - - - 77.90 £0.05 91.14 +0.18
Multi-Modal v - - 77.87 £0.08  91.32 £+0.16
Multi-Modal ~ -v' - 77.66 £0.05  91.15 +0.10
Multi-Modal vV - 77.73 £0.07  91.12 £0.23
Image --v 7954 £0.07 92.78 +0.12
Image vv/ o 7945 £0.05  92.48 +0.30
Multi-Modal - -v 79.68 £0.11  92.77 +£0.25
Multi-Modal vvv 79.85 £0.10  92.76 £0.12

E. Impact of different Multi-Modal Fusion Strategies

Our results in Table III indicate that the fusion strategy
significantly impacts the performance of the ReID method.
Among the separate embedding strategies, summation fusion
(S-Sum) achieved the highest mAP of 77.81% and a Rank-
1 accuracy of 91.14%. We attribute this performance, and
the observed drop in the other separate fusion settings, to
the misalignment between the hidden dimensions of the
transformer and the pre-trained model weights optimized
for image-only data. Additionally, we observe a nearly
two orders of magnitude higher standard deviation in these
settings, indicating potential instabilities during training. For
CrossAttention strategies, the configuration with LiDAR to
Camera attention and class tokens (CAZ7¢ 4-cls) performed

well, achieving an mAP of 75.56% and a Rank-1 accuracy of
90.72%. This aligns with our expectation: using the LiDAR
token as query enables extraction of rich features from image
tokens, unlike the reverse where LiDAR lacks appearance
detail.

The impact of including the class token in the key and
value seems statistically not significant. Overall, the CrossAt-
tention fusion strategy does not yield the best results, which
we attribute to the image-centric nature of the pretrained fea-
tures, as well as possible limitations in our chosen architec-
ture and dataset scale. Interestingly, the concatenation fusion
strategy (Concat) with interpolated input and both Depth
and Intensity channels (D+I) achieved the highest overall
performance, with an mAP of 77.90% and a Rank-1 accuracy
of 91.14%. This suggests that simple concatenation of multi-
modal inputs can be highly effective when combined with
interpolation. Consequently, we adopt input concatenation as
our preferred fusion strategy for subsequent experiments.

FE Ablation Study: Auxiliary Tasks and 3D-CIPE

The integration of depth-related auxiliary tasks into our
network was based on the hypothesis that such tasks would
steer the network towards effectively utilizing the LiDAR
data in a multi-modal context. To evaluate this, we con-
duct an ablation study using both the image-only baseline
and our multi-modal configuration, which incorporates input
concatenation with interpolation. These experiments were
performed with and without the auxiliary tasks. Furthermore,
we investigated the impact of introducing our 3D-CIPE. The
outcomes of these experiments are summarized in Table IV.

The upper and central sections of the table present the
incremental activation of the additional distance and patch-
delta estimation tasks for the image-only and multi-modal
models, respectively. Contrary to our initial expectations,
the incorporation of these tasks did not enhance the RelD
performance; rather, we observed a marginal decline. This
trend was consistent across both the image-only and multi-
modal models. Specifically, the inclusion of the distance
estimation task did not yield a notable improvement, while
the patch delta estimation task seems to contradict the train-
ing slightly, leading to decreased performance. In contrast,
the implementation of our 3D-CIPE results in a significant
improvement in mAP. The image-only baseline experiences
an increase in mAP from 77.6 to 79.5 with the integration of
3D-CIPE. A similar improvement is observed for the multi-
modal model, with an mAP rise of nearly 2 points.

We further analyzed the computational footprint of the
variants in Table IV. The baseline image-only model has
90.6M parameters and processes 39,257 samples/s. Ex-
tending to multi-modal input increases parameters slightly
to 90.97M and lowers throughput to 37,786 samples/s.
Adding the 3D-CIPE mask embedding introduces negligible
overhead (90.58M parameters, 37,227 samples/s). The final
CLFormer model, combining both extensions, totals 91.1M
parameters and processes 35,196 samples/s.
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V. CONCLUSION

This paper presented CLFormer, a novel transformer-based
method for multi-modal person re-identification (ReID) using
camera and LiDAR data. We adapted the nuScenes dataset
for the RelD task, enabling a thorough evaluation of our
proposed method. Various fusion strategies were explored,
with the early concatenation of additional LiDAR channels
found to be the best-performing approach.

Our experiments demonstrated that the integration of Li-
DAR data significantly improves RelD performance. The
proposed 3D-CIPE module, which incorporates object-
centered information from LiDAR point clouds and 3D
cuboids into our transformer architecture, yielded substan-
tial gains in mAP and Rank-1 accuracy. Conversely, the
inclusion of depth-related auxiliary tasks, intended to guide
the network to focus more on the LiDAR input, did not
result in increased RelD performance. These findings provide
valuable insights into the complexities of multi-modal data
integration and suggest areas for further optimization.

Overall, our work addresses a gap in the RelD field by ef-
fectively leveraging the complementary strengths of LiDAR
and camera data. Future work will focus on optimizing the
fusion of multi-modal inputs and exploring the integration
of multi-modal backbones to overcome current limitations
given by image-only pre-trained networks.
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