Transformer
Modules

Transferable & Parameter Efficient LLM Fine
Tuning

by

Jahson O Dwyer Wha Binda

To obtain the degree of Master of Science at the Delft University of Technology,to be defended
publicly on the 5th of June 2024

Student Number: 4772288

Thesis Advisor: Pradeep Murukannaiah
Daily co-supervisor: Enrico Liscio
Project Duration: Oct 2023 - Jun 2024
Research Group: Interactive Intelligence
Faculty: Electrical Engineering, Mathematics and Computer Science
Thesis Committee: ~ Pradeep Murukannaiah
Enrico Liscio

Jan van Gemert

Style: Association for Computational Linguistics (ACL) conference tem-
plate

o]
TUDelft

Transformer Modules:
Transferable & Parameter Efficient LLM Fine Tuning

Jahson O’Dwyer Binda
Delft University Of Technology
j.t.odwyerwhabinda@student. tudelft.nl

Abstract

With the increasing popularity of Large Lan-
guage Models (LLMs), fine-tuning them has
become increasingly computationally expen-
sive. Parameter Efficient Fine-Tuning (PEFT)
methods like LoRA and Adapters, introduced
by Microsoft and Google, respectively, aim
to reduce the number of trainable parame-
ters, with the current state-of-the-art combin-
ing both methods as LoRA Adapters. This
paper introduces Transformer Modules as a
PEFT method. These modules utilize Mod-
ular Transformer Blocks (MTBs) inserted into
a frozen pre-trained model, achieving competi-
tive performance while significantly reducing
computation costs. Compared to the current
state-of-the-art using GPT-2, BERT, and T35,
Transformer Modules further reduced compute
time by 39.7% and training memory by 72.7%,
with a performance cost of 4.5+2.51% on the
GLUE benchmark. Additionally, the paper
presents the Transformer Bridge, a continuous
vector transformer designed to transfer Trans-
former Modules across different models. This
could enable cross-model fine-tuning, allow-
ing model-agnostic modules, such as an ethics
or medical module, to be used across various
LLMs without retraining or access to the origi-
nal dataset. Although the current implementa-
tion of the Transformer Bridge did not fully suc-
ceed in mapping embedding spaces, analysis
of the results suggests that further refinements
using traditional model distillation techniques
could lead to success in future iterations.

1 Introduction

Transformer architectures, first introduced in the
paper "Attention Is All You Need" (Vaswani et al.,
2017), represent a significant shift in the design of
neural networks for processing sequential data, es-
pecially in the field of natural language processing
(NLP).

With the recent surge in the popularity of Large
Language Models (LLMs), increasingly massive

Transformer models are being trained and served.
Some examples include popular models like Ope-
nAI’s GPT-4 (OpenAl, 2023) and the open-source
LLM Llama 2 (Touvron et al., 2023) by Meta. Just
these two models have 1.7 Trillion and 70 Billion
parameters respectively. As these models grow in
size, tuning for a specific use case by traditionally
adjusting their weights becomes increasingly ex-
pensive and potentially destructive to the model’s
performance.

To solve this problem an area of study has arisen
to tune these models using a reduced set of train-
able parameters. This is called Parameter Effi-
cient Fine Tuning (PEFT), which has a variety of
different methods of tuning a Transformer’s out-
put, some popular methods include Prompt Tun-
ing (Lester et al., 2021), Transformer Adapters
(Houlsby et al., 2019), and Low-Rank Adaptation
(LoRA) (Hu et al., 2022). All of these methods
either lack competitive performance, at times still
have a significant computational expense and are
highly dependent on the model they are originally
trained on making effective cross-model transfer
learning more difficult.

This paper introduces tuning Modular Trans-
former Blocks (MTB) to create Transformer
Modules as a form of PEFT. A Transformer can
generally be seen as a sequence of Transformer
blocks typically these blocks primarily consist of
a self-attention mechanism followed by a feed-
forward neural network with Normalization layers
appended after each level.

A Transformer Module is a series of MTBs, that
have been inserted into a pre-trained transformer,
to minimise the dependency on the original model
and facilitate transfer learning they are typically
placed at the head or tail ends of the model but
can generally be placed anywhere. During training
the original model is frozen and only the weights
of the added blocks are adjusted. This allows for
fine-tuning of a transformer in a way that not only

reduces the number of trainable parameters but also
utilises the showcased strength of the self-attention
mechanism demonstrated in the original "Attention
Is All You Need" paper(Vaswani et al., 2017).

The intuition behind a Transformer Module is
that the internal blocks learn to guide and provide
additional domain knowledge to the already trained
model, by learning how to use and alter the existing
embedding space created by the model’s internal
weights.

As mentioned before, an area where other PEFT
methods fall short is that the added learnings made
during training are either dependent on the embed-
ding space created by the original model, or alter
the embedding space of the original model. This
lack of modularity makes the complete transfer
of tuned behaviour impossible without additional
fine-tuning. The process of transferring pre-trained
weights followed by further fine-tuning is often
referred to as transfer learning. The Transformer
Module has been created to not only serve as a
form of PEFT but also as a form of experimenting
with the idea of "Modular Learning". This allows
Modules to be created for a task, an example being
added "domain" knowledge like a medical module,
which can be trained once and used across many
different models without further training.

In this paper, I also introduce the Transformer
Bridge which is an Encoder-Decoder style contin-
uous vector Transformer trained to map (or bridge)
the embedding space of one model to another
model. It does this by encoding the embedding
space of one model to a shared latent representation.
From this, the decoder can create an equivalent em-
bedding from the second model’s embedding space.
When used together with MTBs Modules can be
created that can be used in models other than the
one the MTBs were originally trained on. Trans-
former Bridges only require to be trained once,
meaning if a Bridge already exists a Transformer
Module can be used on another model without any
additional training. This comes with many advan-
tages like saving on compute as well for tuned be-
haviours when a dataset is not publicly available.

2 Related Works

Given the theme of this paper related research falls
into two categories. The first is research into PEFT
and the second being research into transfer-learning
and embedding space manipulation.

2.1 Parameter Efficient Fine-tuning (PEFT)

Regarding PEFT methods for transformer models,
several new approaches have risen as the popu-
larity of large transformers and LLMs increased.
Notably introduced by (Hu et al., 2022), Low-Rank
Adaption (LoRA) was a significant advancement
in PEFT and is commonly used today to tune large
LLMs efficiently. This method employs the idea
of decomposing the weight matrices of the model
into a low-rank version with a smaller dimension.
The low-rank matrices can be seen to represent the
changes that are required in the original weight
matrices which are later applied at the end of the
training session to the model weights.

Another popular method was introduced by a
team of primarily Google researchers (Houlsby
et al., 2019), in their paper they showcase the con-
cept of Transformer Adapters. Adapters are a small
set of linear layers inserted into each block of a
frozen Transformer model. During training only
the adapter weights are updated, this not only re-
duced the number of parameters required to fine-
tune a model but also was non-destructive to the
original model weights allowing for the selected
use of the adapter at inference time. Adapters have
been found to allow tuning of large models whilst
achieving similar performance to the baseline, a
full model tune. After the introduction of LoRA,
it has been found that it can be applied to only the
Adapter weights further reducing the trainable pa-
rameters, LORA Adapters are currently the state-of-
the-art PEFT method. Achieving a large parameter
reduction whilst maintaining competitive perfor-
mance.

There have been many variants of using LoRA
Adapters for fine-tuning LLMs. The paper LLM-
Adapters: An Adapter Family for Parameter-
Efficient Fine-Tuning of Large Language Models
presents a versatile framework that integrates var-
ious adapter types, including Series and Paral-
lel adapters, with LoRA, achieving high perfor-
mance with minimal parameter adjustments across
multiple datasets (Hu et al., 2023). Similarly,
Mini-Ensemble Low-Rank Adapters for Parameter-
Efficient Fine-Tuning (MELoORA) introduces an
ensemble of low-rank adapters that maintain ef-
ficiency and enhance performance by training
a group of mini low-rank adaptations, signifi-
cantly reducing the number of trainable param-
eters needed for tasks like natural language un-
derstanding and instruction following (Ren et al.,

2024). Finally, Compacter: Efficient Low-Rank
Hypercomplex Adapter Layers reduces computa-
tional complexity by combining low-rank matrices
and hypercomplex algebra, inserting task-specific
weight matrices computed as Kronecker products,
and fine-tuning only a tiny fraction of the model’s
parameters while maintaining or surpassing full
model fine-tuning performance on benchmarks like
GLUE and SuperGLUE (Karimi Mahabadi et al.,
2021).

Generally for tuning methods requiring perfor-
mance similar to a full-model tune a variant of
LoRA and Adapters are used in combination this
sense is shared in a recent survey conducted by (Xu
et al., 2023), in their paper they compare multiple
PEFT methods with a large subset of them being
derivatives of the LoRA Adapters solidifying it as
the current state-of-the-art.

New PEFT methods like Prompt Tuning intro-
duced by (Lester et al., 2021) have gained popu-
larity. Prompt tuning introduces a set of tuneable
vectors to the frozen transformer’s input, making
it one of the most efficient and unobtrusive PEFT
methods in terms of number of parameters and
weight adjustments. However, while effective for
simpler tasks, its efficacy in handling more com-
plex tasks appears to be less robust compared to
other methods, suggesting a potential limitation in
its applicability. This makes intuitive sense as there
is only a certain amount of information that can be
captured in a few added vectors to the input.

2.2 Embedding-Space Manipulation

Embedding-Space Manipulation is a much larger
field of research, with the goal of "Modular Learn-
ing", research relating to the transfer of pre-trained
learning and embedding-space mapping is the pri-
mary focus. Modular Learning in the context of this
paper is pre-trained learnt behaviours that are iso-
lated in a region of the model and can be transferred
to another model. Traditionally this is similar to
transfer learning with the additional requirement
that the model should not require additional train-
ing, this can only be achieved if the pre-trained
module successfully manipulates the embedding
space of the foreign model to achieve the tuned
behaviour as its final output.

As noted in a recent survey on Modular Deep
Learning (Pfeiffer et al., 2023), the research topic
has been gaining traction. Modular Deep Learn-
ing can be seen as computations which are imple-
mented as autonomous parameter-efficient mod-

ules similar to Adapters. The area of cross-model
modules is a space that has been relatively under-
researched. For such a task a simulation of a mod-
ule’s input embedding space would need to be cre-
ated from an embedding space created by an un-
known model. Embedding space simulation by
manipulating the embedding space of an unknown
foreign model may prove to be a difficult task.

The paper "Cross-Modal Variational Alignment
of Latent Spaces" (Theodoridis et al., 2020) demon-
strates that Variational Auto-Encoders (VAEs) can
map one embedding space to another by training
separate VAEs for each modality and then align-
ing their latent spaces. By doing this, the model
effectively captures the relationships and depen-
dencies across different modalities, demonstrating
the VAE’s capability to map and align disparate
embedding spaces. If a model can be created to do
the same using sequential data, this could unlock
the possibility for the creation of cross-model LLM
modules.

Model Distillation introduced by (Hinton et al.,
2015) shows promise in embedding-space manip-
ulation by showing that an ensemble of models
can be compressed into a single model. This sug-
gests that the embedding space created by the
compressed model successfully replicates the be-
haviours created by the embedding space of multi-
ple different models. The idea of using Model Dis-
tillation with Transformer models has been used
as a form of model compression as proposed by
(Lu et al., 2022), in their paper the final layers
of BERT had been compressed successfully, this
was done by using an architecturally similar stu-
dent model. There have not been many attempts
for cross-model embedding mappings using model
distillation techniques especially when they are po-
tentially architecturally different, which is what we
aim to do in this paper.

3 Methodology

3.1 Modular Transformer Blocks

Modular Transformer Blocks (MTBs) are a neural
network similar to the ones introduced in the "Az-
tention Is All You Need(Vaswani et al., 2017). This
is a transformer block, which typically consists
of a self-attention mechanism followed by a feed-
forward neural network with normalization layers
appended after each level. The hyper-parameters
regarding the number of layers and trainable param-
eters for each MTB can be tuned for the specific

Input Transformer Transformer
. —> Task Head
Embeddings Block Block
(a) Traditional Transformer tune.
(e Transformer Transformer Modular
Block —> Block Transformer Task Head
HSCCINgS (Frozen) (Frozen) Block

(b) MTB adapted Transformer tune.

Figure 1: Transformer tune comparison. (Red indicated
trainable parameters)

task, as well as the number of individual MTBs
required. Just like regular transformers the more
transformer blocks that are used as MTBs, it is ex-
pected to result in an increase in performance for
more difficult tasks.

MTBs are inserted into a frozen model where
only the weights of the MTBs and possibly the task
head can be changed during training. A simplistic
comparison of an MTB-based tune with a tradi-
tional transformer fine-tune can be seen in Figure 1

The intuition of an MTB is that for many tasks
introducing a small number of new trainable pa-
rameters to an already trained large Transformer
model is more efficient at train time than mutating
the original model weights, in terms of the num-
ber of trainable parameters. This follows a similar
logic to Adapters introduced by the team at Google
Deepmind (Houlsby et al., 2019).

This allows the original model to avoid muta-
tion and maintain its performance on its original
training tasks as the pre-trained weights can be
selectively added during inference. Fine-tuning a
transformer using MTBs is as simple as injecting
new transformer blocks (MTBs) into the frozen
model transformer block sequence.

During training, only the weights of the MTBs
are adjusted. After training all learning is con-
tained in the MTBs. A practical example is that
given a large medical dataset, a medical module
can be trained by inserting MTBs into a frozen
LLM. Instead of training the full model, we update
the weights contained only in the MTBs. This leads
to the learnt behaviour for this task being contained
completely in the weights of the MTBs.

3.1.1 Differences when compared with
Adapters

Especially when compared with Adapters MTBs

essentially can be used in the same way. The key

difference of an MTB is that an MTB contains at-

tention layers. Self-attention is one of the main

driving forces behind a LLM’s performance. And
for complex tasks such as ethics modelling, lan-
guage inference etc. It may prove helpful as it
allows the model to learn new ways to attend to
the input sequence to make its predictions. This
(potentially) comes with the disadvantage of an in-
creased number of trainable parameters, this can
be offset because Adapters are typically inserted in
each block while the number of MTBs are inserted
as required for the given task. One MTB could
be equivalent to several Adapters. Other PEFT
methods like LoRA can further reduce the number
of trainable parameters by applying it only to the
MTBs.

Another key difference is their placement in
the model, as mentioned before Adapters are typi-
cally inserted at each Transformer block, making
Adapters dependent on the (mutated) embedding
space created by the (mutated) model beneath it.
This has 2 disadvantages, the first being that it does
not facilitate the opportunity for transferable "Mod-
ular Learning" in the same way MTBs do. MTBs
are meant to be used together sequentially to create
a Module, the module has a single dependence, the
embedding space used to sample its inputs during
training. Due to its less "entangled" nature with
the original model, an MTB sequence in theory
should only require a mapping of a single embed-
ding space to achieve inter-model operability. The
second disadvantage is that the Adapter’s entan-
gled nature requires that gradients and intermediate
outputs for large portions of the model must be
calculated and stored during training, even for the
frozen parameters that are not being updated, when
compared to the contiguous nature of the Trans-
former Modules the use of MTBs is expected to
be significantly more efficient in both memory and
training time.

3.2 Transformer Bridge

When a Transformer model has been trained it cre-
ates an embedding space at the output of each
of its Transformer blocks. Typically the embed-
ding space created by the final block of a model is
used for tasks such as contextual embeddings or to
train additional linear layers to create task-specific
heads.

As seen in Figure 1b, MTBs sample inputs from
the embedding space created by the downstream
model to use for a prediction. This becomes a prob-
lem when you transfer an MTB from one model to
another as the models can have completely differ-

ent embedding spaces.

In more simplistic terms, we can not directly
take an MTB trained using GPT-4 embeddings and
insert it into another model like Llama 2 and expect
good results, this is because the embedding space
created at the output of the two models is com-
pletely different. To address this problem, given
a sequence of embeddings from Llama 2 we need
to generate a sequence of equivalent GPT-4 em-
beddings. From this generated sequence, a GPT-4
based MTB could theoretically use LLama 2 em-
beddings to make its prediction given that the map-
ping is accurate.

Inspired by Variational Auto-Encoders, which
have been shown to map vectors from one em-
bedding space to another, by creating an Encoder-
Decoder architecture with a shared latent space.
We can create a model to do the same, with the
key difference being that it should be able to map
a sequence of inter-dependant vector embedding
from one space to another. Such a model will be
called a Transformer Bridge as it has the goal of
"bridging" the embedding space of two different
transformer models.

Using translated embeddings from a Trans-
former Bridge, any MTB should be able to be used
in a model outside of the one it was trained out
without further training, given that a Bridge exists
that can accurately create equivalent embeddings.

3.2.1 Transformer Bridge Architecture

The Transformer Bridge is built using the trans-
former architecture, specifically the Encoder-
Decoder style transformer to act similarly to a Vari-
ational Auto-Encoder but with the ability to work
for sequential data. In this paper’s implementation
of the Bridge, the popular T5 Model by Google
Deepmind (Roberts et al., 2019) will serve as the
base. TS5 was chosen due to its proven history of
being a model that generalises well for multiple
tasks, an example being that it is one of the top
10 models on the GLUE benchmark, as well as
being an Encoder-Decoder style transformer. The
modified architecture can be seen in Figure 2.

TS5 like all other transformer models use tokens
for their predictions. Transformer models have
a finite number of tokens, in the case of TS5 its
vocabulary is around 32,000 tokens. In the final
layers of a traditional transformer, probabilities are
generated for every token in the vocabulary where
the highest probability token is predicted as the
next token in the sequence.

Output:

[Linear Layer]

Add & Normalize <s,

> Add & Normalize Feed Forward Network

Add & Normalize <,

A
Feed Forward Network

Add & Normalize

Encoder-Decoder Attention _,"

A
Self Attention <\ Add & Normalize
A

Self Attention <.

[Linear Layer]

.o | (o)

Input: Embeddings & Attention Mask

Linear Layer i

oo | (e

Outputs: Embeddings & Attention Mask
(Shifted Right)

Figure 2: The Transformer Bridge architecture based
on T5. Token and positional embedding layers have
been removed. Linear adaptive layers convert input
embedding dimensions to match the Transformer bridge
for both Encoder and Decoder. A final adaptive layer
converts embeddings back to the target dimensions at
the Decoder’s output.

This does not align well with the task of em-
bedding translations, as the final output is an N-
dimension vector, the set of possible outputs is
essentially infinite. The lack of a finite set of possi-
ble outputs means that a traditional transformer can
not create probabilities for what embedding should
be used at a given time step in the sequence.

Because of this the T5 model used to build the
Bridge has been modified, starting with removing
all layers relating to token and positional embed-
dings. This leaves only the individual Encoder &
Decoder Blocks of the model. The base T5 model’s
Blocks use a sequence of 768 dimension vectors as
its input and output, to allow for the bridge to map
embedding spaces of dimensions other than 768,
linear layers have been added as inputs to both the
Encoder and Decoder of the Bridge, as well as the
output of the Decoder. These linear layers can be
seen as an adaptive layer, where the main purpose
is to convert the N-dimension input embeddings to
768 dimensions for the Bridge to use and output to
an M-dimension embedding space.

The main challenge for the Bridge is due to the
lack of tokens in the architecture two major aspects
of a transformer are lost. The first is the lack of an
end-of-the-sequence (EOS) token, auto-regressive
models use the EOS token to indicate that it has
completed the prediction of the whole sequence.
This token is part of the model’s vocabulary set,
which allows it to be predicted. The second is the

lack of a padding (PAD) token, the PAD token is
used to maintain the shape of batched inputs. This
allows transformers to ingest large amounts of data
and process them in parallel efficiently on the GPU.

To address the lack of a PAD token, this paper’s
implementation of the Transformer Bridge uses
the tokenizer of the target model to guide the em-
bedding generation. When translating embeddings
from Model A to Model B. The input string that
was originally passed to Tokenizer A at generation
time will also pass through Tokenizer B. Tokenizer
B is used to create the output attention mask for the
Bridge, the Bridge uses the mask as an indicator
of the embedding sequence length for sentences in
the current batch.

In other words, given an attention mask of shape:
[B, N|, where B is batch size and N is sequence
length for a model with an embedding dimension
D, the Bridge now knows that it should generate an
output tensor of shape: [B, N, D] to be used with
the provided attention mask.

The next challenge is how the model handles the
lack of an EOS token. Traditionally transformers
have a forward function, which is used to generate
the next token for a sequence, and a generate func-
tion which repeatedly calls the forward function
until an EOS token is predicted indicating the end
of the sequence. The Bridge’s generate function
instead looks for an EOS condition, this condition
is that the sequence should match the length of the
target attention mask provided by the foreign tok-
enizer, i.e the tokenizer used by the model which
is using the Bridges output.

3.2.2 Training The Bridge

The Transformer Bridge is expected to perform
best when creating mappings from 2 models that
have ingested data from similar domains. In the
case of LLMs and NLP this would be a contex-
tual understanding of the meaning behind an input
sentence which is generally acquired by ingesting
large text corpora of scraped internet data.

To train a Bridge from Model A to B a corpus of
inputs for both models must be created. For every
item in the corpus, each model should be used to
get their corresponding embedding and attention
mask. The embeddings along with their masks are
used to train the bridge.

3.2.3 Alternative Bridge Designs

Multiple configurations and training setups were
experimented with to create a Transformer Bridge.

A dual-output Transformer Bridge was exper-
imented with to predict both the embedding and the
attention at the current step of the sequence. One
version used a stacked task-head design and an-
other a forked task-head design, the design of these
versions of the Bridge can be seen in Appendix C
Figure 12.

A dual-output bridge would mean we would no
longer need to use the output of a foreign tokenizer
as an EOS condition. Instead, an EOS condition
can be inferred from the attention output of the
bridge, such as an attention of 0 being predicted
after a 1. The Bridge’s generate function in this
scenario looks for an EOS condition. During infer-
ence, the generate function considers the sequence
complete when the model has predicted a PAD vec-
tor following a relevant embedding. In other words,
at every time-step #, both an embedding and an
attention probability are generated by the bridge,
if an embedding with an attention probability of
0 is predicted following a 1 at step -/ this can be
assumed to be a PAD vector indicating that the com-
pleted sequence has been predicted. If required the
Bridge will continuously predict PAD vectors to
maintain the shape of the current batch to allow for
efficient processing for the upstream-stream model.

During experimentation, the attention prediction
was shown to be much less accurate than the em-
bedding prediction. Because of this, the attention
prediction aspect was removed in favour of more
focused experimentation on embedding generation.

3.3 Transformer Module

A Transformer Module is a set of pre-trained
MTBs, the set can be added to a model to achieve
the fine-tuned behaviour during inference.

There are two types of modules.

1. Native Module: Modules that are used within
the original model they have been trained on.

2. Foreign Module: Modules that are used
within a model that the MTBs were not origi-
nally trained on.

As seen in Figure 3, the main differentiating
aspect between a Native and a Foreign Module
is that a Foreign Module contains a pre-trained
Transformer Bridge to translate the foreign input
embeddings into the equivalent embeddings from
the embedding space the MTBs were originally
trained on.

/" Foreign
Module 7 Native)
Module
Task Head
Task Head
Modular
Transformer Modular
Block Transformer
Block
Transformer ;/
Bridge

Figure 3: Transformer Module Types

The Transformer Bridge is trained independently
of the MTBs, so if a Bridge already exists then the
learnt behaviour of a Native Module can be trans-
ferred as a Foreign Module without any additional
data or training. This represents, to the best of our
knowledge, the first example of transferable fine-
tuning which requires no additional training which
I will refer to as "Modular Learning" in this paper.

Returning to the practical example made in Sec-
tion 3.1. A medical module could be trained using
a model like GPT-4, a large dataset and MTBs.
This would create a GPT-4 (OpenAl, 2023) Native
Module for the medical data. The learnt behaviour
from the medical data can be used in other models
say LLama 2 (Touvron et al., 2023) by creating a
Foreign Module using a GPT-4 to LLama 2 Trans-
former Bridge. This would allow us to create a
fine-tuned medical LLama 2 model with no addi-
tional training and without access to the original
dataset. Such a scenario saves both in infrastruc-
ture costs but also allows the creation of models in
scenarios where a dataset is not available.

4 Experiment Design

In this section, we introduce the main experiments
of the paper. We begin by introducing the ex-
perimental bench-marking tasks and models (Sec-
tions 4.1 and 4.2), then we describe the evaluation
of the MTB concept (Section 4.3), the creation,
training and evaluation of the Transformer Bridge
(Section 4.4) and finally the evaluation of the Trans-
former Module concept putting it all together (Sec-
tion 4.5

4.1 Experimental Tasks

Following the example set from the paper introduc-
ing Transformer Adapters (Houlsby et al., 2019),
the General Language Understanding Evaluation

or GLUE Benchmark introduced by (Wang et al.,
2019) can be used for our experimentation.

The GLUE benchmark is a collection of diverse
natural language understanding tasks designed to
evaluate and compare the performance of machine
learning models on tasks like sentiment analysis,
question answering, and textual entailment. It pro-
vides a standardized and comprehensive test suite
to assess a model’s ability to understand context
and reason. For each Glue task, 3 models have been
trained using 5 different methods, these methods
are visualized in Figure 4 and listed below.

Blue: Frozen

Red: Trainable Parameters Task Head

Task Head

T
‘ Task Head Task Head ‘ = Modular
i f Block

Base
Transformer

B:
Transaff;mer

Base Base
Transformer | | Transformer

Full Model Task Head

MTB Adapter

Figure 4: Fine-Tuning Setup

1. A Full-Model and task head fine-tune.

2. A Task-Head only fine-tune, where all param-
eters except for the task head are frozen.

3. A MTB fine-tune, where the last Transformer
Block of the model is copied and added to a
frozen model paired with a task head.

4. A LoRA MTB fine-tune, similar to the MTB
setup except the trainable parameters are fur-
ther reduced using LoRA.

5. An Adapter fine-tune, where LoRA adapters
are inserted to the frozen model along with a
task head.

This set of fine-tuning methods allows for not
only a comparison with a baseline, being the full
model tune, but also with the current state-of-the-
art PEFT method, LoRA Adapters.

Evaluation of the models in all experiments will
be task-dependent. For the GLUE Benchmarks
tasks the recommended standard metrics will be
used. These depend on the task and are either; Test
Set Accuracy, Matthews Correlation, F1 Score or
Pearson-Spearman Correlation.

For details on the hardware and software used
for all experiments in this paper, see Appendix D.

4.2 Experimental Models

Due to the theme of this paper being about effi-
cient and transferable fine-tuning, three models
are used during the experimentation. The models
chosen were the Bidirectional Encoder Represen-
tations from Transformers (BERT) (Devlin et al.,
2019), Generative Pre-trained Transformer 2 (GPT-
2) (Radford et al., 2019) and the Text-to-Text Trans-
fer Transformer (T5) (Roberts et al., 2019).

These three models were chosen because they
are large, open source and well-researched. This
set additionally has the added complexity that each
model is an architecturally different style of the
transformer model. Where BERT is an Encoder-
only model, GPT-2 is Decoder-only and TS is a
standard Encoder-Decoder model.

While all three models are transformers the
nature of how they are trained and generate an-
swers are very different each with their strengths
and weaknesses, making bridging the embedding
spaces between them an interesting experiment.
One such strength is that while GPT-2 is good at
language generation tasks, BERT is known to per-
form better on GLUE and other classification tasks.

For each model 3 sets of experiments have been
conducted to verify different aspects of the Trans-
former Module concept, validating MTBs as a
PEFT method, validating the Transformer Bridge’s
ability to translate embeddings for every model pair
and validating Foreign MTBs as transferable and
modular fine-tuning.

4.3 Modular Transformer Blocks

The primary goal of MTB experiments is to vali-
date that MTBs are a viable PEFT method. To this
end, we are evaluating if MTB-based fine-tuning
achieved competitive performance whilst reducing
trainable parameters significantly, In this experi-
ment, all three models are fine-tuned and evaluated
on each task using different training methods as
seen in Figure 4.

GLUE tasks are either classification or regres-
sion tasks, because of this, the frozen pre-trained
model weights will be downloaded using the Hug-
gingface library (Wolf et al., 2020). Due to memory
constraints, the smallest version of the 3 models
will be used, for all models, the small version con-
sists of a total of 12 transformer blocks.

Following the example made by Google’s
Adapter paper (Houlsby et al., 2019) a hyper-
parameter search has been conducted for each task

and each tuning method. A grid-search was per-
formed for the following parameters; learning rate
{3-107°,3-107%, 31073} and number of epochs
{3, 20}. The highest performing hyper-parameters
for each tuning method on the validation set were
used to conduct the experiment.

All training sessions used a batch size of 32 and
an AdamW (Loshchilov and Hutter, 2019) opti-
mizer paired with a linear scheduler with O warm-
up steps.

4.4 Transformer Bridge

The experiments for the Transformer Bridge have
the main goal of validating the successful trans-
lation of vectors from one embedding space to
another. To this end, we are evaluating if a
trained Bridge can successfully be used with an-
other model’s task head. This experiment is a two-
step process, first the creation and training of the
Transformer Bridge and secondly, the use of the
Bridge to achieve embedding mappings.

4.4.1 Creating the Bridge

To train the Transformer Bridge a sentence corpus
has been created. This corpus is made from 50%
of the input sentences for all GLUE Tasks. This
is so that during training the Bridge has some rep-
resentation of the domain it is expected to build a
mapping to. This corpus has a size of 1.4 Million
strings. Each row of the corpus has been passed
through all 3 models to build a dataset of their re-
spective model embeddings and attention masks,
this is used as the Input and Target during training.
The reason for using GLUE sentences instead of a
general sentence corpus is to allow the Bridge to
focus on mapping embeddings for a subset of sen-
tences structured and relating to the downstream
task, this is so the bridge does not need to learn
to translate sentences structured in an unrelated
way. If successful a more generalized Bridge can
be experimented on with a larger and more varied
dataset.

Multiple Bridges were created using the architec-
ture defined in the Methodology, since the theme
of the paper is Parameter efficiency the goal is to
make the Bridge as small as possible so we limited
the number of Transformer Blocks to a maximum
of 4. This allows the creation of 4 different Bridges
with the shapes; IxI, 1x2, 2xI, 2x2, where ExD
represent the number of Encoder blocks used (F)
and Decoder blocks used (D). A total of 24 Bridges
were trained to create bridges for all input and out-

put combinations of our 3 models.

To leverage an opportunity for transfer learn-
ing, the Transformer Bridge used the last N-blocks
of the pre-trained T5 base model. This is called
a warm-start and is popularly used by Google to
allow models to converge faster during training.
As showcased in the paper Leveraging Pre-trained
Checkpoints for Sequence Generation Tasks (Rothe
et al., 2020)

4.4.2 Bridge Training and Parameters

As the implementation of the Bridge is based on T5
(Roberts et al., 2019), in this paper the same train-
ing loop and hyper-parameters are used to fine-tune
the TS model for the task of embedding generation.

During training a batch size of 128 was used with
a constant learning rate of 0.001. The TS5 paper
denoted the duration of training using "training
steps", a training step accounts for a single back-
propagation. The paper had a fine-tuning phase
consisting of 2'® steps. After every 5000 steps, a
checkpoint of the model was saved, like the T5
paper, the checkpoint with the highest score on the
validation set was selected for the experiment.

We also experimented with using variable learn-
ing rate using a "inverse square root" sched-
uler from the original TS5 paper, denoted as
1//max(n, k), where n is the current iteration and
k is the number of warm-up steps set as 10,000.
The inverse square root scheduler had training
curves that were worse than the constant learning
rate after about 15,000 steps resulting in an early
termination of the training session.

To train the Bridge teacher-forcing (Lamb et al.,
2016) was used. At every training step the full input
sequence is passed to the encoder and the full target
sequence is passed to the decoder. While tradition-
ally Cross-Entropy loss is used to train transformer
models due to the lack of a vocabulary this paper’s
implementation of the Bridge optimizes to mini-
mize the Mean Squared Difference (MSE) between
the predicted and target vector. MSE is measured
only for the embeddings in the sequence that are
being attended to according to the attention mask
and averaged.

The MSE values between pairs of vectors in dis-
tinct embedding spaces, such as those of GPT2 and
T5, can reach the tens of thousands. To prevent the
exploding gradient issue during back-propagation,
a logarithmically scaled MSE is employed. This

log-scaled MSE is expressed as:
log = log(1 + MSE)

Cosine Loss training was also experimented
with, initially showing good results as the Bridge
successfully mapped embedding from two differ-
ent models with an error as low as 0.0086. The
results and training graphs of which can be seen in
Appendix C.In practice, this version of the Bridge
did not perform well on the downstream task. This
is partially because Cosine-Loss optimizes for the
direction of vectors in space and does not account
for the magnitude of those vectors. Embedding
magnitude is expected to be an important feature
in LLM spaces.

4.4.3 Bridge Experimentation

After completing the MTB experiments detailed in
Section 4.3, we have tuned models for all GLUE
tasks. Particularly, for every task we have both
a task head model where only the task head was
updated during training and a Native Module model
where a Transformer Module was created for the
tasks and updated. These models are labelled as
"Task Head" and "Module" in Figure 4.

Model A Task Model B Task Model B Task
Head Head Head

Model A Task
Head

Model A Model B Model A Model B

(b) Pre-trained models us-
ing foreign task-head

(a) Pre-trained models using
original task-heads

Model B Task

Model A Task
Head Head

Transformer
Bridge

Transformer
Bridge

Model A Model B

(c) Pre-trained models us-
ing foreign task-head and
Bridge

Figure 5: Transformer Bridge Experimental Setup

This allowed us to conduct the Transformer
Bridge experiment with no further training. To
do this a Bridge can be used to swap the task head
for every pair of models as seen in Figure 5.

For every GLUE task we built a set of models,
these models include:

1. An unmodified model to serve as the baseline.

2. A model using a foreign task head and no
bridge.

3. A model using a foreign task head after a
Bridge.

The models without any further training were
evaluated on the same test set as the unmodified
models.

The bridge can be deemed successful if the
model using a Bridge and a foreign task head can
achieve similar performance to the same model
using its native task head. It should also be signif-
icantly better than the models without the bridge
using a foreign task head. If true, this has shown
that the bridge has successfully bridged the base
model embeddings to the foreign embedding space
as a pre-trained task head expects samples from its
native embedding space to create predictions.

4.5 Transformer Modules

The Transformer Modules experiment is similar to
the Transformer Bridge experiment in goals and
execution. In this experiment, we aim to evaluate
that pre-trained Foreign Modules can be created
and used to add a tuned behaviour from one model
to another. The success of Native Modules is al-
ready being explored by the PEFT experiments in
Section 4.3, so in this set the focus is primarily on
Foreign Modules.

Similar to the Transformer Bridge experiments
we can leverage the previous pre-trained modules
from our PEFT experiments. This allows us to
validate the foreign module concept without further
training. The difference is instead of using just
a pre-trained task head we will use a pre-trained
MTB and task head to create Modules. The Foreign
Modules will include a bridge to translate the input
embedding space as seen in Figure 6.

This experiment follows the same success crite-
ria as the task-head-only experiment. The Trans-
former Module as a form of modular and trans-
ferable learning can be deemed successful if, for
every task, the model using a Foreign Transformer

10

Model A Task
Head

Model B Task
Head

Model B Task Model A Task
Head Head
Model A

Based
MTB

Model A
Based
MTB

Model B
Based
MTB

Model B
Based
MTB

Model A Model B Model A Model B

(a) Pre-trained models with
native Modules

(b) Pre-trained models us-
ing foreign Modules

Model A Task
| Head

Model A
Based
MTB

Model B Task
Head

Model B
Based
MTB

Transformer
Bridge

Transformer
Bridge

Model A Model B

(c) Pre-trained models us-
ing foreign Modules and a
Bridge

Figure 6: Transferable Transformer Modules Experi-
mental Setup

Module achieves similar performance to the perfor-
mance of the same Module in its native model.

5 Results

5.1 Modular Transformer Blocks

Due to the number of experiments conducted, the
results in the paper content will primarily focus
on the TS5 model, trends mentioned in this section
are shared across all models unless stated other-
wise. For an individual breakdown of each model’s
scores and performance summaries of the other
models, see Appendix A.

The individual GLUE scores for T5 can be seen
in Table 1. Following the precedent set in Google’s
Adapter paper (Houlsby et al., 2019), we have ex-
cluded WNLI from our analysis due to the prevail-
ing challenge where no current algorithm surpasses
the baseline performance achieved by simply pre-
dicting the majority class. Summaries of the com-
pute resources required for each PEFT method for

Tune Method | 003l Traimable |)\ go12 MRPC STS-B QQP MNLIGm) MNLImm) OQNLI RTE | Score
Params Params

Full Model | 608M 608M | 30.1 907 880 848 714 82.8 82.8 89.6 569 | 74.3

Task Head | 60.8M 263K 145 83 816 540 525 524 526 66.1 524 | 572

LoRA Adapter | 612M 663K 196 905 858 845 707 81.2 N/A 893 544 | 72.0

MTB 649M 445M 80 903 809 779 675 771 77.0 855 539 | 67.6

LoRAMTB | 653M 370K | 283 900 847 812 676 765 76.5 86.1 532 | 710

Table 1: TS Model: Results on GLUE test sets scored using the GLUE evaluation server. MRPC and QQP are
evaluated using F1 score. STS-B is evaluated using Spearman’s correlation coefficient. CoLA is evaluated using
Matthew’s Correlation. The other tasks are evaluated using accuracy. (MNLI mm excluded from Total calculation

due to missing value, currently scheduled in DAIC)

Tune Method | Model Size Trainable Params Train Time Memory | GLUE Score
Full Model 100.00% 100.00% 100.00% 100.00% 74.3
Task Head 100.00% 0.43% 37.72% 6.55% 57.2

LoRA Adapter 100.66% 1.09% 81.99% 68.67% 72.0
MTB 106.90% 7.34% 46.96% 12.51% 67.6
LoRA MTB 107.51% 0.61% 51.20% 18.68% 71.0

Table 2: TS5 GLUE resource summary. (Percentages relative to "Full Model")

TS5 are noted in Table 2.

The results from the fine-tuning experiments
show that the Task-head tune was consistently
the worst-performing tuning method, followed by
MTBs and LoRA MTBs. Adapters generally were
the highest-scoring PEFT method across all mod-
els. The BERT model is an exception to this trend
as Adapter tuning achieved a GLUE score higher
than the baseline full-model tune. This can be seen
in Appendix A Table 9.

5.2 Transformer Bridge

5.2.1 Transformer Bridge Training

During training the performance of the bridge was
measured using the log-scaled MSE of the pre-
dictions it made. Different configurations of the
number of Encoder/Decoder blocks seemed to have
minimal differences in their respective loss curves,
because of this and due to time restraints bridges
that were not the /x/ shape were terminated early.
The trend of the Bridge shape having minimal im-
pact on the training curves was also noticed with
the versions of the Bridge trained using cosine loss.

Due to the theme of this paper being parameter
efficiency the smallest Bridge models were allowed
to continue training. The best-performing 1x1
Bridge was selected to conduct our experiments,
this correlated to the last checkpoint, Checkpoint-7
which correlates to 35,000 training steps. The per-
formance metrics of Checkpoint-7 can be seen in
Table 3.

The primary observation made during training

11

Bridge | logmse
BERT to GPT2 6.62
BERT to TS 1.79
GPT2 to BERT 3.83
GPT2 to TS 1.80
T5 to BERT 3.84
T5 to GPT2 6.54

Table 3: Log scaled MSE on the test set for the Trans-
former Bridge trained for 35k steps (Checkpoint 7).

26

24

2.2

0 5000 10k 15k 20k 25k 30k 35k 41744 X

VA
Smoothed

1.9002
1.8858

Relative
6.978 day
6.974 day

Value
1.9299
1.8761

Run
® 1xi1-bertto-t5
® 1x1-gpt2-to-t5

Step
40,467
41,744

Figure 7: Training logygg loss for TS output Trans-
former Bridge

is the effect of the target embedding space being
bridged. Across the 3 models tested; BERT, GPT2
and TS5, the loss for generating embeddings for the
TS5 model were significantly lower than the other
models. It is also observed that the input embed-

dings did not have much of an effect on the perfor-
mance of the Bridge. This can be seen in Figure 7,
where the loss curves for the T5 output Bridges are
similar regardless of the input embedding space.

Another observation made by investigating the
training curves of the Bridges is that there is still
an opportunity for improvement. Figure 7 shows
a gradient that has not yet completely stagnated,
this sentiment is the same for the other bridges
too though to a lesser degree. The loss curves for
the BERT and GPT2 output Bridges can be found
in Appendix B Figure 10. This suggests that the
continuation of training may lead to better results.

The degree of improvement of the Bridge during
training was also highly dependent on the target
embedding space. As seen in Table 3 the GPT2
embedding seemed the most difficult for the Bridge
to learn, though when considering the starting MSE
at the beginning of the session was around 41 thou-
sand which it reduced to around 690 the degree of
improvement is much larger than the best perform-
ing T5 output Bridges. T5 output bridges started at
a MSE of around 38 which was then reduced down
to around 5.6.

5.2.2 Transformer Bridge Evaluation

The combined results for all experiments using a
foreign task-head with or without the bridge can be
seen in Table 4. Due to the difference in the dimen-
sionality of the TS model (512 dimensions) with
BERT and GPT-2 (768 dimensions), a no-bridge
experiment for T5-related pairings was omitted.

The Bridge experiments were conducted using
the GLUE validation set, this is due to time con-
straints and rate-limiting on the GLUE evaluation
servers. We found that validation set results accu-
rately reflected test set results when creating Table 1
and during the training of the Bridge the validation
set was not used at all so it is unseen data.

During training the MSE loss suggested that
some Bridges may outperform others in a real-
world task. For the results in Tables 4, this does
not seem to be the case overall all versions of the
Bridge performed poorly. The inclusion of the
Bridge achieved a slightly higher overall GLUE
score than without the Bridge when using the GPT-
2 space as the output, though this trend is inconsis-
tent across all individual tasks.

6 Transformer Modules

The combined results for all Foreign Module
Bridge experiments can be seen in Table 5. Gen-

12

erally, trends in the score share a similar resem-
blance to the findings in Section 5.2.2 except that
the scores are higher across the board. Likewise,
with Table 4 the no bridge experiments for the T5
model have been omitted due to dimensionality
differences.

A few positive scenarios suggested that the use
of the Bridge significantly improved prediction re-
sults. This was the case for the SS72 and MRPC
tasks, both of which are the easiest GLUE tasks
where even the "Task-Head" tune in Table 1 was
able to create a well-performing model. For SST2
the models using a Bridge outputting to the BERT
embedding space achieved a relatively high score
of 83%-+, though this never happened again for
any other task. As for the MRPC models which
have a few instances of scoring higher than 80 this
could very likely be due to the small size and imbal-
ance of the dataset in scenarios like this F1 score is
known to be inconsistent and possibly unreliable.

7 Discussion

7.1 Transformer Modules as a PEFT method

The experimental results for using Transformer
Modules as a PEFT method look promising, whilst
the overall GLUE score for the MTB base fine-
tuning was lower than LoRA Adapters, most signif-
icantly for the BERT model due to it outperforming
the baseline. LORA MTBs generally seemed to be
the most competitive PEFT method after LoRA
Adapters.

The difference in performance between the stan-
dard and LoRA MTBs suggests that for the GLUE
benchmark tasks, the additional trainable parame-
ters in standard MTB tuning may have led to some
over-fitting.

7.1.1 Task Performance

When it comes to task performance the strength
of Adapters is undeniable. LoRA Adapters even
at times outperform the full-model baseline. This
leads to the question as to why, for scenarios where
a full-model tune under-performed this is most
likely due to the model over-fitting on the train-
ing data. This is a well-researched phenomenon for
large models being trained on simple tasks.

When investigating why Adapters scored higher
on average than the MTB-based tuning the reason
leads back to the placement of the trainable pa-
rameters in the model. Adapters place trainable
parameters at each Transformer block in the model,

Model COLA SST2 MRPC STS-B QQP MNLI(m) MNLI(mm) QNLI RTE | Total
TS5 Native 10.5 81.9 81.9 514 60.9 52.0 54.4 65.0 552 | 57.0
T5 - Bridge - GPT2 -2.10 522 49.8 8.00 0.100 332 345 50.5 523 | 309
TS - Bridge - BERT 4.60 73.5 0.000 13.7 0.000 32.8 33.1 505 473 | 284
GPT Native 4.40 83.6 83.4 66.4 67.3 53.6 56.3 66.2 55.6 | 59.6
GPT2 - Bridge - T5 0.000 53.7 62.6 -2.50 425 359 354 512 477 | 36.3
GPT?2 - Bridge - BERT 4.60 74.8 0.000 8.50 0.000 329 332 505 473 | 28.0
GPT2 - BERT (no bridge) | 0.000 509 0.700 5.60 53.7 329 332 505 527 | 312
BERT Native 29.3 81.0 81.1 68.5 36.2 42.3 43.2 68.7 57.8 | 56.4
BERT - Bridge - TS 4.60 583 70.5 132 38.6 383 39.2 504 49.1 | 40.2
BERT - Bridge - GPT2 0.000 53.0 51.6 6.70 0.100 339 34.3 513 549 | 31.8
BERT - GPT2 (no bridge) | -2.80 47.5 0.000 -3.50 538 33.1 33.0 50.1 527 | 293

Table 4: GLUE Benchmark results of models using a foreign task-head and a logy,qp loss optimized bridge. MRPC
and QQP are evaluated using F1 score. STS-B is evaluated using Spearman’s correlation coefficient. CoLA is
evaluated using Matthew’s Correlation. The other tasks are evaluated using accuracy. (Baselines in bold)

Model | COLA SST2 MRPC STS-B QQP MNLIm) MNLImm) QNLI RTE | Total
T5 Native 660 886 825 833 837 76.9 77.9 854 513 | 707
T5 - Bridge - GPT2 2160 499 811 150 0.000 33.7 334 506 534 | 35.1
T5 - Bridge - BERT 140 839 210 140 0000 329 36.3 50.7 469 | 29.8
GPT Native 590 885 833 710 80.1 69.5 71.6 753 585 | 67.0
GPT2 - Bridge - TS 490 509 812 460 0000 333 33.7 495 527 | 334
GPT2 - Bridge - BERT 720 843 210 122 0000 33.0 36.5 506 458 | 302
GPT2 - BERT (no bridge) | 0.000 49.1 812 -0.100 463 31.8 31.8 506 527 | 38.1
BERT Native 427 908 833 855 844 46.7 78.4 553 563 | 69.3
BERT - Bridge - TS 690 509 812 -0.800 0.000 343 345 495 527 | 32.8
BERT - Bridge - GPT2 0400 49.1 797 204 0.000 346 34.0 50.6 545 | 359
BERT - GPT2 (no bridge) | 169 513 0.000 -3.00 33.0 31.8 31.8 477 516 | 29.0

Table 5: GLUE Benchmark results of models using a foreign Transformer Module and a logyqg loss optimized
bridge. MRPC and QQP are evaluated using F1 score. STS-B is evaluated using Spearman’s correlation coefficient.
CoLA is evaluated using Matthew’s Correlation. The other tasks are evaluated using accuracy. (Baselines in bold)

whilst MTBs rely solely on the embedding space
created by the final Transformer block. This differ-
ence may handicap the MTB’s opportunity to learn
for the upstream task. Adapters can learn how to
use information from various levels of abstraction
in the original model, allowing for task-relevant
features from multiple stages of the model to be
used during the fine-tuning process. These features
can be lost as you progress down the parameters of
the model negatively impacting the learning oppor-
tunity of an MTB at the tail end of a model.

Model | Train Time Memory | GLUE Score

GPT-2 -42.57% -66.74% -4.50%

BERT -38.97% -78.43% -7.61%
TS -37.55% -72.80% -1.46%

Table 6: Average percentage difference of LoRA MTB
relative to LORA Adapters

Having said that the MTB results on GLUE still
achieved decently good results, when compared
with the state-of-the-art LoRA adapters across

13

all models LoRA MTBs averaged a score within
4.5+2.51%, for the T5-based experiments MTBs
were within 1.46% of LoRA adapters performance
as seen in Table 6

7.1.2 Compute Efficiency

When considering the goals of PEFT as a form of
efficient training of LLMs. MTB-based fine-tuning
has shown substantial improvements over Adapter
tuning in terms of compute resources. As seen in
Table 2, MTB-based tuning trained significantly
faster than both a Full Model tune and an Adapter
tune. MTBs not only reduced the training time
but they did so while using significantly less GPU
memory as well. The computational efficiency of
MTBs was only beaten by a task-head-only tune,
which did not achieve competitive results in the
benchmark.

When again compared directly with LoRA
Adapters in Table 6, on average across all mod-
els LoRA MTBs reduced the required training time
by 39.7£2.11% and reduced the required training

memory by 72.7+4.77%.

The substantial reduction in the required com-
pute resources to tune a model using MTBs again
lies in the placement of the trainable parameters
in the model. As mentioned in Section 3.1.1, the
contiguous nature of the trainable parameters in
MTB-based fine-tuning became one of its great-
est strengths. Since Adapters are distributed across
multiple layers of the model, the computing process
needs to traverse through these additional layers
at each stage, calculating the gradients for a sig-
nificant portion of the model thus increasing the
computational overhead. These gradients need to
be stored during calculation and this is saved in
the GPU memory, resulting in Adapters requiring
significantly more processing time as well as more
memory.

7.2 Transformer Bridge and the creation of
Foreign Modules

Experiments involving the Transformer Bridge
showed poor results in most cases, this could be due
to various factors. Initially, the most prevailing one
was that the MSE loss of generated embeddings
was not low enough to accurately translate the em-
bedding space between two models. To decide
whether or not this is the case a further investiga-
tion into the training dynamics and the embedding
spaces created by the bridge was necessary.

7.2.1 Training differences between models

The first observation of the bridge experiments was
the performance differences during training. As
seen in Figure 7 and Figure 10 it is seen that the
biggest indicator of the training performance of the
Bridge was the output embedding space. Where T5
embeddings achieved the lowest MSE followed by
BERT, the GPT-2 embedding space seemed most
difficult to model with the MSE being in the magni-
tude of the 10s of thousands and by the 7th check-
point still being in the thousands range.

The low loss for the TS5 space is most likely
due to the use of a pre-trained TS model for the
bridge architecture, using the pre-trained weights
for T5 introduces an opportunity for transfer learn-
ing as the embedding space created by the bridge
before training is likely aligned with the original
TS5 embedding space. This is the reason why the
T5 output bridges started at a relatively low MSE
and got lower from there.

To explain the training differences between the
BERT and GPT-2 embedding spaces a visualization

14

was created. To do this a sample of 1000 sentences
were created, each one being passed through all
3 models. For each output embedding sequence
a "key embedding" was selected, this correlates to
the embedding which has a contextual represen-
tation of the complete sentence. For BERT this
correlates to the first embedding in the sequence
correlating to the <CLS> token and for GPT-2 and
TS5 due to their auto-regressive nature this corre-
lated to the last non-padded embedding. Due to a
miss-match in the embedding dimensions of the 3
models, all 3 were reduced to a dimension of 50
using Principle Component Analysis (PCA). The
reduced embeddings were then visualized using
t-distributed Stochastic Neighbor Embedding (t-
SNE), separating them into clusters the resulting
visualization can be seen in Figure 8.

t-SNE visualization of BERT, GPT-2, and T5 embeddings

BERT
GPT-2
TS5

L)

40

t-SNE component 2
°

—40 -20 0

t-SNE component 1

20

Figure 8: t-SNE visualization of GPT-2, BERT and T5
Embeddings (Perplexity=30)

Figure 8, we can see 2 distinct clusters where
both the BERT and T5 embedding spaces have been
grouped in the same cluster. This indicates that the
BERT and TS5 embedding spaces are more closely
aligned to each other than GPT-2, this alignment is
the most likely reason for BERT-based bridges out-
performing the GPT-2-based bridges in terms of
loss, as BERTs embedding space is more aligned
with the initial embedding space created by the
Bridge.

As for why the input embedding space and size
of the model seemed to have a minimal impact
on the training performance. This can be due to
all 3 embedding spaces being sufficiently rich and

informative for the task, or because the task itself
may not be completely aligned with what is being
optimized during training. The latter of which is
discussed further in Section 7.2.2.

7.2.2 Exploring the Transformer Bridge
performance

When analysing the performance of the Bridge its
failure in the task of adequately simulating the em-
bedding space of the target model is undeniable,
this is seen in both Table 5 and Table 4.

Initially when looking at the training curves of
the models in Figure 7 and Figure 10, it could be
argued that the model has not been trained suffi-
ciently to be evaluated on a real-world task like
the GLUE benchmark. If this is the case we can
take a deeper look into the bridge and its learning
progress for its main task of embedding-space sim-
ulation. As the loss of the bridge decreases then
the expectation is that the embedding space created
by the bridge more closely resembles the target
embedding space, to verify this we can visualize
the embedding space of the bridge and its target at
various stages of training, given that the 7th check-
point was used for the evaluation we have 6 more
to explore.

To do this similarly to how the embedding spaces
of each model were explored in Section 7.2.1, we
can visualize the generated embedding space of the
bridge and compare it with the target using PCA
and t-SNE. If the model is in fact learning, as the
training graphs imply, then the embedding spaces
of the bridge and its target model should appear
to be converging to a single cluster. If this is the
case it can be argued that the bridge has not been
trained enough and must reach a loss "threshold"
for which it can be used.

Visualizations of the embedding space created
by the BERT to T5 bridge using t-SNE can be
seen in Figure 9. Checkpoints 1,3,5 and 7 were
selected to show the progress of the convergence
of the Bridge’s output embedding space with the
target TS embedding space. As seen in Figure 9,
the t-SNE algorithm was successfully able to sepa-
rate the two embedding spaces into clear clusters.
This separation of embedding space suggests that
there is an intrinsic difference between the gener-
ated TS5 embedding space and the target embedding
space which does not seem to improve as training
progresses. This sentiment is shared in a similar
analysis using PCA visualizations in Appendix B.1
Figure 11, while t-SNE actively attempts to cre-

15

ate clusters directly visualizing with PCA we can
create a visualization without this feature. In both
figures, we can see that the two embedding spaces
maintain two obvious clusters that do not seem to
improve as training progresses. This lack of im-
provement is further showcased by the highlighted
sentence pairs for each embedding space where
the expectation is that over time the highlighted
sentences should move closer to their respective
pairing in the other embedding space.

The figures in this section and Appendix B.1
have shown that there is a disconnect between the
optimization metric of the bridge during training
and the actual training goal. There does not seem
to be a relationship between a distance metric like
MSE and the ability to model the embedding space
of the model. This lack of alignment can be an
indicator as to why the performance of the bridge
when used on a real-world task like GLUE was
relatively low.

7.2.3 Aligning the Bridge training for the
downstream task

The training of the bridge is based on two assump-
tions:

1. For an embedding in Model A’s space there
exists a contextual equivalent embedding in
Model B’s space.

For a given embedding within a model’s space,
contextually similar embeddings are situated
in close proximity to it.

The choice of using a distance metric for the
loss of generated embeddings is based on these
assumptions. The first assumption for most com-
plex LLMs is most likely true as the models both
model the same domain, the contextual meaning of
natural language. As for the second assumption, it
is assumed that if the bridge generates an embed-
ding that is close in proximity to the target then
the generated embedding shares a similar contex-
tual meaning to the target as well. This allows the
model to generate contextual embeddings while
also having a non-zero loss, as long as it is gener-
ally close to the target it should have contextually
the same meaning allowing it to be used success-
fully for the upstream task.

To investigate the validity of the second assump-
tion a small experiment was conducted. For each
model, the "key" embedding for different sets of
sentences was acquired. These sets are a set of con-
textually similar sentences, a set of contextually

t-SNE visualization of BERT to T5 Bridge embeddings for Checkpoint-1

40 TS5
Generated Embeddings

30 . &
o, sentenck 5
* e SSentertee 3 (0]
Q.
° 2 oagentence’y senténge 5
2 o 0O, ¥ Sentehce’s ¢+ |

séntence 1

10 .
€
g
5§ o0
g
E
8 . .
B3 ¢ - Sentence 4
A o
© -10
Sentence 2
. o
. o.gshen(sz
-20 e ¢
-30
-40
-60 -40 -20 o 20 40
-SNE component 1
(a) Checkpoint 1 (5000 Training Steps)
t-SNE visualization of BERT to T5 Bridge embeddings for Checkpoint-5
20 5 Sentence 5
Generated Embeddings [o)
30 s
septefice 3
Q7 .
4 ¢ sentenceles’®
o Qv
20 , L emee s 7 Sentefice s
. r Q7
’
N .
o . Sentence 3
~ o ey ot 3
€ . “
g
g
g 5
g 3 r
8 . Sentence 2
2 Sentenck 4 * ¥
Q. e
_10 B
—20 " Septence2
. .
Sentence 4
-30
Sentenge 1
o
-40
-60 -40 -20 0 20 40

t-SNE component 1

(c) Checkpoint 5 (25000 Training Steps)

t-SNE visualization of BERT to T5 Bridge embeddings for Checkpoint-3

40
Ts
Generated Embeddings centencd s
(o}
30 = o
Senténce 3
o)
20 s " ° s -.ose"f"‘e 5, oSenlen(el
"ol Sentence' {3, o %
K 28 79O " e i’
10 K . .
“ .
H .
5 o
g .
§ ¢ osentenced
w
H Senténcé 2
@
= -10 {
7
- & Sentence 3
o
-20 - sent '2
entence
o, =
-30
—40
—60 —40 —20 0 20 40
t-SNE component 1
(b) Checkpoint 3 (15000 Training Steps)
t-SNE visualization of BERT to T5 Bridge embeddings for Checkpoint-7
Ts
Generated Embeddings
30 e Sentence 5
. [
e e T Sdhtentes
. Kok
¢ o o . Sentence 1
" " ‘oo 2 o
‘ot dse“""“‘“ ‘OSEntgn(E5
10
. ﬁ-
~ ol
€ *
2 o N
§ 0
g el
£ bsar,nenmfl .
W ’ Sentence 2
i
L 10
oy tos, o %oty Sentefice 4
o5 o o
20 . Os:ﬁmnsez
-30 Sentence 3
0O
-40
-60 -40 -20 0 20 40

t-SNE component 1

(d) Checkpoint 7 (35000 Training Steps)

Figure 9: t-SNE visualization of BERT to TS5 Transformer Bridge and the Target embedding space, the same
sentence pairs are highlighted for each space and checkpoint. (Sample size 1000, Perplexity = 30)

different sentences and a set of the same sentence
repeated. The repeated sentence set contains repe-
titions of the sentence "The quick brown fox jumps
over the lazy dog.", while the remaining sets con-
tain the following:

Contextually similar sentence set:

1. "The quick brown fox jumps over the lazy
dog."

2. "The fast coffee coloured fox leaps above the
lethargic dog."

3. "The swift brown vulpine hops over a slothful
canine."

16

Contextually different sentence set:
1. "Tomorrow’s weather forecast shows rain."

2. "Mathematics is the study of numbers, shapes,
and patterns."

3. "Elephants are the largest land animals on
Earth."

The MSE for each pair of sentences in the respec-
tive sets were calculated, for the set containing iden-
tical sentences the models consistently returned the
same embedding meaning that the models are de-
terministic with the provided input and scored an

MSE of 0. Table 7 show the MSE of each sen-
tence pair in both the similar and different sets, for
the same comparison using Cosine-Loss see Ap-
pendix C.4. In it, we can see that MSE does not
seem to be a good indicator of sentence similarity
as both sentences that contextually mean the same
and completely different things when compared
have similar MSE values.

Model Pair MSE Similar MSE Different
BERT 1-2 0.252 0.378
BERT 1-3 0.286 0.268
BERT 2-3 0.317 0.343
GPT-2 1-2 5.83 13.3
GPT-2 1-3 5.84 5.71
GPT-2 2-3 2.66 10.2

T5 1-2 0.136 0.129

T5 1-3 0.209 0.152

T5 2-3 0.165 0.149

Table 7: Comparison of MSE values for similar and
different sentences across models. Sentence indices
refer to the pre-listed sentence groups for similar and
different contexts.

This shows that a distance metric-based loss like
MSE and Cosine Similarity, may not be optimal
for embedding mapping. In practice, a near 0 MSE
would be required to translate embeddings from
one space to another accurately. This leads to the
question of how can a model be trained for such
a task. For this, a different strategy should be em-
ployed. Originally in this paper for an embedding
in space A we are optimizing the model to find
the exact match for that embedding in space B for
the given input, this task may be too difficult for a
model to learn given the infinite size of the respec-
tive spaces.

We can formulate the problem in a new way,
let A be an embedding space and B another em-
bedding space. We can define the equivalence set
S C B such that for any embedding a € A, there
exists at least one embedding b € .S which contex-
tually represents similar information to a. Thus, S
contains the embeddings from B that, while not
necessarily close in spatial terms, share critical fea-
tures necessary for achieving equivalent predictions
in an upstream task.

To train a model for this task we can look at
how the compression of transformer models is
achieved using a more traditional model distilla-
tion technique. In a recent paper researchers from
the Alibaba Group (Brown et al., 2023) suggest the
best practices for performing model distillation on

17

transformer models. Adapting these recommenda-
tions for the use case of embedding translation, the
model of the target embedding space can be used
as a teacher. To build the student model, a Trans-
former Bridge’s input model can be frozen, after
which a bridge can be appended to the model along
with a frozen task head from the teacher model,
this setup would be similar to the one shown in Fig-
ure 5c¢ with the exception that only the bridge has
trainable parameters. The student model undergoes
similar training to the target model, in the case of
LLMs this can involve undergoing multiple tasks,
loss functions and datasets for some even requiring
different task heads. The teacher model provides
soft-labels which is used in combination with the
hard-label which is the true label for the current
task. In such a scenario the model containing the
bridge can only succeed if it is successfully pre-
dicting embeddings that contextually represent the
same information as the teacher while not optimiz-
ing on the much harder task of generating an exact
match.

8 Conclusion

Given the ever-increasing size of LLMs the study
of PEFT methods becomes increasingly impor-
tant, and given the availability, and cost of training
LLMs with large datasets the need for a transfer-
able pre-trained fine-tuning becomes an interest-
ing problem to tackle. In this paper, we intro-
duce Transformer Modules a form of Parameter
Efficient Fine-Tuning (PEFT) that facilitates inter-
model transfer-ability. The transfer-ability of pre-
trained Transformer Modules is facilitated by a
Transformer Bridge, a neural network trained to
translate one transformer model embedding space
into another. A pre-trained Module paired with a
Bridge should allow Modules to be used in models
outside of the original one it is trained with.

This work would allow low-resource entities to
train specialized transformer models without the
requirement of a large infrastructure. The ability of
cross-model transfer-ability of pre-trained modules
would allow for tuned models to be created with no
training, circumventing the need for large infras-
tructure, time and access to large datasets making
Transformer Modules the first PEFT method to
support such a use-case.

Transformer Modules as a PEFT method showed
promising results, significantly reducing the re-
quirement in terms of compute and GPU memory

to train LLLMs on the GLUE benchmark. This re-
duction in compute came at a slight cost to the peak
performance of the model as generally a full-model
tune or the use of Transformer Adapters achieved
higher GLUE scores, both used significantly more
compute resources. The choice of a PEFT method
depends on the training goals and available re-
sources, there are scenarios where MTB-based tun-
ing is favourable and others where Adapter-based
tuning is.

With the current training setup, the Transformer
Bridge failed to accurately translate embeddings
created by two models. The experimentation led
to key findings on how best to tackle the problem
in the future suggesting that by using traditional
Model Distillation techniques an accurate bridge
can be trained.

9 Limitations

The primary limitation of the study on Transformer
Modules revolves around the generality and trans-
ferability of the proposed approach. Although the
results are promising, several aspects would benefit
from further exploration and validation:

9.1 Limited Model Scope

The experiments conducted in this study were lim-
ited to three specific models: BERT, GPT-2, and
T5. While these models are popular and well-
researched, the applicability of Transformer Mod-
ules to other models, including newer or more
diverse architectures, remains untested. This po-
tentially limits the generalizability of the findings
and calls for broader experimentation with a wider
range of transformer models to establish the robust-
ness of the approach. If tested on newer models like
GPT-4 or domain-specific models like BioBERT,
we might see variations in performance efficiency
and accuracy.

9.2 Benchmark Diversity

The evaluation of Transformer Modules was con-
ducted solely on the GLUE benchmark. While
GLUE is a comprehensive and widely used bench-
mark for natural language understanding tasks, it
does not cover all possible types of tasks or do-
mains to which transformer models might be ap-
plied. Testing on benchmarks like ImageNet for im-
age classification or LibriSpeech for speech recog-
nition could reveal different computational efficien-
cies and fine-tuning effectiveness.

18

9.3 Real-World Applicability

The practical application of Transformer Modules
in real-world scenarios has not been fully explored.
Factors such as the complexity of real-world data,
the variability of input distributions, and the spe-
cific requirements of different use cases might af-
fect the performance and utility of Transformer
Modules. Extensive testing in varied and practi-
cal settings is required to validate the approach’s
effectiveness outside of controlled experimental
conditions.

9.4 Scalability and Efficiency

While the study demonstrates that Transformer
Modules can reduce computational requirements
during fine-tuning, the scalability of this approach
to extremely large models and datasets, which are
common in real-world applications, needs further
investigation. The balance between achieving effi-
ciency and maintaining high performance is crucial
for practical deployment. When applied to large-
scale datasets or models with billions of parameters,
the reduction in computational requirements may
not scale linearly.

References

Nathan Brown, Ashton Williamson, Tahj Anderson, and
Logan Lawrence. 2023. Efficient transformer knowl-
edge distillation: A performance review. In Proceed-
ings of the 2023 Conference on Empirical Methods in
Natural Language Processing: Industry Track, pages
54-65, Singapore. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. 2015.
Distilling the knowledge in a neural network. In
NIPS Deep Learning and Representation Learning
Workshop.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In
Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 2790-2799.
PMLR.

https://doi.org/10.18653/v1/2023.emnlp-industry.6
https://doi.org/10.18653/v1/2023.emnlp-industry.6
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/1503.02531
https://proceedings.mlr.press/v97/houlsby19a.html

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Zhigiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-
Peng Lim, Lidong Bing, Xing Xu, Soujanya Poria,
and Roy Lee. 2023. LLM-adapters: An adapter fam-
ily for parameter-efficient fine-tuning of large lan-
guage models. In Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 5254-5276, Singapore. Association
for Computational Linguistics.

Rabeeh Karimi Mahabadi, James Henderson, and Se-
bastian Ruder. 2021. Compacter: Efficient low-rank
hypercomplex adapter layers. In Advances in Neural
Information Processing Systems, volume 34, pages
1022—-1035. Curran Associates, Inc.

Alex M Lamb, Anirudh Goyal ALIAS PARTH GOYAL,
Ying Zhang, Saizheng Zhang, Aaron C Courville, and
Yoshua Bengio. 2016. Professor forcing: A new algo-
rithm for training recurrent networks. In Advances in
Neural Information Processing Systems, volume 29.
Curran Associates, Inc.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045-3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Chenggiang Lu, Jianwei Zhang, Yunfei Chu, Zhengyu
Chen, Jingren Zhou, Fei Wu, Haiqing Chen, and
Hongxia Yang. 2022. Knowledge distillation of
transformer-based language models revisited.

OpenAl. 2023. Gpt-4 technical report.

Jonas Pfeiffer, Sebastian Ruder, Ivan Vulié, and Edoardo
Ponti. 2023. Modular deep learning. arXiv.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Pengjie Ren, Chengshun Shi, Shiguang Wu, Mengqi
Zhang, Zhaochun Ren, Maarten de Rijke, Zhumin
Chen, and Jiahuan Pei. 2024. Mini-ensemble low-
rank adapters for parameter-efficient fine-tuning.

Adam Roberts, Colin Raffel, Katherine Lee, Michael
Matena, Noam Shazeer, Peter J. Liu, Sharan Narang,
Wei Li, and Yanqi Zhou. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Technical report, Google.

19

Sascha Rothe, Shashi Narayan, and Aliaksei Severyn.
2020. Leveraging pre-trained checkpoints for se-
quence generation tasks. Transactions of the Associ-
ation for Computational Linguistics, 8:264-280.

Thomas Theodoridis, Theocharis Chatzis, Vassilios So-
lachidis, Kosmas Dimitropoulos, and Petros Daras.
2020. Cross-modal variational alignment of latent
spaces. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW),
pages 4127-4136.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In the Pro-
ceedings of ICLR.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020. Hug-
gingface’s transformers: State-of-the-art natural lan-
guage processing.

Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui
Tao, and Fu Lee Wang. 2023. Parameter-efficient
fine-tuning methods for pretrained language models:
A critical review and assessment.

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/2023.emnlp-main.319
https://doi.org/10.18653/v1/2023.emnlp-main.319
https://doi.org/10.18653/v1/2023.emnlp-main.319
https://proceedings.neurips.cc/paper_files/paper/2021/file/081be9fdff07f3bc808f935906ef70c0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/081be9fdff07f3bc808f935906ef70c0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/16026d60ff9b54410b3435b403afd226-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/16026d60ff9b54410b3435b403afd226-Paper.pdf
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
http://arxiv.org/abs/2206.14366
http://arxiv.org/abs/2206.14366
http://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2302.11529
http://arxiv.org/abs/2402.17263
http://arxiv.org/abs/2402.17263
https://doi.org/10.1162/tacl_a_00313
https://doi.org/10.1162/tacl_a_00313
https://doi.org/10.1109/CVPRW50498.2020.00488
https://doi.org/10.1109/CVPRW50498.2020.00488
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/2312.12148
http://arxiv.org/abs/2312.12148
http://arxiv.org/abs/2312.12148

A PEFT GLUE Results
A.1 Individual Glue Scores

Tune Method | 03l ~ Traimable |)\ o712 MRPC STS-B QQP MNLIm) MNLImm) OQNLI RTE | Score
Params Params
Full Model | 124M 124M | 355 926 8.2 811 697 81.8 N/A 89.1 551 | 723
Task Head | 124M 154K 60 844 809 651 551 542 55.1 645 518 | 58.3
LoRA Adapter | 125M 896 K 00 929 849 795 693 NA 80.8 87.1 553 | 67.0
MTB 132M 7.09M 70 8.7 807 639 643 69.6 70.1 746 530 | 6L5
LoRAMTB | 132M 69.1K 86 884 809 737 637 70.7 729 799 527 | 64.0

Table 8: GPT-2 Model: Results on GLUE test sets scored using the GLUE evaluation server. MRPC and QQP are
evaluated using F1 score. STS-B is evaluated using Spearman’s correlation coefficient. CoLA is evaluated using
Matthew’s Correlation. The other tasks are evaluated using accuracy. (MNLI excluded from Total calculation due to
missing values, job is currently scheduled in DAIC)

Tune Method | 03l ~ Traimable |)\ o712 MRPC STS-B QQP MNLIm) MNLImm) OQNLI RTE | Score
Params Params

FullModel | 109M 109M | 517 936 799 8.0 716 849 N/A 91.0 503 | 75.8

Task Head | 109M 154K | 277 820 798 506 245 425 434 698 563 | 54.2

LoRA Adapter | 110M 896K | 479 912 838 839 708 83.9 83.8 91.1 623 | 76.9

MTB 117M 7.09M | 392 904 815 782 675 785 782 86.1 592 | 67.6

LoRAMTB | 117M 112K | 283 900 847 817 676 765 772 86.1 532 | 71.0

Table 9: BERT Model: Results on GLUE test sets scored using the GLUE evaluation server. MRPC and QQP are
evaluated using F1 score. STS-B is evaluated using Spearman’s correlation coefficient. CoLA is evaluated using
Matthew’s Correlation. The other tasks are evaluated using accuracy. (MNLI_mm excluded from Total calculation

due to missing values)

A.2 PEFT Compute Resource Summaries

Tune Method | Model Size Trainable Params Train Time Memory | GLUE Score
Full Model 100.00% 100.00% 100.00% 100.00% 72.3
Task Head 100.000% 0.001% 36.13% 15.20% 58.3

LoRA Adapter | 100.719% 0.72% 82.24% 76.01% 67.0
MTB 105.696% 5.70% 44.18% 20.41% 61.5
LoRA MTB 105.751% 0.06% 47.23% 25.28% 64.0

Table 10: GPT-2 GLUE resource summary. (Percentages relative to "Full Model")

Tune Method | Model Size Trainable Params Train Time Memory | GLUE Score
Full Model 100.00% 100.00% 100.00% 100.00% 72.3
Task Head 100.00% 0.001% 37.84% 5.68% 58.3

LoRA Adapter | 100.82% 0.82% 79.73% 69.56% 67.0
MTB 106.47% 6.48% 45.48% 9.73% 61.5
LoRA MTB 106.58% 0.10% 48.66% 15.00% 64.0

Table 11: BERT GLUE resource summary. (Percentages relative to "Full Model")

20

B Transformer Bridge Graphs

7.6

7.4

72

7

6.8

6.6

0 5000 10k 15k

Run Smoothed
® 1x1-bert-to-gpt2 6.5264
® 1x1-t5to-gpt2 6.5378

20k 25k 30k 35k 41744 X
7
Value Step Relative

6.5403 39,794 6.975day
6.5297 41,744 6.974 day

(a) GPT-2 Output Bridges

4.4
43
42
Uk
41
!
I
0 5000 10k 15k 20k 25k 30k
Run ™ Smoothed Value Step
1x1-gpt2-to-bert 4.0435 4.0739 38,716
1x1-t5-to-bert 4.0452 4.031 39,999

(b) BERT Output Bridges

Figure 10: Training logy,sp loss for Transformer Bridges

21

35k 41744 X

Relative
6.88 day
6.701 day

7

B.1 Embedding Space Exploration
B.1.1 BERT to T5 Bridge PCA Visualization

10

Component 2

-2

-4

Component 2

PCA visualization of BERT to T5 Bridge embeddings for Checkpoint-1

« T5
Generated Embeddings

Q Sentence 1

(Sentence s

Ite 3
diencets

(Q Sentefice 2

Component 1

(a) Checkpoint 1 (5000 Training Steps)

PCA visualization of BERT to T5 Bridge embeddings for Checkpoint-5

« T5
Generated Embeddings

 Sentence's

G’Sﬂentq;\ge S ‘f 5

-4 -2 0 2 4 6 8 10
Component 1

(c) Checkpoint 5 (25000 Training Steps)

Component 2

Component 2

-2

-4

PCA visualization of BERT to T5 Bridge embeddings for Checkpoint-3

. T5
Generated Embeddings

o Senténce s
7. Sentencel

e:semence a "

Prote

: Sentence 3
A 2P

Component 1

(b) Checkpoint 3 (15000 Training Steps)

PCA vi ion of BERT to T5 Bridge embeddings for Checkpoint-7

« T5
Generated Embeddings

Sentence 3

“. (Sentenc
(o) ©

@ Sentence &

-4

-2

°
~
-
o
®
5

Component 1

(d) Checkpoint 7 (35000 Training Steps)

Figure 11: PCA visualization of BERT to T5 Transformer Bridge and the Target embedding space, the same sentence
pairs are highlighted for each space and checkpoint. (Sample size 1000, dimension reduced to 2 components)

22

C Alternative Transformer Bridge

C.1 Alternative Architectural Designs

Output 1: Embeddings Output 2: Attention Logits

coon) (o)

[Llnaafuy-r] [lef Layer]

Decoder 10fN Y
| Add & Normalize <.

Feed Forward Network | '

Encoder 1of N
> Add & Normalize

Feed Forward Network

Add & Normalize

Add & Normalize <,

Encoder-Decoder Attention |

Self Attention Add & Normalize

Self Attention

e s o [EED;ED}

e Y e | [‘ID;E'I']

Outputs: Embeddings & Attention Mask
(Shifted Right)

Input: Embeddings & Attention Mask

(a) Forked Dual-Task Head

Output 2:
Linear Layer

Linear Layer

Decoder 1 of N |
(Add & Normalize

Encoder 1of N [
Add & Normalize

[Add&Normalize <.

A !
 Encoder-Decoder Attention |

[Add & Normalize

[Self Attention)<~

Linear Layer ,

oo e [e

Input: Embeddings & Attention Mask o | ([emem)

Outputs: Embeddings & Attention Mask
(Shifted Right)

(b) Stacked Dual-Task Head

Figure 12: Alternative Transformer Bridge Designs experimented on while writing this paper.

C.2 Cosine Loss Training Graphs

026
024
022
02
018
016
0 5000 10k 15k 20k 25k 29999
Run ™ Smoothed Value Step Relative
1x1-gpt2-to-bert 0.1594 0.1664 24,999 4.124 day
[] 1x1-t5-to-bert 0.1531 0.1538 29,999 4.471 day
(a) BERT Output Bridges
0.025
0.02
0015
0 5,000
Run Smoothed
[] 1x1-bert-to-t5 0.0135
[] 1x1-gpt2-to-t5 0.0136

0025

0015

0 5000 10k 15k 20k 25k 30k 3501
7
Run ™ ‘Smoothed Value Step Relative
[] 1x1-bert-to-gpt2 0.0097 0.0119 24,999 4.188 day
L] 1x1-t5to-gpt2 0.0066 0.007 29,999 4.457 day

(b) GPT-2 Output Bridges

15k 20k 25k 29999
Value Step Relative

0.0133 29,999 4.459 day
0.0135 27,654 4.526 day

(c) TS5 Output Bridges

Figure 13: Training Loss Graphs for Cosine loss based Transformer Bridge

23

C.3 Cosine Loss GLUE Evaluation

Bridge Cosine Loss
BERT to GPT2 0.0087
TS5 to GPT2 0.0086
BERT to T5 0.0150
GPT2to T5 0.0146
GPT2 to BERT 0.1558
T5 to BERT 0.1482

Table 12: Cosine Loss for Transformer Bridge at the Checkpoint 2

COLA SST2 MRPC STS-B QQP QNLI RTE | Total
T5 Native 10.5 819 819 514 609 552 | 58.1
T5 - Bridge - GPT2 290 54.1 330 220 640 524 49.1| 286
TS5 - Bridge - BERT 0.000 60.1 0.000 142 0000 505 473 | 246
GPT Native 440 836 834 664 673 662 556 610
GPT2 - Bridge - TS 0.000 51.1 81.1 140 550 534 480 | 414
GPT2 - Bridge - BERT 0.000 704 0000 7.10 0.000 505 473 | 25.1
GPT2 - BERT (no bridge) | 422 509 0700 560 538 505 527| 366
BERT Native 293 810 811 685 362 687 57.8| 604
BERT - Bridge - T5 0.000 553 814 870 254 492 487 | 384
BERT - Bridge - GPT2 1.80 51.1 354 930 140 520 509 | 289
BERT - GPT2 (no bridge) | -2.80 475 0000 -3.50 537 50.1 527 | 282

Table 13: GLUE Benchmark results of models using a foreign task-head and a Cosine loss optimized bridge.
MNLI GLUE Tasks excluded due to not being completed by the time of experimentation. (Baselines in bold, B =

includes bridge)
COLA SST2 MRPC STS-B QQP QNLI RTE | Total

TS Native 6.60 88.6 82.5 83.3 83.7 854 513 68.8
TS - Bridge - GPT2 0.000 49.1 81.2 11.2 0.000 51.1 513 34.8
TS - Bridge - BERT 0.000 75.0 0.000 12.8 0.000 50.7 469 26.5
GPT Native 590 88.5 83.3 71.0 80.1 753 585 66.1
GPT?2 - Bridge - TS -1.70 50.9 81.2 7.10 0.000 49.6 52.7 34.3
GPT2 - Bridge - BERT -2.10 751 0.000 10.9 0.000 504 473 259
GPT2 - BERT (no bridge) 0.000 49.1 81.2 -0.100 46.3 50.6 527 40.0
BERT Native 42.7 90.8 83.3 855 844 553 56.3 71.2
BERT - Bridge - TS 230 509 81.2 104 0.000 49.5 52.7 353
BERT - Bridge - GPT2 0.000 49.1 80.6 13.5 0.000 504 545 35.5
BERT - GPT2 (no bridge) 169 513 0.000 -3.00 33.0 47.7 51.6 28.2

Table 14: GLUE Benchmark results of models using a foreign Transformer Module and a Cosine loss optimized
bridge. MNLI GLUE Tasks excluded due to not being completed by the time of experimentation. (Baselines in

bold, B = includes bridge)

24

C.4 Cosine Loss Sentence Comparison

Model Pair Cosine Loss Similar Cosine Loss Different

BERT 1-2 0.150 0.551
BERT 1-3 0.234 0.454
BERT 2-3 0.229 0.425
GPT-2 1-2 0.00379 0.0197
GPT-2 1-3 0.00664 0.00609
GPT-2 2-3 0.00364 0.00582
TS 1-2 0.0112 0.0251
TS 1-3 0.0224 0.0234
T5 2-3 0.00498 0.0444

Table 15: Comparison of Cosine Loss values for similar and different sentences across models. Sentence indices
refer to the pre-listed sentence groups for similar and different contexts.

D Experimental Hardware And Software

Component ‘ Specification

Graphics Processing Unit (GPU) | NVIDIA A40

Processor AMD EPYC 7543 32-Core Processor

Memory 16GB RAM

Software PyTorch for model implementation and training

Table 16: Experimental Setup Details

25

	Introduction
	Related Works
	Parameter Efficient Fine-tuning (PEFT)
	Embedding-Space Manipulation

	Methodology
	Modular Transformer Blocks
	Differences when compared with Adapters

	Transformer Bridge
	Transformer Bridge Architecture
	Training The Bridge
	Alternative Bridge Designs

	Transformer Module

	Experiment Design
	Experimental Tasks
	Experimental Models
	Modular Transformer Blocks
	Transformer Bridge
	Creating the Bridge
	Bridge Training and Parameters
	Bridge Experimentation

	Transformer Modules

	Results
	Modular Transformer Blocks
	Transformer Bridge
	Transformer Bridge Training
	Transformer Bridge Evaluation

	Transformer Modules
	Discussion
	Transformer Modules as a PEFT method
	Task Performance
	Compute Efficiency

	Transformer Bridge and the creation of Foreign Modules
	Training differences between models
	Exploring the Transformer Bridge performance
	Aligning the Bridge training for the downstream task

	Conclusion
	Limitations
	Limited Model Scope
	Benchmark Diversity
	Real-World Applicability
	Scalability and Efficiency

	PEFT GLUE Results
	Individual Glue Scores
	PEFT Compute Resource Summaries

	Transformer Bridge Graphs
	Embedding Space Exploration
	BERT to T5 Bridge PCA Visualization

	Alternative Transformer Bridge
	Alternative Architectural Designs
	Cosine Loss Training Graphs
	Cosine Loss GLUE Evaluation
	Cosine Loss Sentence Comparison

	Experimental Hardware And Software

