<]
TUDelft

Delft University of Technology

Modeling Effort Estimation and Planning in Large-Scale Agile Software Development

Kula, E.

DOI
10.4233/uuid:bac03d30-f65e-49f9-9feb-aae8f67122b6

Publication date
2025

Document Version
Final published version

Citation (APA)

Kula, E. (2025). Modeling Effort Estimation and Planning in Large-Scale Agile Software Development.
[Dissertation (TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:bac03d30-f65e-49f9-
9feb-aae8f67122b6

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.4233/uuid:bac03d30-f65e-49f9-9feb-aae8f67122b6
https://doi.org/10.4233/uuid:bac03d30-f65e-49f9-9feb-aae8f67122b6
https://doi.org/10.4233/uuid:bac03d30-f65e-49f9-9feb-aae8f67122b6

r
K

Modeling Effort Estimation and Planning

in Large-Scale Agile Software Development

Elvan Kula

Modeling Effort Estimation and Planning in
Large-Scale Agile Software Development

Modeling Effort Estimation and Planning in
Large-Scale Agile Software Development

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology
by the authority of the Rector Magnificus, Prof. dr. ir. TH.JJ. van der Hagen,
Chair of the Board for Doctorates
to be defended publicly on
Thursday, 10 April 2025, at 15:00,

by
Elvan KULA

Master of Science in Computer Science,
Delft University of Technology, The Netherlands,
born in Winschoten, The Netherlands.

This dissertation has been approved by:

Prof. dr. A. van Deursen promotor
Dr. ir. G. Gousios copromotor

Composition of the doctoral committee:

Rector Magnificus chairperson
Prof. dr. A. van Deursen Delft University of Technology
Dr. ir. G. Gousios Delft University of Technology

Independent Members:

Prof. dr. ir. N. Bharosa Delft University of Technology

Prof. dr. R. Feldt Chalmers University of Technology, Sweden
Prof. dr. ir. A. Iosup Vrije Universiteit Amsterdam, The Netherlands
Prof. dr. M. Jergensen Oslo Metropolitan University, Norway

Dr. P. Thongtanunam University of Melbourne, Australia

Prof. dr. ir. D. Spinellis Delft University of Technology, reserve member

The work presented in this thesis has been conducted as part of the Al for Fintech Research
Lab at ING, operating under the Innovation Center for Artificial Intelligence (ICAI) flag.

s
TUDelfté ING

Keywords: Software Effort Estimation, Sprint Planning, Agile Processes
Printed by: ProefschriftMaken, www. proefschriftmaken.nl

Cover: Nathan Dumlao

Style: TU Delft House Style, with modifications by Moritz Beller

https://github.com/Inventitech/phd-thesis-template

The author set this thesis in KIEX using the Libertinus and Inconsolata fonts.

ISBN 978-94-6510-552-9

An electronic version of this dissertation is available at
https://repository.tudelft.nl/.

Somewhere, something incredible is waiting to be known.

Carl Sagan

vii

Contents

Summary xi
Samenvatting xiii
Acknowledgments Xix
1 Introduction 1
1.1 Backgroundand Context. 2
1.1.1 Principles of Agile Software Development 2

1.1.2 Agile Requirements Engineering 3

1.1.3 Agile Planning Frameworks 4

1.1.4 Software Effort Estimation 5

1.1.5 Effort Estimation in Agile Settings 7

1.1.6 Software Project Risk Management. 7

1.2 Research Goal and Questions. 8

1.3 Research Methodology. 10
13.1 CaseStudyDesign 10

1.3.2 Replicability and Open Science. 11

1.4 The Case Company. v v v v v v v v 11
1.41 Agile Transformation 12

1.4.2 Software Delivery Pipeline. 13

1.43 Scrum at ING: Planning Sprints and Epics 13

144 Case Selection and Generalizability 14

1.5 Outline and Contributions 14

2 Factors Affecting On-Time Delivery in Large-Scale Agile Development 17

2.1

Research Method. 19
2.1.1 Collecting and Analyzing Survey Data 19
SurveyDesign. L 19
Survey Validation 20
Survey Execution and Sampling Strategy 21
Survey Data Analysis. 21
Survey Demographics L Lo 23
2.1.2 Collecting and Analyzing RepositoryData 23
Backlog ManagementData 24
Code Quality Measurements 24
Data Cleaning Process 25
Schedule Deviation Measures 25

Regression Analysis 25

viii Contents
22 Results. 26
2.21 (RQ1.1) Perceived Influential Factors 26
Organizational Factors 26
PeopleFactors 27
ProcessFactors 27

Technical Factors 27

Project Factors 28

2.22 (RQ1.2) Perceived Level of Impact 28

2.23 (RQ1.3) Perceived Types of Factor Relationships 30

2.24 Studied Proxy Measures 33
Motivation for Mapping oL . 36

2.25 (RQ2) Factor Validation 38

2.3 A Conceptual Framework of On-Time Delivery 40
24 Discussionl o o 42
25 Threatsto Validity L L 45
26 Conclusions 47

Dynamic Prediction of Delays in Epics Using Delay Patterns and Bayesian

Modeling 49
3.1 RelatedWork. L 51
3.2 Bayesian Data Analysis 52
33 Approach 53
3.3.1 A Unified Timeline of Project Milestones. 53

33.2 DataCollection. Lo 54
BacklogData 54
DataCleaning v v vt i 54

Delay Factors 54

Measuring Schedule Deviation 54

3.3.3 Clustering for Delay Pattern Discovery. 55

3.3.4 Bayesian Model Development 57
Different Modes of Model Development 57

Bayesian Modeling L L 57

3.4 DelayPatternsatING 59
3.5 Evaluation Lo 61
3.5.1 ResearchQuestions 61

352 SoTABaselines. 62

3.53 ExperimentalSetup 62

3.54 Performance Measures. 63

355 Results. 63

3.6 Discussion 66
3.61 MainFindings 66

362 FutureWork 67

3.7 Threatsto Validity 68

3.8 Conclusions e 69

Contents ix

4 Modeling Team Dynamics for the Characterization and Prediction of De-

lays in User Stories 71
4.1 Usage Scenarioso e 73
42 StudyDesign. Lo 73
4.2.1 Data Collection and Pre-Processing 75

4.2.2 Risk Factor Extraction and Analysis 75

4.2.3 Text Feature Extraction. 78

424 ModelBuilding. 79

425 ModelEvaluation 79

43 Results. L 81
44 Discussiono 86
441 Recommendations for Practitioners 86

4.4.2 Implications for Researchers 87

45 ‘Threatsto Validity L 88
4.6 RelatedWork. Lo Lo 89
47 Conclusion. Lo 90
5 Context-Aware Automated Sprint Plan Generation 91
5.1 Background and Related Work 94
5.1.1 SprintPlanning Lo Lo L L 94

51.2 RelatedWork. oo o 94

5.2 Prioritization Criteria Survey. 95
5.2.1 Deriving Factors from Literatureand ING 95

522 SurveySetup.o 96
SurveyDesign. L 96

Survey Validation L L 96

Survey Execution o o o oo L 97

Survey Demographics L L 97

Survey Data Analysis 97

523 SurveyResults. Lo 97
(RQ1.1) Factor Weights, . 97

(RQ1.2) Weight Variations 100

5.3 Modeling Story Prioritization and Sprint Plan Optimization 100
5.3.1 Backlog Data Collection 100

5.3.2 Estimating Prioritization Criteria. 101

5.3.3 Predicting Story Selection Likelihood 102

5.3.4 Obtaining Team Planning Objectives. 103

5.3.5 Optimization Model Development 103

54 Model Evaluation Lo 104
54.1 SoTABaseline 105

5.4.2 Experimental Setup 106

543 (RQ2) Model Alignment 107

5.4.4 (RQ3) Model Effectiveness 108

54.5 (RQ4) Model Usability 109
Interview Methodology 109

InterviewResults 110

X Contents

55 Discussion Lo e 111
5.5.1 Recommendations for Practitioners 111

5.5.2 Implications for Researchers 113

5.6 Threatsto Validity 113

57 Conclusions L Lo 114

6 Conclusion 115
6.1 Research Questions Revisited 115

6.2 ThreatstoValidity 118

6.3 Recommendations for Software Organizations 120

6.4 Conclusion and Future Work. o0 oL 122

6.5 Implicationsand Outlook 124
Bibliography 127
Curriculum Vitae 149

List of Publications 151

xi

Summary

Late deliveries have been a common problem in the software industry for decades. They
often result from deficiencies in effort estimation and project planning. These deficiencies
arise due to the complexity of software development, where various social and technical
factors affect project effort and scheduling. Variability in human elements, such as team
dynamics and changing user requirements, adds further uncertainty. Since meeting time
and cost estimates is crucial for project success, improving effort estimation and planning
remains a key priority for software organizations. More accurate forecasting enables bet-
ter resource allocation, reduces delays, and enhances customer satisfaction.

Over the past two decades, software organizations have increasingly adopted agile
methods to improve flexibility and responsiveness. However, despite these advantages,
schedule delays remain common, with nearly half of agile projects experiencing overruns
of 25% or more. A key challenge lies in balancing the flexible, short-term planning of small
functionalities (user stories) with the structured, long-term planning required for larger
development units (epics). Current industry practices offer limited support for managing
these complexities, especially in large-scale agile settings.

This thesis presents a novel suite of expert- and data-based strategies to improve effort
estimation and planning in large-scale agile software development. We conduct a series
of case studies at ING, a large Dutch internationally operating bank, to collect and ana-
lyze data from hundreds of agile teams and projects. We identify key factors influencing
delays in epics and user stories and develop models to predict delays at both levels. At
the epic level, we compile our findings into a conceptual framework representing influen-
tial factors and their relationships to on-time delivery. Additionally, we explore dynamic
Bayesian methods to continuously update delay predictions throughout an epic’s devel-
opment life cycle. At the story level, we examine how team characteristics affect the
likelihood of delays. We also investigate how these factors, combined with incremental
learning methods, can improve story delay predictions. Finally, we develop a model that
optimizes sprint plans based on team goals and delivery performance.

Our research identifies 25 factors and their interactions that affect the on-time deliv-
ery of epics. The most influential factors are predominantly social in nature, such as task
dependencies, organizational alignment, and internal politics. These factors interact hi-
erarchically: organizational factors shape team behavior, which in turn affects technical
factors. To capture these complexities, we demonstrate that dynamic Bayesian methods,
using delay patterns as input, effectively update delay predictions as new information be-
comes available. At the story level, our findings suggest that planning in agile settings
can be significantly improved by integrating team-related information and incremental
learning methods into predictive models. Moreover, we find that user story prioritization
depends on a combination of factors that vary by project context. Our sprint plan opti-
mization model effectively addresses this variability and generates plans that deliver more
business value, align more closely with sprint goals, and mitigate delay risks better.

xiii

Samenvatting

Late opleveringen zijn al decennialang een veelvoorkomend probleem in de software in-
dustrie. Ze zijn vaak het gevolg van onnauwkeurige inschattingen van de benodigde hoe-
veelheid werk en de projectplanning. Deze onnauwkeurigheden komen vooral voort uit
de complexiteit van softwareontwikkeling, waarbij een breed scala aan sociale en techni-
sche factoren de benodigde inzet en planning beinvloeden. De variabiliteit in menselijke
aspecten, zoals teamdynamiek en veranderende gebruikersvereisten, brengt extra onze-
kerheid met zich mee. Aangezien het succes van projecten sterk athankelijk is van het
behalen van tijd- en kosteninschattingen, blijft het verbeteren van de nauwkeurigheid van
werkinschattingen en planning een topprioriteit voor softwareorganisaties. Nauwkeuri-
gere voorspellingen maken een betere toewijzing van middelen mogelijk, verminderen
vertragingen en verhogen de klanttevredenheid.

De afgelopen twee decennia hebben softwareorganisaties in toenemende mate agile
methoden omarmd om hun flexibiliteit en responsiviteit te verbeteren. Ondanks deze
voordelen blijven projectvertragingen een veelvoorkomend probleem, waarbij bijna de
helft van de agile projecten te maken krijgt met overschrijdingen van 25% of meer. Een
grote uitdaging ligt in het balanceren van de flexibele, kortetermijnplanning van kleine
functionaliteiten (user stories) met de gestructureerde, langetermijnplanning die nodig is
voor grotere functionaliteiten (epics). De huidige ondersteuning voor softwareorganisaties
op dit gebied is beperkt, vooral binnen grootschalige agile omgevingen.

Dit proefschrift presenteert een innovatieve reeks op expertise en data gebaseerde stra-
tegieén om werkinschattingen en planning in grootschalige agile softwareontwikkeling te
verbeteren. We voeren een reeks case studies uit bij ING, een grote internationaal opere-
rende Nederlandse bank, om gegevens te verzamelen en te analyseren van honderden agile
teams en projecten. We identificeren de belangrijkste factoren die vertragingen beinvloe-
den en ontwikkelen modellen om deze zowel op epic- als story-niveau te voorspellen. Op
het niveau van epics bundelen we onze bevindingen in een conceptueel raamwerk dat
invloedrijke factoren en hun verbanden met tijdige oplevering weergeeft. Daarnaast on-
derzoeken we dynamische Bayesiaanse methoden om continu vertragingen te voorspellen
gedurende de ontwikkelingscyclus van een epic. Op het niveau van stories analyseren we
hoe teamkenmerken de kans op vertragingen beinvloeden. We onderzoeken ook hoe deze
factoren, in combinatie met incrementele leermethoden, de voorspelling van vertragingen
in user stories kunnen verbeteren. Tot slot ontwikkelen we een model dat sprint plannen
optimaliseert op basis van de doelen en leveringsprestaties van teams.

Ons onderzoek identificeert 25 factoren en hun onderlinge interacties die van invloed
zijn op de tijdige oplevering van epics. De meest invloedrijke factoren zijn overwegend
sociaal van aard, zoals taakathankelijkheden, organisatorische afstemming en interne po-
litiek. Deze factoren interacteren hiérarchisch: organisatorische factoren beinvloeden het
teamgedrag, dat op zijn beurt de technische factoren beinvloedt. We tonen aan dat dy-
namische Bayesiaanse methoden, met vertragingspatronen als invoer, deze complexiteit

xiv Samenvatting

effectief kunnen vastleggen en vertragingen nauwkeurig blijven bijwerken zodra nieuwe
informatie beschikbaar komt. Op story-niveau suggereren onze bevindingen dat de plan-
ning in agile omgevingen aanzienlijk kan worden verbeterd door teamgerelateerde infor-
matie en incrementele leermethoden te integreren in voorspellende modellen. Daarnaast
blijkt dat de prioritering van user stories athankelijk is van een combinatie van factoren
die variéren per projectcontext. Ons model voor de optimalisatie van sprint plannen speelt
effectief in op deze variabiliteit en genereert plannen die meer bedrijfswaarde opleveren,
beter afgestemd zijn op sprintdoelen en vertragingen effectiever helpen te beperken.

Xix

Acknowledgments

It was September 2013 when I first stepped onto the TU Delft campus, ready to begin my
bachelor’s in Computer Science. I was fascinated by the people, the architecture, and the
exciting research happening around me. Little did I know that I would spend the next
decade there, completing my bachelor’s, master’s, and PhD. Along the way, I met so many
incredible people, each inspiring me in their own way. I want to take a moment to express
my heartfelt gratitude to everyone who has been part of my PhD journey.

Arie: From my master’s thesis to my PhD, you have been there every step of the way.
Thank you for giving me the chance to do research on what some might call a ‘dinosaur’
of a topic, but one that continues to fascinate me. I have always appreciated the energy
and positive mindset you brought to our meetings, making even the toughest discussions
constructive and motivating. I have learned so much from you, but if I had to highlight
one lesson, it would be how to turn negative situations into positive ones — a skill that
extends far beyond academia. Your feedback helped me push each paper to the next level,
but more than that, you showed me that research is not just about technical work. It
is just as much about stakeholder management and storytelling. I am also thankful for
your guidance during my time as a lab manager at ING, helping me balance academic and
business perspectives in an industry setting. Your support and the freedom you gave me
to explore my own path have meant a lot. For all of that, I cannot thank you enough!

Georgios: Back in 2018, when we first discussed topics for my master’s thesis, I had just
met you, and I immediately noticed two things — your impressive technical expertise and
our shared high level of ambition. Now, after completing both my master’s thesis and PhD
with you, I can say that my first impression was absolutely right. No matter how complex
the challenge or how tight the deadline, your response was always a confident “Why not?”.
Your support, honest feedback, and ability to challenge my ideas while still giving me the
space to explore my own have been truly invaluable. Thank you for being there when I
needed support, for offering advice when I sought it, and for constantly pushing me to
grow. I have learned a lot from you — not just about technical work, but also about life
and the importance of sometimes stepping back to enjoy the little things. From research
discussions to the occasional SAL group dinners, this journey has been an incredible one,
and I am truly grateful to have shared it with you.

Joost: Thank you for giving me the incredible opportunity to pursue my PhD within
ING. Your trust and confidence in me made this journey possible, and I am truly grateful
for the chance to have worked in such a unique research setting. I also want to thank
you for being such a supportive manager. I did not fully realize how much you handled
behind the scenes to create a smooth and focused working environment for us until I
became a manager myself. Looking back, I appreciate it even more. Your leadership style
has inspired me, and I hope to carry that same approach forward in my own career.

Eric, Jerry, Serge, Evert-Jan: From day one, you welcomed me into your product team
as if I had always been part of it. You were eager to create opportunities for me, setting

XX Acknowledgments

up meetings with management to help showcase my research. I am grateful for all the
great discussions and brainstorming sessions we had — many of which ran over time, but I
believe that only reflects how passionate you are about your work. Thank you for helping
me find my place at ING and for making me feel at home in the team.

Hennie: Thank you for being my first buddy at ING and for helping me grow quickly as
aresearcher. Working with you to professionalize research at ING was both rewarding and
a lot of fun. Our trip to the summer school at Elba Island was a highlight — an experience
I will always look back on with a smile!

Mieke, Shiler, Kerem, Andries: Thank you for trusting me and giving me the freedom
to run the AFR lab in my own way. Your confidence in me allowed me to grow both
professionally and personally. I am grateful for everything I learned from you, especially
how to connect academia with real-world business problems.

AFR Lab (Lorena, Eileen, Luis, Floris, George, Sara, Patrick, Arumoy, Leonhard, Kevin,
Ralf, and all the master students): Oh, what a ride it has been! Starting a research lab in the
midst of COVID was no small feat — but through it all, we created something truly special.
Thank you for making the ING lab feel like a second home. From inspiring discussions to
unforgettable laughs and countless coffee breaks, I have cherished every moment. I loved
getting to know each of you and being part of your journeys. The friendships we built
mean a lot to me, and our time together will always hold a special place in my heart.

Pradyot, Thomas, Joaquin, Marius, Remco: I am grateful to have supervised your re-
search projects at ING. Working with you was a true pleasure, and in many ways, I learned
as much from you as you (hopefully) did from me. Your enthusiasm and curiosity often
made me see my own research in a new light. Thank you for the great collaborations. It
was a privilege to be part of your academic journey!

SAL (Amir, Ayushi, Enrique, Joseph, Maliheh, Mehdi): Thank you for all the insightful
discussions, the lunches that always ran longer than planned ©, and the much-needed
coffee breaks that made this PhD journey all the more enjoyable. A special shout-out to
Joseph and Mali for being there to share the highs and lows of PhD life — knowing I was
not alone in the struggle made all the difference!

SERG: Being part of SERG for so many years has been an incredible experience. With
the group growing rapidly, it is impossible to name everyone, but I am truly grateful to all
past and present members for the inspiring discussions, collaborations, and fun moments
we have shared. From brainstorming research ideas to Friday beers at The Hangover, being
surrounded by such a talented group made this journey even more special. Minaksie and
Kim, thank you for always keeping everything running smoothly!

Alexandru, Diomidis, Magne, Nitesh, Pick, Robert: Thank you for agreeing to be part of
my defense committee, for reviewing my dissertation, and for traveling to Delft. I truly
appreciate the time and effort.

Carlos: Even though we met during the final stretch of my PhD, I am grateful for
the great discussions we had about dissertation writing, academic life, and life in general.
Thank you for being a great listener and for making that final phase a little easier!

Tim, Stefan, Otto, Pim Otte, Pim Veldhuisen: From game nights and movie nights to all
the drinks we have shared at the /Pub, you became the family I found in Delft. The past
few years have been busier than I would have liked, especially after moving to Almere,
but I am looking forward to making even more great memories together in the future!

Acknowledgments xxi

Monica: Darling, thank you for always being there for me, offering your support and
a listening ear whenever I needed it. I am so grateful for all our travel adventures, endless
coffee chats, delicious chocolate cakes, and peaceful dog walks. We have created so many
wonderful memories together, and I look forward to many more!

Spike, Frodo, Sam, Benji: Thank you for keeping me company during late-night writing
sessions and offering just the right (and sometimes not-so-needed) distractions. From
lying on my keyboard at the worst possible moments to making me smile when I needed
it most, you were the best little supporters throughout this journey! &

Yud, Mama, Papa: Canlarim benim, ¢ok sag olun her zaman yanimda oldugunuz i¢in
ve her zaman ylizimi gilldiirdiiginiz icin. Sizi ¢ok seviyorum % Papa: Thank you for
inspiring my love for science and engineering from an early age. You often spoke about
how much you loved the idea of doing a PhD, and even before I understood what that
meant, you planted the seed that led me here. You taught me that walking my own path
is a good thing, to follow my heart, and to always stay true to myself. No matter where
life takes me, I carry your lessons with me forever.

Last but not least, I am forever grateful to my best friend and soon-to-be husband,
Jesse: You have been by my side through all the ups and downs, and I honestly do not
know how I would have made it through without your love and support. Thank you for
always lifting me up, making me laugh, and being my rock through all these years! ¥

Elvan
Almere, July 2024

Introduction

ate deliveries continue to be a major challenge in the software industry. Across sectors,
L software projects face the highest risk of schedule overruns [1], running on average
approximately 30% over time [1, 2]. Despite decades of research, this percentage does not
seem to have decreased since the 1980s [3]. A study by McKinsey and the University of
Oxford [4] reported even more concerning figures: 17% of large-scale software projects
experience severe delays, with overruns reaching an average of 200%. These issues can
lead to substantial financial losses, with each additional year spent on a project increasing
cost overruns by an estimated 15% [4]. As a result, project delays pose significant business
risks, including missed market opportunities, customer dissatisfaction, and reduced com-
petitiveness [5, 6].

Schedule overruns are manifestations of deficiencies in effort estimation and project
planning. These deficiencies largely arise due to the complexity of software development,
where various social and technical factors affect project effort and scheduling [1, 7]. Vari-
ability in human elements, such as team dynamics and changing user requirements, adds
further uncertainty [8]. Since meeting time and cost estimates is crucial for project suc-
cess [9], improving the accuracy of effort estimation and planning remains a key priority
for software organizations. More accurate forecasting enables better resource allocation,
reduces delays, and increases stakeholder confidence.

Over the past two decades, agile methodologies have become the dominant approach
for managing software projects [10]. By enabling incremental development through short
iterations, agile methods allow teams to adapt to changing priorities, rapidly deliver busi-
ness value, and mitigate risk [11]. However, despite these advantages, predicting and
managing delivery timelines remains a critical challenge. Nearly half of agile software
projects experience schedule overruns of 25% or more [12].

Agile projects rely on iterative, short-term planning in which teams refine their es-
timates throughout the project life cycle [13]. Central to this planning is the ability to
predict, at any phase of the project, whether planned software features can be delivered
on-time. This is particularly challenging due to the need to integrate the flexible, short-
term planning of small functionalities (expressed as user stories [14]) with long-term com-
mitments to larger development units (referred to as epics [15]). Most agile teams rely

2 1 Introduction

heavily on expert judgment for effort estimation and delivery forecasting [10, 16], which
introduces subjectivity and potential inconsistencies. To improve on-time delivery, there
is a need for automated approaches that can enhance delay prediction and planning at
both the user story and epic levels. Such predictive models would enable software project
managers and development teams to anticipate potential delays, proactively adjust their
planning, and take corrective actions to keep projects on schedule.

A key challenge in developing automated support for estimation and planning is iden-
tifying the key factors that influence on-time delivery in software projects. Prior research
identified a large pool of factors that may affect the software development effort [17], but
their relative impact remains unclear. Moreover, we lack an understanding of the rela-
tionships between these factors and how they impact on-time delivery. Existing insights
are largely based on expert judgment, with limited validation using quantitative data from
project repositories. Previous studies have developed models for effort estimation at the
user story level [18—-20], predicting delays in bug-fixing and issue resolution [21-23], and
forecasting delivery capacity at the iteration level [24, 25]. However, little work has fo-
cused on models specifically designed for delay prediction and planning in agile settings.

This thesis aims to fill these research gaps by providing insights and automated support
for predicting delays and improving planning in agile software development. To achieve
this, we conduct a series of case studies at ING, a large-scale Dutch internationally op-
erating bank. We collect and analyze real-world data from hundreds of agile teams and
projects. We integrate expert knowledge with data-driven techniques to identify key fac-
tors and their interactions that influence on-time delivery in agile projects. By analyzing
these factors, we gain valuable insights into the data and techniques needed to improve
the predictability of software delivery. Using these insights, we develop models that effec-
tively predict delays in user stories and epics, and optimize sprint plans tailored to team
goals and delivery performance. Our findings can help practitioners identify and manage
delay risks in agile settings, inform the design of automated tools for planning support,
and contribute to a relational theory of software project management.

1.1 Background and Context

In this section, we provide background on agile software development as our research con-
text. Additionally, we discuss related work in software effort estimation, software project
risk management, and software analytics.

1.1.1 Principles of Agile Software Development

Traditional software development follows a sequential, phase-based approach where each
stage must be completed before moving to the next [26]. This structured process empha-
sizes upfront planning and documentation, often leading to long development cycles with
limited adaptability to changing requirements. In contrast, agile methods take an iterative
and adaptive approach to software development [27]. Agile teams develop software incre-
mentally in short iterations, enabling faster delivery, continuous feedback, and greater
flexibility to accommodate changing priorities [28]. Each iteration involves designing, im-
plementing, testing, and delivering a functional product increment, with feedback from
one cycle informing the next.

1.1 Background and Context 3

The key distinctions between agile and traditional software development are illustrated
in Figure 1.1 and are reflected in the four core values of the Agile Manifesto [29]:

« “Individuals and Interactions Over Processes and Tools”: Agile prioritizes communi-
cation and collaboration over rigid processes.

« “Working Software Over Comprehensive Documentation”: Agile values working soft-
ware as the primary measure of progress. While documentation is important, the
focus should be on delivering functionality that adds value to the customer.

« “Customer Collaboration Over Contract Negotiation”: Agile emphasizes ongoing cus-
tomer involvement to ensure the software meets expectations.

+ “Responding to Change Over Following a Plan”: Agile acknowledges that require-
ments change over time and encourages teams to adapt instead of adhering to a

fixed plan.

€—— WATERFALL

REQUIREMENTS

Figure 1.1: Traditional (waterfall-like) vs. agile software development

Since its introduction in 2001, the Agile Manifesto has driven widespread adoption of
agile methodologies [30]. Frameworks such as Scrum [31], Kanban [32], and Extreme Pro-
gramming (XP) [33] provide structured practices to implement agile principles effectively.

1.1.2 Agile Requirements Engineering

In agile projects, user requirements follow Leffingwell’s five-level hierarchy [15], com-
monly adopted in the Scaled Agile Framework (SAFe) [34]. As shown in Figure 1.2, this
hierarchy organizes work from high-level strategic goals to detailed development tasks. At
the top are strategic themes, which define overarching business objectives. Within these
themes, epics represent large functional goals spanning multiple iterations [13]. Epics are
further broken down into features, significant functional components that deliver value to
users. Features, in turn, consist of user stories, which capture specific requirements from
an end-user perspective [14]. User stories are designed to be small enough to be completed
within a single iteration. Finally, these stories are refined into tasks, which define concrete
development activities and allow teams to track progress effectively.

4 1 Introduction

Story f] Story §§ Story

= =

Figure 1.2: Leffingwell’s five-level hierarchy for agile work breakdown

ﬁ

o i

The Product Owner plays a key role in agile teams, acting as the link between stake-
holders and the development team [13]. They are responsible for defining, refining, and
prioritizing requirements to ensure alignment with business objectives. To manage and
prioritize work, agile teams maintain a product backlog, a centralized repository of epics,
features, user stories, and necessary fixes [35]. The Product Owner is responsible for back-
log management, prioritizing items based on urgency, with the most critical placed at the
top. The urgency of an item is determined based on immediate customer needs and project
deadlines. As priorities shift, the backlog is continuously refined to keep the team aligned
with evolving requirements. Agile teams use backlog management tools like Jira, Trello,
and ServiceNow to manage backlog items efficiently.

1.1.3 Agile Planning Frameworks

Agile projects use structured planning frameworks to ensure alignment, adaptability, and
continuous improvement [34, 36, 37]. These frameworks operate at multiple levels, typi-
cally relying on three key planning stages [13], as illustrated in Figure 1.3:

+ Release planning: Covering a two- to six-month time frame, release planning fo-
cuses on epics and features [13], often involving multiple teams. It is a collaborative
effort that establishes a road map, manages dependencies, and ensures that each re-
lease delivers tangible value. Product owners and project managers lead this process,
while development teams provide input on dependencies and technical constraints.

Iteration planning: Agile projects are divided into iterations, also referred to as
sprints [38], which are short, time-boxed periods lasting one to four weeks. Before
each sprint, the development team selects a subset of user stories from the product
backlog to be delivered in that iteration. Through collaborative discussions, the team
refines these stories into tasks for estimation [14].The team commits to completing
a specific amount of work in the sprint. During the sprint, the team designs, imple-
ments, and tests the selected user stories to deliver a working product increment,
such as a functional milestone.

1.1 Background and Context

oai\y Scry, iy

SPRINT

Retrospe,, +
R
uone:uaula\d

g -y

Release Planning

Planning

Project Vision

Deployment

Modeling Team Dy ics for the
Characterization and Prediction
of Delays in User Stories

— Factors Affecting On-Time
—— | Delivery in Large-Scale Agile

Software Development

Dynamic Prediction of Delays D Context-Aware Automated Sprint
— | in Software Projects using Plan Generation for Agile Software
—— | Delay Patterns and Bayesian Development

Modeling

Figure 1.3: Stages of the agile development process. Agile planning occurs at three levels:
release planning, iteration (sprint) planning, and daily planning. Annotations indicate
corresponding articles of this thesis at the release and sprint planning levels.

+ Daily planning: Daily stand-up meetings serve as structured touch points for daily
planning. Team members review progress by discussing tasks completed yesterday,
those planned for today, and any impediments they face. These meetings provide
an opportunity for team members to synchronize their activities and plans.

These planning levels are interconnected and iterative, allowing teams to refine their
approach based on feedback and evolving requirements throughout the project life cycle.

1.1.4 Software Effort Estimation

Effort estimation is a key activity in software project management, essential for planning
and monitoring [39]. It involves predicting the effort — measured in time, resources, or
cost — needed to complete a task or an entire project. Estimation accuracy impacts project
success: underestimation can cause schedule and budget overruns, while overestimation
may reduce an organization’s competitiveness [40].

Research in software effort estimation spans several decades, highlighting its critical
role in software engineering. In both the literature and this thesis, the terms effort esti-
mation and effort prediction are used interchangeably. While effort estimation typically
refers to expert judgment, effort prediction is commonly associated with data-driven or
model-based forecasting. However, both terms refer to the same overarching concept of

anticipating software development effort.

6 1 Introduction

Factors affecting effort. Previous research has identified a large number of factors,
referred to as effort drivers, that may influence software development effort. The accuracy
of effort estimation methods depends on how well they select relevant factors and discard
irrelevant or misleading ones [41, 42]. Trendowicz et al. [41] classified the most commonly
used effort drivers into four categories:

1. Personnel factors, such as team capabilities and experience [6, 12, 43, 44].
2. Process factors, including the quality of methods and tools used [45-47].
3. Project factors, such as available resources and management activities [48, 49].

4. Product factors, including requirements analysis, design, and coding effort [50].

Expert-based and model-based methods. Effort estimation methods can generally
be classified into expert-based and model-based approaches [6, 39]. Expert-based methods
rely on human judgment to select relevant factors and remain the most widely used tech-
nique in both agile and traditional projects [6, 51]. However, these methods are inherently
subjective, which can lead to inconsistencies and biases in estimation. Model-based meth-
ods, on the other hand, leverage historical project data to identify relevant factors from an
initial dataset. While these methods offer a data-driven alternative, their effectiveness de-
pends on the quantity and quality of available data, which can vary across projects. Since
no single method is likely to be superior in all settings [6], recent studies suggest combin-
ing expert- and model-based approaches to mitigate their individual limitations [52, 53].

Machine learning models have gained popularity as an alternative to traditional model-
based approaches. Common methods include regression analysis (e.g., [54, 55]), neural
networks (e.g., [18, 25, 56]), fuzzy logic (e.g., [57-59]), Bayesian networks (e.g., [60, 61]),
and evolutionary approaches (e.g., [62]). These models have shown promising results in
predicting effort for software projects [25, 61, 63-65], as well as estimating the time re-
quired for bug-fixing and issue resolution [23, 66-70].

Human factors in effort estimation. Beyond the technical aspects of estimation,
human and organizational factors play a significant role in shaping estimation outcomes.
Prior work by Magazinius et al. [71, 72] highlights how both intentional and uninten-
tional distortions influence software effort estimation. Estimates may be shaped by or-
ganizational pressures, stakeholder expectations, and team dynamics rather than purely
technical considerations. For example, estimators may deliberately inflate or deflate esti-
mates for strategic reasons, such as securing additional resources, managing stakeholder
expectations, or avoiding unrealistic deadlines. Similarly, studies by Jergensen and Grim-
stad [73, 74] have shown that software professionals may strategically adjust estimates to
reduce projected costs and increase the likelihood of winning contracts. This behavior is
particularly common in competitive bidding scenarios but can also occur whenever project
selection is based on estimated effort. Such selection biases can lead to systematic under-
estimation, ultimately contributing to cost overruns and project delays. Understanding
these human-driven distortions is essential for developing more robust estimation tech-
niques that account for both technical and behavioral factors.

1.1 Background and Context 7

1.1.5 Effort Estimation in Agile Settings

Agile teams typically rely on expert judgment to estimate software development effort
based on personnel- and project-related factors [10]. Estimation occurs at both the release
and iteration planning levels [12, 13]. During release planning, teams provide high-level
estimates for epics, which span multiple iterations and are initially estimated with low
precision [75]. Teams use methods such as Relative Sizing or T-Shirt Sizing (S, M, L, XL)
to estimate the relative effort of epics by comparing them to one another [76]. These
estimates are then converted into sprints or months to establish an expected delivery date.

Iteration planning involves a more detailed estimation of the effort required to com-
plete user stories. Teams break down epics into user stories and further decompose stories
into development tasks [14]. Each story is assigned to a single developer, though multi-
ple developers may work on its sub-tasks. Estimation of user stories occurs during sprint
planning sessions, involving all team members in discussions [41]. Agile teams commonly
use story points as a measure to estimate the relative effort, complexity, and risks of a user
story [13]. One widely adopted method for estimating story points is Planning Poker [77].
In this process, each team member receives a set of numbered cards representing story
points. After discussing the stories, members select a card reflecting their effort estimate.
The team then reviews high and low estimates to reach a consensus on the final story
point value.

To plan future sprints, teams measure their velocity, defined as the average number of
story points completed in past sprints [13]. Historical velocity data helps teams forecast
their capacity for upcoming sprints. Previous research has explored machine learning
models for automating effort estimation, including predicting story points for user sto-
ries [18-20] and forecasting iteration velocity [24, 25].

1.1.6 Software Project Risk Management
Risk factors in software projects are uncertain events that pose serious threats to successful
project completion [78]. Several studies have identified ineffective risk management as a
major cause of project delays [79-83]. Risk management consists of two primary activities:
risk assessment and risk control. Risk assessment focuses on identifying, analyzing, and
evaluating potential risks and their implications for the project or organization [84]. Once
risks are assessed, risk control implements measures to minimize or mitigate their impact.
Seminal work in the area of risk assessment has been carried out by Boehm’s “Top 10
Software Risks” [84] and the Software Engineering Institute’s “Taxonomy-Based Risk Iden-
tification” [85]. Current practices often rely on high-level guidance such as risk checklists
and expert judgment. Common risk factors in software projects include unclear or chang-
ing requirements (e.g., [84, 86—88]), underestimation of project complexity (e.g., [89, 90]),
unstable organizational environment (e.g., [91, 92]), lack of management support (e.g., [90,
93]), user commitment issues (e.g., [90, 94]), and personnel shortages (e.g., [84, 95]). Var-
ious studies have focused on measuring risk levels [89], categorizing risk types [90], and
developing mitigation strategies [96]. Wallace et al. [97] classified software risks into six di-
mensions: organizational environment, user, requirements, project complexity, planning
and control, and team risk. They analyzed the impact of these risk dimensions on overall
project performance. Menezes et al. [8] identified 148 risk factors through a systematic
literature review and classified them according to the Software Engineering Institute’s Tax-

8 1 Introduction

onomy [85]. Other studies (e.g., [98-100]) have used statistical analysis to evaluate risk
factors in software projects. For example, Letier et al. [98] developed a statistical decision
analysis model to assess uncertainty in software architecture decisions. Choetkiertikul et
al. [101] applied machine learning to predict delay risks in issue reports.

1.2 Research Goal and Questions

This thesis aims to improve effort estimation and project planning in large-scale agile soft-
ware development. To suggest meaningful improvements, it is essential to first develop an
understanding of the factors and interactions that affect on-time delivery in agile settings.
Prior research has identified a large number of factors that may influence software devel-
opment effort [17], but their relative impact remains unclear. We lack an understanding
of the relationships between these factors and how they influence on-time delivery.

We begin by examining high-level planning, where epics play a central role in manag-
ing interdependent software deliveries across teams and iterations. Delays at this level can
disrupt broader project timelines, making it critical to identify the key factors and interac-
tions that drive on-time delivery. Therefore, our first Thesis Research Question (TRQ-1) is:

TRQ-1: What are the most relevant factors and interactions affecting the on-time
delivery of epics?

Given the long-term nature of epics, it is essential to continuously reassess their over-
all delay risk to adapt to changes that occur during project execution. Existing delay
prediction models in software engineering have a static character [25]; they are trained
upfront and estimate the entire project based on predictor variables collected at the be-
ginning of the project. They are unaware of changes occurring during project execution.
While these models may be suitable for traditional, waterfall-like projects where predic-
tor variables remain stable, they fail to capture the iterative and dynamic nature of agile
development. In the field of transport, the concept of delay patterns has shown promis-
ing results in predicting evolving delays over time (e.g., [102, 103]). Building on this, our
second Thesis Research Question (TRQ-2) focuses on developing a dynamic approach to
predicting delays in epics:

TRQ-2: How can the concept of delay patterns be adapted and applied to continu-
ously predict overall delays in epic deliveries?

Next, we shift our focus to iteration planning, which centers on managing the delivery
of user stories. At this stage, teams would benefit from actionable information about delay
risks in user stories. This knowledge would enable them to identify problematic user
stories and implement corrective measures (e.g., story splicing) to reduce the chance of
delays. Due to the collaborative nature of agile projects, team-related factors such as team
orientation, coordination, and work division can impact delivery performance [104-106].
Moreover, delivery performance can vary due to the influence of team changes, resulting

1.2 Research Goal and Questions 9

in team dynamics that may require incremental learning methods to be captured. This
leads to our third Thesis Research Question (TRQ-3) on delay prediction in user stories:

TRQ-3: Does the use of team features and incremental learning methods improve
the accuracy of delay predictions in user stories?

Iteration planning, often referred to as sprint planning, is not only concerned with
estimating user stories but also with prioritizing them effectively. While TRQ-3 focuses
on predicting delay risks in user stories, another key challenge in sprint planning is de-
ciding which stories should be prioritized and selected for development in the next sprint.
This selection process is guided by various factors, known as prioritization criteria, which
determine the order in which user stories are implemented. Although business value is
typically considered the main prioritization criterion in agile methods, previous research
suggests that teams apply prioritization criteria differently depending on their project con-
text [107, 108]. However, how these criteria are weighted and applied in different settings
remains largely unexplored [108]. Sprint planning is a complex and time-consuming pro-
cess [109, 110], particularly in large projects where backlogs can grow to hundreds of user
stories [111]. To support teams in this process, we aim to automate sprint planning by de-
veloping a model that estimates prioritization criteria and generates sprint plans tailored
to the team’s context. Our fourth Thesis Research Question (TRQ-4) is therefore two-fold:

TRQ-4: (a) How does the importance of story prioritization criteria vary across proj-
ect settings?, (b) How can teams’ expertise and sprint history be integrated into a
model to generate sprint plans that align with team goals and performance?

By addressing these research questions, this thesis aims to obtain valuable insights into
the data and techniques required to advance the predictability of agile software delivery.
TRQ-1 lays the groundwork for understanding the factors and interactions that influence
delays in epic deliveries. This knowledge can help software organizations proactively iden-
tify and manage delay risks in large-scale agile settings. Moreover, it contributes to the
broader development of a relational theory of software project management. Building on
this foundation, we apply these insights to design automated tools for delay prediction at
both the epic level (TRQ-2) and the user story level (TRQ-3). TRQ-2 explores how delay
risks evolve over an epic’s life cycle, while TRQ-3 examines how team characteristics af-
fect delays in user stories. Together, these insights can enhance the predictive power of
existing effort estimation models. Finally, TRQ-4 integrates team expertise and sprint his-
tory into a model for generating context-aware sprint plans. By improving the efficiency
and effectiveness of sprint planning, this model provides organizations with a structured
approach to balancing competing priorities and optimizing delivery outcomes. Ultimately,
our research contributes to the field of agile software development by offering actionable
insights, automating key planning processes, and refining effort estimation techniques.
Our findings provide practical benefits to software organizations while also opening new
avenues for future research on predictive analytics in agile project management.

10 1 Introduction

1.3 Research Methodology

In this section, we provide an overview of the main research methods employed in our
studies. The methodological framework of this thesis is rooted in Empirical Software Engi-
neering, a sub-discipline dedicated to using empirical methods to investigate, evaluate, and
improve software engineering practices [112]. This approach emphasizes data collection
and systematic observations to generate evidence-based insights that inform both theory
and practice in software development.

1.3.1 Case Study Design
To address our research questions, we conducted a series of case studies at ING (see Sec-
tion 1.4). A case study is a research method used to investigate a phenomenon within
its real-world context [113]. It involves an in-depth examination of a specific instance
or case to obtain detailed insights that can inform theory development or practical in-
terventions. Our case study design follows the framework established by Runeson and
Host [113], which defines a case study by its case, units of analysis, and research perspec-
tive. The research perspective refers to the study’s stance on how knowledge is gained,
such as positivist, interpretive, or critical. We adopt a single-case design, with ING serv-
ing as the focal organization. The units of analysis vary across studies (e.g., epics, user
stories, or software teams) and are described in the respective chapters. From a method-
ological perspective, our case studies are conducted within a positivist research paradigm.
Positivist case studies seek to establish objective findings through empirical observation,
measurement, and hypothesis testing to generalize results to broader populations.

In our case studies, we employ qualitative and quantitative research methods, depend-
ing on their appropriateness to answer the research questions. Table 1.1 provides an
overview of the research methods used in each study.

Qualitative methods. To gain insights into the perceptions of software experts, we ap-
ply qualitative research methods adapted from the social sciences, particularly Grounded
Theory [114]. Grounded Theory is an inductive approach that systematically collects and
analyzes data to develop theories or hypotheses derived directly from the data. Unlike
methods that impose predefined categories, it allows patterns, themes, and concepts to
emerge organically during the analysis, ensuring that findings are closely tied to the data
itself. In our studies, we conduct surveys and interviews to collect qualitative data and
apply open coding [115, 116] to systematically analyze it.

Table 1.1: Research methods used for each study and thesis research question (TRQ)

Study (addressing TRQ#) Chapter Survey Interview Quant. Analysis
Factors affecting on-time delivery (TRQ1) 2 v’ v’
Dynamic prediction of delays in epics (TRQZ2) 3 v’
Delay prediction in user stories (TRQ3) 4 v’
Automated generation of sprint plans (TRQ4) 5 v’ v’ v’

1.4 The Case Company 11

Quantitative methods. For quantitative data collection, we employ data mining tech-
niques to extract insights from historical data stored in software repositories. These repos-
itories serve as an empirical source of ground-truth data, enhancing the precision and
reliability of our findings [117]. In our studies, we extract data from Git (version control),
ServiceNow (backlog management), and SonarQube (code quality analysis). While these
are our primary data sources, other commonly used backlog management tools, such as
Jira, Trello, and Azure Boards, offer similar functionalities. To improve the generalizabil-
ity of our research, we gather data on a large scale from hundreds of teams and projects at
ING. We apply data visualization techniques, statistical hypothesis testing, and probability-
based approaches, including machine learning, deep learning, and Bayesian methods to
uncover patterns and predictive insights from the quantitative data.

Mixed-methods design. In Chapters 2 and 5, we adopt a mixed-methods approach [118]
in which we integrate qualitative and quantitative data to capture multiple perspectives
on our research questions. This approach allows for triangulation, enhancing the validity
of our findings by corroborating different data sources. In Chapter 2, we analyze fac-
tors affecting the on-time delivery of epics by comparing software practitioners’ survey
responses with quantitative data from backlog management and static code analysis tools.

1.3.2 Replicability and Open Science
The industrial data and source code used in our research cannot be publicly shared due to a
Non-Disclosure Agreement. However, to increase external validity and encourage replica-
tion, we have made replication packages for our studies and models available on Zenodo.
Table 1.2 provides an overview of these packages corresponding to relevant chapters. We
have published our survey instruments and detailed descriptions of our model design and
evaluation to support replication in different settings.

In line with TU Delft’s Open Access policy, all articles that are part of this thesis are
freely accessible via the pure.tudelft.nl repository. Links to these articles are provided
in the respective bibliography entries.

Table 1.2: Overview of replication packages per chapter

Replication Package Chapter Zenodo DOI

Survey instrument, coding samples and data summary 2 10.5281/zenodo.11625946 [119]
Model summary and validation 3 10.5281/zenodo.11625842 [120]
Model comparison results 4 10.5281/zeno0do.12206605 [121]
Survey instrument and demographics 5 10.5281/zenodo.11522834 [122]

1.4 The Case Company

In this section, we provide an overview of the case company studied and its approach to
agile software development. ING, a large-scale, internationally operating Dutch bank, de-
velops its software solutions in-house. With approximately 61,000 employees, including

12 1 Introduction

17,000 software developers, and 53 million customers across 42 countries, ING is a major
player in the financial industry [123]. Our research focuses on ING TECH, the bank’s IT
department, which consists of 295 development teams distributed across Europe, Asia, and
North America. ING TECH is responsible for developing the bank’s core banking appli-
cations and advisory services, used by millions of customers worldwide. The department
covers a diverse range of products, varying in scale and application domain.

—— tribe —~ — tribe
o] o] o] o] o] o] o] o]

(o] Po Po Po Po Po Po Po (] o]
o (o) (o) (o0 (ool (o) [o0) 2
chapter ﬂ chlapter
guild

chapter ﬂ S ﬁ chlapter

k squad squad squad squuy \squad squad squad squad

Figure 1.4: Spotify’s ‘Squads, Tribes and Chapters’ model [124]

1.4.1 Agile Transformation

In 2011, ING initiated an agile transformation to shorten development cycles and improve
responsiveness to changing customer needs. As part of this transition, the bank reinvented
its organizational structure, moving from traditional functional departments to a fully
agile model. To scale agile practices across its teams, ING adopted Spotify’s Squads, Tribes,
and Chapters model [124, 125], illustrated in Figure 1.4. Under this framework:

+ Squads are autonomous, cross-functional teams of 5 to 9 members, each responsible
for a specific client-focused mission. Squads operate with a high degree of self-
organization, deciding what and how to build, as long as it aligns with their mission
objectives. Each squad includes a Product Owner, who represents customer needs
and ensures alignment across team activities.

« Tribes consist of multiple squads working toward interconnected objectives. A
Tribe Lead coordinates activities and priorities across squads, while an Agile Coach
supports squads by removing impediments and facilitating agile practices.

« Chapters group specialists with similar expertise (e.g., web development, quality
assurance) across squads. Each Chapter Lead provides technical mentorship and
guidance.

+ Guilds span across multiple tribes and connect individuals with shared interests,
fostering knowledge sharing and transparency within the organization.

1.4 The Case Company 13

CODE BUILD DEPLOY TEST RELEASE

2 © 2un © 2un © 2un © 2un © aund
v & & v

=] aifactory docker
GitLab Jenkins iValidate
Ve > &
LS
L g]
e

Figure 1.5: Continuous delivery pipeline at ING

1.4.2 Software Delivery Pipeline

Following this transformation, teams at ING shortened their development cycles from 2-3
months to 1-4 weeks. To enable rapid and reliable deployments, ING implemented a fully
automated software delivery pipeline, used by all teams and illustrated in Figure 1.5. This
pipeline integrates specialized tools across all stages of the software development life cycle.
Based on the model proposed by Humble and Farley [126], the pipeline automates mul-
tiple tasks. When developers commit code, Jenkins (the continuous integration server)
triggers automated processes for compilation, static analysis, and unit testing. As part of
the pipeline, automated acceptance mechanisms verify build integrity by detecting com-
pilation errors, failed test cases, and software quality issues. At ING, SonarQube [127]
and Fortify [128] are used to assess static code quality and security vulnerabilities. Suc-
cessfully built software artifacts are stored in Artifactory and deployed across different
environments (testing, acceptance, and production).

1.4.3 Scrum at ING: Planning Sprints and Epics
All teams within ING TECH follow Scrum [38] as their agile framework. In Scrum, devel-
opment occurs in sprints, which typically last 1-4 weeks. Each sprint begins with a sprint
planning meeting, where teams select user stories from the product backlog, estimate their
effort, and commit to completing them. Teams at ING use Planning Poker [77] and a fixed
Fibonacci sequence of story point values for effort estimation. At ING, the guideline is
that a one-point story corresponds to approximately 4 hours of work, while a two-point
story requires 8 hours. This ensures additive and comparable estimates across teams.

During sprints, teams hold daily stand-ups to discuss progress, plan the day’s activi-
ties, and identify any obstacles. At the end of a sprint, teams conduct a sprint review to
demonstrate completed work to stakeholders and gather feedback. Scrum has two key
roles: the Product Owner, responsible for defining and prioritizing the product backlog,
and the Scrum Master, who ensures the team follows Scrum principles and facilitates con-
tinuous improvement.

At ING, epics typically span 1-4 business quarters (3-12 months). They are either
delivered in full within a single quarterly cycle or incrementally through multiple software

14 1 Introduction

releases. Tribe Leads oversee epic planning, collaborating closely with Product Owners
to manage inter-team dependencies. Effort estimation for epics follows the T-Shirt Sizing
technique [76], classifying epics as Small (S), Medium (M), Large (L), or Extra-Large (XL)
to provide relative size estimates.

1.4.4 Case Selection and Generalizability

ING was selected as the case company because it serves as a representative example of
large-scale agile software development. The bank’s well-established agile practices and
structured backlog management provide a rich setting to study the factors influencing on-
time delivery and project planning. Additionally, ING has accumulated years of historical
backlog data, offering a valuable foundation for predictive modeling.

From a generalizability perspective, ING is likely representative of other organiza-
tions in terms of team size, agile methodologies, and application domains. Its develop-
ment teams work on a diverse range of software products, including banking applications,
cloud services, and internal tools, making the findings relevant beyond the financial sector.
Moreover, ING follows agile frameworks that are widely adopted in industry, including
the Spotify model [124] and Scaled Agile Framework [125]. This further supports the
broader applicability of our findings.

The high number of teams and extensive historical data may be more typical of large-
scale organizations. However, we expect our findings on the identified delay factors and
predictive modeling approaches to be transferable to other agile environments, regardless
of company size. ING’s strict security regulations as a financial organization may have
influenced our findings on the relative importance of delay factors and prioritization cri-
teria. We acknowledge this limitation and discuss its implications for generalizability in
the Threats to Validity sections of the respective chapters.

1.5 Outline and Contributions

In this section, we outline the structure of this thesis by providing a summary of each
chapter and its main contributions. This thesis is a compilation of independently pub-
lished articles, with each chapter representing an individual article. To ensure coherence
and maintain their integrity, we have made only minor modifications to these articles to
create a unified thesis. We have preserved the fundamental structure of each article, en-
suring that each chapter remains self-contained. All articles are accessible via TU Delft’s
pure.tudelft.nl repository, with links provided in their respective bibliography entries.

« Chapter 2 investigates the factors and interactions that affect schedule deviations in
epic deliveries. We conduct a mixed-methods case study at ING to derive, confirm, and
investigate influential factors. This study includes two rounds of surveys with 635 soft-
ware practitioners to capture perceptions on key delay factors, their levels of impact,
and the interactions among them. Additionally, we analyze software repository data
from 185 teams to quantify and statistically model these factors, thereby corroborating
the survey findings. We compose our findings in the form of a conceptual framework
representing the factors and their interactions that affect the on-time delivery of epics
(addressing TRQ-1). This chapter has been published as the TSE’21 article titled “Factors

1.5 Outline and Contributions 15

Affecting On-Time Delivery in Large-Scale Agile Software Development” [129]. The main
contributions of this study are:

— A set of factors and their interactions affecting the on-time delivery of epics in
large-scale agile development. We order the factors by their relevance.

— A conceptual framework for on-time delivery that represents influential factors
and their relationships. This framework suggests multiple paths for action that
may improve the timeliness of software deliveries.

In Chapter 3, we present a dynamic model for continuously predicting overall delays in
epic deliveries. Unlike traditional static models, our approach leverages delay patterns
and Bayesian inference to refine predictions over time. To identify delay patterns, we
cluster time series of intermediate delay values recorded at designated milestones within
epics. Our model detects these patterns on the go and incorporates them into its pre-
dictions, adapting to the context of the project phase and changes in team performance.
We apply this approach to 4,040 epics from 270 teams at ING, identifying four distinct
types of recurrent delay patterns. An empirical evaluation demonstrates that our model
consistently outperforms static approaches and the state-of-the-art in software effort
estimation (addressing TRQ-2). This chapter has been published as the ESEC/FSE’23
technical research paper titled “Dynamic Prediction of Delays in Software Projects using
Delay Patterns and Bayesian Modeling” [130]. The main contributions of this study are:

— A new approach for dynamically predicting overall delays using delay patterns and
Bayesian inference.

- An application of the approach at ING, resulting in the identification of four recur-
rent delay patterns.

- An empirical evaluation of the approach and comparison to the state-of-the-art,
demonstrating significant improvements in predictive accuracy.

Chapter 4 presents a study on the effects of various aspects of teamwork on delays in
user stories. We analyze historical backlog data from 571 teams and 765,200 user sto-
ries at ING to identify team-related factors characterizing delayed user stories. Based on
these factors, we develop models that can effectively predict the likelihood and duration
of delays in user stories. We evaluate our models using different feature sets and slid-
ing window settings to investigate the potential of incremental learning methods. Our
results show that the use of team-related factors and a sliding window approach leads
to significant improvements in predictive accuracy (addressing TRQ-3). This work has
been published as the ASE’21 technical research paper titled “Modeling Team Dynamics
for the Characterization and Prediction of Delays in User Stories” [131]. The main contri-
butions of this study are:

- A set of team-related factors influencing delays in user stories. We rank the factors
by their importance for delay prediction.

— A new approach for predicting both the likelihood and duration of delays in user
stories.

1 Introduction

- An empirical evaluation of the approach using different feature sets and learn-
ing methods, demonstrating significant improvements when incorporating team-
related factors in a sliding window setting.

« In Chapter 5, we investigate how story prioritization criteria vary across project settings

and present a model for automating sprint planning. We conduct a survey with 52 teams
at ING to assess how they weigh prioritization criteria and how project characteristics
influence these decisions. Findings reveal that urgency, sprint goal alignment, and busi-
ness value are the most important criteria, with their influence varying based on project
factors such as resource availability and client type. This highlights the need for con-
textual support in sprint planning. To address that need, we develop an optimization
model that generates sprint plans tailored to team goals and performance. By integrat-
ing teams’ planning objectives and sprint history, the model learns team-specific plan-
ning behaviors and adapts to unique team contexts. We evaluate our approach through
both quantitative and qualitative analyses. Our quantitative evaluation, based on 4,841
historical sprints, demonstrates significant improvements in team alignment and sprint
plan effectiveness. Our model outperforms the state-of-the-art and boosts team perfor-
mance by generating plans that deliver 29% more business value, exhibit 14% stronger
alignment with sprint goals, and reduce delay risk by 42% (addressing TRQ-4). Our
qualitative evaluation, based on team interviews, confirms the usability and value of the
model in practice. This chapter has been published as the ASE’24 technical research
paper titled “Context-Aware Automated Sprint Plan Generation for Agile Software Devel-
opment” [132] and received the ACM SIGSOFT Distinguished Paper Award. The main
contributions of this study are:

— A set of prioritization criteria ordered by their importance for sprint planning.

— A context-aware optimization approach for generating sprint plans that align with
team goals and performance.

— An empirical evaluation of the approach and comparison to the state-of-the-art,
demonstrating significant improvements in team alignment and sprint plan effec-
tiveness.

- A qualitative analysis with software teams, highlighting practical insights and iden-
tifying areas for future research.

In Chapter 6, we revisit our research questions and discuss potential threats to the over-
all validity of this thesis. We conclude with practical recommendations for agile software
organizations and outline promising directions for future research.

17

Factors Affecting On-Time
Delivery in Large-Scale Agile
Development

Late delivery of software projects and cost overruns have been common problems in the soft-
ware industry for decades. Both problems are manifestations of deficiencies in effort estima-
tion during project planning. With software projects being complex socio-technical systems, a
large pool of factors can affect effort estimation and on-time delivery. To identify the most rel-
evant factors and their interactions affecting schedule deviations in large-scale agile software
development, we conduct a mixed-methods case study at ING: two rounds of surveys reveal
a multitude of organizational, people, process, project and technical factors which we then
quantify and statistically model using software repository data from 185 teams. We find that
factors such as requirements refinement, task dependencies, organizational alignment and or-
ganizational politics are perceived to have the greatest impact on on-time delivery, whereas
proxy measures such as project size, number of dependencies, historical delivery performance
and team familiarity can help explain a large degree of schedule deviations. We also discover
hierarchical interactions among factors: organizational factors are perceived to interact with
people factors, which in turn impact technical factors. We compose our findings in the form
of a conceptual framework representing influential factors and their relationships to on-time
delivery. Our results can help practitioners identify and manage delay risks in agile settings,
can inform the design of automated tools to predict schedule overruns and can contribute
towards the development of a relational theory of software project management.

This chapter has been published as E. Kula, E. Greuter, A. van Deursen, and G. Gousios. Factors Affecting On-Time
Delivery in Large-Scale Agile Software Development, IEEE Transactions on Software Engineering [129].

18 2 Factors Affecting On-Time Delivery in Large-Scale Agile Development

ate delivery and cost overruns have been common problems in the software industry
L for decades. On average, software projects run around 30% overtime [2]. This percent-
age does not seem to have decreased since the 1980s [3]. Even though effort estimation
is at the heart of almost all industries, it is especially challenging in the software indus-
try. This is mainly due to the fact that software development is a complex undertaking,
affected by a variety of social and technical factors. The overall perceived success of a
software project depends heavily on meeting the time and cost estimates [9]. Improving
effort estimation is therefore a critical goal for software organizations: it can help compa-
nies reduce delays and improve customer satisfaction, while enabling them to efficiently
allocate resources, reduce costs and optimize delivery [5, 6]. In spite of the availability
of many estimation methods and guidelines [133, 134], on-time delivery in software de-
velopment remains a major challenge. Prior research identified a large number of factors
that may influence the software development effort [17], but which factors have the most
impact is not clear. We lack an understanding of the relationships between these factors
and how they impact on-time delivery.

Effort estimation is also a major challenge in agile software development. Prior work [12]
has found that around half of the agile projects run into effort overruns of 25% or more. In
agile settings, software is incrementally developed through short iterations to enable a fast
response to changing markets and customer demands. Agile projects leverage short-term,
iterative planning in which effort estimates are progressively refined [13]. A particular
challenge involves combining the flexible, short-term agile planning setting with the busi-
ness needs for long term planning of availability of large pieces of functionality (often
referred to as “epics” [15]). Most agile teams heavily rely on experts’ subjective assess-
ment of team- and project-related factors to arrive at an estimate [10, 16]. However, these
factors remain largely unexplored [16]; further analysis is required to investigate influen-
tial factors and how they impact delays in agile projects.

By identifying and investigating influential factors, we can obtain valuable insights
on what data and techniques are needed to become more predictable at delivering soft-
ware in agile settings. An identification of the most influential factors can help software
organizations increase the effectiveness and efficiency of scheduling strategies by concen-
trating measurement and risk management activities directly on those factors that have
the greatest impact on on-time delivery. Such knowledge can also guide future research
on building and evaluating software effort estimation techniques, methods and tools. Fur-
thermore, a deeper understanding of the interactions between influential factors can help
in identifying the root causes of delays, and developing tools and guidelines that can assist
software organizations in improving their on-time delivery performance.

The goal of this paper is to identify the most relevant factors and their interactions that
affect schedule deviations in large-scale agile software development. To do so, we conduct
a case study at ING. The teams at ING work with epics to manage interdependent software
deliveries across multiple teams and iterations. We follow a mixed-methods approach in
which we combine expert- with data-based strategies to derive, confirm and investigate
factors that impact the timeliness of epics. We conduct a survey with 635 software experts
from ING and analyze historic repository data from 185 teams and 2,208 epics to corrobo-
rate the survey findings. We extract proxy measures from repository data that we map to
the perceived influential factors and analyze their importance in schedule deviations.

2.1 Research Method 19

Throughout our study, the following two research questions guide our work:

« RQ1. Factor identification: Which factors are perceived to affect the timeliness of
deliveries (RQ1.1), what is their perceived level of impact (RQ1.2), and what are the
perceived types of interactions between these factors and on-time delivery (RQ1.3)?

« RQ2. Factor validation: How do the perceived influential factors impact schedule
deviation in deliveries?

Our survey results show that requirements refinement, task dependencies, organiza-
tional alignment, organizational politics and the geographic distribution of teams are the
factors that are perceived to have the greatest impact on timely delivery. We find that
factors interact hierarchically: organizational factors interact with people factors, which
in turn impact the technical factors. The technical factors are perceived to have a direct
impact on the timeliness of software delivery. Our data analysis reveals that the project
size, number of task dependencies, historical delivery performance, team familiarity and
developer experience are the most important proxy measures that explain the schedule
deviations in deliveries. By answering the research questions, we create a conceptual
framework representing 25 factors and their interactions that are perceived to affect the
timely delivery of software at ING. The main contributions of this paper are:

« A set of factors and their interactions affecting the timely delivery of software in
large-scale agile development. We order the factors by their relevance.

« A conceptual framework of on-time delivery that represents influential factors and
their interactions. This framework suggests multiple paths for action that may im-
prove the timeliness of software deliveries.

2.1 Research Method

Our research method consists of an exploratory and confirmatory phase. In the exploratory
phase, we developed and distributed a survey to software experts to identify factors that
are perceived to affect the on-time delivery of epics (RQ1.1) and types of factor interac-
tions (RQ1.3). In the confirmatory phase, we applied data triangulation to corroborate the
respondents’ perceptions and to extract more detailed insights into the effects of influen-
tial factors. We conducted a second survey with a different sample of software experts
to order influential factors by their perceived level of impact (RQ1.2), and we performed
regression analysis using repository data to validate the impact of factors (RQ2).

2.1.1 Collecting and Analyzing Survey Data

The main goal of the surveys was to gather the perceptions of software experts at ING on
factors affecting the timeliness of epic deliveries and how much of an impact they have. To
design and execute our surveys, we followed methodological guidelines from Kitchenham
and Pfleeger [135], and Kasunic [136], for survey research in software engineering.

Survey Design
We developed two self-administered online surveys, which were composed of a mix of
closed and open-ended questions. The first survey’s purpose was to identify influential

20 2 Factors Affecting On-Time Delivery in Large-Scale Agile Development

factors and their interactions, and the second survey was used to assess the perceived level
of impact of each of the identified factors from the first survey. The surveys were organized
into two sections: a section aimed at gathering demographic information and a section
targeting the research questions®. We kept the number of survey questions to a minimum
as shorter questionnaires have been found to receive higher response rates [135].

The demographic sections of the surveys consisted of multiple-choice questions on
the respondent’s role, overall experience in software development and experience within
ING. These demographic characteristics are important to assess the representativeness of
participants [136] and they have been shown to influence the reasons given for effort
estimation errors in related work [137]. The research related section of the first survey
contained open-ended questions to gather unbounded and detailed responses on influen-
tial factors and types of factor interactions. For RQ1.1, we asked experts which factors
affect the timeliness of their teams’ epic deliveries. For RQ1.3, we included a follow-up
open-ended question asking how the reported factors influence the timeliness of epic de-
liveries. In the second survey, we asked experts to rate the impact level of each identified
factor from the first survey (RQ1.2). We used four-point Likert scale questions from “no
impact” to “large impact” to get specific responses. We also provided a separate “not ap-
plicable” optional response in case a factor was not relevant to respondents. Here we also
provided respondents with a write-in question to probe for additional factors in case any
new ones might appear; we received 109 responses to that question. We reviewed the re-
sponses manually and found that they were rephrasing one of the 25 factors or identifying
a subcase of one of the factors.

We have taken multiple measures to make the survey questions understandable by the
respondents [135]. We included a brief paragraph on the survey’s start page featuring the
purpose of the survey and an overview of the types of questions presented in each section.
Furthermore, we provided definitions of factors to participants in the second survey. The
first two authors have considerable experience working in the company, and they were
able to explain the factor definitions in vocabulary understood by the participants. To-
gether with the last author, they also made sure that the survey questions were coherent
and consistent [135]. To avoid leading questions and biasing respondents, we phrased and
ordered the questions in a sequential order of activities [136]. The factors in the second
survey were presented in random order to the participants to reduce ordering bias [138].

Survey Validation

After design, the survey instrument should be evaluated to display areas for improve-
ment [135, 136]. We piloted both surveys with 25 randomly selected employees from ING
TECH to refine the survey questions. The pilot versions included an additional open-ended
question at the end of the survey asking respondents for feedback on the survey contents.
The respondents’ feedback allowed us to refine the survey questions. As part of the pilot
run, we received 6 responses (24% response rate) for the first survey and 5 responses (20%
response rate) for the second survey. No reminder emails were sent. The pilot of the first
survey revealed that the wording of the survey question aimed at RQ1.3 was unclear. The
question asked respondents about the types of relationships between factors, which re-
spondents interpreted in different ways (e.g., sign of impact, causality versus correlation,

The final survey instruments can be found in an online replication package [119]

2.1 Research Method 21

direct or indirect link). Since we wanted to collect descriptive information about factor
interactions and do the classification of relationships ourselves, we rephrased it as a more
open-ended question in the final version of the survey. The initial version of the second
survey disclosed that the names of some factors (e.g., task dependencies versus technical
dependencies) were ambiguous to respondents. This prompted us to provide a list of factor
definitions in the final version of the second survey.

Survey Execution and Sampling Strategy

Our target population was composed of the 2850 employees that belong to the 295 devel-
opment teams at ING TECH. All these teams work with epic deliveries and are therefore
relevant for our study. We received access to a mailing list containing all team members,
which became our sampling frame. We were able to identify participants based on their
email address and we had an overview of teams (team names) they belong to. This enabled
us to determine members’ participation and link survey responses to teams’ repository
data for triangulation in RQ2.

As recommended in survey guidelines [135, 136, 139], we performed simple random
sampling to obtain representative samples from our population. For our final surveys, we
excluded the 50 employees solicited in the earlier pilot surveys from our sampling frame.
The final version of the first survey was distributed to 1400 employees (one half of the
population) in October 2019. These employees were sampled uniformly at random across
all teams at ING TECH. We received 298 responses (representing 237 teams), correspond-
ing to a response rate of 21%. A majority (79%) of teams had one respondent, 16% had
two respondents and remaining 5% had three respondents. The final version of the second
survey was distributed to the other half of the population (another 1400 employees) in
November 2019. This second group did not include employees solicited in the first sur-
vey. We obtained 337 responses (representing 241 teams), corresponding to a response
rate of 24%. A majority (72%) of teams had one respondent, 18% had two respondents, 9%
had three respondents and the remaining 1% had four respondents.

As per our sampling plan for the surveys, the participants were invited using a personal
invitation mail featuring the purpose of the survey and how its results can enable us to gain
new knowledge of delay factors in epic deliveries. Participants had a total of two weeks
to participate in the surveys. To follow up on non-responders [135], we sent reminder
emails to those who did not participate yet at the beginning of the second week.

Survey Data Analysis

The data we analyzed in this paper comes exclusively from the responses to the final sur-
veys (i.e., the first survey deployed in October 2019 and the second survey deployed in
November 2019). The “not applicable” responses were omitted from the analysis set. For
the analysis of RQ1.2, we used descriptive statistics to order factors by their perceived
level of impact. For the analysis of RQ1.1 and RQ1.3, we performed inductive coding to
summarize the results of the open-ended questions. Coding samples are provided as ex-
amples in an online replication package [119].

Identifying influential factors. A common approach for transforming qualitative
data into quantitative data is coding [115, 116]. For RQ1.1, we applied inductive cod-
ing (i.e., inductive content analysis) during two integration rounds to derive influential

22 2 Factors Affecting On-Time Delivery in Large-Scale Agile Development

factors from the open-ended survey responses. Each code in our coding scheme repre-
sents an influential factor. We coded by statement and codes continued to emerge till the
end of the process. In the first round, the first and the last author used an online spread-
sheet to code a 10% sample (30 mutually exclusive responses) each. They assigned at least
one and up to four codes to each response. Next, the first and last author met in person
to integrate the obtained codes, meaning that similar codes were combined or merged,
and related ones were generalized or specialized if needed. When new codes emerged,
they were integrated in the set of codes. The first author then applied the integrated set
of codes to 90% of the answers and the last author did this for the remaining 10% of the
responses. In the second round, the two authors had another integration meeting which
resulted into the final set of codes. The final set contained three (13%) more codes than
the set resulting from the first integration round. We computed percent agreement and
Cohen’s kappa [140] to assess inter-coder reliability on the final coding scheme. We mea-
sured substantial agreement between the coders: percent agreement = 86% and k = 0.72.
Then, together, the two authors grouped the factors into the five categories identified in
the work of Chow et al. [9]. The resulting 25 codes and five categories are summarized in
Table 2.1.

Classifying types of factor relationships. For RQ1.3, we analyzed open-ended
survey responses to investigate the perceived types of relationships between influential
factors and on-time delivery. We took the same approach as Jorgensen and Molokken-
Ostvold [137]. We focused on direct, indirect and contributory relationships to make a
distinction between simple, complex and condition-dependent types of interactions be-
tween factors. More discussions on types and interpretations of reasoning models can be
found in the work of Pearl [141]. Possible interpretations of a factor X being a reason for
schedule deviation are:

o There is a direct link between X and schedule deviation (i.e., X is a direct reason
for deviation). We classified a factor as having a direct relationship with on-time
epic delivery if it is explained to be an immediate reason for schedule deviation.
For example, “unmanaged dependencies” is a reason that may immediately lead to
unplanned waiting time and thus delay in an epic.

« There is an indirect relationship between X and schedule deviation (i.e., X leads to
events that, in turn, lead to deviation). We classified a factor as having an indi-
rect relationship with on-time delivery if it is explained to affect schedule deviation
through other factors or events. For example, “lack of organizational trust” may lead
to “errors during handoffs”, which in turn may result in “unmanaged dependencies”.
“Lack of organizational trust” and “errors during handoffs” are both indirect reasons
of different distance to the direct reason “unmanaged dependencies”.

+ The events leading to schedule deviation would have been harmless without X (i.e.,
X is a contributory reason for schedule deviation). We classified a factor as having a
contributory relationship with on-time delivery if it is described as a necessary con-
dition for schedule deviation rather than a direct or indirect reason. Assuming that
“unmanaged dependencies” is a direct reason for schedule deviation, a contributory

2.1 Research Method 23

reason could be a “lack of a dependency management tool”. That is, delays caused
by “unmanaged dependencies” could have been prevented or reduced by effective
dependency management.

For RQ1.3, we applied inductive coding during one integration round to derive a com-
bination of (intervening) factors and their types of relationships to on-time epic delivery.
We classified each reported relationship as a ‘direct’, ‘indirect’ or ‘contributory’ relation-
ship using a separate code. Our interpretation of these relationships was based on the
explanation of the respondent. For indirect and contributory relationships, we also coded
the intervening factors that were mentioned. The first author performed the coding and
classification for all answers. The last author did this for 20% of the answers. The resulting
codes, including the intervening factors that followed from indirect and contributory rela-
tionships, matched with codes that were identified from open-ended responses to RQ1.1.
No more new codes emerged in this process.

To evaluate inter-coder reliability, the first and last author met in person to compare
the types of relationships identified. There were a few borderline cases in which a reported
relationship would fit the indirect category as well as the contributory category. In such
cases we tried to stay close to the formulation of the respondent. We classified a rela-
tionship as a contributory relationship only if an intervening factor was formulated as a
necessary condition for the occurrence of another factor (e.g., using an if-then statement).
If it was not phrased as a conditional statement, then we marked the relationship as an
indirect one. Using Cohen’s kappa [140], we measured substantial agreement between the
coders: x = 0.69 and percent agreement = 83%.

Survey Demographics

As mentioned earlier, the surveys contained a section aimed at gathering demographic
information of the respondents, namely, their role within ING, total work experience at
ING, total work experience in the software industry. A majority (66%) of the respondents
self-identified as software engineer, while the rest identified themselves as manager or
team lead (19%), product owner (7%), software architect (6%) or other (2%). The experience
of the respondents at ING ranged from one year (24%) to more than 20 years (12%) with
a median of between one and five years (41%). The experience of the respondents in the
software industry ranged from one year (4%) to more than 20 years (24%) with a median
of between 10 and 20 years (32%).

2.1.2 Collecting and Analyzing Repository Data

To quantitatively assess the impact of the perceived influential factors presented in Ta-
ble 2.1, we extracted proxy measures from multiple data sources at ING that capture the
respondents’ intended meaning of the factors. In this section, we describe the datasets
used and the linking process that we applied to the datasets. The primary goal of our
regression model is to explain, rather than predict; we want to understand which proxy
variables have a meaningful relationship with schedule deviations in epics. Therefore, we
collected proxy variables that can be measured before and after an epic has been delivered.
The mapping of proxy measures to perceived influential factors is shown in Table 2.3 and
will be explained in Section 2.2.4.

24 2 Factors Affecting On-Time Delivery in Large-Scale Agile Development

Backlog Management Data

We extracted log data from ServiceNow, a backlog management tool used by a majority
of teams at ING TECH.? The dataset consists of 3,771 epics delivered by 273 teams at ING
TECH between January 01, 2017 and December 31, 2019. The dataset contains the follow-
ing variables for epics: identification number, creation date, planned start date, actual start
date, planned delivery date, actual delivery date and a textual description. We acknowledge
that the planned delivery date of a delivery might change before actual development of
the delivery is started. Therefore, we consider only the planned delivery date as scheduled
on the day that the development phase is started. We provide an overview of all variables
and their descriptions in an online replication package [119].

Code Quality Measurements

We extracted code quality metrics from SonarQube, a static code analysis tool in the soft-
ware delivery pipeline at ING.? It is being used by most of the development teams at ING
TECH. The tool offers a wide range of metrics related to code quality and unit tests exe-
cution. We extracted snapshots of SonarQube data of 190 teams that actively use the tool
as part of their software delivery pipeline. Each snapshot is linked to a delivery in Servi-
ceNow based on team ID and time stamp of when the measurement was done in SonarQube.
If the time stamp of a SonarQube snapshot falls between the actual start date and actual
end date of an epic in ServiceNow, the snapshot is considered to belong to the correspond-
ing epic. Although SonarQube offers a wide range of metrics, we only consider the subset
of metrics that are collected by all teams at ING TECH. These metrics allow us to measure
and compare the code quality of epics in our analysis set. For each snapshot, we extracted
the metrics that teams at ING TECH measure to assess their coding performance:

« Coding standard violations: the number of times the source code violates a coding
rule.

+ Cyclomatic code complexity: measured average cyclomatic complexity of all files
contained in a snapshot.

« Branch coverage: the average coverage by tests of branches in all files contained in
a snapshot.

Failed test ratio: the number of failed tests divided by the total number of tests
executed during the development phase of an epic.

« Comment density: the percentage of comment lines in the source code.

To account for differences in project size, we divided the metrics Coding standard vio-
lations and Cyclomatic code complexity by Source lines of code: the total number of lines of
source code contained in a snapshot.

*https://www.servicenow.com/
*https://www.sonarqube.org/

2.1 Research Method 25

Data Cleaning Process
To eliminate noise and missing values, we keep only the epics that meet the following
conditions:

1. The planned delivery date and actual delivery date have been set.

2. The epic has been assigned to a team or group of teams.
3. The description field has been set.

4. The epic has been completed (i.e., if its status is set to completed).

We also removed outliers that exceed two standard deviations from the mean. For ex-
ample, we removed six epics that had lasted longer than two years and that were, therefore,
not representative for the rest of the dataset. The original dataset contained 3,771 epics.
After linking and cleaning the data, the final dataset decreased to 2,208 epics from 185
teams for which all data are present. This group of teams overlaps with a majority (68%)
of the teams that responded to the surveys.

Schedule Deviation Measures

There are a range of error measures used in effort estimation. Most of them are based on
the Absolute Error (AE). Mean of Magnitude of Relative Error and Prediction at level 1 [142]
have also been used in effort estimation. However, a number of studies [143-145] have
found that those measures bias towards underestimation and are not stable when com-
paring effort estimation models. The Balanced Relative Error (BRE) [146] has been recom-
mended as an alternative estimation accuracy measure. BRE is defined as:

Act - Est

If Act - Est =0,thenBRE= —M8 ——
Planned duration

Act - Est

If Act- Est<0,thenBRE= —MM ——
Actual duration

where Act is the actual delivery date and Est is the planned delivery date of an epic
(as reported on the start date of the development phase). Act — Est calculates the dif-
ference in days between the actual delivery date and planned delivery date: a positive
difference corresponds to underestimation (Act is later than Est), while a negative value
corresponds to overestimation (Act is before Est). Actual duration is the time interval (in
days) between the actual delivery date and start date of the development phase of an epic.
Planned duration is the time interval (in days) between the planned delivery date and start
date of the development phase of an epic. We assess the relative and absolute schedule
deviation in epics using BRE and AE (measured in days), respectively.

Regression Analysis

A common approach for measuring the impact of a number of factors on estimation error
is to use regression analysis. For RQ2, we used regression analysis to quantitatively assess
the impact of combinations of perceived influential factors on the schedule deviation in
epics. We extracted 35 proxy measures from backlog management data and code quality

26 2 Factors Affecting On-Time Delivery in Large-Scale Agile Development

measurements that can be mapped to the perceived influential factors. The proxy mea-
sures and their mapping to the influential factors are given in Table 2.3. An analysis of
the proxy data revealed that it does not meet the assumptions for linear regression. Con-
sidering the need for an interpretable model in our explanatory study, we decided to go
for a non-linear, spline-based regression modeling approach. We applied MARS [147]; a
multivariate, piecewise regression technique that can be used to model complex relation-
ships between a set of predictors and a dependent variable. We used the proxy measures
as predictors and the measured BRE as dependent variable. MARS divides the space of
predictors into multiple knots, i.e., the points where the behavior of the modeled function
changes. This notion of knots makes MARS particularly suitable for problems with high
input dimensions. The optimal MARS model is built using a backwards elimination fea-
ture selection routine that looks at reductions in the generalized cross-validation (GCV)
criterion as each predictor is added to the model. This procedure makes it possible to rank
variables in terms of their contribution to the GCV. We used the default MARS setting
provided by the EARTH package in R.

2.2 Results

This section presents results on factors affecting delays in epic deliveries, derived from
survey responses and repository data at ING. Example quotes from the survey are marked
with a [rX] notation, in which X refers to the corresponding respondent’s identification
number. The perceived influential factors resulting from our manual coding process are un-

(RQ1) Factor Identification
2.2.1 (RQ1.1) Perceived Influential Factors

From the open-ended survey responses, we identified 25 factors that are perceived to affect
the on-time delivery of epic deliveries. A list of these factors is shown in the left-hand
column of Table 2.1. The factors are organized along the five dimensions identified in the
work of Chow et al. [9]; organizational, process, project, people and technical.

Organizational Factors

This category of factors concerns the uncertainty surrounding the organizational environ-
ment in which an epic delivery takes place. Many respondents report the importance of
organizational alignment for the on-time delivery of epics. A shared vision and mission
are essential to ensure alignment between the implementation of an epic and its business
strategy: “A clear management vision creates focus and helps us align on business priorities
and timelines across the company.” [r216]

Another factor that is perceived to contribute to timely delivery is strong executive
support. This includes the active involvement of management in strategy execution and
the commitment of required resources. Respondent 285 explains that: “It motivates us if
management sufficiently participates in the preparation and performance review of delivery
performance’.

In a related manner, respondents report delays related to organizational politics. Bu-
reaucratic structures in the organization can hinder on-time delivery due to side steering:

2.2 Results 27

“Management should trust teams to come up with realistic timelines instead of pushing dead-
lines. This will prevent last-minute side steering and ad-hoc work.” [r39] Other factors in this
category that are perceived to hamper the on-time delivery of epics are the geographic
distribution of teams and a lack of organizational stability (i.e., impact of organizational
restructuring).

People Factors

People factors refer to qualities associated with a software development team that can
affect the timeliness of deliveries. Factors that are perceived to contribute to the on-time
delivery of epics are team stability (i.e., low team member turnover), strong skills and
knowledge, team familiarity (i.e., the amount of experience individuals have working with
one another) and team commitment to on-time delivery (i.e., motivation to deliver on-
time). Teams that are more stable, skilled, familiar and committed to delivering epics
on-time are perceived to deliver more often on-time. Moreover, respondents point to the
importance of effective communication between teams, management and customers when
it comes to technical problems and project delays.

Process Factors

This category of factors refers to the effectiveness and maturity of a software development
team’s way of working. The overall top mentioned factor is requirements refinement,
which refers to the process of defining epics and dividing them into user stories. Missing
or lacking details in the requirements is one of the main reasons for delay: “Most of the time
when we do not make the deadline, the team missed important information during refinement,
which surfaced during the sprint.” [r123] Here respondents also report the importance of
frequent user involvement to manage user expectations and avoid delays caused by scope
creep.

Another prominent factor featured in this category is regular delivery. Respondents
explain the importance of having a short cadence for on-time delivery: teams that regu-
larly deliver production ready software are perceived to be more predictable. Respondent
143 explains that “Delivering software in shorter cycles enables our team to manage more
complex projects and better predict our delivery capacity”. Some respondents indicate to
feel more focused and effective at work when they limit the amount of work in progress
at any given time.

Another important factor in this category is agile maturity, which stands for the abil-
ity of a team to become more agile over time. Respondents explain that they are able to
improve their agility, and thereby, on-time delivery, over time through experience. Re-
spondent 163 states that “It helps to hold Scrum retrospectives and actually following up on
their outcome. This allows teams to come up with ways to avoid, mitigate, or better handle
impediments and other causes that impact delivery”.

Technical Factors

The technical category represents factors related to the quality of the source code artifact,
and the effectiveness of technology and tools used to produce that artifact. Technical fac-
tors that are perceived to hamper timely delivery are poor code documentation, lack of
code quality, bugs or incidents and insufficient testing. Well-defined coding standards are
perceived to make teams more predictable in their deliveries: “Higher quality standards

28 2 Factors Affecting On-Time Delivery in Large-Scale Agile Development

will result in less incidents and less time spent on code refactoring in the future. This will,
in turn, make our team more productive and predictable.” [r334] Regarding testing, respon-
dents mention to often fall behind schedule when preparing and executing time/resource-
intensive types of tests, such as integration tests and performance tests. Such tests can lead
to delays due to delayed availability of required infrastructure, unidentified dependencies
and late identification of defects.

Another factor that is perceived to delay epic deliveries is a specific type of depen-
dency — technical dependencies. Technical dependencies can occur among different soft-
ware artifacts, e.g. source-code, architecture, hardware and tools. Teams at ING work with
project-specific repositories and share codebases across teams within one application. As
a result, teams at ING are hampered by source code dependencies across projects. More-
over, respondents perceive to be delayed by the unavailability or instability of technology
and tools used for software development and software testing (unreliable infrastructure).

Project Factors

This category represents the inherent complexity and uncertainty of a software project.
Task dependencies constitute a top mentioned factor that is perceived to delay epic de-
liveries. Task dependencies refer to dependencies among activities in the workflow of
collaborating software development teams. Issues such as inconsistent schedules and un-
aligned priorities can cause delays for teams that collaborate in the same delivery chain:
“Task dependencies occur when teams are not end-to-end responsible for bringing software to
production. They create the need for a significant amount of hand-offs.” [r79]

Our respondents report several project characteristics that can affect on-time delivery:
project size (i.e., the size of software, the size of development teams and project duration),
degree of project newness (i.e., the innovative nature of a project) and project security
(i-e., whether the project needs to go through resource-intensive security tests). Regarding
the latter, respondents explain that business- and safety-critical applications are generally
built and tested to much higher security standards, which may lead to unexpected delays
in the quality assurance and security testing process.

2.2.2 (RQ1.2) Perceived Level of Impact

For each factor, respondents were asked to rate the level of impact using Likert-type
choices of “no impact”, “small impact”, “moderate impact” and “large impact”. The right-
hand column in Table 2.1 shows the perceived level of impact of the factors as rated by
the survey respondents. The Top 2 percentage indicates the percentage of responses that
rated the factor as having “large impact” or “moderate impact”. The Order represents the
order of factors by the weighted average of their impact level scores. Close to 60% of the
respondents felt the factors are all moderately influencing their on-time delivery. Task de-
pendencies, requirements refinement, organizational alignment, technical dependencies
and regular delivery are the top 5 cited factors. They received more than 86% responses
in the large and moderate impact category. Based on the weighted average of impact
scores, requirements refinement (order #1), task dependencies (order #2), organizational
alignment (order #3), organizational politics (order #4) and geographic distribution (or-
der #5) are the top 5 rated factors. They received a weighted average impact score of 3.38
or higher. The impacts of the top 15 rated factors are perceived to have large or moderate

2.2 Results 29

Table 2.1: Overview of 25 factors that are perceived to affect the on-time delivery of epics.
The factors are organized along five dimensions: organizational, people, process, technical
and project. Percentage of respondents is the percentage of survey respondents that men-
tioned the corresponding factor. The factors’ Level of impact on delays was rated as 4 (large
impact), 3 (moderate impact), 2 (small impact) and 1 (no impact). Top 2 is the percentage
of respondents that answered 4 or 3 for Impact level. WA is the weighted average of the
Likert scale scores for Impact level. The factors’ Order numbers are based on the ordering
of the weighted averages.

Dimension Factor (RQ1.1) f::; Level of impact (RQ1.2)
Dislt r2ib3u iion Top2 WA Order
Organization Organizational alignment 15% m 90% 3.47 3
Organizational politics 2% ‘j‘ 86% 3.41 4
Geographic distribution 2% m 83% 3.38 5
Executive support 2% m 77% 3.18 14
Organizational stability 4% m 66% 291 20
Process Requirements refinement 25% m 91% 3.55 1
Agile maturity 8% |j_l| 84% 3.34 7
Regular delivery 22% m 87% 3.32 8
Work in progress 6% m 75% 3.05 16
User involvement 9% m 71% 2.95 19
Project Task dependencies 16% ‘j 92% 3.49 2
Project size 9% m 84% 3.25 11
Project newness 3% m 83% 3.22 13
Project security 4% m 65% 2.83 22
People Team stability 4% m 85% 3.30 9
Skills and knowledge 10% m 83% 3.26 10
Team familiarity 6% m 76% 3.14 15
Team commitment 4% m 69% 2.97 18
Communication 3% m 47% 2.49 25
Technical Technical dependencies 19% m 89% 3.36 6
Poor code documentation 3% m 82% 3.23 12
Unreliable infrastructure 7% m 70% 3.03 17
Bugs or incidents 6% m 68% 2.89 21
Lack of code quality 3% m 65% 2.82 23

Insufficient testing 5% m 62% 2.73 24

30 2 Factors Affecting On-Time Delivery in Large-Scale Agile Development

impact by over 76% of the respondents. Communication (order #25) has lowest perceived
impact but 47% of the respondents still rated it to have large or moderate impact.

Further analysis shows that respondents were quite consistent in their high ratings of
most factors. The ratings for all factors have a standard deviation (SD) lower than 0.80,
except for unreliable infrastructure (SD = 1.01), project security (SD = 0.99), lack of code
quality (SD = 0.97), insufficient testing (SD = 0.96) and team commitment (SD = 0.96).

2.2.3 (RQ1.3) Perceived Types of Factor Relationships

We investigated open-ended survey responses to identify direct, indirect and contributory
relationships between 25 perceived influential factors (from Table 2.1) and on-time epic
delivery. As explained in Section 2.1.1, we focused on three types of relationships to dis-
tinguish between simple, complex and condition-dependent types of interactions between
factors. An overview of the perceived types of relationships between factors and on-time
epic delivery is shown in Table 2.2. Respondents mentioned three ways in which factors
can have a direct impact on the timeliness of epics; factors can lead to unplanned waiting
time (WT), necessary rework (NR) or changes in team effectiveness (TE). These are
orthogonal types of effects. WT and NR are described to lead to delays, while increased
(perceived) TE (i.e., a team’s capacity to achieve its goals and objectives) is reported to
help with on-time delivery. Table 2.2 shows the relevant type (NR, WT or TE) for each
perceived direct relationship.

We found that the organizational factors, people factors and technical factors are
perceived to interact hierarchically. The organizational factors have an impact on the
people factors, which in turn affect the technical factors. From the organizational factors,
executive support is perceived to have an indirect impact on timely delivery through team
stability and team commitment. Respondents believe that strong executive support leads
to more stable and highly motivated teams. Geographic distribution is associated with
communication challenges and, thereby, reduced team effectiveness and delay. From the
people factors, team stability is observed to be positively related to skills and knowledge
and team commitment. Respondents explain that stable teams are more likely to develop
competences over time and to take ownership of their work. Team commitment and com-
munication are perceived to increase team effectiveness, and thereby, help with timely
delivery. Skills and knowledge is reported to have an indirect impact through bugs or
incidents and lack of code quality. Respondents point out that teams with more experi-
enced members are faster at finding faults in software, and resolving unforeseen bugs and
incidents. From the technical category, all factors are perceived to have a direct impact on
on-time epic delivery. Respondents explain that problems related to technical dependen-
cies, lack of code quality, bugs or incidents and insufficient testing can introduce necessary
rework. Technical dependencies are also perceived to have an indirect impact on on-time
delivery through lack of code quality. Respondents indicate that technical dependencies
can introduce dependency problems, resulting in more complex and less maintainable
source code.

In general, process factors are not perceived to relate to factors from other categories.
One exception is the link between requirements refinement and task dependencies: re-
spondents believe that an effective refinement process should reveal task dependencies,
thereby enabling teams to minimize the likelihood of delays caused by dependencies.

31

2.2 Results

(28vd 1xau uo panuijuoy))

%¢ ssaumau 30901
%1 ‘YUauIounaI syuawaInbay
%1 ‘Surys9) JustoLynsuy
%1 ‘serouapuadap yse[,
%72 “UOTJeITUNUITO))
%¢ ‘serouapuadop [eoruyd],
%1 %¢ ‘ssaxdoxd ur y1op azrs 109[o1g
%1 %ST sarouapuadap yse], 19foxg
%z %/, ‘JUSUIAULI SjuauIaImbay JUSUIDA[OAUT I3S()
%1 %G ssaxdoxd ur yropm
%1 %/, YUAUWIdUTJAI sjuauraImbay Ajmyew oISy
%2 %0g ‘ssoxdoxd ur y10p AI9AT[9p TR[NGDY
%0¢ ‘setouapuadap yse], %Gg JuswaunaI sjuawaImbay $$3201]
%1 %€ ATIqe)s [euonjeziuesIQ
%1 ‘AI[Iqe)s Wea],
%2 ‘JUSW}TWIUIOD UIes], jroddns aAnnoaxyg
%g “UOT}RITUNUIWIO)) uornqrusip aryderdoan
%2 sonjod Teuonjeziue3iQ
%e %71 ‘sorouspuadap yseL juowude [euoneziuediy uoryezruesiQ
drysuonerax 4L IM AN
J1dxs oN ¥ Aronqrnuo) <« 39311pU] l poxiq 10308 UOTSUUII(

-diysuonjea1 Surpuodsaliod ot} pauonuaul jey} sasuodsar £oaIns Jo sagejuaorad
a1y} areorpur sagejuadtad YT, "3[qe) 9Y) UT PIUOT)UI JTe $10J98] SUTUSAIIIUT ‘SHUI] AI0JNGLIIUOD PUR J0IIPUT I0,] (F]) SSaUA11II2 wpa]
UT SUOTJBIASD IO (I M) awil) Suigipm pauuerdun (YN) yiomal Livssaoau 0} ped] ued A3} ATOAT[OP SWI}-UO YIIMm sAIYSUOIIE[aI JIIP JO
sad£1 sa1y) ARy ued s10308] “diysuo1ivja. 1101]dxa ou Inq ‘pauonuULW 10 x YUI[A40inqriuo) ‘«— diysuonera1 paapuy ©| diysuonerar
12417 (£ 10Y) SoLIAIPP d1dd Jo ssaurauI 3y} pue SI03d€] [BIIUIN[UIl PaAIddIad weamiaq sdrysuorie[ar paarediad jo sadA], :z°z d[qel,

2 Factors Affecting On-Time Delivery in Large-Scale Agile Development

32

%1 ‘SjuepIoul 10 sgng %y 8urysa) JuarIyNSU]
%€ AyTenb apoo jo yoe
%1 %S sjuaprout 10 sSng
%1 %9 2INJONI)SBIJUT [RI[IU[)
%€ UOT}e}UWNIOP JPOI 100
%9 ‘AyrTenb apoo Jo o] %ET sauapuadap [eoruyoa], [eoruyPay,
%2 ‘serouapuadop yse[, %1 UOT}edTUNWWOo))
%1 %€ JUSUITWITIOD Wed],
%2 %% “UOT)RITUNUILIO)) AjLrerrurey ureag,
%% ‘sjuapIOUI J0 sIng
%1 %9 ‘Ay1Tenb apoo Jo o] 93pamowy] pue S[{S
%T ‘JUSUITUILIOD WIE],
%1 %¢ ‘93pa[mow] pue S[S ATIqe)s wreag, ardoag
%1 ‘Ayrenb apod jo yoeT
%I %¢ 3U1)s9) JUATIIPNSU] Ajumoas 309fo1g
drysuonjefax dL IM AN
jIdxs oN x Aronqrnuo) «— 19201pu] | paxq I10)9e] UOTSUIWI(]

(28pd sno1aaud wouf panuiguo))

2.2 Results 33

Moreover, the most often reported relationship is the direct impact of requirements
refinement on on-time epic delivery. Respondents report that refinement can prevent
rework that is caused by unclear requirements. Regular delivery is perceived to lead to
more consistency in the amount of work in progress, which in turn has a positive impact
on team effectiveness and timely delivery.

The project factors are reported to have direct, indirect and contributory relation-
ships with on-time epic delivery. Unresolved task dependencies are perceived to immedi-
ately result in delays through hand-offs and waiting times between dependent teams. Or-
ganizational alignment and communication are perceived to contribute negatively to the
relationship between task dependencies and on-time epic delivery. Respondents explain
that task dependencies can only stay unresolved and lead to delays in environments char-
acterized by misaligned priorities and communication issues. Project size is perceived to
be linked with factors across all dimensions. Larger epics are associated with more depen-
dencies, parallel work, communication overhead, and increased testing and refinement
effort. Innovative epics (project newness) are reported to involve time-intensive explo-
ration activities and to be hampered by unforeseen obstacles, which can decrease team
effectiveness and lead to delays. A higher level of project security is perceived to con-
tribute positively to delays due to rework introduced by insufficient testing and lack of
code quality.

Key findings from RQ1: We identified 25 factors that are perceived to affect the
timeliness of epic deliveries. Requirements refinement, task dependencies, organi-
zational alignment, organizational politics and the geographic distribution of teams
are perceived to have the greatest impact on on-time epic delivery. The factors in-
teract hierarchically; the organizational factors interact with people factors, which in
turn impact the technical factors. The technical factors are perceived to have a direct
impact on timely epic delivery.

2.2.4 Studied Proxy Measures

We formulate 35 proxy measures to map to the perceived influential factors. We extract
the proxy measures from the datasets described in Section 2.1.2 to fit a regression model
to quantitatively assess the impact of the perceived influential factors. Table 2.3 provides
definitions for the proxy measures and their mapping to the perceived factors. Some prox-
ies are self-descriptive; others are explained below. The proxies of the technical factors are
described in Section 2.1.2. We take the median across teams or individual team members
to produce measures that are representative of the group as a whole. For individual data,
such as developer age, we take the median of team members working on an epic. For team
data, such as team stability, we take the median of teams working on an epic.

We were not able to measure proxies for organizational alignment, organizational pol-
itics, executive support, communication quality, and technical dependencies. ING does
not collect quantitative data on these factors. It was also not possible to collect such data
ex post facto.

34

2 Factors Affecting On-Time Delivery in Large-Scale Agile Development

Table 2.3: Mapping of proxy measures to the perceived influential factors (from Table 2.1).
The Description column provides a description of the proxy measure.

Perceived factor

Proxy measure

Description

Task dependencies

out-degree

Number of outgoing dependencies of an
epic on other epics

Geographic distribution

global-distance

The maximum Global Distance Metric [148]
(combining geographical, temporal, cul-
tural distance) measured across teams
working on an epic

Organizational stability

nr-changed-leads

Number of changed tribe leads during the
current epic and previous epic

Team stability stability-ratio Median of the ratio of team members that
did not change during the current epic and
previous epic

Skills and knowledge dev-age-team Median of the number of years the devel-

dev-age-ing

dev-seniority

opers working on an epic have been part
of their team

Median of the number of years the devel-
opers working on an epic have been work-
ing at ING

Number of senior developers working on
an epic

Team familiarity

team-existence

Median of the number of years teams have
existed in their current composition of
team members

Team commitment

hist-performance

Median of the ratio of on-time delivered
epics over all teams working on an epic

Requirements refinement

nr-updates

state-ready

Number of times the epic’s description
field was updated before the start of the de-
velopment phase

Whether refinement of an epic was com-
pleted before the start of its planning (bi-
nary)

Regular delivery cycle-time Sprint duration of teams working on an
epic
deviation Median relative standard deviation from
the regular cycle time during an epic
Agile maturity team-point Median of the total number of story points
delivered by teams so far
velocity Median of the number of delivered story

points per sprint during the current epic

(Continued on next page)

2.2 Results

35

(Continued from previous page)

Perceived factor

Proxy measure

Description

Work in progress

parallel-epics
dev-workload-stories

dev-workload-points

Median of the number of other epics that
teams worked on simultaneously

Median of the number of stories assigned
to a developer per sprint

Median of the number of story points as-
signed to a developer per sprint

User involvement

acc-criteria

Whether acceptance criteria are specified
for an epic (binary)

Poor code documentation

comment-density

The comment density measured at the start
of an epic

Unreliable infrastructure

env-incidents

Number of environmental incidents that
occurred during the development phase of
an epic

Bugs or incidents

nr-incidents

nr-unplanned-stories

Number of incidents that occurred during
the development phase of an epic
Number of unplanned stories related to
bug fixes or incidents that were added after
the start of an epic’s development phase

Lack of code quality

coding-violations

code-complexity

Number of coding standard violations mea-
sured at the start of an epic

The cyclomatic code complexity measured
at the start of an epic

Insufficient testing

branch-coverage

failed-test-ratio

The branch coverage measured at the start
of an epic

Number of tests that failed during the de-
velopment phase of an epic

Project size nr-stories Number of planned stories assigned to an
epic
nr-sprints Number of sprints assigned to an epic
nr-points Total number of planned story points as-
signed to an epic
nr-teams Number of teams working on an epic
team-size Median team size
loc Total source lines of code measured at the
start of an epic
Project newness novelty Whether an epic contributes to the com-

pany’s business transformation ambition

(binary)

Project security

security-level

Whether an epic needs to pass a resource-
intensive security testing process (binary)

(Continued on next page)

36 2 Factors Affecting On-Time Delivery in Large-Scale Agile Development

(Continued from previous page)

Perceived factor Proxy measure Description

Organizational politics

Organizational alignment

Executive support No data available
Communication

Technical dependencies

Motivation for Mapping

Organizational factors: To quantify the global distance between teams, we calculate global-
distance based on the Global Distance Metric proposed in related work [148]. We calculate

the metric for pair-wise combinations of teams and take the maximum value. To assess
organizational stability, we calculate nr-changed-leads; this has been shown to influence

to determine whether the ‘status’ field of an epic was set to ‘refinement ready’ before the
start of its planning phase. The intuition here is that epics that are not clearly defined will
miss important information that is needed for planning and that could potentially result in
delay. We also calculate nr-updates; the intuition here is that problematic epics will raise

user involvement in the definition of an epic. The backlog management data contains a
special ‘acceptance criteria’ field that indicates whether teams consulted their customer(s)
to define acceptance criteria.

Project factors: We quantify task dependencies as the outgoing degree (out-degree) of
dependencies of an epic; this has been shown to predict delay in related work [21]. To
assess project newness, we determine the novelty of an epic based on a special ‘business
goal’ field in backlog management data. This field indicates whether an epic contributes to
a ‘business transformation’, ‘business continuity’ or ‘compliance-related obligation’. Epics
that contribute to a business transformation are marked as novel, as they introduce signif-
icant change. To measure project security, we determine security-level, which indicates

whether an epics requires a mandatory, resource-intensive security testing procedure be-
fore deployment.

an epic, we retrieve the expertise levels of developers as specified in backlog management
data. At ING, developer expertise is evaluated using the five-stage Dreyfus model [150],
which classifies individuals based on their experience in the software industry. Accord-
ing to this model, we identify developers with a Dreyfus skill level of 3 (‘competent’) or
higher as senior. To assess a team’s overall commitment to on-time delivery, we com-
demonstrated that team commitment is positively correlated with team performance and
estimation accuracy in software projects [97, 151-153].

2.2 Results

37

Table 2.4: The MARS model for the BRE values of epic deliveries (RQ2). Adjusted R?: 0.672.
The variables in the models are ordered by importance (see Figure 2.1).

Beta factor Basis function Coefficient Relationship
BFO 0.1014

BF1 Max(0, 8 - nr-sprints) -0.0142 /
BF2 Max(0, nr-sprints - 8) 0.0339

BF3 Max(0, 4 - out-degree) -0.0138 /
BF4 Max(0, out-degree - 4) 0.0451

BF5 Max(0, 0.61 - hist-performance) 0.1843 \
BF6 Max(0, hist-performance - 0.61) -0.2643

BF7 Max(0, 2.66 - dev-age-ing) 0.0984 L
BF38 Max(0, 0.93 - team-existence) 0.0242 \
BF9 Max(0, team-existence - 0.93) -0.0099

BF10 Max(0, 5 - team-size) -0.0066 /
BF11 Max(0, team-size - 5) 0.0248

BF12 Max(0, security-level - 0.85) 0.1288 J
BF13 Max(0, 8 - nr-unplanned-stories) -0.0043 /
BF14 Max(0, nr-unplanned-stories - 8) 0.0138

BF15 Max(0, changed-leads - 2) 0.0344 /
BF16 Max(0, 0.74 - stability-ratio) 0.3091 \
BF17 Max(0, 19 - nr-stories) -0.0038 /
BF18 Max(0, nr-stories - 19) 0.0105

BF19 Max(0, nr-incidents - 10) 0.0145 /
BF20 Max(0, dev-workload-points - 12) 0.0129 /

38 2 Factors Affecting On-Time Delivery in Large-Scale Agile Development

2.2.5 (RQ2) Factor Validation

How do perceived influential factors impact schedule deviation in
epic deliveries?

To answer this research question, we applied MARS to quantitatively assess the impact of
combinations of proxy measures on the BRE values in epic deliveries. Table 2.4 presents
the optimal MARS model for BRE values based on all proxy measures presented in Ta-
ble 2.3. The columns show, from left to right, the beta factor coefficients f,, denoted as
BF,,, the basis functions selected as significant covariates in the model, the coefficient
values estimated and a visualization of the relationship between the independent variable
and BRE value. The value of the beta factor implies the magnitude of effect of the ba-
sis function (i.e., variable effect) on the BRE value. For the effect of each basis function,
max(0,x - t) is equal to (x - t) when x is greater than ¢t (the knot value); otherwise the
basis function is equal to zero.

As shown in Table 2.4, the MARS model contains 20 basis functions and 13 proxy
measures. The selected proxy measures represent all five of the factor dimensions. They
are effective in explaining 67% of the variation in the BRE values of epic deliveries (ad-
justed R?: 0.672.). Figure 2.1 provides a ranking of the proxy measures by order of impor-
tance. Proxies that have no impact on BRE are not shown. The importance is calculated as
the relative importance of proxies in terms of reductions in the GCV estimate of the predic-
tion error as each proxy measure is included. From this figure, we observe that nr-sprints,

est impact on schedule deviation in epics. Their importance values range from 15% to 21%.

Factors associated with delay. These factors show a rising relationship in the right-
most column of Table 2.4. From Table 2.4, beta factors BF1 and BF2 capture the nonlinear
delay effect of nr-sprints, the most important variable in the MARS model. The number
of sprints in an epic is positively related to BRE values with a knot at t = 8. The effect of
nr-sprints can be explained as follows. The delays in epics tend to increase with a higher
number of sprints. If an epic has fewer than 8 sprints, schedule deviation increases by
0.0142 per sprint (indicated by BF1). If sprints exceed 8, then deviation rises faster by

0.0339 per sprint (indicated by BF2). Other proxy measures that contribute to delay are

itive relationship with BRE with a single knot. This indicates that delays increase with
larger teams and with more outgoing dependencies, unplanned stories and planned sto-
can also contribute to delays: they show a right-sided, positive relationship with BRE
with a single knot. This means that when these proxies exceed their corresponding knot
value, epic delays increase. For example, the beta factor BF15 shows the nonlinear effect of
fewer than two times during the current and previous epics, it has a negligible effect on
BRE values (indicated by BF0). However, if the number of changed leads exceeds two, BRE
increases by 0.0344 per additional change. Similarly, if security-level is above 0.85, BRE

security testing have BRE values 0.1288 higher than those that do not.

2.2 Results 39

Factors associated with on-time delivery. These factors show a downward relation-
ship in the rightmost column of Table 2.4. As indicated by BF5-9 and BF16, the proxies

livery of epics. The delay in epics tends to decrease for teams that were less often involved

with delay epics in the past and teams that have existed longer in their current composi-
tion. The delay can also decrease with a higher developer experience at ING and higher

team stability up to the corresponding knot values.

Absolute deviation. Further analysis of the absolute deviations in epics showed that
an overlapping set of 10 variables effectively explains 61% of the variation in the AE values.
The proxy measure nr-teams emerged as statistically significant, while nr-unplanned-stories,

have the greatest explanatory power for absolute deviation.

Key findings from RQ2: A set of 13 proxy measures is effective in explaining 67% of
the variation in the BRE values of epics. The project size, number of task dependencies,
historical delivery performance, team familiarity and developer experience at ING
have the greatest explanatory power for schedule deviations in epics.

@
(9]
<

‘nr-sprints’

“out-degree’™

“hist-performance’™
‘dev-age-ing™
“team-existence’™
“team-size’™-
“security-level-
‘nr-unplanned-stories ™
‘nr-changed-leads’™
“stability-ratio™
"nr-stories™
‘nr-incidents’-

“dev-workload-points™

N
o

10 15
Importance

o
o

Figure 2.1: Importance of proxy measures in MARS model for BRE

40 2 Factors Affecting On-Time Delivery in Large-Scale Agile Development

2.3 A Conceptual Framework of On-Time Delivery

We organized the findings from our survey and regression analysis into a conceptual frame-
work, presented in Figure 2.2. The framework captures the 25 perceived influential factors
(from Table 2.1) and how they relate to on-time delivery. The connections between factors
are derived from the reported types of relationships in Table 2.2. The directions are derived
from the descriptions of factors in Section 2.2.1 and the relationships in Section 2.2.3.

Practitioners can use our conceptual framework to identify and manage the risks as-
sociated with on-time software delivery. For example, in our regression model, historical
delivery performance is one of the most important proxy measures that affect schedule
deviations in epics. Epics assigned to teams having a high percentage of delayed epics are
at a high risk of being delayed. We recommend project managers to identify the teams
that are involved with many delayed epics in the past, and consider allocating more time
for their work or training them to successfully estimate effort and deliver on-time.

Our study also provides practitioners with a comprehensive list of factors and proxy
measures that should be collected and analyzed to derive useful models that can be ap-
plied to improve on-time delivery. An assessment of the most significant factors would be
a good starting point for further exploring influential factors in other settings. By weigh-
ing and analyzing the qualitative and quantitative attributes of factors, practitioners can
choose the most important factors that influence their on-time delivery. Moreover, our
analysis shows that expert- and data-based selection methods identified different (only
partially overlapping) sets of relevant factors. Therefore, we recommend software practi-
tioners to combine selection methods to extract more detailed insights and gain a better
understanding of their software development processes.

The design of an effective strategy to improve on-time delivery must recognize the re-
lationships between influential factors. The relationships in our conceptual framework are
operationalized by reported relationships. We can therefore not reason about causal links
between factors. However, our framework does enable us to form hypotheses that could
lead to actionable insights and may suggest corrective actions to address the root causes
of delay in similar development contexts. Our results suggest that addressing factors that
have a direct relationship with on-time delivery should directly lead to an improvement
in on-time delivery. For example, our survey respondents believe that a lack of code qual-
ity leads to necessary rework, and thereby, delay in epics. We therefore hypothesize that
code quality improvements may reduce the likelihood of rework and improve the on-time
delivery performance. Moreover, our results suggest that improvements in indirectly in-
fluential factors lead to improvements in intervening factors, which, in turn, improve the
timeliness of deliveries. For example, executive support is perceived to have a positive im-
pact on team stability and team commitment, which in turn leads to improved team skills,
high-quality code and less bugs or incidents. We hypothesize that establishing stronger
executive support may lead to more stable, committed and highly skilled teams that are
better able to maintain code quality and resolve delays caused by bugs and incidents. The
paths for action that can be inferred from our conceptual framework indicate that on-time
software delivery requires attention across many factors, and that both social and techni-
cal factors may need to be addressed to enable continuous improvement.

41

2.3 A Conceptual Framework of On-Time Delivery

“eyep A10]1s0da1 J0 B1ep A9AINS UT $10]08] JURAJ[D1 Jsot 0T doj oy} Suoure payuel aIe Jey) sI10J0.] dtj} 9JBIIPUT SOqUIAS
11G () Ssauan1daffo wvay ur sagueyd Io (1 M) awig Sugiom pauuerdun (YN) yiomal £ipssasau 0] pea] ued A3} :SAem JOIIP 29I} UT
ssaur[owr) AISAT[p Joedwll 0] pUNOJ aIe SI0J0B] "UMOYS SI (- 241ypTau 10 + aa131s0d) UOTOITP Y} ‘dIysuotje[al yoes 10 ‘pantwo Aqrenred
axe az1s 1doloxd woiy Sunreys smorre ayy ‘sasodind Ajiqepear 104 “sdrysuorje[ar paaredorad 112y} 9JedIPUL JBY} SMOLIE [eUONIAIIP £q
Pa30oun0d sIsdIf[d sB PazZI[ensIA dIe $10)0€] [ENUIN[JUI PaAIadIad Gz o], "Sa[SUR)II oN[q SB UMOYS dTe SI0JL] JO SITI0F918d/SUOISUITUIP
ay[, ‘Aueduwod ased oy} wolj ejep asnejuenb pue sosuodsar AoaIns uo paseq ‘AISAIDP SWI-UO JO yIomadurelj [en}doouod y :z'g 9InSL]

27K uonnquisip
olydesfossy

Auelwey wea]

Joddns

aAnNoaX3

JUBWNIWWOD
wea.

Aunqeys wesy

abpajmouy
B slivs

SSauMau|
108(01d

ejep Alopisodal ul Jojoey payues o) dop

Kianjpg 21BMYOS BWI-UQ
PN

aunjonyseu]
s|qeliaiun

e1ep Aonins uf Jojoey payuel | dop

L -0—0 o0«

Bunsay
JuayNsu|

diysuonejas Aioynquiuod
az|s 108(0id

diysuoneyas au1pu|

diysuonejal yauq

Jojoe4 aenb

9p09 40 o€

Aunoas josfoiq
108)8 J08.1p Jo adA|

uoisuswiq

Kionijap swij-uo Bunosjie siojoe) Jo
199110 SAlIE|al BUY 1101 Kews yaom 10 S3|gELIEA IXaJU0D PUE B[EdS

42 2 Factors Affecting On-Time Delivery in Large-Scale Agile Development

2.4 Discussion

New influential factors. Our study has identified additional factors that influence on-
time delivery and which, to the best of our knowledge, have not been covered in the cur-
rent literature. We found that team familiarity is associated with timely software delivery.
While prior research [154] has shown that familiarity is beneficial to team performance, it
has not been investigated in the context of on-time delivery before. Our respondents be-
lieve that familiarity between team members improves the team coordination and helps in
adapting to environmental changes. This indicates that for a better on-time delivery per-
formance project managers should not only focus on keeping teams stable, they should
also track and support teams to build familiarity over the long term. Moreover, agile
maturity emerged as a new factor that is perceived to affect on-time delivery. The sur-
vey respondents rated this factor among the top 10 most influential factors. The survey
responses point out that a growing agile maturity enables teams and ultimately the orga-
nization to continuously improve their on-time delivery performance.

Relevance of factors. The 25 influential factors we presented as part of RQ1 relate to
previous research in effort estimation [41] and software project risk management [8]. Our
results provide new insights into the relative effects of these factors. Our respondents per-
ceive requirements refinement, task dependencies and organizational alignment to have
the greatest impact on the timing of their deliveries. While requirements-related issues
are top-cited risk factors in literature [8], task dependencies and organizational alignment
have not received much attention. They have only been investigated in the context of
scaling agile methods [155]. Further research is required to investigate the importance of
these factors in the context of on-time delivery.

Prior work [10] has shown that team- and project-related factors are the most often
mentioned effort drivers by agile practitioners. However, the relative importance of these
factors has not been investigated before. The regression analysis we presented as part of
RQ2 confirmed that the proxy measures of project factors (i.e., task dependencies, proj-
ect size) and team factors (i.e., team commitment, team familiarity and skills & knowl-
edge) have the greatest impact on schedule deviations. The project factors are found to
have a slightly greater impact than task factors. We did not find a significant relation-
ship between the code quality measurements and schedule deviations in epics. Poor code
quality and documentation have also emerged as perceived influential factors in other
studies [156, 157]. More in-depth studies are needed to corroborate the perceived impact
of source code quality on on-time delivery.

Role of organizational environment. Our respondents reported the importance of
several organizational factors for on-time delivery. The factors organizational alignment,
organizational politics and geographic distribution were rated among the top 5 most in-
fluential factors in our survey. Among these, organizational politics and organizational
alignment have been shown to impact project performance in related work [90, 97, 158]
but they have not been identified as top influential factors before. Hence, our results sug-
gest that different environmental aspects may play a larger role in on-time delivery than
previously thought. Further research is required to investigate the impact of the organi-
zational environment on on-time delivery in different settings.

2.4 Discussion 43

Coordination challenges in large-scale agile. Our survey respondents indicated
that several factors affecting on-time delivery are related to the challenges of adopting
agile methods at the large scale of the case company. These factors include task dependen-
cies, technical dependencies, geographic distribution and organizational alignment. Our
respondents explained that their teams often depend on other teams and external par-
ties for testing and deploying new software. This resonates with the findings by earlier
work [155, 159, 160] that large-scale agile projects are more likely to be hampered by
communication and coordination challenges. Further research is required to investigate
the characteristics and impacts of different types of dependencies and task relationships
in large-scale settings. Software organizations would benefit from mechanisms that make
teams aware of inter-team dependencies, blockers and external dependencies that have the
largest impact on their delivery time. Future research should study how existing coordi-
nation mechanisms are used in large-scale agile companies and how they can be improved
to better support agile teams in delivering on time.

Incident management workflows. In line with earlier work [93, 161-164], we found
that software deliveries are delayed by unexpected bugs and technical incidents. In our
regression model, the number of unplanned stories and the number of incidents have a
strong relationship with schedule deviation in epics. The disruptive nature of bugs and
incidents calls for streamlined incident management processes and automated incident
handling. Promising research in this direction has been carried out by Gupta et al. [165].
They used information integration techniques and machine learning to automatically link
incoming incidents with configuration items. An interesting extension would be to lever-
age probabilistic modeling to predict the impact of an incoming incident on the time esti-
mate of a delivery.

Multi-objective optimization for software delivery. We found that the security
level of a software delivery is positively related to delay. Our respondents indicated that
there is no tolerance for failure in some of the business-critical systems at ING. In highly
regulated projects, engineers may need to decide to delay a delivery to increase time avail-
able for quality assurance and security testing. This alludes to a tension between delivery
speed and the constraints imposed by regulations. New methods for rapid security verifi-
cation and vulnerability identification could help organizations maintain agility. Related
work [166-168] has focused on integrating security into agile methods and the challenges
which this presents. Fitzgerald et al. [166] looked into the concept of continuous com-
pliance and end-to-end traceability to support agile development processes in large-scale
regulated environments.

The trade-off between timely delivery and security highlights a broader theme that
predictable delivery is not the only factor that development teams in software organiza-
tions are trying to optimize. In reality, organizations deal with multiple objectives and
look for optimal trade-off solutions that balance several criteria. Future research should
investigate how the value of on-time delivery is measured and weighed in trade-offs in
software industry.

44 2 Factors Affecting On-Time Delivery in Large-Scale Agile Development

A sociotechnical approach to improving on-time delivery. The perceived indi-
rect and contributory relationships between influential factors (see Table 2.2) show that
changing one factor may impact another, and that there are many non-technical factors
that may also have an impact on on-time delivery. The results lead to some hypotheses
that we discussed in Section 2.3, that may suggest corrective actions to improve the time-
liness of software deliveries. The hierarchical interactions between factors indicate that
the interplay between technical factors and on-time delivery is influenced by the social
context of development work, as determined by organizational and people factors. This
suggests that a healthy team culture and organizational environment can be used as inter-
vening factors to resolve potential harmful effects of technical issues on on-time delivery.

Predicting delays in software deliveries. An interesting opportunity for future
work is to incorporate the influential factors from our study into predictive models for
delays in software deliveries. Currently, most software organizations rely on experts’ sub-
jective assessment to arrive at a time estimate for their deliveries. This may lead to inaccu-
racy and more importantly inconsistencies between estimates. Therefore, software orga-
nizations can benefit from predictive models that provide automated support for project
managers in predicting the delivery time or delay of software deliveries. Existing mod-
els [21, 21, 67, 169] learn based on metadata (e.g., type, priority) and/or textual features of
the software task. Our results show that the predictive power of these models can be en-
hanced by incorporating the significant variables from our regression analysis. This will
enable models to capture information about the software task as well as the environment
in which the delivery takes place.

Our findings also suggest that an incremental learning approach might be beneficial
for predicting delays in software deliveries. As unexpected events related to bugs, inci-
dents, and a team members’ departure can occur during the development phase (after a
time estimate has been made), the prediction model should learn over time and adjust pre-
dictions based on newly acquired knowledge. A sliding window-setting could be used to
model team dynamics and external changes. This boosts the ability of the model to learn
and predict based on a team’s recent delivery performance, and to forget older, irrelevant
data. Initial work in this direction has been carried out by Abrahamsson et al. [25].

A relational theory of on-time delivery. A relational theory of on-time deliv-
ery would provide insightful and actionable information for project managers to design
effective risk management strategies that improve on-time delivery performance. Our
framework contributes in the advancement of a relational theory of on-time software de-
livery [170]. We identified and categorized influential factors (descriptive theory), and aim
to specify the relations between factors to start to explain how they interact with each
other. One potential research direction is therefore to investigate why factors are related,
e.g., through causality. This could be assessed by causal inference on time-series data, or
through observations collected by experiments with development teams.

Guiding future research. We anticipate that our conceptual framework, and the set
of factors we identified, can be useful for other researchers that study on-time software
delivery. Our survey instrument and mixed-methods approach can be replicated to reveal

2.5 Threats to Validity 45

how specific factors impact on-time delivery in other settings. A consideration across
organizations of different scale and context could lead to quite different factors that influ-
ence the results. Moreover, other social contextual settings, such as organizations with
different levels of management support and organizational stability, could be considered
to explore how the social setting affects the interplay between technical and social factors,
and their impact on on-time epic delivery.

2.5 Threats to Validity

In this section, we discuss the threats to validity of our study and limitations with our con-
ceptual framework. We used the checklist of Molléri et al. [171] to assess our surveys and
identify threats to validity. The resulting scores from our assessment using the checklist
can be found in an online replication package [119].

External validity: As with any single-case empirical study, external threats are con-
cerned with our ability to generalize our results [172]. The company we studied employs
thousands of software engineers and has significant variety in terms of the products devel-
oped, their size, and application domain (banking applications, cloud software, software
tools). We performed random sampling and captured a range of roles and experiences,
which may improve generalizability [171]. Even though our sample of survey partici-
pants is diverse, it is unlikely to be representative of software managers and engineers
in general.

We conducted self-administered surveys, which may suffer from non-response bias [173,
174]. Our surveys were advertised as an “On-time Software Delivery Survey” and there-
fore could have led to over-representation of teams that deliver on-time. Developers from
teams that are often delayed might have been less comfortable about participating in the
surveys. Moreover, some of the factors presented in the second survey were geared at
technical aspects of software development. This might have caused participants in non-
technical roles to drop out, resulting in a bias toward software engineers. A limitation
from our survey tool is that it does not record partially completed surveys. Hence, we do
not know the dropout rate and cannot determine drop-out questions. This introduces a
possible threat to external validity [171]. Our survey may have also been subject to self-
selection bias, e.g., participants with strong opinions about delivery deadlines might have
been more likely to participate in the survey. To mitigate non-response and self-selection
bias, we sent personal invitations, kept the survey as short as possible and were transpar-
ent about the survey length. We also sent reminders to non-responders to increase the
response rate and reduce the possibility of bias.

Although we control for variations using a large number of participants and projects,
we cannot generalize our conclusions to other organizations. Replication of this work
in different development settings is required to determine how work context influences
(the perceptions of) factors affecting on-time delivery. Our findings indicate a trade-off
between timely delivery and increased (security) testing and code refactoring effort. In a
financial organization like ING there is no tolerance for failure in some of their business-
critical systems. This may have influenced the factors we identified, making our find-
ings likely to generalize more to software organizations with similar security regulations.
Moreover, our results show several factors related to organizational fragmentation (e.g.,

46 2 Factors Affecting On-Time Delivery in Large-Scale Agile Development

dependencies, organizational alignment) which may be more common in large-scale or-
ganizations. In an effort to increase external validity and encourage replication, we have
made our survey instrument available in an online appendix so that others can deploy it
in different organizations and contexts [119].

Internal validity: We recognize that surveys can introduce biases and may contain
ambiguous questions [171]. To mitigate these issues, we used terminology familiar to the
target population and piloted the survey. We updated the survey instruments based on the
validation results. In addition, we sought support from the second (confirmatory) survey
and performed data triangulation. In the second survey (also piloted), no new factors
emerged from the open-ended responses we solicited. In our survey design, we phrased
and ordered the questions sequentially to avoid leading questions. We also randomized
the order of factors to address order effects.

Our survey was not anonymous and therefore might have been subject to social desir-
ability bias (i.e., a respondent’s possible tendency to appear in a positive light) [175]. To
mitigate this risk, we let participants know that the responses would be kept confidential
and evaluated in aggregated form.

A factor that might have influenced our qualitative analysis is the bias induced by the
involvement of the authors with the studied organization [171]. To counter the biases
which might have been introduced by the first two authors, the last author (from Delft
University of Technology) helped in designing survey questions and the manual coding
of survey responses. In addition, we formally checked for reliability by computing inter-
coder reliability. Another risk of the coding process is the loss of accuracy of the original
response due to an increased level of categorization. To mitigate this risk, we allowed
multiple codes to be assigned to the same answer.

Construct validity: The goal of our first survey was to elicit influential factors and
their interactions as experienced by engineers themselves. As the factors and types of
relationships come from open-ended responses, and we rigorously assessed the expressed
mechanisms through manual coding, we argue that they accurately represent the respon-
dents’ views. However, it should be noted that we did not verify whether participants can
distinguish between affects. In the second survey we asked participants about the per-
ceived impact of factors. To keep the survey short, each factor was measured by a single
response item. Therefore, we could not test the reliability of participants’ responses.

In our analysis of repository data, we consider data variables as constructs to meaning-
fully measure perceived influential factors. This introduces possible threats to construct
validity due to measurement errors [176]. The proxy variables we measured may not cap-
ture the respondents’ intended meaning of the concepts or constructs. Many factors, such
as team commitment and organizational alignment, are quantifiable in principle but not di-
rectly measurable. For example, we measured the historical on-time delivery performance
of a team as a reflective indicator of their commitment to on-time delivery. However, the
commitment level of team members might not be reflected in their past delivery perfor-
mance. A more common and direct way of measuring commitment is through psycholog-
ical attachment instruments but it was not possible to collect such data ex post facto.

For the mapping of proxy measures to the perceived influential factors we had to find

2.6 Conclusions 47

acceptable trade-offs between the preciseness of proxy measures and the availability of
data at ING. We acknowledge that for some perceived factors more precise alternatives can
be found in related work. However, the repository data available did not cover equally pre-
cise data on all factors. Furthermore, it is possible that the data variables do not accurately
represent reality. For example, we calculated time-related information on epics based on
their planned and actual delivery dates in backlog management data. However, it might
happen that teams close their deliveries too early or too late. We cannot account for the
impact of poor record keeping on our results.

Transferability and credibility of our framework: We believe that the influential
factors in the conceptual framework are likely transferable, to some extent, to other set-
tings as they relate to previous research in effort estimation and project risk management.
However, the specific results regarding the ordering of factors, factor relationships and
regression analysis are bounded to the scale and context of ING. How factors impact on-
time software delivery may vary according to scale and context factors of development
work. It is noteworthy that we were not able to validate all factors as the repository data
available did not cover all perceived influential factors. Our regression analysis does not
exclude the importance of the non-included variables. Additional variables would proba-
bly have been included in our regression model if we had more data. We were not able
to triangulate the relationships for RQ1.3. Replication of this work is required to validate
the findings and reach more general conclusions. This might help enrich the framework.

2.6 Conclusions

Improving the timeliness of software deliveries is a challenge that is faced by many soft-
ware organizations. In this paper, we identified and investigated the most relevant factors
affecting delay in large-scale agile software development. We composed our findings in
the form of a conceptual framework representing these factors and their interactions. The
key findings of this study are:

1. Requirements refinement, task dependencies, organizational alignment, organiza-
tional politics and the geographic distribution of teams are perceived to have the
greatest impact on timely software delivery.

2. Project size, number of dependencies, historic delivery performance, team familiar-
ity and developer experience are the most important variables that explain schedule
deviations in software deliveries.

3. Factors are found to interact hierarchically: organizational factors are perceived to
interact with people factors, which in turn impact the technical factors. Technical
factors are perceived to have a direct impact on timely software delivery.

Our conceptual framework suggests multiple paths for action that may improve the
timeliness of software deliveries. Based on our findings, we identified challenging areas
calling for further attention, related to the scalability of agile methods, inter-team depen-
dencies, security concerns, the role of organizational culture, team stability and incident
management. Progress in these areas is crucial in order to become more predictable at
delivering software in agile settings.

49

Dynamic Prediction of Delays in
Epics Using Delay Patterns and
Bayesian Modeling

Modern agile software projects are subject to constant change, making it essential to re-asses
overall delay risk throughout the project life cycle. Existing effort estimation models are
static and not able to incorporate changes occurring during project execution. We propose a
dynamic model for continuously predicting overall delay using delay patterns and Bayesian
modeling. The model incorporates the context of the project phase and learns from changes
in team performance over time. We apply the approach to real-world data from 4,040 epics
and 270 teams at ING. An empirical evaluation of our approach and comparison to the state-
of-the-art demonstrate significant improvements in predictive accuracy. The dynamic model
consistently outperforms static approaches and the state-of-the-art, even during early proj-
ect phases.

This chapter has been published as E. Kula, E. Greuter, A. van Deursen, and G. Gousios. Dynamic Prediction of
Delays in Software Projects Using Delay Patterns and Bayesian Modeling, ACM ESEC/FSE’23 [130].

50 3 Dynamic Prediction of Delays in Epics Using Delay Patterns and Bayesian Modeling

chedule delays constitute a major problem in the software industry. Software projects
S run, on average, around 30-40% overtime [2, 177]. Ineffective risk management is one
of the main reasons for delays in software projects [79, 82]. An important activity involved
in risk management is delay prediction. Foreseeing delay risks enables project managers
to take measures to assess and manage risks, make timely adjustments to the planning
and reduce delay propagation. Global effort estimation models are the state-of-the-art
in predicting overall delay for software projects [25]. Global models are trained upfront
and estimate the entire project using predictor variables collected at the beginning of the
project. These models have a static character: they capture the overall contribution of
predictor variables to the total development effort and are unaware of changes occurring
during project execution.

Global models are reasonable for traditional, waterfall-like settings where common
predictors are known at the beginning of the project and do not change much throughout
the project. However, this is not the case for modern, agile projects. In agile settings,
projects (referred to as “epics”) are incrementally developed through short iterations to
respond fast to changing markets and customer demands [13]. Predictors proposed in
previous work [17, 129], such as user requirements and task dependencies, can vary in
value and relative impact during the execution of agile projects. Global models are not able
to incorporate these changes due to their static character. An existing alternative is to use
global models in an iterative manner (so-called global iterative) [25]. That is, applying the
global model at different prediction times throughout a project using updated predictor
values. This may lead to an improvement in predictive accuracy. However, the global
iterative model is still not able to adapt to changes occurring during project execution.
Agile projects call for the need of models with a dynamic character: models that are able
to capture and adapt to changes in team performance and the impact of predictors during
project execution.

Prediction Prediction

Predictors at
milestone i+1

Predictors at
milestone i

Dynamic

Milestone i+1

Milestone i

Delay pattern Delay pattern
Prediction Prediction
Predictors at —| Predictors at —»|
milestone i — Global _j milestone i+1 —> Global j
iterative iterative

Predictors at —

Predicti
project start =3 Global rediction

! ! » Time

Milestones i i+1

Figure 3.1: Global, global iterative and dynamic approaches to delay prediction over time

3.1 Related Work 51

In the field of transport, prediction of overall delay is an important requirement for
proactive control of traffic and the feasibility of timetable realisation [178]. Previous re-
search in railway traffic (e.g., [102, 103]) and air transport (e.g., [179, 180]) has found that
delays develop or propagate following certain patterns over time. A similar pattern in his-
toric data can provide an estimation for the future development of delays. These studies
detect patterns on the fly and use them for improving predictions of overall delay. It is not
yet known whether this concept of delay patterns is applicable in the context of software
development.

In this paper, we propose a dynamic effort estimation model for continuously predict-
ing overall delay in agile projects. As visualized in Figure 3.1, the dynamic model extends
global approaches by incorporating the context of the project phase (referred to as “project
milestone”) and modeling delay patterns when making predictions. The dynamic model
is updated after each milestone using the predictor values collected for that milestone
and the development of delay up until that milestone. The model captures the milestone-
specific contributions of predictors to the total development effort and follows changes in
team performance over time.

To develop our dynamic model, we use a Bayesian modeling approach. Bayesian mod-
els are able to learn from changes in the relative impact of predictors by updating their
beliefs. We train the Bayesian model on time series of predictors and intermediate delays
recorded across the milestones of a project’s timeline. Similar to prior work in transport,
we apply time series clustering to identify recurrent delay patterns. We apply our dynamic
approach to real-world data from 4,040 epics and 270 teams at ING. We compare the per-
formance of the dynamic Bayesian model with global approaches and the state-of-the-art
baselines in software effort estimation.

An empirical evaluation of our approach demonstrates significant improvements in
predictive performance, achieving on average 66-92% Standardized Accuracy and 0.19-
0.04 Mean Absolute Error over time. The dynamic model consistently outperforms global
approaches and the state-of-the-art, even during early milestones (i.e., 10-30% of project
duration). The predictions of the dynamic model become substantially more certain and
accurate over time. The main contributions of this paper are:

« A new approach to predict delay using delay patterns and Bayesian modeling (Sec-
tion 4)

« An application of the approach at ING identifying four recurrent delay patterns
(Section 5)

« An empirical evaluation of the approach and comparison to the state-of-the-art,
clearly demonstrating a significant improvement in predictive accuracy (Section 6)

3.1 Related Work

Effort estimation models. Prior work has been done in building models for estimating
effort of the entire project (e.g., [56, 62, 181]), a single iteration (e.g., [25, 61, 182]) and
a single software task (e.g., a user story [18, 131] or issue report [21, 22, 183]). Existing
models that estimate the total development effort are called global [25] and have a static

52 3 Dynamic Prediction of Delays in Epics Using Delay Patterns and Bayesian Modeling

character. They make a single prediction using predictors collected at the start of the de-
velopment phase. Global models can be applied in an iterative manner to obtain estimates
at different prediction times throughout development. Choetkiertikul et al. [22] demon-
strated this by applying their model for predicting delay risk at three different prediction
times. They showed that the predictions become more accurate at later times since more
information becomes available. Another study [183] identified patterns of abnormal be-
haviors causing project delays and used these patterns to predict the delay risk of issues.
The patterns are derived as combinations of threshold-exceeding risk factors that can lead
to schedule overruns.

Delay patterns in transport. Previous research in railway traffic (e.g., [102, 103])
and air transport (e.g., [179, 180]) has shown that delays develop or propagate following
recurrent patterns over time. These patterns can provide information on the future devel-
opment of delays. Artan and Sahin [102] used Markov chains to model patterns of delay
deterioration, recovery and state keeping in train running times. Huang et al. [103] used
a clustering technique to identify four types of delay patterns in train operations: decreas-
ing delays, unchanged delays, small increasing delays and large increasing delays. They
built a Bayesian Network model that uses the patterns in previous train stations to predict
delay for upcoming stations. Oreschko et al. [179] detected specific delay patterns in flight
arrival times with respect to the time of day and airport category. Jiang et al. [180] uses
patterns of flight delay as input for a machine learning-based approach to delay prediction.

While delay patterns have been proven useful for delay prediction in transport, they
remain unexplored in the context of software development. It is unclear whether and how
delay patterns can be employed in software projects. Our study complements prior work
by modeling delay patterns and using them as input for a dynamic approach to predict
overall delay in software projects.

3.2 Bayesian Data Analysis

Recent works [184-186] identified the potential of Bayesian statistical techniques in soft-
ware engineering research. Bayesian models are flexible, easy to interpret and provide a
detailed probability distribution [184]. They are based on a uniform framework that ap-
plies Bayes’ theorem to update prior beliefs about model parameters based on observed
data. Bayesian models consist of three components [187]:

« Likelihood: A function that represents the probability of observing the data given a
set of model parameters. It reflects the underlying data generation process. In the
context of delay prediction, the likelihood captures the probability of observing a
specific delay value or a set of delay values.

« Priors: Probability distributions that represent the initial beliefs or assumptions
about the model parameters before observing the data. Priors allow incorporating
existing knowledge about the effects of predictors.

« Posterior: The updated probability distribution that incorporates both the prior in-
formation and the likelihood of the observed data. It is obtained by repeatedly sam-
pling values from the priors and applying Bayes’ theorem using the likelihood. The
posterior is used to make predictions about future observations.

3.3 Approach 53

3.3 Approach

Our overall research goal is to extract delay patterns and build a dynamic model that
incorporates the patterns and the context of the project phase for continuously predicting
the overall delay of an epic. This requires dividing an epic’s timeline into designated
milestones (Section 3.3.1) and tracking of intermediate delay and predictors across these
milestones. The milestones should match the work pace of the organization and can be
set accordingly at fixed time intervals or fractions of the planned project duration. It is a
very common practice of agile teams to record the delivery status of their work items in
a backlog management tool. Backlog data can be used to extract intermediate delay and
predictors over milestones in the form of time series (Section 3.3.2).

To identify delay patterns, the time series of delay values over milestones need to be
partitioned into groups of similar elements using clustering (Section 3.3.3). Hierarchical
clustering or K-means can be used to identify and discriminate recurrent patterns. The
dynamic prediction model is learned using the time series of the clustering output and
predictor values (Section 3.3.4). For the Bayesian model, it is important to select the likeli-
hood and tune the priors based on the dataset being used (Section 3.3.4). At each milestone,
the updated variables are fed into the model to obtain a new, refined estimate and update
the model’s beliefs. This way the model learns and evolves with the epic over time.

3.3.1 A Unified Timeline of Project Milestones

To incorporate the context of the project phase, we present the timeline of an epic delivery
as a sequence of regularly-spaced milestones. It is important to use a unified timeline so
that delay values measured at the milestones can be aggregated across epics for pattern
identification. Since teams working on an epic can follow different iteration lengths, we
cannot use iterations or fixed time intervals. Instead, we define the milestones based on
completion rate to evenly space them out along deliveries. The completion rate is based
on the number of iterations completed compared to the total number of iterations planned.
For example, an epic that consists of 20 iterations will achieve its 10% milestone after com-
pleting the initial two iterations. The total number of milestones used will determine the
granularity of the collected time series and, therefore, the identified patterns. As progress
updates are given at the end of every iteration, target milestones that cover the iteration
length are used (usually 2-4 weeks [38]).

Milestones at ING. The average iteration length in our dataset at ING is 16 days. We
performed our analysis with 10 milestones, which breaks most epics at ING down into
intervals of two to three weeks with an average duration of 17 days. In total, 17% of
the epics at ING consist of less than 10 iterations; we excluded those from our dataset to
keep only the epics that have at least one iteration update available at every milestone
(see Section 3.3.2). Each epic is divided into 10 milestones: every milestone is scored as
10% of the planned duration, so when a team reaches the third milestone of a task, their
completion rate is equal to 30% and so on. When an epic’s total number of iterations is not
divisible by 10, we round the milestones off to the last completed iteration of their time

frame. For example, when an epic consists of 18 iterations, its sixth milestone (E x18 =

10.8) will be measured at the end of the 10" iteration. The milestones are connected by the

54 3 Dynamic Prediction of Delays in Epics Using Delay Patterns and Bayesian Modeling

corresponding iterations and occur in a fixed sequence j — k, where k= j+1, j=1,2,...,10.

3.3.2 Data Collection

Backlog Data

To track changes in the intermediate delay and predictors over time, we need a backlog
dataset that contains the history of epics. For each epic, this dataset has to include the
identification number, creation date, planned start date, actual start date, planned delivery
date and actual delivery date. At ING, we extracted log data from the backlog manage-
ment tool ServiceNow. This dataset contained 7,463 epics delivered by 418 teams between
January 01, 2017 and January 01, 2022.

Data Cleaning

To eliminate noise and missing values, epics with a status other than ‘Completed’ need to
be removed. Epics that are not assigned to any team or have empty Planned Delivery Date
and Actual Delivery Date fields also need to be filtered out. At ING, we chose to exclude
the epics that consist of less than 10 sprints to keep only the epics that have at least one
sprint update available at every milestone. In addition, we removed epics that exceed two
standard deviations from the mean overall schedule delay of all epics. After linking and
cleaning the data, the final ING dataset was reduced to 4,040 epics from 270 teams.

Delay Factors

The predictor variables can be obtained over milestones by extracting their values at the
end of the last iteration that corresponds to a milestone. We extracted 13 predictor vari-
ables that represent factors affecting delays in epic deliveries. We identified these factors
in previous work [129]. We used the same procedure to extract the predictor variables.
Table 3.1 provides an overview of the predictors we collected and the influential factors
they correspond to. For example, we model the delay factor team familiarity using the
predictor variable team-existence that measures the amount of time team members have
worked together in their current composition.

Measuring Schedule Deviation

We measure the overall schedule delay at the end of an epic using Balanced Relative Er-
ror (BRE) [146] as error measure. BRE has been recommended as an unbiased alternative
to the commonly used Mean of Magnitude of Relative Error and Prediction at level 1 [143-
145]. BRE is defined as:

Act - Est

If Act - Est = 0,then BRE = ——M8M@M8M8m8 ™
Planned duration

Act - Est

If Act - Est < 0,then BRE = —M
Actual duration

where Act is the actual delivery date and Est is the planned delivery date of an epic.
Act - Est calculates the schedule deviation in days: a positive difference corresponds to
a delay (Act is later than Est) and a negative value corresponds to on-time delivery (Act

3.3 Approach 55

is before Est). Actual duration is the difference (in days) between the actual delivery date
and start date of an epic. Planned duration is the difference (in days) between the planned
delivery date and start date of an epic.

To measure the intermediate delay of an epic at a given milestone, we select the last
iteration corresponding to that milestone and calculate the total number of story points
that are delayed to the next iteration/milestone. The total number of delayed story points
represents the workload of user stories a team was unable to complete or resolve.

3.3.3 Clustering for Delay Pattern Discovery

To identify delay patterns, the time series of intermediate delay values recorded across
milestones need to be clustered into groups of similar elements. In agile settings, interme-
diate delay can be measured based on the number of delayed user stories or story points.
We measure the number of Delayed Story Points (DSP) as it is a more specific measure of
the delayed workload. We calculate the delayed story points at a given milestone i as the
number of story points that are delayed to the next milestone i+ 1. DSP represents the
delayed workload at a particular milestone and is thus not cumulative. We normalize the
DSP values per epic to make sure that the range of story point values cannot influence the
clustering results. We divide the DSP values by the maximum number of story points that
are delayed along the timeline of an epic.

To partition the time series data, we use hierarchical clustering with Dynamic Time
Warping (DTW) as distance measure [188]. This approach has been shown to be appropri-
ate for short time series [189]. DTW is a shape-based distance measure that finds optimal
alignment between two time series that do not necessarily match in time or length. This
makes DTW particularly suitable for epics that can differ in duration and sprint length,
which is the case at ING. We use the Elbow method to select the optimal number of clus-
ters k. This method calculates the total Within Cluster Sum of Squares (WSS) [190] for
each k. The point of inflection on the WSS curve indicates the optimal number of clusters.
Figure 3.2 presents the WSS curve for ING data and shows that a k value of 4 is optimal.

The application of our clustering approach to ING data resulted in four patterns that
are discussed in Section 3.4. To characterize the clusters in terms of risk factors, we applied
the Wilcoxon Signed Rank Test [191] for pairwise comparisons. This is a non-parametric
test that makes no assumptions about underlying data distributions.

Total Within Sum of Square
S
o

4

5 6 7 8 9 10
Number of clusters k

Figure 3.2: Elbow method and WSS curve for selecting the optimal number of clusters

3 Dynamic Prediction of Delays in Epics Using Delay Patterns and Bayesian Modeling

56

ssaooxd Sunsa) £11oas e ssed 0] paau jey]} o1do a1} UT SITI0]S Jasn JO OTjel YL,

o1da a1y} UT 9ZIS Wed) URIPIN

o1da a3 03 paudrsse sjurids Jo ToqunN

o1ds a1y} 03 paudrsse sarro)s pauue[d Jo qUINN

o1do 91} 03 pappe U29q ALY Jey} (SJUIPIOUL IO SIXTJ Snq 03 paje[aI) sarrols pauuedun Jo IoquInN
orde a3 jo aseyd juswdoraasp a3 SULINP PILINII0 Jey} SJUIPIOUT JO IOUINN

jurxds 1ad 1adojassp e 01 paudisse sjutod A103s Jo IaquINU Y] JO URIPIIN

o1da o) uo SunjIoMm Sured) [[e 1940 sO1dd PAISAT[OP SWI}-UO JO OIJeI A} JO URIPIN

SIQUISUI Wed} JO Uo1soduIod JUSIIND IO} UI PIISIXS JARY SWEI} STBIA JO I9qUINU 9} JO UBIPIA
ONI 1e SunjIom uaaq aaey J1ds a3 uo Sunjrom s19do[aAap ay] s1BIA JO IaquUUNU 31} JO UBIPIN
orde snoraaxd pue Jua1Ind a3 Surmp d3UeYD J0U PIP Jey} SIIQUISW UIEd) JO OIFe Y} JO UBIPI
orda snotaaxd pue jua1Ind 9y} Surmp spes[aqry paSueyd Jo JqunN

sorda 191730 o o1do Ue Jo sarouspuadop Surodno Jo IquInN

[9AS]-AJ1IND0s -

9ZIS-wead] *

sjurxds-1u -
SOLI0)S-IU *
sarro}s-pauuerdun *
SjuapIOUr-IU *
PRO{IOM-ADD *
soureurtofrad-jsy
90U)STXD-ed] *

Sur-a3e-asp

oneI-Ajiqess -

spes[-padueyo

92133p-1no *

S — N
— = o

LS B TR Yo BN SN RN N

Ajumoas 09foxg

az1s jo9loxg

sjuaproul I0 sSng
ssaxdoxd ur yroMm
JUSWITUIUIOD W],
AjLrer[iurey weag,

S3papmoy pue s[[rS

ANMqe)s wrea],

A311qe)s TeuotyeziuesIQ

sarouapuadap MseT,

uondrdsaq

J[qeLIeA I032TPAIJ

1030€J STy

‘9[qeLrea yoea jo uondrrosap e sapraoid uwnjod

u01d14953(] Y], 'SILIAAT[RP d1do UT sAB[ap J09fe 1oy} [6¢T] woIy s1030e] Jurjuasardar saqerrea 10301paxd pajoenxa ¢1 YL, :1°¢ d[qel

3.3 Approach 57

3.3.4 Bayesian Model Development

The main goal of our prediction model is to infer a probability distribution of BRE values
across milestones. We use Bayesian statistical analysis to infer the probabilities and build
the model in global and dynamic modes for comparison.

Different Modes of Model Development

We build and compare the Bayesian model using global, global iterative and dynamic
modes of development. The differences between the models are visualized in Figure 3.1
and can be explained as follows:

« The global model solely uses the predictor variables as input and does not have a
sense of time. It makes a single prediction of the overall delay based on predictors
collected at the start of the project and does not update its BRE estimate throughout
the project.

« The global iterative model is the global model used in an iterative manner (i.e., over
milestones). We apply the global model at each milestone to obtain a new estimate
of the overall delay based on the predictor values of that milestone. The model itself
is not updated.

« The dynamic model is learned using the time series data of the clustering output
and predictor values collected over milestones. This model incorporates the context
of the milestone and thus has a sense of time. At each milestone i, the clustering
model classifies the set of delay values across previous milestones 1 to i—1 into
one of the four identified groups of patterns (producing a pattern label). To mimic
a real prediction scenario, we set the values for future milestones i+ 1 to n to zero
(unknown) in the input data for the clustering model. At each milestone, the pattern
label and updated predictor variables are fed into the dynamic model to obtain a new
estimate of the overall delay and update the model’s posterior distribution.

Bayesian Modeling

We use Bayesian regression analysis to infer the probabilities that quantify delay risk and
propagate uncertainty over time. We implemented our models in the statistical frame-
work Stan'. We designed the models following the steps and guidelines for Bayesian data
analysis in software engineering research [184-186]:

Step 1. Selecting a likelihood. The choice of a likelihood function depends on the type
of data. The BRE values are proportional numbers between 0 and 1. In total, 42% of the
BRE values in the ING dataset are zero (corresponding to on-time delivered epics). The
data does not contain BRE values of one; the maximum BRE in our dataset is 0.83. A com-
mon choice for modeling proportional data is the Beta distribution likelihood [192]. Beta
models are highly flexible and can take on all sorts of different shapes. To account for
the zero values in the ING dataset, we selected the Zero-Inflated Beta distribution [193],
relating predictors to outcome, as shown in Eq. 3.1. The Zero-Inflated Beta distribution
depends on a mean y and precision ¢, like in a regular Beta, but it may produce a BRE of

‘https://mc-stan.org/

58 3 Dynamic Prediction of Delays in Epics Using Delay Patterns and Bayesian Modeling

zero with probability « in each draw from the distribution. We used a logit function for
p and « to translate them back to the log-odds scale of the (0,1) scale. We assume that all
predictor variables may affect the parameters of the model (Eq. 3.2-3.4).

Step 2. Setting priors. To apply Bayes’ theorem, we need to define priors for the model’s
parameters. A common approach, which works well in most cases, is a weakly informative
prior [194], such as a normal distribution with zero mean and moderate standard deviation,
as shown in Eq. 3.5 and 3.7. Such a prior does not bias the effect that the predictors may
have towards positive or negative values, and it still allows for a wide range of parameter
values. We set a Cauchy distribution (Eq. 3.6) for the f§; parameters, which is a common
choice for dispersion parameters [195]. To check what the combination of priors implies
on our outcome, we sample from the priors only. This is called prior predictive checks (see
Figure 3.3a).

The overall definition of the dynamic model is given in Eq. 3.1-3.7.

BRE; ~ Zero-Inflated Beta(y;, ¢;, ;) (3.1)

logit(y;) = f, - out-degree +...+ f, . - security-level 52)
+py,, - milestone + f, -DSP+ [, - pattern

log(¢;) = By, - out-degree +...+ i . - security-level 53)
+fy,, - milestone + fy -DSP + f - pattern

logit(a;) = B, - outdegree +...+ i, . - security-level (5.4)
+fg,, - milestone + B, _-DSP +f, - pattern

Buys+s By, ~ Normal(0,1) (3.5)

Bg,s--sBg,, ~ Cauchy(0,1) (3.6)

Bays -+ By, ~ Normal(0,1) (3.7)

The ‘pattern’ predictor in Eq. 3.2-3.4 stands for the delay pattern label as classified
by the clustering model. The global and global iterative models follow the same design,
except that they do not include the milestone and pattern label as predictors.

Step 3. Sampling. For sampling, we used the Hamiltonian Monte Carlo implementation
provided by Stan. To improve the efficiency of sampling, we centered and scaled all pre-
dictor variables. Once the model has been sampled, we check diagnostics to ensure that
we have reached a stationary posterior distribution. No warnings on divergent transitions
and low E-BFMI values were reported [196]. Moreover, the R diagnostic was consistently
less than 1.01 and the ESS value was higher than 0.2. This indicates that the Markov chains
mixed well [197]. To check if the model fits the data, we sample from the priors with data.
This is called posterior predictive checks (see Figure 3.3b). A summary of the model can
be found in an online replication package [120]. At the 95% level, all predictors have a
significant effect.

3.4 Delay Patterns at ING 59

10.0
-y
75 — Vrep
5.0
25
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
(a) Prior predictive check (b) Posterior predictive check

Figure 3.3: Density overlays of predictive prior and posterior draws (visualized as light
blue lines) versus the real data (shown as the dark blue line). The combination of our
priors (left plot) shows that we assign more probability mass to low and high BRE values.
After making use of the data (right plot) we see a good model fit: the light blue lines are
covering the dark blue line.

Step 4. Model checking. To check for overfitting, we test whether any model making
simpler assumptions about the data performs comparably or better than our model with
the Zero-Inflated Beta distribution (Mz;5). We compare Mg with simpler models in
terms of expected log predictive density (ELPD) using leave-future-out cross-validation [198,
199]. The models are conditioned on two years of historical data (covering the epics from
2017 to 2019) using the recommended threshold of 0.7 for the Pareto k estimates [199].
The results of our analysis can be found in an online replication package [120]. The re-
sults show that Mg performs significantly better than other, simpler models and thus
fits the data better while avoiding overfitting.

3.4 Delay Patterns at ING

Using the Elbow method, we determined k = 4 as the optimal number of clusters (see Fig-
ure 3.2). Therefore, we obtained four clusters representing delay patterns in epics at ING.
Figure 3.4 visualizes the centroids and the 25th and 75th percentiles of the cluster delay
distributions. The epics are grouped together with low mean variance (Var) around the
cluster centroids (Var C1 = 0.07, Var C2 = 0.11, Var C3 = 0.08, Var C4 = 0.12), highlighting
recurrent patterns.

Characteristics of clusters. Table 3.2 summarizes the statistics of the predictor vari-
ables for each cluster’s epics. The confidence intervals are included in an online replication
package [120]. We used the Wilcoxon test for pairwise comparisons (Bonferroni corrected)
to identify the factors for which clusters are significantly different from the other three
clusters (highlighted with an « in Table 3.2). These factors characterize the epics exhibit-
ing one of the four recurrent patterns. Even though we cannot reason about causal links
between the factors and patterns, the results of the analysis enable us to form hypotheses
on the causes of delays. Testing such hypotheses could lead to actionable insights and
suggest delay mitigation measures.

60

3 Dynamic Prediction of Delays in Epics Using Delay Patterns and Bayesian Modeling

Cluster 1 Cluster 2

1.00+
0.751 °
0.50+
0.254
0.00+

Cluster 3 Cluster 4

1.00+
0.754
0.50+
0.254
0.00+

Normalized Delay (# Story Points)

Delivery Timeline (Milestones)

Figure 3.4: Four clusters of delay profiles representing recurrent delay patterns across
milestones in epic deliveries at ING: 25th percentile: dotted; centroid: solid; and 75th
percentile: dashed.

The clusters can be described as follows:

Cluster 1 (C1) consists of 1388 (36%) epics. These deliveries start out with a delay
peak, followed by multi-phase recovery, and end with delay that continues beyond
the planned delivery date. The epics of C1 have a significantly higher number of
outgoing dependencies and developer workload, likely causing issues at the start of
the delivery.

Cluster 2 (C2) makes up the largest group, containing 1706 (44%) epics that are punc-
tual up until the last few milestones. The epics of C2 have a significantly higher
security level and team stability, possibly explaining the consistent start. They also
run into more incidents and unplanned work, likely causing the delay at the end of
the delivery.

Cluster 3 (C3) contains 540 (14%) epics that exhibit an upward trend (i.e., delay in-
crease) in the first section of the delivery followed by resilient recovery. The epics of
C3 involve significantly smaller teams, suggesting that teams with fewer members
may need some buildup time to respond to delay.

Cluster 4 (C4) contains 232 (6%) epics that exhibit a fluctuating pattern of delay in-
crease and recovery over the course of the delivery. The epics of C4 have a signif-
icantly higher stability and lower security level, developer workload and number
of sprints. These characteristics might possibly explain the consistent recovery of
delay over time.

3.5 Evaluation 61

Table 3.2: Characteristics of delay profile clusters: Cluster 1 (C1), Cluster 2 (C2), Clus-
ter 3 (C3), Cluster 4 (C4). » indicates that a cluster is significantly different from all other
clusters for the corresponding predictor variable (pairwise Wilcoxon tests with Bonferroni
correction).

Predictor Median Significance
C1 C2 C3 C4 Ci C2 C3 C(C4

nr-sprints 13 15 14 11 *

out-degree 7 3 4 4 *

hist-performance 0.69 0.67 0.74 0.61

dev-age-ing 2.49 2.61 2.92 2.84

team-existence 1.30 1.53 1.29 1.42

team-size 8 7 6 7 *

security-level 0.56 0.77 0.53 0.36 * *

unplanned-stories 0.11 0.16 0.10 0.08 *

changed-leads 3 2 3 2 *

stability-ratio 0.73 0.81 0.64 0.72 *

nr-stories 52 43 39 45 *

nr-incidents 8 12 8 6 *

dev-workload 15 12 10 8 * *

BRE 0.23 0.17 0.11 0.09 * * * *

Patterns are indicative of overall delay. The bottom row of Table 3.2 provides the
descriptive statistics of the overall delay, measured in BRE values, for each cluster. The
epics assigned to Cluster 1 suffer the largest overall delay with a median BRE of 0.23. The
epics in Cluster 2 are associated with the second largest overall delay (median BRE of 0.17).
Clusters 3 and 4 consist of epics that end up with small overall delays, with a median BRE
of 0.11 and 0.09, respectively. Using the the Wilcoxon test for pairwise comparisons, we
found that the differences in the BRE values of the clusters are statistically significant at a
95% confidence level. This means that the patterns are indicative of the overall epic delay.

3.5 Evaluation

3.5.1 Research Questions
The evaluation of the dynamic model aimed to answer the following research questions:

- RQ1. Benefits of dynamic prediction: Does the dynamic model provide more
accurate estimates than its global and global iterative modes? To study the benefits
of the proposed dynamic model, we evaluate the performance of the Bayesian model
in global, global iterative and dynamic settings.

- RQ2. Benefits of delay patterns: Does the use of delay patterns have a positive
impact on the predictive performance? We compare the performance of the dynamic
Bayesian model learned with and without the delay patterns.

62 3 Dynamic Prediction of Delays in Epics Using Delay Patterns and Bayesian Modeling

- RQ3. Comparison with SoTA baselines: How does our dynamic Bayesian model
compare to the state-of-the-art baselines? To determine whether our dynamic Bayesian
model improves the state-of-the-art (SoTA) baselines in effort estimation, we com-
pare it with the Decision Tree model of Choetkiertikul et al. [183] and the Random
Forests model of Choetkiertikul et al. [22]. We perform the comparison with the
models in their original, global mode using features from Choetkiertikul et al. and
in dynamic mode using our set of features.

- RQ4. Impact of prediction time: How does the moment of prediction affect the
informativeness of the predictions of the dynamic model? Previous work [200, 201]
has shown that statistical models should be evaluated in terms of both accuracy
and informativeness (i.e., width of the prediction interval). We analyze how the
informativeness of the predictions of the dynamic model evolves with the time of
prediction (early versus late in the epic).

3.5.2 SoTA Baselines

We implemented two models representing the SoTA baselines in their original, global
mode and dynamic mode for comparison with our dynamic Bayesian model. For compar-
ison in global mode, we implemented the global Decision Tree model of Choetkiertikul et
al. [183] using the five issue-level features presented in the paper. We mapped the features
to the epic-level and extracted them from ING data. An overview of all variables and their
mapping to the epic-level can be found in an online replication package [120]. We also
implemented the global iterative Random Forests model of Choetkiertikul et al. [22] using
16 out of 19 features from the paper. We were not able to extract the variables ‘number of
fix versions’, ‘changing of fix versions’ and ‘number of affect versions’ as they are specific
to the context of issue reports. We converted the features to the epic-level, as described in
the replication package. For comparison in dynamic mode, we implemented both models
of Choetkiertikul et al. following the dynamic setup described in Section 3.3.4. The models
were learned using our features from Table 3.1 and the delay patterns.

3.5.3 Experimental Setup

We performed experiments on the 4,040 epics in the ING dataset. To mimic a real predic-
tion scenario, in which observed epics are used to inform predictions for future epics, we
sorted the epics and their milestones based on their start date. For training and evaluation,
we used time-based 10-fold cross-validation. The time-based variant of cross-validation en-
sures that in the k-th split, the epics in the first k folds (training set) are created before
the epics in the (k+1)th fold (test set). The successive training sets are thus supersets of
previous ones. This allows for the sequential updating of models based on past knowledge.

The Bayesian model estimates a probability distribution of BRE values. For evaluation,
we selected the median of the posterior distribution as the predicted BRE value. This is
a common approach when the goal of the model is to minimize the absolute or relative
estimation error [201]. For the SoTA baselines, we applied the Decision Tree and Random
Forests regressors to obtain a BRE estimate.

3.5 Evaluation 63

3.5.4 Performance Measures

We used the Mean Absolute Error (MAE) and the Standardized Accuracy (SA) as error mea-
sures; both have been recommended to compare the performance of effort estimation mod-
els [62, 202]. MAE is defined as:

N
1
MAE = — > | Actual BRE; - Estimated BRE; |
i=1

where N is the number of epics used for evaluation, Actual BRE; is the actual delay
measured in BRE, and Estimated BRE; is the predicted BRE value, for an epic i. SA is
based on MAE and compares an effort estimation model against random guessing:

MAE
SA=|1- x 100
MAE,,

where MAE is defined as the MAE of the model that is being evaluated and MAE,,
is the MAE of a large number of random guesses. SA represents how much better the
model performs than random guessing. We used the unbiased exact calculation of MAE,
as proposed by Langdon et al. [202]. A lower MAE and higher SA imply better predictive
performance.

To evaluate informativeness of the predictions of the Bayesian model (RQ4), we mea-
sured the relative width (RW idthgg) of the 90% credible intervals [200]. A narrower inter-
val (i.e. lower RWidthgg) is more informative.

To compare model performance, we tested the statistical significance of the evaluation
results using the Wilcoxon Signed Rank Test [191]. We applied the non-parametric Vargha
and Delaney’s A12 statistic [191], which is commonly used as effect size measure in effort
estimation [62].

3.5.5 Results

ROQ1: Benefits of dynamic prediction. Figure 3.5 presents the evaluation results of the
global, global iterative and dynamic modes of the Bayesian model for predicting the overall
delay (in BRE) over milestones. Averaging across epics, the dynamic mode achieves 66—
92% SA and 0.19-0.04 MAE over milestones. Over time, the dynamic mode consistently
outperforms the global mode by 12-57% (SA) and 16-81% (MAE), and the global iterative
mode by 12-44% (SA) and 16-78% (MAE). The Wilcoxon test shows that the improvements
achieved by the dynamic mode are significant (p < 0.001) with medium to large effect sizes
(A;y = [0.65,0.81]). This indicates that the dynamic mode significantly improves global and
global iterative modes right from the first milestone on.

RQ2: Benefits of delay patterns. The dashed lines in Figure 3.5 present the evalu-
ation results of the dynamic Bayesian model learned with and without delay patterns as
input feature. At the first two milestones, the dynamic model learned using patterns pro-
vides the same estimations as the dynamic model learned without patterns. This is caused
by the fact that the pattern clustering label becomes available from the third milestone on
(i.e., when there is a series of two or more previous milestones to classify). Then, from

64 3 Dynamic Prediction of Delays in Epics Using Delay Patterns and Bayesian Modeling

the third milestone on, the dynamic model learned using patterns consistently improves
the dynamic model without patterns by 9-20% (SA) and 19-66% (MAE). The improvements
achieved by using delay patterns are significant with medium effect size (Apy =[0.64,0.69]).
This indicates that the use of delay patterns leads to significant improvements in predictive
performance, from the third milestone on.

- Global ‘A Global Iterative @ Dynamic without patterns == Dynamic

§100-
3 90 -t
o ___+_,-—P
< 80 et —
8 70 B . I Tl B
el '/
[A A
T 607 & Y Y 7S ¢ ¢ 4 4 ° °
S
1 2 3 4 5 6 7 8 9 10
Milestones
(a) Standardized Accuracy over time
®- Global ‘4 Global lterative - Dynamic without patterns == Dynamic
'y 2 a 2 2 2 L ’ * .
0.2 *_ _ A
w “_""""'—l-—-n——-—_.._
< -y - _ g
=01 ks s SR
—
~-
ST
0.0 |
1 2 3 4 5 6 7 8 9 10

Milestones

(b) Mean Absolute Error over time

Figure 3.5: Evaluation results obtained by the global, global iterative and dynamic
Bayesian models over milestones (RQ1); dynamic with and without delay patterns (RQ2).

RQ3: Comparison with SoTA baselines. Figure 3.6 presents the results of our
dynamic Bayesian model compared to the SoTA baselines, represented by the Decision
Tree [183] and Random Forests [22] models, in global and dynamic modes. The solid lines
show the results of the Decision Tree and Random Forests models in their original, global
mode using features from Choetkiertikul et al. [22, 183]. The dashed lines show the results
of the models in dynamic mode using our features from Table 3.1.

The dynamic Bayesian model consistently outperforms the SoTA baselines in both
global and dynamic modes. Over time, dynamic Bayesian improves the global Decision
Tree by 74-144% (SA) and 44-87% (MAE), and the global iterative Random Forests by 56—
71% (SA) and 34-84% (MAE). The Wilcoxon test shows that the improvements achieved
by dynamic Bayesian over the global SoTA baselines are significant with large effect size
(AIZ > 0.84). Dynamic Bayesian also outperforms the dynamic Decision Tree by 22-48%
(SA) and 26-80% (MAE), and the dynamic Random Forests by 4-20% (SA) and 7-68% (MAE)

3.5 Evaluation 65

over milestones. The improvements of dynamic Bayesian over the dynamic Decision Tree
and Random Forests are significant with effect sizes greater than 0.58. This indicates that
the dynamic Bayesian model achieves significant improvements over the SoTA baselines.

Overall, the models in dynamic mode substantially outperform their counterparts in
global mode. This highlights the benefits of dynamic predictions across models. Bayesian
achieves the highest predictive accuracy and the largest overall increase in performance com-
pared to the SoTA baselines.

- Global DT # Dynamic DT <& Dynamic Bayesian
-4 Global Iterative RF -+~ Dynamic RF

3100-

- e A— = =X

3 - -

3 o — R— - R —

§ % &"i—- i__+_-+-_+_-_|.-_+__-_|_
=l F-—t—"

E 601 Jf . [n n] n T : n

e A A A A A A A

T 401 . . o . - + il I .

©

204

Milestones

Figure 3.6: Comparison of our dynamic Bayesian model with SoTA baselines in global
and dynamic modes (RQ3). ‘Global DT’ and ‘Global Iterative RF’ are the global Decision
Tree [183] and global iterative Random Forests [22] learned using features from related
work. ‘Dynamic DT’ and ‘Dynamic RF’ are the dynamic Decision Tree and dynamic Ran-
dom Forests learned using our features from Table 3.1.

Milestone 2 Milestone 5
75
5.0
200
2 Milestone 7 Milestone 10
a

7.5
5.0
25
0.0
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Predicted BRE

Figure 3.7: The estimated BRE distributions as updated by the dynamic Bayesian model
across milestones (RQ4).

66 3 Dynamic Prediction of Delays in Epics Using Delay Patterns and Bayesian Modeling

RQ4: Impact of prediction time. Figure 3.7 shows how the estimated BRE distribu-
tions of the dynamic Bayesian model evolve over milestones 2, 5, 7 and 10. The prediction
intervals become more narrow and sharp over time. The average RWidthg, of the predic-
tion intervals decreases from 1.14 at milestone 2 to 1.01 at milestone 5, 0.94 at milestone
7, and 0.89 at milestone 10. The Wilcoxon test shows that the changes in RWidthg, over
time are significant (p < 0.001) and the effect sizes are small to medium (Ays = [0.59,0.68]).
This indicates that the dynamic Bayesian model is convergent, i.e. the predictions of the model
become more certain and informative over time.

3.6 Discussion

3.6.1 Main Findings

Delay patterns as input feature. We found that the patterns identified at the case com-
pany are indicative of the overall project delay. This means that a similar pattern in his-
torical data can provide an estimation for the future development of delay in an ongoing
project. The patterns have shown their value in transport, and now in software develop-
ment as well. They can be useful as input feature for delay prediction and rescheduling
decisions. Our results demonstrate that the use of patterns leads to significant improve-
ments of 9-20% (SA) and 19-66% (MAE) in the predictions of delay. The patterns in other
organizations might differ from the four patterns identified at the case company. We ex-
pect that the number and shape of patterns will depend on the dataset being used. The
patterns are essentially a reflection of recurring problems or abnormal behaviors that lead
to delay in organizations.

Relationships with risk factors. We characterized the patterns in terms of risk
factors, as shown in Table 3.2. Our statistical analysis reveals that the patterns show sig-
nificant differences in various risk factors. Even though we cannot reason about causal
links between the factors and patterns, the results of our factor analysis enable us to form
hypotheses on the causes of delays. For example, the epics in Cluster 1 have a signifi-
cantly higher number of outgoing dependencies, larger delivery scope and higher devel-
oper workload. We therefore hypothesize that large epics with many dependencies and
overloaded developers are likely to exhibit a pattern similar to that of Cluster 1 and lead to
major overall delay. Testing such hypotheses could lead to actionable insights and suggest
delay mitigation measures. For a comprehensive view, we recommend the use of both epic-
and story-level risk factors to characterize the patterns. Epic-level risks can provide high-
level insights into problems related to the environment that the delivery takes place in.
Story-level risks can give lower-level insights into problematic software tasks and collab-
oration challenges (e.g., user stories that have an abnormal waiting time are an indication
of lack of team cooperation [183]).

Benefits of dynamic prediction. Our results show that dynamic models signifi-
cantly outperform their global and global iterative counterparts. The dynamic Bayesian
model achieves improvements of at least 12-44% (SA) and 16-78% (MAE) right from the
first milestone on. It also substantially outperforms the SoTA baselines. This highlights the
benefits of dynamic prediction methods and indicates that existing, static methods are less

3.6 Discussion 67

suited to predict long-term delay. Existing models are not able to adequately incorporate
changes occurring during project execution. Dynamic methods can effectively incorpo-
rate dynamic phenomena, resulting in increasingly more accurate and reliable schedule
estimates over time. Dynamic prediction can therefore help teams detect risks through-
out the project life cycle and react to delays in a more prudent fashion. This is especially
valuable in development settings that are subject to constant change and where schedule
overruns are a critical factor.

Trade-off between prediction time and accuracy. Our evaluation results show
that the predictions of the dynamic model become more accurate and informative over
time. We acknowledge that predicting at later times (at 70—100% of the planned duration)
may be less useful as it might be too late to change the outcome. However, the increased
certainty may justify mitigation actions focused on handling a certain delay (e.g., postpone
product launch, move features to other epic) instead of trying to catch up (by adding more
resources). Furthermore, the dynamic approach achieves meaningful improvements right
from the start of the project on. It improves the global and global iterative approaches by
12% (SA) and 16% (MAE) at 10% duration, 19% (SA) and 27% (MAE) at 20% duration and
29% (SA) and 41% (MAE) at 30% duration. The improvements add up to 34% (SA) and 37%
(MAE) at 50% duration. The improvements obtained during the first half of the project are
notable and can enable teams to take early measures against delay.

Benefits of Bayesian methods. In our comparison of the SoTA baselines in dy-
namic mode, Bayesian performs better than the Decision Tree and Random Forests models.
Bayesian also achieves the largest overall increase in accuracy over time. This suggests
that Bayesian is more effective in quantifying and updating the uncertainty of predictions
over time. The results of RQ4 confirm this observation: the predictions of the Bayesian
model become substantially more certain and informative over time. Unlike the other
models, Bayesian provides detailed information about the uncertainty of an estimate in
the form of a probability distribution. This can help organizations raise confidence in
project plans.

3.6.2 Future Work

Causal inference. To improve the implementation of delay countermeasures, there is a
need to better understand the causes of delays and delay patterns. An interesting direction
for future research is to investigate why risk factors and delay patterns are related. This
could be assessed by causal inference on individual patterns. Causal discovery (e.g., [203])
could be used to learn a causal graph from the time series and identify the underlying
causes of trends or fluctuations in the patterns. This can help software organizations to
identify the causes of specific delays and estimate the effects of corrective actions before-
hand. Another opportunity for future work is to map recurring peak moments in patterns
onto development activities to identify key drivers of delay. Initial work in this direction
has been carried out by Kerzazi and Khomh [204] and Kula et al. [205]. Both studies found
that testing is one of the most time consuming activities and likely to result in delay.

68 3 Dynamic Prediction of Delays in Epics Using Delay Patterns and Bayesian Modeling

Systematic patterns. The identified delay patterns might be affected by systematic
effects that are calendar-related. Previous work (e.g., [70, 206]) has shown the existence of
such effects in software development work. An interesting opportunity for future research
is to test for seasonality and model the time dependency of delay patterns using pattern
matching. This would allow generalization over delay patterns and support the identifica-
tion of systematic effects at different levels of time granularity. For instance, within-week
dynamics due to day-of-the-week effects, and within-year dynamics affected by seasonal
effects.

Event-driven prediction. Previous studies (e.g., [129, 161]) have found that software
deliveries can be delayed by disruptive events, such as bugs and live incidents, that occur
during project execution. Existing effort estimation models are static and therefore not
able to incorporate such events into their predictions. Our dynamic model provides future
research an opportunity to process incoming incidents as they occur. This would require
updating of the model every time an incident or other notable event occurs. Previous
studies [207, 208] have recognized the potential of event-driven models for improving re-
planning strategies in software projects.

Delay propagation. Currently, our dynamic model considers each software delivery
independently and does not capture the interactions between dependent deliveries. How-
ever, a single delayed software delivery may cause a domino effect of secondary delays
over dependent teams and projects. Future work should model the (dynamic) interrelation
and propagation of delays across software deliveries. This could lead to more accurate es-
timates and a better understanding of the effects of delay propagation on delay patterns.
Initial work in this direction has been carried out by Choetkiertikul et al. [21]. They have
shown that the use of networked data and collective classification leads to significant ac-
curacy improvements.

3.7 Threats to Validity

Construct validity. The data variables we consider may not capture the intended mean-
ing of (concepts affecting) delay. This introduces possible threats to construct validity [176].
The delay measurements are derived from delivery dates and reported story points in the
backlog management data. However, it might happen that teams do not take their deliv-
ery deadlines seriously and close their deliveries too early or too late. It is also possible
that some teams do not follow the guidelines or principles for estimating story points. We
tried to mitigate these threats by collecting real-world data from many epics and teams
over a five year span.

Another potential threat to our study is related to the milestone division of epics. We
split the epics into regularly-spaced milestones based on completion rate. However, the
milestones may not be a good match with the work pace of some teams. This might have
led to a mixture of project phases within milestones and across epics, which would affect
the results for the patterns in some deliveries. In practice, it would be more appropriate
to split the epics based on iterations.

3.8 Conclusions 69

Internal validity. The delay patterns that we condition our Bayesian model on may
not reflect the situation in the test data. To mitigate this problem, we used time-based
cross-validation to mimic a real prediction scenario. To compare models and verify our
findings, we selected unbiased error measures and applied statistical tests [39, 191].

External validity. External threats are concerned with our ability to generalize our
results. We have analyzed 4,040 epics from 270 teams, which differ significantly in size,
composition and product domains. However, we acknowledge that our data may not be
representative of software projects in other organizations and open source settings. In
other contexts, software deliveries might have a different setup following different col-
laboration practices. Replication of our work is needed to validate the findings in other
settings and reach more general conclusions.

3.8 Conclusions

Modern agile software projects are volatile due to their iterative and team-oriented nature.
Changes in risk factors and team performance trigger the need to re-assess overall delay
risk throughout the project life cycle. Existing effort estimation models are static and not
able to capture changes occurring during project execution. In this paper, we have pro-
posed a dynamic effort estimation model for continuously predicting overall delay using
delay patterns and Bayesian modeling. The model incorporates the context of the project
phase and is finetuned based on changes in delivery performance over time. We apply
our approach to real-world data from thousands of epics, identifying four intuitive delay
patterns at ING. The evaluation results demonstrate that:

1. Delay patterns are indicative of the overall delay and useful as input feature for
dynamic prediction.

2. The dynamic model consistently outperforms global and global iterative approaches,
and the SoTA baselines, even during early milestones (10-30% of project duration).

3. The predictions of the dynamic Bayesian model become substantially more certain
and accurate over time.

Overall, our results highlight the benefits of dynamic prediction methods that are able
to learn from the time-dependent characteristics of software project delays. We identified
several research areas calling for further attention, including causal inference, systematic
effects, and delay propagation. Progress in these areas is crucial to better understand and
manage delays in software projects.

71

Modeling Team Dynamics for the
Characterization and Prediction of
Delays in User Stories

In agile software development, proper team structures and effort estimates are crucial to
ensure the on-time delivery of software projects. Delivery performance can vary due to the
influence of changes in teams, resulting in team dynamics that remain largely unexplored.
We explore the effects of various aspects of teamwork on delays in software deliveries. We
conducted a case study at ING and analyzed historical log data from 765,200 user stories
and 571 teams to identify team factors characterizing delayed user stories. Based on these
factors, we built models to predict the likelihood and duration of delays in user stories. The
evaluation results show that the use of team-related features leads to a significant improve-
ment in the predictions of delay, achieving on average 74%-82% precision, 78%-86% recall and
76%-84% F-measure. Moreover, our results show that team-related features can help improve
the prediction of delay likelihood, while delay duration can be explained exclusively using
them. Finally, training on recent user stories using a sliding window setting improves the pre-
dictive performance; our predictive models perform significantly better for teams that have
been stable. Overall, our results indicate that planning in agile development settings can be
significantly improved by incorporating team-related information and incremental learning
methods into analysis/predictive models.

This chapter has been published as E. Kula, A. van Deursen, and G. Gousios. Modeling Team Dynamics for the
Characterization and Prediction of Delays in User Stories, IEEE/ACM ASE’21 [131].

72 4 Modeling Team Dynamics for the Characterization and Prediction of Delays in User Stories

he overall perceived success of a software project depends heavily on the timeliness
T of its delivery [9]. Reducing delays is therefore a critical goal for software compa-
nies. Over the past two decades, software organizations have increasingly embraced agile
development methods to manage software projects [209]. Agile gained popularity in the
software industry because, in comparison to traditional (waterfall-like) approaches, it uses
an iterative approach to software development, aimed at reducing development time, man-
aging changing priorities and inherently reducing risk [11]. However, on-time delivery
remains a challenge in agile software development. Prior work [12] has found that around
half of the agile projects run into effort overruns of 25% or more.

In agile settings, software is incrementally developed through short iterations to en-
able a fast response to changing markets and customer demands. Each iteration requires
the completion of a number of user stories, which are a common way for agile teams to ex-
press user requirements. Agile teams are responsible for determining the next iteration’s
workload together and then breaking these into user stories that can be implemented,
tested and shipped in one iteration. Agile teams are characterized by self-organization
and intense collaboration [11, 210]. Several studies [9, 104, 211-213] have shown the im-
portance of teamwork for the success of agile projects. Various aspects of teamwork, such
as team orientation, team coordination and work division, can affect software delivery
performance [104, 105]. Moreover, delivery performance can vary due to the influence
of changes in teams, resulting in team dynamics that remain largely unexplored. Hence,
there is a need to better understand the effects of teamwork and team dynamics on delays,
which can benefit the effective application of agile methods in software development.

Today’s agile projects require different approaches to planning due to their iterative
and team-oriented nature [13]. Central to the planning is the ability to predict, at any
phase of the project, if a team can deliver the planned software features on-time. Agile
teams would therefore benefit from team-specific, actionable information about the cur-
rent existence of delay risks at the fine-grained level of user stories, allowing them to take
measures to reduce the chance of delays. Recent approaches have leveraged machine learn-
ing techniques for evaluating risk factors in software projects (e.g., [98, 100]), estimating
effort for issue reports (e.g., [18—20]) and predicting delays in bugs or issues (e.g., [21-23]).
These approaches focus on the technical aspects of software deliveries and do not ade-
quately take into account team-related factors. Studies of software teams [104-106, 214]
have developed theoretical concepts and detailed performance models that articulate re-
lationships between various aspects of teamwork quality and the extent to which a team
is able to meet time and cost objectives in software projects. These studies point out that
various aspects of teamwork need to be considered when planning software deliveries.
Therefore, the predictive power of existing effort prediction models might be enhanced by
incorporating such factors.

In this paper, we explore the effects of various aspects of teamwork on delays in soft-
ware deliveries. Project delays are common in the software industry [4, 12], which makes
it important to study this phenomenon in more detail. There is a need to understand
and predict, especially during early project phases, which projects will be delayed. This
would allow teams to better manage and possibly prevent delays. To do so, we conduct a
case study at ING, where around one quarter of its user stories are delayed. We analyze
historical log data from 571 teams and 765,200 user stories at ING to identify team factors

4.1 Usage Scenarios 73

characterizing delayed user stories. Based on these factors, we build models that can effec-
tively predict the likelihood and duration of delays in user stories. Our models learn from
ateam’s past delivery performance to predict delay risks in new user stories. To determine
whether the use of team features has a positive impact on the predictive performance, we
compare the results of models learned using different sets of features: story features, text
features and team features. We also evaluate the models with a sliding window setting to
explore incremental learning and the impact of team churn on the models’ performance.
The sliding window works as a forgetting mechanism: the model learns from a team’s re-
cent delivery performance in the window and forgets older, irrelevant data to follow team
changes over time.

Our results show that the use of team features leads to a significant improvement in
the predictions of delay, achieving on average 74%-82% precision, 78%-86% recall, 76%-
84% F-measure and 80%-92% AUC. Team features can help improve the prediction of delay
likelihood, while delay duration can be predicted exclusively using them. Moreover, de-
veloper workload, team experience, team stability and past effort estimates are the most
important team features for predicting delay. Finally, training on recent user stories us-
ing a sliding window improves the predictive performance; our predictive models perform
significantly better for teams that have been stable.

4.1 Usage Scenarios

At the end of an iteration, a number of user stories are completed and there may also be a
number of incomplete/unresolved user stories delayed to future iterations. Our prediction
models enable teams to identify these user stories before the start of an iteration. There
are two scenarios in which predictions are being made: before and after an effort estimate
has been made for a user story. The availability of an estimate might affect the accuracy
and usefulness of our predictions. It is likely that in the latter scenario, our predictions
get more accurate (since we have information about the estimated size of a user story) but
the less useful it is (since the team has already spent a considerable amount of time on
estimating the story).

In both scenarios, our predictive models can be used as a decision support system to
generate proactive feedback and make informed decisions on the planning and feasibility
of a user story. Foreseeing delay risks allows teams to identify problematic user stories
and take corrective actions, such as story splicing (i.e., splitting large stories into smaller
ones) or resolving inter-story dependencies. Our models learn from the past delivery per-
formance of the specific team which they are deployed to assist. Hence, the predictions
our models make are team-specific. This helps teams improve their schedule estimates
and gain an increased awareness of their own behavior patterns.

4.2 Study Design

In this paper, we propose a team-driven approach to determine early on the impact and
probability of a delay risk occurring in a user story. To do so, we extract 24 risk factors
representing technical and team-related aspects of a user story. Based on these factors,
we build models that can effectively predict the likelihood and duration of delays in user
stories. Predictions are generated for two usage scenarios: before and after an effort esti-

74

4 Modeling Team Dynamics for the Characterization and Prediction of Delays in User Stories

mate has been made for the user story. For convenience, in the remainder of this paper,
we denote the scenarios as SC1 and SC2, respectively.
Throughout our study, the following research questions guide our work:

RQ1. Benefits of team features: Does the use of team features have a positive
impact on our predictive performance? (RQ1.1), How effective is our approach when
team features are used exclusively? (RQ1.2) To answer these questions, we compare
the performance of models learned using combinations of different sets of features:
story features, text features and team features.

RQ2. Feature importance: Which team features are most important for predicting
delays in user stories? For this question, we train models using the extracted 24 fea-
tures and determine the relative importance of team features in terms of predictive
power.

RQ3. Benefits of sliding window: Does the use of a sliding window provide more
accurate and robust estimates? As teams change over time and these changes might
affect their delivery performance, we want to analyze whether it is beneficial for
our predictive model to learn from recent user stories and forget older data. To do
so, we compare the performance of models learned using all features in a sliding
window setting versus expanding window setting.

RQ4. Factor of change: How does team churn affect story delays and our predictive
performance? Changes in team composition (due to either a member leaving or
joining the team) can cause teams to become less predictable at delivering software.
We employ the sliding window setting and determine for each user story the number
of consecutive windows a team has been stable for. We perform a statistical analysis
to assess the impact of the number of consecutive stable windows on story delays
and our models’ performance.

We can split our approach into four main steps:

1.

Data collection and pre-processing: We collect and pre-process backlog management
data (past user stories) from 571 development teams at ING.

. Risk factor extraction and analysis: We extract 24 risk factors representing technical

and team-related aspects of user stories, and then perform correlation analysis to
determine whether the factors affect delays in user stories.

. Text feature extraction: We use RoBERTa [215], a state-of-the-art language represen-

tation model, to produce vector representations (i.e., embeddings) for the textual
descriptions of user stories. To adapt the model to our prediction task, we update it
with additional training on our corpus of unlabeled user stories.

. Model building: We use the selected risk factors and text embeddings to build models

that predict delays in user stories.

. Model evaluation: We evaluate our models using various sets of features in different

experimental settings to answer the research questions.

4.2 Study Design 75

4.2.1 Data Collection and Pre-Processing

We extracted log data from ServiceNow, a backlog management tool used by a majority
of teams at ING [216]. The dataset consists of user stories delivered by 571 teams at ING
between January 01, 2016 and January 01, 2021. The user stories have significant variety
in terms of the products developed, the size and application domain (banking applications,
cloud software, software tools). The dataset contains the following fields for user stories:
Identification Number, Creation Date, Sprint Identification Number, Planned Start Date, Ac-
tual Start Date, Planned Delivery Date, Actual Delivery Date, Story Points and the textual
Title and Description fields. The Planned Start Date coincides with the start date of the
sprint that the story was originally assigned to. We acknowledge that the planned start
date of a user story might change before the sprint is started. Therefore, we consider only
the planned start date as scheduled on the day that the development phase of a sprint
is started. For each user story, the dataset contains the entire history of changes. This
enabled us to track the number of sprints a user story was delayed for. We acknowledge
that a team might decide to temporarily move a story back to the product backlog after a
delay. Therefore, we calculate the delay duration based on the number of sprints a story
has actually been part of.

To eliminate noise and missing values, we removed user stories with a status other
than ‘Completed’. We also filtered out user stories with empty Planned Delivery Date, Ac-
tual Delivery Date, Story Points and Description fields. Moreover, we deleted user stories
that have not been assigned to a developer. We also removed stories that were added to a
sprint during the development phase, because they are likely to be unstable and not accu-
rately represent delay. We found a few user stories that had been delayed for an unusually
long period of time (e.g., in some cases over 10 sprints). We removed such outliers that
exceed two standard deviations from the mean delay duration of all user stories. The orig-
inal dataset contained 889,014 user stories. After removing outliers and pre-processing
the data, the final dataset decreased to 765,200 user stories from 571 teams. This dataset
consists of 183,342 (24%) delayed and 581,858 (76%) non-delayed user stories.

Risk classes. The delayed stories in our dataset consist of 76,398 (42%) stories that
were delayed for a single sprint, 61,052 (33%) stories that were delayed for two sprints,
34,821 (19%) stories that were delayed for three sprints and 11,071 (6%) stories that were
delayed for more than three sprints. For our predictions, we choose to use four risk classes
that reflect the degree of delay: non-delayed, minor delay (delay of one sprint), medium
delay (delay of two sprints) and major delay (delay of three sprints or more). Since a small
fraction of the user stories in our data were delayed for more than three sprints, we decided
to merge this group with the user stories that were delayed for three sprints.

4.2.2 Risk Factor Extraction and Analysis

We extracted 24 risk factors from the collected log data to explore which factors character-
ize delayed user stories. Table 4.1 provides an overview and correlation analysis of these
factors. The factors are divided in two groups: story factors and team factors. The story
factors represent the inherent characteristics of user stories, such as its size, type and pri-
ority. The team-related factors represent characteristics of individual team members and
the group as a whole.

4 Modeling Team Dynamics for the Characterization and Prediction of Delays in User Stories

(28pd 1xau uo panuiyuo))

(SYIUOU XIS 3SB[Y}

Neam 6270~ Areurg ur aures at) Aejs wrea) Yy} Jo Iaumo jonpoid oy} piq Ayiqeys-od
SUYIUOW XIS
9JeIdpON 070 snonunpuo) 1se[9y} Ul o5ueyd Jou pIp ey} SIOqUISUWE UIEd} JO O1ey Aqiqess-ureay
eam GE0- SNONUIIU0)) JI0J PI3SIX Sy WIed} Y} SIea4 Jo IoquinN 90UQ)STX-IEd)
sar103s jsed 01
9JeIdpoON 970 snonurjuo) pauSisse urea} oy} Jery) syurod £103s JO IOqUUINU 9FRIIAY 9z1s-A103s-3A®
eam L8070 SNONUIIU0)) SISQUIUI WE} JO JIQUINN 9ZIS-UIEd) SI0}IBJ LB,
A1018
dJeIdpON w1670 snonuruo) Iasn e I0j pajewnysd Aqpenrur syutod A103s Jo IaquunN syutod-Teryrur
03 paudrsse A[reurdrio sem
yeapm €10 snonurjuo) A103s ® jeyp) yurids a3 ur syurod £103s Jo I9qUINU [eI0T, syutod-pauuerd
0] paudisse AJreurdrio sem
Neam 020 snonunjuo) AI103s & ey} JuLIds 9} UT SILIO}S Jasn JO IdqUINU [e10], sar103s-pauueld
0} paugdisse AJeu
eom ++92°0— snonunuo) -ISLI0 sem AI103s & Jey) Jurids a1} Jo uorjeInp pauue[q uorjernp-jurids
S91103S
9JeIOPOIN 170 snonunpuo) IaY3o Uo £I103s € Jo sapuspuadop SuroSino jo requnN 92139p-1no
WI9)SAS
9JeIdpoN PO Areurg TeOTIIIO-AJLINDAS © YJIM PIJRIDOSSE ST AI03S B IIOYM Aj1noas
Yeam w160 Areurg (Iowro3sno a3 03 Ajrorrd rofewr e 9Aey AI03S B S90(T Ajuorad
£103s ® Jo (Juourasoxduur
Neam L61°0- [edr10893e) "¢ J0 X7y 9nq ‘g ‘@Injeaj mau ‘1) ad4} juswudofaasp ay, odA3-a0p siojoey Ax03g
uonjejordrojur d s ueurreadg
JUSIILJJO0d UOTJB[ILI0) adA1 uondrLrdsaq aureu I03198j K10831e)

76

(100°0 > angea-d) ., pue (10°0 > anyea-d) , Ym pajed1pur st [817] UOT}01100 WOH ILM oUedYIU3IS
[BO11STIBIS "SISSB[D YSLI 3] PUB $10]0B] Usam1aq dIYSUOTIR[aI 3Y] JO [}SUI]S 31[] SINSBIW A1} :[£]Z] UOTIR[a1I0)) S UBWLIRadG UO Paseq oIe
SJUSIOLJO0J UOTIR[1II0)) "Wed) Juattdo[aAap pue AI0)s Iasn B JO SOTISLIJORIRYD oY} Surjuasardal s1039e] YSLI PajoelXa g 9YL, 1'% 3[qe],

77

4.2 Study Design

1ej os 1adojoadp e £q

91RISPOIN w17 0- snonunuo) paja[dwod usaq aaey ey syurod £103s Jo JaqUINU [JO], sjutod-Aj1oedes-aAap
1ej os 1odojoadp e £q

91RISPOIN xST 0 snonunuo) paje[duwod uaaq daeY TRy SAII0]S TSN JO I9qUINU [BI0], so1103s-Aj10edes-A9p
jurids juarInd

9JeISPON 670 snonunuo) JYy} ur 1odofaaap e 0] paudisse syurod £103s Jo 1oquny sjutod-peoI0m-Adp
jurads juarInd

9RISPOIN €670 snonunuo) 9y} ul 19do[aAIp B 0] PIUSISSE SALI0]S JASN JO I2qUUINN SILIOIS-PBO[NIOM-AID

dJeIdpON ST 0 snonuruo)) ONI 1 19do[aaap & Aq Juads s1e34 JO IaquINN oqe-age-Aap
309foad

Neam AN snonuruo) JudLINd Y} ur Jodofaadp e Aq juads s1eak Jo TaquunN 109(o1d-a8e-r0p
ures)

eam x82°0— snonunuo) JuaLmd oy} ur 10do[aadp e £q Juads s1eak Jo IaqunN urea}-age-Aap

eam F20 [ed1108938) ONI 1e 19d0o[aAdp ® Jo yuel AJLI0oTuas ayf, AjrI0TU9S-Ap
SIOQUIAUI SUIEd)

eam LLT°0 SNONUIUO) SSOIOE PaINSeaw [gF]] OO\ 2dUeISIJ [eqO[D 9YL, 90oue)sIp-Teqo[3
IeJ 0S Wea) Ay} Aq

Yeam 9270~ snonunjuo) paja[durod weaq aaey ey syurod £103s Jo oqunu ejo], - syurod-Ajoedes-ureay
TIej os wrea) aty} Aq

eam <8270 snonuniuo) pajd[dwod usaq dALY JEY) SILIO]S IISN JO ISqUINU [BJ0], SILI03s-Aj1oedes-urea)

uonejordioju] d s ueurreadg
JUSIOIJJ209 UOTIR[ILI0D) adA], uondrsaqg aureu 10joeg A10891e)

(28pd sno1aaud wouf panuiguo))

78 4 Modeling Team Dynamics for the Characterization and Prediction of Delays in User Stories

Story factors. Several story factors are extracted directly from the story’s primitive
attributes, which include dev-type and priority. Each story will be assigned a type and pri-

ority which indicate the nature and urgency of the task associated with implementing the
story. Both factors have been shown to affect the delivery of a story in related work [101].
We extract security to determine whether a user story needs to go through a mandatory,
resource-intensive security testing procedure at ING that might lead to delay. We extract
the outgoing degree (out-degree) of dependencies of a story; this has been shown to pre-
dict delay in related work [21]. The remaining story factors are used to extract the size of
a story and the sprint.

Team factors. Previous work (e.g. [219, 220]) has found that member turnover can
lead to tacit knowledge loss, and thus may negatively affect team productivity. There-
fore, we compute the stability of a team (team-stability) and that of its product owner
(po-stability). We also measure team-existence to quantify the familiarity and maturity
of a team; both have been shown to lead to better team interactions and project perfor-
mance in related work (e.g., [221, 222]). Previous studies (e.g., [223, 224]) have shown that
the interactions among team members are less effective in distributed teams. To quan-
tify the distance between team members, we calculate global-distance based on the Global
Distance Metric proposed in related work [148]. We calculate the metric for pair-wise
combinations of team members and take the maximum value.

Developers’ capabilities and experience can influence their contributions to projects
(e.g., [220, 225, 226]). Thus, we compute dev-capacity-stories and dev-capacity-points to

quantify the software delivery experience of the developer that a user story is assigned to.
Similarly, we use team-capacity-stories and team-capacity-points to quantify the team’s

overall experience with software deliveries. Moreover, we extract the developers’ seniority;
the intuition here is that senior developers might more often be assigned to complex user
stories that have a higher delay risk. ING employs the five-stage Dreyfus Model [150]
to assess developers’ expertise based on their software industry experience. We extract
dev-age-team, dev-age-project and dev-age-abc to measure how long team members have

been working within their teams, projects and overall at ING.

Related work has identified an inappropriate division of work as an important bar-
rier to achieving team effectiveness [104]. Hence, we calculate dev-workload-stories and
dev-workload-points. Finally, we extract team-size and avg-story-size as larger projects

are associated with greater risk in literature (e.g., [83, 221, 227]).

4.2.3 Text Feature Extraction

The title and description of a user story can provide good features since they explain the
nature and complexity of a story. To extract features from text, we combined the title
and description of a user story into a single text document where the title is followed
by the description. Our approach computes vector representations for these documents
that are then used as features to predict delays in user stories. We tried different methods
for text feature extraction: the traditional Bag-of-Words (with TF-IDF [228] and Okapi
BM25 [229]), the neural network-based Doc2Vec [230] and the state-of-the-art transformer-
based language model RoBERTa [215]. In case of TF-IDF and BM25, we pre-processed the

4.2 Study Design 79

texts by lower casing the words and removing punctuation and stop words. We compared
and evaluated the methods on our prediction task and corpus of user stories. We found
that RoBERTa outperforms the other methods on average by 11%-27% in precision, 5%-
38% recall and 9%-33% F-measure. Therefore, we decided to use RoBERTa as part of our
experimental setup for answering the research questions.

RoBERTa is an optimization based on Google’s BERT [231], which is able to learn
bidirectional word embeddings from texts. To adapt the model to the domain-specific vo-
cabulary of user stories, we updated it with additional training on our corpus of unlabeled
stories. In this updating procedure, we implemented the same masked language modeling
strategy used in the pre-training of the original model, with a set of newly designated hy-
perparameters (training steps: 60K, batch size: 64, optimizer: Adam, learning rate 3x10-5).

4.2.4 Model Building

Our objective is to predict the probability of a delay occurring (i.e., delay likelihood) and a
probability distribution over the aforementioned risk classes (i.e., delay duration in terms
of the number of sprints overrun). Therefore, our predictive models should be able to
provide probability estimates. We employ binary classification for predicting the likelihood
of delay. We reduce the aforementioned risk classes into two binary classes: delayed and
non-delayed. The delayed class covers the user stories that belong to the aforementioned
minor delay, medium delay and major delay classes. For predicting the delay duration of
delayed stories, we employ multi-class classification for the minor delay, medium delay and
major delay classes.

We compared and evaluated four different classifiers that are able to provide class
probabilities and that have been shown to be effective classifiers in risk prediction: Ran-
dom Forests [232], AdaBoost [233], Multi-layer Perceptron [234] and Naive Bayes [235].
The results of the model comparison can be found in an online replication package [121].
Random Forests outperforms the other classifiers on both prediction tasks, on average by
2%-23% in precision, 9%-48% in recall and 4%-33% in terms of F-measure. Therefore, we
chose to employ Random Forests (RF) [232] as part of our experimental setup.

Figure 4.1 shows the design of our pipeline of predicting delays in user stories: (i) ex-
tract numerical story features, (ii) extract numerical team features, (iii) produce document
representations of user stories using RoBERTa, (iv) concatenate features and (iv) classifi-
cation using Random Forests.

4.2.5 Model Evaluation

Evaluation setup. We performed experiments on the 765,200 user stories in our dataset.
We built team-specific predictive models, meaning that our models are trained and tested
on a dataset containing the past user stories from one specific team. Hence, we built
two models for each team in the dataset: one for predicting delay likelihood and one for
predicting delay duration.

To mimic a real prediction scenario where the delay of a given user story is esti-
mated based on knowledge from previous stories, we sorted the stories based on their
start date. Then, for training and evaluation in RQ1 and RQ2, we used time-based 10-fold
cross-validation. Cross-validation is a well-known technique to prevent the classifier from
over-fitting. The time-based variant of cross-validation ensures that in the kth split, the

80 4 Modeling Team Dynamics for the Characterization and Prediction of Delays in User Stories

Numerical
team features

Updated language model

Numerical
story features

Story title
+ description

Embedding

Concatenate features

Classifier

Story Delay Estimate

Figure 4.1: Our pipeline for predicting delays in user stories

stories in the first k folds (training set) are created before the stories in the (k+1)th fold (test
set). Unlike standard cross-validation, successive training sets are supersets of previous
ones (also known as an expanding window).

For RQ1, we evaluated the performance of the models learned using different sets of
features. We ran all experiments for the two types of usage scenarios: SC1 (excluding the
initial-points feature) and SC2 (including the initial-points feature). For RQ2—RQ4, we
ran the experiments using all features (including initial-points).

Our predictive models are able to estimate class probabilities for the delay likelihood
and delay duration of user stories. During the testing phase of our models, we chose the
class with the highest probability as the predicted class.

Sliding window setting. For RQ3, we evaluated our predictive models using two
different experimental settings: the expanding window and the sliding window. In both
settings, the user stories are first sorted based on their start date and then divided into
multiple time-based windows. For each window k; in the expanding window setting, we
use the stories from the previous windows kj...k;_; to train a model. In the sliding window
setting, however, we train the model only on the last window k;_;. The sliding window
allows us to train the model on a team’s recent delivery performance, while the expanding
window uses all observations available.

To analyze the impact of team churn on delays and our models’ performance (RQ4),
we employed the sliding window setting and determined for each window whether a team
had been stable or not. We marked a team as stable during a window if no team members
left or joined the team during that window (i.e., if the team composition did not change
during that window). For each story, we determined the number of consecutive windows
a team had been stable for. If the team composition had changed in the previous window,
then this number was considered to be zero. Finally, we performed a statistical comparison
of delays and our models’ evaluation results between stable and unstable teams.

4.3 Results 81

Performance measures. We computed the widely used precision, recall and F1-score
to evaluate the performance of our predictive models. To account for class imbalance, we
calculated the weighted averages of these measures (i.e, the score of each class is weighted
by the number of samples from that class). We also used Area Under the Curve (AUC) of
receiver operator characteristics (ROC) [236] in classifying the outcome of a user story.

To compare the performance of predictive models, we tested the statistical signifi-
cance of their evaluation results using the Wilcoxon Signed Rank Test [191]. This is a
non-parametric test that makes no assumptions about underlying data distributions. We
employed the non-parametric effect size measure, the Vargha and Delaney’s A;, statis-
tic [191]. This measure is commonly used for evaluation in effort estimation [62].

4.3 Results

In this section, we report the results in answering research questions RQs 1-4.

RQ1: Benefits of Team Features

For this research question, we compared the performance of models learned using story
features, a combination of story and text features, and all features (story, text and team
features). We used the Wilcoxon test and A;, effect size to investigate whether the im-
provements achieved by adding team characteristics are statistically significant.

+220/“+27"/ +34%+36%
0, +25%
w7ot 1% +9% 2% +179+20%
075 % 7% +4%
| 0.75 o
- .
2 =
W0 0.50 § 0.50
Q [3)
< (4
o
0.25 0.25
— o - o - - o - o
3 all3 & 0.00 3 3 313 &
0.00 X
Story S+T All Team S+T Al Team
Feature Set Feature Set
+29%+30% 1.00 +33%%+35%
0.75 A 1119 *15% +20% 2% +150,*19%
. +3% 075 3%
g - -
7] O
g 050 3 0.50
<
£
w
0.25 0.25
= o = o = o - o = = o - o
3 5 13 3 |13 3 35 13 3 3|8 &
0.00 0.00
Story S+T All Team Story S+T All Team

Feature Set

Feature Set

Figure 4.2: Results obtained for predicting delay likelihood in SC1/SC2: the story features
baseline achieved 0.67/0.69 precision, 0.64/0.65 recall, 0.65/0.67 F1 and 0.68/0.70 AUC.

82 4 Modeling Team Dynamics for the Characterization and Prediction of Delays in User Stories

0.8 +19% 24|, 1g9+22% +269730%" %1299 "3
+10%+11% +21%
P~ 0.75
+1%
06"~ =7 B
c
o
0
0 04
[
S
o
0.2
o 0 o oflc © o o allo &
O 0 22 (22l 22 2 0 0 n n
Story S+T All Team Story S+T All Team
Feature Set Feature Set
0.8 | +25%28%), 540;,+26% +22-24% | +21-23%
: +14%+18% +10%
+1% 0.75 +3%
0.6 - =7
g
5
@
0 04
g
- el LEE R
g3 Rl | KON
0.2 gg] S | ek
= - all- « 53 5| 52 5hl52 5
00 3 2 313 8 sSS EEH | EEE
Story S+T All Team Story S+T All Team

Feature Set Feature Set

Figure 4.3: Results obtained for predicting delay duration in SC1/SC2: the story features
baseline achieved 0.62/0.63 precision, 0.60/0.62 recall, 0.61/0.62 F1, 0.69/0.71 AUC (minor
delay), 0.65/0.67 AUC (medium delay), and 0.64/0.64 AUC (major delay).

RQ1.1: Does the use of team features have a positive impact on our predictive
performance? Figure 4.2 presents the evaluation results for predicting delay likelihood
in usage scenarios SC1 and SC2 (described in Section 4.1). In both scenarios, the models
learned using all features outperform the models learned using a subset of features in terms
of precision, recall, F1 and AUC. On average, the all-features models improve the story and
story+text models by 19% (precision), 23% (recall), 21% (F1-score) and 22% (AUC). Statistical
tests show that the improvements achieved by the all-features models are significant (p <
0.001) and the effect sizes are large (ranging between 0.71 and 0.87). This demonstrates that
the addition of team features leads to a significant improvement in the predictions of delay
likelihood.

Figure 4.3 presents the evaluation results for predicting delay duration. Similarly, in
both scenarios, the models learned using all features outperform the models learned using
a subset of features in terms of precision, recall, F1 and AUC. On average, the all-features
models improve the story and story+text models by 16% (precision), 20% (recall), 18% (F1-
score) and 17% (AUC). These improvements are significant (p < 0.001) and the effect sizes
are at least medium (ranging between 0.65 and 0.78). This indicates that the addition of
team features leads to a significant improvement in the predictions of delay duration.

4.3 Results 33

RQ1.2: How effective is our approach when team features are used exclu-
sively? As shown in Figure 4.2, the models learned using team features only for pre-
dicting delay likelihood perform better than the story models and slightly worse than the
story+text models. The improvements achieved by the all-features models over the team
models are significant and the effect sizes are at least medium (ranging between 0.63 and
0.76). This indicates that the three feature sets have statistically significant contributions to
the predictions of delay likelihood.

Figure 4.3 shows that the models learned using team features only for predicting delay
duration achieve similar results as the all-features models. The statistical tests show that
the differences between both models in terms of precision, recall, F1 and AUC are signif-
icant but the effect sizes are negligible. This indicates that we can effectively predict delay
duration using team features exclusively.

RQ2: Feature Importance

Feature importance for delay likelihood

dev-workload-stories
team-capacity-stories 4
planned-stories A
avg-story-sizeq
out-degree
dev-capacity-stories
security 1
initial-points -
team-stability -
planned-points -
team-existence -
dev-capacity-points -
po-stability 1

|

0.05 0.10 0.15 0.20
Relative importance

(a)

Feature importance for delay duration

o
o
S

dev-workload-stories -
team-capacity-stories -
dev-capacity-stories §
avg-story-size q
planned-stories -
team-stability 1
out-degree
dev-capacity-points §

005 010 015 020 025
Relative importance

(b)

Figure 4.4: Feature importance for predicting the likelihood and duration of delays in user
stories: team features are highlighted in blue, story features in gray.

o
gl
S

Using the feature importance evaluation built in Random Forests [237], we obtained the
top most important features and their normalized weights from models learned using story

84 4 Modeling Team Dynamics for the Characterization and Prediction of Delays in User Stories

and team features (including initial-points). The text features were not included as it is
not possible to reduce the vectors produced by RoBERTa to one single feature. The models
learned using story and team features achieve on average 0.74/0.76 precision, 0.79/0.80
recall, 0.77/0.78 F1 and 0.81/0.81 AUC for predicting delay likelihood/duration. Figure 4.4
provides a ranking of the features by order of importance for predicting delay likelihood
and delay duration. We averaged the importance values of the features across the teams in
the dataset to produce an overall ranking. Features that have an importance value lower
than 0.05 are not shown.

Figure 4.4a shows that 13 features from Table 4.1 contribute significantly to the predic-
tions of delay likelihood. Dev-workload-stories, team-capacity-stories, planned-stories,
avg-story-size and out-degree are the top-5 most important features. Their importance
values range from 14% to 22%. Figure 4.4b shows that a partially overlapping set of 8
features is effective in predicting delay duration. Even though the top most important
features in Figure 4.4b are similar to those for delay likelihood, there are a few ranking
differences. Overall, the team features have greater explanatory power for delay duration
than for delay likelihood. This corresponds to our results for RQ1. Dev-capacity-stories
and team-stability play a significantly larger role in the predictions of delay duration.

RQ3: Benefits of Sliding Window

L]
5097 090 = = *
G ®0.85 -
g 08 s *+ ﬁ* £ 0.60 = * *
— . - 0.
G071 . 0.75 ES
6mths 9mths 12mths 18 mths 6mths 9mths 12mths 18 mths
Window size Window size

© 0.90 0.95
£ o0ss ﬁ* - = o 00 *— +_ -
S 0.80 =, * =) T . -
Forsq - *"' 0.80 . - ;
0.70 | | | ! 0.75 | I I !
6 mths 9 mths 12 mths 18 mths 6 mths 9mths 12 mths 18 mths
Window size Window size

Figure 4.5: Evaluation results for predicting delay likelihood across different window sizes
in sliding window (depicted in red) and expanding window (depicted in gray) settings.

Figure 4.5 presents the evaluation results obtained for predicting the likelihood of delay us-
ing an expanding versus sliding window. The results are averaged across windows and the
teams in the dataset. As shown in Figure 4.5, the sliding window consistently outperforms
the expanding window in terms of precision, recall, F1 and AUC across all window sizes.
The Wilcoxon test shows that the improvements are significant (p < 0.001), and the effect
sizes are between 0.55 and 0.68 (small to medium). Comparing the results across window

4.3 Results 85

sizes, we observe that both the expanding window and the sliding window achieve the
best performance for a window of six months.

setting -® Precision -« Recall #- F-measure =+ AUC

Sliding window
1.01
o e e s S s
0.94 Aok _B—— =B Cas [p———
TTe-A
0.8
0.7 1 I ! : 1 ! I : . :
2 3 4 5 6 7 8 9 10
Window number
(@)
setting - Precision -« Recall - F-measure =+ AUC
Expanding window
1.0
0.9
0.8
0.7 1 : : . 1 t I T t T
2 3 4 5 6 7 8 9 10
Window number
(b)

Figure 4.6: Evaluation results obtained over time in the sliding window and expanding
window settings (using a 6-month window).

Figures 4.6a and 4.6b visualize the evaluation results obtained over time in the sliding
and expanding window settings using a 6-month window. The first window is not included
as it is used for training only. Figure 4.6a shows lower variance over time in the prediction
results for the sliding window. Both window settings start off with the same precision,
recall, F1 and AUC scores for the second window and then their performance declines
during the third and fourth windows. Further analysis of the data shows that a majority
of teams have greater variance in their story delays during the initial windows. This might
explain why the performance of both approaches decline at the start. We observe that the
performance of the expanding window drops drastically during the initial windows, while
the performance of the sliding window remains more stable. This suggests that the sliding
window is better able to adapt to changes in teams’ delivery performance.

86 4 Modeling Team Dynamics for the Characterization and Prediction of Delays in User Stories

RQ4: Factor of Change

.----

8 75
S
"2 . majo-r delay
g 50 . medium delay
g minor delay
g non-delayed
& 25

0

0 1 2 £ 4
Number of stable windows

Figure 4.7: Delay percentage distribution across different stability levels

Figure 4.7 presents a percentage distribution of different levels of team stability based on
the percentage of stories that were delayed. We observe that user stories that are delivered
by stable teams are less likely to be delayed. 29% of the stories that have been delivered
after a team change (i.e., zero stable windows) are delayed, of which 10% are hindered by
a major delay. The percentages of delayed user stories decrease for teams that have been
stable for a longer period of time. 21% of the stories that have been delivered after one
stable window are delayed, of which 7% has a major delay. Only 15%-17% of the stories
that have been delivered after more than one stable window are delayed.

Figure 4.8 presents the evaluation results obtained for predicting the likelihood of delay
for stories delivered by teams of varying stability. We observe that our predictive models
achieve better precision, recall, F1 and AUC scores for teams that have been stable. On
average, the models achieve 19% higher precision, 13% higher recall, 16% higher F1 and 10%
higher AUC for stories that are delivered after at least one stable window. Statistical tests
show that these improvements are significant (p < 0.001) and the effect sizes are between
0.63 and 0.71 (small to medium). Figure 4.8 also shows a greater variance in the results for
stories delivered after a team change.

4.4 Discussion

4.4.1 Recommendations for Practitioners

Our study provides practitioners with an extensive list of risk factors. By collecting and
analyzing these factors, software companies can identify delay risks and derive useful
models to predict delays in deliveries. Our models are effective in predicting the likelihood
and duration of delays in user stories, achieving on average 74%-82% precision, 78%-86%
recall, 76%-84% F-measure and 80%-92% AUC. Our models enable development teams to
foresee, either before or after effort estimation, if a user story is at risk of being moved to a
future iteration. This allows teams to identify problematic user stories and take corrective
actions to reduce the chance of delays.

4.4 Discussion 87

075 0.75
c
o =
® 0.50 § 0.50
o ()
g (4
o
0.25 0.25
0.00 0.00
0 1 2 3 4 0 1 2 3 4
Number of stable windows Number of stable windows
1.00
0.75 0.75
g
3
§ 0.50 g 050
£ <
- 0.25 0.25
0.00 0.00
0 1 2 3 4 0 1 2 3 4
Number of stable windows Number of stable windows

Figure 4.8: Evaluation results obtained for different levels of stability

The evaluation results of our predictive models show that the use of team features leads
to a significant improvement in the predictions of delay. Moreover, our results show that
team features can help improve the prediction of delay likelihood, while delay duration
can be explained exclusively using them. For delay likelihood, the feature sets are comple-
mentary to each other. This means that the probability of a delay occurring depends on a
combination of technical and team-related aspects, while the impact of the occurred delay
(i.e., how fast it is resolved) mainly depends on the characteristics of the team. We there-
fore recommend organizations to encourage and facilitate teams to improve their work
allocation, effort estimates, knowledge sharing and accountability in order to reduce the
impact of delays. Companies must also have a stable ecosystem in place to ensure that
teams are able to operate effectively.

4.4.2 Implications for Researchers

Feedback mechanisms on team behaviors. Our predictive models can be used by
teams as awareness or feedback mechanisms on their behavior patterns during planning.
The support provided by our models can help teams to increase the awareness of their
own behavioral habits (e.g., to reduce the bias towards over-optimistic estimates). This

88 4 Modeling Team Dynamics for the Characterization and Prediction of Delays in User Stories

is likely to foster productive behavior change and improve schedule estimates. To better
realize the benefits of such mechanisms, there is a need for better tool support that can
support agile teams in tracking their team behavior and improving the management of
agile projects. Current agile project management tools lack advanced analytical methods
that are capable of deriving actionable insights from project data for planning. An exten-
sion of existing tools with actionable information about team dynamics and the current
existence of risks in a sprint would be beneficial. Initial work in this direction has been
carried out by Kortum et al. [238].

Team dynamics monitoring. One of the key novelties in our approach is deriving
new team features for a user story by aggregating the features either at team- or individual-
level. We derived the features by using a range of statistics over the past stories delivered
by a specific team or developer. Our experimental results demonstrate the effectiveness
of this approach. Previous research [239, 240] has shown that team-related information
is often difficult to capture or not available due to lacking information sources. As a con-
sequence, these factors are often not monitored. Our results indicate the significant ben-
efits of incorporating such data into analysis/predictive models for effort estimation and
planning in agile projects. Further research on team monitoring approaches is needed to
address this gap and to gain a better understanding of what information and metrics can
be collected across software organizations.

Impact of social-driven factors. The set of team-related factors identified in this
paper are by no means comprehensive to encompass all aspects of teamwork. We were
limited to the repository data available at ING. It is an interesting opportunity for future
work to analyze the effects of social-driven factors related to the collaborative nature of
software development work. Previous studies [154, 213, 224] have reported on the impact
of social-driven factors, such as trust, team leadership, team cohesion and communication.
These factors would be a good starting point for future work.

Applicability of effort prediction models. Our evaluation results show that our
predictive models perform significantly better for teams that have been stable for a longer
period of time. In our analyses, we did not make a distinction between someone leaving
or joining the team, nor did we take into account the number of people leaving or joining.
It is an interesting opportunity for future work to analyze the effects of different types
of team changes on the models’ performance. This could also include external changes,
such as organizational restructuring or changes in senior management. Such changes
have been identified as risk factors in literature [90-92]. Future research should also ex-
plore the impact of other team characteristics (e.g., team experience and seniority) on the
performance of effort prediction models.

4.5 Threats to Validity

Construct validity. We consider data variables as constructs to meaningfully measure
delay and risk factors. This introduces possible threats to construct validity [176]. We
mitigated these threats by collecting real-world data from user stories and teams, and all

4.6 Related Work 89

the relevant historical information available. The ground-truth (i.e., the delay in terms of
the number of sprints overrun) is based on the number of sprints a story has been part of.
However, it might happen that teams close their stories too early or too late. We cannot
account for the impact of poor record keeping on our results. Even though all teams at
ING are encouraged to deliver on-time, there is a possibility that some teams treat their
delivery deadlines less seriously than others. These teams might add stories to sprints
without the commitment to deliver on-time.

Internal validity. Our dataset has the class imbalance problem. This has implica-
tions to a classifier’s ability to learn to identify delayed stories. To overcome this issue,
we used the weighted variants of performance measures and employed AUC which is in-
sensitive to class imbalance. We applied statistical tests to verify our assumptions [191],
and followed best practices in evaluating and comparing predictive models for effort es-
timation [39, 53, 241]. However, we acknowledge that more advanced techniques could
also be used, such as statistical over-sampling [242]. Another threat to our study is that
the patterns in the training data may not reflect the situation in the test data. To mitigate
this threat we used time-based cross-validation to mimic a real prediction scenario.

External validity. As with any single-case empirical study, external threats are con-
cerned with our ability to generalize our results. We have considered 765,200 user stories
from 571 teams, which differ significantly in size, composition, products developed and
application domain. Although we control for variations using a large number of projects
and teams, we acknowledge that our data may not be representative of software projects
in other organizations and open source settings. Agile teams in other settings might have
a different team structure and may work at a different pace or create stories differently.
Further research is required to confirm our findings in different development settings.

4.6 Related Work

Teamwork in agile development. Previous research has analyzed the nature of ag-
ile teams in software development: their characteristics, how they collaborate, and the
challenges they face in geographically and culturally diverse environments [243, 244]. A
survey of success factors of agile projects identified team capability as a critical factor [9].
Other studies [104, 106] have used performance models to investigate the impact of team-
work quality on project success. Moe et al. [104] showed that problems with team orien-
tation, coordination, work division and conflict between team and individual autonomy
are important barriers for achieving team effectiveness. Melo et al. [220] found that team
structure, work allocation and member turnover are the most influential factors in achiev-
ing productivity in agile projects. Our study complements prior work by exploring the
effects of various aspects of teamwork in the context of predicting software delays.

Effort estimation and planning. A great body of research has been published on the
study of effort estimation methods [6]. Estimation methods that rely on expert’s subjective
judgement are most commonly used in agile projects [12]. Project factors and personnel
factors are the top mentioned effort drivers in agile projects [10, 12].

90 4 Modeling Team Dynamics for the Characterization and Prediction of Delays in User Stories

Recent efforts have leveraged machine learning techniques to support effort estimation
and planning in software projects. They have achieved promising results in estimating
effort involved in resolving issues [18-20], predicting the elapsed time for bug-fixing or
resolving an issue (e.g., [23, 66, 67, 169]). Previous research [21, 22, 101] has also been done
in predicting the delay risk of resolving an issue in traditional development. Some studies
have been dedicated to effort estimation for agile development at the level of issues [18—20]
and iterations [24, 25]. Our work specifically focuses on predicting delays in user stories,
and complements prior work by introducing team features and incremental learning to
follow team changes over time.

4.7 Conclusion

Modern agile development settings require different approaches to planning due to their
iterative and team-oriented nature. In this paper, we explored the effects of various aspects
of teamwork on delays in software deliveries. We extracted a set of technical and team-
related risk factors that characterize delayed user stories. Based on these factors, we built
models that can effectively predict the likelihood and duration of delays in user stories.
The evaluation results demonstrate that:

1. The use of team features leads to a significant improvement in the predictions of
delay likelihood, while delay duration can be predicted exclusively using them.

2. Developer workload, team experience, team stability and past effort estimates are
the most important predictors for delays in user stories.

3. Training on recent user stories leads to more accurate and robust predictions of
delay.

4. Our predictive models perform significantly better and more consistently for teams
that have been stable.

Overall, our results indicate that planning in agile software development can be sig-
nificantly improved by incorporating team-related information and incremental learning
methods into analysis/predictive models. We identified several promising research direc-
tions related to team dynamics monitoring, designing feedback and awareness mecha-
nisms on team behaviors, and the applicability of effort prediction models in agile projects.
Progress in these areas is crucial in order to better realize the benefits of agile develop-
ment methods.

91

Context-Aware Automated
Sprint Plan Generation

Sprint planning is essential for the successful execution of agile software projects. While
various prioritization criteria influence the selection of user stories for sprint planning, their
relative importance remains largely unexplored, especially across different project contexts. In
this paper, we investigate how prioritization criteria vary across project settings and propose a
model for generating sprint plans that are tailored to the context of individual teams. Through
a survey conducted at ING, we identify urgency, sprint goal alignment, and business value
as the top prioritization criteria, influenced by project factors such as resource availability
and client type. These results highlight the need for contextual support in sprint planning. To
address this need, we develop an optimization model that generates sprint plans aligned with
the specific goals and performance of a team. By integrating teams’ planning objectives and
sprint history, the model adapts to unique team contexts, estimating prioritization criteria
and identifying patterns in planning behavior. We apply our approach to real-world data
from 4,841 sprints at ING, demonstrating significant improvements in team alignment and
sprint plan effectiveness. Our model improves team performance by generating plans that
deliver more business value, align more closely with sprint goals, and better mitigate delay
risks. Overall, our results show that the efficiency and outcomes of sprint planning practices
can be significantly improved through the use of context-aware optimization methods.

This chapter has been published as E. Kula, A. van Deursen, and G. Gousios. Context-Aware Automated Sprint Plan
Generation for Agile Software Development, IEEE/ACM ASE’24 [132].

92 5 Context-Aware Automated Sprint Plan Generation

ffective planning is crucial for the successful execution of software development proj-
E ects [9]. Central to the planning is the ability to prioritize and select software fea-
tures that deliver the most value to customers while mitigating delays. Over the past two
decades, agile methodologies have become increasingly popular for managing software
projects [11, 245]. Agile uses an iterative approach, enabling teams to manage changing
priorities, rapidly deliver business value, and inherently reduce risks. However, effective
planning remains challenging in agile settings. Previous research indicates that nearly half
of agile projects exceed their timelines by 25% [12] and deliver 56% less business value than
anticipated [4], highlighting the need for improved planning strategies.

In agile settings, software is developed incrementally through short iterations known
as sprints [38]. Each sprint involves completing a subset of requirements, expressed as user
stories [14]. Before a sprint begins, the team performs sprint planning to define the sprint
goal and select user stories from the backlog. Various factors, referred to as prioritization
criteria, such as business value and urgency, are used to prioritize and select user stories for
sprint planning [109, 110, 246, 247]. Although business value is typically considered the
main prioritization criterion in agile methods, previous research [107, 108] suggests that
this may not always reflect actual practice. Sprint plans are developed by teams based on
their cumulative knowledge and biases, making them specific to the context of each team.
The relative impact of the prioritization criteria remains largely unexplored, especially
across different project contexts.

The sprint planning process is complex and time-consuming, particularly for large proj-
ects where backlogs can grow to hundreds of user stories [111]. Agile teams would benefit
from automated support that estimates prioritization criteria and generates sprint plans
tailored to their specific context. Existing models [248-250] generate sprint plans based
on team estimates of prioritization criteria, aiming to maximize business value. Some
studies [251, 252] have extended these models to consider additional objectives, such as
maximizing sprint goal alignment and capacity usage. However, existing approaches rely
on team estimates of prioritization criteria and do not account for contextual influences.
Recent studies (e.g., [18, 131]) suggest that machine learning techniques can improve soft-
ware project management by providing contextual support and insights from project data.
This has the potential to enhance the efficiency and outcomes of sprint planning.

The goal of this paper is to develop a model for generating sprint plans that align with
the specific goals and performance of individual teams. To achieve this, we conducted a
case study at ING, following the study design outlined in Figure 5.1. We start by investigat-
ing how prioritization criteria affect the selection of user stories for sprint planning. We
conduct a survey with 52 teams to assess how they weigh the importance of these criteria
and how this is influenced by project characteristics. Next, we collect historical backlog
data from 4,841 sprints and use machine learning techniques to estimate prioritization cri-
teria. We then develop an optimization model that integrates teams’ planning objectives
and sprint history to generate sprint plans tailored to each team’s specific context. The
model learns from past team performance to identify and incorporate planning behavior
patterns. We evaluate our model through both quantitative and qualitative analyses. For
the quantitative analysis, we use the historical backlog data to assess the model’s effec-
tiveness and alignment with team planning. We compare the performance of our model
to the state-of-the-art in automated sprint planning methods. For the qualitative analysis,

93

Prioritization Criteria Historical Backlog Data

S c /‘:-Prioritization Criteria E
52 Backlog Data 1| Estimate delay risk | :
= E 4,841 sprints (|| basedon past
S= ’ P) i|__performance |
p u'ﬁ Factor 128,526 user stories | ! T I !
® Weights ' stimate goa 1
a% i’ 2 sl '| alignmentand |:
1| affinity based on |

Contextual \j textual similarity |

Variaton | (| | NMToooooooooooooo--.

Y
Maximize [Team Goals] [Story Selection Likelihood]

Sprint Plan
Optimization

on the backlog objective A8 UACIT ittt
per team behavior in sprint history

across stories { Planning J"' { Learned from planning J

Figure 5.1: Overall study design: We collect survey data (shown in yellow) to obtain teams’
weightings of prioritization criteria and their planning objectives. We collect historical
backlog data (shown in gray) and use machine learning techniques (visualized in green)
to estimate prioritization criteria. We develop an optimization model, integrating teams’
planning objectives and behavior, to generate sprint plans tailored to each team’s specific
context.

we interview teams to gather insights into their perceptions of the model’s usability.

Our survey results show that urgency, sprint goal alignment, and business value are
the most important prioritization criteria, with their influence depending on project char-
acteristics, such as project resources, priority, client type, and security level. The quanti-
tative evaluation of our model demonstrates significant improvements in team alignment
and sprint plan effectiveness. On average, the model achieves an 88% overlap in selected
stories with the team’s actual sprint plans, and a 74% semantic relatedness between differ-
ing stories. Our model outperforms the state-of-the-art and improves team performance
by generating sprint plans that deliver 29% more business value, exhibit 14% stronger align-
ment with sprint goals, and reduce delay risk by 42%. In the qualitative evaluation, the
majority of teams found our approach to be consistent with their goals and valuable as
interactive support.

The main contributions of this paper are:

« A set of prioritization criteria ordered by their importance for sprint planning (Sec-
tion 5.2.3).

« A context-aware optimization approach to generate sprint plans that align with
team goals and performance (Section 5.3).

« An empirical evaluation of the approach and comparison to the state-of-the-art,
demonstrating significant improvements in team alignment and sprint plan effec-
tiveness (Section 5.4.2-5.4.4).

« A qualitative analysis of the approach with software teams identifying areas for
future research (Section 5.4.5).

94 5 Context-Aware Automated Sprint Plan Generation

5.1 Background and Related Work

5.1.1 Sprint Planning

In agile software projects, sprints typically span 2-4 weeks [38]. During this period, teams
design, implement, test, and deliver a product increment, such as a working milestone.
Each sprint requires the completion of a set of user stories, which are brief descriptions of
features written from the perspective of the end user. Teams maintain a prioritized list of
pending user stories, known as the product backlog [35]. The product owner organizes the
backlog by sorting user stories according to their urgency, ensuring that the most urgent
stories are prioritized at the top. The urgency of a story is determined based on immediate
customer needs and project deadlines. Each user story includes a title, a textual description
clarifying the task, and several standard fields detailing the story’s type, business value,
and dependencies.

Before each sprint, teams hold a sprint planning meeting, divided into two parts. In
the first part, the product owner and development team establish the sprint goal and dis-
cuss user stories in the backlog. The sprint goal is a concise statement that describes the
primary focus of the sprint, such as implementing a new feature. In the second part of
the meeting, the team breaks down user stories into specific tasks and estimates the effort
required for each user story. Teams rely on expert judgement [10] to estimate effort, often
using story points as the unit of measure. Story points reflect the relative effort, complexity,
and risks associated with a user story [13]. The team then selects user stories to imple-
ment in the upcoming sprint based on prioritization criteria (described in Section 5.2.1).
These criteria consider the potential value of the user stories and the risks associated with
their execution. Additionally, the selection process accounts for development constraints,
such as dependencies and the team’s delivery capacity. Teams measure their capacity for
future sprints by monitoring their velocity, which represents the average number of story
points completed in previous sprints [13].

5.1.2 Related Work

Research on automated sprint planning (e.g., [248-250]) treats the process as an opti-
mization problem. Previous studies have used methods such as mathematical program-
ming [248-250] and genetic algorithms [251, 252] to select the optimal set of user stories
for a sprint. These approaches aim to maximize business value over the selection of user
stories, relying on team estimates of prioritization criteria and using a weighted sum of
these criteria as the objective function. Golfarelli et al. [248] developed an extensive objec-
tive function that incorporates criticality risk and affinity as factors influencing the busi-
ness value of user stories. Their work represents the state-of-the-art benchmark, which
we use for our model evaluation in Section 5.4. Al-Zubaidi et al. [251] and Ozcelikkan et
al. [252] extended their focus to multi-objective optimization, incorporating additional ob-
jectives such as maximizing sprint goal alignment and capacity usage. While most efforts
address planning for individual sprints, recent studies (e.g., [246, 252]) have developed
models for multi-sprint plans that allow for re-planning during execution.

Despite these advancements, existing approaches have two main limitations: (1) they
use generic objective functions that are not tailored to individual team contexts, and (2)
they are not fully automated, as they rely on team estimates of prioritization criteria. Our

5.2 Prioritization Criteria Survey 95

study addresses these gaps by providing automated, contextual support for generating
sprint plans. Our model incorporates teams’ planning objectives and sprint history to cre-
ate plans aligned with team goals and performance. We use machine learning techniques
to estimate prioritization criteria, thereby relieving teams from the task of manual estima-
tion. To evaluate the performance of our model, we use extensive real-world data from
our case company.

5.2 Prioritization Criteria Survey

We start by identifying prioritization criteria (i.e., factors that influence the prioritization
and selection of user stories for sprint planning) through literature analysis and observa-
tions at the case company. We aim to address the following research questions:

+ RQ1.1 Factor weights: How do teams weigh the importance of prioritization cri-
teria for sprint planning?

+ RQ1.2 Weight variations: How do project characteristics affect the weightings of
prioritization criteria?

To answer these questions, we conduct a survey with 52 teams (Section 5.2.2), through
which we assess the factor weights and how they vary across different project settings (Sec-
tion 5.2.3).

5.2.1 Deriving Factors from Literature and ING

From our literature analysis and observations at the case company, we identified six pri-
oritization criteria. These criteria specifically affect the order in which user stories are
prioritized and selected for planning, excluding development constraints such as depen-
dencies and team capacity. We derived five of these criteria from the literature, while
“strategic alignment” emerged from discussions with teams at ING. Below, we explain
these criteria in detail, with each factor name underlined:

« Business value refers to the potential impact of a user story on achieving business
goals and satisfying customer needs [14, 222]. This factor is often considered the
primary criterion in agile methods [158, 253]. However, this assumption has been
debated in previous research [107, 108], suggesting that it may not always reflect
actual practice and requires further research.

« Urgency measures the time sensitivity of a user story, determined by its relevance
to critical customer needs or alignment with project deadlines [254, 255].

« Sprint goal alignment evaluates how well user stories contribute to achieving the
overall objective of the sprint [251, 256].

« Affinity measures the degree of similarity or relatedness between user stories within
a project [246, 249]. High-affinity user stories share common themes or objectives,
while low-affinity stories have less overlap in functionality or purpose. Delivering
affine stories together in the same sprint can enhance the utility of the software
functionality [248]. For example, a “data extraction” story may have limited value

96 5 Context-Aware Automated Sprint Plan Generation

on its own but becomes more valuable when delivered with a “data loading” story.
Although affine stories complement each other, they are not interdependent and can
be implemented separately.

Delay risk indicates the likelihood of a user story experiencing delays, influenced by
factors such as complexity, uncertainty, and impact on existing functionality [109,
110, 131]. User stories with high delay risk threaten deadlines, potentially leading
to incomplete work and postponed feature delivery to customers.

« Based on discussions with teams at ING, we introduce strategic alignment as a new
factor. This criterion evaluates how well user stories align with the organization’s
long-term strategic goals. During sprint planning meetings at ING, we observed
that teams prioritized stories aligning with the company’s strategic goals to improve
product viability and promote software reuse.

5.2.2 Survey Setup

Survey Design

We developed an online survey to be completed collaboratively by software teams. The
survey consisted of a mix of closed and open-ended questions; the final survey instrument
is provided in the replication package [122]. To provide context, the survey’s start page
contained a brief outline of our study’s purpose. The survey was divided into two main
sections: the first section included multiple-choice questions to gather demographic data
on the size, years of existence, geographic distribution, and application domains of the
participating teams [136]. Additionally, teams were asked to provide their identification
number from ServiceNow*, the backlog management tool used at ING. This allowed us to
link survey responses with project data to determine project settings.

In the second section, teams were asked to rank the prioritization criteria based on
their importance for sprint planning in their current project. Teams were encouraged
to discuss and determine the importance of the criteria collaboratively during a group
meeting or at the start of a sprint planning session. They used a drag-and-drop format
to rank the criteria, which were presented in random order to reduce ordering bias [138].
After ranking, teams were asked to collectively weigh the importance of each factor using
a slider scale, with values ranging from 0 (not important) to 1 (highest importance). We
designed the slider scale to be intuitive and easy for teams to adjust their weights. To
ensure relative weighting, the total score across all prioritization criteria was limited to 1.
At the end of this section, we included an open-ended question allowing respondents to
suggest additional factors. We received nine responses, which we reviewed manually and
found to be either rephrasings or sub-cases of existing prioritization criteria.

Survey Validation

We piloted the survey with five randomly selected teams from ING TECH to refine the
questions [135]. The pilot version featured an additional open-ended question for feedback
on the survey content. All five teams provided feedback, highlighting the need for slider
scales to assign factor weights and revealing ambiguity in the factor names. Based on their
input, we provided definitions for the prioritization criteria in the final survey.

‘https://www.servicenow.com/

5.2 Prioritization Criteria Survey 97

Survey Execution

Our target population consisted of all 301 software teams within ING TECH. We accessed a
mailing list containing 115 product owners representing these teams. For the final survey,
we excluded the five teams and their respective product owners involved in the pilot run.
In June 2023, we distributed the survey to the remaining 112 product owners and their 296
teams. We sent personal invitation emails to the product owners, explaining the survey’s
purpose and requesting them to complete the survey with their teams. Participants had
a total of three weeks to respond. We received responses from 52 teams, resulting in a
response rate of 17%. We sent reminders halfway through the second week to follow up
on non-responders.

Survey Demographics

The survey gathered demographic information about the teams. The majority of teams
(92%) reported to consist of five to eight members. Team existence ranged from one year
(18%) to over five years (21%), with a median of three years. Additionally, 86% of teams
indicated having had the same product owner over the past year, and 32% reported being
globally distributed, conducting sprint planning meetings online. The teams worked in
diverse application domains: web (27%), mobile (18%), desktop (11%), cloud-based (21%),
and Al/data science (23%).

Survey Data Analysis

To investigate how teams perceive the importance of prioritization criteria (RQ1.1), we vi-
sualize the distributions of rank order responses and use descriptive statistics to compare
factor weights. To assess whether factor weights are affected by project characteristics
(RQ1.2), we investigate the impact of two main attributes: project size and project type.
Previous research suggests that these attributes can affect requirements engineering ap-
proaches in agile projects [108, 257]. For project size, we measure resource availability in
terms of the number of people assigned to the project, the time duration, and the budget al-
located. For project type, we assess the priority assigned to the project, whether the client
is internal or external to the case company, and whether the project requires resource-
intensive security testing. These characteristics are used at ING to classify projects by size
and type for planning and resource allocation. An overview of the extracted project char-
acteristics and their descriptions is provided in Table 5.2. Using team ID numbers from
the survey responses, we link the respondents’ factor weightings to their corresponding
projects in the backlog management data. We extract the project characteristics directly
from the primitive attributes of the project in the data. We then conduct a correlation
analysis to determine how these project characteristics affect the assigned factor weights.
Since our data is not normally distributed, we use Spearman’s rank correlation [258] and
apply Holm’s correction [218] to adjust for multiple comparisons.

5.2.3 Survey Results

(RQ1.1) Factor Weights

Table 5.1 presents the distributions of rank order responses and factor weights assigned by
respondents. The “Rank” column indicates the order of factors by their weighted average
rank scores, ranging from rank 1 (most important) to rank 6 (least important). Urgency

98 5 Context-Aware Automated Sprint Plan Generation

ranked first, sprint goal alignment second, and business value third, with weighted average
rank scores of 2.72 or lower. Over 67% of teams ranked urgency and sprint goal align-
ment as the most or second most important factors, with median weight scores of 0.26
or higher. Less than half (48%) of the teams ranked business value as one of the top two
factors, yet it received a high median weight score of 0.21. Affinity and delay risk were
perceived as being less important, with weighted average rank scores of 4.33 or higher, and
notably lower median weight scores of 0.12 or less. Strategic alignment was ranked as the
least or second least important factor by 82% of teams. Further analysis shows consistent
rankings for sprint goal alignment and strategic alignment, with standard deviations lower
than 1.05. There was greater variability in the rankings for other factors, with standard
deviations ranging from 1.15 to 1.23.

Urgency, sprint goal alignment, and business value are the top most important prior-
itization criteria. Each is perceived to contribute more than 20% to determining the
priority of a story.

Table 5.1: Overview of the prioritization criteria and their perceived importance for sprint
planning. Teams ranked the factors by importance and assigned weights using values
from 0 (not important) to 1 (highest importance). Rank distribution shows the distributions
of rank order responses, with rank 1 being the most important rank and rank 6 the least
important. WA represents the weighted average of factor ranks. Median weight and 95%
CI indicate the median and 95% confidence interval of the weights assigned to the factors.
The overall Rank is determined by the order of the weighted averages.

Factor Rank distribution WA Median 95% CI Rank
weight
Urgency 1.92 0.33 [0.18, 0.45] #1

Sprint goal alignment 2.09 0.26 [0.14, 0.41] #2

Business value 2.72 0.21 [0.11, 0.38] #3

Affinity 4.33 0.12 [0.04, 0.19] #4

Delay risk 451 0.10 [0.04,0.16] #5

Strategic alignment 5.25 0.07 [0.02, 0.11] #6

LB EFET

99

5.2 Prioritization Criteria Survey

L8€°0- .SF0 2P 0- B 0- S 0- Areurg £JIINO9s 9AISU)UI-20IN0SI saxrnbax 309foxd oty EMHM \M [9A9] L1298
L6580 IS0 .2¥0 LE0 LST0 Areurqg ONI 03 [BUIIXD ST JUSI[D s 303(01d 9y} IaTIoy ad4£y yuar)
orxd y3ry
«S20- FS0 L8T0 .6V0 ,E7°0 .85°0 [eouogaje) ¢ ‘orrd ajerapour 'z ‘orrd mof ‘T :ssep Ajrorid pauSissy Ajonrg adAy,
W90 ,280- 9T0 ,850 ,250 G20 snonunuo) 53500 109(01d Arejouour pajewn)sa [ejo], 1o8png
80 .6F°0- $I0- .86°0 .20 .0§0- Snonunuo)d) sAep ur uorjenp 30afoxd pauuelg Qwiy,
620 8T'0- TIT0- ,.9%0 ,850 ,IF0 snonunuo) 103(o1d a3 wo Sunyrom srdoad jo roqunu [ejO], ardoag Z1I§
VS ¥4a 4v Ad OS N
SJUAILJI0d ONI JE O1ISLIdJOEIEYD 9y} ISLIdJdeIeYd d)nqLijje
uorje[a.L10d s ueurreadg adA1 painseauwr oM moy jo uondriosaqg 109foxg 13foxg

‘[812] uo11091100 WO I)e

[9AS] G0°0 A3 1B , UIIM PIIBIIPUI ST 9oURIYIUSIS [ednistiels ‘sdrysuorjefor I 10 |9jeIopour ‘ yeam JumnedIpul s1010d Aq pajordop
‘syj8uan)s dIysUoT e[MOY[S 0} Pasn JIe SJUAIILYS0D [gG7] UONR[91I0I s UruLIRadS *(YS) JUswuSITe o13a)en)s pue (Y) qsU Ar[ap (Iv) A1
-uige ‘(Ag) anyea ssauisng ‘(9S) Juswudife [eod jurrds ‘(Y)) AouaSin :sMO[[0J S PJRIASIqqE dI. BLISJLID Uorjezijuiond ay], ‘sasuodsar £oA
-Ins Ul BLI9ILID Uonjezijiorid atj) 0] paugisse s]ysdram ay} pue sonsLajoeIeyd 109(o1d uaamiaq sIsATeue UOTJR[91II0D 31} JO SINSAY :Z°S d[qR],

100 5 Context-Aware Automated Sprint Plan Generation

(RQ1.2) Weight Variations

Table 5.2 presents the results of the correlation analysis between project characteristics
and the weights assigned to the prioritization criteria by survey respondents. Signifi-
cant correlations indicate variations in factor importance across different project settings.
Teams working on projects with abundant resources assign significantly higher weights
to sprint goal alignment, business value, and strategic alignment. They show less concern
for affinity and delay risk, likely because they have sufficient resources to mitigate the
consequences of fragmented and late deliveries. Teams working on high-priority proj-
ects, with external clients, or on security-critical systems prioritize delay risk and affinity
more, while assigning less weight to strategic alignment. Specifically, high-priority proj-
ects and external client projects prioritize the customer-focused criteria, urgency and busi-
ness value, whereas security-critical projects place more emphasis on affinity, possibly for
end-to-end testing.

The importance of prioritization criteria varies significantly based on project char-
acteristics, such as resources, priority, client type, and security level. This variation
demonstrates the need for contextual support in sprint planning practices.

5.3 Modeling Story Prioritization and Sprint Plan Opti-
mization

The variations in factor weights across teams highlight the need for contextual support
in sprint planning. To address this need, we aim to develop a model that generates sprint
plans tailored to the specific context of each team. We use survey responses and sprint his-
tory data to model each team’s planning objectives and past performance. First, we collect
historical backlog data (Section 5.3.1) and apply machine learning techniques to estimate
the prioritization criteria for user stories (Section 5.3.2). To capture planning behavior, we
develop a machine learning model that learns from a team’s sprint history to predict the
likelihood of the team selecting a particular story for their upcoming sprint (Section 5.3.3).
We derive team planning objectives from the prioritization criteria and their correspond-
ing weights provided in the survey responses (Section 5.3.4). Combining these elements,
we build an optimization model based on linear programming (Section 5.3.5). As illustrated
in Figure 5.1, the optimization is guided by an objective function composed of two compo-
nents: the team’s planning objective, which reflects their goals, and a selection likelihood
estimate, which reflects their planning behavior. By optimizing this objective while adher-
ing to development constraints, our model selects the optimal set of user stories tailored
to the team’s context for the upcoming sprint.

5.3.1 Backlog Data Collection
Backlog data

To develop and evaluate our model, we require a dataset containing historical records of
each team’s backlog and sprints. For each sprint, this dataset should include the identifi-
cation number, start date, end date, team velocity, the textual sprint goal field, and the set

5.3 Modeling Story Prioritization and Sprint Plan Optimization 101

of user stories selected for that sprint. Similarly, user stories should include their identifi-
cation number, urgency, business value, story points, dependencies, and the textual title and
description fields. Since story contents might change before a sprint begins, we capture
the information recorded on the day of sprint planning. This ensures consistency with
the data available to the team during planning. For each team, we extract snapshots of
their backlog on the days of sprint planning, linking team ID numbers with user stories
to obtain the list of stories available. If a story is associated with a sprint ID number, it
indicates that the story has been planned; if not, it remains unplanned in the backlog.

At ING, we extracted log data from the backlog management tool ServiceNow. This
dataset contains records from 4,841 sprints and 128,526 user stories from the 52 respon-
dent teams, covering the period from January 1, 2019 to January 1, 2023.

Data pre-processing
We took several steps to eliminate noise and address missing values in the data. First,
we filtered out sprints with a status other than ‘Completed’, focusing on fully executed
sprints. We then removed sprints that underwent significant content alterations during
development, as these instances are likely unstable. After cleaning the data, the final
dataset reduced to 4,812 sprints from 52 teams.

5.3.2 Estimating Prioritization Criteria
To model story prioritization, we need to measure or estimate the prioritization criteria
for past user stories. Our approach is as follows:

Business value: We extract business value directly from the primitive attributes of the
stories in the dataset. This value is represented by a numerical score between 1 and 10,
assigned by the product owner, indicating its perceived value to the customer. A higher
score denotes greater business value.

Urgency: Urgency is derived from the position of the story in the backlog, with higher
positions indicating greater urgency.

Sprint goal alignment: To measure sprint goal alignment, we assess the textual similar-
ity between the content of each user story and sprint goal statement. For each user story,
we concatenate the title and description into a single text document. For the sprint goal
statement, we use the text as a separate document. We then pre-process these documents
by converting the text to lowercase and removing punctuation and stop words. Using the
Doc2Vec technique [230], we generate fixed-length vector representations for both the
user stories and the sprint goal documents. To quantify the alignment, we calculate the
cosine similarity between the embeddings of the user stories and the sprint goals.

Affinity: To measure the relatedness between user stories, we use a procedure similar
to the one used for assessing sprint goal alignment. Instead of calculating the similarity
between the embeddings of user stories and sprint goals, we compute the cosine similarity
between the Doc2Vec-generated embeddings of the user stories themselves. The resulting
matrix of cosine similarity scores provides insights into the affinity among the stories in
the backlog. To calculate the affinity score for a sprint, we sum the cosine similarity scores
for all unique pairs of user stories selected for the sprint and normalize this sum by the

102 5 Context-Aware Automated Sprint Plan Generation

number of pairs. For each pair of stories on the backlog, we multiply their similarity score
by the product of their selection variables.

Delay risk: To estimate delay risk, we follow a procedure outlined by Kula et al. [131]
for predicting delay likelihood in user stories. Their method achieved an average F1 score
of 76-84% across a large industrial dataset. We extract the 13 most significant predictor
variables, identified as having an importance value higher than 0.05 in the study of Kula
et al., and augment these with the Doc2Vec-generated story embeddings as an additional
input feature. Since Kula et al. utilized the same backlog management tool, we were
able to directly extract these variables from ING’s data using the same methodology. A
detailed overview of the extracted variables is provided in the replication package [122].
We focus exclusively on user stories marked as ‘Completed’ in the backlog data, classifying
a story as ‘delayed’ if it was postponed for one or more sprints. To simulate a realistic
planning scenario, we extract predictor variables as they were recorded on the day of
sprint planning for the sprint to which the story was originally assigned.

For model building, we compare and evaluate four different classifiers that have been
shown to be effective in risk prediction: Random Forests [232], AdaBoost [233], Multi-
layer Perceptron [234] and Naive Bayes [22, 235]. A summary of the evaluation results
can be found in the replication package [122]. A comparison shows that Random Forests
outperforms the other classifiers. Therefore, we employ Random Forests and build predic-
tive models tailored to each team, trained and tested on individual teams’ backlogs. We
sort the user stories chronologically by their start dates, and use a 70-30 split for training
and evaluation. The initial 70% of the stories are allocated to the training set, and the re-
maining 30% to the test set. This approach ensures that the model learns from historical
data preceding the stories it is tested on.

Strategic alignment: We were unable to measure or find proxies for strategic alignment.
ING does not collect quantitative data on this factor nor has a standardized method for
strategy reporting.

5.3.3 Predicting Story Selection Likelihood
We develop a method to learn story selection based on team planning behavior. Specif-
ically, we build models that learn from a team’s sprint history to predict the likelihood
of the team selecting a particular story for the upcoming sprint. These models identify
the types of stories, or combinations of prioritization criteria, that teams select for their
sprints under given constraints. We use binary classification and build team-specific mod-
els, training and testing them with historical backlog data from a specific team. For each
sprint, we extract a historical snapshot of the backlog as recorded on the day of sprint
planning, with the corresponding stories serving as input instances for the model. The
number of user stories used for training each team-specific model ranges from 1,287 to
2,050. Input features include the team velocity set for the sprint, the estimated prioritiza-
tion criteria for the stories, and the number of outgoing dependencies for each story on the
backlog. Stories are labeled based on whether they were selected for the respective sprint.
We evaluated four machine learning algorithms suitable for classification tasks in soft-
ware project management: Random Forests [18, 131], Multi-Layer Perceptron [259, 260],

5.3 Modeling Story Prioritization and Sprint Plan Optimization 103

Least Median Square [259], and Naive Bayes [22]. A comparison of their predictive perfor-
mance demonstrated that Random Forests outperforms the other classifiers, with an aver-
age improvement of 6-18% in precision, 10-24% in recall, and 7-20% in F1 score. Therefore,
we chose Random Forests for our experimental setup.

To simulate a real planning scenario, where decisions rely on insights from previous
sprints, we sort the sprints chronologically by their start dates. For training and evaluation,
we use a 70-30 split: the initial 70% of sprints are allocated to the training set, and the
remaining 30% are used for the test set.

5.3.4 Obtaining Team Planning Objectives

We derive team planning objectives from the weights assigned to the prioritization criteria
in the survey. To account for the absence of strategic alignment, we re-scale the weights
of the remaining factors. We then convert the factors and their adjusted weights into a
weighted sum, which represents the team’s planning objective. This objective reflects the
factors in the proportion that teams aim to optimize when selecting user stories for the
upcoming sprint, with higher weights indicating greater importance. For example, team
t48 provided the following weightings: 0.30 for urgency, 0.20 for sprint goal alignment,
0.20 for business value, 0.15 for delay risk, 0.10 for affinity, and 0.05 for strategic align-
ment. We re-scale and convert these weights into the following planning objective, which
is to be optimized over a backlog of N user stories:

N

Objective t48 = max Z 0.31-urgency, +0.21 - business value;
i=1

+0.21 - sprint goal alignment; +0.11 - affinity,

-0.16 - delay risk,

All factors, except delay risk, contribute positively to the value of user stories and
should be maximized in the selection process for sprint planning. In contrast, delay risk
should be minimized, which is why it is assigned a negative coefficient.

5.3.5 Optimization Model Development

We formalize sprint plan optimization using the 0-1 knapsack problem, where sprints are
treated as knapsacks and user stories as items. The capacity of each sprint is defined by
the team’s velocity, and each story’s weight is measured in story points. The objective is
to select a subset of user stories that maximizes both the team’s planning objective and the
estimated story selection likelihood. This subset must adhere to constraints related to the
team’s velocity and story dependencies. We propose a linear programming model [261,
262] with the following variables:

« u; = 1 if user story i is selected for the upcoming sprint, u; = 0 otherwise;

« likelihood(i) is the probability that story i will be selected by the team for the up-
coming sprint, as predicted by our model using historical sprint data;

104 5 Context-Aware Automated Sprint Plan Generation

« velocity is the team’s capacity, i.e. the number of story points a team can deliver in
a sprint;

« story points; is the number of story points assigned to story i;
» D; is the set of user stories that story i depends on and that have not been completed
yet;

The goal is to maximize the following objective function z by optimizing the assign-
ment of the u; variables over a backlog of N stories:

N
Z = max Z team planning objective + likelihood(i) (5.1)
i=1

subject to constraints:

N

Z story points; - u; < velocity (5.2)
i=1

> ujzu; Dy (5.3)
JED;

The objective function z in Equation 5.1 aims to maximize the team planning objective
and the selection likelihood estimate across the user stories on the backlog. Equation 5.2
constrains the total sum of story points for the selection of stories to not exceed the team’s
velocity. The = symbol in Equation 5.3 ensures that all prerequisite stories for a given story
are either completed beforehand or planned for the same sprint, thereby guaranteeing a
logical sequence of story completion. We used the Gurobi solver in the Python library
PuLP? to solve the linear programming problem.

5.4 Model Evaluation

Our evaluation aimed to answer the following research questions:

« RQ2. Model alignment with team planning: Does the proposed approach generate
sprint plans that align with teams’ actual sprint plans? To evaluate how well the sprint
plans generated by our model align with team planning, we compare the overlap in se-
lected stories between our model-generated sprint plans and those created by the teams
against a state-of-the-art (SoTA) baseline. We also assess the impact of different compo-
nents of our objective function by analyzing the model’s performance using only the team
planning objective, only the selection likelihood estimate, and the combined objective.

« RO3. Model effectiveness: How effective are the sprint plans generated by our model
compared to teams’ actual sprint plans in terms of value delivery and risk mitigation? We
evaluate the effectiveness of our model-generated sprint plans against those created by
the teams. This assessment involves aggregating the prioritization criteria across the user
stories within each sprint plan to measure their overall effectiveness.

*https://pypi.org/project/PuLP/

5.4 Model Evaluation 105

RQ4. Model usability: How do teams perceive the performance and usability of our model?
We apply the model to the current state of the backlogs and conduct interviews with teams
to gather feedback and identify areas for improvement.

We address model alignment and effectiveness through a comparison with team’s ac-
tual sprint plans and a SoTA baseline [246, 248], and model usability through a qualitative
evaluation at ING.

5.4.1 SoTA Baseline

The single-sprint version of the linear programming model proposed by Golfarelli et al. [246,
248] serves as the state-of-the-art benchmark. The objective function of this model aims
to maximize the cumulative business value of the user stories selected for the sprint. The
business value of each story is increased if related (affine) stories are included in the same
sprint or if the story is critical (i.e., urgent). Importantly, the objective function is fixed
and does not account for team-specific contexts.

In their capacity constraint formulation, Golfarelli et al. increase the story points of
user stories by their uncertainty risk. Similar to our dependency constraint, their model
includes inequalities that ensure prerequisite stories for a given story are either completed
beforehand or planned for the same sprint. Their model differentiates between AND-type
and OR-type dependencies.

The single-sprint version of the linear programming model proposed by Golfarelli et
al. defines the following variables:

Definition 1 (Sprint Planning Problem). Given a set of n user stories U in the
backlog, let:

« x; = 1if and only if story i is included in the upcoming sprint, 0 otherwise;

« u; be the utility (i.e., business value) of story i;

« p; be the number of story points of story i;

« p™* be the capacity of the sprint (i.e., team velocity), measured in story points;
« r{" be the criticality risk (i.e., urgency) of story i

« r#" be the uncertainty risk of story i;

« a; be the affinity of story i;

« Y; c U be the set of stories related (affine) to story i;

 y; be an auxiliary variable related to the number of stories in Y; included in the
upcoming sprint. y; is zero if story i is not part of the sprint, otherwise it equals the
number of stories in Y; that are included in the sprint;

« D; c U be the set of stories on which story i depends and that have not been com-
pleted yet;

106 5 Context-Aware Automated Sprint Plan Generation

« U2 UAND yUOR where UANP and UOR are the subsets of stories having depen-
dency type AND and OR, respectively;

The model aims to optimally assign the x; variables. The linear programming formu-
lation proposed by Golfarelli et al. is given by:

n
z = Max Z ui(rf x; + ai%) (5.4)
i=1 i

subject to constraints:

n
> pirtxg s pmer (5.5)
i=1
> xjzx vie UOR (5.6)
JED;

> xj=x|Dy| vie UAND (5.7)
JeD;

Adapting the Model to the ING Context

Golfarelli et al. use similar prioritization criteria but with different terminology. Specif-
ically, their factors “utility” and “criticality” correspond to what we refer to as “business
value” and “urgency” Consequently, in the context of the ING data, we measure utility
and criticality as business value and urgency, respectively. In adapting the linear pro-
gramming formulation to the ING context, we make two modifications:

« We use our delay risk factor as a proxy for the “uncertainty risk” factor defined by
Golfarelli et al. They describe an uncertain story as one whose complexity is hard
to estimate due to potential unexpected problems, a phenomenon that corresponds
with our delay risk factor.

« At ING, all dependencies are of the AND-type. Therefore, we exclude Equation 5.6,
which handles OR-type dependencies, as it is not applicable in the ING context.

The optimization model developed by Golfarelli et al. [246, 248] relies on team esti-
mates for all prioritization criteria. However, obtaining retrospective team estimates for
historical stories at ING was not feasible. Therefore, we use our procedure described in
Section 5.3.2 to estimate the prioritization criteria.

5.4.2 Experimental Setup

We perform experiments using the test set that comprises 30% of the teams’ past sprints
(described in Section 5.3.3), incorporating our predictions of delay risk and selection like-
lihood for the user stories. To address RQ2, we compare the sprint plans generated by
our model with those created by the teams in two ways. First, we assess the overlap of
selected user stories using the Jaccard Similarity coefficient. This coefficient measures the
proportion of user stories common to both our model’s selection and the teams’ selection,

5.4 Model Evaluation 107

1.0-

0.8 Similarity Measure

Jaccard similarity
06- Q - (between sprint plans)

Cosine similarity
(between differing stories)

Similarity Score

0.4-

0.2-
SoTA Planning Obj. Likelihood ~Combined

Model Objective

Figure 5.2: Comparison of story overlap (measured by Jaccard similarity; light blue) and
semantic relatedness among differing stories (measured by cosine similarity; dark blue)
between the teams’ actual sprint plans and those generated by our model and the SoTA
baseline. Results are shown for our model using the team planning objective (planning
obj.) alone, the selection likelihood estimate alone, the combined approach, and the SoTA
objective [246, 248].

relative to the total number of unique user stories across both sets. A Jaccard Similarity
value close to 1 indicates high similarity, while a value closer to 0 indicates lower similarity
or greater dissimilarity. Second, we assess the semantic relatedness among user stories
that differ between the model’s selection and the team’s selection. We compute cosine
similarity scores for the Doc2Vec-generated embeddings [230] of these differing stories to
measure semantic relatedness.

For RQ3, we evaluate the overall effectiveness of sprint plans by aggregating the pri-
oritization criteria across the user stories in each sprint plan. To ensure comparability
of urgency scores across different product backlogs, we normalize the urgency ranks by
the total number of stories in each backlog, thus obtaining a relative urgency score. For
performance comparison, we use the Wilcoxon Signed Rank Test [191] to determine the
significance of the evaluation results. We measure the effect size using Vargha and De-
laney’s Ay, statistic [191], a non-parametric measure commonly used in software project
management [62].

5.4.3 (RQ2) Model Alignment

Figure 5.2 presents the evaluation results, comparing the story overlap (Jaccard similarity
scores) and semantic relatedness among differing stories (cosine similarity scores) between
the teams’ actual sprint plans and those generated by our model and the SoTA baseline.
On average, our model, using the combined objective function, achieves a high Jaccard
similarity of 0.88 and a cosine similarity of 0.74. It significantly improves the models
using either one of the individual objective components, with improvements of 15%-27%
in Jaccard similarity and improvements of 13%-24% in cosine similarity. Statistical tests

108 5 Context-Aware Automated Sprint Plan Generation

g g E
8 0.4 g 08 = 70
(77} g ;
2 = 60
0.3 < a
g s 0.7 o 2
=) 2 ‘® o
5 o2 . 2 R
3 5 06 2 40
2 04 ® g |
© : [] Ko}
E ’ g 05 2 30
S 5 E
=z 00 z o
Team Model Team Model Team Model
o 0.6
g 07 *,,_‘,
»n [
2 >
‘S 06 ® o 04 ,
£ o
. g
S 05
g § 02
g 2
< 04 |
Team Model Team Model

Figure 5.3: Comparison of aggregated prioritization criteria between team-composed and
model-generated sprint plans. The Normalized urgency score reflects each story’s back-
log position divided by the total number of stories, with lower scores indicating greater
urgency and more effective planning. Cumulative business value is the sum of business
value scores assigned to stories in a sprint. Average sprint goal alignment and Average
affinity score refer to the cosine similarity scores between the embeddings of user stories
and sprint goals, averaged over stories in the sprint plans. Average delay risk represents
the average probability of story delay, with lower values indicating more effective plan-
ning.

confirm significant improvements (p < 0.001) with medium to large effect sizes, ranging
from 0.64 to 0.81. The model using the SoTA objective achieves the lowest scores, with an
average Jaccard similarity of 0.56 and a cosine similarity of 0.48. All three versions of our
model outperform the SoTA with large effect sizes greater than 0.81.

The proposed approach, integrating teams’ planning objectives and behavior, is effec-
tive in generating sprint plans that are aligned with teams’ actual sprint plans.

5.4.4 (RQ3) Model Effectiveness

Figure 5.3 shows the distributions of aggregated prioritization criteria across sprint plans
generated by our model and those created by teams. The model-generated plans demon-
strate notable improvements in effectiveness compared to the teams’ plans, with higher cu-

5.4 Model Evaluation 109

mulative business value, stronger sprint goal alignment, and more effective delay risk miti-
gation. On average, the model increases business value by 29%, improves sprint goal align-
ment by 14%, and reduces delay risk by 42%. Statistical tests confirm the significance of
these improvements (p < 0.001), with medium to large effect sizes ranging from 0.66 to 0.87.
Additionally, our model achieves an average improvement of 5% in affinity, which is sig-
nificant (p < 0.01) but with a small effect size (A5 = 0.57). The differences in normalized
urgency rank scores are not significant.

Our model drives improvements in team performance by generating sprint plans that
deliver more business value, align more closely with sprint goals, and better mitigate
delay risks.

5.4.5 (RQ4) Model Usability

Interview Methodology

The main goal of our qualitative analysis was to assess how teams perceive the perfor-
mance and usability of our model. We conducted semi-structured interviews with 10
teams at ING to gather feedback and identify areas for improvement. We opted for a
semi-structured format due to its flexibility in discussing prepared questions and explor-
ing emergent topics [263]. Table 3 provides an overview of our interview questions. We
primarily asked open-ended questions to encourage in-depth discussion without bias, as
well as a focused question to examine the teams’ willingness to use the model in prac-
tice. The study design was approved by the ethical review board of ING. We randomly
selected and invited 10 teams from the pool of survey respondents to participate. We sent
email invitations to the product owners of these teams, outlining the study’s purpose and
the required commitment. All teams accepted the invitation. Demographic details of the
participating teams can be found in the replication package [122].

Table 3: Overview of Interview Questions

+ RQ4.1 Model alignment with team planning: How well does the generated
sprint plan align with your team goals and criteria for selecting stories?

+ RQ4.2 Model effectiveness: Are there any modifications you would suggest
for the generated sprint plan? If so, what changes would you propose and why?

+ RQ4.3 Model impact: How do you foresee this model influencing your sprint
planning?

+ RQ4.4 Model usability: Would you use this model in practice? If so, how
would you integrate it into your sprint planning process?

\. J

The interviews were conducted face-to-face by the first author at the start of the teams’
sprint planning meetings. They lasted, on average, 41 minutes. Each interview began with
a brief introduction to the study and a demonstration of the team’s backlog. We applied
our model to the current state of the backlog and presented the generated plan for the

110 5 Context-Aware Automated Sprint Plan Generation

upcoming sprint in a ServiceNow mock-up. This sprint plan served as a focal point for
group discussion on model performance and usability.

We recorded and transcribed the interviews for analysis. We used open coding [116,
264] to analyze the transcripts and summarize the responses, coding by statement and
allowing codes to emerge throughout the process. We constantly compared and refined
the codes, grouping similar ones into categories.

Interview Results

This section presents the findings from our interviews. We use a [tX] notation to mark
example quotes from the interviews, where X’ refers to the identification number of the
corresponding team. The codes resulting from our manual coding process are underlined.

RQ4.1: Model alignment with team planning. Consistent with our findings for RQ2,
which showed a high Jaccard similarity score of 0.88, a majority of teams (seven out of ten)
found that the model’s story selections aligned with their reasoning and intuition. Teams
described the model as making “appropriate choices” [t04] and “intuitive selections” [t09]
that match their objectives and sprint priorities. For instance, one team stated: “The pro-
posed sprint plan primarily includes user stories that provide genuine value to the customer
and that we would like to pick up in the next sprint.” [t04] Another team noted that the
model effectively captures a balanced value-risk trade-off: “The model picked user stories
that are valuable or urgent to the customer and ready for implementation. A few user stories
at the top of our backlog still require further refinement before implementation can begin.
The model seems to address that properly.” [t08]

However, two teams had reservations regarding the implementation order of user sto-
ries. One team commented: “While this [sprint] plan is very much in line with what our
customers want right now, it contains several high-priority stories that we would normally
divide across multiple sprints to dedicate sufficient attention to each.” [t10] Another team per-
ceived a lack of long-term perspective regarding the product’s trajectory:“The model does
not differentiate between customer value and product value. It prioritizes customer needs
but misses out on the bigger picture of where the product should be going.” [t05] One team
noted that their changing objectives, resulting from strategic shifts in their project, were
not reflected in the generated sprint plan: “Due to recent budget shifts, we have shifted our
priority to smaller and low-risk user stories, differing from what we reported in the survey.
The model’s selections reflect our goals from the past year but do not align with our current
situation.” [t03]

RQ4.2: Model effectiveness. Consistent with our findings for RQ3, which showed
increased effectiveness in the sprint plans generated by our model, most teams (six out
of ten) indicated they would make only minor tweaks or refinements to the sprint plan
rather than substantial alterations. Teams’ suggestions regarding potential modifications
revealed several themes. Four teams highlighted the need to postpone selected stories
due to changes in team composition. For example, one team explained: “Next sprint one
of our senior members will be absent. While the model adapted by creating a smaller sprint,
it selected two stories that rely on the expertise of the senior member. Our typical course of
action is to postpone these stories until the required developer returns.” [t05] Three teams pre-
ferred to postpone selected stories that require further refinement and are not yet ready

5.5 Discussion 111

for implementation. For instance, one team mentioned: “The proposed plan includes three
stories for which we currently lack a clear approach. We still need to do some research and
break these stories down into smaller tasks to gain a better understanding of the required so-
lution.” [t01] Other mentioned modifications included adjusting the order of user stories,
such as advancing risky stories to early sprints to avoid late side-effects.

RQ4.3: Model impact. Teams identified three key benefits of integrating our model
into their sprint planning process. Firstly, they noted that the model could improve pro-
ductivity by facilitating quicker decision-making. For example, one team stated: “The
model guides teams to focus their discussions on the inclusion of pre-selected stories, reduc-
ing the need for lengthy, exploratory conversations typical of creating a sprint from scratch.”
[t02] Secondly, teams believed that the model could enhance business alignment in sprint
planning. A team member explained: “The model could help us focus on customer needs
rather than internal interests.” [t06] Lastly, teams suggested that the model could facilitate
informed decision-making by “providing insights into the backlog” [t01] and stimulating
discussions on overlooked stories. One team stated: “We discussed stories that had been
lingering in the backlog for a while and were typically skipped during our meetings.” [t04]
However, some teams also mentioned potential drawbacks of the model, such as overre-
liance on the model and reduced communication among team members. One team ex-
plained: “Over time, teams might become dependent on the model, resulting in decreased
communication within the team and limited exploration of alternative approaches.” [t06]

RQ4.4: Model usability. Eight teams expressed their willingness to use the model
as part of their sprint planning meetings. They see the model as a support for human
judgement, to be used in conjunction with existing planning strategies, rather than as a
replacement. The teams emphasized the importance of maintaining control over the sprint
plan and having the flexibility to adjust it as needed. They favored an interactive format
that allows them to modify the sprint and team objectives on the go. Some teams stressed
the importance of model explainability, suggesting that the model would be more useful
if it provided explicit rationale for story selection. For instance, one team explained: “We
would like to understand why the model selects this particular set of user stories and how it
affects the feasibility of the sprint if we decide to choose other stories.” [t07] The two teams
that were hesitant to use the model in practice expressed concerns about overreliance on
it, fearing it could diminish the quality of team discussions.

5.5 Discussion

5.5.1 Recommendations for Practitioners

Improving sprint planning. Our model improves the efficiency and outcomes of sprint
planning. We identified a set of key factors and project context variables that influence
story prioritization. By incorporating these factors into an optimization model, teams can
generate context-aware sprint plans that align with their goals and performance. Using a
combination of team-supplied and data-derived weights, our model achieves an 88% over-
lap with team-selected stories and 74% semantic relatedness with differing choices. This
indicates that the model effectively captures team priorities. In cases where the model

112 5 Context-Aware Automated Sprint Plan Generation

diverges, it often makes better decisions, improving value-risk balance and project out-
comes. Our interview findings further confirm the model’s effectiveness and alignment
with team planning.

In terms of speed, the time required to generate a sprint plan depends on the number
of user stories and dependencies on the backlog. With precomputed outputs of the trained
predictive models, evaluations on an Intel Core 19 with 32GB RAM at 5.8 GHz showed that
for 71% of teams (with fewer than 100 stories), computation time ranged from seconds to
2 minutes; for larger backlogs (over 100 stories), computation time ranged from 2 to 6
minutes. This is a significant improvement compared to sprint planning meetings, which
typically take hours.

Overall, our model streamlines sprint planning, empowering teams to achieve greater
productivity and better project outcomes. This is further confirmed by the majority of
teams expressing willingness to use the model in practice, citing improvements in produc-
tivity, business alignment, and more informed decision-making.

Interactive support tool. While our model offers substantial benefits, it is designed
to support, rather than replace, human judgement. Our interview results indicate that
teams prefer to integrate the model with their existing planning methods to maintain con-
trol over the process. We recommend an interactive approach that allows teams to adjust
objectives and proposed plans as needed. An interactive format also enables the consid-
eration of team composition, availability, and story readiness by gathering team input
through forms or backlog tool updates. This flexibility ensures that the model remains
aligned with evolving objectives and mitigates concerns about overreliance. Previous re-
search [259, 265] has explored interactive methods for incorporating human expertise into
release plan optimization.

Model explainability. Our qualitative evaluation highlights the importance of pro-
viding a rationale for story selection to improve model usability. Techniques such as
Scenario Discovery [266, 267] and post-optimal analysis (e.g., [268, 269]) can be used
to examine how variations in input parameters or assumptions impact the outcomes of an
optimization model. This analytical process can help teams uncover patterns among vari-
ables and better understand the model’s story selection. For example, teams may discover
that certain types of stories are prioritized in response to specific project constraints or
that story priorities shift based on project urgency.

Implementation effort. Our model learns from past team performance to estimate
delay risk and identify patterns in planning behavior, making its insights team-specific.
To address data scarcity, especially with new teams [270], we recommend developing a
generalized model trained at the product or department level. This approach involves
training on historical log data from multiple teams within a product or department, while
still allowing individual teams to supply factor weights for model customization. Further
analysis at ING shows that product- and department-level models achieve moderate Jac-
card similarities (0.62 to 0.68) and cosine similarities (0.59 to 0.63) between proposed and
actual sprint plans. These results suggest that generalized models can provide a reasonable
baseline for new teams until sufficient team-specific data is available.

5.6 Threats to Validity 113

5.5.2 Implications for Researchers

Importance of prioritization criteria. Agile methods typically emphasize business
value as the main prioritization criterion, a topic that has sparked debate in prior re-
search [107, 108]. Our survey results reveal a more nuanced perspective. We found that
the priority of a story is determined by a combination of factors, with urgency, sprint goal
alignment, and business value as key drivers. However, the impact of these factors varies
across project settings, highlighting the need for contextual support in sprint planning. Fu-
ture work should examine the influence of project characteristics on prioritization criteria
through statistical controls, such as multiple regression analysis. A deeper understanding
could inform the redesign or reframing of agile prioritization methods to better align with
actual practice.

Strategic alignment and delay risk. In our study, strategic alignment emerged as a
new factor affecting story prioritization. Although it ranked lower in survey responses, in-
terview findings emphasize the importance of integrating long-term product strategy into
sprint plan generation. While not currently integrated into our model, measuring strate-
gic alignment holds potential for future research. One approach could involve reviewing
strategy documents and comparing them with story descriptions to assess alignment. Ad-
ditionally, our analysis of delay risk highlights its significant impact on story selection for
sprint planning. While our current approach estimates delay risk for individual stories,
future work could estimate overall delay risk for the sprint plan by considering dependen-
cies among stories and propagation effects. Initial efforts in this direction have been made
by Choetkiertikul et al. [21] using network analysis.

Scenario-based modeling. Interview results suggest that using complementary tech-
niques, such as scenario-based modeling, could improve the model’s alignment with team
planning. Teams frequently adjust their prioritization of user stories in response to events,
such as delays or strategic shifts. Future research should focus on identifying scenarios
that impact sprint planning, either through direct team input or automated extraction from
backlog data. Prior studies by Sutcliffe et al. [271] and Regnell et al. [272] have explored
scenario-based modeling for requirements engineering.

5.6 Threats to Validity

Internal validity. We acknowledge that surveys and interviews may contain ambiguous
questions and introduce biases [171]. To address this, we used terminology familiar to the
case company, ordered questions sequentially, and randomized the order of prioritization
criteria [138].To counter social desirability bias [175], we informed participants that the
responses would be kept confidential and evaluated in aggregated form. Our survey may
have been subject to non-response bias [173], especially among teams struggling to meet
sprint commitments.

Construct validity. Poor record keeping may have influenced the data variables we
used to measure prioritization criteria and story delay [176]. Story delay is assessed based
on the number of sprints a story has been part of, yet inaccuracies may occur if teams close

114 5 Context-Aware Automated Sprint Plan Generation

their stories too early or too late. Although ING encourages teams to deliver on-time, some
teams may not take their sprint commitments seriously, adding stories to sprints without
intent to deliver. We addressed these concerns by collecting data from a large number of
sprints and teams over a four year span.

External validity. The generalizability of findings is an important concern for any
single-case study. Although we analyzed data from various teams and products, our find-
ings may not be representative of software projects in other organizations or open-source
settings. In other settings, teams may have more dynamic setups and different planning
practices. While the high number of teams and availability of historical data may be more
common in large-scale organizations, we expect our findings on the prioritization criteria
and model impact to be transferable to other settings, regardless of scale. Our approach
to generating sprint plans can be applied as is to backlog data from other agile software
organizations. It is important to note that ING’s strict security regulations as a financial
organization may have influenced the prioritization criteria rankings. As a result, these
rankings may be more relevant to organizations with similar business- or safety-critical
systems. Further research is required to validate our findings in other settings and reach
more general conclusions.

5.7 Conclusions

Sprint planning is crucial for the successful execution of agile software projects. While
various prioritization criteria influence the selection of user stories for sprint planning,
their relative importance remains largely unexplored, especially across diverse project
contexts. In this paper, we investigated how prioritization criteria vary across project set-
tings and proposed a context-aware optimization model to generate sprint plans that align
with team goals and performance. By integrating teams’ planning objectives and sprint
history, the model adapts to team contexts, estimating prioritization criteria and identi-
fying patterns in planning behavior. We applied our approach to real-world data from
thousands of sprints and evaluated our model through both quantitative and qualitative
analyses. The key findings of this study include:

1. Urgency, sprint goal alignment, and business value emerged as the most important
prioritization criteria. Their influence varies depending on project characteristics,
such as resources, priority, client type, and security level.

2. Our model outperforms the state-of-the-art in aligning with team planning and
boosts team performance by generating sprint plans that deliver more business
value, align more closely with sprint goals, and better mitigate delay risks.

3. The majority of teams found our approach to be consistent with their goals and
valuable as interactive support.

We identified promising areas for future research, including interactive optimization,
scenario-based modeling, and model explainability. Progress in these areas is crucial to
better understand and support planning practices in agile software development.

115

Conclusion

This chapter revisits the thesis research questions, discusses threats to the overall validity
of the thesis, and provides recommendations for agile software organizations. We con-
clude with future research directions and the broader implications of our findings.

6.1 Research Questions Revisited

In this section, we revisit and answer our thesis research questions outlined in Chapter 1.

TRQ-1: What are the most relevant factors and interactions affecting the on-time
delivery of epics?

Our research identifies 25 factors that are perceived to affect the timeliness of epic deliver-
ies. We categorized these factors into five groups: organizational, technical, people, pro-
cess, and project-related factors. Notably, the most influential factors are predominantly
social and organizational, highlighting the critical role of human dynamics in software
development. To investigate these influences, we conducted a mixed-methods study, com-
bining expert perceptions with data-driven validation.

To understand how practitioners perceive the causes of delays, we conducted two
rounds of surveys with software professionals at ING. In the first round, we collected 298
open-ended responses, identifying 25 factors affecting on-time delivery. In the second
round, we surveyed 337 experts, asking them to rank these factors by perceived impact.
The most critical factors included requirements refinement, task dependencies, organiza-
tional alignment, and organizational politics. To validate these perceptions, we analyzed
software repository data from 185 development teams at ING. We quantified and statis-
tically modeled the identified factors, demonstrating that a subset of 13 proxy measures
explains 67% of the variance in epic schedule deviations. The most influential predictors
included project size, number of task dependencies, historical delivery performance, team
familiarity, and developer experience.

Through open-ended survey responses, we identified direct, indirect, and contribu-
tory relationships between influential factors and on-time delivery. Some factors exert a
direct impact by causing unplanned waiting times, rework, or changes in team effective-
ness. Others interact in hierarchical relationships, where organizational factors influence

116 6 Conclusion

people-related factors, which in turn affect technical factors. Technical factors are per-
ceived to have a direct effect on delivery timeliness. This layered structure suggests that
the impact of technical factors on delays is mediated by the broader organizational and
social context.

To represent these relationships, we developed a conceptual framework illustrating
the factors and their interactions with on-time delivery. This framework provides a struc-
tured approach for organizations to (1) identify and manage delay risks at different levels
and (2) formulate actionable pathways to improve delivery performance. Interventions
may involve both direct and indirect approaches, addressing factors that have an immedi-
ate impact on delivery and those that influence it indirectly through intermediate effects.
Direct interventions, such as improving code quality, can lead to immediate benefits by
reducing rework. Indirect interventions, such as establishing stronger executive support,
can foster a more stable, committed, and skilled workforce, better equipped to address
delays caused by technical issues.

Overall Conclusion: Achieving on-time software delivery requires a holistic approach
that accounts for the interplay between social and technical factors. Our findings indicate
that delays in epic deliveries are primarily driven by human and organizational dynam-
ics rather than purely technical challenges. Addressing these factors through improved
organizational alignment, structured refinement processes, and a strong team culture can
significantly improve delivery performance. Understanding these interactions and adopt-
ing proactive strategies is essential for enhancing software delivery outcomes.

TRQ-2: How can the concept of delay patterns be adapted and applied to contin-
uously predict overall delays in epic deliveries?

Our research explores the application of delay patterns, widely studied in the field of
transport, to predicting software project delays. Prior work in transport (e.g., [102, 103])
has demonstrated that delays tend to develop in recurring patterns over time, which can
be leveraged for more accurate forecasting of future delays.

To investigate whether similar patterns emerge in software development, we analyzed
time series data from 4,040 epics across 270 teams at ING. Each time series captures inter-
mediate delay values recorded at predefined milestones within an epic’s timeline. These
milestones can be determined based on fixed time intervals (e.g., iteration lengths) or
progress-based completion rates (e.g., percentages of planned epic duration). Through
clustering analysis, we identified four distinct delay patterns that recur across software
projects at ING. These clusters exhibit significant differences in overall delay, demonstrat-
ing their relevance as predictive features for ongoing projects and early risk identification.

Agile software development requires effort estimation models that can adapt to evolv-
ing project conditions and changes in team performance. However, existing models are
static: they estimate effort based on initial predictor values without accounting for tempo-
ral variations during project execution. To address this limitation, we developed a dynamic
prediction model that continuously updates overall delay estimates using delay patterns
and Bayesian inference. Our model detects delay patterns as they emerge and incorpo-
rates them into ongoing predictions. The Bayesian framework enables adaptive learning
by updating its beliefs based on observed changes in delivery performance and predictor
variables over time.

6.1 Research Questions Revisited 117

An empirical evaluation shows that incorporating delay patterns significantly improves
prediction accuracy. Our approach increases Standardized Accuracy by 9-20% and re-
duces Mean Absolute Error (MAE) by 19-66%. Compared to static models, our dynamic
approach achieves substantial improvements, outperforming state-of-the-art baselines by
12-57% in Standardized Accuracy and 16-81% in MAE. Notably, our model delivers highly
accurate predictions even in the early stages of a project (i.e., at 10-30% of its duration),
allowing for timely interventions. As the project progresses, the model’s predictions be-
come increasingly more certain and precise.

Overall Conclusion: Our results confirm that, as in transport, delays in software proj-
ects follow recurrent patterns that can be used to improve forecasting models. More
broadly, our findings highlight the advantages of dynamic delay prediction models that
continuously adapt to evolving project conditions. By capturing the temporal dynamics
of software project delays, our approach provides actionable insights that enable teams to
anticipate and mitigate schedule risks throughout the project life cycle.

TRQ-3: Does the use of team features and incremental learning methods improve
the accuracy of delay predictions in user stories?

The collaborative nature of agile teams creates complex team dynamics that influence
delivery performance. Our research shows that incorporating team-related factors and
incremental learning methods improves the accuracy of delay predictions in user stories.

We analyzed backlog data from 571 teams, covering 765,200 user stories, to identify
risk factors associated with delays. This analysis revealed 24 risk factors spanning both
technical and team-related aspects, with weak to moderate correlations to user story de-
lays. Among these, developer workload, team experience, team stability, and past effort
estimates emerged as the most influential team-related factors.

Based on these factors, we developed predictive models using different sets of features
to estimate both the likelihood and duration of delays. Our findings show that including
team-related features improves delay predictions, with average improvements of 18% in
precision, 22% in recall, 20% in F1-score, and 20% in AUC. While both technical and team-
related factors contribute to predicting whether a delay will occur, our results indicate
that the duration of delays is primarily influenced by team characteristics.

To explore the impact of incremental learning, we evaluated our models using a sliding
window approach. This method enables models to continuously learn from recent delivery
performance while discarding outdated data. It allows models to adapt to evolving team
dynamics. Our results show that training on recent user stories through a sliding window
improves prediction accuracy and model robustness. Specifically, this approach improves
precision by 6-17%, recall by 5-21%, F1-score by 5-15%, and AUC by 3-8%. The sliding
window method is particularly effective in capturing shifts in team performance, leading
to more stable and reliable predictions over time.

Overall Conclusion: Overall, our findings suggest that planning in agile settings can
be significantly improved by integrating team-related factors and incremental learning
methods into analysis and predictive models. By accounting for the evolving nature of
teams, these methods offer a more adaptive approach to forecasting delays, supporting
more informed decision-making in sprint planning.

118 6 Conclusion

TRQ-4: (a) How does the importance of story prioritization criteria vary across
project settings?, (b) How can teams’ expertise and sprint history be integrated
into a model to generate sprint plans that align with team goals and performance?

Agile methods typically emphasize business value as the main criterion for prioritizing
user stories, a topic that has sparked debate in previous work [107, 108]. Our research
reveals a more nuanced perspective.

Through a survey with 52 teams at ING, we found that story prioritization is deter-
mined by a combination of factors, with urgency, sprint goal alignment, and business value
as key drivers. The relative weight of these criteria varies across projects, depending on
factors such as resource availability, project priority, client type, and security constraints.
These findings challenge common assumptions about agile prioritization and highlight the
need for contextual support in sprint planning.

To address this need, we developed an optimization model that generates sprint plans
tailored to each team’s specific goals and historical performance. The model learns from
past team performance to identify and incorporate planning behavior patterns. We an-
alyzed historical backlog data from 4,841 sprints and used machine learning techniques
to estimate the prioritization criteria for user stories. To capture teams’ planning behav-
ior, we built a predictive model that learns from a team’s sprint history and estimates the
likelihood of a story being selected for an upcoming sprint. We obtained team-provided
planning objectives and prioritization weights from survey responses. Combining these el-
ements, we designed an optimization model that adapts to each team’s context, producing
sprint plans aligned with their goals and past performance.

We assessed our model through both quantitative and qualitative evaluations. The
quantitative evaluation demonstrates significant improvements in team alignment and
sprint plan effectiveness. The model achieves an 88% overlap in selected stories with teams’
actual sprint plans and a 74% semantic relatedness between differing stories. Our model
outperforms the state-of-the-art and improves team performance by generating sprint
plans that deliver 29% more business value, exhibit 14% stronger alignment with sprint
goals, and reduce delay risk by 42%. The qualitative evaluation, based on team interviews,
confirmed the model’s usability and practical value. Most teams found the approach to be
well-aligned with their decision-making processes and beneficial as interactive support.

Overall Conclusion: Overall, our results demonstrate that the efficiency and effective-
ness of sprint planning can be significantly improved through the use of context-aware
optimization methods.

6.2 Threats to Validity

In this section, we discuss three overarching threats to validity that may have influenced
the conclusions of this thesis. These threats summarize and complement the more specific
validity concerns addressed in each study’s respective chapter.

« Construct Validity
In our analysis of project repository data, we consider data variables as proxies for
measuring delays and risk factors. However, this approach introduces potential
threats to construct validity due to measurement errors [176]. The variables we use
may not fully capture the intended meaning of the concepts or constructs. Certain

6.2 Threats to Validity 119

factors, such as team commitment and organizational alignment, are quantifiable
in principle but not directly measurable. To map proxy variables to risk factors,
we had to find acceptable trade-offs between the precision of these proxies and the
availability of data at ING. We acknowledge that for some factors, more precise
alternatives can be found in related work. Furthermore, poor record keeping may
have influenced the accuracy of data variables. For example, we measure delivery
delays based on deviations between planned and actual completion dates in backlog
management data. However, it might happen that teams close their tasks too early
or too late. While all teams at ING are encouraged to deliver on-time, some may not
treat their delivery deadlines as seriously as others, potentially adding work items
to their planning without the commitment to deliver on-time. To mitigate these
threats, we collected real-world data from a large number of deliveries and teams
over several years at ING, aiming to reduce potential biases and inaccuracies.

Internal Validity

One key challenge in our predictive modeling is class imbalance, as the majority of
deliveries in our dataset are non-delayed. This imbalance can hinder the model’s
ability to effectively learn to identify late deliveries. To address this issue, we ap-
plied weighted variants of performance metrics and used the Area Under the Curve
(AUC) score, which is insensitive to class imbalance. Additionally, we validated our
assumptions through statistical testing [191] and adhered to best practices in eval-
uating effort estimation models [39, 53, 241]. However, we acknowledge that more
advanced techniques, such as statistical oversampling [242], could be used. Another
potential threat to our internal validity is that the patterns observed in the training
data may not accurately reflect those in the test data. This discrepancy could arise
due to structural changes in teams or management over time. To mitigate this risk,
we employed time-based cross-validation instead of traditional random data split-
ting. This approach better simulates real-world prediction scenarios by preserving
the chronological order of data.

External Validity

As with any single-case empirical study, external threats are concerned with our
ability to generalize our results beyond the studied context [172]. ING is a large-
scale organization with thousands of developers working across diverse domains,
including banking applications, cloud software, and software tools. While we ana-
lyzed a large number of projects and teams to capture variations, our findings may
not be representative of software projects in other organizations or open-source
settings. Team structures, planning practices, and organizational cultures can vary
significantly across contexts, potentially influencing the applicability of our results.
Moreover, ING’s strict security regulations and risk-averse culture may have influ-
enced some of the identified risk factors. In financial organizations, failure in certain
business-critical systems is unacceptable, which may have affected the prioritization
of risk factors. As a result, our findings are more likely to generalize to software or-
ganizations operating in regulated industries with similar security and compliance
constraints. Additionally, we identified factors related to organizational fragmen-

120 6 Conclusion

tation, such as dependency management and organizational alignment, which may
be more common in large-scale organizations.

Although we aimed for generality, our findings remain specific to the context and
time period studied. Further empirical validation is necessary to determine the ex-
tent to which these results transfer to other settings. However, our findings align
with prior research on effort estimation and risk management, suggesting that the
risk factors we identified are transferable to some extent to other settings. However,
specific results regarding the ranking of factors, their relationships, and statistical
outcomes are bound to the scale and context of ING. It is important to note that the
influence of factors on on-time delivery may vary depending on the scale and con-
text of development work. Therefore, replicating this research in different settings
is required to confirm our findings and draw more general conclusions.

6.3 Recommendations for Software Organizations

In this section, we provide recommendations (R1-R5) based on our research findings to
help agile software organizations enhance effort estimation and project planning. These
recommendations offer actionable strategies for improving delivery performance.

R1: A socio-technical approach is essential for improving on-time delivery and
sprint planning. Strategies for improving on-time delivery must account for the complex
interactions between social and technical factors. Our conceptual framework offers prac-
titioners a comprehensive overview of influential factors and proxy measures that should
be analyzed to develop models that improve on-time delivery. An assessment of the most
significant factors would be a good starting point for further exploring influential factors
in other settings. While the framework does not establish causal relationships, it provides
a foundation for forming testable hypotheses about the mechanisms driving delays. By
systematically testing these hypotheses, software organizations can identify root causes,
develop targeted interventions, and refine their strategies for mitigating delivery risks.

In Chapter 5, we show that the efficiency and outcomes of sprint planning can be signif-
icantly improved through context-aware optimization methods. These methods combine
social elements (e.g., team expertise and collaboration) with technical elements (e.g., story
risk and affinity) to generate sprint plans that better align with team objectives. Our ap-
proach leads to significant improvements, including 29% more business value delivered per
sprint, 14% stronger alignment with sprint goals, 42% reduction in delay risk. The strong
alignment between model-generated and team-selected sprint plans indicates that our ap-
proach effectively captures team priorities and preferences. Moreover, in cases where the
model deviates from team decisions, it often suggests better alternatives, resulting in a
more balanced trade-off between value and risk.

R2: Data-driven techniques enhance factor identification and predictive accuracy.
Our research shows that integrating data-driven techniques with expert judgment im-
proves both the identification of influential factors and the accuracy of delay predictions.
Expert-based approaches capture domain knowledge and contextual experience, while
data-driven methods detect underlying patterns that may not be immediately apparent.

6.3 Recommendations for Software Organizations 121

Since each method identifies only a partially overlapping set of relevant factors, combin-
ing both provides a more comprehensive understanding of delay risks. By systematically
collecting and analyzing these factors, organizations can identify early warning signs of
potential delays.

For delay prediction, our findings show that data-driven models significantly improve
predictive accuracy for both short- and long-term estimates. In short-term delay pre-
diction for user stories, incorporating team-related factors into predictive models signif-
icantly improves accuracy. Incremental learning approaches, such as sliding windows,
enable models to continuously adapt to team dynamics and external changes, including
unexpected bugs and incidents. In long-term delay prediction for epics, leveraging delay
patterns improves accuracy by 9-20% and reduces Mean Absolute Error by 19-66%. While
delay patterns may vary across organizations, their predictive power increases when com-
bined with dynamic prediction models that incorporate changes during project execution.
This combined approach leads to more accurate and reliable schedule estimates over time,
enabling teams to detect risks early and respond proactively throughout the development
life cycle.

Although predicting delays in later project stages (beyond 50% project completion)
may offer more certain estimates, it also limits opportunities for corrective action. Our
research shows that the optimal trade-off between prediction time and accuracy occurs
within the first 10-30% of project duration, when early intervention is most effective.
Within this window, our dynamic model consistently outperforms static alternatives, achiev- u
ing 12-29% higher Standardized Accuracy and 16-41% lower Mean Absolute Error.

R3: Developing tailored estimation and planning models improves predictive ac-
curacy and project outcomes. In the pursuit of the best effort estimation model, ex-
tensive research has compared different approaches, yet no single method consistently
outperforms others across all settings. This variability largely stems from the dynamic
nature of factors affecting delays in software projects. Our findings indicate that these
factors vary significantly depending on the development context, emphasizing the need
for estimation models that are tailored to specific teams and projects. Additionally, the
large differences in productivity among developers and teams further highlight the im-
portance of models that effectively account for these variations.

Most existing estimation models primarily rely on metadata and textual features of
software tasks. By leveraging historical backlog data and incorporating the influential
factors identified in this thesis, organizations can tailor their models to their specific con-
text. This approach provides deeper and more actionable insights into their development
processes. Similarly, our research reveals that the criteria for prioritizing and selecting
user stories for sprint planning vary across different project settings. This highlights the
need for context-aware planning models that integrate team goals and historical perfor-
mance to optimize decision-making. Models that automate agile planning should adapt to
team-specific contexts rather than applying generic prioritization strategies.

Overall, our findings suggest that software organizations should develop customized
estimation and planning models, rather than relying on generic tools, to ensure accuracy
within their specific context.

122 6 Conclusion

R4: Historical delivery performance should be used to estimate effort intervals,
rather than relying on single-point estimates. Our research highlights the benefits of
using probabilistic effort estimates, expressed as effort intervals, over traditional point es-
timates. Effort intervals provide information about the uncertainty of an estimate and can
help organizations increase confidence in project planning. Instead of relying on expert
judgment to define minimum and maximum effort, software organizations should base
these estimates on historical delivery performance data.

Our study on dynamic delay prediction (Chapter 3) demonstrates the effectiveness of
Bayesian methods in quantifying and updating uncertainty of predictions over time. Un-
like other models, Bayesian approaches provide probability distributions that represent
the credibility of an estimate, enabling teams to make more informed planning decisions.

R5: Automated support for effort estimation and planning should complement
human judgment and current practices. The models developed in this thesis should
be used as decision support systems that complement, rather than replace, human judg-
ment. Automated predictions and planning recommendations provide valuable insights,
but teams must interpret them within context to ensure alignment with current priorities,
constraints, and strategic goals.

While delay prediction models leverage historical data to enhance accuracy, they may
not fully capture unforeseen organizational shifts or emergent risks. Human judgment
is essential for context-aware decision-making, ensuring that model outputs are critically
assessed and adjusted based on real-time project conditions. As the models developed in
this thesis generate team-specific predictions, they can serve as feedback mechanisms that
increase awareness of behavioral patterns during estimation and planning. This feedback
can encourage more accurate effort estimates and foster productive behavior changes.

For sprint planning, automation streamlines prioritization and reduces the effort re-
quired to manually select stories. However, agile planning remains a collaborative process
that depends on discussions, shared understanding, and collective decision-making. Trust
in model recommendations is essential for adoption; keeping humans in the loop allows
teams to validate, challenge, and refine model outputs based on their domain knowledge.
To enhance transparency and usability, organizations should integrate explainability tech-
niques such as Scenario Discovery [266, 267] and post-optimal analysis [268, 269] to help
teams interpret model recommendations more effectively.

6.4 Conclusion and Future Work
In this section, we summarize our main findings and outline directions for future research.

Social and organizational factors play a central role in on-time delivery. Our re-
search has identified new factors that influence the timely delivery of epics (Chapter 2) and
user stories (Chapter 4). While prior studies [154, 220] have shown that team familiarity
and agile maturity enhance team performance, their specific impact on on-time delivery
had not been explored before. Our findings confirm that these factors significantly con-
tribute to on-time epic completion, with agile maturity ranking among the top 10 most
influential factors. This suggests that team familiarity and agile maturity improve deliv-
ery predictability, helping teams navigate challenges more effectively.

6.4 Conclusion and Future Work 123

Additionally, we found that task dependencies and organizational alignment are among
the most influential factors affecting schedule deviations. Their impact suggests that the
organizational environment plays a more substantial role than previously acknowledged.
This highlights the need for further exploration across diverse development contexts to
better understand how these factors interact in different organizational settings.

At the user story level, we found that developer workload, team experience, team sta-
bility, and past effort estimates significantly affect delivery timelines. Future research
should examine these team-related factors in different organizational contexts to assess
their broader implications for software development performance.

Understanding delay patterns enables proactive risk management. To improve the
implementation of delay countermeasures, it is essential to better understand the root
causes of delays and how delay patterns emerge. Our study on dynamic prediction char-
acterizes these patterns in terms of risk factors, revealing significant differences. Although
we cannot directly infer causal relationships between risk factors and delay patterns, fac-
tor analysis enables the formulation of hypotheses about potential causes. Systematically
testing these hypotheses could lead to actionable insights and inform more effective mit-
igation strategies. Future work should apply causal inference methods, such as Causal
Discovery [203], to identify the underlying causes of delay trends and fluctuations. Addi-
tionally, investigating the propagation of delays across interdependent software deliveries
could offer valuable insights into how schedule deviations escalate across projects.

Monitoring social dynamics improves estimation and planning accuracy. Our re-
search proposes a set of new methods for monitoring social-driven factors and team dy-
namics in software development. Using historical backlog and project data, we derive
statistics at both the team and individual levels to quantify aspects of team behavior that
were previously difficult to capture [239, 240]. Given the strong influence of social factors
on delays, future research should develop new approaches to systematically monitor and
model team dynamics, including trust, leadership, cohesion, and communication. Integrat-
ing team behavioral insights into effort estimation and planning models could enhance
their overall predictive power.

Agile project management tools should incorporate predictive analytics. Our pre-
dictive models can serve as feedback mechanisms that help teams recognize behavioral
patterns during planning. By increasing awareness of planning biases, these models can
encourage productive behavior changes and facilitate more accurate schedule estimates.
However, to fully realize the benefits of predictive modeling, future research should ex-
plore how delay prediction models can be embedded into agile project management tools.
Existing tools primarily track and manage project artifacts but lack advanced analytics to
extract actionable insights for planning.

Integrating actionable insights on team dynamics and sprint-level risks would enable
teams to make more informed planning decisions, ultimately leading to better project out-
comes. Enhancing these tools with predictive capabilities, such as scenario-based model-
ing and multi-team planning support, presents promising directions for future research.
Additionally, concerns raised in our interviews, including the ordering of story imple-

124 6 Conclusion

mentation and alignment with portfolio strategies, should be addressed to optimize the
usability and effectiveness of these tools.

Agile prioritization methods should account for context-specific variations. Our
findings challenge traditional agile prioritization methods, which predominantly empha-
size business value as the main prioritization criterion. Chapter 5 demonstrates that story
prioritization is not driven by a single criterion but rather a combination of factors, with
urgency, sprint goal alignment, and business value as key drivers. The relative importance
of these factors varies depending on project characteristics such as resource availability,
project priority, client type, and security level.

These findings suggest that agile prioritization methods should be context-aware, rather
than applying one-size-fits-all strategies. Future research should investigate how project
characteristics influence prioritization criteria using statistical controls such as multiple
regression analysis. A deeper understanding of prioritization decisions could inform the
redesign of agile prioritization frameworks to better reflect real-world planning practices.

A step toward a relational theory of on-time software delivery. Our research lays
the groundwork for a relational theory of on-time delivery by highlighting the hierarchi-
cal relationships between social and technical factors. Our conceptual framework suggests
that the social context of development work determines how technical factors influence
delivery timelines. We anticipate that this framework, along with the set of factors and
proxy measures identified in this thesis, will serve as a foundation for future research on
software delivery performance. While primarily descriptive, the framework also aims to
specify the relationships between factors and provide an initial explanation of their inter-
actions. The hypotheses for corrective actions proposed in Section 2.3 outline potential
research directions for further refinement.

To validate and extend this framework, future studies should replicate our mixed-
methods approach across diverse organizational contexts. Investigating on-time delivery
in companies of varying sizes, structures, and industry domains could reveal additional
influential factors and improve our understanding of existing relationships. Furthermore,
examining organizations with different levels of management support, stability, and ag-
ile maturity could shed light on how social and organizational dynamics affect delivery
performance.

A key challenge for future research is to move beyond descriptive analysis and estab-
lish a more formal relational theory by identifying the causal mechanisms behind delays.
Applying causal inference techniques, such as time-series analysis or controlled experi-
ments with development teams, could reveal how and why certain factors influence deliv-
ery timelines. A more comprehensive relational theory would provide actionable insights
for project managers, enabling them to design effective risk management strategies and
targeted interventions that enhance on-time delivery performance.

6.5 Implications and Outlook

In this thesis, we have investigated the factors that influence on-time delivery in agile
software development. Our findings highlight the complex interplay between social and
technical factors, emphasizing the need for context-aware approaches to effort estimation

6.5 Implications and Outlook 125

and planning. To improve delivery performance, we developed predictive and planning
models that integrate team-related factors, leverage dynamic learning techniques, and in-
corporate delay patterns. These models provide actionable strategies for enhancing deliv-
ery predictability and risk management.

Our research offers valuable contributions to both industry and academia. For prac-
titioners, it provides practical insights into managing delay risks, improving effort esti-
mation, and optimizing sprint planning. By identifying key delay drivers and their inter-
actions, our work enables organizations to take a more proactive approach to mitigating
risks in large-scale agile settings. The models developed in this thesis can inform the
design of automated planning support tools, helping teams anticipate delays and make
more informed planning decisions. Additionally, integrating team expertise and historical
performance into planning models offers a structured approach to balancing competing
priorities and improving delivery outcomes.

For academia, this work advances the understanding of delay factors in large-scale
agile development, bridging gaps between effort estimation, planning, and team dynamics.
Our conceptual framework and predictive models contribute to the broader development
of a relational theory of on-time software delivery. They provide a foundation for future
research on causal relationships underlying software delays. By demonstrating how data-
driven techniques can improve estimation accuracy and decision-making, this thesis opens
new avenues for research in predictive analytics for agile project management.

Ultimately, our findings can help agile software development become more predictable.
By refining estimation and planning methods, integrating predictive analytics into agile
workflows, and further exploring the socio-technical dynamics of software delivery, both
practitioners and researchers can drive the field forward. This research takes a step toward
more reliable and data-driven project management, giving teams the insights and tools
they need to navigate the uncertainties of modern software development.

127

Bibliography

References

(1]

(2]

Bent Flyvbjerg and Alexander Budzier. Why your it project might be riskier than
you think. arXiv preprint arXiv:1304.0265, 2013.

Torleif Halkjelsvik and Magne Jorgensen. From origami to software development: A
review of studies on judgment-based predictions of performance time. Psychological
bulletin, 138(2):238, 2012.

Magne Jorgensen. What we do and don’t know about software development effort
estimation. IEEE software, 31(2):37-40, 2014.

Michael Bloch, Sven Blumberg, and Jurgen Laartz. Delivering large-scale it projects
on time, on budget, and on value. Harvard Business Review, 5(1):2-7, 2012.

Fred] Heemstra. Software cost estimation. Information and software technology,
34(10):627-639, 1992.

Magne Jorgensen. A review of studies on expert estimation of software development
effort. Journal of Systems and Software, 70(1-2):37-60, 2004.

Bent Flyvbjerg, Alexander Budzier, Jong Seok Lee, Mark Keil, Daniel Lunn, and
Dirk W Bester. The empirical reality of it project cost overruns: Discovering a
power-law distribution. Journal of Management Information Systems, 39(3):607-639,
2022.

[8] Julio Menezes, Cristine Gusméao, and Hermano Moura. Risk factors in software

(10]

(11]

development projects: a systematic literature review. Software Quality Journal,
27(3):1149-1174, 2019.

Tsun Chow and Dac-Buu Cao. A survey study of critical success factors in agile
software projects. Journal of systems and software, 81(6):961-971, 2008.

Muhammad Usman, Emilia Mendes, and Jiirgen Borstler. Effort estimation in agile
software development: a survey on the state of the practice. In Proceedings of the
19th international conference on Evaluation and Assessment in Software Engineering,
pages 1-10, 2015.

Alistair Cockburn and Jim Highsmith. Agile software development, the people fac-
tor. Computer, 34(11):131-133, 2001.

128

Bibliography

(12]

(16]

(18]

(19]

(20]

[21]

[22]

(23]

Muhammad Usman, Emilia Mendes, Francila Weidt, and Ricardo Britto. Effort es-
timation in agile software development: a systematic literature review. In Proceed-
ings of the 10th international conference on predictive models in software engineering,
pages 82-91. ACM, 2014.

Mike Cohn. Agile estimating and planning. Pearson Education, 2005.

Mike Cohn. User stories applied: For agile software development. Addison-Wesley
Professional, 2004.

Dean Leffingwell. Scaling software agility: best practices for large enterprises. Pearson
Education, 2007.

Emanuel Dantas, Mirko Perkusich, Ednaldo Dilorenzo, Danilo FS Santos, Hyggo
Almeida, and Angelo Perkusich. Effort estimation in agile software development:
an updated review. International Journal of Software Engineering and Knowledge
Engineering, 28(11n12):1811-1831, 2018.

Adam Trendowicz and Jirgen Minch. Factors influencing software development
productivity—state-of-the-art and industrial experiences. Advances in computers,
77:185-241, 2009.

Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, Trang Pham, Aditya Ghose,
and Tim Menzies. A deep learning model for estimating story points. IEEE Trans-
actions on Software Engineering, 45(7):637-656, 2018.

Simone Porru, Alessandro Murgia, Serge Demeyer, Michele Marchesi, and Roberto
Tonelli. Estimating story points from issue reports. In Proceedings of the The 12th
International Conference on Predictive Models and Data Analytics in Software Engi-
neering, pages 1-10, 2016.

Ezequiel Scott and Dietmar Pfahl. Using developers’ features to estimate story
points. In Proceedings of the 2018 International Conference on Software and System
Process, pages 106-110, 2018.

Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, and Aditya Ghose. Pre-
dicting delays in software projects using networked classification (t). In 2015 30th
IEEE/ACM International Conference on Automated Software Engineering (ASE), pages
353-364. IEEE, 2015.

Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, and Aditya Ghose. Pre-
dicting the delay of issues with due dates in software projects. Empirical Software
Engineering, 22(3):1223-1263, 2017.

Hongyu Zhang, Liang Gong, and Steve Versteeg. Predicting bug-fixing time: an em-
pirical study of commercial software projects. In 2013 35th International Conference
on Software Engineering (ICSE), pages 1042-1051. IEEE, 2013.

References 129

(24]

(25]

(28]

[29]

(30]

Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, Aditya Ghose, and John
Grundy. Predicting delivery capability in iterative software development. IEEE
Transactions on Software Engineering, 44(6):551-573, 2017.

Pekka Abrahamsson, Raimund Moser, Witold Pedrycz, Alberto Sillitti, and Gi-
ancarlo Succi. Effort prediction in iterative software development processes—
incremental versus global prediction models. In First International Symposium on
Empirical Software Engineering and Measurement (ESEM 2007), pages 344-353. IEEE,
2007.

Kai Petersen and Claes Wohlin. The effect of moving from a plan-driven to an
incremental software development approach with agile practices: An industrial case
study. Empirical Software Engineering, 15:654-693, 2010.

Andrew Begel and Nachiappan Nagappan. Usage and perceptions of agile software
development in an industrial context: An exploratory study. In First International
Symposium on Empirical Software Engineering and Measurement (ESEM 2007), pages
255-264. IEEE, 2007.

Laurie Williams and Alistair Cockburn. Agile software development: It’s about
feedback and change. Computer, 36(6):39-43, 2003.

Martin Fowler, Jim Highsmith, et al. The agile manifesto. Software development,
9(8):28-35, 2001.

VersionOne. 16th State of Agile Survey. https://info.digital.ai/rs/
981-LQX-968/images/SOA16. pdf, .

[31] Jeff Sutherland and JJ Sutherland. Scrum: the art of doing twice the work in half the

(32]

time. Crown Currency, 2014.

David J Anderson. Kanban: successful evolutionary change for your technology busi-
ness. Blue Hole Press, 2010.

[33] John Erickson, Kalle Lyytinen, and Keng Siau. Agile modeling, agile software de-

[34]

(35]

(36]

velopment, and extreme programming: the state of research. Journal of Database
Management (JDM), 16(4):88-100, 2005.

Kieran Conboy and Noel Carroll. Implementing large-scale agile frameworks: chal-
lenges and recommendations. IEEE Software, 36(2):44-50, 2019.

Ken Schwaber and Mike Beedle. Agile software development with Scrum, volume 1.
Prentice Hall Upper Saddle River, 2002.

Maria Paasivaara. Adopting safe to scale agile in a globally distributed organization.
In 2017 IEEE 12th International Conference on Global Software Engineering (ICGSE),
pages 36-40. IEEE, 2017.

Maria Paasivaara, Benjamin Behm, Casper Lassenius, and Minna Hallikainen. Large-
scale agile transformation at ericsson: a case study. Empirical Software Engineering,
23(5):2550-2596, 2018.

130

Bibliography

(38]

(39]

(40]

[41]

(46]

(48]

(49]

H Frank Cervone. Understanding agile project management methods using scrum.
OCLC Systems & Services: International digital library perspectives, 2011.

Tim Menzies, Zhihao Chen, Jairus Hihn, and Karen Lum. Selecting best practices for
effort estimation. IEEE Transactions on Software Engineering, 32(11):883-895, 2006.

Magne Jorgensen. A critique of how we measure and interpret the accuracy of
software development effort estimation. In First International Workshop on Software
Productivity Analysis and Cost Estimation. Information Processing Society of Japan,
Nagoya. Citeseer, 2007.

Adam Trendowicz and Ross Jeffery. Software project effort estimation. Founda-
tions and Best Practice Guidelines for Success, Constructive Cost Model-COCOMO
pags, pages 277-293, 2014.

Magne Jorgensen and Stein Grimstad. Avoiding irrelevant and misleading informa-
tion when estimating development effort. IEEE software, 25(3):78—83, 2008.

Viljan Mahni¢ and Tomaz Hovelja. On using planning poker for estimating user
stories. Journal of Systems and Software, 85(9):2086-2095, 2012.

Carlos Joaquin Torrecilla-Salinas, Jorge Sedefio, MJ Escalona, and Manuel Mejias.
Estimating, planning and managing agile web development projects under a value-
based perspective. Information and Software Technology, 61:124-144, 2015.

Pekka Abrahamsson, Ilenia Fronza, Raimund Moser, Jelena Vlasenko, and Witold
Pedrycz. Predicting development effort from user stories. In 2011 International Sym-
posium on Empirical Software Engineering and Measurement, pages 400-403. IEEE,
2011.

Danh Nguyen-Cong and De Tran-Cao. A review of effort estimation studies in ag-
ile, iterative and incremental software development. In The 2013 RIVF International
Conference on Computing & Communication Technologies-Research, Innovation, and
Vision for Future (RIVF), pages 27-30. IEEE, 2013.

Simon Grapenthin, Steven Poggel, Matthias Book, and Volker Gruhn. Facilitating
task breakdown in sprint planning meeting 2 with an interaction room: an expe-
rience report. In 2014 40th EUROMICRO Conference on Software Engineering and
Advanced Applications, pages 1-8. IEEE, 2014.

Sungjoo Kang, Okjoo Choi, and Jongmoon Baik. Model-based dynamic cost esti-
mation and tracking method for agile software development. In 2010 IEEE/ACIS 9th
International Conference on Computer and Information Science, pages 743-748. IEEE,
2010.

Irum Inayat, Siti Salwah Salim, Sabrina Marczak, Maya Daneva, and Shahaboddin
Shamshirband. A systematic literature review on agile requirements engineering
practices and challenges. Computers in human behavior, 51:915-929, 2015.

References 131

(50]

[51]

[55]

[56]

(58]

[59]

Manish Agrawal and Kaushal Chari. Software effort, quality, and cycle time: A study
of cmm level 5 projects. IEEE Transactions on software engineering, 33(3):145-156,
2007.

Magne Jorgensen and Tanja M Gruschke. The impact of lessons-learned sessions
on effort estimation and uncertainty assessments. IEEE Transactions on Software
Engineering, 35(3):368-383, 2009.

Adam Trendowicz, Michael Ochs, Axel Wickenkamp, Jirgen Miinch, Yasushi Ishi-
gai, and Takashi Kawaguchi. Integrating human judgment and data analysis to iden-
tify factors influencing software development productivity. e-Informatica, 2(1):47-
69, 2008.

Ekrem Kocaguneli, Tim Menzies, and Jacky W Keung. On the value of ensemble
effort estimation. IEEE Transactions on Software Engineering, 38(6):1403-1416, 2011.

Panagiotis Sentas, Lefteris Angelis, Ioannis Stamelos, and George Bleris. Software
productivity and effort prediction with ordinal regression. Information and software
technology, 47(1):17-29, 2005.

Magne Jorgensen, Ulf Indahl, and Dag Sjeberg. Software effort estimation by anal-
ogy and “regression toward the mean”. Journal of Systems and Software, 68(3):253-
262, 2003.

Aditi Panda, Shashank Mouli Satapathy, and Santanu Kumar Rath. Empirical vali-
dation of neural network models for agile software effort estimation based on story
points. Procedia Computer Science, 57:772-781, 2015.

Ali Bou Nassif, Mohammad Azzeh, Ali Idri, and Alain Abran. Software development
effort estimation using regression fuzzy models. Computational intelligence and
neuroscience, 2019, 2019.

S Kanmani, Jayabalan Kathiravan, S Senthil Kumar, and Mourougane Shanmugam.
Neural network based effort estimation using class points for oo systems. In 2007
International Conference on Computing: Theory and Applications (ICCTA’07), pages
261-266. IEEE, 2007.

Satish Kumar, B Ananda Krishna, and Prem S Satsangi. Fuzzy systems and neural
networks in software engineering project management. Applied Intelligence, 4:31-
52, 1994.

Emilia Mendes and Nile Mosley. Bayesian network models for web effort prediction:
a comparative study. IEEE Transactions on Software Engineering, 34(6):723-737, 2008.

Peter Hearty, Norman Fenton, David Marquez, and Martin Neil. Predicting project
velocity in xp using a learning dynamic bayesian network model. IEEE Transactions
on Software Engineering, 35(1):124-137, 2008.

132

Bibliography

(62]

(63]

Federica Sarro, Alessio Petrozziello, and Mark Harman. Multi-objective software
effort estimation. In 2016 IEEE/ACM 38th International Conference on Software Engi-
neering (ICSE), pages 619-630. IEEE, 2016.

Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, Trang Thi Minh Pham,
Aditya Ghose, and Tim Menzies. A deep learning model for estimating story points.
IEEE Transactions on Software Engineering, 2018.

[64] Jianfeng Wen, Shixian Li, Zhiyong Lin, Yong Hu, and Changqin Huang. Systematic

[65]

[66]

[67]

(68]

(71]

(72]

(73]

literature review of machine learning based software development effort estimation
models. Information and Software Technology, 54(1):41-59, 2012.

Pinkashia Sharma and Jaiteg Singh. Systematic literature review on software effort
estimation using machine learning approaches. In 2017 International Conference on
Next Generation Computing and Information Systems (ICNGCIS), pages 43-47. IEEE,
2017.

Lucas D Panjer. Predicting eclipse bug lifetimes. In Fourth International Workshop
on Mining Software Repositories (MSR’07: ICSE Workshops 2007), pages 29-29. IEEE,
2007.

Pamela Bhattacharya and Iulian Neamtiu. Bug-fix time prediction models: can we
do better? In Proceedings of the 8th Working Conference on Mining Software Reposi-
tories, pages 207-210, 2011.

Qinbao Song, Martin Shepperd, Michelle Cartwright, and Carolyn Mair. Software
defect association mining and defect correction effort prediction. IEEE Transactions
on Software Engineering, 32(2):69-82, 2006.

Said Assar, Markus Borg, and Dietmar Pfahl. Using text clustering to predict defect
resolution time: a conceptual replication and an evaluation of prediction accuracy.
Empirical Software Engineering, 21(4):1437-1475, 2016.

Chandra Maddila, Chetan Bansal, and Nachiappan Nagappan. Predicting pull re-
quest completion time: a case study on large scale cloud services. In Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 874-882, 2019.

Ana Magazinius, Sofia Borjesson, and Robert Feldt. Investigating intentional dis-
tortions in software cost estimation—an exploratory study. Journal of Systems and
Software, 85(8):1770-1781, 2012.

Ana Magazinius and Robert Feldt. Confirming distortional behaviors in software
cost estimation practice. In 2011 37th EUROMICRO Conference on Software Engineer-
ing and Advanced Applications, pages 411-418. IEEE, 2011.

Magne Jorgensen. The influence of selection bias on effort overruns in software
development projects. Information and Software Technology, 55(9):1640-1650, 2013.

References 133

(74]

[75]

(76]

[77]

(78]

[79]

(80]

(81]

(82]

(86]

(87]

(88]

Magne Jorgensen and Stein Grimstad. Over-optimism in software development proj-
ects:” the winner’s curse”. In 15th International Conference on Electronics, Commu-
nications and Computers (CONIELECOMP’05), pages 280-285. IEEE, 2005.

Jim Highsmith. Agile project management: creating innovative products. Pearson
education, 2009.

Julian M Bass. Artefacts and agile method tailoring in large-scale offshore software
development programmes. Information and software technology, 75:1-16, 2016.

James Grenning. Planning poker or how to avoid analysis paralysis while release
planning. Hawthorn Woods: Renaissance Software Consulting, 3:22-23, 2002.

James G March and Zur Shapira. Managerial perspectives on risk and risk taking.
Management science, 33(11):1404-1418, 1987.

Karel De Bakker, Albert Boonstra, and Hans Wortmann. Does risk management
contribute to it project success? a meta-analysis of empirical evidence. International
Journal of Project Management, 28(5):493-503, 2010.

James J Jiang, Gary Klein, and Thomas L Means. Project risk impact on software
development team performance. Project Management Journal, 31(4):19-26, 2000.

James] Jiang, Gary Klein, and Richard Discenza. Information system success as
impacted by risks and development strategies. IEEE transactions on Engineering
Management, 48(1):46-55, 2001.

Wen-Ming Han and Sun-Jen Huang. An empirical analysis of risk components and
performance on software projects. Journal of Systems and Software, 80(1):42-50,
2007.

Linda Wallace, Mark Keil, and Arun Rai. Understanding software project risk: a
cluster analysis. Information & management, 42(1):115-125, 2004.

Barry W. Boehm. Software risk management: principles and practices. IEEE soft-
ware, 8(1):32-41, 1991.

Marvin J Carr, Suresh L Konda, Ira Monarch, F Carol Ulrich, and Clay F Walker.
Taxonomy-based risk identification. Technical report, CARNEGIE-MELLON UNIV
PITTSBURGH PA SOFTWARE ENGINEERING INST, 1993.

Robert N Charette. Software engineering risk analysis and management. Intertext
Publications New York, 1989.

Capers Jones. Assessment and control of software risks. Yourdon Press, 1994.

Tom Addison and Seema Vallabh. Controlling software project risks: an empirical
study of methods used by experienced project managers. In Proceedings of the 2002
annual research conference of the South African institute of computer scientists and in-
formation technologists on Enablement through technology, pages 128-140. Citeseer,
2002.

134

Bibliography

(89]

[90]

Henri Barki, Suzanne Rivard, and Jean Talbot. Toward an assessment of software
development risk. Journal of management information systems, 10(2):203-225, 1993.

Roy Schmidt, Kalle Lyytinen, Mark Keil, and Paul Cule. Identifying software project
risks: An international delphi study. Journal of management information systems,
17(4):5-36, 2001.

Kweku Ewusi-Mensah. Software development failures. Mit Press, 2003.

Sirkka L Jarvenpaa and Blake Ives. Executive involvement and participation in the
management of information technology. MIS quarterly, pages 205-227, 1991.

Michiel Van Genuchten. Why is software late? an empirical study of reasons for
delay in software development. IEEE Transactions on software engineering, 17(6):582—-
590, 1991.

Henri Barki and Jon Hartwick. Rethinking the concept of user involvement. MIS
quarterly, pages 53-63, 1989.

Hooman Hoodat and Hassan Rashidi. Classification and analysis of risks in software
engineering. World Academy of Science, Engineering and Technology, 56(32):446-452,
2009.

[96] Janne Ropponen and Kalle Lyytinen. Components of software development risk:

[97]

(98]

[99]

[100]

[101]

[102]

How to address them? a project manager survey. IEEE transactions on software
engineering, 26(2):98-112, 2000.

Linda Wallace, Mark Keil, and Arun Rai. How software project risk affects project
performance: An investigation of the dimensions of risk and an exploratory model.
Decision sciences, 35(2):289-321, 2004.

Emmanuel Letier, David Stefan, and Earl T Barr. Uncertainty, risk, and information
value in software requirements and architecture. In Proceedings of the 36th Interna-
tional Conference on Software Engineering, pages 883-894, 2014.

Yong Hu, Xiangzhou Zhang, EWT Ngai, Ruichu Cai, and Mei Liu. Software project
risk analysis using bayesian networks with causality constraints. Decision Support
Systems, 56:439-449, 2013.

Harry Raymond Joseph. Poster: Software development risk management: using
machine learning for generating risk prompts. In 2015 IEEE/ACM 37th IEEE Interna-
tional Conference on Software Engineering, volume 2, pages 833-834. IEEE, 2015.

Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, and Aditya Ghose. Char-
acterization and prediction of issue-related risks in software projects. In 2015
IEEE/ACM 12th Working Conference on Mining Software Repositories, pages 280-291.
IEEE, 2015.

Mehmet Sirin Artan and Ismail Sahin. Exploring patterns of train delay evolution
and timetable robustness. IEEE Transactions on Intelligent Transportation Systems,
23(8):11205-11214, 2021.

References 135

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

Ping Huang, Thomas Spanninger, and Francesco Corman. Enhancing the under-
standing of train delays with delay evolution pattern discovery: A clustering and
bayesian network approach. IEEE Transactions on Intelligent Transportation Systems,
23(9):15367-15381, 2022.

Nils Brede Moe, Torgeir Dingseyr, and Tore Dyba. A teamwork model for under-
standing an agile team: A case study of a scrum project. Information and Software
Technology, 52(5):480-491, 2010.

Martin Hoegl and Hans Georg Gemuenden. Teamwork quality and the success of
innovative projects: A theoretical concept and empirical evidence. Organization
science, 12(4):435-449, 2001.

Yngve Lindsjern, Dag IK Sjeberg, Torgeir Dingsegyr, Gunnar R Bergersen, and Tore
Dybé. Teamwork quality and project success in software development: A survey of
agile development teams. Journal of Systems and Software, 122:274-286, 2016.

Kai Petersen and Claes Wohlin. A comparison of issues and advantages in agile and
incremental development between state of the art and an industrial case. Journal of
systems and software, 82(9):1479-1490, 2009.

Zornitza Racheva, Maya Daneva, Klaas Sikkel, Andrea Herrmann, and Roel
Wieringa. Do we know enough about requirements prioritization in agile projects:
insights from a case study. In 2010 18th IEEE International Requirements Engineering
Conference, pages 147-156. IEEE, 2010.

Alan Moran. Agile risk management. In Agile Risk Management, pages 33-60.
Springer, 2014.

Breno Gontijo Tavares, Carlos Eduardo Sanches da Silva, and Adler Diniz de Souza.
Practices to improve risk management in agile projects. International Journal of
Software Engineering and Knowledge Engineering, 29(03):381-399, 2019.

Minna Pikkarainen, Jukka Haikara, Outi Salo, Pekka Abrahamsson, and Jari Still.
The impact of agile practices on communication in software development. Empirical
Software Engineering, 13:303-337, 2008.

Barry Boehm, Hans Dieter Rombach, and Marvin V Zelkowitz. Foundations of empir-
ical software engineering: the legacy of Victor R. Basili. Springer Science & Business
Media, 2005.

Per Runeson and Martin Host. Guidelines for conducting and reporting case study
research in software engineering. Empirical software engineering, 14(2):131, 2009.

Kathy Charmaz, Liska Belgrave, et al. Qualitative interviewing and grounded theory
analysis. The SAGE handbook of interview research: The complexity of the craft, 2:347—
365, 2012.

136

Bibliography

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

Ji Young Cho and Eun-Hee Lee. Reducing confusion about grounded theory and
qualitative content analysis: Similarities and differences. Qualitative Report, 19(32),
2014.

Joanna F DeFranco and Phillip A Laplante. A content analysis process for qualitative
software engineering research. Innovations in Systems and Software Engineering,
13(2):129-141, 2017.

Christian Bird, Tim Menzies, and Thomas Zimmermann. The art and science of ana-
lyzing software data. Elsevier, 2015.

John W Creswell and] David Creswell. Research design: Qualitative, quantitative,
and mixed methods approaches. Sage publications, 2017.

Elvan Kula, Eric Greuter, Arie van Deursen, and Georgios Gousios. Supplemen-
tal material for Factors Affecting On-time Delivery in Large-Scale Agile Software
Development. March 2021, Zenodo. https://doi.org/10.5281/zenodo.11625946.

Elvan Kula, Eric Greuter, Arie Van Deursen, and Gousios Georgios. Supplemen-
tal material for Dynamic Prediction of Delays in Software Projects Using Bayesian
Modeling. June 2023, Zenodo. https://doi.org/10.5281/zenodo.11625842.

Elvan Kula, Arie Van Deursen, and Gousios Georgios. Supplemental material for
Modeling Team Dynamics for the Characterization and Prediction of Delays in User
Stories. April 2021, Zenodo. https://doi.org/10.5281/zenodo.12206605.

Elvan Kula, Arie Van Deursen, and Gousios Georgios. Supplemental material for
Context-Aware Automated Sprint Plan Generation for Agile Software Development.
June 2024, Zenodo. https://doi.org/10.5281/zenodo. 11522834.

ING Group N.V. Annual Report of 2023. 2024. https://www.ing.com/
MediaEditPage/2023-ING-Groep-N.V.-annual-report.htm.

Henrik Kniberg and Anders Ivarsson. Scaling agile@ spotify with tribes, squads,
chapters & guilds. Entry posted November, 12, 2012.

Mashal Alqudah and Rozilawati Razali. A review of scaling agile methods in large
software development. International Journal on Advanced Science, Engineering and
Information Technology, 6(6):828—837, 2016.

Jez Humble and David Farley. Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation (Adobe Reader). Pearson Education,
2010.

SonarSource. SonarQube - Continuous Code Quality. 2024. https://www.
sonarsource.com/products/sonarqube/.

OpenText. Fortify Static Code Analyzer. 2024. https://www.opentext.com/
products/fortify-static-code-analyzer.

References 137

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

Elvan Kula, Eric Greuter, Arie Van Deursen, and Georgios Gousios. Factors affect-
ing on-time delivery in large-scale agile software development. IEEE Transactions
on Software Engineering, 48(9):3573-3592, 2021. Open Access version: https:
//pure.tudelft.nl/ws/portalfiles/portal/134949880/Factors_Affecting_On_
Time_Delivery_in_Large_Scale_Agile_Software_Development.pdf.

Elvan Kula, Eric Greuter, Arie van Deursen, and Georgios Gousios. Dynamic pre-
diction of delays in software projects using delay patterns and bayesian model-
ing. In Proceedings of the 31st ACM Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering, pages 1012-1023,
2023. Open Access version: https://pure.tudelft.nl/ws/portalfiles/portal/
180826462/3611643.3616328. pdf.

Elvan Kula, Arie van Deursen, and Georgios Gousios. Modeling team dynamics for
the characterization and prediction of delays in user stories. In 2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pages 991-1002.
IEEE, 2021. Open Access version: https://pure.tudelft.nl/ws/portalfiles/
portal/105127779/main. pdf.

Elvan Kula, Arie Van Deursen, and Georgios Gousios. Context-aware automated
sprint plan generation for agile software development. In Proceedings of the 39th
IEEE/ACM International Conference on Automated Software Engineering, pages 1745-
1756, 2024. Open Access version: https://pure.tudelft.nl/ws/portalfiles/
portal/233922943/3691620.3695540. pdf.

Barry W Boehm and Philip N. Papaccio. Understanding and controlling software
costs. IEEE transactions on software engineering, 14(10):1462-1477, 1988.

Adam Trendowicz, Jiirgen Miinch, and Ross Jeffery. State of the practice in software
effort estimation: a survey and literature review. In IFIP Central and East European
Conference on Software Engineering Techniques, pages 232—245. Springer, 2008.

Barbara A Kitchenham and Shari Lawrence Pfleeger. Principles of survey research:
parts 1 — 6. ACM SIGSOFT Software Engineering Notes, 26-28, 2001 - 2003.

Mark Kasunic. Designing an effective survey. Technical report, Carnegie-Mellon
Univ Pittsburgh PA Software Engineering Inst, 2005.

Magne Jorgensen and Kjetil Molokken-Ostvold. Reasons for software effort esti-
mation error: impact of respondent role, information collection approach, and data
analysis method. IEEE Transactions on Software Engineering, 30(12):993-1007, 2004.

Fritz Strack. “order effects” in survey research: Activation and information func-
tions of preceding questions. In Context effects in social and psychological research,
pages 23-34. Springer, 1992.

Jefferson Seide Molléri, Kai Petersen, and Emilia Mendes. Survey guidelines in soft-
ware engineering: An annotated review. In Proceedings of the 10th ACM/IEEE inter-
national symposium on empirical software engineering and measurement, pages 1-6,
2016.

138

Bibliography

[140]

[141]

[142]

[143]

[144]

[145]

[146]

Jacob Cohen. A coefficient of agreement for nominal scales. Educational and psy-
chological measurement, 20(1):37-46, 1960.

Pearl Judea. Causality: models, reasoning, and inference. Cambridge University
Press. ISBN 0, 521(77362):8, 2000.

SD Conte, HE Dunsmore, and VY Shen. Software engineering metrics and models.
1986, redwood city.

Tron Foss, Erik Stensrud, Barbara Kitchenham, and Ingunn Myrtveit. A simula-
tion study of the model evaluation criterion mmre. IEEE transactions on software
engineering, 29(11):985-995, 2003.

Barbara A Kitchenham, Lesley M Pickard, Stephen G. MacDonell, and Martin J.
Shepperd. What accuracy statistics really measure. IEE Proceedings-Software,
148(3):81-85, 2001.

Dan Port and Marcel Korte. Comparative studies of the model evaluation criterions
mmre and pred in software cost estimation research. In Proceedings of the Second
ACM-IEEE international symposium on Empirical software engineering and measure-
ment, pages 51-60, 2008.

Y Miyazaki, M Terakado, K Ozaki, and H Nozaki. Robust regression for developing
software estimation models. Journal of Systems and Software, 27(1):3-16, 1994.

[147] Jerome H Friedman. Multivariate adaptive regression splines. The annals of statistics,

pages 1-67, 1991.

[148] John Noll and Sarah Beecham. Measuring global distance: A survey of distance fac-

[149]

[150]

[151]

[152]

[153]

tors and interventions. In International Conference on Software Process Improvement
and Capability Determination, pages 227-240. Springer, 2016.

Deborah Hartmann and Robin Dymond. Appropriate agile measurement: using
metrics and diagnostics to deliver business value. In AGILE 2006 (AGILE 06), pages
6-pp. IEEE, 2006.

Stuart E Dreyfus and Hubert L Dreyfus. A five-stage model of the mental activities
involved in directed skill acquisition. Technical report, California Univ Berkeley
Operations Research Center, 1980.

Caroline Aube and Vincent Rousseau. Team goal commitment and team effective-
ness: the role of task interdependence and supportive behaviors. Group Dynamics:
Theory, Research, and Practice, 9(3):189, 2005.

Katherine M Chudoba, Eleanor Wynn, Mei Lu, and Mary B Watson-Manheim. How
virtual are we? measuring virtuality and understanding its impact in a global orga-
nization. Information systems journal, 15(4):279-306, 2005.

Ofer Morgenshtern, Tzvi Raz, and Dov Dvir. Factors affecting duration and effort
estimation errors in software development projects. Information and Software Tech-
nology, 49(8):827-837, 2007.

References 139

[154]

[155]

[156]

[157]

Robert S Huckman, Bradley R Staats, and David M Upton. Team familiarity, role
experience, and performance: Evidence from indian software services. Management
science, 55(1):85-100, 2009.

Kim Dikert, Maria Paasivaara, and Casper Lassenius. Challenges and success factors
for large-scale agile transformations: A systematic literature review. Journal of
Systems and Software, 119:87-108, 2016.

Haiyan Huang and Eileen M Trauth. Cultural influences and globally distributed
information systems development: experiences from chinese it professionals. In
Proceedings of the 2007 ACM SIGMIS CPR conference on Computer personnel research:
The global information technology workforce, pages 36-45, 2007.

Mira Kajko-Mattsson. Problems in agile trenches. In Proceedings of the Second ACM-
IEEE international symposium on Empirical software engineering and measurement,
pages 111-119, 2008.

[158] Jyrki Kontio, Magnus Hoglund, Jan Ryden, and Pekka Abrahamsson. Managing

[159]

[160]

[161]

[162]

[163]

[164]

[165]

commitments and risks: challenges in distributed agile development. In Proceedings.
26th International Conference on Software Engineering, pages 732-733. IEEE, 2004.

Nelson Sekitoleko, Felix Evbota, Eric Knauss, Anna Sandberg, Michel Chaudron,
and Helena Holmstréom Olsson. Technical dependency challenges in large-scale ag-
ile software development. In International Conference on Agile Software Development,
pages 46—61. Springer, 2014.

Diane E Strode, Sid L Huff, Beverley Hope, and Sebastian Link. Coordination in
co-located agile software development projects. Journal of Systems and Software,
85(6):1222-1238, 2012.

Amany Elbanna and Suprateek Sarker. The risks of agile software development:
Learning from adopters. IEEE Software, 33(5):72-79, 2015.

Albert L Lederer and Jayesh Prasad. Causes of inaccurate software development
cost estimates. Journal of systems and software, 31(2):125-134, 1995.

Stein Grimstad, Magne Jorgensen, and Kjetil Molokken-Ostvold. The clients’ im-
pact on effort estimation accuracy in software development projects. In 11th IEEE
International Software Metrics Symposium (METRICS 05), pages 10—pp. IEEE, 2005.

Kristian Marius Furulund and Kjetil Molkken-stvold. Increasing software effort es-
timation accuracy using experience data, estimation models and checklists. In Sev-
enth International Conference on Quality Software (QSIC 2007), pages 342—-347. IEEE,
2007.

Rajeev Gupta, K Hima Prasad, and Mukesh Mohania. Automating itsm incident
management process. In 2008 International Conference on Autonomic Computing,
pages 141-150. IEEE, 2008.

140

Bibliography

[166]

[167]

[168]

[169]

[170]

Brian Fitzgerald, Klaas-Jan Stol, Ryan O’Sullivan, and Donal O’Brien. Scaling agile
methods to regulated environments: An industry case study. In 2013 35th Interna-
tional Conference on Software Engineering (ICSE), pages 863-872. IEEE, 2013.

Fabiola Moyon, Kristian Beckers, Sebastian Klepper, Philipp Lachberger, and Bernd
Bruegge. Towards continuous security compliance in agile software development
at scale. In 2018 IEEE/ACM 4th International Workshop on Rapid Continuous Software
Engineering (RCoSE), pages 31-34. IEEE, 2018.

Lotfi ben Othmane, Pelin Angin, Harold Weffers, and Bharat Bhargava. Extending
the agile development process to develop acceptably secure software. IEEE Transac-
tions on dependable and secure computing, 11(6):497-509, 2014.

Emanuel Giger, Martin Pinzger, and Harald Gall. Predicting the fix time of bugs.
In Proceedings of the 2nd International Workshop on Recommendation Systems for
Software Engineering, pages 52-56, 2010.

Florence S Downs and J Fawcett. The relationship of theory and research. London:
McGraw-Hill/Appleton & Lange, 1986.

[171] Jefferson Seide Molléri, Kai Petersen, and Emilia Mendes. An empirically evaluated

[172]

[173]

[174]

[175]

[176]

[177]

[178]

checklist for surveys in software engineering. Information and Software Technology,
119:106240, 2020.

Robert Donmoyer. Generalizability and the single-case study. Case study method:
Key issues, key texts, pages 45-68, 2000.

Edith Desiree De Leeuw. Data quality in mail, telephone and face to face surveys.
ERIC, 1992.

Robert M Groves, Robert B Cialdini, and Mick P Couper. Understanding the decision
to participate in a survey. Public opinion quarterly, 56(4):475-495, 1992.

Adrian Furnham. Response bias, social desirability and dissimulation. Personality
and individual differences, 7(3):385-400, 1986.

Paul Ralph and Ewan Tempero. Construct validity in software engineering research
and software metrics. In Proceedings of the 22nd International Conference on Evalua-
tion and Assessment in Software Engineering 2018, pages 13-23, 2018.

Kjetil Molokken and Magne Jorgensen. A review of software surveys on software ef-
fort estimation. In 2003 International Symposium on Empirical Software Engineering,
2003. ISESE 2003. Proceedings., pages 223-230. IEEE, 2003.

Francesco Corman and Pavle Kecman. Stochastic prediction of train delays in real-
time using bayesian networks. Transportation Research Part C: Emerging Technolo-
gies, 95:599-615, 2018.

References 141

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

Bernd Oreschko, Thomas Kunze, Michael Schultz, Hartmut Fricke, Vivek Kumar,
and Lance Sherry. Turnaround prediction with stochastic process times and airport
specific delay pattern. In International Conference on Research in Airport Transporta-
tion (ICRAT), Berkeley, 2012.

Yushan Jiang, Yongxin Liu, Dahai Liu, and Houbing Song. Applying machine learn-
ing to aviation big data for flight delay prediction. In 2020 IEEE Intl Conf on De-
pendable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and
Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Sci-
ence and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), pages 665-672.
IEEE, 2020.

Carolyn Mair, Gada Kadoda, Martin Lefley, Keith Phalp, Chris Schofield, Martin
Shepperd, and Steve Webster. An investigation of machine learning based prediction
systems. Journal of systems and software, 53(1):23-29, 2000.

Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, Aditya Ghose, and John
Grundy. Predicting delivery capability in iterative software development. IEEE
Transactions on Software Engineering, 44(6):551-573, 2017.

Morakot Choetkiertikul, Hoa Khanh Dam, and Aditya Ghose. Threshold-based pre-
diction of schedule overrun in software projects. In Proceedings of the ASWEC 2015
24th Australasian Software Engineering Conference, pages 81-85, 2015.

Carlo A Furia, Robert Feldt, and Richard Torkar. Bayesian data analysis in em-
pirical software engineering research. IEEE Transactions on Software Engineering,
47(9):1786-1810, 2019.

Carlo A Furia, Richard Torkar, and Robert Feldt. Applying bayesian analysis guide-
lines to empirical software engineering data: The case of programming languages
and code quality. ACM Transactions on Software Engineering and Methodology
(TOSEM), 31(3):1-38, 2022.

Richard Torkar, Carlo A Furia, Robert Feldt, Francisco Gomes de Oliveira Neto, Lu-
cas Gren, Per Lenberg, and Neil A Ernst. A method to assess and argue for practical
significance in software engineering. IEEE Transactions on Software Engineering,
48(6):2053-2065, 2021.

Richard McElreath. Statistical rethinking: A Bayesian course with examples in R and
Stan. Chapman and Hall/CRC, 2020.

Meinard Miiller. Dynamic time warping. Information retrieval for music and motion,
pages 69-84, 2007.

Saeed Aghabozorgi, Ali Seyed Shirkhorshidi, and Teh Ying Wah. Time-series
clustering—a decade review. Information systems, 53:16-38, 2015.

[190] John A Hartigan, Manchek A Wong, et al. A k-means clustering algorithm. Applied

statistics, 28(1):100-108, 1979.

142

Bibliography

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

Andrea Arcuri and Lionel Briand. A hitchhiker’s guide to statistical tests for assess-
ing randomized algorithms in software engineering. Software Testing, Verification
and Reliability, 24(3):219-250, 2014.

Silvia Ferrari and Francisco Cribari-Neto. Beta regression for modelling rates and
proportions. Journal of applied statistics, 31(7):799-815, 2004.

Raydonal Ospina and Silvia LP Ferrari. A general class of zero-or-one inflated beta
regression models. Computational Statistics & Data Analysis, 56(6):1609-1623, 2012.

Nathan P Lemoine. Moving beyond noninformative priors: why and how to choose
weakly informative priors in bayesian analyses. Oikos, 128(7):912-928, 2019.

Andrew Gelman. Prior distributions for variance parameters in hierarchical models
(comment on article by browne and draper). Bayesian analysis, 1(3):515-534, 2006.

Michael Betancourt. A conceptual introduction to hamiltonian monte carlo. arXiv
preprint arXiv:1701.02434, 2017.

AKki Vehtari, Andrew Gelman, Daniel Simpson, Bob Carpenter, and Paul-Christian
Biirkner. Rank-normalization, folding, and localization: an improved r for assessing
convergence of memc (with discussion). Bayesian analysis, 16(2):667-718, 2021.

Paul-Christian Biirkner, Jonah Gabry, and Aki Vehtari. Approximate leave-future-
out cross-validation for bayesian time series models. Journal of Statistical Compu-
tation and Simulation, 90(14):2499-2523, 2020.

AKki Vehtari, Andrew Gelman, and Jonah Gabry. Practical bayesian model evaluation
using leave-one-out cross-validation and waic. Statistics and computing, 27(5):1413-
1432, 2017.

Magne Jorgensen, Morten Welde, and Torleif Halkjelsvik. Evaluation of probabilis-
tic project cost estimates. IEEE Transactions on Engineering Management, 2021.

Magne Jorgensen. Evaluating probabilistic software development effort estimates:
Maximizing informativeness subject to calibration. Information and software Tech-
nology, 115:93-96, 2019.

William B Langdon, Javier Dolado, Federica Sarro, and Mark Harman. Exact mean
absolute error of baseline predictor, marp0. Information and Software Technology,
73:16-18, 2016.

[203] Jakob Runge, Peer Nowack, Marlene Kretschmer, Seth Flaxman, and Dino Sejdi-

[204]

novic. Detecting and quantifying causal associations in large nonlinear time series
datasets. Science advances, 5(11):eaau4996, 2019.

Noureddine Kerzazi and Foutse Khomh. Factors impacting rapid releases: an in-
dustrial case study. In Proceedings of the 8th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, pages 1-8, 2014.

References 143

[205]

[206]

[207]

[208]

[209]

[210]

[211]

[212]

[213]

[214]

[215]

[216]

[217]

Elvan Kula, Ayushi Rastogi, Hennie Huijgens, Arie van Deursen, and Georgios
Gousios. Releasing fast and slow: an exploratory case study at ing. In Proceed-
ings of the 2019 27th ACM jJoint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering, pages 785-795,
2019. Open Access version: https://pure.tudelft.nl/ws/portalfiles/portal/
54964259/Releasing_Fast_and_Slow.pdf.

Maélick Claes, Mika V Mintyld, Miikka Kuutila, and Bram Adams. Do program-
mers work at night or during the weekend? In Proceedings of the 40th International
Conference on Software Engineering, pages 705-715, 2018.

Ahmed Al-Emran, Dietmar Pfahl, and Giinther Ruhe. Dynarep: A discrete event
simulation model for re-planning of software releases. In Software Process Dynamics
and Agility: International Conference on Software Process, ICSP 2007, Minneapolis,
MN, USA, May 19-20, 2007. Proceedings, pages 246—258. Springer, 2007.

David Ameller, Carles Farré, Xavier Franch, Danilo Valerio, and Antonino Cas-
sarino. Towards continuous software release planning. In 2017 IEEE 24th Interna-
tional Conference on Software Analysis, Evolution and Reengineering (SANER), pages
402-406. IEEE, 2017.

VersionOne. 14th State of Agile Survey. https://stateofagile.com/
#ufh-1-615706098-14th-annual-state-of-agile-report/7027494, .

Helen Sharp and Hugh Robinson. Three ‘c’s of agile practice: collaboration,
co-ordination and communication. In Agile software development, pages 61-85.
Springer, 2010.

Subhas Chandra Misra, Vinod Kumar, and Uma Kumar. Identifying some important
success factors in adopting agile software development practices. Journal of Systems
and Software, 82(11):1869-1890, 2009.

Mikael Lindvall, Vic Basili, Barry Boehm, Patricia Costa, Kathleen Dangle, Forrest
Shull, Roseanne Tesoriero, Laurie Williams, and Marvin Zelkowitz. Empirical find-
ings in agile methods. In Conference on extreme programming and agile methods,
pages 197-207. Springer, 2002.

Nils Brede Moe, Torgeir Dingsayr, and Tore Dyba. Overcoming barriers to self-
management in software teams. IEEE software, 26(6):20-26, 2009.

Terry L Dickinson and Robert M McIntyre. A conceptual framework for teamwork
measurement. Team performance assessment and measurement, pages 19-43, 1997.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly
optimized bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

ServiceNow. Workflows for the Modern Enterprise. 2021. https://servicenow.com.

Wayne W Daniel et al. Applied nonparametric statistics. 1990.

144

Bibliography

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]

[229]

[230]

[231]

Sture Holm. A simple sequentially rejective multiple test procedure. Scandinavian
journal of statistics, pages 65-70, 1979.

Barry Boehm and Richard Turner. Using risk to balance agile and plan-driven meth-
ods. Computer, 36(6):57-66, 2003.

Claudia de O Melo, Daniela S Cruzes, Fabio Kon, and Reidar Conradi. Interpretative
case studies on agile team productivity and management. Information and Software
Technology, 55(2):412-427, 2013.

Vikash Lalsing, Somveer Kishnah, and Sameerchand Pudaruth. People factors in
agile software development and project management. International Journal of Soft-
ware Engineering & Applications, 3(1):117, 2012.

Rashmi Popli and Naresh Chauhan. Agile estimation using people and project re-
lated factors. In 2014 International Conference on Computing for Sustainable Global
Development (INDIACom), pages 564-569. IEEE, 2014.

Siva Dorairaj, James Noble, and Petra Malik. Understanding team dynamics in dis-
tributed agile software development. In International conference on agile software
development, pages 47—-61. Springer, 2012.

J Alberto Espinosa, Sandra A Slaughter, Robert E Kraut, and James D Herbsleb. Fa-
miliarity, complexity, and team performance in geographically distributed software
development. Organization science, 18(4):613-630, 2007.

Thomas Tan, Qi Li, Barry Boehm, Ye Yang, Mei He, and Ramin Moazeni. Productiv-
ity trends in incremental and iterative software development. In 2009 3rd Interna-
tional Symposium on Empirical Software Engineering and Measurement, pages 1-10.
IEEE, 2009.

Katrina D Maxwell and Pekka Forselius. Benchmarking software development pro-
ductivity. Ieee Software, 17(1):80-88, 2000.

Robert W Zmud. Management of large software development efforts. MIS quarterly,
pages 45-55, 1980.

Juan Ramos et al. Using tf-idf to determine word relevance in document queries.
In Proceedings of the first instructional conference on machine learning, volume 242,
pages 29-48. Citeseer, 2003.

Stephen E Robertson, Steve Walker, Susan Jones, Micheline M Hancock-Beaulieu,
Mike Gatford, et al. Okapi at trec-3. Nist Special Publication Sp, 109:109, 1995.

Quoc Le and Tomas Mikolov. Distributed representations of sentences and docu-
ments. In International conference on machine learning, pages 1188-1196. PMLR,
2014.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

References 145

[232]

[233]

[234]

[235]

[236]

[237]

[238]

[239]

[240]

[241]

[242]

[243]

[244]

[245]

[246]

Leo Breiman. Random forests. Machine learning, 45(1):5-32, 2001.

Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of computer and system sciences,
55(1):119-139, 1997.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal
representations by error propagation. Technical report, California Univ San Diego
La Jolla Inst for Cognitive Science, 1985.

Pedro Domingos and Michael Pazzani. On the optimality of the simple bayesian
classifier under zero-one loss. Machine learning, 29(2):103-130, 1997.

Jin Huang and Charles X Ling. Using auc and accuracy in evaluating learning algo-
rithms. IEEE Transactions on knowledge and Data Engineering, 17(3):299-310, 2005.

Robin Genuer, Jean-Michel Poggi, and Christine Tuleau-Malot. Variable selection
using random forests. Pattern recognition letters, 31(14):2225-2236, 2010.

Fabian Kortum, Jil Kliinder, and Kurt Schneider. Behavior-driven dynamics in agile
development: The effect of fast feedback on teams. In 2019 IEEE/ACM International
Conference on Software and System Processes (ICSSP), pages 34-43. IEEE, 2019.

Victor R Basili and Robert W Reiter Jr. An investigation of human factors in software
development. IEEE Computer, 12(12):21-38, 1979.

Fabian Kortum, Jil Kliinder, and Kurt Schneider. Don’t underestimate the human fac-
tors! exploring team communication effects. In International conference on product-
focused software process improvement, pages 457—-469. Springer, 2017.

Andrea Arcuri and Lionel Briand. A practical guide for using statistical tests to
assess randomized algorithms in software engineering. In Proceedings of the 33rd
international conference on software engineering, pages 1-10, 2011.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.
Smote: synthetic minority over-sampling technique. Journal of artificial intelligence
research, 16:321-357, 2002.

Tore Dyba and Torgeir Dingseyr. Empirical studies of agile software development:
A systematic review. Information and software technology, 50(9-10):833-859, 2008.

Torgeir Dingseyr, Sridhar Nerur, VenuGopal Balijepally, and Nils Brede Moe. A
decade of agile methodologies: Towards explaining agile software development,
2012.

Rashina Hoda, Norsaremah Salleh, and John Grundy. The rise and evolution of agile
software development. IEEE software, 35(5):58-63, 2018.

Matteo Golfarelli, Stefano Rizzi, and Elisa Turricchia. Multi-sprint planning and
smooth replanning: An optimization model. Journal of systems and software,
86(9):2357-2370, 2013.

146

Bibliography

[247]

[248]

[249]

[250]

[251]

[252]

[253]

[254]

[255]

[256]

[257]

[258]

Hoa Khanh Dam, Truyen Tran, John Grundy, Aditya Ghose, and Yasutaka Kamei.
Towards effective ai-powered agile project management. In 2019 IEEE/ACM 41st in-
ternational conference on software engineering: new ideas and emerging results (ICSE-
NIER), pages 41-44. IEEE, 2019.

Matteo Golfarelli, Stefano Rizzi, and Elisa Turricchia. Sprint planning optimization
in agile data warehouse design. In Data Warehousing and Knowledge Discovery: 14th
International Conference, DaWaK 2012, Vienna, Austria, September 3-6, 2012. Proceed-
ings 14, pages 30—41. Springer, 2012.

Marco A Boschetti, Matteo Golfarelli, Stefano Rizzi, and Elisa Turricchia. A la-
grangian heuristic for sprint planning in agile software development. Computers
& Operations Research, 43:116-128, 2014.

S Jansi and KC Rajeswari. A greedy heuristic approach for sprint planning in agile
software development. International Journal for Trends in Engineering & Technology,
3(1):18-21, 2015.

Wisam Haitham Abbood Al-Zubaidi, Hoa Khanh Dam, Morakot Choetkiertikul, and
Aditya Ghose. Multi-objective iteration planning in agile development. In 2018 25th
Asia-Pacific Software Engineering Conference (APSEC), pages 484-493. IEEE, 2018.

Nilay Ozcelikkan, Gulfem Tuzkaya, Cigdem Alabas-Uslu, and Bahar Sennaroglu.
A multi-objective agile project planning model and a comparative meta-heuristic
approach. Information and Software Technology, 151:107023, 2022.

R Scott Harris and Mike Cohn. Incorporating learning and expected cost of change
in prioritizing features on agile projects. In International Conference on Extreme
Programming and Agile Processes in Software Engineering, pages 175-180. Springer,
2006.

Philip Achimugu, Ali Selamat, Roliana Ibrahim, and Mohd Naz’ri Mahrin. A system-
atic literature review of software requirements prioritization research. Information
and software technology, 56(6):568-585, 2014.

Rami Hasan AL-Ta’ani and Rozilawati Razali. Prioritizing requirements in agile
development: A conceptual framework. Procedia Technology, 11:733-739, 2013.

Meghann L Drury-Grogan. Performance on agile teams: Relating iteration objec-
tives and critical decisions to project management success factors. Information and
software technology, 56(5):506-515, 2014.

Lan Cao and Balasubramaniam Ramesh. Agile requirements engineering practices:
An empirical study. IEEE software, 25(1):60—-67, 2008.

Charles Spearman. The proof and measurement of association between two things.
1961.

References 147

[259]

[260]

[261]

[262]

[263]

[264]

[265]

[266]

[267]

[268]

[269]

[270]

[271]

[272]

Allysson Allex Araujo, Matheus Paixao, Italo Yeltsin, Altino Dantas, and Jerffeson
Souza. An architecture based on interactive optimization and machine learning
applied to the next release problem. Automated Software Engineering, 24:623-671,
2017.

Tadashi Dohi, Yasuhiko Nishio, and Shunji Osaki. Optimal software release schedul-
ing based on artificial neural networks. Annals of Software engineering, 8(1-4):167-
185, 1999.

Robert Dorfman, Paul Anthony Samuelson, and Robert M Solow. Linear program-
ming and economic analysis. Courier Corporation, 1987.

George B Dantzig. Linear programming. Operations research, 50(1):42—47, 2002.

Siw Elisabeth Hove and Bente Anda. Experiences from conducting semi-structured
interviews in empirical software engineering research. In 11th IEEE International
Software Metrics Symposium (METRICS’05), pages 10—pp. IEEE, 2005.

Carolyn B. Seaman. Qualitative methods in empirical studies of software engineer-
ing. IEEE Transactions on software engineering, 25(4):557-572, 1999.

Thiago do Nascimento Ferreira, Allysson Allex Araujo, Altino Dantas Basilio Neto,
and Jerffeson Teixeira de Souza. Incorporating user preferences in ant colony opti-
mization for the next release problem. Applied Soft Computing, 49:1283-1296, 2016.

Marc Goerigk and Michael Hartisch. A framework for inherently interpretable opti-
mization models. European Journal of Operational Research, 310(3):1312-1324, 2023.

Robert J Lempert, Benjamin P Bryant, and Steven C Bankes. Comparing algorithms
for scenario discovery. RAND, Santa Monica, CA, 2008.

Dieter Klein and Séren Holm. Integer programming post-optimal analysis with
cutting planes. Management Science, 25(1):64-72, 1979.

Harvey J Greenberg. The use of the optimal partition in a linear programming
solution for postoptimal analysis. Operations Research Letters, 15(4):179-185, 1994.

Blerina Lika, Kostas Kolomvatsos, and Stathes Hadjiefthymiades. Facing the cold
start problem in recommender systems. Expert systems with applications, 41(4):2065-
2073, 2014.

Alistair G Sutcliffe, Neil AM Maiden, Shailey Minocha, and Darrel Manuel. Sup-
porting scenario-based requirements engineering. IEEE Transactions on software
engineering, 24(12):1072-1088, 1998.

Bjorn Regnell, Per Runeson, and Thomas Thelin. Are the perspectives really
different?—further experimentation on scenario-based reading of requirements. Em-
pirical Software Engineering, 5:331-356, 2000.

149

1993/08/27

Education

6/2019-5/2024

9/2017-5/2019

9/2013-7/2016

Curriculum Vitee

Elvan Kula

Date of birth in Winschoten, The Netherlands

Ph.D. Student, Software Engineering Research Group,

Delft University of Technology, The Netherlands,

Modeling Effort Estimation and Planning in Large-Scale Agile
Software Development,

Promotor: Prof. Dr. Arie van Deursen

Supervisor: Dr. Georgios Gousios

M.Sc. Computer Science,

Delft University of Technology, The Netherlands,

Thesis: Releasing Fast and Slow: Characterizing Rapid Releases
in a Large Software-Driven Organization

B.Sc. Computer Science,

Delft University of Technology, The Netherlands,

Thesis: AeroVision: An Integrated Solution to the Optimization
and Visualization of Aircraft Noise

Work Experience

9/2023—-Present

6/2019-8/2023

Strategic Data Analyst
Royal Schiphol Group, Amsterdam, The Netherlands

Chapter Lead in Data Science and Al Research
ING Bank, Amsterdam, The Netherlands

150 Curriculum Vitee

2/2018-5/2019 Graduate Intern
ING Bank, Amsterdam, The Netherlands

8/2016-2/2018 Software Engineer in Operations Research & Decision Support
KLM Royal Dutch Airlines, Amstelveen, The Netherlands

8/2014-1/2016 Student Mentor and Teaching Assistant
Delft University of Technology, Delft, The Netherlands

151

® 3 s

List of Publications

. Elvan Kula, Ayushi Rastogi, Hennie Huijgens, Arie van Deursen, and Georgios Gousios: Re-

leasing fast and slow: an exploratory case study at ING. Published in Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE), 2019.

. Elvan Kula, Eric Greuter, Arie van Deursen, and Georgios Gousios: Factors affecting on-time

delivery in large-scale agile software development. Published in IEEE Transactions on Soft-
ware Engineering (TSE), 2021.

. Elvan Kula, Arie van Deursen, and Georgios Gousios: Modeling team dynamics for the char-

acterization and prediction of delays in user stories. Published in Proceedings of the 36th
IEEE/ACM International Conference on Automated Software Engineering (ASE), 2021.

. Elvan Kula, Eric Greuter, Arie van Deursen, and Georgios Gousios: Dynamic Prediction of

Delays in Software Projects using Delay Patterns and Bayesian Modeling. Published in Pro-
ceedings of the 31st ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE), 2023.

Elvan Kula, Arie van Deursen, and Georgios Gousios: Context-Aware Automated Sprint Plan
Generation for Agile Software Development. Published in Proceedings of the 39th IEEE/ACM
International Conference on Automated Software Engineering (ASE), 2024.

[3 Included in this thesis

¥ Won a Distinguished Paper Award

	Lege pagina

