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ABSTRACT 
Current text visualization techniques typically provide overviews 
of document content and structure using intrinsic properties such 
as term frequencies, co-occurrences, and sentence structures. Such 
visualizations lack conceptual overviews incorporating domain-
relevant knowledge, needed when examining documents such as 
research articles or technical reports. To address this shortcom-
ing, we present ConceptScope, a technique that utilizes a domain 
ontology to represent the conceptual relationships in a document 
in the form of a Bubble Treemap visualization. Multiple coordi-
nated views of document structure and concept hierarchy with text 
overviews further aid document analysis. ConceptScope facilitates 
exploration and comparison of single and multiple documents re-
spectively. We demonstrate ConceptScope by visualizing research 
articles and transcripts of technical presentations in computer sci-
ence. In a comparative study with DocuBurst, a popular document 
visualization tool, ConceptScope was found to be more informative 
in exploring and comparing domain-specifc documents, but less 
so when it came to documents that spanned multiple disciplines. 

CCS CONCEPTS 
• Human-centered computing → Information visualization. 
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1 INTRODUCTION 
Text visualization techniques have evolved as a response to the vir-
tual explosion of text data available online in the last few decades. 
Specifcally, they aim to provide a visual overview—what digital 
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humanities now call “distant reading” [31]—of large documents 
or large collections of documents, and help the researcher, inves-
tigator, or analyst fnd text patterns within and between docu-
ments (e.g. [41]). Most of these visualization techniques are domain-
independent and do not provide a knowledge-based overview of 
documents. There have been approaches to provide a visual overview 
of the semantic content of documents (e.g. [8]). Such approaches 
have typically looked to lexical hypernymy (is-a relationships) to 
provide a conceptual overview of the text. 

However, when examining domain-specifc documents such as 
research papers, medical reports, or legal documents, it is necessary 
to examine the documents from the point of view of that specifc 
domain. For instance, when examining a research paper in com-
puter science, a computer science researcher may be interested in 
whether the paper concerns a general overview of a subject, such 
as “computer graphics”, or concerns more specifc concepts such as 
“infographics” or “TreeMap visualizations”. Similarly, the researcher 
may want to compare papers that appear in the same conference 
session to see the similarities and diferences that may exist be-
tween the papers. In such scenarios, the overview visualizations 
should also represent the computer science domain and how the 
knowledge is structured in the domain. 

While approaches such as topic modeling can provide a bottom-
up categorization or thematic separation of a document’s text, do-
main knowledge is often organized formally by experts in the cor-
responding domains using Ontologies. An ontology, defned as an 
“explicit specifcation of a conceptualization” [19, p. 199], is a widely-
accepted way in which domain knowledge is formally represented. 
A knowledge-based overview of a document that uses as a reference 
the corresponding domain ontology can thus provide a conceptual 
overview for the domain expert. Such a view can also be used struc-
turally to help the expert compare two or more documents based 
on the concepts they cover. 

In order to aid document examination from the viewpoint of 
a specifc domain, we present ConceptScope, a text visualization 
technique that provides a domain-specifc overview by referring 
to a relevant ontology to infer the conceptual structure of the doc-
ument(s) being examined. ConceptScope uses a Bubble Treemap 
view [17] to represent concept hierarchies, highlighting concepts 
from the ontology that exist within the document and their relation-
ships with other concepts in the document, as well as key “parent” 
concepts in the Ontology. Each concept “bubble” is also populated 
with a word cloud that represents text from the document that 
relates to the concept, providing a contextual overview. Through a 
set of multiple coordinated views of text, structural overviews, and 
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keyword-in-context (KWIC) views, ConceptScope helps users navi-
gate a document from a specifc domain perspective. ConceptScope 
can also be used to visually and conceptually compare multiple 
documents using the same domain ontology as a reference. To aid 
a domain novice, we also provide the user with navigable tooltips 
that provide concept explanations that link to external references. 

We illustrate the utility of ConceptScope by building a prototype 
application1 that visualizes computer science-related documents 
such as research abstracts and articles using the Computer Sci-
ence Ontology (CSO) as its reference. Through a set of use-case 
scenarios, we highlight the navigation, exploration, and compari-
son functions aforded by the technique, and discuss its extension 
to other domains and scenarios. We also present a brief compar-
ison of ConceptScope with DocuBurst [8] through a qualitative, 
between-subjects study. Based on our observations, we fnd that 
ConceptScope’s ontology-based visualization and its grouping of 
concept-related word clouds in the Bubble Treemap helps partic-
ipants defne and contextualize concepts, and explore new con-
cepts related to a given concept. However, ConceptScope’s domain-
dependency makes it less suitable for viewing and comparing doc-
uments that span domains. 

2 RELATED WORK 
This paper proposes an interactive knowledge-based overview rep-
resentation of text content. For our approach, we draw from existing 
techniques to identify themes or topics in the text, and visual rep-
resentations of these topics. In this section, we outline existing 
work in this area and explain our reasoning behind our choice of 
inspiration from the existing work. 

2.1 Thematic Visualizations of Document 
Content 

Initial approaches to providing overview visualizations of document 
content used metrics such as sentence length, Simpson’s Index, and 
Hapax Legomena as “literature fngerprints” to characterize docu-
ments [26]. This approach was later used to create a visual analysis 
tool called VisRA [34] that helped writers review and edit their 
work for better readability using these representations. Among less 
abstract representations, Wordle [45] is the most popular. Wordle 
represents a text corpus as a cluster of words called a word cloud, 
with each word scaled according to its frequency of occurrence in 
the text. This idea is adapted to other techniques to characterize 
document content and structures within text, such as the Word 
Tree [48], which aggregated similar phrases in sentences in a text, 
Phrase Nets [44] that visualized text as a graph of concepts linked 
by relationships of the same type found in the text, and Parallel 
Tag Clouds [9], that show tag clouds on parallel axes to compare 
multiple documents.

When examining multiple text documents, it is important to 
identify the various types of connections between them. One of the 
most well-known tools used to identify inter-document connections 
is Jigsaw [41], which uses names, locations, and dates to show list, 
calendar, and thumbnail views of multiple documents. While Jigsaw 
simply uses text occurrences to form the connections, more sophis-
ticated approaches have since been proposed. Tiara [49]—another 

1The source code of our prototype system is available at https://github.com/ 
Xiaoyu1993/ConceptScope/ 

system designed for intelligence analysis—uses topic modeling with 
a temporal component to highlight the change in document themes 
over time. ThemeDelta [15] allows thematic comparison between 
multiple documents (or similar documents over time) by combining 
word clouds with parallel axis visualizations. 

More recently, topic modeling-based approaches have been incor-
porated to provide thematic overviews of text content. For instance, 
TopicNets [18] uses a graph-based representation where both doc-
uments and topics are nodes and links exist between documents 
and topics, thus serving to form clusters of thematically-related 
documents. Serendip [2] refnes this idea and provides a multi-scale 
view of text corpora. It uses topic modeling along with document 
metadata to view patterns at the corpus level, text level, and word 
level. Oelke et al. [35] use a topic model-based approach to compare 
document collections, using what they call a “DiTop-View” with 
topic glyphs arranged on a 2D space to represent the document 
distribution. ConToVi [12] is a more recent work that uses topic 
modeling on multi-party conversations to reveal speech patterns 
of individual speakers and trends in conversations. While topic 
model-based approaches are useful for identifying themes within 
collections of documents, a knowledge-based approach requires 
the use of human-organized representations of information, which 
are discussed in the following section. 

2.2 Knowledge-Based Visualizations 
As structured knowledge representation models [16], ontologies 
are widely used in the feld of medicine/biology [16], engineer-
ing [36, 51], sociology [22], computer science [42], and so on. Achich 
et al. [1] review diferent application domains and generic visual-
ization pipelines of ontology visualization. 

According to various application felds and utilizing purpose, 
there are multiple methods to visualize the knowledge stored in 
an ontology. The review of Katifori and Akrivi [25] systematically 
categorized these methods according to the dimension of the vi-
sualization. Ten years later, Dudáš et al. [11] further extended this 
work by adding more recently emerged visualizations. Among these 
visual encodings, we fnd inspiration in the matrix view of Node-
Trix [22], the sunburst view of PhenoBlocks [16], and the context 
view of NEREx [13]. 

Our work is inspired by DocuBurst [8], which was the frst 
visualization from the point of view of a human-organized structure 
of knowledge. DocuBurst uses hyponymy, or “is-A” relationship in 
the English lexicon to identify hierarchical relationships within a 
given document, or when comparing two documents. The hierarchy 
is visualized as a sunburst diagram supported by coordinated views 
of text content and keyword-in-context views. While DocuBurst 
uses WordNet—a lexical database of the English language—as its 
reference, we use domain ontologies as ours, in order to provide a 
more focused, domain-specifc overview of documents. 

2.3 Hierarchical Layouts 
Visualization of a knowledge-based document overview needs to 
incorporate the hierarchical information inherent to the knowledge 
base. While a tree is the common representation of such a hierarchy, 
it is usually more suitable for showing the structure rather than the 
content of the information presented. The most famous alternative 
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for representing hierarchical information is the TreeMap [38], a two-
dimensional, space-flling layout that represents hierarchy through 
nesting and a second quantity such as percentage contribution to 
the whole as the area. Alternatives to TreeMaps such as Icicle plots 
and Radial TreeMaps [4] and Sunburst diagrams [40] have since 
been proposed and incorporated into standard visualizations of 
hierarchies. DocuBurst [8] referenced in the previous section uses 
the Sunburst diagram as its hierarchical visualization. 

While the original TreeMap has aforded enough space in the rep-
resentation to portray content, it often comes at the cost of some loss 
of detail in the hierarchy. Alternatives such as circle packing [47] 
and more recently, Bubble Treemaps [17] have been proposed to 
address this issue. We incorporate the Bubble Treemap into our 
design for its relative compactness compared to circle packing, and 
its use of space that allows for some content representation. 

3 REQUIREMENTS AND DESIGN 
In this section, we break down our overall need to provide a knowledge-
based overview of document content into specifc requirements to 
inform the design of ConceptScope. We apply Collins et al.’s [9] 
question “What is this document about?” to the general “distant 
reading” tasks for both single text analysis and parallel text analysis 
posed in Jänicke et al. [24], typically addressed using intrinsic text 
properties such as entity/location occurrences, text frequencies, etc., 
but not domain knowledge. Our requirements stem from exploring 
tasks of hierarchical overview, document comparison, and concept 
exploration using a knowledge base as reference. 

R1 Provide Conceptual Overview: When reading a long 
document from an unfamiliar domain—such as an academic 
paper—the reader can beneft from a high-level overview of 
the information provided. While word clouds can provide a 
simple overview of the text in the document, a lack of un-
derstanding of the technical terms might hinder the reader 
in understanding the overview representation. Instead, an 
overview that stems from a fundamental categorization of 
the domain itself—as represented by the hierarchical orga-
nization of concepts often available in an ontology—can 
provide an overview that is accessible to both novices and 
experts in the domain. 

R2 Reveal Contextual Information: The document text and 
the ontology do not always overlap. From the point of view of 
the ontology, the document contains non-relevant informa-
tion, but information nevertheless important for the reader. 
For instance, a research paper introducing a new search algo-
rithm can introduce several concepts in the knowledge base 
of search algorithms. The paper would also make arguments 
for and against certain algorithms. The reader may beneft 
considerably from the structure and content of these argu-
ments, which are lost if the overview visualization focuses 
solely on the ontological components. A way to provide the 
contextual information surrounding these concepts is thus 
needed. 

R3 Support Exploration of New Knowledge: When explor-
ing a concept that is a sub-domain of a domain that is only 
partially known to the reader, they may be interested in 

other sub-domains of the domain. For example, if the term 
“quicksort” appears in an algorithm paper, the reader might 
want to know of other sorting algorithms such as “bubble 
sort” and “merge sort”. They may also want to learn about 
related terms such as “divide and conquer” and “time com-
plexity”. These new terms may not appear in the document 
text, but forms an essential component of knowledge that 
extends from—and aids the understanding of—the core con-
cept (i.e. quicksort). We thus need ways to enable users to 
access information from the ontology that is related to the 
concept of interest. 

R4 Support Multi-document Comparison: Document com-
parison is a common requirement that emerges from the 
creation of visual overviews of documents [8]. In the case of 
our scenario, the comparison is likely to be conceptual: to get 
a quick comparison of concepts that are common to multiple 
documents, and those that are unique to one. The reader 
may also want to simply compare the diferences between 
the information provided in two documents. While docu-
ments such as academic papers may contain an abstract that 
summarizes the main content of the article, it may not be 
sufcient enough to cover all the concepts that are covered 
in the papers, not to mention the similarities and diferences. 
Therefore, our tool should be able to provide visual support 
for users to compare and analyze the conceptual structure 
and content between two or more documents. 

4 IMPLEMENTATION 
In order to provide the knowledge-based conceptual overviews of 
a given document, an appropriate mechanism is needed to parse 
the document and compose queries to the reference ontology. An 
appropriate representation of the concept needs to be automati-
cally generated in a way that refects its hierarchy in the domain 
ontology as well as its occurrence in the document. To achieve this, 
we need to incorporate techniques from multiple areas including 
natural language processing, ontology querying, and information 
visualization. Fig. 1 shows the framework of assembling them into 
a pipeline and the section number describing the corresponding 
technical details. 

4.1 Generating Query Candidates 
Ontology queries are typically performed using SPARQL (SPARQL 
Protocol And RDF Query Language) [46], which typically use 
“triples” (subject, predicate, and object) or parts thereof. In our case, 
trials showed that an exact triple was unlikely to be constructed 
from the document, nor was it deemed necessary. Instead, it was 
more important to have the subjects or objects be specifc terms 
that are likely to be present in the ontology. We construct these 
queries from the document with a sentence-level granularity. In 
order to construct the query terms, we use two approaches: noun 
chunking, and n-gram identifcation. 

Noun chunking is the process of extracting subsets of noun 
phrases such that they do not contain other noun phrases within 
them [6]. This allows us to identify specifc terms that may be rel-
evant to a domain ontology. For instance, when referencing the 
computer science ontology, terms such as “object-oriented program-
ming” and “local area network” are much more meaningful than 



CHI ’21, May 8–13, 2021, Yokohama, Japan Xiaoyu Zhang, Senthil Chandrasegaran, and Kwan-Liu Ma

Extract 
candidate 

word/phrases

Find related 
concepts

Update 
Visualization

Construct 
concept tree

Concept 
Query

Domain-Specific 
Ontology

Generate 
Recommendation 

Information

DBPediaWordNet

Original 
Document 

Text

Noun 
Chunking

N-gram 
Model

Document Automatic 
process

NLP 
Model

Ontology 
/ Corpus Input

LEGEND

DBPedia
Spotlight

Split 
sentences

SPARQL SPARQL

SPARQL

Bubble 
Treemap

Query
Similarity

Figure 1: Data processing pipeline for ConceptScope.
the individual words that make up these terms (“local”, “object”,
or “area”). For this reason, we also do not resort to stemming or
lemmatization as they change the morphology of the word (e.g.,
“oriented”, if lemmatized to “orient”, forms “object-orient program-
ming”) which renders the noun chunk invalid as a query candidate.
Noun chunks can also include leading or trailing stop words, which
are trimmed in order to generate the query candidates.

Noun chunking can produce phrases that contain query candi-
dates but are not query candidates themselves. For instance, a paper
about animation may include multiple variances of animation like
“2D computer animation”, “stop-motion animation” and “animated
transition”. Some of these may appear within noun chunks, but not
by themselves. To identify such cases, we identify groups of words
that commonly occur together in the document as n-grams.

4.2 Mapping Queries to Concepts
Once the query candidates are identified, the next step is to map
these candidates to the corresponding concepts in the domain on-
tology of interest. This involves two steps: (1) perform identical
matches, i.e. concepts that correspond exactly to those in the on-
tology, and (2) reduce the number of “failed” matches, i.e. concepts
that are related but not present in the ontology. Step 2 is often
necessary as domain ontologies are not all uniformly mature. For
instance, Computer Science Ontology is not as well-populated as,
say, medical or biological ontologies such as the human phenotype
ontology.

The two steps—accurate matching and fuzzy matching—are illus-
trated in lines 8 through 15 in Algorithm 1. For any given candidate,
we first look for an accurate match in the domain-specific ontology.
We then construct a dictionary that includes all of the concepts
in the ontology for an effective search. However, the number of
concepts that can be directly detected by accurate matching is small.
This is because of the mismatch between specific forms in which
a concept is listed in the ontology and its many variations in the
document. For instance, “object-oriented programming” may be
the exact match in the ontology, but it might appear in the text as
“object-oriented approach” which is clearly related but cannot be

identified with an accurate match. In order to solve this problem,
we introduce a fuzzy match.
Algorithm 1 Detect CSO Concepts in Document

Input: document text strinдDoc
Output: concept dictionary dictConcept
1: listSent ← Split (strinдDoc)
2: modelNGram ← TrainNGram (listSent)
3: dictConcept ← ∅
4: for strinдSent in listSent : // iterate over each sentence of the

document
5: listNGram ← modelNGram (strinдSent) // identify initial

query terms
6: listChunk ← NounChunkinд (strinдSent) // identify addi-

tional query terms
7: listCand ← listChunk ∪ listNGram
8: for strinдCand in listCand : // iterate over each candidate

query term
9: if QueryCSO (strinдCand) , ∅: // accurate matching
10: dictConcept ← dictConcept ∪QueryCSO (strinдCand)
11: else: // fuzzy matching
12: f uzzyCand ← DBpediaSpotliдht (strinдCand) // get

candidate DBpedia concepts
13: f uzzyCand ← Filter (f uzzyCand, threshold) // filter

candidate DBpedia concepts according to similarity
14: if QueryCSO (f uzzyCand) , ∅: // link the filtered

DBpedia concepts back to CSO concepts
15: dictConcept ← dictConcept∪QueryCSO (f uzzyCand)

The goal of fuzzy matching is to match the candidate to a concept
that is very close to but not exactly equal to the candidate. In our
prototype system, we use the computer science ontology (CSO)
as the domain-specific ontology. The CSO also incorporates links
of the form “sameAs” (http://www.w3.org/2002/07/owl#sameAs),
that connect to DBPedia [29], a broader, but less strictly-defined
and less domain-specific ontology. We use these links and leverage
the DBpedia Lookup Service [21] to find related DBpedia concepts
and link them back to CSO. After checking the semantic similarity
between the CSO concept detected in this way and the original
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candidate query term using the Wu-Palmer similarity measure 
ofered as a default function in WordNet [14], we add the concept to 
the dictionary if that similarity is above a threshold. This threshold 
is currently determined by trial and error. 
4.3 Hierarchy Reconstruction 
The concept dictionary constructed thus far does not yet incor-
porate hierarchical information. In order to retrieve and store the 
hierarchical information from the ontology, we query the paths 
from every detected concept to the root of the ontology and use 
them to restructure the concept dictionary as a tree. The fnal out-
put of this algorithm—the concept tree—can be directly converted 
to a JSON fle and used to automatically render the visualization. 

5 CONCEPTSCOPE INTERFACE 
In this section, we discuss the visualization design and the interac-
tions supported in ConceptScope. 
5.1 Visual Encoding 
We choose Bubble Treemaps proposed by Görtler et al. [17] as our 
primary visualization. This visualization is originally designed for 
uncertainty visualization, but we fnd it suitable for our application 
in terms of hierarchy representation and space organization (R1). 
We use the original layout algorithm of the Bubble Treemap, but 
adapt the visual encoding and interaction strategies to meet our 
design requirements. 
5.1.1 Hierarchy Presentation. In a Bubble Treemap, the deepest 
levels of the hierarchy are represented as circles, with successively 
higher levels forming contours around their “child” levels. We use 
the circles to represent the terms that appear (or have correspond-
ing synonyms) in the original document as well as in the ontology. 
The outer contours represent concepts that do not explicitly appear 
in the document but still represent parent concepts from the ontol-
ogy. These parent concepts are identifed using the ontology query 
process demonstrated in Algorithm 1. The outermost contour forms 
the “root” of the ontology, with successive inner contours repre-
senting its child concepts. For example, in the computer science 
ontology (CSO) [37] we use for our case studies, the term “computer 
science” is the root concept in the ontology. 

Inner Circles. The function of the innermost circles—representing 
concepts that are present in the ontology and in the document— 
is to provide a clear representation of the terms that are directly 
connected to the document. The size of the circles is proportional 
to the frequency with which the corresponding term appears in 
the document. The fll color of a given circle corresponds to the 
highest “parent concept” it belongs to, just below the root. Although 
the Bubble Treemap layout already gathers together circles that 
share the same parents, we visually reinforce such relationships 
by assigning the same color to circles with the highest common 
ancestor (besides the root). These “highest parent concepts”, divide 
the root term into several subclasses and help users to better grasp 
the various areas the document covers. In order to make sure the 
circles’ colors are perceptually uniform, we create the isoluminant 
palette [27] from the CIELAB color space to ensure perceptual 
uniformity between the concepts shown. 

Surrounding Contours. The contours surrounding the circles 
show hierarchical relationships between the concepts that occur 
in the document. After exploring several encoding options for the 

contours to best represent related concepts while highlighting hier-
archies, we chose fll colors of decreasing luminance to represent 
“deeper” contours in the hierarchy. 

5.1.2 List Presentation. Efective as the Bubble Treemap is, it is not 
intuitive enough for the users to understand and grasp all necessary 
information at a glance (R1). Therefore, we augment the visual-
ization with a multi-function widget (Fig. 2 (e)) which combines 
concept list, legend, and bar charts representing term frequencies 
to solve this problem. Inspired by scented widgets [50], the multi-
function widget presents important supporting information in a 
compact representation. As a concept list, this tool represents every 
concept detected in the currently-loaded document(s) as a list item, 
the background color of which is the same as the corresponding 
concept circle(s) shown in the Bubble Treemap. We group the con-
cepts sharing the “highest super topic” together, with an additional 
list item showing the common “highest super topic” of each group. 
This concept list also acts as a legend showing the connection be-
tween each color and their corresponding “highest super topic”. 
We also attach a sparkline for each list item to show the distribu-
tion of current concept across multiple documents (when multiple 
documents are loaded). 

5.1.3 Incorporating Word Clouds. An unlabeled Bubble Treemap 
can be too abstract a representation for the user to comprehend. 
On the other hand, labeling every concept may result in a cluttered 
view which would also make comprehension difcult. We thus 
provide three levels of labeling for the concept: unlabeled (if the 
concept circle is too small), labeled (if the concept circle is large 
enough to ft its corresponding concept name), and labeled with 
context (where a word cloud of related terms from the document is 
combined with the concept label) (R2). The interactions to control 
these views are discussed in the following section. 

5.2 Interaction 
ConceptScope provides linking between views and semantic overview 
and detail views to help analyze the document(s) and its concepts. 
These interactions support two modes of document analysis: ex-
ploration and comparison. We will frst describe the overview and 
detail interactions and follow them with the modes of analysis. 

5.2.1 Overview+Detail Interactions. To eliminate the potential con-
fusion caused by the users’ unfamiliarity with the Bubble Treemap, 
we introduce interactions to acquaint them with the visual schema 
and provide details on demand [39]. The Bubble Treemap provides 
a compact view of the domain-relevant concepts, their hierarchical 
structure in the ontology, as well as their context in the original 
document. In order to make this compact representation easier to 
understand, we design two interactions to present information that 
the user may seek: (1) a level slicer to “slice” the Bubble Treemap 
at any level to examine parent concepts, and (2) semantic zooming, 
which allows the user to zoom in to a concept circle to examine its 
corresponding word cloud (described in Sec. 5.1.3). The users can 
choose and combine these two tools according to their preference. 

The Level Slicer is designed to help novice users quickly build 
a connection between the nested layout of the Bubble Treemap and 
the hierarchical structure of ontology (R2, R3). This tool allows the 
user to choose the level of the parent concept that they want to see 
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Figure 2: The ConceptScope interface representing two research papers discussing animation. The Bubble Treemaps (a) provide 
overviews, with the one on right showing a paper covering more specifc topics than the one on the left. Supporting transcript 
(b) and text (c) views, along with a level slicer (d) and a list presentation (e) allow exploration and comparison between the 
documents, while a tooltip (f) allows examination of a concept of interest. 
on the screen by sliding the slider bar. When the view initializes, all 
levels of the Bubble Treemap are shown to provide an overview, but 
the labels corresponding to parent contours are concealed. Once 
the “child” concepts are sliced away by the slicer, the corresponding 
labels of the newly exposed parent concepts are made visible. This 
tool facilitates users to inspect any cross section from the whole 
hierarchical structure that interests them. 

Semantic Zooming is designed to provide diferent granulari-
ties of information based on users’ needs (R2, R3). As explained in 
Sec. 5.1.3, users may see three levels of detail for the same concept 
circle: unlabeled, labeled, and labeled with word cloud. When users 
zoom in and out of the graph, the size of every circle changes and 
its appearance transforms among the three based on the available 
space inside it. 

ConceptScope also reveals more information about a concept 
including its thumbnail, defnition, related concepts, and its context 
in the text. These views allow the exploration of concepts that do 
not themselves occur in the document but are related to the ones 
that do occur (R3). 

5.2.2 Exploration Mode. The exploration mode—meant for inspect-
ing a single document—provides conceptual overview+detail rep-
resentations of the document using the ontology as a reference. 
With the static Bubble Treemap, it is almost impossible for novice 
users to build the connection between a circle in the graph and a 
word/phrase in the original text. Users might want to explore related 
knowledge in the domain ontology about the concepts shown in the 
Bubble Treemap. Following the information-seeking mantra [39], 
we design a set of small widgets that can be easily evoked and 
interacted with to the Bubble Treemap. 

To connect the Bubble Treemap and the original document (R2), 
we create a high-level transcript view and a raw text view. The high-
level transcript view can be seen as a “minimap” of the document, 

with each sentence represented by a series of horizontal lines scaled 
to sentence lengths (Fig. 2 (b)). In the raw text view, the raw text 
is shown to provide a convenient context acquisition (Fig. 2 (c)). 
These two views as well as the Bubble Treemap view are fully 
coordinated, so that interacting with one view highlights related 
information in the other views. For example, if the users hover over 
a circle representing a concept in the Bubble Treemap view, the 
lines corresponding to the sentences that contain this concept in 
the transcript view and the text of the sentence in the raw text view 
are also be highlighted. 

Interacting with a concept circle also reveals a tooltip that shows 
the concept defnition, a link to the relevant concept page on DBPe-
dia (R3)(Fig. 2(f)), and a thumbnail (if available in the corresponding 
DBPedia entry). The tooltip also provides links to other related con-
cepts that may not be present in the document, to provide context 
from an ontology point of view. 

5.2.3 Comparative Mode. The comparative mode assists users in 
comparing multiple documents and explore conceptual similarities 
and diferences between the documents (R4). As the name suggests, 
loading multiple documents creates multiple, side-by-side Bubble 
Treemap views, one for each document. Concepts common to two 
or more documents are encoded in the same color across the Bubble 
Treemaps. 

The comparative mode provides similar interactions as the ex-
ploration mode. In addition, the sparklines mentioned in Sec. 5.1.2 
can provide users with a quick overview of the relative frequency 
with which each concept occurs across the documents. The users 
can compare the concepts that interest them by hovering or search-
ing. If they know where a concept is located in any of the Bubble 
Treemaps, the user can simply hover on the corresponding circle or 
contour, which highlights the concept—if available—across all the 
Bubble Treemaps. They can also directly search for the concept in 
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the search feld (top right corner in Fig. 2) to highlight all relevant 
circles and contours across the Bubble Treemaps. The users can 
thus quickly get an idea about where and how their concepts of 
interest are distributed across diferent documents. 

The switchover between exploration mode and comparative 
mode does not require explicit user operation. Loading a single doc-
ument shows the exploration mode while loading additional doc-
uments sets ConceptScope to comparison mode. The exploratory 
features are always available regardless of the number of docu-
ments, as comparison also requires a degree of exploration. We also 
provide a “switch” alongside the level slicer in Fig. 2(d) for semantic 
zooming to make sure the users can explore or compare the Bubble 
Treemap(s) at whatever number of levels and size they want. 

6 USE-CASE SCENARIOS 
We briefy illustrate the use of ConceptScope for exploring and 
comparing documents with two use-case scenarios: exploring an 
academic paper and comparing the transcripts of three TED talks. 

6.1 Exploring an Academic Paper 
We frst use ConceptScope to visualize an academic paper [10] on 
automatic infographics generation, published in IEEE VIS 2019. To 
ensure the accuracy of our natural language processing components, 
we only keep the natural-language parts of the original paper and 
remove text in references, tables, formulae, and fgure labels. We 
use the computer science ontology (CSO) as the reference ontology 
for this paper. Fig. 3 shows the visualization, with the same paper 
shown in DocuBurst [8] for reference. 

The Bubble Treemap shows over 30 computer science concepts 
directly or indirectly mentioned in the paper (requirement R1). 
Inspecting the concept list on the left, we see that the highest par-
ent concepts of the ones identifed in the document range from 
“human-computer interaction” to “artifcial intelligence” to “com-
puter system”. Zooming in, we click on the bubble representing 
“OCR” and a tooltip pops up with the defnition of this concept as 
well as the recommendation of concepts related to this one (R3). 
We examine the defnitions and where the concept appears in the 
word cloud to see that it points to the use of OCR to identify key 
text in existing infographics (R2). We also see that these and most 
concepts under “artifcial intelligence” appear under the related 
work section. We thus infer that these concepts might only be men-
tioned as background or references to other work, and not as a 
fundamental contribution of the paper. 

Figure 3 (right) shows the DocuBurst visualization using the 
root “message”. We notice that almost all computer-science-related 
concepts identifed by DocuBurst can be detected by ConceptScope 
as well. In terms of space efciency, DocuBurst has the advantage of 
providing a more compact visualization with its Sunburst diagram. 
However, DocuBurst ofers fewer options for contextual views. In 
ConceptScope, the word clouds in each concept circle provide a 
contextual overview and aid concept exploration outside the realm 
of the document with our detail-info tooltip of concepts and the 
links to DBPedia. 

6.2 Comparing Transcripts of TED Talks 
To illustrate multi-document comparison, we load the transcripts 
of three TED Talks [7, 23, 30], all of which are tagged under the 

“computers” category on the TED webpage. Fig. 4 shows the distri-
bution and depth of concepts, along with information about each 
talk. 

Loading all three documents into ConceptScope creates three 
panels (similar to that shown for two papers in Fig. 2), each con-
taining the Bubble Treemap view, transcript view, and raw text 
view for the corresponding transcript. The Bubble Treemap imme-
diately illustrates the diferences and similarities between concepts 
across the three talks, which can further be explored as all three 
views are coordinated. We notice that all three of the talks mention 
concepts under the parent topics of “internet”, “computer secu-
rity” and “artifcial intelligence”. One reasonable explanation is that 
these topics cover many basic terms in computer science, so it is 
almost unavoidable to use them in a computer-science-related tech-
nical presentation. When inspecting the concept list and Bubble 
Treemaps, we notice that concepts that belong to “artifcial intel-
ligence” appear more in talk No. 2 and talk No. 3, which makes 
sense as the two talks have the additional tag of “AI” on the TED 
webpage. 

Talk No. 1 discusses the issue of privacy on online forums, and 
concepts of privacy and anonymity fall outside the current version 
of the computer science ontology. In addition, the talk does not 
delve deep into computer science concepts. This results in a Bubble 
Treemap that covers very few concepts. Talk No. 2 is delivered 
by a data scientist who talks about computer science concepts, 
specifcally “algorithms”, “machine learning”, and “deep learning”, 
which are refected in the Bubble Treemap. Finally, Talk No. 3 is 
presented by a philosopher who talks about broader implications 
of machine learning, also providing a historical perspective. This 
is refected in the Bubble Treemap, showing the broadest concept 
coverage of the three talks, with no one concept being too dominant. 

7 STUDY 
We conducted a controlled study to evaluate whether the visualiza-
tion & interaction design and the use of a domain-specifc reference 
ontology renders ConceptScope efective in exploring single docu-
ments or comparing multiple documents. Specifcally, we intended 
to understand whether ConceptScope was efective in helping users: 
(1) summarize the content of a document with a domain-specifc 
concept overview (R1); (2) glean what a document says about any 
given concept in the context of the document (R2); (3) become 
aware of new concepts and their connections (R3); and (4) discover 
enough similarities and diferences among multiple documents (R4). 
In order to provide a baseline, we used DocuBurst [8], the popular 
content-oriented document visualization tool that provides a non-
domain-specifc overview of documents using the WordNet [14] 
taxonomy. We thus conducted a between-subjects study compar-
ing participants that used ConceptScope with participants that 
used DocuBurst. Please note that the generalizability of this study 
might be afected by the limited number of participants we could 
recruit and the diverse devices they used due to safety measures 
surrounding COVID-19. However, the way we report the insights 
were mainly based on patterns and not numbers, so the validity is 
not highly impacted by those factors. 
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(a) ConceptScope Interface (b) DocuBurst Interface

Figure 3: Overview of an IEEE VIS 2019 Paper [10] using ConceptScope (left) and using DocuBurst (right). 

The case for anonymity online

Speaker Profile: Organization founder
Tag: Internet origin stories
Duration: 11:09
# of Concepts: 7

What happens when our computer gets 
smarter than we are?
Speaker Profile: Data Scientist
Tag: Artificial intelligence
Duration: 16:03
# of Concepts: 13

The wonderful and terrifying implications 
of computers that can learn
Speaker Profile: Philosopher
Tag: Artificial intelligence
Duration: 19:17
# of Concepts: 12

Figure 4: ConceptScope visualizations comparing the transcripts of three TED Talks. The title of each talk is shown in red 
under each visualization, along with speaker profle and talk metadata. Also shown is the number of concepts from CSO 
found in each document. 

7.1 Participants 
We recruited 18 participants (10 female, 8 male) aged between 18 and 
44 years. The participants comprised 16 Ph.D. students, 1 undergrad-
uate student, and 1 employee of a technology company. Seventeen 
participants had computer science backgrounds, of which 12 spe-
cialized in visualization and HCI, 1 in high-performance computing, 
1 in natural language generation and multi-modal learning, while 3 
didn’t report their specialized feld. The one remaining participant 
had a design and education background, specializing in learning 
and user experience design. Two of the 18 participants reported 
themselves as native English speakers. 

7.2 Conditions and Task Design 
Most document visualization systems use either intrinsic statistical 
information such as topic models and word co-occurrences, or 
human-curated categories that do not scale to large knowledge 
bases (e.g. [33]). Per Kucher et al.’s survey [28], which is currently 
up to date2, DocuBurst is the only knowledge-based document 
exploration system. We thus chose DocuBurst as the baseline for 
our evaluation. 

DocuBurst provides an overview of documents based on the non-
domain-specifc “is-a” relationship in WordNet, while our prototype 
is based on domain-specifc ontologies, in this case, the Computer 
Science Ontology (CSO). We asked each participant to perform the 

2Text Visualization Browser: https://textvis.lnu.se/ 

https://textvis.lnu.se/
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same tasks using the interface assigned to them (ConceptScope or 
DocuBurst) and compared interaction and behavior patterns across 
participants. Participants were given time to familiarize themselves 
with their assigned interface. They were then asked to perform the 
following tasks: 

T1 Explore one single document: This task was divided 
into several sub-tasks, each aligned with a corresponding 
design requirement: (1) summarize the documents and pro-
vide relevant keywords (R1); (2) describe a specifed concept 
based on its usage in the document (R2); (3) select (from a 
list of description) the context in which a given concept is 
used in the document (R2); (4) defne several concepts before 
and after using the system, as well as rate confdence with 
the defnition (R3); (5) identify concepts in the document 
related to a given concept (R3); and (6) list the concepts 
(that the participants did not know before the study) in the 
document (R3). Participants were also asked whether they 
read the documents before the study to account for potential 
confounds. 

T2 Compare two documents: The participants were asked 
to compare two documents at a conceptual level (R4). There-
fore, they were asked to identify common and unique con-
cepts, as well as overall similarities and diferences between 
the two documents. Again, they were asked whether they 
read the documents before the study to eliminate bias. 

T3 Compare three documents: The questions that partici-
pants were asked to answer in this task were generally the 
same as task T2 but for three documents. One diference was 
that participants were suggested to “identify a theme and ex-
plain their diference within the theme” when identifying the 
diference between three documents. Since DocuBurst was 
not capable of comparing more than two documents, this 
task was only assigned to participants using ConceptScope 
in the study. 

In order to mirror participants’ regular reading experience, we 
chose computer-science related academic papers or technical re-
ports for all tasks of this study. For task T1 we used Munzner’s 
nested model for validating visualizations [32]. Task T2 involved 
two papers discussing animation techniques: the frst, a general 
evaluation of how animation could help users build a mental map 
of spatial information [5], while the other focused on the role of 
animation in dynamic graph visualization [3]. To alleviate partic-
ipant fatigue and manage their time, we chose to use relatively 
shorter transcripts of three 15–20 minute Ted Talks [7, 23, 43] in 
the “artifcial intelligence” playlist instead of academic papers for 
task T3. 

7.3 Study Setup 
We conducted the study remotely owing to safety measures sur-
rounding COVID-19. The participants were asked to access either 
of the tools from a remote server and participate in the study with 
their own machine and external devices. Fourteen of them used 
laptops with screen sizes ranging from 13 in. to 16 in. The other 5 
used monitors with screen sizes ranging from 24 in. to 32 in. Fifteen 

participants used the Chrome browser, 2 used Safari, while one 
used Firefox for the tasks. 

The setup, tasks, and durations were decided based on a within-
subjects pilot of the study described above with 2 participants: 
one native and one non-native English speaker. ConceptScope and 
DocuBurst employed diferent datasets in this study. The decisions 
to suggest time durations for the questions and to set up the fnal 
study as a between-subjects study were made based on the long 
duration of each session and on the participant’s fatigue toward 
the end of each session. 

7.4 Procedure 
Participants frst responded to an online pre-survey providing their 
demographic and background information. Once they had fnished 
familiarizing themselves with the interface, the participants per-
formed the tasks described in Sec. 7.2. Participants followed a con-
current think-aloud protocol while executing the tasks, with the 
moderator recording their verbalizations and their screen through a 
videoconferencing application. Finally, the participants were invited 
to fnish a brief survey about the tool and share their feedback about 
their experience with the interface, both as open-ended responses 
and on the NASA TLX scale [20]. 

8 RESULTS AND DISCUSSION 

8.1 General Behavior Patterns 
We categorized participants into two groups based on how they 
attempted to gather the information they needed to answer the 
questions, rather than how they used the tools in general. One 
group comprised participants that mainly used the visualization, 
and the other, those that mainly used the raw text display. Seven of 
the 9 participants who used ConceptScope primarily used the main 
Bubble Treemap visualization to glean the required information, 
while the remaining 2 relied more on the raw text reading from 
the document. In DocuBurst, only 5 of the 9 participants used the 
main Sunburst diagram as their main source of information, while 
4 chiefy relied on close-reading of the text. 

Participants using ConceptScope used the main visualization 
more than participants using DocuBurst. This was partly due to 
the raw text reading experience ofered by the two interfaces, and 
partly due to the ability of the visualizations and the knowledge 
base in conveying a relevant overview. In ConceptScope, documents 
were split into sentences and displayed in a relatively small vertical 
space (see Fig. 2c). Therefore, participants tended to read only a 
few sentences prior to and after the key sentence for a specifc task 
instead of going through larger blocks of text. As participant Pc7 
stated, “because my resolution is small and my mouse is sensitive, 
so when I move it jumps between the text very easily (in transcript 
view). And this box (the tooltip showing the corresponding sentence) 
doesn’t include the complete paragraph, so it’s easy to get lost...”. In 
contrast, DocuBurst showed text as paragraphs in a view that used 
more vertical space, such that users were able to read the sentences 
more easily. “One thing I like this system is when I click some words, 
they divide it as paragraph rather than the entire document...help me 
read more specifcally”, said participant Pd3. 
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When answering a given question, 7 of the 9 participants us-
ing ConceptScope searched or explored related information in the 
interface and summarized their fndings. The remaining 2 mainly 
attempted to recall the answer from earlier explorations and then 
referred to the interface to confrm. For DocuBurst, this distribution 
was 5 participants chiefy exploring the interface, and 4 chiefy re-
calling the answer. Compared to ConceptScope, more participants 
using DocuBurst answered questions from memory, almost equal 
to the number of participants who explored the visualizations to 
fnd answers. Participant comments indicated that they felt they 
might spend too much time in locating the required information. 
For instance, when trying to fnd common concepts between two 
documents (task T2), participant Pd9 who used DocuBurst com-
mented that “it is really hard to see all of them (words in the sunburst 
diagram). And I really wanna expand one of those, but then I’m not 
sure if it will cover all the things that I wanna see. . . . It’s hard to go 
back to where you came from”. Similar comments were also made 
by those participants using DocuBurst to frst gather information 
before answering the question. In this study, we did not screen 
participants based on document familiarity as their responses were 
valuable to us regardless of their prior knowledge of the document. 
We had 1 participant in each group (Pc9 and Pd5) who had read 
the document for T1. Pc9 answered questions faster than the other 
participants, while Pd5 used close reading rather than Docuburst’s 
Sunburst diagram to answer questions, saying, “I don’t know how 
to use this tool to help me read this paper.” 

8.2 Task-Level Observations 
We further separate task-wise participant behavior based on how 
they achieved specifc objectives within tasks. This behavior was 
not restricted to any one task; rather, it characterized how certain 
participants chose to access information across tasks. 

Document Sensemaking: When exploring the full document 
(T1), participants across both interfaces attempted to use the visual-
ization to quickly get a sense of what topics were addressed in the 
document. Ten of the 18 participants (6 using ConceptScope, 4 using 
DocuBurst) were able to quickly identify that the document was an 
“InfoVis paper”. Certain participant behaviors were similar across 
both interfaces. Most of them explored the document using the 
main visualization frst, and only later resorted to close reading of 
the text. Even after recognizing it as an academic paper, only 2 par-
ticipants relied on the paper structure (e.g., abstract/introduction) 
to get a sense of the document. 

However, DocuBurst users were more easily overwhelmed by 
the large number of words in the Sunburst diagram, many of which 
(they felt) were not closely related to the main theme of the docu-
ment. Participant Pd3 observed, “some words maybe appear really 
frequently, but it’s actually not very important ... it’s just because it’s 
used very frequently by any document.” Another participant (Pd2) 
found it difcult to organize the words into themes, saying “it is 
a little bit hard to place the information together, because you don’t 
know what the correlation is between (among) these things (i.e. the 
concepts provided)” 

Participants’ perception of the document when using ConceptScope 
was largely infuenced by the extent of overlap between the docu-
ment text and the ontology. For instance, the concept “visualization” 

being well-defned in the ontology, was successfully identifed by 8 
out of 9 participants in T1. However, the concept “animation” was 
not as well-defned in CSO, as a result of which 5 out of 9 partici-
pants failed to determine that task T2 involved papers discussing 
animation. In comparison, 8 of the 9 using DocuBurst were able to 
successfully identify the animation theme. 

Concept Sensemaking: When making sense of a concept (R2, 
R3), most of the participants chose to locate it in the main visu-
alization frst, and only then looked at the other views to answer 
relevant questions. To locate a specifc concept in the visualization, 
participants’ strategies varied based on the solutions available in 
the interface and their preference. 

In ConceptScope, 5 of the 9 participants used the search feature, 
while the others preferred to visually search the concept in the 
interface, i.e. looking it up in the concept list or directly checking 
the Bubble Treemap. Since DocuBurst did not feature a search box 
available, all 9 participants set the concept to locate as the root word. 
However, eight of the 9 participants failed with this strategy and 
had to set alternatives of the original concept (e.g. a parent concept, 
a synonym, or a substring of the target concept) as root words. 
One unique strategy that at least 3 participants used to search in 
DocuBurst was to start from higher-level concepts and dive deeper 
towards their targets in the sunburst diagram. Once again, their 
success depended on their choice of parent concepts: they often 
lost their way as they could not retrace their steps. In comparison, 
participants found it more straightforward to locate concepts in 
ConceptScope. 

While participants using either interface chiefy attempted to 
defne a concept (R1) by referring to the context of its use (R2), 
their approach to identify the context was diferent across the in-
terfaces. In ConceptScope, the concordance view was used the 
most, with all 9 participants using this view to identify the con-
text at least once. This was followed by the close reading of the 
transcript (used by 7 participants), with the word cloud being used 
by 6 participants at least once. Although DocuBurst also provided 
a word cloud, only 2 participants used it for context. This was 
likely because DocuBurst’s word cloud was not organized into con-
cepts as done in ConceptScope, and furthermore, the word cloud in 
DocuBurst—designed to supplement the main visualization—only 
featured proper nouns that would not otherwise be visualized in 
the Sunburst diagram. To fnd related concepts (R3), participants 
using ConceptScope chiefy referred to the Bubble Treemap while 
DocuBurst users referred to the raw text view. 

Multi-document Comparison: We observed participants’ be-
havior when comparing documents both at the conceptual level 
and the full-text level (R4). Participants using ConceptScope used 
several techniques including highlighting concepts in the Bubble 
Treemap, highlighting concepts in the concept list, checking the 
relevant sparklines, and comparing the word cloud within a con-
cept group. Five of the 9 participants reported that these techniques 
were sufcient to answer all of the questions in tasks T2 and T3. 
Participant Pc1 observed, “just looking at this (the Bubble Treemap 
for the third document in T3), you can see some colors are diferent, 
means some diferent concepts exist here... you can immediately see it”. 
When the visual clues were not enough to aid them to summarize 
the similarities or diferences between/among the documents, the 
other 4 participants resorted to close reading of the document. 
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In contrast, most of the participants using DocuBurst mentioned 
that the visualizations and interactions were not sufcient to help 
them compare the concepts or full text of the documents. Partici-
pant Pd5 commented, “the visual encoding (distinguishing concepts 
between documents) is confusing to me”. Participant Pd9 felt “it is 
really hard to see all of them (concepts)” when they tried to iden-
tify unique concepts of one document. Both participant Pd1 and 
Pd8 were distracted by such general words as “part” and “paper”, 
because they were the only few words marked as being shared by 
both documents. As a solution, they chose to read the document 
text closely to make sure their responses to the questions were 
accurate enough. 

8.3 Overall Feedback 
Fig. 5 shows the diference in participant experience for the study 
between ConceptScope and DocuBurst. We can see from the fgure 
that participants’ experience was more or less similar between the 
two interfaces with the exception of frustration: participants using 
ConceptScope were less frustrated (Md = 2, IQR = 1) than those 
using DocuBurst (Md = 4, IQR = 4). Observation and feedback 
indicated that participants using DocuBurst found themselves dis-
tracted by less relevant concepts. Participant Pd3 stated that the 
interface didn’t provide “important” keywords as expected: “When 
I click ‘person’... it (the corresponding sector in sunburst diagram) 
is really big, means that it is important. However, I don’t think it 
is important based on what I’ve seen”. Participant Pd4 mistook the 
document in task T1 for a medical paper and participant Pd9 mis-
took those in T2 as related to chemistry, based on their (mistaken) 
interpretation of proper nouns in the word cloud. 

As general feedback, most participants using ConceptScope con-
sidered it suitable to provide an overview for unfamiliar documents, 
while those using DocuBurst felt it was better suited as a supplemen-
tary tool when exploring familiar documents. Typical comments 
about ConceptScope included “these multiple views are nice and 
easy to understand”(participant Pc2), “it seems like a pretty useful 
tool especially for exploring large set of documents to get an idea 
of what the main topics are, what kind of researchers are active” 
(Pc7). With DocuBurst, participant Pd2 suggested that “the tool 
should be used as a supplementary tool ... doesn’t help too much 
with understanding the document”. In addition, participants also re-
fected that the learning curves for both tools were relatively steep. 
“It was hard at the beginning, but not so hard later”, commented 
participant Pc4. 

When regarding the features of each interface, the Level Slicer 
(Sec. 5.2.1) in ConceptScope was marked as least useful by partic-
ipants. Participant Pc1 observed that “the level slicer is probably 
useful if the document is extremely complex ... but this dataset is 
relatively simple”. Three of the participants thought the list view 
(Sec. 5.1.2) was the most useful feature. We also observed 7 par-
ticipants used it for comparison tasks and 4 participants used it 
to search target concepts in the study. Only 2 participants rated 
the Bubble Treemap (Sec. 5.1.1) as the most useful feature, while 
one marked it as the least useful one. Yet, we did see 7 participants 
used it as their major source of visual clues when comparing mul-
tiple documents. It is likely that the participants used the Bubble 

Treemap as providing supplementary information to the concept 
list view, which they found to be most useful. 

9 LIMITATIONS AND FUTURE WORK 
Based on participant behavior and feedback, we illustrate that 
ConceptScope’s ontology-based visualization and grouped word 
clouds help participants defne and contextualize concepts, and— 
for a given concept—explore other concepts related to it. On the 
other hand, ConceptScope’s domain dependency makes it less suit-
able for reviewing text that spans multiple disciplines. In contrast, 
DocuBurst’s domain-agnostic reference (i.e. WordNet) allows it 
to be applied more widely, though the overviews are less useful 
when highly domain-specifc content is visualized. In addition, 
DocuBurst’s interface is more amenable to close reading of the 
document. 

Our study can be considered preliminary, as we were interested 
in participants’ exploratory behavior, insights, and comprehension. 
We plan to conduct longitudinal studies to evaluate the utility of 
ConceptScope as a tool for preliminary review and further explo-
ration before and after close-reading of documents, and examine 
additional encodings such as position constancy of concepts in the 
bubble treemap for document comparison. 

In the future, we plan to address issues relating to the ontology 
lookup. One main disadvantage is the dependence on ontologies 
that may or may not be mature. We currently use DBPedia to 
“broaden” our lookup, but using DBPedia detracts from the strict 
defnitions and relationship requirements to which domain ontolo-
gies need to adhere. Our Bubble Treemap visualization as well as 
our ontology lookup can currently support only one ontology. This 
makes it difcult to view documents of an interdisciplinary nature. 
We also intend to explore the application of our approach to real-
time visualizations of online forums or technical communication 
in the form of emails or instant messengers. 

10 CONCLUSION 
In this paper, we proposed ConceptScope, an interface that aids a 
knowledge-based exploration and comparison of documents based 
on a reference domain ontology. We present the use of a Bubble 
Treemap visualization as the primary overview visualization to 
show the distribution of concepts for a document of interest, and 
describe our approach to translate document content into appropri-
ate queries that best refect the concept spread and show their hier-
archical relationships in the domain ontology. We illustrate our ap-
proach using the Computer Science Ontology as our reference. We 
demonstrate the use of ConceptScope for document exploration and 
comparison, and then evaluate ConceptScope against DocuBurst, 
the only other overview visualization based on human-curated 
knowledge. We fnd that ConceptScope ofers greater advantages 
in terms of domain-specifcity, contextual views, and comparison 
of multiple documents, but not for close reading of documents, 
or documents spanning multiple domains. DocuBurst’s domain-
agnosticism makes it more suitable for a general-purpose document 
exploration tool spanning multiple domains, but less so for multi-
document comparison or in-depth, domain-specifc exploration. 
Our future research aims to address this issue by enabling the use 
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Figure 5: Distribution of NASA TLX responses showing participant feedback towards ConceptScope and DocuBurst. A ▼ sym-
bol indicates where a user familiar with the document (Pc9 for ConceptScope and Pd5 for DocuBurst) has rated their experience. 

of multiple reference ontologies, and explore text content such as 
online forums and organizational communication. 
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