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1. Introduction

In many cases the bottom around a structure that is exposed to current has to be protected by a
mattress. The purpose of the matiress is to protect the soil besides the structure from erosion and
scour, thus preserving the strength of the foundation of the structure. Examples are the bottom
protection around bridge piers, along guide bunds and behind discharge sluices. At the edge of the
bottom protection parallel to the current (e.g. along guide bunds) or at the trailing edge (e.g. behind
discharge sluice) scourholes will be formed in the unprotected bed. The slopes of these scourholes
may be so steep that local soil failure follows. In that case the mattress has to span the local
depression caused by the slope failure and maintain its protective function (see Figure 2-1). The
mattress should therefore be able to withstand the tension forces that build up in the fabric. In this
report a sequence of models is proposed and verified to estimate the maximum force in a mattress
spanning a local soil failure. The study was commisioned by CUR in Gouda as a contribution to the
design of the guide bunds of the Jamuna Bridge.
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2.

A first Approximation of the Mattress spanning a Gap

The mattress is spanning the gap created by a slope failure perpendicular to its edge.
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Figure 2-1: A mattress spanning a local soil failure

The maximal friction force F exerted by the soil on the mattress is at each side:

F=igo:

Where: ¢
L
q

L
2

q

= friction angle sand-mattress

= length of mattress
= weight of mattress

[Nm“]

[rad]
[m]
[Nm?]

If the sag tis small a parabola may approximate the form of the mattress reasonably:

q
t=——x({-x
T (/-x)
Where: T
!

= tension force in the matiress
= free span

From this equation follows that the tension force equals:

r=-12

2tmax
For:

)
X=—

2

[m]

[Nm™]
[m]

[Nm™]

[m]

From the equilibrium of horizontal forces it is clear that the mattress will sag until the tension force T
just equals the maximal friction force F.
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Figure 2-2: The maximum tension force in the mattress as a function of the sag
The equilibrium is described by:

F>T [Nm™]

The maximum sag in the middle of the span is minimally equal to:

12
tmaxmin = T [ m ]
4-1g0- L
Consequently the tension force in the mattress cannot exceed:
L
Fmax:tg(p'g'q [Nm—1]

For very large sags the parabolic approximation fails. In the limit (/ = 0), when the mattress hangs
vertically in a narrow but deep gap, the tension force equals:

T=t-q [Nm™]
This means that the sag t will always be smaller than a value:

m

1< 1gp-

B |t
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Figure 2-3: The minimum and the maximum sag as a function of the gap width

From these two conditions it appears that equilibrium can be attained at two points ¢, and ¢ ..
Between these points equilibrium is assured.
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3.2

A refined Model of a Mattress spann’ing aGap

The Refinements

The model developed in the previous paragraph will be improved in two steps. First the description
of the forces at the supporting corner will be analysed in more detail. This analysis will be confirmed
experimentally. Secondly the description op the sag will be improved from a parabola to the more
accurate catenary. The improved description of the supporting corner and the sag will be analysed

and experimentally verified.

A refined friction Model for the supporting Comer

The maximum force that may be exerted on a mattress lying on the soil is more
assumed above.

¥ [0
F \T

Figure 3-1: The forces at the supporting cormer

The friction force F and the tension force T give rise to a resulting force R equal to:

R= {(F - Tcosoc),Tsinoc} [Nm']

Where: (F ~Tcosa)=0 [Nm']

This force R causes an extra friction force equal to:

tgo.|R| = tg(p.\/(F~ Tcosoc)2 +(Tsinoc)2 [Nm']

The total equilibrium is thus expressed as:

F+tg(p.\/(F—— Tcosoc)2 +(Tsin0t)2 -T=0 [Nm™]
For the simple case where o = 0° the form reduces to:

F-T=0 [Nm"]
If a = 90° the equilibrium is described by:

F+tgoVF?+T* -T=0 [Nm"]

Experimental verification of the friction model

complicated than

If a mat of known length L hangs from a table the length of the sagging part is bounded by the

formula derived above.
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Figure 3-2: The mat hangs from a table
_ 2 -1
F - tqu‘q(L mat t.\'ag) [ Nm ]
T=q.1, [Nm™]

These values have to be substituted in the equilibrium equation.

tgqp.q(—L-mm g >+ tg(p\/ (tgga.q(me =4 g ))2 +(q.tmg )2 —ql,, = 0 [Nm']

The only unknown is ¢, which can be numerically solved. From the solution it appears that the ratio

teg! L, 18 @ function of ¢.
0] simple model ., / refined model
Lmal = tg (p
20 0.364 0.386
30 0.577 0.602

The length, at which a model mat just kept hanging from the table, was experimentally determined.
The friction angle between the mat and the table surface was determined, by sloping the surface, at
20°. Then the maximum sag t was found for various mat lengths. The results are given in Figure 3-

3. Itis clear that the ratio ..,/ L, is well predicted by the model and that the ratio is slightly above
tg o.
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Figure 3-3: The maximal stable sag from a supporting corner as a function of mattress length
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3.3 Arefined Model for the sagging Mattress spanning a Gap

In the second chapter a parabola approximated the sagging mat. In fact the catenary curve is the
exact model for this problem.
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Figure 3-4: The sagging mattress and the system of co-ordinates

It is known that the catenary is described by:

=A h(—)i) m
y = Acosh{ = [m]
Filling in the boundary condition at the support:
t A= Acosh : [m]
=t ., + A= Acoshf — m
y sag 2A
Or:
)
Acosh| — |~t,, —A=0 [m]
24 e

From this equation A can be numerically solved.

There from the forces may be calculated by:

H=q.4 [Nm']

V=g.s [Nm™]
l

Where: s = 4 sinh(—mj [m]
24

T=(t,,+4)q [Nm™]

If the catenary model for the sagging mat is combined with the model for the maximal friction force
at the supports at both sides, the behaviour of the mattress can be studied.

From calculations it appears that there is minimal sag that is sustained by the maximal friction
forces. If the mat starts with smaller sag it will slip until the minimal value is reached. When the sag
increases further, a point is reached where the weight of the unsupported mat is too large for the
friction forces on both sides. The mat will fall in the gap. Between this minimal and maximal value all
values of the sag give a stable configuration.
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The forces in the mat and the stable area are sketched as a function of ¢, in Figure 3-5. The
mattress always slips to t,,, ~ 0,027 in this example. Between 0,027 and 0,093 all configurations are
stable. If ., = 0,093 is exceeded the mattress falls into the gap. in the process the maximal tension
force in the mat never rises above the maximal friction force. In the figure the parabolic model is also
sketched. The approximation is only acceptable in the area fy; < foy . The parabolic model

underestimates the minimal sag, but due to the limiting aspect of the friction the maximal tension is
correctly predicted.
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Figure 3-5: The tension force in the mattress as a function of the sag
The minimal and the maximal sag are both a function of the gap width (see Figure 3-6). There is a

gap width that cannot be bridged by a mattress of a certain length. In Figure 3-6 this situation is
reached at/ =0,21.

10
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Figure 3-8: The minimal and the maximal stable sag as a function of the gap width
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Figure 3-7: The tension force in the mattress as a function of the sag
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Experimental Verifications of the sagging Mattress Model

The model derived in the previous section is experimentally verified. A model mat was hung
between two horizontal surfaces. For various values of the gap width /,,, the minimal and the
maximal sag were determined.

Figure 4-1: A mattress spanning a gap has two positions where equilibrium is just lost

The length of the mattress was 0,83 m. The friction angle between mattress and surface is 20°. The
behaviour of the mattress is calculated with the model and sketched in Figure 3-7 for a gap width of /
= 0,15 m and in Figure 3-6 as a function of the gap width. In Figure 4-2 the experimental results are
plotted as a function of the gap width. The agreement between theory and experiment is

acceptable.

+
\+
0.14 a

\4,_

+

0.12 +
X

0.10 ‘ \

0.08 \
0.06 ;
/:
0.04 T
0.02 /
0

]
0 0.10 020 =

Figure 4-2: The results of experiments compared with the theory
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5. Conclusions

A bed protection mattress spanning a local depression caused by a soil failure will always slip to
minimum sag. At sags equal to or larger than this minimum value equilibrium is assured. If however
the sag exceeds a certain maximum value, the weight of the sag cannot be supported anymore by
the ends lying on the undisturbed bed. The mattress will slide into the gap (see Figure 3-6 and

Figure 3-7).

The maximum friction force that can be mobilised (see Figure 3-7) will always limit the tension force
in the mattress. In a first approximation the tension force is limited by:

q [Nm™]

in the report it is shown that in an improved model the maximal tension force may be slightly (+/-
5%) greater due to extra friction at the supporting corners.

14
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Appendix I: Experimental Results Friction .‘Model

-EM
<
L,
A\
.—lmal tsag tsag / qual
0.83 0.31 0.37
0.83 0.30 0.36
0.83 0.31 0.37
0.56 0.22 0.39
0.56 0.21 0.37
0.56 0.21 0.37
0.42 0.14 0.33
0.42 0.15 0.36
0.42 0.16 0.38




Appendix II: Experimental Results sagging Mat

’gap tmin trax
[m] [cm] [cm]
0.20 45 45
4.0 45

0.175 3.2 10.5
3.7 12.0

34 11.2

0.156 1.9 13.4
2.0 12.9

1.7 12.0

0.125 1.2 14.0
1.3 14.2

1.3 14.4

0.10 0.8 14.4
0.7 15.1

0.6 15.6




Appendix lll: Program Catenary

PROGRAM CATENARY (INPUT, OUTPUT) ;
CONST
dr = 0.01745;

VAR
L mat,
1_gap,
min,max,
tangent,
Tension,
Tension H,
Tension V,
Tension max,
q mat,
t_sag,
X, A : REAL;

{$1 \PASCAL\FUNCT\HYPER.FUN }

FUNCTION G(X : REAL) :REAL;
BEGIN
G:= X * ( COSH( 1 gap/(2*X) )-1) - t_sag;
END;

PROCEDURE Newton Raphson{ VAR X:REAL);
CONST
Precision = 0.000001;

Eps = 0.001;
MaxIt = 100;
VAR
I INTEGER;
X 1,X r,
Y 1,Y r,dy,Y :REAL;
BEGIN
I :=0;, X1 :=X; Y 1= G(X);

WHILE (ABS( Y ) > Precision) AND (I < MaxIt)

BEGIN
Y r = G((1l+Eps)*X 1); Y 1 :=Y;
dy = (Y r - Y 1)/(Eps*X_1);
X1:=X1- Y1/ dy;
Y 1= G(X 1)
{ writeln(X 1:10:3,Y:10:3); }
I := I+1;

END;

DO




END;

BEGIN
WRITELN (LST) ;
WRITELN (LST, ' CALCULATION OF CATENARY ');
WRITELN (LST) ;
WRITELN (LST) ;
WRITE (' L gap = ')} ;READLN(L gap):
WRITE (' g _cable = ');READLN (g mat);
WRITE (' t sag min = ')} ; READLN (min) ;
WRITE (' t sag max = ') ; READLN (max) ;
ClrScr;
writeln;
WRITELN (LST, "' L gap = ',L gap:5:3, fm] '),
WRITELN({(LST,"' g_cable = ',q mat:5:3, [kN/m]"');
WRITELN(LST, ' t sag min = ',min:5:3," [m]")
WRITELN (LST, ' t sag max = ',max:5:3,"' [m]")
writeln(lst);
writeln (LST,' H v T t sag L cable
AY);
writeln (LST,' [kN] [kN] [kN] [m] [m] ")
t sag := min;

WHILE t sag <= max DO

BEGIN
A:= sqr(l _gap)/(8*t_saq);

Newton Raphson(A);

L mat := 2 * A * SINH( 1 gap/(2*A));
Tension H := A * g mat;

Tension V := 0.5 * L mat * g mat;

Tension := ( t_sag + A)* g mat;

Writeln(LST,Tension H:10:3,Tension_V:10:3,Tension:10:3,t_sag:10:3,L_
mat:10:3,A:10:3);

t sag := t_sag + (max - min )/19;
END;
WRITELN (LST) ;
WRITELN (1lst,CHR(12));

END.




Appendix IV: Prograh1 Corner Mat

PROGRAM CORNER MAT (INPUT,OUTPUT) ;
CONST
dr = 0.01745;

VAR
L mat,
1_gap,
phi,
tangent,
f friction,
q mat,
t sag,
X, A : REAL;

{$I \PASCAL\FUNCT\HYPER.FUN }

FUNCTION G{ t sag : REAL):REAL;
VAR
H,V : REAL;

BEGIN

V:= g _mat * t sag;

H:= f friction * g mat * (L_mat-t_sag);

G:=V - H - £ friction * sqrt( sqr(H) + sgr(V) ) ;
END;

PROCEDURE Newton_Raphson( VAR X:REAL);

CONST
Eps = 0.001;
MaxIt = 10;
VAR
I INTEGER;
X 1,X r,
Yy 1,Y r,dY,Y :REAL;
BEGIN
I := 0y X1 :=X; Y 1= G(X);

WHILE (ABS( Y ) > Eps) AND (I < MaxIt) DO

BEGIN

Y r := G((l+Eps)*X 1); Y 1 :=Y;
dy = (Y r-Y1)/(Eps*X 1);

X1 :=X1- Y1/ dy;

Y 1= G(X_1);

I = I+1;




END;
BEGIN
phi = 28.0;
g mat := 10.0;

t _sag :=0.01;

WHILE phi <= 32.0 DO
BEGIN

f friction := TAN(dr*phi);
ClrScr;
writeln(lst);writeln(lst);writeln
WRITELN (LST, phi
(
(

i

o]
o2

H

writeln(lst);

writeln (LST,' L mat t sag

L mat := 0.1;

WHILE L mat <= 1.0 DO
BEGIN
A:= L mat /5;

Newton Raphson(A);

t sag = A ;

Writeln(LST,L mat:10:3,t sag:10:

L mat := L mat + 0.1;
END;
phi := phi + 2.0;
END;

END.




Appendix V: Program sagging Mat

PROGRAM SAGGING_MAT(INPUT,OUTPUT);
CONST
dr = 0.01745;

VAR
I : INTEGER;
tm : ARRAY[1..2] OF REAL;
L mat,
1 gap,
phi,
tangent,
Tension,
Tension_ H,
Tension V,
Tension max,
Friction,
f, Hulp,
g mat,
t_sag,
t old,
Eq, Egq_old,
X, A : REAL;

{$T \PASCAL\FUNCT\HYPER.FUN }

FUNCTION G (X : REAL):REAL;
BEGIN

G:= X * ( COSH( 1 gap/(2*X) )-1) - t_sag/

END;

PROCEDURE Newton”Raphson( VAR X:REAL);
CONST
Eps = 0.001;
MaxIt = 10;

VAR
I INTEGER;
X 1,X r,
Y_l,Y_r,dY,Y :REAL;
BEGIN
I :=0; X 1 :=2X; Y :=G(X);

WHILE (ABS( Y ) > Eps) AND (I < MaxIt)
BEGIN
Y r G((1+Eps)*X_1); Y_ 1 := Y;
dy := (Y r - Y 1)/ (Eps*X_1);

DO




X1 :=X1- Y1/ 4dy;

Y = G(X_1);
{ writeln(X_l:lO:B,Y:lO:3); }
I = I+1;
END;
X =X 1;
END;
BEGIN
phi := 20.0;
L mat := 0.83;
g mat := 10.0;
1 gap :=0.2;
WRITELN(LST, 'L mat = ',Lvmat:5:3),
WRITELN (LST, 'qg mat = ',qmmat:5:3),
WRITELN (LST, 'phi = ',phi :5:3);
WRITELN (LST) ;
WRITELN(LST,' 1 gap t min t max');
WHILE 1 gap <= 0.21 DO
BEGIN
t sag ::0.000B;t_m[l}:=O;t_m{2]:=O;
Eq := -3.0; I:= 1;
f := TAN(dr*phi);
WHILE t sag < 0.25 DO
BEGIN
A := sqr(l _gap)/(8*t_sag);
Newton_Raphson(A);
Tension H := A * g_mat;
Tension V := A * g _mat * SINH( 1 gap/(2*R));
Tension := ( t_sag + A)* g_mat;
Friction := f * (q_mat*L_mat/Z - Tension V);
Hulp := Friction - Tension_H;
IF Hulp <0 THEN Hulp :=0.0;
Tension max := Friction + f * SQRT( SQR(Hulp) + SQR(Tension_V) );
£g:= ( Tension max - Tension) ;
IF Eq *Eg_old < O THEN
BEGIN
t m[I] :=(t_old*Eq - t _sag*Eq_old)/(Eq - Eq_old);
1:=2;
END;
t old := t_sag; Eg_old := Eqg;
t sag := t_sag + 0.0005;

END;

WRITELN(LST,l_gap:10:3,t_m[1]:10:3,t_m[2}:10:3);
1l gap := 1_gap + 0.01;
END;



