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RACP: Risk-Aware Contingency Planning With
Multi-Modal Predictions

Khaled A. Mustafa , Daniel Jarne Ornia , Jens Kober , and Javier Alonso-Mora

Abstract—For an autonomous vehicle to operate reliably within
real-world traffic scenarios, it is imperative to assess the reper-
cussions of its prospective actions by anticipating the uncertain
intentions exhibited by other participants in the traffic environ-
ment. Driven by the pronounced multi-modal nature of human
driving behavior, this paper presents an approach that leverages
Bayesian beliefs over the distribution of potential policies of other
road users to construct a novel risk-aware probabilistic motion
planning framework. In particular, we propose a novel contingency
planner that outputs long-term contingent plans conditioned on
multiple possible intents for other actors in the traffic scene. The
Bayesian belief is incorporated into the optimization cost function
to influence the behavior of the short-term plan based on the
likelihood of other agents’ policies. Furthermore, a probabilistic
risk metric is employed to fine-tune the balance between efficiency
and robustness. Through a series of closed-loop safety-critical
simulated traffic scenarios shared with human-driven vehicles, we
demonstrate the practical efficacy of our proposed approach that
can handle multi-vehicle scenarios.

Index Terms—Planning under uncertainty, risk-awareness,
autonomous vehicles, contingency planning, multi-modality.

I. INTRODUCTION

SAFE motion planning is a prominent feature in the self-
driving stack. In urban scenarios, the ego-agent needs to

understand and infer the intended motion of other road users
in the scene in order to move safely and efficiently. However,
predicting the behavior of road users poses great challenges
since they exhibit non-deterministic and multi-modal behaviors.
Moreover, their intentions cannot be explicitly communicated to
the ego-agent. For instance, in a non-signalized intersection, it
is hard to anticipate whether a human driver will drive straight
or turn right, and it is crucial to encode this uncertainty into the
planning formulation. This gives rise to stochastic prediction
models that provide probabilistic information over all possible
intentions the human driver can exhibit [1], [2], [3], [4]. By
leveraging this probabilistic information, the ego-agent’s mo-
tion planner needs to generate safe trajectories yet not overly
conservative in the presence of other road users.
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An important aspect of planning under uncertainty is to
guarantee the existence of collision-free trajectories despite the
stochastic motion of the surrounding obstacles. One class of
methods that deals with the uncertain behavior of dynamic
agents is robust optimization [5] which provides safety guaran-
tees by rigorously accounting for bounded sets of uncertainties.
That is, the probability density function of the uncertainty is non-
zero over a bounded domain of the ego agent’s workspace and
is zero elsewhere. However, since robust optimization accounts
for all possible realizations of the uncertainty, its behavior is
excessively conservative and may result in infeasible solutions in
crowded environments, a well-studied issue in robot navigation
literature known as the “frozen robot” problem [6]. In contrast,
stochastic optimization [7] uses chance constraints [8], [9], [10]
to loosen hard constraints and bound the probability of violating
safety constraints to be within a desired confidence level δ.
This, in turn, results in less-conservative behavior compared to
robust optimization approaches. However, in multi-modal traffic
scenarios, this can still result in conservative behavior since a
single trajectory is sought to minimize the optimization’s cost
function along the entire planning horizon. This gives rise to
contingency planning frameworks [14], [17], [30], that explicitly
plan a set of conditional actions that depend on the stochastic
outcome of a prediction model.

As an illustrative example, to highlight the difference between
single policy planning and contingency planning, consider the
three-way intersection scenario depicted in Fig. 1. In this sce-
nario, we consider only two possible intents a human driver
can express. The one depicted in blue shows that the human
driver yields to the autonomous vehicle, whereas the red one
indicates that the autonomous vehicle brakes since the human
driver takes an aggressive left turn. A traditional planner, in that
situation, seeks a single plan that is safe with respect to both
intents resulting in a braking trajectory. In contrast, since only
one of the predicted intentions will happen in the future, the
contingency planner plans a short-term trajectory that ensures
safety for both potential outcomes. Subsequently, it diverges
into two specific plans, each tailored to address a distinct future
intention resulting in less-conservative plans.

II. RELATED WORK AND CONTRIBUTION

A. Related Work

A primary objective of the motion planner is to generate
non-conservative, yet safe trajectories, for the ego vehicle to
execute. In some of the proposed methods in the literature, the
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Fig. 1. Two of the possible future intents of the human-driven vehicle are
shown in red and blue. On the left, the ego-vehicle seeks a single plan which is
safe with respect to both intents. On the right, a short-term trajectory is planned
that branches into two contingent plans for each human’s intents. The illustrative
example is inspired by [16].

planner optimizes for the worst-case scenario, of how the motion
of other road users will propagate into the future, regardless of its
likelihood [50]. Despite being safe, this causes the ego vehicle
to behave defensively and overreact to low-probability dangers
far into the future, e.g., the ego vehicle brakes prematurely to
react to an unlikely future which would be uncomfortable and
socially confusing for other road users. Human behavior, in these
situations, would not be either overly conservative or completely
ignorant of such rare scenarios. An alternative way is to generate
a single plan, that safeguards against all possible intents along
the entire planning horizon which results in inefficient and con-
servative plans with compromised performance [20], [21]. As a
consequence, uncertain scenarios require autonomous vehicles
to find a reasonable trade-off between safety and efficiency.
This gives rise to the problem of planning with multi-modal
predictions.

1) Planning With Multi-Modal Predictions: Fail-safe motion
planning was introduced in [11], [12], [13] where a single trajec-
tory is generated by considering the most probable trajectories
of the other agents. Then, the safety of the proposed method is
guaranteed by ensuring the existence of an emergency maneuver
at each time step that accounts for every possible trajectory of the
other agents. Although the fail-safe trajectory may ensure safety
on a finite horizon plan, recursive feasibility is not guaranteed.
Moreover, it is difficult to estimate whether the ego-vehicle is
close to a collision.

Legibility-based models are widely used in the literature to
alleviate the conservatism of planning under uncertainty [22],
[23], [24]. A motion is considered legible if it allows an observer
to confidently infer the correct agent’s intent after observing a
snippet of its trajectory [25], and the legibility of the motion de-
pends on the required time until an observer can infer an agent’s
intent. In these approaches, a probabilistic model is used to infer
the probability of a certain goal G ∈ G from an incomplete
initial trajectory ζS→Q, P (G|ζS→Q), and the agent’s inferred
goal is modeled as the most likely one argmaxG∈G P (G|ζS→Q).
This may, however, result in an over-confident plan leading to

a collision since the probability that the agent moves towards a
different goal is entirely ignored.

Branch Model Predictive Control (B-MPC), on the other
hand, is utilized in [26], [27], [30], [31] to tackle the multi-
modality arising from human-driving decision-making, where
the behavior of the surrounding agents is simplified with a finite
set of policies derived from a prediction model. A probabilistic
scenario tree is then constructed from this finite set where each
branch in the tree has an associated policy. On top of the scenario
tree, a trajectory tree is built that shares the same topology as the
scenario tree where the objective is to minimize the expected cost
over all the branches. Yet, these approaches suffer from the curse
of dimensionality since the tree structure grows exponentially
with the prediction horizon and the number of agents, making it
only feasible for short planning horizons [32].

Another line of work for planning under uncertainty is by for-
mulating the planning problem as a partially observable Markov
decision process (POMDP) by constructing a belief tree based on
a discrete set of obstacle vehicle’s intentions [28], [29]. Solving
such problems, however, becomes computationally intractable
when the problem size scales. To address this problem, multi-
policy decision-making [33], [34], [35] decomposes the belief
tree into a limited number of closed-loop policies by leveraging
semantic information. However, these approaches solve for the
best ego-policy over all possible future realizations resulting in
overly-conservative plans that do not exploit the multi-modality
in the obstacle-vehicle behavior. To tackle this problem, inspired
by branch-MPC, TPP [36] proposes an approach that converts
the continuous space motion planning problem into a tractable
problem by converting both the trajectory tree and scenario tree
into a finite-horizon MDP. The optimal policy is then deter-
mined via dynamic programming over the constructed MDP.
Despite its scalability to multiple vehicles, TPP outputs a single
optimal policy over all scenarios causing unavoidable loss of
multi-modality information.

This issue can be tackled by separating the planning problem
into short-term and long-term responses [14], [15], [16], [17].
This is realized by generating a short-term trajectory, for t < tb,
where tb indicates a branching time, which guarantees safety
with respect to all possible future intents that the other agents
can exhibit. After tb duration, it is assumed that the ego vehicle
will be able to determine the intent of the human driver, and
thus it is sufficient to safeguard against the most likely intent.
Thus, the contingent plan can ensure safety only when the ego
vehicle acquires a clear understanding of the intentions of other
agents by the time of branching. However, in these works, the
probability associated with the uncertain intents of the dynamic
agents is assumed to be fixed, and the planning is executed in
an open-loop fashion. Thus, an exact estimation of the branch-
ing time tb is required, otherwise a collision may occur [17].
Learning-based approaches have been recently introduced in the
contingency planning context [37], [38], however, they are not
interpretable and hard to tune. [66] proposes a contingency plan-
ning approach that uses a dynamic branching point determined
by a predefined heuristic. This heuristic chooses the branching
time as the maximum time such that any two future scenarios
starting at the current time only diverge by a maximum distance.
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Despite being effective, this heuristic entails at least double the
computational time since the divergence measure is invoked on
the ego-vehicle trajectories.

In this paper, we adopt the idea of splitting the planning
problem into short-term and long-term planning.

2) Risk-Aware Motion Planning: Another aspect to consider
when planning under uncertainty is to assess the risk associated
with the executed plan [55], [56], [57], [58], [59]. In [55], Gaus-
sian process regression is utilized to establish a probabilistic
model of the environment. This model is subsequently employed
to formulate a risk-aware cost function using the Conditional
Value at Risk (CVaR) measure, which is then incorporated into
an optimal motion planning algorithm to generate trajectories
that avoid high-risk areas. [57] constructs a probabilistic risk
map by assessing the anticipated harm considering predicted
spatio-temporal trajectories for both the ego-vehicle and other
participants in the traffic scene. These maps serve as indicators of
the risk associated with a planned trajectory, calculated through
a rapidly-exploring random tree algorithm. Despite being effec-
tive, a drawback of this approach is that the driven trajectories of
the other traffic participants need to be pre-defined and known
by the ego-vehicle a priori. Along the same line as our proposed
approach, [58], [59] define risk as a product of two components,
the probability of collision with other traffic subjects and the
severity of that potential collision. In that sense, an analytic
approach is proposed to calculate the probability of spatial
overlap of the ego-vehicle with dynamic obstacles at discrete
times.

B. Statement of Contributions

In this work, we aim to address the state-of-the-art aforemen-
tioned limitations. In particular, the contributions of this paper
can be summarized in the following points:

i) In contrast to recent contingency planning schemes that
assume an open-loop information structure, we propose
a Bayesian update scheme that incorporates the observa-
tions of the human states into the motion planner cost
function, influencing the short-term plan based on the
belief the ego-vehicle maintains over human intentions.

ii) We incorporate a probabilistic risk metric into the contin-
gency planner to balance safety and efficiency.

iii) We analyze the effect of branching time and the belief over
the obstacles’ intents on the short-term plan, and how they
relate to the maximum risk the ego-agent endures.

iv) We show how the proposed approach can be extended
to multi-agent scenarios by leveraging the permutations
over all possible intentions the traffic agents can have.

III. PRELIMINARIES

In this section, we first introduce the principal tools that
constitute the proposed contingency planning framework.

A. Notation

Throughout this paper, vectors, and matrices are expressed
in bold, x, and capital bold, A, letters respectively. ||x|| is the
Euclidean norm of x, and the subscript (·)k indicates the value

Fig. 2. Illustration of the Frenet coordinate system.

at stage k, f(·) is the probability density function. The planning
problem is formulated in a receding horizon fashion where only
the first control input is executed, and then the whole process is
reiterated with the new initial conditions and observations.

B. Ego-Motion Sampler

The general form of the planning problem can be formulated
as follows:

τ ∗ = arg min
τ∈Tn

J(τ ; Γ), (1a)

s.t. gj(τ) ≤ bj , j = 1, . . ., n (1b)

where the optimal trajectory τ ∗ is defined as the one giving
the minimum total cost J(τ) from a set of sampled trajectories
Tn given the ego-state. τ ∈ Tn is a continuous path through
the state space and is characterized by a sequence of points
τ = {x0,x1, . . .,xN} defined over a horizon of length N with
regular intervals Δt, where xk = (xk, yk). The optimal trajec-
tory must adhere to a set of time-dependent constraints gj(τ)
imposed by the surrounding dynamic obstacles, vehicle kine-
matics, and other user-defined constraints.

Instead of formulating the problem directly in the Cartesian
coordinate system, we switch to the Frenet Frame to exploit
the lane-geometric information. In that sense, the trajectory is
parameterized by the total arc-length s(t) traveled along the
reference path Γ parameterized by time t, and the orthogonal
lateral deviation d(s) parameterized by arc-length s as shown
in Fig. 2. In this paper, we adopt a sampling-based motion
planning approach that is widely used in the intelligent vehicles
community [39], [40], [41], [42], [43], [44].

To generate a set of possible candidate trajectories, we first
need to sample a set of terminal states for both longitudinal
and lateral trajectories. To ensure the diversability of the can-
didate trajectories, it is crucial to emphasize that the sampled
terminal states should cover various maneuvers which include
maintaining the current velocity, accelerating to a certain speed,
yielding velocity profiles for the longitudinal trajectories, and
lane-keeping, lane-change, and nudging for lateral trajectories.
Given the current ego-state, with respect to the reference path,
and the sampled terminal states, piecewise quartic and quintic
polynomials can be used to generate the longitudinal and lat-
eral trajectories respectively [39]. The Frenet state defined as
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[s, ṡ, s̈, d, d′, d′′] can then be converted to the global coordinates
[x, y, θ, κ, v, a], where ˙(·) := d(·)

dt , and (·)′ := d(·)
ds indicate the

parameters derivatives with respect to time and arc-length re-
spectively.

After generating a set of trajectories, some of them are then
pruned based on some imposed constraints g(τ). These con-
straints are affected by the kinodynamic feasibility of the ego-
vehicle, in addition to collision avoidance constraints concerning
the surrounding obstacles. Since the motion of the dynamic
obstacles is not known a priori, this necessitates the need for
a probabilistic prediction model that models their behavior
forward in time which is described in Subsection III-C. After
pruning the invalid trajectories, a user-defined cost functionJ(τ)
is assigned to each valid trajectory, and the trajectory τ with
the minimum cost is selected. The details of g(τ) and J(τ)
formulations are given in Section V.

C. Probabilistic Prediction Model

The planner is required to stochastically forecast other agents’
behavior to make informed decisions. This necessitates the need
for a prediction model that can effectively capture the diverse and
nuanced intentions exhibited by different drivers. For instance, a
neighboring vehicle may opt to either remain in its lane or merge
in front of us. To address the inherent uncertainty and complexity
associated with the multi-modal behavior of road users, the ap-
plication of Mixture-of-Gaussians (MoG) distributions is widely
used in literature, see e.g., [46], [47]. It is important to highlight
that other multi-modal prediction methods could also be used
in conjunction with our proposed approach. In our settings,
there exists a set of dynamic obstacles o ∈ Io := {1, . . ., no},
at position δo ∈ R2. The probability measure associated with
the uncertainty of the perception of the dynamic obstacles is
denoted by P and defined over the probability space Δ. An
MoG model serves as a comprehensive method for articulating
uncertainty characterized by multiple modes, achieved through
the integration of multiple continuous probability distributions,

fok (x, y) =
n∑

i=1

φif
o
k,i(x, y), (2)

where n is the number of modes of the MoG, φi represents the
weight of each mode such that

∑n
i=1 φi = 1, and fok,i(·) is the

probability density function of each mode with mean μi ∈ Rn

and covariance Σi ∈ Rn×n,

fok,i(·) = N (μi(t),Σi(t)), (3)

The output of the prediction model is subsequently a sequence
of predicted state distributions along the prediction horizon for
a given mode. This will be later leveraged to calculate the
risk associated with the planned trajectories as detailed in the
following subsection.

D. Collision Chance Constraints

The ego-vehicle v and the obstacle o are mutually collision-
free if ||xv

k − δok|| ≤ r, where xv, δo ∈ R2 denote the positions
of the ego-vehicle and obstacle respectively, and r is the safety

distance. However, since the positions of the obstacles are de-
fined as random variables, the collision avoidance constraints
can only be satisfied in a probabilistic manner, and thus defined
as chance constraints at each timestep k,

P (||xv
k − δok|| ≤ r) ≤ 1− δ (4)

where P indicates the probability measure, and δ ∈ (0, 1] is the
collision probability threshold.

IV. PROBLEM FORMULATION

In traditional motion planning frameworks, a single trajectory
is sought to minimize the expected cost over all plausible pre-
dicted futures along the entire planning horizon [50], which may
result in sub-optimal and overly-conservative trajectories. The
contingency planning paradigm, on the other hand, generates a
distinct set of trajectories conditioned on the different outcomes
from the prediction model.

A. Contingency Planning

Due to the stochastic nature of the surrounding agents’ inten-
tions, contingency planning outputs multiple policies Π where
each policyπ ∈ Π is specified for a single agent’s intent λ̃. Given
the ego-vehicle’s incapacity to concurrently traverse multiple
contingency plans, the initial segment of each plan τ0:tb is re-
stricted to remain consistent. The contingency planning problem
can be formulated as,

arg min
τ
Jshared(τ0:tb) +

∑
λ∈Λ

p(λ)Jconting(τtb:T , λ) (5a)

s.t. gj(τ) ≤ bj , j = 1, . . ., n (5b)

where Jshared is the cost of the shared part of the plan that takes
into consideration all possible modes of the prediction model, tb
is the branching time representing the time at which the shared
plan bridges into different contingent plans, Jconting is the cost
associated with each contingent plan, and p(λ) indicates the
probability of each possible intention given by the prediction
model introduced in Section III-C.

However, with this problem formulation, the following chal-
lenges arise:

i) It is assumed that by tb, the uncertainty about the
other agents’ intentions is resolved, and the ego-vehicle
branches to the predicted true hypothesis. Thus, tb has to
be calculated accurately, otherwise, the ego-vehicle may
choose the wrong branch which can result in a collision.

ii) The hypothesis probabilities estimated by the prediction
model, p(λ), are usually of a bad quality and entirely
relying on them could result in collisions [48].

In [17], [18], [19], an offline reachability analysis approach is
proposed to alleviate the first issue by estimating the branching
time tb. However, this approach requires a discretization of the
state space and takes into consideration the worst behavior of
the other agents which leads to the worst-case estimate of tb,
that is the latest time at which the ego-vehicle becomes certain
about the other obstacle’s intention. Moreover, due to the curse of
dimensionality, this approach can barely extend to multi-agents.
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Therefore, in our proposed approach, introduced in the up-
coming section, we tackle the first issue by introducing a belief
updater that updates the ego-vehicle’s prior belief about obsta-
cles’ intentions based on the online measurement it perceives.
Moreover, to address the inherent trade-off between safety and
efficiency, we introduce risk-aware contingency planning by
augmenting contingency planning with a probabilistic risk mea-
surement.

V. PROPOSED APPROACH

A. Planning Under Uncertain Intentions

To alleviate the conservatism of the planned trajectory, we
propose to have a probabilistic inference over the possible intents
that an obstacle can have by introducing a Bayesian belief
updater instead of solely relying on the prediction model to make
an informed estimate of the unknown intent.

1) Belief Updater: At each time step, we assume that the ego-
vehicle can observe the true state δ̂

o

t of the dynamic obstacle, but
not its internal state. This enables the ego-vehicle to retrospec-
tively assess the likelihood of the dynamic obstacle’s observed
states under the prediction model. Thus, the ego-vehicle always
maintains a belief, b(λ), over the set of possible intents Λ of
other agents, i.e., λ ∈ Λ. A Bayesian filter is used to update the
ego vehicle’s belief over the obstacle’s intents based on the new
observations the ego-vehicle perceives. The update rule for the
obstacle’s intent is given by,

b(λ)t+ =
f(δ̂

o

t ;μt,Σt)b(λ)
t
−∑

λ̃ f(δ̂
o

t ;μt,Σt)b(λ̃)t−
(6)

where b(λ̃)t− represents the prior belief of the ego-vehicle on the
intent λ̃ at time t. b(λ̃)t+ indicates the same probability a poste-

riori. f(δ̂
o

t ;μt,Σt) denotes the probability density function of a
single mode of the MoG, given by the prediction model defined
in Section III-C, with mean μt and covariance Σt, and evaluated
at the observed state δ̂

o

t .
Remark 1: Based on the provided prediction model and what

the ego-agent can observe, the probability density function f(·)
can either be defined on the obstacle’s state or the control input.

2) Multi-Agent Scenario: In a multi-agent setting, it is not
sufficient to only consider the belief that the ego-agent maintains
over a single agent’s intentions, but rather to consider how the
traffic scene would evolve as a whole into the future. To address
this issue, it is required to consider all the permutations Θ =
{θ1, . . ., θns

} where ns is the total number of realizations the
traffic scene can evolve to, and Θ is determined by the Cartesian
product of all obstacles policies,Θ = Λ1 × . . .× Λns

. The total
number of realizations, ns, is defined by the cardinality of Θ,
ns = |Θ|. The probability of each realization can, subsequently,
be calculated by,

p(θj)+ =
p(θj)−

∏no

i=1 bi(λ)
t
+∑ns

j=1 p(θj)−
∏no

i=1 bi(λ)
t
+

(7)

where bi(λ)t+ is determined by (6), and λ is the corresponding
intention for obstacle i that belongs to θj . p(θj)+ is used as
a weight for the contingent plans in the cost function defined

in (13a). This mimics a scene-centric prediction model by out-
putting modes of joint trajectories with respect to all agents in
the scene.

3) Probabilistic Risk Assessment: In our proposed approach,
to achieve probabilistic collision avoidance, we rely on an exist-
ing risk metric, motivated by our previous work [54], that maps
the distribution of a random variable, defined in (4), to a real
number.

Definition 1 (Risk Metric): Let Z denote the set of random
variables representing the uncertainty of the obstacles’ motion
in the x and y directions. The risk metric maps the distribution
of the random variables to a real number indicating the induced
risk,R: Z �→ R.

There exist various definitions of risk in the literature. Among
them, safety standards, [51], [52] define risk as a combination
of the probability of occurrence of harm and the severity of
that harm. Inspired by this definition, different approaches in
robotics and autonomous driving community [53], [54], [58],
[60] define risk as the product of two quantities, namely the
probability of collision that the planned trajectory has with any
of the surrounding obstacles and the level of severity linked to
that potential collision at every time-step, k, along the planning
horizon,

Ro
k(x

d
k) = Cok(xd

k)Sok(xd
k), ∀k, o, d (8)

Here, we approximate the ego-vehicle by two discs, where
each disc is referred to by d, and calculate the probability of
collision for each disc. Note that we model the ego-vehicle as
two discs such that we can consider all its shape in calculating
the induced risk. Given the probability density function of the
prediction model as indicated in (2), the probability of collision,
for each ego-vehicle’s disc ate each planning stage k per obstacle
o, can be calculated by estimating the spatio-temporal overlap
of the predicted modes with the ego-vehicle’s plan τ ,

Cok(xd
k) =

∫∫
xd
k,y

d
k∈D

fok (x, y)dxdy, ∀k, o, d, (9)

which is an integral of the Mixture of Gaussians (MoG) proba-
bility density function over a specified domain where the inte-
gration domain D is defined as a circle whose center is located
at the predicted vehicle pose xd

k at stage k along the prediction
horizon, and its radius r is the sum of the vehicle and obstacle
radii since the PDF does not account for the obstacle-vehicle’s
shape.

Another aspect of the risk assessment is the determination of
the severity of a potential collision for each planned trajectory.
The expected collision severity is of high importance in case a
collision is inevitable and the best behavior has to be selected
to reduce upcoming damage. The collision severity definition
is motivated by the work proposed in [53], [58] which can be
determined, ∀k, o, d, by

So
k(x

d
k) =

mv

mv + mo
((vvk)

2 + (vok)
2 − 2vvkv

o
k cosα)

1
2 (10)

where mv and mo represent the masses of the ego-vehicle
and obstacle vehicle respectively whereas vv and vo are their
corresponding velocities, and α is the collision angle. Here, it is
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important to emphasize that establishing an appropriate severity
measure is a challenging problem and constitutes a dedicated
area of research that is beyond the scope of this paper. Notably,
the severity metric outlined here does not account for ethical
considerations associated with the resultant damage, including
the vulnerability of road users. This can, nevertheless, be em-
bedded in (10), in case semantic information of the road users is
provided by a perception model. In this context, leveraging se-
mantic categorization allows for the scaling of the severity metric
within a range of 0 to 1. A severity value of 0 corresponds to a
collision causing no harm, while a severity value of 1 signifies
the highest level of damage, particularly involving vulnerable
road users. This scaled metric can then be incorporated into
the sampling-based planner to discard trajectories that lead to
collisions with vulnerable road users.

Furthermore, we adopt a discounted chance constraint formu-
lation, as proposed by [61], where violation probabilities close
to the early stages of the plan have higher penalization compared
to the ones in the far future. The discounted risk at every stage
k concerning an obstacle o is defined as

Ro
k(x

d
k) = (γ)kCok(xd

k)Sok(xd
k), ∀k, o, d (11)

where γ ∈ (0, 1] is the discounting factor.
After calculating the risk for each ego-vehicle’s disc at every

timestep k along the planning horizon per each obstacle o, the
predicted risk η at the current time step is defined by maximizing
risk for all obstacles, o ∈ Io, at all planning horizon stages k and
all discs d,

η = max
o∈Io,k,d

Ro
k(x

d
k), (12)

The max operator in (12) ensures that the worst-case risk over
the planned trajectory is below the threshold δ.

Remark 2: According to [62], the quantified risk metric given
in (11) is non-coherent since it does not fulfill all coherence
axioms. Nevertheless, it is efficient in capturing the underlying
uncertainty associated with the motion of the dynamic obstacles
and scales monotonically as the level of risk increases. Here it
should be emphasized that, since our planner is sampling-based,
it is agnostic to the risk metric employed and a comparative study
on different risk metrics will be part of future research.

Thus, the optimization problem can be formulated as follows,

min
τ∈T

Jshared(τ0:tb) +

ns∑
j=1

p(θj)+Jconting(τtb:T (θj)) (13a)

s.t. gj(τ) ≤ bj , j = 1, . . ., n (13b)

p(θj)+ =
p(θj)−

∏no

i=1 bi(λ)
t
+∑ns

j=1 p(θj)−
∏no

i=1 bi(λ)
t
+

, (13c)

max
o∈Io,k,d

Ro
k(x

d
k) ≤ δ (13d)

It is worth mentioning that the number of planned contingency
trajectories is determined by the number of modes of the pre-
diction model, |Λ|.

4) Cost Function: The cost function J(τ) consists of sub-
costs that focus on different aspects of the plan’s performance

such as safety, passenger comfort, progress, and tracking. It is,
thus, defined as,

J(τ) = wT c(τ ; Γ) (14)

where the weight vector w ∈ R+ captures the weights associ-
ated with each cost term. These costs include, for instance, how
much the final point of the planned trajectory deviates from the
reference path cd = |d− dref|, cv = |ṡ− ṡref| is the deviation
from the reference velocity, cp =

∑N−1
k=0 ||xv

k+1 − xv
k|| is the

cost representing progress, i.e., the total traveled distance along

the reference path Γ, and cj =
∑N

k=0

...
sk

2+d′′′2k

N penalizes the
mean square sum of longitudinal and lateral jerks used as a
comfort indicator.

5) Kinematic Constraints: To guarantee a smooth and com-
fortable transition between the short-term shared plan and the
contingency plans, when concatenated, we need to impose some
constraints on the curvature at the branching point. From [43],

d′′ = − [κrd]
′ tan θ +

1− κrd
cos2 θ

[
κp

1− κrd
cos θ

− κr
]
, (15)

where κr and κ′r denote the curvature of the reference path Γ
and its derivative respectively. By rearranging terms, an explicit
formulation of the trajectory’s curvature can be obtained,

κp = [d′′ − (κrd)
′ tan θ]

cos3 θ

(1− κrd)2
+
κr cos θ

1− κrd
(16)

After calculating the curvature and every point along the trajec-
tory, a box constraint is defined as

|κp| ≤ κmax (17)

where κmax at every timestep is parameterized by the planned
velocity of the ego-vehicle and the maximum allowable lateral
acceleration. Finally, to ensure that the planned trajectory is
kinematically feasible, the following box constraints must be
satisfied at every timestep,

vmin ≤ v(t) ≤ vmax (18a)

amin ≤ a(t) ≤ amax (18b)

jmin ≤ j(t) ≤ jmax (18c)

where vmin/vmax represent the minimum and maximum velocity,
amin/amax represent the minimum and maximum acceleration,
and jmin/jmax represent the minimum and maximum jerk.

B. Planner Design

To better explain the proposed approach, we recall the illus-
trative example in which the ego-vehicle is not fully aware of the
future trajectories of another agent or even its intended goal, as
illustrated in Fig. 4. In this example, we take into consideration
only two likely futures. The one depicted in blue is where the
other agent yields to the ego-agent, and the one in red is where
the ego-agent must brake before entering the intersection since
the oncoming vehicle is taking an aggressive left turn.

The proposed approach is summarized in Algorithm 1:
i) In lines (2–8), we sample a large set of shared plans T0:tb

using the ego-motion sampler explained in section III-B.
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Fig. 3. Snapshots from the CommonRoad simulation framework for an overtaking scenario where the ego-vehicle is depicted by the car icon and the obstacle-
vehicle is illustrated as a blue rectangle. The obstacle-vehicle has three policies that it can execute, Λ = {maintainspeed, slowdown, lanechange}, where the
obstacle-vehicle’s predicted trajectories are illustrated in distinct colors in 3(a). We first sample a set of short-term plans, T0:tb visualized in black, till the branching
time tb shown in 3(a). We then sample a set of long-term plans, Ttb:T depicted in purple, conditioned on the terminal states of the short-term plans, shown in 3(b).
For the long-term plans, a cost is assigned to each plan per obstacle-vehicle policy λi. In Fig. 3(c), the total cost of the entire plan is computed by (13a), and the
total optimal plan is the one given by τ ∗ = τ ∗0:tb ∪ {τ

∗
tb:T

(λ1), τ
∗
tb:T

(λ2), τ
∗
tb:T

(λ3)}. In this example, the belief over the first policy is dominant, b(λ1) = 0.63,

compared to the rest causing the optimal short-term plan τ ∗0:tb to be more biased towards τ ∗tb:T (λ1).

Fig. 4. Contingency planning paradigm. A large set of short-term plans
are sampled together with multiple long-term plans. The total plan with the
minimum cost for each possible future realization is selected (indicated in blue
and red).

This is followed by pruning trajectories that violate the
risk upper limit or kinematic constraints. Here, the risk
analysis is done with respect to all prediction modes.

ii) Line 9 iterates over the number of modes coming from
the prediction model.

iii) In lines (10–21), for each shared plan, conditioned on its
end state, we sample a set of long-horizon trajectories
Ttb:T . A risk analysis is performed for each long-term
trajectory with respect to a single mode from the predic-
tion model, and trajectories that violate constraints are
pruned. A cost is assigned to each trajectory according to
(14).

iv) Lines (22–23) sort the long-term trajectories based on
their associated costs and pick the trajectory with the
minimum cost. The belief over the prediction mode, we
iterate over, is updated using (6).

v) In lines (25–27), the shared-trajectory is concatenated
with all contingent plans. The total cost of the entire plan
is computed by the expected cost of the contingent plans
in addition to the cost of the shared plan itself as indicated
in (13a).

vi) We find the optimal response, for each shared plan,
associated with each scenario from the corresponding
long-horizon trajectories in line 30.

Fig. 5. The human-driven vehicle can have two different policies, lane-keeping
(LK) or lane-change (LC). On the left, the ego-vehicle has a higher belief that
the human-driven vehicle executes the LK policy. That’s why the short-term
trajectory tends to accelerate. On the right, the ego-vehicle has a higher belief
that the human-driven vehicle executes the LC policy causing the short-term
plan to decelerate and steer to the right.

This process is then repeated at every time step in a receding
horizon manner.

Remark 3: In case no valid trajectory is obtained from the
set of candidate trajectories T , we apply the trajectory with the
least risk as long as it is dynamically feasible.

Here it is crucial to emphasize that an advantage of using a
sampling-based planner in the Frenet frame as a basis for our
contingency planning framework is that the sampled trajectories
cover various maneuvers that the ego-vehicle can have. Thus,
in contrast to the approaches proposed in [30], [31], [32], our
approach eliminates the necessity for a pre-established trajec-
tory tree or branching topology to formulate contingent plans.
Subsequently, the ego-vehicle is not confined to a specific set of
predefined policies. This concept is further explained in Fig. 3
where we show how the optimal plan is selected from the
sampled short-term and long-term trajectories. Additionally, it
illustrates how the short-term plan is shaped based on the belief
the ego-vehicle maintains over the obstacle-vehicle policies.
Fig. 5 shows how the belief the ego-vehicle maintains over the
long-term plans affects the behavior of the short-term plan. It is
observed that when the ego-vehicle has a higher belief in one of
the human’s intents, the shared plan tends to be biased towards
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Algorithm 1: Risk-Aware Contingency Planning.

Input: Prediction model per obstacle fok,i(·), horizon T ,
branching time tb, risk tolerance level δ, reference path Γ,
prior belief per intention λ, b(λ)− = 1

|Λ| , two priority
queues for sorting candidate trajectories Q,Qfinal.

Output: An optimal shared plan τ0:tb , concatenated with
|Λ| contingent plans Ttb:T .

1: for all t = 1, 2, . . . do
2: T0:tb ← SampleSharedTrajectories(xinit).
3: for each τ0:tb ∈ T0:tb do
4: η ← EvaluateRisk(xd

k, δ
v
k), ∀k, v, d (12).

5: if η ≥ δ then
6: continue
7: end if
8: Jshared(τ0:tb)← ComputeCost(w, τ0:tb ,Γ) (14).
9: for each λ ∈ Λ do

10: Ttb:T ← SampleContingentPlans(τ0:tb(end)).
11: Q = {}.
12: for each τtb:T ∈ Ttb:T
13: η ← EvaluateRisk(xd

k, δ
v
k, λ), ∀k, v, d.

14: if η ≥ δ then
15: continue
16: end if
17: Jcont(τtb:T )← ComputeCost(w, τtb:T ,Γ).
18: if τtb:T passed constraint check then
19: add τtb:T to Q.
20: end if
21: end for
22: τtb:T (λ)best ← pop the first candidate from Q.
23: b(λ)+ ← UpdateBelief(fok,i(.), b(λ)−) (6).
24: end for
25: τ = τ0:tb ∪ {τtb:T (λ1)best, . . . , τtb:T (λ|Λ|)best}.
26: p(θj)+ ← UpdatePermutations(bi(λ)+) (7).
27: Evaluate total cost using (13a).
28: add τ to Qfinal.
29: end for
30: τbest ← pop the first candidate from Qfinal.
31: end for

the corresponding contingent plan. In particular, as illustrated
in Fig. 5-left, when the ego-agent has a higher belief that the
human-driven vehicle aims at executing the lane-keeping policy,
the shared-plan biases its motion to accelerate along its lane.
On the other hand, when the higher belief is assigned to the
lane-change maneuver, the shared-plan tends towards steering a
bit to the right while decelerating. This is achieved by balancing
the cost of the shared-plan according to the likelihood of the
beliefs.

Remark 4: It should be pointed out that, in the human-driven
vehicle’s lane-keeping policy, we still generate a contingent plan
for the other possible intent after the branching point, allowing
the ego-vehicle to smoothly steer to the right while decelerating
in case the human-driven decides to execute the lane-change
policy.

VI. RESULTS

A. Experimental Setup

We evaluate our approach in two safety-critical simulated
scenarios inspired by autonomous driving interactions. The
illustrated scenarios are included in the CommonRoad bench-
mark suite [63] for reproducibility. The first scenario highlights
the reactive behavior that the ego-vehicle’s plan induces on
an obstacle-vehicle in an overtaking scenario. Four different
baselines are introduced to compare our proposed contingency
planning with.

Baseline 1: Multi-policy planning [30], this baseline uses a
branch-MPC whose objective is to minimize the expected cost
across all branches within a trajectory tree.

Baseline 2: Robust baseline [45] that optimizes a single
trajectory along the planning horizon that is robust with respect
to all predicted modes regardless of their probabilities.

Baseline 3: Maximum-likelihood estimate [50], that only con-
siders the most probable mode given by the prediction model
while ignoring the rest.

Baseline 4: Similar to [15], we use the mode probabilities,
provided by the prediction model, directly in the contingency
planning cost function instead of the beliefs obtained from
the belief updater. This baseline is used to analyze the effect
of the Bayesian belief updater on the contingency planner’s
performance.

In contrast to the branch-MPC approach [30] which encoun-
ters scalability challenges when addressing multiple obstacle
vehicles, primarily due to its exponential complexity requiring
a pruning protocol, our proposed approach exhibits seamless
adaptability to multi-vehicle scenarios. This is illustrated in the
T-junction, and intersection scenarios, where the ego-vehicle
interacts with multiple vehicles whose intents are not known to
the ego-vehicle a priori.1 The computer running the simulations
is equipped with an Intel CoreTM i7 CPU@2.6 GHz.

B. Scenario 1. Overtaking in Highway Driving:

In the first scenario, an autonomous vehicle seeks to initiate a
lane change maneuver, by overtaking the obstacle vehicle in the
designated lane, while grappling with its level of uncertainty.

1) Obstacle-Vehicle Model: As a benchmark, we compare
our approach to the branch-MPC introduced in [30]. For this
purpose, the same prediction model is leveraged in which it is
assumed that the obstacle vehicle has three different policies that
it can executeΛ = {maintainspeed, slowdown, lanechange}
where the direction of the lane change is towards the left lane.
The output of the prediction model is represented as a scenario
tree, as depicted in Fig. 6, in which it is assumed that the
obstacle-vehicle can change its policy the next time step or
after 8 steps along the horizon. In the meantime, the obstacle
vehicle maintains its policy. The obstacle vehicle trajectories are
constructed by forward propagating its dynamics with respect
to the selected policy where the vehicle dynamics are modeled
using the kinematic bicycle model [64]. The probability of

1A video of the simulated experiments accompanies this paper.
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Fig. 6. Snapshots from the overtake simulated environment in CommonRoad at different time instants. The obstacle vehicle is represented by a blue rectangle.
The driven trajectory by the ego-vehicle is depicted in green. The short-term planned trajectory is illustrated in blue, whereas contingent plans are depicted in
distinct colors. The predicted scenario tree of the obstacle vehicle is represented in gray.

Fig. 7. The evolution of the obstacle-vehicle’s velocity with time.

executing each policy is calculated by introducing a collision
avoidance measure, ξ(τ, λi ∈ Λ), that determines the collision
probability that the obstacle vehicle has, under each policy, with
respect to the ego-vehicle’s planned trajectory. The policy λi

with the least collision probability will have a higher probability
of being executed by the obstacle vehicle where each probability
is defined by a softmax function as described in [30]. It is
important to emphasize that although the policy of the obstacle
vehicle is influenced by the planned trajectory of the ego-vehicle,
the responsibility of preventing collisions rests solely upon the
ego-vehicle.

2) Environment Setup: To guarantee a fair comparison, for
all approaches, we set the maximum speed, and maximum
allowed acceleration to the same value which are 20 m/ s, 4 m/s2

respectively. The upper bound of the induced risk is assigned to
δ = 5%, for the baselines and the proposed approach, which was
found to provide a good balance between safety and efficiency.
A horizon of N = 16 steps is defined, with a discretization step
of 0.2 s, resulting in a time horizon of 3.2 s, and a branching
time tb = 1.2 s is defined.

3) Qualitative Results: Fig. 8 shows the evolution of the ego-
vehicle’s belief over the obstacle-vehicle policies over time. At
the beginning, the ego-vehicle reveals its lane-change intention
by swerving into the obstacle’s vehicle lane. Due to the reactive
behavior of the obstacle-vehicle, the probability of it executing
a lane-change in the ego-vehicle’s lane drops.

However, the ego-vehicle could not complete the lane change
since no valid trajectory is obtained that does not violate the

Fig. 8. Belief evolution over obstacle vehicle’s policies along the timesteps.
b1, b2, b3 represent maintain fixed speed, slow down, and lane-change policies,
respectively. The gray vertical lines denote the time instants at which the
snapshots in Fig. 6 are taken.

safety constraints, and thus returns to its original lane. Since
the lane-change policy of the obstacle-vehicle, b3, becomes
relatively low, the ego-vehicle then initiates another attempt to
overtake the obstacle vehicle which probes it to decelerate al-
lowing the ego-vehicle to complete the lane change. To visualize
how the obstacle-vehicle’s policy changes with the timesteps,
Fig. 7 shows the evolution of the obstacle-vehicle’s velocity with
the timesteps. As depicted, the ego-vehicle exhibits maintain
speed policy till 2.7 s. It then switches to slow down policy
from 2.7 s to 3.2 s. This corresponds to the moment at which the
ego-vehicle initiates its lane-change maneuver. It then switches
back to the maintain speed policy.

On the other hand, it was observed that the branch-MPC [30]
brakes strangely while executing the lane-change maneuver rely-
ing on the obstacle-vehicle to yield to the ego-vehicle.2 However,
such a maneuver is risky since it may result in collisions if the
obstacle-vehicle does not react on time.

4) Quantitative Results: In each scenario, the initial state
of the ego-vehicle remains fixed, while the obstacle vehicle’s
initial state is systematically altered across 30 distinct positions.
These positions are selected from a uniform grid surrounding
the nominal starting conditions. As efficiency metrics, average

2The reader can refer to the video supplement, at 02:01, to observe such
behavior.
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TABLE I
STATISTICAL RESULTS OVER 30 EXPERIMENTS

speed, and duration to complete the overtaking maneuver are
calculated. Moreover, the average minimum distance between
the ego-vehicle and the obstacle vehicle is recorded as a measure
of conservatism. The quantitative results are summarized in
Table I where the non-contingent robust baseline [44] refers
to the case in which a single plan is optimized along the entire
horizon that accounts for all obstacle-vehicle policies. As shown
in Table I, our approach can complete the overtake maneuver in
less duration and with a higher average speed, while providing
the same safety guarantees as the branch-MPC. This could be at-
tributed to the fact that although the branch-MPC plans a distinct
trajectory for each branch in the scenario, the optimization prob-
lem minimizes the expectation over all branches. This causes
the ego-vehicle to overreact to branches with low probabilities
resulting in a more conservative plan. The non-contingent robust
baseline, on the other hand, fails to complete the maneuver.
Since a single trajectory is optimized that avoids all obstacle
predictions, it could not find a safe trajectory to execute the lane
change. As expected, the MLE baseline is the least-conservative
approach, among the ones in comparison, since it only considers
the most probable mode. This, however, results in collisions
in some of the scenarios due to its over-confidence in relying
solely on the highest probable mode of the prediction model.
Our approach mitigates the limitation of the MLE method by in-
ferring a posterior distribution over the obstacle-vehicle’s intent
allowing the ego-vehicle to account for uncertainty and generate
safer yet efficient plans. Finally, the baseline that uses the same
contingency planner as ours but lacks a belief updater, can
complete the lane change maneuver safely in all experiments.
Nonetheless, the absence of a belief updater prolongs the time it
takes for the predictive model to assign a diminished probability
to the obstacle vehicle’s lane change maneuver. Consequently,
this leads to a more conservative planning approach compared
to the contingency planner equipped with a belief updater. It
can also be seen that all approaches respect the maximum risk
threshold, δ = 0.05, except the non-contingent MLE approach.

Remark 5: It is worth mentioning that, for the robust baseline,
the belief updater is also utilized to weigh the evaluated collision
probability of the planned trajectory with each possible mode,
which, in turn, affects the calculated risk. Thus, the baseline
re-plans every cycle with the newly observed obstacles’ states
as well.

C. Scenario 2. Urban T-Junction:

In this scenario, the ego vehicle is approaching a T-junction,
with no traffic rules, in which its mission is to follow its
designated lane while being uncertain about the intentions of

the other vehicles as shown in Fig. 9. Here, we consider the case
of a multi-vehicle traffic scenario in which two obstacle vehicles
approach the T-junction where Λ1 = {lanekeep, leftturn},
andΛ2 = {leftturn, yield}. In this case, it is not sufficient to
consider the belief of a single agent’s intention as we did in the
previous scenario, however, instead, we need to get a belief about
how the traffic scene will evolve by considering all permutations
the traffic participants can have as stated in (7).

1) Environment Setup: The states of both obstacles are ran-
domly initialized and their corresponding policies are randomly
assigned from the set of potential policies. The initial velocities
of the obstacles are selected in such a way that they arrive at
the intersection before the ego-vehicle, forcing the ego-vehicle
to react and avoid collisions actively. In this scenario, a horizon
of N = 25 steps is defined, with a discretization step of 0.2 s,
resulting in a time horizon of 5.0 s, and a branching time
tb = 2.4 s is defined. As a benchmark comparison, we evaluated
the same task using a robust planner that optimizes a single plan
that considers all the modes that the other agents could have,
and a greedy baseline that only considers the most probable
predicted mode of each obstacle. All optimization parameters
for both methods are set to be identical to guarantee a fair
comparison. At the start of the simulation, all permutations,
θi ∈ Θ, are initialized with equal likelihoods, θi = 0.25. The
evolution of the belief over both obstacle modes is illustrated in
Fig. 10.

In Fig. 10, we present the dynamic evolution of the ego-
vehicle’s belief regarding various intentions of surrounding
obstacles over time. Specifically, Fig. 10(a) illustrates this evo-
lution for a leftward-bound vehicle encountering a T-junction,
where the obstacle vehicle faces the choice between continuing
straight or executing a left turn. Similarly, Fig. 10(b) portrays
the belief dynamics for an upward-bound vehicle confronted
with the options of turning left or yielding to the ego-vehicle.
In Fig. 10(a), we observe the ego-vehicle’s initial struggle with
uncertainty regarding the leftward vehicle’s intentions, reflected
in an equal belief distribution (b(λ1) = b(λ2) = 0.5) as its state
aligns with the mean of both distributions. However, as the
obstacle vehicle’s state gradually deviates from this equilibrium,
the belief over the left-turn maneuver diminishes, leading to
a corresponding increase in belief regarding the alternative
mode (b(λ1)). This nuanced adjustment allows the ego-vehicle
to attenuate its emphasis on the left-turn possibility, thereby
facilitating an accelerated trajectory within the T-junction. Anal-
ogous dynamics are observed for the second obstacle vehicle,
as depicted in Fig. 10(b). Subsequently, the updated beliefs per
mode, λ ∈ Λ, are utilized to update the probabilities over the
different permutations, θ ∈ Θ, the traffic scene can evolve to
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Fig. 9. Snapshots from the T-junction simulated environment in CommonRoad at different time instants. The ego-vehicle’s plan is to drive from right to left while
avoiding collisions with the other two obstacle vehicles. In Fig. 9(a), the prediction of both modes of both obstacles is represented by colored ellipsoids where the
blue ellipsoids depict the left turn and yield policies for the leftward and upward vehicles respectively whereas the yellow ellipsoids illustrate the lane
keep and left turn policies. The driven trajectory by the ego-vehicle is depicted in green. The short-term planned trajectory is illustrated in purple.

Fig. 10. The evolution of the belief of both obstacles based on their observed
orientations according to (6). Top: the belief evolution for obstacle 1 where λ1
represents the lane keep policy and λ2 represents the left turn policy. Bottom:
the belief evolution for obstacle 2 where λ1 represents the yield policy whereas
λ2 represents the left turn policy. Note that this represents one of the four
permutations that the traffic scene can evolve to.

Fig. 11. The evolution of the belief over permutations in the T-junction sce-
nario where θ1 corresponds to lane keep and left turn for the leftward
and upward vehicles respectively. The gray vertical lines denote the time instants
at which the snapshots in Fig. 9 are taken.

as shown in Fig. 11. As illustrated in Fig. 11, the evolution of
permutations depicts a gradual decrease in the belief regarding
θ2 and θ3 over successive iterations, ultimately diminishing
after approximately 58 time steps where their influence on
the ego-vehicle’s plan is disregarded. Furthermore, by the 76th
time-step, the ego-vehicle attains a high level of certainty that θ1

is the accurate hypothesis adopted by the obstacles. As a result,
only this prediction mode significantly impacts the planner’s
decision-making process.

2) Prediction Model: In this scenario, we use a synthesized
prediction model that incorporates the multi-modality in the
obstacle-vehicle’s intentions. Specifically, our multi-modal pre-
diction model works as follows:

i) By identifying target lanes in the T-junction, we extrap-
olate the intended trajectories of surrounding vehicles.

ii) By employing a motion planner for each vehicle, we
generate ground truth trajectories towards these lanes,
resulting in multi-modal trajectories per vehicle.

iii) Our multi-modal prediction strategy involves:
� Utilizing a uni-modal prediction model trained on ex-

tensive CommonRoad datasets [67] to generate Gaus-
sian trajectory distributions for each potential mode,
corresponding to the trajectories from Step (ii).

� Amalgamating these distributions into a Gaussian
Mixture Model (GMM), weighted by their likelihoods,
inspired by prior works such as [18], [19].

iv) Mode weights, determining the likelihood of each trajec-
tory mode, are computed based on collision avoidance
metrics. These metrics, quantifying collision probabili-
ties between obstacle vehicle trajectories and the ego-
vehicle’s planned trajectory, dynamically adjust mode
weights using a softmax function inspired by works such
as [30].

Remark 6: We emphasize that our approach is agnostic to the
prediction model employed. Any prediction model capable of
providing Gaussian distributions over the predicted modes can
be utilized.

3) Quantitative Results: The quantitative results are reported
in Table II. The significant enhancement in the ego-vehicle’s
performance is attributed to its ability to delay the braking
decision, thanks to multiple contingent plans, as long as it is
capable of safely braking later when it gets more certainty about
other obstacles’ intents to react to any possible outcome. This,
as expected, comes at the expense of stopping closer to the
obstacle, and braking more aggressively in situations in which
the ego-vehicle has to yield to the obstacles. Despite this delayed
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TABLE II
STATISTICAL RESULTS OVER 100 EXPERIMENTS FOR A T-JUNCTION SCENARIO

Fig. 12. Left: the performance gap regarding the relative velocity for different
branching times, right: the maximum risk, η, recorded in all simulations for
different branching times.

TABLE III
AVERAGE COMPUTATIONAL TIME tc AND STANDARD DEVIATION σtc FOR

INCREASING NUMBER OF AGENTS

decision-making, the maximum risk encountered by the ego-
vehicle, in the contingency planning case, is still significantly
below the defined upper-bound in the chance constraints, as
depicted in Fig. 12, showing that performance improvement
is attained without compromising safety. As in the previous
scenario, the MLE approach has the best performance in terms
of average velocity and progress along the driving route. This
is, however, achieved at the expense of resulting in collisions
making it not safe to be deployed. Similar to the overtaking
scenario, the contingency planning without a belief updater has
a less efficient performance compared to our proposed approach
showing that the belief updater improves the planner’s perfor-
mance without compromising safety.

Here it is worth pointing out that the proposed algorithm is
implemented in Python to interface with CommonRoad. The
average computational time over the experiments is 174.98 ms.
Table III shows how the computational time tc scales with the
number of agents. We emphasize that since the sampling-based
approach is parallelizable, the computational time can be further
improved by evaluating the constraints of the sampled trajecto-
ries through parallelizable computations.

So far, we considered a certain value that we assign to the
branching time tb. In the case of open-loop planning, as in [14],
[17], the branching time is not an independent design parameter,
and it has to be estimated correctly, otherwise, the ego-vehicle
will branch to an over-confident contingent plan by tb which
can result in a collision. In our proposed approach, however,
thanks to planning in a closed-loop with a belief updater, the

branching time does not need to be estimated exactly. However,
low branching times may lead the ego-vehicle to inevitable states
from which it could not recover in case of certain obstacles’
permutations, due to the limited dynamics capabilities. Thus,
restrictions still apply when it comes to assigning a branching
time which we discuss in the following section.

4) Effect of Branching Time on the Plan: In this section, an
analysis of how the branching time affects contingency planning
is conducted. For this purpose, we run experiments for all values
of branching time tb ∈ [Δt, T ], where Δt is the discretization
step that we set to 0.2 s. For each branching time, we run 100
simulated experiments in which the obstacles’ intents and their
initial states are randomly initialized. We analyze the effect of the
branching time on the relative average velocity the ego-vehicle
exhibits with respect to the baseline, tb = T . Moreover, the
maximum risk among all experiments for each branching time is
recorded. The results are reported in Fig. 12. As shown, for larger
values of the branching time, the performance gap between
both methods is small since most of the plan is constituted
by the shared plan and thus the effect of the belief updater in
the cost function is not pronounced. Indeed, when tb = T , the
disparity in performance disappears, as our proposed approach
aligns with the baseline method under such conditions. For
earlier branching times, however, the performance gap becomes
more pronounced since the future information gain beyond the
branching time is well exploited in the cost function because of
the additional degrees of freedom introduced by the contingent
plans. By inspecting the maximum risk plot depicted in Fig. 12,
it can be observed that the maximum risk, η, increases as the
branching time becomes shorter. This can be attributed to the
over-confidence in the planned trajectory after the branching
time causing the ego-vehicle to take more risky maneuvers. For
sufficiently short branching times, tb ≤ 2.0 s in this example,
the ego-vehicle could not find a feasible trajectory that does not
violate the maximum risk, δ = 0.05, in the chance constraint,
and subsequently, we execute the planned with the least risk
that is dynamically feasible as we indicated earlier in Remark 3.
This concludes that the branching time in contingency planning
is related to the maximum risk the ego-vehicle perceives. More
analysis regarding the estimation of the branching time tb based
on the ego-vehicle’s dynamics capabilities is left for future work.

5) Branching Time Estimation: In this section, we examine
the effect of updating the branching time online, based on the
updated belief the ego-vehicle maintains over different predic-
tion modes, compared to fixing the branching time tb to a certain
value. To do so, three different baselines are considered.

Baseline 5. “Oracle” branching time: This estimator recon-
structs the actual branching time by initially simulation the
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Fig. 13. Snapshots from the intersection simulated environment in CommonRoad at different time instants. The ego-vehicle’s plan is to take a left turn while
avoiding collisions with the other two obstacle vehicles. The ego-vehicle is depicted as a car icon whereas the obstacle vehicles are represented by blue rectangles.
The prediction of the most probable mode of the obstacle vehicles is represented by colored ellipsoids. The driven trajectory by the ego-vehicle is depicted in green.
The short-term planned trajectory is illustrated in purple.

planning problem using a nominal branching time. Subse-
quently, it extracts the moment of certainty from the retro-
spective evolution of beliefs. It is important to note that the
oracle relies on access to the true human intent and, as such,
is not implementable in real-world scenarios. Nevertheless, we
incorporate this variant to illustrate the potential performance
attainable with the true branching time.

Baseline 6. Branching time heuristics adopted from [65]: This
heuristic considers the entropy of the belief that the ego-vehicle
maintains over each hypothesis, θ ∈ Θ, as an indication of how
the observed obstacles’ states are distinct,

H(p(θi)) = −
∑
θi∈Θ

p(θi) log|Θ|(p(θi)) (19)

To estimate the branching time, the predicted trajectories of
each obstacle along each hypothesis from the previous time-step,
δoθ,t−1 are considered as hypothetical observations that can be
inferred from their prediction model to estimate the associate
belief according to (6). Another operator, B(δoθ,t−1, θ, k), is in-
troduced that takes as input the first k steps from the hypothetical
observation, δoθ,t−1, and returns the updated belief. Accordingly,
the branching time is estimated as

tb = max
θ∈Θ

min
k∈{2,...,T }

ω.k

s.t. H[B(δoθ,t−1, θ, k)] ≤ ε (20)

whereω indicates the discretization step. This heuristic estimates
the branching time as the first time at which all predicted beliefs
reach a certain threshold ε, assuming that the obstacles behave
rationally with respect to their prediction models.

Baseline 7. Branching time heuristic adopted from [66]: This
heuristic chooses the branching time as the maximum time such
that any two future scenarios starting at the current time only
diverge by a maximum distance,

tb = max
k∈2,...,T

ω.k

s.t. M(θ, k) ≤ ε, ∀θ ∈ Θ (21)

where M represents the divergence measure. This heuristic,
however, entails at least double the computational time since the
divergence measure is invoked on the ego-vehicle trajectories.

TABLE IV
STATISTICAL RESULTS OVER 100 EXPERIMENTS FOR A T-JUNCTION SCENARIO

WITH DIFFERENT BRANCHING TIME ESTIMATES

TABLE V
STATISTICAL RESULTS OVER 100 EXPERIMENTS FOR THE INTERSECTION

SCENARIO WHERE CR REFERS TO THE COLLISION RATE

For all baselines, the branching time is updated at every time step
and a Monte Carlo study is conducted to analyze the performance
of updating the branching time at every time step compared to
fixing the branching time to a certain value, tb = 2.4, that we
used in the evaluations in Sections VI-B and VI-C.

As shown in Table IV, the performance gap between fixing the
branching time to a certain value, and using an oracle estimate
is very small. This can be attributed to the fact that since the
short-term plan cost is weighted by the belief the ego vehicle
maintains over the long plans, the short-term plan tends to be
biased toward the long-term plan with the highest belief.

D. Scenario 3. Intersection

In this scenario, the ego-vehicle is tasked with executing a
left turn within an urban intersection, all while navigating inter-
actions with multiple obstacle vehicles simultaneously. Each of
these obstacle vehicles within the intersection has the option to
either yield to the ego-vehicle, thereby allowing it to complete
its left turn unimpeded, or to challenge the ego-vehicle and take
priority, thereby compelling the ego-vehicle to yield. Similar to
the T-junction scenario, we evaluate the efficacy of our proposed
approach against established baselines. Quantitative results are
presented in Tab V. For consistency, we utilize a horizon of
N = 25 steps, with a discretization step of 0.2 s, resulting
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in a time horizon of 5.0 s. Additionally, a branching-time of
tb = 2.4 s is defined. Here it should be noted that the prediction
model in this scenario is similar to the one employed in the
T-junction scenario.

The outcomes of this scenario mirror those of previous
ones, demonstrating that our proposed approach enables the
ego-vehicle to successfully execute the left-turn maneuver, as
shown in Fig. 13, with enhanced efficiency compared to the
robust baseline, where the ego-vehicle is required to yield while
waiting for other vehicles to execute their maneuvers inside the
intersection.3 However, it’s noteworthy that the MLE approach
outperforms our method in terms of performance, albeit at the
cost of a higher collision rate, as it only considers the most
probable mode without accounting for potential deviations.

VII. CONCLUSION

This paper introduced a novel contingency planning frame-
work that integrates the ego-agent’s beliefs regarding the po-
tential multi-modal behaviors exhibited by surrounding agents.
This belief is continuously updated based on inferred states of
observed obstacles from a predictive model. The methodology
involves decomposing the planning task into short-term and
long-term plans, with each long-term plan being tailored to a
specific obstacle policy. The resultant contingency plans con-
tribute to the overall plan’s cost by factoring in their costs along
with the associated belief values derived from the belief updat-
ing process. The effectiveness of the proposed approach was
evaluated in the context of two safety-critical driving scenarios.
Through comprehensive closed-loop simulations, we compared
our proposed planner against different baselines. We demon-
strated that our approach achieves less conservative driving
behavior compared to a state-of-the-art multi-policy algorithm
while maintaining equivalent safety assurance. Our approach has
also outperformed the traditional planner that optimizes over all
possible modes provided by a prediction model. To analyze the
effect of the Bayesian belief updater on contingency planning,
we showed that the belief updater improves the planner’s perfor-
mance without compromising safety. The influence of branching
time on the planner’s performance was investigated, and the
adaptability of the proposed approach to scenarios involving
multiple vehicles was explored.

APPENDIX

BASELINES COMPARISON

To ensure a fair comparison between our proposed contin-
gency planning approach and the branching-MPC approach
proposed in [30], the following measures are considered. Except
for the branch-MPC [30], all planners employ the ego-motion
sampler detailed in Section III-B in the Frenet frame with the
same cost function and constraints to rank the generated sam-
ples. Nevertheless, although the branch-MPC utilizes a different
planner, we modified the cost function such that it is aligned
closely to the one used with the Frenet planner. The utilized cost

3The reader can refer to the video supplement to observe the yielding behavior
of the ego-vehicle using the robust baseline.

TABLE VI
LIST OF PARAMETERS UTILIZED BY THE PLANNERS FOR THE OVERTAKING

SCENARIO EVALUATIONS

Fig. 14. The performance gap regarding the relative velocity for different
branching times. Left: overtake scenario, right: T-junction scenario.

function for the Frenet planner is given as,

J(τ) = wvcv + wdcd + waca + wδ̇cδ̇

where cv, cd are the costs for velocity and reference tracking,
whereas ca, cδ̇ penalize the acceleration and steering angle rate
respectively. On the other hand, for the branch-MPC, similar to
the original paper, a unicycle model is adopted where the states
are given by x = [X,Y, v, ψ]T , and the inputs u = [a, δ̇]. The
cost function for the branch-MPC is, accordingly, defined as

J(τ) = (x− xref)
TQ(x− xref) + uTRu

whereQ = diag(0, wd, wv, 0), andR = diag(wa, wδ̇). In this
way, we ensure that the cost functions used by the Frenet
and branch-MPC planners are similar. Additionally, the same
kinematic constraints are applied to all planners including the
curvature constraints and the box constraints imposed on the
velocity, acceleration, and jerk. Table VI summarizes the pa-
rameters utilized by the planners in the evaluations.

BRANCHING TIME SELECTION

As mentioned in Section VI-C4, the branching time is a criti-
cal parameter that affects the contingency planning efficiency. To
justify our branching time selection for the simulated scenarios
in Section VI, we conducted an ablation study that measures
the performance gap between different branching times and an
oracle that has access to the true human intent. Fig. 14 illustrates
the performance gap regarding the relative velocity for different
branching times for both the overtake and T-junction scenarios.
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As shown, for both scenarios, for the branching times in the
middle of the planning horizon, the performance gap compared
to the oracle gets smaller. As the branching time gets smaller,
a less conservative approach compared to the oracle can be
achieved. This comes, however, at the expense of having higher
risk as we discussed earlier in Section VI-C4. In contrast, with
large branching times, the contingency planning becomes more
conservative compared to the oracle. Based on the obtained
empirical results, we can conclude that fixing the branching
time to a certain value in the middle of the planning horizon
can achieve close performance to the updating it based on an
oracle in hindsight.
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