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Abstract

This thesis is focused on Wireless Acoustic Sensor Networks (WASNS)
used for beamforming in a speech enhancement task. Since each node
in a WASN has its own clock, clock offsets and clock skews between the
nodes are inevitable. Clock offsets and clock skew can be detrimental
to the beamformer performance. In this thesis we focus on the effect
of clock skew on the beamformer performance. Existing methods for
clock skew compensation for the speech enhancement application do
this explicitly. In this thesis we investigate the possibility to formulate
the beamformer such that explicit clock skew compensation is not
necessary.

Instead, we propose an algorithm for implicit clock skew compen-
sation, which takes advantage of the Generalized Eigenvalue Decom-
position (GEVD) to construct beamformers (e.g. Minimum Variance
Distortionless Response (MVDR)), recently proposed in the litera-
ture. Using the GEVD, no explicit compensation has to be applied
to the received data. Compared to the state-of-the-art, where clock
skew estimation/compensation algorithms are used, this reduces the
computational complexity for beamformer processing.

The algorithm depends on exact knowledge of the noisy correla-
tion matrix across the microphones. In practice, this matrix is un-
known and estimation will reduce the performance of the proposed
algorithm. We therefore quantify the error made in the estimation
of the correlation matrix using the standard Welch method and also
look at a recursive smoothing based method for correlation matrix
estimation. Compared to a selected state-of-the-art algorithm, the
proposed algorithm shows similar or better performance using this
recursive smoothing method. For future work on this subject, more
study can be done on correlation matrix estimation methods, as these
play a key role in clock skew invariant beamforming.
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Abstract

This thesis is focused on Wireless Acoustic Sensor Networks (WASNs) used for beam-
forming in a speech enhancement task. Since each node in a WASN has its own clock,
clock offsets and clock skews between the nodes are inevitable. Clock offsets and clock
skew can be detrimental to the beamformer performance. In this thesis we focus on the
effect of clock skew on the beamformer performance. Existing methods for clock skew
compensation for the speech enhancement application do this explicitly. In this thesis
we investigate the possibility to formulate the beamformer such that explicit clock skew
compensation is not necessary.

Instead, we propose an algorithm for implicit clock skew compensation, which takes
advantage of the Generalized Eigenvalue Decomposition (GEVD) to construct beam-
formers (e.g. Minimum Variance Distortionless Response (MVDR)), recently proposed
in the literature. Using the GEVD, no explicit compensation has to be applied to the
received data. Compared to the state-of-the-art, where clock skew estimation/compen-
sation algorithms are used, this reduces the computational complexity for beamformer
processing.

The algorithm depends on exact knowledge of the noisy correlation matrix across
the microphones. In practice, this matrix is unknown and estimation will reduce the
performance of the proposed algorithm. We therefore quantify the error made in the
estimation of the correlation matrix using the standard Welch method and also look
at a recursive smoothing based method for correlation matrix estimation. Compared
to a selected state-of-the-art algorithm, the proposed algorithm shows similar or better
performance using this recursive smoothing method. For future work on this subject,
more study can be done on correlation matrix estimation methods, as these play a key
role in clock skew invariant beamforming.
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Introduction

In the past decade, portable devices have become increasingly important in our daily
lives. The computational power of devices such as mobile telephones and tablets
has become greater over the years, to an extent that they take over tasks that were
only performed on a personal computer (PC) before. In addition to their increased
computational power, they are able to connect wirelessly to a network.

Another development of the past 15 years is the Internet of Things (IoT) [3].
The IoT is a general name for a network of “intelligent devices”, connected through
the internet. This network can be used to perform e.g. a distributed measurement
task, such as sensing temperatures at different locations in a room.

Portable and IoT devices are thus able to operate in a wireless network, allow-
ing them to share data. This data may consist of e.g. a text message, location
information or measurements.

1.1 Wireless Acoustic Sensor Networks and beamforming

The aforementioned devices are often equipped with an acoustic sensor, i.e. a mi-
crophone. Networks of devices with such sensors are referred to as Wireless Acoustic
Sensor Networks (WASNs) [1] [5]. A WASN can be viewed as a network of wirelessly
connected nodes, each equipped with a microphone. The nodes are capable of recording
data from their respective microphones, and transmitting it to other nodes for further
processing.  WASNs can be used for multi-microphone tasks, such as beamforming,
in order to estimate a particular target sound source in a noisy environment. With
beamforming spatial selectivity is employed by manipulating the amplitude and phase
differences of signals received at different microphones.

Beamforming is a technique that can be used for speech enhancement, by focusing
on a target speech source in a noisy environment. Spatial and spectral properties of the
received signals are used in order to focus on a desired target source, in the presence of
interference and background noise.

Conventionally, microphones used for beamforming were all part of the same device.
This means that the microphones all use the same internal clock. Having the same
notion of time is important when employing beamforming techniques as one plays with
phase (i.e. time) differences across the different microphones. However, with WASNss,
each device potentially has its own clock. This will have a significant effect on the
beamforming algorithms as will be detailed further in the next sections. See Figure 1.1
for a visual representation of a beamformer implemented on a WASN where clock skew
is present.
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Figure 1.1: A depiction of the problem addressed in this work. Simple beamforming in a
wireless acoustic sensor network (WASN) setup: two microphones in different devices (mobile
phones) are used. The signals received at the microphones from the source signal (sine wave)
are sampled. A clock skew between the devices causes the output from the beamformer
(delay-and-sum) to be distorted with respect to the source signal.

1.2 Clock behaviour in Wireless Acoustic Sensor Networks

In a WASN each node is equipped with its own processing circuitry. These processing
circuits can be assumed to operate digitally, which means they run off a clock to generate
the discrete time instants at which the processing circuit performs a computation.
This clock is usually embedded in the processing circuitry. Consequently each node
has its own independent clock. Because the clocks are independent and there is no
synchronization between them, they run asynchronously. This asynchronous behaviour
can be separated into two phenomena: clock offset and clock skew; the asynchronous
behaviour is usually a combination of both phenomena. Clock offset is when the ticks
of the clocks occur at offset time instants, this is caused by different starting times of
the clocks. Clock skew is when the clock frequency of one clock is (slightly) different
than the frequency of another clock, this is caused by tiny manufacturing defects in the
clock crystals [0] [7].

Beamforming explicitly uses the time differences between signals received by differ-
ent microphones, to focus on a desired target source. However, since clock offset and



clock skew affect the time instants at which samples are taken at microphones, the
time differences between received signals are affected. An impact on the beamformer
performance can thus be expected. Kotti et al. [¢] has recently shown that for a certain
group of beamformers the beamformer performance is invariant to clock offsets. For
clock skew this invariance property has not been shown (yet) and most works focus
on the compensation of the effect of clock skew. The works can be divided in proto-
col based synchronization and signal processing based algorithms. In protocol based
synchronization, artifacts of the protocol are used to periodically transmit a specific

sequence between nodes to maintain clock synchronization, as in Wang et al. [9]. In
signal processing based algorithms, properties of the received signals are used, such as
correlation between signals received by different microphones, as in Bahari et al. [1]. In

that work, a signal model is derived to study the effects of clock skew on beamformers,
implemented in a WASN. This model shows that a clock skew can be modeled as a
linearly increasing clock offset. Because of this property, we study the applicability of
the work of Kotti et al. [3] to a clock skew affected WASN beamforming setup in this
thesis.

1.3 Contribution

The asynchronous clock behaviour in WASNs may impact the performance of beam-
formers. For a situation where only clock offset is present, Kotti et al. [8] has shown
that a certain group of beamformers is invariant to clock offsets. In this thesis we apply
the theory from [8] to a clock skew affected WASN beamforming setup to investigate
to which extent beamforming algorithms can also be made clock skew invariant. We
use a signal model similar to the one derived in [1].

1.4 Outline

The thesis is structured as follows: In Chapter 2 the general signal model to be used
in this thesis will be defined. In Chapter 3 the clock synchronization problem will be
discussed in more detail, as well as the application of beamforming in a WASN setup:
a simple and intuitive example of a beamformer will given, to illustrate the problem
of clock synchronization. Then the work of Kotti et al. [8] will be discussed. Finally,
related works in literature regarding clock skew in a WASN setup will be summarized.
In Chapter 4 a signal model is given for the multi microphone setup with clock skew,
then the theory of Kotti et al. [8] is applied to this model. Chapter 5 discusses
the practical side of the approach devised in Chapter 4: the estimation of correlation
matrices is necessary for beamforming, which causes errors in the beamformer output
in the presence of clock skew. These errors are quantified for two different estimation
methods. In Chapter 6 a beamformer setup in a WASN environment is simulated, to
obtain results for the proposed method and compare them with an existing method by
Bahari et al. [1].






Preliminaries

2.1 Signal model

For the multi-microphone, multi-source setup we assume the following underlying
model:

bilt) = 3 B (1) 5 5,(0) + (1)

= 2,(t) + v,(t) (2.1)

where ¢ = 1,2,..., M is the microphone index, Ny the number of target sources, t is
the continuous time and * is defined as linear convolution. Here y; denotes the received
signal at microphone ¢, s, the target source signal p, h;, the room impulse response
(RIR) from target source p to microphone i and v; is additive noise. The noise term
consists of all signals that are not caused by the target (i.e. microphone self-noise and
interfering sources).

After sampling with sampling frequency f, we obtain:

yiln] = vi (1) (2:2)
P
Ts
We then define the discrete Fourier transform (DFT) as:
K—1
- 2mkn
X[k = aln]e?7x (2.3)
n=0

where k is the k-th frequency bin, n the sample index and K the number of samples
used.

Approximating the linear convolution in (2.1) with a circular convolution we ob-
tain the signal model in the frequency domain, where the linear convolution result is
obtained by piece-wise multiplication of the DFT coefficients:

Vil = S o (KIS, (k] + Vilk

— Xi[K] + Vi[k] (2.4)

As the speech signals are non-stationary, we consider in this work the short-time DFT
(STFT), that is:

T

- 2mkn

Xk, 1] = z [IK}, + n|wn]e™? K

n

(2.5)

i
o



where k is the k-th frequency bin, [ the I-th STFT frame, K the STFT frame length,
K, the hop size and wn| a discrete time smoothing window.

As all the processing is done per frequency and time frame, we drop the frequency
and time frame indices for readability. Using a stacked vector notation across the
microphones we then get:

N
y=> d,S,+v (2.6)

p=1
=x+vV (2.7)

where d,, is the steering vector towards the p-th source (see section 2.2). S, is the p-th
source in the frequency domain and v the vector with noise DFT coefficients for all
microphones.

2.2 Steering vector

The steering vector is obtained when applying the DFT (2.3) to the RIR h[n]. This
gives it a general form of:
dq

ds
d=| .| (2.8)

dm
Alternatively, the relative steering vector may be defined as:

1
dy/dy

(2.9)

dar/dy

i.e. the steering vector is normalized with respect to the first element d;. The relative
steering vector (2.9) is usually found when using a blind estimation method for the
steering vector, such as the GEVD. Refer to section 2.5 where different methods are
discussed for estimating the steering vector. In this work, we use the definition in (2.9)
and (2.6) is written as:

Ns
y=> dXi,+v (2.10)

p=1

where d,, is the relative steering vector towards the p-th source. X, is the signal
received from the p-th target at microphone 1 in the frequency domain and v the
vector with noise DF'T coefficients for all microphones. The consequence of using the
relative steering vector in (2.10) is that the received target signals at the microphones
are with respect to the received target signal at microphone 1 instead of the target
signal itself.



2.3 Stochastic processes

We assume that the signals x and v are realizations of the zero-mean wide-sense sta-
tionary processes X and V, respectively. We assume mutually uncorrelated source and
noise processes. That is: E[XV"] = E[VX"] = 0,/)s. The spatial correlation matrix
of the microphone signals is then given by:

Ry = E[YY"] = EXX" + XV + VX" + VVT]
= EXX"] + EXVY] + E[VXH] + E[VVH]

= EXX"] + E[VVY] = Rx + Ry. (2.11)
2.4 Beamforming

The general expression for a beamformer output is given by:

where w is the vector with beamformer filter weights, y is the received microphone data
and X7 is the estimated target signal at microphone 1. In Table 2.1 several commonly
used beamformers are given, with their mathematical expressions. The single target
source versions of the beamformers depend on the steering vector d, either directly or
via Rx as we can write Rx = 0%, dd".

Beamformer Expression
Delay-and-sum W = i
dfid

Speech Distortion Weighted (SDW) Wiener fil- | w = (Rx + uRyv) 'Rxe;

ter
Classical Multichannel Wiener filter W = R§1RX91
Classical Multichannel Wiener filter (single tar- W = ggﬁ R;{ld

get source)

Ry'd

Minimum Variance Distortionless Response W=
d"Ry/d

(MVDR) (single target source)

Table 2.1: Commonly used beamformers with their mathematical expressions, as derived in
[2]. We have e; = (1,0,...,0)T € RM as the standard basis vector.

For the single target source case (rank (Rx) = 1) we see from Table 2.1 that these
beamformers depend on the steering vector d. The mathematical expression for d and
several methods to obtain it are discussed in the next sections.



2.5 Estimation of steering vector d
The steering vector d can be obtained in different ways, as summarized below:

e Directly from the RIR. This can be done by transmitting a training sequence
from the target source. From the received signals at the different microphones the
respective RIRs are obtained through deconvolution, since the received signals are
the result of convolution of the source with the RIRs, as defined in (2.1). The
DFT is applied to the recorded RIRs and the steering vector is found.

e Based on microphone setup geometry. In this case only the direct path is con-
sidered. Given the distance from the target source to each microphone and the
speed of sound (v ~ 340m/s), the time delay between transmitting and receiving
is known. These delays are visible in the steering vector as phase shifts, see (2.13).

e Through the Generalized Eigenvalue Decomposition (GEVD). The composition
of the received signal y in (2.7) allows us to decompose it in a signal and noise
subspace. From the signal subspace we can determine the steering vector, as
presented in [10)].

The direct path steering vector is given by:

1
|a2|6]72

d= : (2.13)

‘aMyejT]W

where |a;| is the damping of the signal at microphone 7 with respect to the reference
microphone and 7; is the delay of the signal at microphone ¢ with respect to the
reference microphone.

From the expression for the delay-and-sum beamformer in Table 2.1 it is easy
to see that the beamformer compensates for the differences in delay and damping that
the target source experienced when travelling to the different microphones, using the
information in the steering vector. In the next chapter we will look in more detail at
the effect of clock offset and clock skew on this capability.



Problem formulation and
related work

3.1 Clock synchronization in Wireless Acoustic Sensor Net-
works

In Wireless Acoustic Sensor Networks (WASNs), the different devices (nodes) have their
own processing circuit. Each node has its own clock to drive this processing circuit,
and the nodes thus have independent, non synchronous clocks.

For this thesis, we will assume the devices are similar, as well as their clocks. This
means that the clocks will have approximately the same clock frequency. However, in
practice, the clock frequencies are never perfectly the same across nodes.

The frequency offset is often defined in parts per million (ppm) [I1]. One ppm
equals 107, For example a maximum frequency offset of 100 ppm from a frequency
of 16 kHz indicates a frequency range of 16000 + 1.6 Hz.

As an example, the Bluetooth and Zigbee standards require +25ppm frequency
stability [12] and the GSM standard requires a tighter stability of £5ppm [12]. The
IEEE 802.11a Wireless Local Area Network (WLAN) standard specifies a carrier offset
in the range of £40 ppm [13].

Typical quartz crystal oscillators may have frequency offsets in the range of 10 ppm-
100 ppm [11] [I4]. However, with the use of compensation techniques, oscillators with
better frequency stability may be developed: Oven Controlled Crystal Oscillators (OX-
COs) reach frequency stability as low as +1ppb [I5]. For this work, we assume the
frequency offset may be up to 100 ppm when using state-of-the-art quartz oscillators.

Besides the frequency offset, the time instants when the clocks tick almost surely
will have an offset as well. This is due to the electrical circuits, and thus the clocks,
starting at different time instants. The devices are independent, therefore we cannot
guarantee a perfectly synchronous start of the electrical circuits.

The non synchronous clock behaviour can thus be divided in two classes:

e Clock offset: the clocks tick at the same rate, but the tick times are offset by a
constant amount. This is due to the different clock start times.

e Clock skew: the clocks tick at a different rate, due to the imperfection of the
quartz crystals.



3.2 Application of clock synchronization to beamforming

This thesis focuses on the application of beamforming in WASNs, in particular for a
speech enhancement task. The devices could be mobile phones, hearing aids or general
distributed processors, whose microphones are used for the beamforming task. In this
section we demonstrate the effect of clock offset and clock skew on beamforming. The
target source (speech) in Figure 3.1 is in blue, and there is an interfering source in red.
The aim of beamforming is to recover the target signal.

Figure 3.1: Wireless acoustic sensor network beamforming setup, the target source is in blue,
the interference/noise is in red.

10



The general expression for a beamformer output is given by:

where w can be any beamformer, for example one of the beamformers from Ta-
ble 2.1. Generally, w will estimate the target X; by properly compensating for the
differences in delay and damping that the target source experienced when travelling
to the different microphones. By doing so it reduces the effect of the interfering noise
sources. Beamformers rely on the fact that the time delay and damping can properly
be compensated. However, if the different clocks are not synchronized, additional time
delays will be experienced which will lead to an incorrect time delay compensation by
the beamformer.
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The effect of asynchronous clocks on beamforming can best be illustrated with a
simple example. Suppose the target source is a sine wave, and 2 microphones are set
up at the same distance from the source. Let’s for simplicity assume there is no noise
and we are in free-field.

First, the ideal scenario of perfect synchronization is shown in Figure 3.2. The
sample points are aligned in time for both microphones.

Microphone 1

signal
®  sample points

amplitude

Microphone 2

signal
®  sample points

amplitude

Figure 3.2: Received signals with perfectly synchronized clocks. Two microphones are used.
The sine frequency is f. = 50 Hz. The sample rate is fy = 200 Hz.
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The situation with clock offsets is shown in Figure 3.3. Microphone 2 samples at
later time instants than microphone 1.

Microphone 1

signal
®  sample points

amplitude

Microphone 2

signal
®  sample points

amplitude

Figure 3.3: Received signals with offset clocks. T'wo microphones are used. The sine frequency
is fo = B0Hz. The sample rate is f; = 200Hz. Microphone 2 samples 2ms later than
microphone 1.
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The situation with clock skew is shown in Figure 3.4. Microphone 2 samples faster
than microphone 1. Therefore the samples of microphone 2 are taken at increasingly
earlier time instants than microphone 1.

Microphone 1

signal
®  sample points

amplitude

Microphone 2

signal
®  sample points

amplitude

Figure 3.4: Received signals with offset clocks. Two microphones are used. The sine frequency
is f. = 50Hz. Microphone 1 samples at fs = 200 Hz and microphone 2 samples 10 % faster
at fs = 220 Hz.

For this illustration, we consider a very simple type of beamformer where the two
simulated microphone signals are simply averaged. This would correspond to the ap-
plication of a delay and sum beamformer, which would be the optimal beamformer in
the case of noise that is uncorrelated across the microphones.

14



set

Let us now consider the received signals vs. the sample index, with the following
up: sampling rate f; = 16 kHz, sine wave with frequency f. = 1kHz, see Figure 3.5,

under the condition that the two clocks are synchronized (Figure 3.5a), have a clock
offset of 2ms (Figure 3.5b) and for the case that the two clocks have a clock skew of

10 %.
2.0 2.0 2.0
15 —— Microphone 1 15 —— Microphone 1 15 —— Microphone 1
' Microphone 2 ’ Microphone 2 : Microphone 2
1.0 1.0 v 1.0 [
g 05 g 05 / L 059 | /\ /
2 2 2 |
= 00 = 00 3 00
£-0s £-0s £-0s
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-1.5 -1.5 -1.5
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sample index sample index sample index
(a) Perfect synchronization (b) Clock offset 7 = 2ms (c) Clock skew of 10 %

Figure 3.5: Received signals for different clock synchronization situations.

Applying the aforementioned delay and sum beamformer to the signals in Fig-

ure 3.5a, 3.5b and 3.5c without any synchronization of the clocks then leads to estimated
source signals as depicted in Figure 3.6a, 3.6b and 3.6¢, respectively.

amplitude

For

1.00 1.00 1.00

0.75 0.75 0.75

0.50 0.50 0.50

025 3 025 g 025

2 2

0.00 £ 0.00 £ 0.00

0.25 §-025 5025
-o. § 0. 5o
-0.50 -0.50 -0.50
-0.75 -0.75 -0.75
-1.00 -1.00 -1.00

0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
sample index sample index sample index

(a) Perfect synchronization (b) Clock offset 7 = 2ms (c) Clock skew of 10 %

Figure 3.6: Source estimate after beamforming (averaging).

For the perfect synchronization case, the source signal is perfectly reconstructed.
the case with clock offset a sine is generated, but with a lower amplitude and with

a phase offset. For the case with a clock skew, the sine amplitude is modulated with the
difference frequency (100 Hz). To summarize, in both cases where the clocks are not
synchronized, the reconstruction is inaccurate. This emphasizes that unsynchronized
clocks can have a detrimental effect in the final performance. The effects of clock offset
and clock skew are evaluated separately in this simple example, however, in reality both
clock offset and clock skew may affect a system.
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3.3 Clock offset invariant beamforming (for Generalized
Eigenvalue Decomposition based beamformers)

In [8] it was shown based on the Generalized Eigenvalue Decomposition (GEVD) that
beamformers from the general SDW class as given in Table 2.1 are invariant to clock
offsets, under the condition that the GEVD is used to estimate d and not an a prior:
estimate of d is used.

Given the general SDW class, for different settings of x (and with some assumptions
on the signal model) the beamformers from Table 2.1 can be obtained.

The GEVD yields a continuously updated estimate of d, because it is based on the
received data y. As seen in Figure 3.5b a clock offset introduces a phase shift in the
received signal (sine wave). For the simplified situation in Figure 3.6b we can assume
the following model:

§=dXx, (3.2)

where d and y are respectively the relative steering vector and received data includ-
ing the phase shift caused by the clock offset and X is the target signal at microphone
1. In (3.2) the phase shift is incorporated in the steering vector as follows:

d=Gd (3.3)

which for this example then becomes:

i-ca=(y o) (1) = () 3.4

where 75 is the phase shift introduced by the clock offset for microphone 2. It is
clear that an a prior: estimate of d based on the geometry does not include this phase
shift (refer to section 2.5). When the a priori estimate is based on the RIR, this phase
shift may be included at the time of measurement. However, since the clock offset is
a result of different starting times of electrical circuits, the phase shift can be different
for each restart of the system. Therefore such an estimate would not be satisfactory
in most cases. The GEVD allows us to decompose the received signal at runtime and
correctly estimate d as seen in (3.4).

We can show for the delay-and-sum beamformer that, given (3.4), the source signal
is preserved perfectly without any explicit clock synchronization. Substituting (3.2)
and (3.4) in (2.12):

Xi=w

—dx
d-d (3.5)

i.e. the target source signal is perfectly preserved. Obviously, using an a priori
estimate of the steering vector, i.e. d = (1 1)T would give an erroneous result with a
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phase shifted version of the signal at microphone 2 averaged with the signal at micro-
phone 1, as in Figure 3.6b. Therefore, in [3] the GEVD is presented as a key component
to clock offset invariant beamforming, and in this thesis we investigate if this theory
can be applied to a clock skew affected WASN beamforming setup as well.
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3.4 Related work in literature

For a moment, we broaden our scope to the more general case of clock synchronization
in Wireless Sensor Networks (WSNs). In the field of clock synchronization for WSNs,
a distinction can be made in protocol based synchronization and signal processing
based synchronization techniques. Protocol based synchronization is discussed in works
by Wobschall [16], Wang [9] and Zhao [17]. These protocol based synchronization
techniques apply to WSNs, but not specifically to WASNs or a beamforming task.
Since our proposed algorithm will be signal processing based, signal processing based
synchronization techniques are of interest. In the following section different works will

be summarized on signal processing based synchronization techniques for clock skew,
applied to WASNS.

3.4.1 Signal processing based synchronization

Markovich-Golan et al. [I18] approximates the effect of clock skew by a linearly in-
creasing phase shift in the STFT domain. The coherence between two microphones is
calculated, which allows for an estimate of the sample rate offset (a SRO introduces
a linearly increasing phase shift in the coherence). The result from all frequency bins
and time domain frames is averaged for all microphone pairs. Then the results from
all microphone pairs are averaged which yields a SRO estimate. To compensate for the
SRO, the received data is resampled to the sample rate of the fusion center (i.e. one of
the nodes in the network) using Lagrange polynomials and the earlier obtained SRO
estimates.

For the test setup two microphone arrays comprised of 6 microphones each are
used. One microphone array is set to a sampling rate of f; = 8 kHz and the other array
has SRO values in the range of (—300, —250,...,300) ppm. The generalized sidelobe
canceler is used as beamformer. One desired target source is deployed and a number
of interfering sources at random locations. The SRO estimation variance is lower than
3.2 ppm in all tested scenarios. For the scenario with one interfering source, when using
the presented compensation algorithm with respect to no compensation, the increase
in signal-to-distortion ratio is 11.2dB and the increase in signal-to-noise ratio is 7.2 dB.

Cherkassky et al. [19] use the continuous wavelet transform (CWT) to estimate the
SRO, and resampling in the time domain is used to synchronize the nodes. Four micro-
phones, set to a sampling rate of f, = 16 kHz, are used in a test setup with manually
manipulated SROs. The SDW multichannel Wiener filter is used as beamformer. At
an average array SRO of 100 ppm an increase in array gain of 7dB is reached with the
proposed algorithm, at an average array SRO of 300 ppm this increase is 9dB. The
array gain is defined as the ratio of signal-to-interference ratio (SIR) at the input of
the array to SIR at the array output.

In [20], Cherkassky et al. use the recursive band-limited interpolation (RBI) algo-
rithm for SRO estimation. The estimation is applied sequentially in the time domain,
therefore it can track a time-varying SRO. Six microphones, set to a sampling rate of
fs = 16kHz are used in a test setup with manually manipulated SROs. The SROs
are set to (—100, —50, 0,50, 100, 150) ppm. With the proposed algorithm the SIR gain
improvement is 40 dB and the SNR gain improvement is 25 dB.
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In [21] and [1] Bahari et al. approximate the effect of clock skew by a linearly
increasing phase shift across time frames in the STFT domain, similar to [18]. The SRO
is estimated using a linear coherence drift (LCD) method, followed by a least-squares
algorithm to use multiple time frames. In [1] a weighted least-squares algorithm is used,
for applicability of the work in [21] to multiple target sources.

A hybrid compensation framework is then devised which applies a sample synchro-
nization in the time domain, and a compensation for the linearly increasing phase shift
across time frames in the STFT domain. The time domain synchronization is applied
because signals drift apart over time due to the SRO, which would cause them to be
unrelated eventually. The frequency domain compensation allows for precise compen-
sation of the phase shift caused by the SRO (up to the approximation accuracy of that
particular SRO model).

For the experiments, the multichannel SDW Wiener filter is used as beamformer.
The algorithm is tested for SROs up to 100 ppm. A SNR gain improvement of 3dB is
attained for a SRO of 100 ppm, with respect to using no compensation algorithm.

Zeng et al. [22] evaluate 3 different synchronization algorithms for WASNs subject
to clock skew. Two algorithms are time-stamp based and one algorithm is signal based,
using the algorithm described in [18]. The time-stamp based algorithms degrade the
performance of the MVDR beamformer in the presence of measurement uncertainty or
noise, whereas the signal based algorithm corresponds to the ideal centralized MVDR
beamformer. The signal based algorithm needs more data however, i.e. more data has
to be transferred between the nodes.

The discussed signal processing based algorithms are referred to as blind synchro-
nization algorithms in the literature, using an SRO estimation algorithm based on the
available data and then applying a compensation based on the estimated SROs. A per-
formance comparison of three blind synchronization algorithms discussed here is shown
in Table 3.1.

In this thesis, the approach used by Bahari et al. [1] is chosen as the reference blind
synchronization algorithm. Our proposed algorithm will approximate the effect of clock
skew by a linearly increasing phase shift across time frames in the STFT domain, thus
the same signal model is used as in the reference algorithm. The difference between the
reference algorithm and our proposed algorithm, is that the reference algorithm applies
explicit compensation for the SRO whereas our proposed algorithm applies implicit
compensation. Because of the similarities between the selected reference algorithm
and our proposed algorithm, we argue that it is a logical choice. Also, the reference
algorithm yields performance similar to using the true SRO for compensation, for SROs
up to 100 ppm.
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Author SRO esti- | SRO compensation Perfomance mea- | Result(s)

mation sure(s)
Markovich- | LCD Lagrange  polynomial | SDR gain difference < 0.8dB
Golan  et. time domain resampling | SNR gain difference < 0.2dB
al. [18]
Cherkassky | RBI Time domain resam- | SIR gain difference < 5dB
et. al. [20] pling SNR gain difference ~ 5dB
Bahari et. | LCD Time domain sample | SNR gain difference (in- | < 0.01dB
al. [1] drop, frequency domain | cludes interference)

phase shift

Table 3.1: Comparison of the performance of three blind synchronization algorithms discussed
in this section. The performance measure(s) column compares the ideal synchronized perfor-
mance with the performance under the proposed algorithm from the respective paper. SDR
denotes the signal-to-distortion ratio, SNR denotes the signal-to-noise ratio and SIR denotes
the signal-to-interference ratio.

3.5 Research question

The effect of clock skew on beamforming in a WASN can be detrimental to the final
performance of the beamformer. In the previous section several algorithms have been
discussed which can compensate for the effect of a SRO. It has been shown by Kotti
et al. in [8] that GEVD based beamformers are invariant to clock offset. From [38] and
[1] we can establish that clock skew is the same as a linearly increasing clock offset.
Given this similarity, we state our research question.

Is the theory for clock offset invariant beamforming applicable to clock skew af-
fected beamformers in a WASN?

To answer the research question, the thesis will follow this structure: in Chap-
ter 4 a signal model is given for the multi microphone setup with clock skew, then the
theory of Kotti et al. [3] is applied to this model. Chapter 5 discusses the practical side
of the approach devised in Chapter 4: the estimation of data matrices is necessary for
beamforming, which causes errors in the beamformer output in the presence of clock
skew. These errors are quantified for two different estimation methods. In Chapter
6 a beamformer setup in a WASN environment is simulated, to obtain results for
the proposed algorithm and compare them with the blind synchronization algorithm
presented by Bahari et al. [1].
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Generalized Eigenvalue
Decomposition for clock skew
model

4.1 Signal model with clock skew

Suppose we have a multi microphone setup with M microphones, where M — 1 mi-
crophones experience each a different clock skew — sample rate offset (SRO) — with
respect to a reference microphone, say microphone 1. Without loss of generalization,
we assume that this is the fastest sampling microphone. We now have for the sampling
rate fs; at microphone ¢:

f&i = f&l(]- + Ei) = fs,ref(l + Ei) (4].)

where i = 1,2,... M and |¢;| < 1 is the SRO for the i-th microphone. Note that ¢; =0
and ¢; < 0 for i # 1. Denoting the continuous-time signal at microphone i as y;(t) and
its sampled counterpart as y;[n], both without clock skew, we can write:

yiln] = yi (f:ref> (4.2)

where n = 0,1,..., N — 1. For the signals for the same microphone with clock skew,

we have:
Sl g [ —
yz[n] =Y (fsmef(l T €Z>> (43)

where g;[n| is the sampled signal with clock skew. Any microphone i with a posi-
tive clock skew samples at increasingly earlier time instants than without clock skew.
Therefore the signal stored in g;[n| becomes increasingly delayed from the signal in
yi[n]. We now define a sample difference which indicates how many samples we need to
delay y;[n] at sample n, to obtain g;[n]. Recalling (4.2) and (4.3) we may now write the
sample difference AN between the situation with clock skew and without clock skew
as follows:

(4.4)

AN:fs,ref( n n ):n—n(l—i-ei) g

fs,ref(1+€i) a fs,ref 1+€z B 1+€2
In practice, the SRO values are in the range of ppm, so we can assume ¢; < 1. In that
case we can approximate (4.4) by:

AN =~ —ne;. (4.5)

This means that the effect of the SRO can be approximated by a linearly increasing
sample delay in the time domain. With beamforming, we are working in the frequency
domain. We can use the following property here:

—j2nkp

x[n —p| < Xkle & (4.6)
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i.e. a sample delay of p samples translates into a phase shift in the Fourier domain. We
can write: B o,
Jiln] = yiln — nei) © Yi(k) = Yi(k)e ™ ® (4.7)
A problem arises, as the phase shift is different for each time domain index n, and
obviously our Fourier window length will never be equal to just 1 sample. In fact, in
practice we divide the time domain signal into multiple frames and apply a windowing
function and Fourier transform for each frame. As introduced in Chapter 2, this method
is called the Short Time Fourier Transform (STFT). The reason for splitting the time
domain signal in frames is because the signals under consideration are non-stationary.
By working with the STFT we aim to obtain wide-sense stationary data per time frame.
Using the STFT we have frames of length K, with a hop size of K} = vK where ~
is the frame overlap factor. To compensate for the clock skew in the frequency domain,
we approximate the linearly-increasing time shift —ne; by a constant time shift across
the time frame. A logical choice would be to let the constant time shift be determined
by the time shift experienced by the mid-frame sample, since this gives on average
the lowest error. With the parameters given before, the mid-frame sample index is:
my = Kpl+ K/2 =~vKl+ K/2 = K(yl +1/2), where [ = 0,1,...,£ — 1 is the frame
index. Referring to the STFT signal model in Chapter 2 and recalling (4.7), we can
now write:

Yi(k, 1) = Yi(k,1)e 2mk01H1/2)e (4.8)

This model thus approximates the clock skew effect with a linearly-increasing phase shift
across the STFT frames, although in reality the phase shift increases linearly across
the samples. Therefore the approximation is linearly-increasing, piecewise-constant
with respect to the real situation. We assume however that the maximum sample
shift inside a single STFT frame is much smaller than 1 sample, i.e. Ke¢; < 1. In
that case the linearly-increasing, piecewise-constant approximation is accurate enough,
because all samples in a single STFT frame experience almost the same phase shift. In
Figure 4.1 the sample shift is plotted for the real situation vs. the approximation by
the model.
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Figure 4.1: Plot of the linearly increasing phase shift experienced by each consecutive frame,
versus the linearly increasing, piecewise constant phase shift described by the model. The
phase shift is expressed in number of samples. In this example we have for the sample rate
offset (SRO) of microphone two with respect to microphone one e = —107°, frame length
K =512 and the frequency bin selected corresponds to 1kHz.
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4.2 Vector form of received data

We use a vector notation and stack the STFT coefficients per frequency for all M
microphones in a vector y as done in (2.7), where y would denote the data for a
synchronized system. For the clock skew affected data we write y. The relation between
the clock skew affected data y and the synchronized data y is then given by:

y = Ty (4.9)

where we have T = diag (1, e I2mk(V+1/2)e ,e*ﬂ”kw“ﬂ)w). Notice that y and T
are given for each frequency bin k£ and frame index [. This expression is similar to the
expression found for clock offset affected data, as found in [%], except now the matrix
is varying with time frame [.

As mentioned in [%], T has the significant property that it is unitary, which will be
exploited in the following sections:

TTH =THT =1 (4.10)

4.3 Generalized eigenvalue decomposition based beamforming

In this section, we will write out the equations necessary for the generalized eigenvalue
decomposition (GEVD) based beamformers. We define the generalized eigenvalue prob-
lem as in [8], [23] and [24]. For the Hermitian matrix pencil (Rx,Rv) with Ry = 0 —
referred to as a Hermitian definite pencil in the literature — the GEVD is given as:

U'RxU=A U"'RyU=1y (4.11)

where we have Rx, Ry € CM*M U € CM*M are the (right) generalized eigenvectors,
A = diag(\i, Xa, ..., Ayy) € RM*M the generalized eigenvalues and Iy, is the identity
matrix. The generalized eigenvalues \; are real because the matrix pencil (Rx, Ryv) is
Hermitian. Generally we also have Rx = 0, then \; > 0 for all 7.

The GEVD problem can be written as an EVD as follows:

Ry'Rx = (U MU ) 'U AU = UuUU MAU ' = UAU (4.12)
Ry'RxU = AU (4.13)

where we used that Ry = 0, therefore R{,l exists. Note that the condition Ry = 0
can be expected for common types of additive noise, but certainly not for matrices
constructed of noise estimations (which is the case in a practical situation). However,
due to estimation disturbances, we have rank(Ry) = M, i.e. Ry has full rank. This
means that Ry exists nonetheless and (4.12) holds. From (4.13) we see that indeed U
contains the right eigenvectors of R{,lRX.

Since R{,lRX is not generally Hermitian, U is not necessarily unitary; U% #£ U~
Then the right eigenvectors u; do constitute a basis for CM albeit a non-orthogonal
one. We can make use of the following property of Ry,'Rx however:

Ry'Rx = Ry*(Ry’"RxRy"*)RY? = P'AP (4.14)
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where P = R\_,l/ ?is the unique Hermitian square-root of Ry and A = R(,l/ QRXR‘_,U 2
is a Hermitian positive semi-definite matrix. From (4.14) we see that Ry,'Rx is similar
to a Hermitian matrix A and thus shares the same, real eigenvalues.

Defining Q = U™, we can write (4.11) as:

Rx = QAQ" Ry = QI Q" (4.15)

where we have Q € CM*M ags the (left) generalized eigenvectors of the matrix pencil
(Rx,Rv). We can also rewrite the EVD form of the GEVD problem using (4.15):

Ry'Rx = (QI,Q")'QAQ" = Q "I,,Q 'QAQ" = Q "AQ" (4.16)
Q"Ry'Rx = AQ" (4.17)

where we used again Ry = 0, so that Ry exists. From (4.17) we see that indeed Q
contains the left eigenvectors of Ry’ Rx. The left and right eigenvectors are related to
each other as:

QU=U"'U=1y (4.18)

i.e. they are bi-orthogonal. This property will be used later on in the derivation of the
GEVD based beamformers. If we add up the two equations in (4.11), we find:

U"RxU + U'RyU = UY(Rx + Ry)U = A + 1. (4.19)
Substitution of (2.11) into (4.19) then gives:
U'RyU = A + 1. (4.20)

This means that if (\;, u;) is a right generalized eigenpair of the pencil (Rx, Ry ), then
(A +1,w;) is a right eigenpair of (Ry, Ry). This result is important, because generally
we do not have direct access to Rx. The generalized eigenvectors of both matrix
pencils are similar however, and the generalized eigenvalues of the pair (Rx,Ry) can
be obtained by subtracting 1 from the generalized eigenvalues of the pair (Ry, Rv).
Similarly, for the left eigenvectors we can write using (4.20) and Q = U~

Ry = Q(A +1,,)Q™. (4.21)

We shall now proceed to partition (4.21) into block matrices. To do this, we take
note of the ranks of the correlation matrices. The rank R of the signal matrix Rx is
determined by the number of sources N,. The EVD of Rx therefore has only R = N
nonzero eigenvalues. The rank of the noise matrix Ry is generally equal to the number
of microphones M due to microphone self-noise, or estimation disturbances. Therefore
the EVD of Ry contains M nonzero eigenvalues. Recalling (4.21), the EVD of Ry can
now be partitioned as follows:

Ry = Q(A +1,,)Q"

Ap+1z 0 n
—(@ ) (Mgt 0 (&)

= Qi(Ar+17)Q) + QoI rQY (4.22)
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where Q; € CM*E contains the first R eigenvectors of Ry as its columns, Q, €
CM*(M=R) contains the last M — R eigenvectors of Ry as its columns, Ap =
diag(A1, Ao, ..., Ag) € RE with \; < 0 are the R eigenvalues belonging to Rx and
Iz and I,,_g are identity matrices.

From (4.22) we can conclude the following: Q;(Ag + Iz)Q}! spans a speech + noise
subspace, because all the information of the speech signal is contained in the first R
eigenvalues/eigenvectors of Ry. Moreover, QoI _rQL spans a noise-only subspace.
From the property QU" = I,; we have that QUY = Ogry(m—p), i.e. the speech +
noise subspace and noise-only subspace are orthogonal.

As mentioned in Chapter 3 a beamformer is generally tasked with estimating a target
source. From the discussion in the previous paragraph we may conclude that it is based
on a linear combination of the column vectors in the speech subspace, i.e. w = U;a.
With this notion in mind, optimal GEVD based beamformers can be constructed as in

[5]:

W = (RX -+ ,LLRV Rxe1 Z Rxe1 (423)

/\ +
where u; is the i-th column of U, e; is the standard basis vector defined as e; =
(1,0,...,0)7 € RM and \; is the i-th eigenvalue. The result found in (4.23) is the
classic SDW Wiener filter [25] [2]. The parameter p is a tradeoff parameter between
noise reduction and speech distortion. For different settings of this parameter, we find
different well-known beamformers.

Another group of beamformers can be obtained by restricting (4.23) to use only the
first P eigenvectors, that is:

w(P) = : quel (4.24)

where P is the number of eigenvectors used in the beamformer. These beamformers
are known as variable span beamformers. For example, the MVDR beamformer may
be obtained by setting P = R = rank(Rx). With this expression, the beamformers are
constructed indeed using only the column vectors in the speech subspace.

4.4 Generalized eigenvalue decomposition based beamforming
for the signal model with clock skew

We can write out the spatial correlation matrices for the system affected by clock skew
using (4.9):

Ry = E[YY!) = TE[YY"T! = TRy T". (4.25)
Recalling (2.11) and using (4.25), we can write:

Rx = E[XX"] = TE[XX!"T! = TRxT! (4.26)
Ry = E[VVY] = TE[VVHT! = TRy T (4.27)



The expressions found in (4.26) and (4.27) can be used to write:

Ry'Rx = (TRyTH)'TRxTH
=T "Ry T 'TRxT"

=T "Ry RxT"
= TRy'RxT". (4.28)
Substituting (4.12) in (4.28) we find:
Ry'Rx = TRy'RxT! (4.29)
= TUAU'TH (4.30)
= (TU)A(TU)™! (4.31)

the eigenvalues of the skewed problem remain the same, whereas the new right eigen-
vectors are given by U = TU. Substituting this result in (4.23), we find:

w = (Rx + uRv) 'Rxe;
= (T(Rx + pRv)T") 'TRxT"e;
=T % (Rx + uRv) 'T'TRxT"e,
= T(Rx + uRv) 'Rxe; (4.32)
= Tw (4.33)

where we used T!e; = e; in (4.32). For the beamformer output we find:

= wily. (4.34)

Thus we conclude that the clock skew affected (GEVD based) beamformer gives the
same beamformer output as the original beamformer and is therefore invariant to the
clock skew presented here. This is expected, as the model is constructed to approximate
clock skew as a clock offset that increases linearly per STFT frame.
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4.5 Low-rank approximation of Rx

In the beamformer expression (4.23) the correlation matrix Rx is used. Usually we have
access to Ry from the microphones and Ry from a noise PSD estimation framework,
or an observation of Ry during a ‘quiet’ period. Naturally, we have:

Rx = Ry — Ry (4.35)

and Rx can be obtained perfectly. However, due to estimation errors in Ry and
Rv a perfect estimate of Rx can often not be found through (4.35), i.e. for the
estimation we may find rank(fix) # R = N,. In that case a low-rank approximation
of Rx is desirable. Recalling (4.22), a low-rank approximation of Rx can be found by
subtracting 1 from the eigenvalues of Ry and only using the first R eigenvectors, that
is:

R

r=1

where q, is the r-th column of Q; and A, is the r-th eigenvalue. In this way we force
rank(Rx) = R = Ns.
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Correlation matrix estimation

As we have seen in the previous section, the effects of clock skew can be compensated
automatically when using the form (4.33). Given that we know the true correlation
matrices, this compensation is exact, up to the approximation of the linearly-increasing
phase difference per time sample by a linearly-increasing phase difference per time
frame. However, the beamformers depend on the correlation matrices Ry and Ry,
which denote the noise and received signal correlation matrices, respectively. In practice
these are unknown and have to be estimated. Typically this is done by time averaging
the received data. However, due to the sampling rate mismatch these estimates become
biased and an error is introduced. In this section we will investigate the effect of
correlation matrix estimation on the algorithm presented in the previous chapter.

5.1 Welch method

One common way to estimate the correlation matrix Ry is by employing the Welch
method [26], that is:

Ry = 3 y(Oy"() (5.1)

where we average the single-frame estimate of Ry over the most recent L STFT frames,
up to STFT frame £ —1 > L. Here Ry denotes the Welch correlation matrix estimate
without clock skew. Let Ry denote the estimate for the skewed data, recalling (4.9)
we then have:

Ty Oy" )T (). (5:2)

For each estimation frame [, the phase offsets for the skewed microphones increase
linearly, as per the approximation in the previous section. If summation (averaging)
is applied to these increasingly offset frames, the estimated phase offset for each frame
becomes blurred. This can be illustrated by further examination of (5.2).
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The expression in (5.2) can be expanded by writing out T. Denote 7;(l) =
e I2ROVHL/2)6 e can now write:

£-1
1
Ry = Z Z TU)Y(Z)YH(Z)TH(Z)
I=C—L
10 0 0 Yi() viog\N® /1 0 0o o
1 EZ:I 0 0 0 Ya(l) va(0) om0 0
L 00 0 : 0 0 0
I=L—L \0 0 0 () Y (1) Yar (1) 0 0 0 73
L£—1 Yi(l)
1 Ya(D):
=7 Z ? .2 (Y Y5O (0) - Y5075,
I=L=L \ vy, (1yra (1)
o1 Yi(O)Y () Yi(DYs (D)3 (1) o Y)Yy (O (D)
1 Y2()Y7 (Dm2(1) Y2(1) Y5 (1) o Ya(Yy (O (D)
-1 . o 5.3
=LL\ v Y O)mar()) YarOYs Orar O3 0) o Yar(Y5(0)

The off-diagonal terms in (5.3) give information on the correlation between different
microphones. Indeed, we observe the presence of the exponential phase shift terms 7;(1).
At this point, we can establish that a phase term estimation error will accumulate due
to the summation, i.e. the estimator Ry is biased.

5.1.1 Effect of sample rate offset on estimate using Welch method

The reason for using a method like Welch, is to reduce the variance in the estimate for
Ry. We have established however, that a phase term estimation error is introduced by
the SRO. In this section we quantify the error made in Ry due to the SRO. To this
end, we study a noiseless scenario. This scenario allows us to focus on the SRO related
error only. From (2.11) we have that if Ry = 0 then Ry = Rx. Therefore, we study
the effect caused by a SRO on Rx equivalently.

Denote the Welch estimate of Rx based on skewed data as Rx. The effect of the
SRO on Rx can be quantified by inserting (4.9) into (5.3). Assume that we have a
single wide-sense stationary (WSS) target source signal over the estimation period for
Rx. Then the PSD of the target source process is constant, with variance E|X;|* = 0%,
where X denotes the stochastic process that realizes X;. Now (5.3) can be written as:

2  L-1 1 dgr;£z) dymar (@)
EiR.] — T b)) dady . dadyy (D)
[ X] - L : : .. :
=L=L N dpgrar () dardymar (D73 (1) . dydyy,
I dy S E ) &y S i (D)
2 - s . N
_ ox, d2 S F 7 m(l) Ldads; o dody X ()T (D) (5 4)
L : : - : ' .
dyy L7 D) dards L1 D7l Ldyd;
M2 () dads 3 e ra (DTS () M

On the last line of (5.4) we recognize the relative steering vector d, (based on the skewed
data) in the first column of the matrix, recalling section 2.2. ds can be obtained by a
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normalization with respect to Rx1,1: &s = Rx[.1 / 03(1. This justifies to study the effect
of the additional (skew originating) phase terms on Rx}. 1], because it directly reveals
the skewed steering vector dy, which is involved in most beamformer expressions. We
thus conclude that the relevant information is located in the first column of Rx. Let
V; denote the i-th entry of the first column of Rx:

Vi =Rxi- (5.5)

Below, starting with (5.4) an entry-wise closed form expression for the first column of
Rx is derived:

2 L1 9 o1
E[Vz] = Ugl d; Z Ti(l) — Ugl d; Z e I2mk(yl+1/2)ei
Lt I=L—L
0_2 L—-1
= Yy —j2mk(y(I+L—L)+1/2)e;
a leZZ‘f o ' (5.6)

We recognize the summation term in (5.6) as a geometric series with a =
e—jwk(l+2’y(£—L))5i and r = e—j?ﬂk’yq:

L-1 L
o3 1 -
X
E[V,] = = dz ar'
1
1=0 -
o2 _ ,—j27wkyLe;
= de —jmk(1+2v(L—L))e; l—e '
L 1—e¢ —j2mkye;
o2 —jnkyLe; ,jrkyLe; _ ,—jmkyLe;
_ xld —jrk(14+2v(L—L))e; € ‘e ‘¢ '
L e~ jmkye; e]ﬂk'yel _ 6fj7rk'yei
2 .
— X d,e—jﬂk(1+2’y(ﬁ—L))eie—jﬂk’y(L—l)ei SlH(T{'k’}/LEi) (5 7)
L sin(mkvye;)

where we have the condition r # 1, which generally holds given a finite SRO, and
k # 0. Note that the Dirichlet kernel [27] (Chapter 10) appears in this expression, so
the estimated phase offset shows periodic behavior as a function of L or ¢. In this
thesis, we will make use of 50 % STFT frame overlap, i.e. K, = K/2 — v =1/2. Then
the expression in (5.7) becomes:

2 .
_ 9% —jmkLe; jjmk(L—1)e; /2 Sln(ﬂ-k‘LGi/2>

ElV;] = —d;e™’ J —_ . 5.8

Vi L c sin(mke; /2) (5:8)

This expression is useful to evaluate the beamforming error caused by the SRO. In the
ideal case, Rx would be estimated based on the current STFT frame only (L = 1),
because then there is no phase offset accumulation. In that case, the correct phase for
cach frame is included in d, and we have perfect SRO compensation (assuming the
piece-wise constant approximation derived in section 4.1 is accurate).

Using L = 1 in (5.8) we find:

2
BV, = %die_j”kﬁei. (5.9)

31



We can devise an error measure which compares the averaging estimate found in (5.8)
with the estimate found using the current STFT frame only in (5.9). A proper error
measure would take the expected value of the square of the difference between (5.8)
and (5.9), that is, the mean squared error (MSE), as follows:

2
Cw,=E ‘Vi -V (5.10)
L=1
2
> ‘E {vi ~Vi } (5.11)
L=1
2
- ’]E [Vi] — E[V] (5.12)
L=1
where (5.11) follows from Jensen’s inequality [28]. For Jensen’s inequality to hold, we

need the MSE function g(z) = |z|*> to be strictly convex, which is indeed true. We
proceed with substitution of (5.8) and (5.9) into (5.12):

2

o3 , , sin(mkLe;/2) -
C ;> X1 d; —jrkLe; ,jmk(L—1)e; /2 v 2 d; —jmkLe;
Wi = ‘ ‘ sin(rke/2) 0%
imk(L—1)¢; /2 o , 2
9 e’ sin(mkLe; /2)
= d; —1 5.13
o ( L sin(mke; /2) (5.13)

We conclude that using the Welch method, the larger the value of L or ¢;, the larger
the error in Rxj;,1) introduced by a SRO.
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5.2 Recursive smoothing method

In the previous section, it was shown that estimating Ry using the Welch method in
the presence of clock skew, is subject to an error due to averaging of frames. However,
estimating Ry using only the current frame data leads to a high variance. The aver-
aging of frames is therefore necessary in estimating the correlation matrices. However,
there exist methods which can emphasize either the previous time frames or the current
time frames. In [29] a variable forgetting factor recursive smoothing method is used to
estimate the spectrum of a non-stationary signal. In [30] and [31] a recursive smoothing
method is used in the estimation/tracking of the noise PSD. Such methods can be used
instead of the Welch method in the estimation of Ry. We shall proceed to define such
a recursive smoothing method.

We define the recursive smoothing with a forgetting factor o as:

Ry () = aRy(l — 1) + (1 — )y (D)FH (1) (5.14)

where we have 0 < a < 1. This equation can be written explicitly, for recursive
smoothing up to STFT frame £ — 1. We can write (5.14) as:

Ry =(1—a)) o 505%0D). (5.15)

This expression is useful for deriving the error introduced by a SRO, as derived in
the previous section for the Welch method. Note that recursive smoothing as defined
here uses all £ available STF'T frames at current frame £ — 1 with appropriate weights
applied to them. In contrast, the Welch method uses the L previous, equally weighted
STET frames, which may be less frames than available at current frame £ — 1.

5.2.1 Effect of sample rate offset on estimate using recursive smoothing
method

The effect of the SRO on Ry can be evaluated similar to the previous section. Again
we assume a noiseless scenario, thus we study Rx. Assume again that we have a single
WSS target source signal over the estimation period for Rx. Then the PSD of the
target source process is constant, with variance E|X;|* = 0%, , where X denotes the
stochastic process that realizes X;. We look at entry [i, 1] of Rx in (5.15), because the
relevant information is located in the first column of Rx as discussed before. Then,
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recalling (4.9) we find:

L—-1
E[Vz] = o'gﬁdz(l _ Oé)efjﬂ'kﬁi Z aﬁ*l*lefj%rk'ylei
=0

L£-1 7]27rk~/el
2 jke;
:J%di(l—a Lo—imke: ( )
L

=0

1 N (6 j2mkye; >
2 L—-1 _—jrke; a
= oy, di(1 — a)a~" eI —
1 i (e JQW}C’YSI>
(0%

L €—j27rk'y£5i

=03 di(1 —a)e” ke &

(5.16)

o — e—Jj2mkye; :

We can generally assume the system is in a running state, which means £ > 1. Then
(5.16) can be reduced to:

9 P e—jQﬂk’yﬁei
E[VZ] = O'dei(C( — 1)6 I Elm. (517)
Using again Kj, = K/2 — v = 1/2, we find:
) 6fj7rk(l:+1)ei

We define the error similar to (5.12), by taking the MSE between (5.18) and (5.9) as
follows:

2
CR,Z‘ > ‘E [Vz] - E[VZ] (5.19)
L=1
Substitution of (5.18) and (5.9) into (5.19) then gives:
) o—imh(L+1)e; , o 2
CR,i Z Udei(a — 1)m — O-deie J i
a—1 2
= loxdi | — —1 2
UXl (a@]ﬂ'l%i . 1 (5 0)

We conclude that using the recursive smoothing method, the larger the value of « or
€;, the larger the error in Rxy; 1) introduced by a SRO.

In Figure 5.1 the error measures (5.13) and (5.20) are plotted vs. the sample rate
offset. For the settings in Figure 5.1a the recursive smoothing method performs better
than the Welch method. The “ringing” of the Welch method error originating from the
Dirichlet kernel appearing in (5.8) can also be seen.
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—— Welch method —— Welch method

—— Recursive smoothing method —— Recursive smoothing method
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1 1
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1] (2]
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05 ; 05}
0 s 0 s
102 10° 102 10* 102 10° 102 10*
sample rate offset (ppm) sample rate offset (ppm)
(a) For the Welch method L = 200, for the (b) For the Welch method L = 200, for the
recursive smoothing method a = 0.95. recursive smoothing method o = 0.9990.

Figure 5.1: Mean squared error (MSE) vs. sample rate offset (SRO) for different correlation
matrix estimators. Welch method and recursive smoothing method error measures as defined
in (5.13) and (5.20) respectively. The SRO is between microphone i and microphone 1. A
direct transfer is assumed, i.e. |d;| = 1. The frequency bin selected corresponds to 2 kHz.
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Simulation of Wireless
Acoustic Sensor Network

In Chapter 4 we concluded that in theory the GEVD based beamformers are invariant
to clock skew, up to the linearly-increasing, piecewise-constant approximation used for
the phase shift caused by a SRO. In Chapter 5 we have seen that a SRO introduces
an error in the estimated correlation matrices, which increases with the SRO and the
estimation length. In this chapter we will investigate the performance of the GEVD
based clock skew invariant beamformers using either Welch or recursive smoothing
as correlation matrix estimation methods. We shall denote the combination of these
GEVD based beamformers and correlation matrix estimation methods as the proposed
algorithms in the following discussion. The performance of the proposed algorithms is
compared with a blind synchronization algorithm by Bahari et al. [1], we shall denote
this algorithm as the reference algorithm in the following discussion. Note that the
reference algorithm uses the Welch method for correlation matrix estimation.

The algorithms are compared using a simulated WASN setup, to be detailed in the
next sections. The parameters for the simulation are then defined and the results are
presented. At the end of this chapter a conclusion is made using the obtained results
and recommendations are made on future work.

6.1 Wireless Acoustic Sensor Network setup

The setup used in the experiments is depicted in Figure 6.1. The network consists of
nodes, each comprised of a microphone and a wireless communication mechanism. One
of the nodes, the fusion node, collects data from the other, slave nodes. The fusion node
is also tasked with performing computations on the received data; it receives buffers
of sampled time domain data from the slave nodes. These buffers are converted to the
frequency domain through the STFT transform as defined in (2.5). Then, the fusion
node calculates the beamformer and applies it to the received data.

6.1.1 Buffering scheme

The buffering scheme inherent to the WASN setup provides a periodic time domain
synchronization. For the proposed algorithm, the data for each node is stored in a
buffer of length @, and the fusion node collects these buffers when its buffer is full.
Assume now without loss of generality that the fusion node is the fastest sampling
node, so we have for the SRO ¢; < 0 for 7 # 1. Due to this condition, the buffers from
the slave nodes contain less samples than the buffer from the fusion node at the time
when the buffers are taken. Therefore, automatically zero-padding is applied to the
slave nodes buffers, which leads to time domain synchronization (up to one sample
precision) every () samples.
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For the reference algorithm, the buffering length is dependent on the estimated
SRO value. The algorithm takes a buffer when the signals from the fusion node and a
slave node have drifted apart further than 1 sample. This happens each 1/|e;| samples,
where ¢; is the SRO of microphone i. At that time instant, a zero is padded to the
buffer of a slave node. This means time domain synchronization (up to one sample
precision) happens each 1/|¢;| samples.

Slave node Slave node Slave node Slave node

Figure 6.1: Wireless acoustic sensor network setup as used in the experiments. All nodes
have microphones with indices as depicted in this figure; ¢ = 1,2,..., M.
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Figure 6.2: The geometry of the setup used in the simulations is depicted here, with the
locations of the microphones and signal sources. A room with dimensions 6 m x 3 m x 3 m
is used.

6.2 Simulation setup

The WASN setup discussed in the previous section and shown in Figure 6.1 was sim-
ulated in Matlab. See Figure 6.2 for the geometry of the setup. The basic signal flow
for the simulation can be seen in Figure 6.3, with a clarification of the symbols used
in Table 6.1. The setup consists of a single target (speech) and an interfering signal
(i.e. background noise). The speech recordings are sourced from [32]. Additionally, the
microphones are subject to spatially white self noise. To estimate the noise correlation
matrix Ry, it is assumed that there is a ‘quiet’ period where only the self noise and
interference are present.

From the received data y a blind estimate of the (relative) steering vector d is
constructed. This is done using the low-rank approximation RX as defined in (4.36).
Using Rx and the earlier estimated noise correlation matrix Ry we can construct
the MVDR beamformer, as given in Table 2.1. The beamformer can then be used to
estimate the target signal (at microphone 1).
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{Target signal X 1} {Interference signal leif}

d i
dlf \
=x+V Mlcroph‘one y = v (noise only)
self noise

Correlation ma-
trix estimation

Ry—>Rx—>d

{ Estimate Ry ]

MVDR

beamformer
W — Ry'd
dHR 14

Xl = WHy

Figure 6.3: Basic signal flow for obtaining beamformed signal.

Symbol Definition

X, target source signal at microphone 1

Ry received data correlation matrix

Rx target source correlation matrix

Rv noise and interference correlation matrix

d steering vector to target source

d;; steering vector to interfering source

w beamformer

X beamformer target source estimate

€ sample rate offset (SRO) of microphone i w.r.t.
microphone 1 (the reference microphone)

L number of averaging STFT frames used with the
Welch method

Q recursive smoothing window forgetting factor

Table 6.1: Symbols used in the wireless acoustic sensor network (WASN) simulation
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We shall now proceed to extend the basic signal flow shown in Figure 6.3 to the
specific implementation for the proposed and reference algorithms. The signals flows
for the proposed algorithm and reference algorithm are depicted in Figure 6.4 and
Figure 6.5, respectively.

[Target signal XlJ [Interference signal X3 if}

| T
[

Microphone

) (noise only)
self noise

Time domain Time domain
buffering @ buffering @

Correlation ma- (
trix estimation L Estimate Ry, J
RY — RX —d

MVDR

beamformler

Figure 6.4: Signal flow for obtaining beamformed signal with the proposed algorithm. A
time domain buffer is implemented, which synchronizes the data from different nodes every
Q) samples.
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[Target signal Xl} [Interference signal Xl}if}

d i
djf \
—{ y=x+vV H Mslecéofizge Hy = v (noise only)}

Time domain; Time domain;

insert 0 every insert 0 every

1/€; samples 1/€; samples

SRO estimati Frequency do- Frequency do-
estimation main phase shift main phase shift

Correlation ma- (
trix estimation L Estimate Ry
RY — RX —d

MVDR

beamformer:
Ry'd
v <
~ d'"R,'d
X, = wiy

W =

Figure 6.5: Signal flow for obtaining beamformed signal with the reference algorithm [1].
The algorithm uses a time domain compensation which synchronizes data from different
nodes every 1/|¢;| samples (where ¢; is the sample rate offset (SRO) of microphone i w.r.t.
microphone 1). The SRO is estimated using linear coherence drift (LCD) [1] and compensated
for in the frequency domain using a phase shift. For the SRO estimation parameters used,
see Table B.1.
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In Table 6.2 simulation parameters are summarized which are constant across the
different scenarios used later on.

Parameter Symbol Value
Sample rate at micro- | fo1 = fsref | 16kHz
phone 1
Simulation realizations | Nyyns 10
Simulation length Teim 30s
STFEFT parameters
frame size | K 512 samples
hop size | K, = K/2 256 samples
window | w square
root Hann
(length K)
Microphone self noise | SNR; 30dB

signal-to-noise ratio (at
each microphone)

Signal-to-interference SIR; 0dB
ratio at microphone 1

Room impulse response | Ty < 14ms
(RIR) T60 decay time

Table 6.2: Simulation parameters for the wireless acoustic sensor network (WASN) setup.

We shall proceed to define the signal-to-noise ratio (SNR) and signal-to-interference
ratio (SIR) as used in Table 6.2. We define the microphone self noise SNR at microphone
1 as:

_aillz

- 2
||Ui7SH||2

SNR; (6.1)
where z; is the target signal received at microphone ¢ and v; ¢, is the microphone self
noise signal at microphone 1.

We define the SNR at the beamformer output as:

2
[ 15

SNRout - (62)

12 — @il

where z; is the target signal received at microphone ¢ and z; is the target signal es-
timated by the beamformer. This equation is used for performance evaluation in the
next section.

We define the SIR at microphone 1 as:

2
RN

2
||Ul,if||2

SIR; =

(6.3)

where z; is the target signal received at microphone 1 and v jnter the received signal
at microphone 1 when only the interfering signals are present. Note that the SNR and
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SIR are calculated in the time domain. The above definitions assume we have access
to the target signals x; at each microphone ¢, which is possible in the simulation. In
practice, we may only have access to the target signal s and z; can be found using the
estimated steering vector.

6.2.1 Room impulse response synthesis

We used the code for synthesizing the room impulse responses (RIRs) from [33], which
makes use of the method presented in [34]. The room depicted in Figure 6.2 was used to
generate the RIRs and the microphones were set to an omnidirectional characteristic.
The Tgo time, that is, the time it takes for the magnitude of the RIR to decay to
60 dB below its peak value, is limited to half the length of an STFT frame, by choosing
appropriate reflection coefficients for the walls. The Tg, limit is given by: K/(2fsref) =
16 ms. Choosing a RIR with a length below 16 ms assures that the room impulse
response can be fully contained in the steering vector. Refer to Table 6.2 for the
realized Tgo time of the RIRs.
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6.3 Results using babble noise as interfering source

A speech signal is used as the target source and babble noise is used as the interfering
source. The babble noise signal is a recording of multiple people speaking at the same
time. See Figure 6.6 for time domain plots of the used signals. These signals are used
throughout this section for the simulations.

02 T T T T T
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[0
©
2 0
Q.
§
-0.1
0.2 1 1 1 1 1
0 5 10 15 20 25 30
time (s)
02 [~ T T T T T |
0.1 J
[0}
©
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Q.
§
-0.1 + .
02 1 1 1 1 1
0 5 10 15 20 25 30
time (s)

Figure 6.6: Plots of the speech signal (top) and babble noise interference signal (bottom).

6.3.1 2 microphones

In this section we evaluate the performance of the different algorithms, using only
microphones 1 and 2 as displayed in Figure 6.2. From (5.13) we know that using the
Welch method, the error caused by the estimation of the correlation matrices is a
function of the SRO and the estimation length L. From (5.20) we know that using
recursive smoothing, the error caused by the estimation is a function of the SRO
and the forgetting factor a. Therefore it is useful to evaluate the performance of the
beamformers as a function of two parameters. In Figure 6.7a and 6.7b the performance
of the reference algorithm is plotted using either the true or estimated SRO value
for compensation. In Figure 6.7c¢ and Figure 6.7d the performance of the proposed
algorithm is plotted using the Welch and recursive smoothing estimation methods,
respectively.

Comparing Figure 6.7a and 6.7b with Figure 6.7c and Figure 6.7d we see that
indeed the compensation performed by the reference method is effective, especially
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in the SRO region > 10ppm. From Figure 6.7d we see that the proposed method
using recursive smoothing performs well only for values of « close to 1. When looking
specifically at Figure 5.1b, which has the same o and L values as used in Figure 6.7, we
may expect that recursive smoothing performs worse than the Welch method at those
settings. The contrary is shown however in Figure 6.7d. We conclude that although
recursive smoothing will give a lower estimation error due to a SRO at lower values of
a, a high value of a should be selected. This is necessary to keep the variance of the
estimate low enough, which otherwise dominates the estimation error. The same can
be said for the Welch method, where sufficient estimation frames need to be used to
reduce the variance of the estimate.

L 0 0%
sample rate offset (ppm) sample rate offset (ppm)
(a) Compensation with true SRO, SNR vs. L (b) Compensation with estimated SRO, SNR
and eg vs. L and eg

out (dB)

SNR

0.6
L 0 q0* a 04 404
sample rate offset (ppm) sample rate offset (ppm)

(¢) Proposed algorithm with Welch method, (d) Proposed algorithm with recursive
SNR vs. L and €5, no time domain synchro- smoothing, SNR vs. «a and €, no time
nization (Q = o0) domain synchronization (Q = oo)

Figure 6.7: Plot of the SNR vs. L, a and the sample rate offset (SRO) for different algorithms,
using M = 2 microphones. The larger the value of L, the more past frames are used to
estimate Ry. The larger the value of «, the higher the emphasis on past frames used to
estimate Ry. The reference algorithm uses the Welch method as presented in [1].
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To compare the different algorithms, we ’slice’ the plots in Figure 6.7 at high values
of L and «, since there the performance is the best. Note that the performance of the
methods using Welch can be improved by selecting higher values of L than shown in
Figure 6.7. The comparison of the algorithms for L = 200 and a = 0.9990 can be
seen in Figure 6.8a. A separate simulation for L = 500 and o = 0.9990 is shown in
Figure 6.8b.

Using the information from Figure 6.8, we see that in the range of 1072 - 10° ppm the
proposed algorithm with recursive smoothing estimation method performs the best. In
the range of 10° - 10? ppm the reference algorithm performs better than the proposed
algorithm. The region from 102 ppm and higher is unrealistic for most scenarios,
however the algorithms show similar results. Note that compensation with true SRO
is not practically realizable, it is merely used as a reference.

Comparing the two implementations of the proposed algorithm, we see that the im-
plementation using recursive smoothing performs better over most of the SRO range.
The difference between the two implementations is smaller in Figure 6.8b than in Fig-
ure 6.8a, however. This is due to the larger number of frames used by the Welch method
in Figure 6.8b.

In the region of higher SRO values (> 100 ppm), the performance of the SRO esti-
mation decreases for the reference algorithm, as we see the performance of the two
implementations of the reference algorithm diverging. The STFT frame size used
for SRO estimation is 8192samples (see Table B.1). For higher SRO values than
1/8192 ~ 122 ppm, inside a single STFT frame, the signals from the two microphones
drift apart more than 1 sample. The constant phase shift across a single STFT frame
approximation will not be accurate anymore. In fact, the approximation becomes less
accurate as the SRO becomes larger. This is likely the cause of the SRO estimation
performance degradation at higher SRO values.

—=—Proposed algorithm (Welch) —=—Proposed algorithm (Welch)
—=—Proposed algorithm (recursive smoothing) —=—Proposed algorithm (recursive smoothing)
Reference algorithm (estimated SRO) Reference algorithm (estimated SRO)
—=— Reference algorithm (true SRO) —=— Reference algorithm (true SRO)
25 T . 25
20._—5—5—5—9\5\— - 1 20 =0 1
o o
C 151 1 © 151 i
ocg nc8
Z 10r 1 Z 10r 1
%) n
5F 5F
e fE—E—m— i
0 ! T 0 ! L
102 10° 102 10* 102 10° 102 10*
sample rate offset (ppm) sample rate offset (ppm)

(a) Slices of the plots in Figure 6.7 are taken (b) Simulation with L = 500 and a = 0.9990.
at L =200 and a = 0.9990.

Figure 6.8: A comparison of the different algorithms, using M = 2 microphones. No time
domain synchronization is used for the proposed algorithm, therefore Q) = oc.

The performance loss for the proposed algorithm at high SROs in Figure 6.8 is
caused in part by the error due to estimation of the correlation matrices. However, the
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Figure 6.9: Simulation using M = 2 microphones with L = 500 and a = 0.9990. For the
proposed method, we use time domain synchronization with Q = 5120, i.e. every 20 short-
time Fourier transform (STFT) frames the buffers are taken.

coherence between samples is lost over time due to SRO and this becomes apparent
especially at high SROs. Up to this point we have looked at the most basic imple-
mentation of the proposed algorithm without any time domain synchronization. In
Figure 6.9 the proposed algorithm performance is shown with time domain synchro-
nization for every 20 STFT frames. This synchronization is applied using the buffering
scheme described in subsection 6.1.1.

The time domain synchronization clearly boosts the performance in the SRO range
of 1 up to 10000 ppm.
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6.3.2 4 microphones

To further study the application to a WASN, the microphone array is extended to
using four microphones, as displayed in Figure 6.2. Refer to Figure 6.10: we observe
from both Figure 6.10a and Figure 6.10b that the proposed method using recursive
smoothing performs better than using the Welch method. Furthermore, the recursive
smoothing method has the better performance up to a SRO of 1 ppm. From Figure 6.10
we also clearly see that the SNR performance has increased over Figure 6.8, which is
expected for a larger microphone array.

—a—Proposed algorithm (Welch) —a—Proposed algorithm (Welch)
—=—Proposed algorithm (recursive smoothing) —=—Proposed algorithm (recursive smoothing)

Reference algorithm (estimated SRO) Reference algorithm (estimated SRO)
—&— Reference algorithm (true SRO) —&— Reference algorithm (true SRO)

25 : : 25 e o
. S ooy “‘\ _
"\ _ g | _

o o
= 15¢ =
3 3
T 10r Z 10r
7] 7]
5f . 5f
0 L L - 0 "
10 102 10° 102 10 10 102 10° 102 10*
mean sample rate offset (ppm) mean sample rate offset (ppm)

(a) Simulation with L = 200 and a = 0.9990. (b) Simulation with L = 500 and o = 0.9990.

Figure 6.10: A comparison of the different algorithms, using M = 4 microphones. Different
settings of L are used. No time domain synchronization is used for the proposed algorithm,
therefore () = oo.

Similar to the setup with two microphones, we shall proceed to implement time
domain synchronization in the proposed algorithm for the four microphone setup. See
Figure 6.11 for a performance comparison. Again, we see performance from the pro-
posed algorithm that is more comparable with the reference algorithm in the high SRO
range. The proposed algorithm using recursive smoothing has a slight advantage over
the proposed algorithm using the Welch method.
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Figure 6.11: Simulation using M = 4 microphones with L = 500 and o = 0.9990. For
the proposed method, we use time domain synchronization with ¢Q = 5120, i.e. every 20
short-time Fourier transform (STFT) frames the buffers are taken.
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6.4 Conclusion

We recall the research question that was stated at the end of Chapter 3:

Is the theory for clock offset invariant beamforming applicable to clock skew af-
fected beamformers in a WASN?

In Chapter 4 we showed that using GEVD based beamformers, under the as-
sumption of a linearly increasing phase shift across the STFT frames, this is possible.
The practical side of the problem was addressed in Chapter 5, where we discussed the
estimation of correlation matrices that are necessary for the GEVD based beamformers.
The “standard” Welch method was used to estimate the correlation matrices. It was
shown that the estimated correlation matrices where biased, due to the clock skew.
This introduced an error in the estimated correlation matrices and consequently in the
beamformers. In addition to the Welch method, a recursive smoothing method was
studied, and a possibly improved estimation performance for the latter method was
predicted.

In this chapter we compared the proposed algorithms with a reference algorithm.
From all the experiments we saw that the performance of the proposed algorithm using
recursive smoothing was equal to or better than the proposed algorithm using the Welch
method. Furthermore, for SRO values up to 1ppm the performance of the proposed
algorithm using recursive smoothing was equal to or better than the other algorithms.
When the buffering scheme presented in subsection 6.1.1 is used, the performance of
the proposed algorithm using recursive smoothing was comparable to the reference
algorithm even for high SRO values.

Looking at hardware implementation of the proposed algorithm, we note that using
the recursive smoothing method less memory resources have to be used than using the
Welch method. With the recursive smoothing method we store a single correlation
matrix, whereas the Welch method needs L correlation matrices which are stored in
a first in, first out (FIFO) buffer. Compared with the reference algorithm, where the
SRO estimation and compensation causes additional computational load for the fusion
node, the proposed algorithm requires no additional computations.

From this study we conclude that for a wide range of SROs the theory of clock offset
invariant beamforming is applicable to clock skew affected beamformers in a WASN,
when used with periodic time domain synchronization. The periodic time domain
synchronization is inherent to the WASN setup used in this thesis, because it utilizes
a buffering scheme to collect data from the nodes.

6.5 Future work

This thesis focused on WASNS tasked with beamforming, subject to clock skew. Clock
skew invariant beamforming is not perfectly realizable, however it appears that for a
wide range of SRO values the proposed algorithm can be used. The material discussed
in this thesis can benefit from further study. In Chapter 5 the main contribution from
this thesis was presented. However, the extent to which the theory on correlation
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matrix estimation can be used is limited. In Chapter 6 a WASN setup was simulated,
which was limited to a setup with up to four microphones and a single target and
interference source. To address the limitations of the work done in this thesis various
recommendations are stated below:

e Developing (faster) correlation matriz estimation methods. From the results we
see that for the proposed algorithm, using recursive smoothing gives better per-
formance than the Welch method. In general, it can be expected that “faster”
estimation methods will perform better in the presence of clock skew (here “faster”
means estimating over a shorter period, i.e. using less STFT frames). That is,
with a “faster” method the accumulated error due to clock skew is lower. How-
ever, a tradeoff still exists between the variance of the estimate and the clock skew
induced error. We know from Chapter 5 that error measures can be constructed
for estimation methods and thus the methods can be compared analytically. The
correlation matrix estimation methods need further study, because they play an
important role in beamforming with clock skew.

The Welch method makes use of periodograms and averages them. Therefore
it belongs to the class of non-parametric methods for estimation of the PSD. It
may be of interest to use a parametric method based on an autoregressive (AR),
moving average (MA) or autoregressive moving average (ARMA) model, such as
presented in Hayes [35].

e Studying a noisy case for the correlation matrixz estimation error. An error mea-
sure for the estimated correlation matrices was devised in Chapter 5. A noiseless
case was studied, to simplify the equations. This gives a good prediction for the
estimation error made using many STF'T frames. However, using a limited amount
of STFT frames, the influence of noise on the estimate will become significant.
A trade-off exists between error due to clock skew and noise. The expectation
from Figure 5.1 that lower values of a are beneficial to estimator performance
was contrasted by the result in Figure 6.7d where we saw that values of a close
to 1 where desirable, which is due to this trade-off. It is therefore interesting
to investigate a noisy case to study the trade-off between noise performance and
clock skew induced error.

e Simulating for a larger number of sources/microphones. The setup used is not
worked out for a large number of scenarios: only a single target, single interfer-
ence scenario has been simulated. For the four microphone scenario we saw a
significantly different outcome than the two microphone scenario, therefore larger
sizes of the microphone array need to be simulated.

e Using the results of many different source signals. All of the simulations were
carried out using a single target and interference signal. If we view the speech /in-
terfering signal as a realization of a particular stochastic process, the setup used
takes a very small number of samples, which generates errors in the results. We
decided to focus on a comparison of the performance of our proposed method
relative to a reference method, which should still be possible given this limited

92



setup. To get a more realistic estimate of the absolute performance however, an
extended setup should be used which uses more test signals.

o Carrying out a Monte-Carlo analysis with varying source locations. In the sim-
ulation conducted by [1&] the locations of the sources are changed randomly for
each different SRO value simulation. This reduces possible artifacts introduced
in the results by the specific source setup in the room.

e Realizing a physical WASN setup with real SROs. Realizing a physical setup can
be very useful, since the SROs present in actual devices can be used. Such a study
is performed in [19]. This increases the connection to reality of the study.
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Glossary

Abbreviation | Full form

DFT Discrete Fourier Transform
(G)EVD (Generalized) Eigenvalue Decomposition
MSE Mean Squared Error

ppm parts per million

PSD Power Spectral Density

RIR Room Impulse Response

SIR Signal-to-interference ratio

SNR Signal-to-noise ratio

SRO Sample Rate Offset

STFT Short Time Fourier Transform
WASN Wireless Acoustic Sensor Network
WSS Wide-Sense Stationary

Table A.1: A list of commonly used abbreviations throughout the thesis.
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Extra figures and tables

B.1 Parameters used for sample rate offset estimation

Parameter Value
Coherence frame size 16 384 samples
Coherence frame overlap 8192 samples
Number of coherence frames used 6
Periodogram frame size 8192 samples
Periodogram hop size 2048 samples
Periodogram window square root Hamming

Table B.1: Parameters used for the sample rate offset (SRO) estimation, taken from [!] and
adapted to a sample rate of f; = 16 kHz.
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