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A B S T R A C T

Increasing performance requirements in high-precision mechatronic systems lead to a situation where both
multivariable and sampled-data implementation aspects need to be addressed. The aim of this paper is to
develop a design framework for a multi-input multi-output feedforward controller to improve continuous-
time tracking performance through learning. The sampled-data feedforward controller is designed with
physically interpretable tuning parameters using a multirate zero-order-hold differentiator. The developed
approach enables interaction compensation for multi-input multi-output systems and the feedforward controller
parameters are updated through learning. The performance improvement is experimentally validated in a
multi-input multi-output motion system compared to the conventional feedforward controllers.
. Introduction

Feedforward control is essential in increasing performance require-
ents for motion control of high-precision mechatronic systems in

ndustries such as semiconductor lithography systems [1–3], wire bon-
ers [4], atomic force microscopy [5], machine tools [6], industrial
obots [7], magnetic bearing [8], boost converters [9], 2D/3D print-
rs [10–12], and CT scanners [13]. Iterative Learning Control (ILC)
s one of the algorithms to update the feedforward controller by the
rror data of the previous iteration, and the error is reduced through
earning. To overcome the limitation of the interpretability in ILC such
s a Finite Impulse Response (FIR) filter-based structure in [1,11],
t is beneficial in industries that the controller consists of physically
nterpretable tuning parameters to achieve both intuitive tuning and
ata-driven learning.

Physical interpretability and intuitive tuning of the data-driven
eedforward controller are desirable in industrial applications. It is
chieved by structure analysis of the controlled system [14,15], and
he controller can be parameterized intuitively by linear combinations
ith tuning parameters and basis functions [10,16]. Basis functions

ypically consist of a reference signal and its derivatives [16] and
onlinear functions such as friction compensation [6]. This structure

✩ This paper was recommended for publication by Associate Editor Cheng-Wei Chen.
∗ Corresponding author.

E-mail address: mmae@ieee.org (M. Mae).

enables low-complexity parameterization with physical interpretabil-
ity and flexibility for varying references. In conventional approaches
[14–16], the differentiator for the basis function design is implemented
by the backward differentiator, and the sampled-data characteristic is
not considered. The gap between the backward differentiator and the
zero-order-hold characteristics of the sampled-data system results in the
limitation of the control performance in continuous time.

Sampled-data feedforward control improves the continuous-time
tracking performance of high-precision mechatronic systems where the
sampling frequency is not sufficiently high compared to the motion
profile [17]. In industrial control applications, the controlled system
is discretized by sampler and zero-order-hold and these characteristics
should be considered in feedforward controller design to improve not
only on-sample but also intersample performance [18]. State-tracking
feedforward control [19,20] and ILC [21] with multirate inversion
can improve the continuous-time tracking performance in sampled-
data systems. These controllers enable on-sample state-tracking and it
leads to physically natural intersample behavior. For the application
to the complex mechatronic systems, there is no guarantee of a perfect
model for model inversion and there must be a modeling error between
the identified model and the actual system. The multirate feedforward
ttps://doi.org/10.1016/j.mechatronics.2024.103288
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control also can be extended to the multivariable systems [22,23].
However, the complex mechatronic systems are represented by the
multivariable model in many cases and it results in many tuning
arameters for the inverse-based controller design.

Although important contributions have been made to improve the
performance and interpretability of feedforward control, the sampled-
data characteristics with sampler and zero-order-hold are not taken into
account in the basis function design, and the structure of multi-input
multi-output (MIMO) feedforward control is not discussed in the con-
text of intuitive tuning and leaning from experimental data. The aim of
this paper is to design the MIMO feedforward controller to improve the
continuous-time tracking performance through learning. Compared to
conventional approaches, the developed basis function design considers
the sampled-data characteristics. In this paper, the feedforward con-
troller is parameterized with basis functions for MIMO motion systems
and it enables physical interpretation of the feedforward controller
parameters and analytic solution of data-driven parameter tuning. The
present paper substantially extends the preliminary result in [24],
including the comparison between the exact model inversion based on
the multirate feedforward control, the generalization for the application
in MIMO motion systems, the data-driven tuning algorithm, and the
experimental validation.

The main contribution of this paper is the fixed-structure feedfor-
ward controller design considering sampled-data characteristics and
interactions in MIMO motion systems. The contributions include:

Contribution 1. Discrete-time basis functions are designed for continuous-
ime reference considering sampled-data characteristics to improve
ontinuous-time tracking performance.

Contribution 2. ILC with basis functions is formulated with physically
interpretable tuning parameters considering the dynamics and interaction of
MIMO motion systems.

The outline is as follows. In Section 2, the problem is formulated. In
Section 3, the basis function design considering continuous-time track-
ng performance is described, constituting Contribution 1. In Section 4,

the continuous-time tracking performance of the developed approach
is demonstrated by the simulation in SISO motion systems compared
to the conventional approaches. In Section 5, ILC with basis functions
s formulated in MIMO motion systems, constituting Contribution 2. In

Section 6, the performance improvement with interaction compensa-
tion and the sampled-data characteristics is experimentally validated.
In Section 7, conclusions are presented.

2. Problem formulation

In this section, the problem to improve continuous-time track-
ng performance in MIMO motion systems is formulated. First, the

reference tracking problem is defined in continuous time. Second, in-
eraction compensation is investigated for reference tracking in MIMO
otion systems. Finally, the problems in this paper are described.

2.1. Continuous-time tracking performance in sampled-data control

The considered tracking control configuration in a 𝑛𝑢-input 𝑛𝑦-
output continuous-time linear time-invariant system 𝑮 is shown in
Fig. 1, with reference 𝒓(𝑡) ∈ R𝑛𝑦 , control input 𝒖(𝑡) ∈ R𝑛𝑢 , and output
(𝑡) ∈ R𝑛𝑦 .

The system is controlled by the sampled-data controller that consists
f feedforward controller 𝑭 (𝜽), feedback controller 𝑲 , sampler , and
ero-order-hold , where sampler and zero-order-hold are defined as
ollows.
2 
Fig. 1. Tracking control diagram. The continuous-time system 𝑮 is controlled by the
feedforward controller 𝑭 (𝜽) and the discrete-time feedback controller 𝑲 with sampler 
and zero-order-hold . The objective is to minimize the continuous-time tracking error
𝒆(𝑡). The solid and dotted lines denote the continuous-time and discrete-time signals,
respectively.

Definition 1 (Sampler). The sampler  with sampling time 𝑇𝑠 is defined
s

 ∶ 𝒓(𝑡) ↦ 𝒓[𝑘], 𝒓[𝑘] = 𝒓(𝑘𝑇𝑠). (1)

Definition 2 (Zero-order-hold). The zero-order-hold  with sampling
time 𝑇𝑠 is defined as

 ∶ 𝒖[𝑘] ↦ 𝒖(𝑡), 𝒖(𝑘𝑇𝑠 + 𝜏) = 𝒖[𝑘], 𝜏 = [0, 𝑇𝑠). (2)

The control objective in this paper is to minimize the continuous-
ime tracking error 𝒆(𝑡). Traditionally, the conventional discrete-time
ontroller only focuses on the on-sample performance with the discrete-

time tracking error 𝒆[𝑘]. To improve the continuous-time tracking error
𝒆(𝑡), not only on-sample but also intersample performance should be
considered. The improvement of continuous-time tracking performance
is defined as follows.

Definition 3 (Continuous-time Tracking Performance). The optimization
problem to improve the continuous-time tracking performance in the
sampled-data motion system is defined as

minimize
𝜽

‖𝒆[𝑘]‖𝑾 (3)

subject to
∀𝑙

RMS(𝑒𝑙[𝑘]) ≈ RMS(𝑒𝑙(𝑡)), (4)

where 𝜽 is the tuning parameter, ‖ ∙ ‖𝑾 is the weighted 2-norm with
he weighting matrix 𝑾 , 𝑒𝑙[𝑘] and 𝑒𝑙(𝑡) are the tracking errors of the 𝑙t h
xis in discrete time and continuous time, and RMS(∙) is the operator
o calculate the Root Mean Square.

It is the practical constraint that the controller can be tuned using
he data of the discrete-time tracking error 𝒆[𝑘] although the objective
f the control problem is the improvement of the continuous-time
racking error 𝒆(𝑡). To satisfy approximately the same condition of
he discrete-time and continuous-time tracking errors, the controller
hould be designed not to generate the control inputs that cause the
ntersample oscillation.

2.2. Decoupling control for interaction compensation

In the controller design of MIMO motion systems, the static de-
coupling is applied by the input decoupling matrix 𝑻 𝑢 and the output
decoupling matrix 𝑻 𝑦. The decoupled system 𝑻 𝑦𝑮 𝑻 𝑢 should be square
and diagonally dominant. In many cases, the single-input single-output
(SISO) controller is designed after the static decoupling. Even if the
system is statically decoupled, the off-diagonal terms still remain and it
results in interaction between inputs and outputs [1]. Therefore, static
decoupling is not sufficient in practice and it limits the control per-
formance of MIMO motion systems. In complex mechatronic systems,
interaction analysis is difficult and the model of coupling dynamics
always has a modeling error. In this paper, the feedforward controller is
designed considering both diagonal and off-diagonal dynamics to com-
pensate for interaction through learning from data with less modeling
effort of MIMO motion systems.
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2.3. Problem description

In this paper, the controller design problem is with respect to the
following requirements:

Requirement 1. The sampled-data characteristics with sampler and zero-
rder-hold should be considered in the discrete-time basis function design to
mprove continuous-time tracking performance.

Requirement 2. The basis functions should be parameterized with
physically interpretable tuning parameters considering the dynamics and
interaction of MIMO motion systems.

Requirement 1 is dealt with in Section 3 and it results in Contribution
Requirement 2 is dealt with in Section 5 and it results in Contribution 2.

3. Basis function design for sampled-data motion system

In this section, the basis function design using a sampled-data
differentiator is presented. The approach improves the continuous-time
tracking performance of the feedforward controller in sampled-data
control. First, the conventional approach using a backward differ-
entiator is analyzed in sampled-data control. Second, the single-rate
zero-order-hold differentiator is introduced for on-sample performance
in sampled-data control. Third, the idea of state compatibility is de-
fined to improve intersample performance. Finally, the multirate zero-
order-hold differentiator is developed to design the sampled-data basis
functions that satisfy state compatibility. It results in Contribution 1.

3.1. Challenge in sampled-data basis function design

The continuous-time feedforward controller can be parameterized
sing the reference signals 𝒓 and its derivatives. It results in the

combination with the tuning parameters 𝜽 and the continuous-time
basis functions that consist of a continuous-time differentiator d

d𝑡 . For
xample, the continuous-time acceleration feedforward controller 𝐹 (𝜃)
an be designed for a single-mass motion system 𝐺(𝑠) = 1

𝑚𝑠2
as

(𝜃) = 𝜃 d2
d𝑡2 . In this example, the basis function is 𝛹 = d2

d𝑡2 𝑟(𝑡) and the
tuning parameter is 𝜃 = 𝑚. However, for applications of mechatronic
systems in industries, the motion controllers are typically implemented
in discrete time. Therefore, to design the discrete-time basis function
𝛹 , the continuous-time differentiator d

d𝑡 should be replaced by the
sampled-data differentiator 𝜉 defined as follows.

Definition 4 (Sampled-data Differentiator). The 𝑛t h order sampled-data
differentiator 𝜉𝑛 with sampling time 𝑇𝑠 is the conversion from the
continuous-time signal 𝑟(𝑡) to the discrete-time signal 𝛹𝑛[𝑘] that is
compatible with the 𝑛t h order derivative of 𝑟(𝑡) and defined as

𝛹𝑛[𝑘] = 𝜉𝑛𝑟(𝑡). (5)

In the conventional approach [10,16], the discrete-time basis func-
tions are designed by the continuous-time reference 𝑟(𝑡) and the back-
ward differentiator defined as follows.

Definition 5 (Backward Differentiator). The 𝑛t h order backward differ-
entiator 𝜉𝑛𝑏𝑑 is given by

𝜉𝑛𝑏𝑑 =

⎧

⎪

⎨

⎪

⎩

(

1−𝑧−1
𝑇𝑠

)𝑛
𝑧

𝑛
2  (𝑛 ∶ even)

(

1−𝑧−1
𝑇𝑠

)𝑛 1+𝑧−1
2 𝑧

𝑛+1
2  (𝑛 ∶ odd)

, (6)

where 𝑧 is the discrete-time shift operator with sampling time 𝑇𝑠
defined as 𝑧𝑛𝑟[𝑘] = 𝑟[𝑘+𝑛]. 𝑧

𝑛
2 denotes the phase compensation. When 𝑛

s odd, the phase compensation consists of the half sample shift 𝑧
1
2 that

is a combination of one sample shift and the first order approximation
of averaging the current and previous value [16].
3 
The backward differentiator does not take into account the sampled-
data characteristics with sampler and zero-order-hold, the performance
deteriorates when the sampling frequency is not sufficiently high.

3.2. Single-rate zero-order-hold differentiator for on-sample performance

The state-space representation of the continuous-time 𝑛t h order
integrator in the controllable canonical form is given by

𝐻𝑛𝑐
𝑠
=
[

𝑨𝑛𝑐 𝒃𝑛𝑐
𝒄𝑛𝑐 0

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 0 0
0 ⋱ ⋱ 0 ⋮
0 0 ⋱ 1 0
0 0 0 0 1
1 0 ⋯ 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (7)

where 𝑨𝑛𝑐 ∈ R𝑛×𝑛, 𝒃𝑛𝑐 ∈ R𝑛×1, and 𝒄𝑛𝑐 ∈ R1×𝑛.
To consider the sampled-data characteristics for on-sample tracking

performance, the single-rate zero-order-hold differentiator is defined as
ollows.

Definition 6 (Single-rate Zero-order-hold Differentiator). Considering the
inverse of the continuous-time 𝑛t h order integrator discretized by sam-
pler  and zero-order-hold  with one sample shift, the 𝑛t h order
single-rate zero-order-hold differentiator 𝜉𝑛𝑠𝑟 is given by

𝜉𝑛𝑠𝑟 =
{(

𝐻𝑛𝑐
)

𝑧
}−1 . (8)

Although the discrete-time signal with the continuous-time signal
nd 𝑛t h order single-rate zero-order-hold differentiator is compatible
n-sample with the 𝑛t h order derivative signal of the continuous-time
ignal, the generated discrete-time signal can be oscillated or diverge.
he reason is that the single-rate zero-order-hold differentiator has
nstable or oscillating poles because of the inverse of discretization
eros when the degree of the continuous-time integrator is 2 or more
s Euler-Frobenius polynomials [25]. Therefore, even if the single-

rate zero-order-hold differentiator is compatible on-sample, there are
mismatches in other states and it deteriorates intersample performance.

3.3. State compatibility for intersample performance

The sampled-data characteristics with intersample performance can
e taken into account by the state-tracking control framework [19–21].

In the 𝑛 samples lifted system, the exact state-tracking can be achieved
in every 𝑛 sample. In such cases, the states in every 𝑛 sample are given
by the multirate sampler defined as follows.

Definition 7 (Multirate Sampler). The multirate sampler 𝑛 in every 𝑛
ample with sampling time 𝑇𝑠 is defined as

𝑛 ∶ 𝑟(𝑡) ↦ 𝑟[𝑖𝑛], 𝑟[𝑖𝑛] = 𝑟(𝑖𝑛𝑛𝑇𝑠). (9)

To improve both on-sample and intersample performance in
sampled-data systems with zero-order-hold and integrators, the basis
functions should satisfy the state compatibility defined as follows.

Definition 8 (State Compatibility). The discrete-time signal 𝛹𝑛[𝑘], that
is compatible with the 𝑛t h order derivative signal of the continuous-
time signal 𝑟(𝑡), satisfies state compatibility if the output through the
ystem, that consists of the continuous-time (𝑛 − 𝑚)t h order integrator
(𝑛−𝑚)𝑐 and zero-order-hold , is equal to the continuous-time 𝑚t h

rder derivative signal of 𝑟(𝑡) in every 𝑛 sample with multirate sampler
𝑛 and defined as

𝑛
d𝑚
d𝑡𝑚

𝑟(𝑡) = 𝑛𝐻(𝑛−𝑚)𝑐𝛹𝑛[𝑘], (10)

where 𝑚 = 0, 1,… , 𝑛 − 1.
The sampled-data differentiator that satisfies the state compati-

bility enables the feedforward controller parameterization with basis
functions to improve continuous-time tracking performance.
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3.4. Multirate zero-order-hold differentiator with state compatibility

To improve the intersample performance in the discrete-time sys-
tem, not only the output but also the states of the reference trajectory
are considered. The multirate zero-order-hold differentiator is designed
by the inverse of the continuous-time integrator discretized by sampler
and zero-order-hold to satisfy the state compatibility. In this paper,
the reference is assumed to be sufficiently smooth and satisfies the
following assumption.

Assumption 1 (Smoothness of Reference). The continuous-time refer-
ence 𝑟(𝑡) for 𝑛 states tracking is 𝑛−1 class and differentiable at least
𝑛 − 1 times.

To satisfy the 𝑛 states compatibility in every 𝑛 sample, the lifted
signal is considered using the lifting operator defined as follows.

Definition 9 (Lifting Operator). The lifting operator 𝑛 in every 𝑛
ample is defined as

𝑛 ∶ 𝑢[𝑘] ↦ 𝑢[𝑖𝑛], (11)

where

𝑢[𝑖𝑛] =
[

𝑢[𝑛𝑖𝑛] 𝑢[𝑛𝑖𝑛 + 1] ⋯ 𝑢[𝑛𝑖𝑛 + (𝑛 − 1)]]𝖳 ∈ R𝑛. (12)

The 𝑛 samples lifted system is defined as follows.

Definition 10 (Lifted System). Consider a discrete-time system 𝐻𝑑
𝑧
=

𝑪𝑑 (𝑧𝑰 −𝑨𝑑 )−1𝑩𝑑 +𝑫𝑑 . The relation between the input and the output
in the 𝑛 samples lifted system of 𝐻𝑑 is given by

𝑦[𝑖𝑛] = 𝑛𝑦[𝑘] = (𝑛𝐻𝑑−1
𝑛 )(𝑛𝑢[𝑘]) = 𝐻𝑑𝑢[𝑖𝑛], (13)

where

𝑦[𝑖𝑛] =
[

𝑦[𝑛𝑖𝑛] 𝑦[𝑛𝑖𝑛 + 1] ⋯ 𝑦[𝑛𝑖𝑛 + (𝑛 − 1)]]𝖳 ∈ R𝑛, (14)

and the lifted system 𝐻𝑑 is defined as

𝐻𝑑
𝑧𝑛
= 𝑛𝐻𝑑−1

𝑛 =
[

𝑨𝑑 𝑩𝑑
𝑪𝑑 𝑫𝑑

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑨𝑛
𝑑 𝑨𝑛−1

𝑑 𝑩𝑑 𝑨𝑛−2
𝑑 𝑩𝑑 ⋯ 𝑨𝑑𝑩𝑑 𝑩𝑑

𝑪𝑑 𝑫𝑑 𝑶 ⋯ ⋯ 𝑶
𝑪𝑑𝑨𝑑 𝑪𝑑𝑩𝑑 𝑫𝑑 ⋱ ⋮

⋮ ⋮ ⋱ ⋱ ⋱ ⋮
𝑪𝑑𝑨𝑛−2

𝑑 𝑪𝑑𝑨𝑛−3
𝑑 𝑩𝑑 𝑪𝑑𝑨𝑛−4

𝑑 𝑩𝑑 ⋱ 𝑫𝑑 𝑶
𝑪𝑑𝑨𝑛−1

𝑑 𝑪𝑑𝑨𝑛−2
𝑑 𝑩𝑑 𝑪𝑑𝑨𝑛−3

𝑑 𝑩𝑑 ⋯ 𝑪𝑑𝑩𝑑 𝑫𝑑

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (15)

Considering the states in discrete-time, the 𝑛t h order integrator
iscretized by sampler and zero-order-hold is given by

𝐻𝑛𝑑
𝑧
= 𝐻𝑛𝑐 =

[

𝑨𝑛𝑑 𝒃𝑛𝑑
𝒄𝑛𝑑 0

]

=
[

𝑒𝑨𝑛𝑐𝑇𝑠 𝑨−1
𝑛𝑐 (𝑒

𝑨𝑛𝑐𝑇𝑠 − 𝑰)𝒃𝑛𝑐
𝒄𝑛𝑐 0

]

. (16)

To design the inverse of the 𝑛t h order integrator discretized by
ampler and zero-order-hold, the 𝑛 samples lifted system is given by

𝐻𝑛𝑑
𝑧𝑛
= 𝑛𝐻𝑛𝑑−1

𝑛 =
[

𝑨𝑛𝑑 𝑩𝑛𝑑
𝑪𝑛𝑑 𝑫𝑛𝑑

]

, (17)

and in state-space representation defined as

𝒙𝑛[𝑖𝑛 + 1] = 𝑨𝑛𝑑𝒙𝑛[𝑖𝑛] + 𝑩𝑛𝑑𝑢[𝑖𝑛] (18)

𝑦[𝑖𝑛] = 𝑪𝑛𝑑𝒙𝑛[𝑖𝑛] +𝑫𝑛𝑑𝑢[𝑖𝑛] (19)

where
[ ]𝖳 𝑛
𝒙𝑛[𝑖𝑛] = 𝑥0[𝑖𝑛] 𝑥1[𝑖𝑛] ⋯ 𝑥𝑛−1[𝑖𝑛] ∈ R . (20)

4 
Fig. 2. Block diagram of basis function design using multirate zero-order-hold differ-
entiator. The dotted and dashed lines denote the discrete-time signal sampled by 𝑇𝑠
and 𝑛𝑇𝑠, respectively.

Satisfying the state compatibility, the relationship between the ref-
erence and the states is given by

𝑟𝑛[𝑖𝑛] = 𝒙𝑛[𝑖𝑛], (21)

where

𝑟𝑛[𝑖𝑛] = 𝑛

[

1 d
d𝑡 ⋯ d𝑛−1

d𝑡𝑛−1

]𝖳
𝑟(𝑡)

=
[

𝑟0[𝑖𝑛] 𝑟1[𝑖𝑛] ⋯ 𝑟𝑛−1[𝑖𝑛]
]𝖳 ∈ R𝑛. (22)

From the discussions above, the multirate zero-order-hold differen-
tiator is defined as follows.

Definition 11 (Multirate Zero-order-hold Differentiator). From (18) and
(21), considering the inverse of the state equation in the continuous-
time 𝑛t h order integrator discretized by sampler and zero-order-hold
using the multirate feedforward control [19], the 𝑛t h order multirate
zero-order-hold differentiator 𝜉𝑛𝑚𝑟 that satisfies the state compatibility
is given by

𝜉𝑛𝑚𝑟 = −1
𝑛 𝑩−1

𝑛𝑑 (𝑧
𝑛𝑰𝑛 −𝑨𝑛𝑑 )𝑛

[

1 d
d𝑡 ⋯ d𝑛−1

d𝑡𝑛−1

]𝖳
. (23)

The basis function design procedure using the multirate zero-order-
old differentiator is shown in Fig. 2. The sampled-data character-

istics are not considered in conventional differentiator implementa-
tions. The multirate zero-order-hold differentiator has the advantage
that it can consider the sampled-data characteristics only replacing
the continuous-time differentiator and it results in continuous-time
tracking performance improvement.

4. Demonstration in SISO sampled-data motion system

In this section, the continuous-time tracking performance of the
inearly parameterized feedforward control using the multirate zero-
rder-hold differentiator is demonstrated. First, the comparison is con-
ucted in the acceleration feedforward control using the backward
ifferentiator, the single-rate zero-order-hold differentiator, and the
ultirate zero-order-hold differentiator. Second, the comparison is con-
ucted between the linearly parameterized feedforward control using
he multirate zero-order-hold differentiator and the multirate feedfor-
ard control based on exact model inversion.

4.1. Comparison in acceleration feedforward control

The continuous-time tracking performance improvement by consid-
ering sampled-data characteristics can be seen clearly in a single-mass
motion system example.

4.1.1. Conditions
The controlled system is given as 𝐺(𝑠) = 1

𝑚𝑠2
where 𝑚 = 1 is the

mass of the rigid body. The sampling time is set to 𝑇𝑠 = 5 ms. The
ontinuous-time reference is the 1st order polynomial trajectory. The
op of Fig. 3 shows control inputs with the acceleration feedforward

control using the backward differentiator 𝑢[𝑘] = 𝑚𝜉2𝑏𝑑𝑟(𝑡), that using
the single-rate zero-order-hold differentiator 𝑢[𝑘] = 𝑚𝜉2𝑠𝑟𝑟(𝑡), and that
using the multirate zero-order-hold differentiator 𝑢[𝑘] = 𝑚𝜉2𝑚𝑟𝑟(𝑡). The
simulation is conducted in an open loop without a feedback controller.
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Fig. 3. Simulation results of the open-loop tracking in a single-mass motion system
with acceleration feedforward control using the backward differentiator ( ), that
using the single-rate zero-order-hold differentiator ( ), and that using the multirate
ero-order-hold differentiator ( ). Top: control inputs. Center: 1st order reference

) and outputs. Bottom: tracking errors. The acceleration feedforward using
multirate zero-order-hold differentiator considers state compatibility and it results in
smaller error. (∙) and (◦) show the sampling points every 𝑇𝑠 and 2𝑇𝑠.

4.1.2. Comparison in continuous-time tracking performance
In Fig. 3, the center and the bottom show the comparison of

utputs and tracking errors in the open-loop simulation. It shows
hat the acceleration feedforward control using the multirate zero-
rder-hold differentiator outperforms because of the state compatibility
ompensating for the controlled system discretized by sampler and
ero-order-hold.

The limitation of the continuous-time tracking performance with the
acceleration feedforward control using the backward differentiator is
described by the sampled-data analysis that is given by

𝑦[𝑘] = {𝐺} 𝑢[𝑘] =
{

𝑇 2
𝑠 (1 + 𝑧−1)

2𝑧(1 − 𝑧−1)2

} {
(1 − 𝑧−1)2

𝑇 2
𝑠

𝑧𝑟(𝑡)

}

= 1 + 𝑧−1

2
𝑟[𝑘]. (24)

The result shows that the on-sample error appears as the 1st or-
der approximated half-sample delay of the reference because of the
zero-order-hold. It means that the perfect on-sample tracking can be
achieved by a half-sample forward shifted reference with the 1st or-
der reference condition but cannot be achieved with higher-order
references.

The intersample oscillation in the continuous-time tracking perfor-
mance with the acceleration feedforward control using the single-rate
zero-order-hold differentiator is described by the sampled-data analysis
that is given by

𝜉2𝑠𝑟 =
{(

𝐻2𝑐
)

𝑧
}−1 =

2(𝑧 − 1)2
𝑇 2
𝑠 𝑧(𝑧 + 1) . (25)

The result shows that the 2nd order single-rate zero-order-hold differ-
ntiator has a pole at 𝑧 = −1 and that causes the oscillation. If the

degree of the continuous-time integrator is more than 2, the single-
rate zero-order-hold differentiator has unstable poles and generates the
unbounded signal. Although the unstable poles of the single-rate zero-
order-hold differentiator can be compensated by the stable inversion
approach [18], the oscillating pole at 𝑧 = −1 cannot be compensated.

The state compatibility of the multirate zero-order-hold differentia-
or in 2nd order integrator and zero-order-hold is illustrated in Fig. 4.

The multirate zero-order-hold differentiator stands on not only the
reference trajectory but also its derivatives and it results in better
continuous-time tracking performance with higher-order references.
Note that the linearly parameterized feedforward control using the
5 
Fig. 4. Graphical description of state compatibility with multirate zero-order hold
differentiator in 2nd order integrator and zero-order-hold (ZOH).

multirate zero-order-hold differentiator is identical to the exact model
inversion using the multirate feedforward control only if it consists of
only one basis function.

Although the sampling time in industrial applications is typically
shorter than 5 ms, sampled-data dynamics are affected by the relative
condition between the length of sampling time and the steepness of
reference. The preliminary result [24] also shows that the continuous-
time tracking performance improvement is experimentally validated in
a SISO multi-modal motion system but not in MIMO motion systems.

4.2. Comparison with multirate feedforward control

The comparison of continuous-time tracking performance between
the linearly parameterized feedforward control using the multirate
zero-order-hold differentiator and the exact model inversion using
the multirate feedforward control is demonstrated in motion system
examples of a 2nd order mass-damper-spring model and a 4t h order
mass–spring-mass model.

4.2.1. Controller design for mass-damper-spring motion system
The model 𝐺2 of the mass-damper-spring motion system shown in

Fig. 5(a) is given by

𝐺2(𝑠) = 1
𝑚𝑠2 + 𝑏𝑠 + 𝑘

, (26)

where 𝑚 = 4 × 10−4, 𝑏 = 8 × 10−2, and 𝑘 = 4.
In the linearly parameterized feedforward control, the basis func-

tions are given by

𝜳 [𝑘] = [

1 𝜉1𝑚𝑟 𝜉2𝑚𝑟
]

𝑟(𝑡), (27)

and the tuning parameters are given by

𝜽 =
[

𝑘 𝑏 𝑚
]𝖳 . (28)

The multirate feedforward control provides perfect state tracking at
every 2 sample for the 2nd order model without modeling error.

4.2.2. Controller design for mass–spring-mass motion system
The model 𝐺4 of the mass–spring-mass motion system shown in

Fig. 5(b) is given by

𝐺4(𝑠) = 1
𝑚1𝑚2
𝑘

𝑠4 + (𝑚1 + 𝑚2)𝑠2
, (29)

where 𝑚1 = 𝑚2 = 2 × 10−4 and 𝑘 = 20.
In the linearly parameterized feedforward control, the basis func-

tions are given by
[ ]
𝜳 [𝑘] = 𝜉2𝑚𝑟 𝜉4𝑚𝑟 𝑟(𝑡), (30)



M. Mae et al.

a

e

j
c

t
e

t
t

m
a
t
m
m
t

t
f
s
l
a

a

I

t
c
t

Mechatronics 106 (2025) 103288 
Fig. 5. Model of motion systems.

Fig. 6. Simulation results using multirate feedforward control with model parameters
( ), linearly parameterized feedforward control with model parameters ( ),
nd linearly parameterized feedforward control with tuning min‖𝑒[𝑘]‖2 ( ).

and the tuning parameters are given by

𝜽 =
[

𝑚1 + 𝑚2
𝑚1𝑚2
𝑘

]𝖳
. (31)

The multirate feedforward control provides perfect state tracking at
very 4 sample for the 4t h order model without modeling error.

4.2.3. Conditions
The continuous-time reference 𝑟(𝑡) is the 4t h order polynomial tra-

ectory shown in Fig. 6(a). The sampling time of the discrete-time
ontroller is 𝑇𝑠 = 5 ms. The continuous-time output 𝑦(𝑡) is obtained

by higher sampling frequency in every 0.5 ms only for evaluation of
he continuous-time tracking error 𝑒(𝑡). The continuous-time tracking
rror 𝑒(𝑡) is compared to the multirate feedforward control with model

parameters, the linearly parameterized feedforward control with model
parameters, and the linearly parameterized feedforward control with
tuning as min‖𝑒[𝑘]‖2. The simulation is conducted in an open loop
without a feedback controller.
6 
Table 1
Root Mean Square error RMS(𝑒(𝑡)) with multirate feedforward (MRFF) control and
linearly parameterized feedforward (LPFF) control using multirate zero-order-hold
differentiator in simulation.
RMS(𝑒(𝑡)) 𝐺2 𝐺4

MRFF with model parameters 1.81 × 10−3 4.65 × 10−4
LPFF with model parameters 1.78 × 10−1 4.14 × 10−3
LPFF with tuning min‖𝑒[𝑘]‖2 2.20 × 10−3 8.35 × 10−4

4.2.4. Comparison in continuous-time tracking performance
The tracking errors of simulations in the mass-damper-spring mo-

ion system are shown in Fig. 6(b). It shows that the linearly parame-
erized feedforward control with the model parameter makes a large

error at constant velocity regions because of the mismatch between
the model of the feedforward controller and the discretized model of
the controlled system. After tuning as min‖𝑒[𝑘]‖2, the linearly param-
eterized feedforward control provides a smaller error than that of the

ultirate feedforward control at constant velocity regions. Note that
lthough the multirate feedforward control guarantees the perfect state
racking of position and velocity for every 2 sample in the 2nd order
otion system, it causes the intersample oscillation because of the
ismatch of acceleration and jerk in the continuous-time reference of

he 4t h order polynomial trajectory.
The tracking errors of simulations in the mass–spring-mass motion

system are shown in Fig. 6(c). It shows that the linearly parameterized
feedforward control with the model parameter makes a large oscillating
error because of the mismatch of the resonance frequency between the
model of the feedforward controller and the discretized model of the
controlled system. The large oscillating error is improved in the linearly
parameterized feedforward control with tuning as min‖𝑒[𝑘]‖2.

The Root Mean Square of the continuous-time tracking errors with
he multirate feedforward control and the linearly parameterized feed-
orward control using the multirate zero-order-hold differentiator in
imulations is shown in Table 1. It shows that the tracking error of the
inearly parameterized feedforward control with tuning as min‖𝑒[𝑘]‖2 is
round the same scale as that of the multirate feedforward control even

though the solution space of the linearly parameterized feedforward
control is limited in the linear space. It means that the basis functions
using the multirate zero-order-hold differentiator provide a reason-
able linear solution space for the sampled-data feedforward control.
As a result, it is shown that the linearly parameterized feedforward
control can provide around the same performance as the multirate
feedforward control through a tuning process using the experimental
data.

5. ILC with MIMO structured basis functions

In this section, the feedforward controller parameterization and
the parameter updating framework using ILC with basis functions
re presented. The structured feedforward controller parameterization

for MIMO motion systems is formulated with physically interpretable
tuning parameters. Parameter update through learning is described
with the monotonic convergence condition in MIMO motion systems.
t results in Contribution 2.

5.1. MIMO fixed-structure feedforward controller parameterization

The dynamics of mechatronic systems are typically dominated by
he mechanics assuming that electronics are much faster than me-
hanics. This results in a situation where rigid body modes dominate
he lower frequency and there are several flexible modes at a higher

frequency due to limited mechanical stiffness. The 𝑛𝑢-input 𝑛𝑦-output
26] is defined as
continuous-time multi-modal motion system [
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𝑮𝑐 (𝑠) = 𝑮𝑟(𝑠) +𝑮𝑓 (𝑠)

=
𝑛𝑟
∑

𝑘𝑟=1

𝒄𝑘𝑟𝒃𝑘𝑟
(𝑠2 + 2𝜁𝑘𝑟𝜔𝑘𝑟𝑠 + 𝜔2

𝑘𝑟
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
rigid body modes

+
𝑛𝑓
∑

𝑘𝑓=1

𝒄𝑘𝑓 𝒃𝑘𝑓
(𝑠2 + 2𝜁𝑘𝑓𝜔𝑘𝑓 𝑠 + 𝜔2

𝑘𝑓
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
flexible modes

, (32)

where 𝑛𝑟 ∈ N+ and 𝑛𝑓 ∈ N+ are the number of rigid body and flexible
odes, 𝜔 ∈ R+ and 𝜁 ∈ R+ are the resonance angular frequency and the
amping coefficient. The vectors 𝒃 ∈ R1×𝑛𝑢 and 𝒄 ∈ R𝑛𝑦×1 are associated
ith the inputs, the outputs, and the mode shapes. In this paper, the

ystem is assumed to be square as 𝑛𝑢 = 𝑛𝑦 after the static decoupling
ased on the coordinate transformation.

To compensate for not only the rigid body modes but also the
flexible modes in MIMO motion systems, the traditional rigid body
feedforward control is extended with the additional snap feedforward
control [14] and the ideal feedforward controller 𝑭 ∗(𝑠) is defined as

𝑭 ∗(𝑠) = 𝑮−1
𝑟 (𝑠) +𝑫∗(𝑠)𝑠4, (33)

where 𝑫∗(𝑠) is the coefficient of the snap feedforward control aiming
to compensate for the compliance of the flexible modes.

The objective of the feedforward controller 𝑭 ∗(𝑠) is to minimize the
closed-loop error given by

𝒆(𝑠) = 𝑺(𝑠)𝒓(𝑠) − 𝑺(𝑠)𝑮𝑐 (𝑠)𝑭 ∗(𝑠)𝒓(𝑠), (34)

where 𝑺(𝑠) denotes the sensitivity function matrix that is defined as
𝑺(𝑠) = (𝑰 + 𝑮𝑐 (𝑠)𝑲𝑐 (𝑠))−1. It results in 𝑭 ∗(𝑠) = 𝑮−1

𝑐 (𝑠) and 𝑫∗(𝑠) is
iven by

𝑫∗(𝑠) = 1
𝑠4

(𝑮−1
𝑐 (𝑠) −𝑮−1

𝑟 (𝑠)). (35)
Assuming the reference trajectory in the mechatronic systems

mainly contains the low-frequency components and the resonance
frequencies of the rigid body modes are enough smaller than that
of flexible modes approximated to 𝜔𝑘𝑟 ≃ 0, the compliance that
corresponds to the low-frequency behavior of the flexible modes is
given by

𝑫 = lim
𝑠→0

𝑫∗(𝑠) = lim
𝑠→0

{

1
𝑠4

(𝑮−1
𝑐 (𝑠) −𝑮−1

𝑟 (𝑠))
}

= −
( 𝑛𝑟
∑

𝑘𝑟=1
𝒄𝑘𝑟𝒃𝑘𝑟

)−1
⎛

⎜

⎜

⎝

𝑛𝑓
∑

𝑘𝑓=1

𝒄𝑘𝑓 𝒃𝑘𝑓
𝜔2
𝑘𝑓

⎞

⎟

⎟

⎠

( 𝑛𝑟
∑

𝑘𝑟=1
𝒄𝑘𝑟𝒃𝑘𝑟

)−1

. (36)

Hence, the fixed-structure feedforward controller for MIMO motion
systems is parameterized as

𝑭 (𝜽) = 𝜣𝑝 +𝜣𝑣
d
d𝑡

+𝜣𝑎
d2

d𝑡2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

rigid body
compensation

+ 𝜣𝑠
d4

d𝑡4
⏟⏟⏟
compliance

compensation

, (37)

where 𝜣𝑝,𝜣𝑣,𝜣𝑎,𝜣𝑠 ∈ R𝑛𝑢×𝑛𝑦 are the parameter matrices of the feed-
orward controller corresponding to the position, velocity, acceleration
nd snap basis functions. Finally, the continuous-time differentiator d

d𝑡
is replaced by the sampled-data differentiator 𝜉, and the fixed-structure
sampled-data feedforward controller for MIMO motion systems is given
by

𝑭 (𝜽) = 𝜣𝑝 +𝜣𝑣𝜉 +𝜣𝑎𝜉
2 +𝜣𝑠𝜉

4. (38)

It enables low-complexity parameterization with physical interpretabil-
ity, flexibility for varying references, and consideration of sampled-data
dynamics at the same time. Although using jerk feedforward control as
a basis function can improve control performance, in this paper from
the viewpoint of interpretability, jerk feedforward control has a less
hysical meaning, and only snap feedforward control for compliance

compensation is included in basis functions in addition to rigid body
feedforward control.

In this paper, the developed approach combines the multirate zero-
rder-hold differentiator in (23) and the fixed-structure sampled-data

feedforward controller for MIMO motion systems in (38). The devel-
ped approach considers both continuous-time tracking performance
n Requirement 1 and interaction compensation in Requirement 2.
7 
Fig. 7. Block diagram of iterative learning control with basis functions.

5.2. Norm-optimal ILC with basis functions

Achieving higher performance and ease of tuning for the MIMO
feedforward controller, ILC with basis functions is implemented. ILC

ith basis functions has an advantage in task flexibility compared to
raditional ILC. The controller structure is shown in Fig. 7. To update

the parameters of the feedforward controller through learning, the
optimization criterion from the present study [10] is defined as follows.

Definition 12 (Norm-optimal MIMO ILC with Basis Functions). The op-
timization criterion for norm-optimal ILC with basis functions is given
by

 (𝜽𝑗+1) = ‖𝒆𝑗+1‖𝑾 𝑒
+ ‖𝒖𝑓 𝑓𝑗+1‖𝑾 𝑓 𝑓 + ‖𝒖𝑓 𝑓𝑗+1 − 𝒖𝑓 𝑓𝑗 ‖𝑾 𝛥𝑓 𝑓 , (39)

where the weighting matrices are 𝑾 𝑒 ≻ 0, 𝑾 𝑓 𝑓 ,𝑾 𝛥𝑓 𝑓 ⪰ 0, the param-
eters of the feedforward controller are 𝜽𝑗 ∈ R𝑛𝜽 , and the feedforward
control input in next iteration is 𝒖𝑓 𝑓𝑗+1 = 𝑭 (𝜽𝑗+1)𝒓.

Here, the weighting matrices 𝑾 𝑒, 𝑾 𝑓 𝑓 , 𝑾 𝛥𝑓 𝑓 correspond to op-
timal performance, robustness for model uncertainty, and robustness
for trial varying disturbances including noise, respectively. For the
practical tuning procedure of the weighting matrices in the experiment,
see [10].

The error in trial 𝑗 + 1 is given by

𝒆𝑗+1 = 𝑺 𝒓 − 𝑺 𝑮 𝒖𝑓 𝑓𝑗+1 (40)

= 𝒆𝑗 − 𝑺 𝑮(𝒖𝑓 𝑓𝑗+1 − 𝒖𝑓 𝑓𝑗 ), (41)

where 𝑺 = (𝑰 +𝑮 𝑲)−1.
The feedforward controller parameter update is given by

𝜽∗𝑗+1 = ar g min
𝜽𝑗+1

 (𝜽𝑗+1). (42)

When the feedforward control input is linearly parameterized in
parameters 𝜽𝑗+1 and basis functions 𝜳 , and is defined as

𝒖𝑓 𝑓𝑗+1 = 𝑭 (𝜽𝑗+1)𝒓 = 𝜳 𝜽𝑗+1, (43)

the optimization criterion (39) is quadratic in 𝜽𝑗+1 from (41), and an
analytic solution to (42) exists [10]. By solving the necessary condition
for optimality 𝜕 (𝜽𝑗+1)

𝜕𝜽𝑗+1
= 0 with basis functions 𝜳 = 𝜕

𝜕𝜽𝑗
𝑭 (𝜽𝒋)𝒓 ∈ R𝑛𝑢×𝑛𝜽

and weighting matrices 𝑾 𝑒, 𝑾 𝑓 𝑓 , 𝑾 𝛥𝑓 𝑓 , the analytic solution of (42)
for the parameter update law that minimizes  (𝜽𝑗+1) is given by

𝜽𝑗+1 = 𝑸𝜽𝑗 +𝑳𝒆𝑗 , (44)

where the learning filters 𝑸 and 𝑳 are given by

𝑸 = (𝜳𝖳((𝑺 𝑮)𝖳𝑾 𝑒(𝑺 𝑮) +𝑾 𝑓 𝑓 +𝑾 𝛥𝑓 )𝜳 )−1𝜳𝖳((𝑺 𝑮)𝖳𝑾 𝑒(𝑺 𝑮) +𝑾 𝛥𝑓 𝑓 )𝜳 ,

(45)

= (𝜳𝖳((𝑺 𝑮)𝖳𝑾 𝑒(𝑺 𝑮) +𝑾 𝑓 𝑓 +𝑾 𝛥𝑓 𝑓 )𝜳 )−1𝜳𝖳(𝑺 𝑮)𝖳𝑾 𝑒. (46)
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From (40), (43), and (44), the parameter update law is written as

𝜽𝑗+1 = (𝑸 −𝑳𝑺 𝑮 𝜳 )𝜽𝑗 +𝑳𝑺 𝒓. (47)

The parameter update law (47) leads to the monotonic convergence
condition of the parameters 𝜽𝑗 if the provided weighting matrices 𝑾 𝑒,
𝑾 𝑓 𝑓 , 𝑾 𝛥𝑓 𝑓 are selected properly to satisfy

𝜎(𝑸 −𝑳𝑺 𝑮 𝜳 ) < 1 ⇔

𝜎((𝜳𝖳((𝑺 𝑮)𝖳𝑾 𝑒(𝑺 𝑮) +𝑾 𝑓 𝑓 +𝑾 𝛥𝑓 𝑓 )𝜳 )−1𝜳𝖳𝑾 𝛥𝑓 𝑓𝜳 ) < 1, (48)

where 𝜎(⋅) is the maximum singular value of the matrix.
The monotonic convergence of the parameters 𝜽𝑗 results in the

convergence of the feedforward control input 𝒖𝑓 𝑓𝑗 from (43) when the
basis functions 𝜳 from the reference 𝒓 are fixed through iterations.
From (40), (43), and (44), the feedforward control input update law
is written as

𝒖𝑓 𝑓𝑗+1 = (𝑸′ − 𝜳 𝑳𝑺 𝑮)𝒖𝑓 𝑓𝑗 + 𝜳 𝑳𝑺 𝒓, (49)

where the learning filter 𝑸′ is given by

𝑸′ = 𝜳 (𝜳𝖳((𝑺 𝑮)𝖳𝑾 𝑒(𝑺 𝑮) +𝑾 𝑓 𝑓 +𝑾 𝛥𝑓 )𝜳 )−1𝜳𝖳((𝑺 𝑮)𝖳𝑾 𝑒(𝑺 𝑮) +𝑾 𝛥𝑓 𝑓 ).
(50)

The feedforward control input update law (49) leads to the monotonic
convergence condition of the feedforward control input 𝒖𝑓 𝑓𝑗 if the
provided weighting matrices 𝑾 𝑒, 𝑾 𝑓 𝑓 , 𝑾 𝛥𝑓 𝑓 are selected properly to
satisfy

𝜎(𝑸′ − 𝜳 𝑳𝑺 𝑮) < 1 ⇔

𝜎(𝜳 (𝜳𝖳((𝑺 𝑮)𝖳𝑾 𝑒(𝑺 𝑮) +𝑾 𝑓 𝑓 +𝑾 𝛥𝑓 𝑓 )𝜳 )−1𝜳𝖳𝑾 𝛥𝑓 𝑓 ) < 1. (51)

From (48) and (51), the monotonic convergence conditions of both 𝜽𝑗
and 𝒖𝑓 𝑓𝑗 are guaranteed if
𝜳𝖳((𝑺 𝑮)𝖳𝑾 𝑒(𝑺 𝑮) +𝑾 𝑓 𝑓 +𝑾 𝛥𝑓 𝑓 )𝜳 ≻ 0. (52)

Note that these monotonic convergence conditions of the parameters
𝜽𝑗 and the feedforward control input 𝒖𝑓 𝑓𝑗 are derived from that of
the norm-optimal ILC [27,28] that also can be applied to MIMO sys-
tems [29–31]. Specifically, the monotonic convergence condition of the
norm-optimal ILC with basis functions is derived in Section 3.1 and
Section 4.1 of [32].

In [10], the basis functions are designed using the backward dif-
ferentiator that does not take into account the sampled-data character-
istics with sampler and zero-order-hold. The theoretical performance
limitation is linked to how much the basis functions contain the dy-
namics of the controlled system, and the lack of the sampled-data
characteristics deteriorates the tracking performance. In this paper, the
developed approach considers the sampled-data characteristics by using
the multirate zero-order-hold differentiator in (23). [10] also does not
contain the guidelines for extending to MIMO motion systems. This
paper introduces the guidelines with the fixed-structure sampled-data
feedforward controller for MIMO motion systems in (38). The perfor-
mance improvement of the developed approach with the combination
of (23) and (38) is validated in Section 6.

6. Validation in MIMO sampled-data motion system

In this section, the developed approach combining Section 3 and
Section 5 is applied to a MIMO motion system. The results demon-
strate the performance improvement with interaction compensation
and sampled-data characteristics in both the simulation and the exper-
iment.
8 
Fig. 8. Experimental flexible beam setup of MIMO motion system.

6.1. Motion system

The experimental flexible beam setup of a MIMO motion system is
shown in Fig. 8. The setup exhibits dominant flexible behavior and cou-
pling dynamics that are expected to arise in high-precision mechatronic
systems in industries. Although typical high-precision mechatronic sys-
tems operate in six degrees of freedom, the four degrees of freedom
are elastically suspended by the leaf spring to facilitate the control
design and analysis as shown in Fig. 8(a). The real-time controller
based on Raspberry Pi with EtherCAT connection is used with the com-
putation frequency 1024 Hz. After the static decoupling of the system
with dual-inputs (𝑢1, 𝑢2) and dual-outputs (𝑦1, 𝑦2) based on coordinate
transformation as shown in Fig. 8(b), the controlled system 𝑮 is given
in translation and rotation with dual-inputs (𝐹𝑦, 𝑇𝑧) and dual-outputs
(𝑦, 𝑅𝑧) as shown in Fig. 8(c). The frequency response data obtained by
multisine excitation, the continuous-time model 𝑮𝑐 with the higher-
order dynamics for the simulation, and the discrete-time model 𝑮𝑑
with the only diagonal rigid body dynamics for parameter update and
feedback controller design are shown in Fig. 9.
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Fig. 9. Bode magnitude plot of the experimental setup: frequency response data (
), continuous-time model 𝑮𝑐 ( ) with the higher-order dynamics for the simulation,
and discrete-time model 𝑮𝑑 ( ) with the only diagonal rigid body dynamics for
parameter update and feedback controller design. Nyquist frequency of the controller
s shown in a black dotted line ( ).

6.2. Conditions

The continuous-time reference of the translation 𝑦 is the 4t h order
polynomial trajectory as shown in Fig. 10, and that of the rotation
𝑅𝑧 is set to 0 r ad for all time. The sampling frequency of the discrete-
time controller is 𝐹𝑠 = 128 Hz, as Nyquist frequency is enough higher
than the first resonance mode, and the sampling time is 𝑇𝑠 = 1∕𝐹𝑠.
Although the sampling frequency in industrial applications is typically
higher than 128 Hz, sampled-data dynamics are affected by the relative
condition between the length of sampling time and the steepness
of reference. The continuous-time outputs 𝑦 and 𝑅𝑧 are also mea-
sured in higher sampling frequency 1024 Hz only for evaluation of the
continuous-time tracking errors 𝒆(𝑡). To investigate the intersample
performance by using the real-time controller with the computation
frequency 1024 Hz, the control frequency is set to 128 Hz, and the
continuous-time output is measured in 8 times higher sampling fre-
quency 1024 Hz that is equal to the computation frequency of the
real-time controller. The feedback controller 𝑲 is designed diagonally
with a PD controller and a notch filter as a 5 Hz closed-loop band-
width and a 6 dB modulus margin for compensation to disturbance and
unmodeled dynamics.

6.3. Feedforward controller design

From Section 5, the fixed-structure feedforward controller for a
IMO motion system is parameterized as

𝑭 (𝜽) =
[

𝜃𝑝11 𝜃𝑝12
𝜃𝑝21 𝜃𝑝22

] [
1
1

]

+
[

𝜃𝑣11 𝜃𝑣12
𝜃𝑣21 𝜃𝑣22

] [
𝜉
𝜉

]

+
[

𝜃𝑎11 𝜃𝑎12
𝜃𝑎21 𝜃𝑎22

] [
𝜉2

𝜉2

]

+
[

𝜃𝑠11 𝜃𝑠12
𝜃𝑠21 𝜃𝑠22

] [
𝜉4

𝜉4

]

, (53)

where 𝜉 is a sampled-data differentiator. The basis functions of each
output are defined as

𝜳 𝑦 =
[

𝑟𝑦 𝜉 𝑟𝑦 𝜉2𝑟𝑦 𝜉4𝑟𝑦
]

, (54)

𝑅𝑧
=
[

𝑟𝑅𝑧
𝜉 𝑟𝑅𝑧

𝜉2𝑟𝑅𝑧
𝜉4𝑟𝑅𝑧

]

, (55)

and the tuning parameter vectors are defined as

𝜽11 =
[

𝜃𝑝11 𝜃𝑣11 𝜃𝑎11 𝜃𝑠11
]

, 𝜽12 =
[

𝜃𝑝12 𝜃𝑣12 𝜃𝑎12 𝜃𝑠12
]

,

𝜽21 =
[

𝜃𝑝21 𝜃𝑣21 𝜃𝑎21 𝜃𝑠21
]

, 𝜽22 =
[

𝜃𝑝22 𝜃𝑣22 𝜃𝑎22 𝜃𝑠22
]

. (56)

In the conventional approach, only the diagonal terms of the feed-
orward controller are considered. The feedforward control input in the
9 
Fig. 10. Reference of 𝑦: continuous-time 4t h order polynomial trajectory and its
erivatives. Reference of 𝑅𝑧 is set to 0 r ad for all time.

conventional approach is parameterized as

𝒖𝑓 𝑓 = 𝑭 (𝜽)𝒓 = 𝜳 𝜽 =
[

𝜳 𝑦 𝟎
𝟎 𝜳𝑅𝑧

]

[

𝜽11 𝜽22
]𝖳 . (57)

In the developed approach, not only the diagonal terms but also
the off-diagonal terms of the feedforward controller are taken into
account. The off-diagonal terms also can be obtained for interaction
compensation through learning even if only a diagonal model is used
for parameter update. The feedforward control input in the developed
approach is parameterized as

𝒖𝑓 𝑓 = 𝑭 (𝜽)𝒓 = 𝜳 𝜽

=
[

𝜳 𝑦 𝜳𝑅𝑧
𝟎 𝟎

𝟎 𝟎 𝜳 𝑦 𝜳𝑅𝑧

]

[

𝜽11 𝜽12 𝜽21 𝜽22
]𝖳 . (58)

In both the simulation and the experiment, the weighting matrices
are set to 𝑾 𝑒 = 𝑰 and 𝑾 𝑓 𝑓 = 𝑾 𝛥𝑓 𝑓 = 𝑶, and all approaches in this
validation satisfy the monotonic convergence condition in (48). The
asis functions corresponding to the reference signal and its derivatives

are orthogonal and have an analytical solution in the norm-optimal ILC.

6.4. Validation with interaction compensation

To validate the performance improvement with interaction compen-
ation, the simulations and the experiments without and with interac-
ion compensation in (57) and (58) are conducted through 20 iterations.

In both approaches, the multirate zero-order-hold differentiator 𝜉𝑚𝑟 in
(23) is used as a sampled-data differentiator 𝜉 to consider sampled-data
characteristics. The continuous-time tracking errors, Root Mean Square
f tracking errors, and tuning parameters learned through iterations

are shown in Fig. 11, Fig. 12, and Fig. 13 for the simulation, and
Fig. 14, Fig. 15, and Fig. 16 for the experiment. The results show that
the errors are roughly converged after 10t h iteration. The translation
error 𝑒 is also improved a little in the simulation and the experiment,
𝑦
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Fig. 11. Tracking error 𝒆(𝑡) in simulation using the multirate zero-order-hold differen-
tiator: without ( ) and with ( ) interaction compensation. Rotation error 𝑒𝑅𝑧

s improved about factor 100.

Fig. 12. Root Mean Square (RMS) of tracking error in simulation using the multirate
ero-order-hold differentiator: 𝒆[𝑘] ( ) 𝒆(𝑡) ( ) without and 𝒆[𝑘] ( ) 𝒆(𝑡) (

) with interaction compensation.

Fig. 13. Tuning parameters learned through iterations in simulation using the multirate
zero-order-hold differentiator. 𝜃∙11 ( ) is without interaction compensation. 𝜃∙11 (

) and 𝜃∙21 ( ) are with interaction compensation. Other tuning parameters are
𝜽12 = 𝜽22 = 𝑶 because the reference of the rotation 𝑅𝑧 is set to 0 r ad for all time.
10 
Fig. 14. Tracking error 𝒆(𝑡) in experiment using the multirate zero-order-hold differ-
entiator: without ( ) and with ( ) interaction compensation. Rotation error
𝑅𝑧

is improved about factor 10.

Fig. 15. Root Mean Square (RMS) of tracking error in experiment using the multirate
zero-order-hold differentiator: 𝒆[𝑘] ( ) 𝒆(𝑡) ( ) without and 𝒆[𝑘] ( ) 𝒆(𝑡)

) with interaction compensation.

Fig. 16. Tuning parameters learned through iterations in experiment using the multi-
ate zero-order-hold differentiator. 𝜃∙11 ( ) is without interaction compensation. 𝜃∙11

( ) and 𝜃∙21 ( ) are with interaction compensation. Other tuning parameters
re 𝜽12 = 𝜽22 = 𝑶 because the reference of the rotation 𝑅𝑧 is set to 0 r ad for all time.
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Fig. 17. Tracking error 𝒆(𝑡) in simulation with interaction compensation: using
the backward differentiator ( ) and the multirate zero-order-hold differentiator

).

Fig. 18. Root Mean Square (RMS) of tracking error in simulation with interaction com-
pensation: 𝒆[𝑘] ( ) 𝒆(𝑡) ( ) using the backward differentiator and 𝒆[𝑘] ( ) 𝒆(𝑡)

) using the multirate zero-order-hold differentiator.

Fig. 19. Tuning parameters learned through iterations in simulation with interaction
compensation. 𝜃∙11 ( ) and 𝜃∙21 ( ) are using the multirate zero-order-hold
ifferentiator. 𝜃∙11 ( ) and 𝜃∙21 ( ) are using the multirate zero-order-hold
ifferentiator. Other tuning parameters are 𝜽12 = 𝜽22 = 𝑶 because the reference of the
otation 𝑅𝑧 is set to 0 r ad for all time.
11 
Fig. 20. Tracking error 𝒆(𝑡) in experiment with interaction compensation: using
he backward differentiator ( ) and the multirate zero-order-hold differentiator

( ).

Fig. 21. Root Mean Square (RMS) of tracking error in experiment with interaction
ompensation: 𝒆[𝑘] ( ) 𝒆(𝑡) ( ) using the backward differentiator and 𝒆[𝑘] (

) 𝒆(𝑡) ( ) using the multirate zero-order-hold differentiator.

Fig. 22. Tuning parameters learned through iterations in experiment with interaction
ompensation. 𝜃∙11 ( ) and 𝜃∙21 ( ) are using the multirate zero-order-hold

differentiator. 𝜃∙11 ( ) and 𝜃∙21 ( ) are using the multirate zero-order-hold
differentiator. Other tuning parameters are 𝜽12 = 𝜽22 = 𝑶 because the reference of the
rotation 𝑅𝑧 is set to 0 r ad for all time.
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but the interaction effect is not serious in the translation 𝑦 because the
reference of the rotation 𝑅𝑧 is set to 0 r ad for all time. The frequency
of the residual error 𝑒𝑦 with the feedback controller corresponds to
the sensitivity peak around 5 Hz of the closed-loop bandwidth. The
rotation error 𝑒𝑅𝑧

is improved significantly with interaction compen-
sation of about factor 100 in the simulation and of about factor 10 in
the experiment. Note that the scales of the errors in simulation and
xperiment are different of about factor 10 in translation 𝑦 and of
bout factor 4 in rotation 𝑅𝑧 because of the dynamics not included in
he simulation model, measurement noise, quantization of the sensors
nd actuators, and communication delay. The controller using the
ultirate zero-order-hold differentiator does not generate the control

nputs that cause the intersample oscillation, and Fig. 12 and Fig. 15
show that Root Mean Square of the discrete-time and continuous-time
tracking errors are approximately the same that is the definition of the
continuous-time tracking performance improvement. The validation re-
ults demonstrate that effective interaction compensation can improve
he tracking performance in multivariable motion systems.

6.5. Validation with sampled-data characteristics

To validate the performance improvement with sampled-data char-
acteristics, the simulations and the experiments with interaction com-
pensation using the backward differentiator in (6) and the multirate
zero-order-hold differentiator in (23) are conducted through 20 it-
rations. The continuous-time tracking errors, Root Mean Square of
racking errors, and tuning parameters learned through iterations are
hown in Fig. 17, Fig. 18, and Fig. 19 for the simulation, and Fig. 20,

Fig. 21, and Fig. 22 for the experiment. The translation error 𝑒𝑦 is
lso improved significantly of about factor 5 in the simulation but is
mproved a little in the experiment because of the unmodeled dynamics
n the simulation such as communication delay. The rotation error 𝑒𝑅𝑧
s improved a little in both the simulation and the experiment. Note that

the scales of the errors in simulation and experiment are different about
actor 10 in translation 𝑦 and about factor 20 in rotation 𝑅𝑧 because
f the dynamics not included in the simulation model, measurement
oise, and quantization of the sensors and actuators. The validation
esults demonstrate that considering sampled-data characteristics has
he potential to push the envelope of the tracking performance in
ampled-data motion systems.

7. Conclusion

Fixed-structure feedforward control considering sampled-data char-
acteristics and interactions in MIMO motion systems is developed.
The feedforward controller that is parameterized by MIMO sampled-
ata basis functions and physically interpretable tuning parameters
re updated through learning. Application to the sampled-data MIMO
otion system demonstrates a significant improvement in tracking
erformance with interaction compensation compared to the conven-
ional diagonal approach in both the simulation and the experiment. In

engineering practice, the discrete-time basis functions that correspond
o the continuous-time reference are designed using the multirate zero-
rder-hold differentiator. The feedforward control signal is generated
y the MIMO fixed-structure feedforward controller parameterization
sing the basis functions. The tuning parameters of the feedforward
ontroller are updated through iterative learning control on batch-to-
atch. Ongoing research focuses on ILC with rational sampled-data
asis functions and basis function design with higher-order dynamics.
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