
Delft University of Technology
Master’s Thesis in Embedded Systems

A Dynamic Multipath File Transfer Engine
for Software-Defined Networking

Yuchen Huang

A Dynamic Multipath File Transfer Engine for

Software-Defined Networking

Master’s Thesis in Embedded Systems

Embedded Software Section
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Van Mourik Broekmanweg 6, 2628 XE Delft, The Netherlands

Yuchen Huang
4511980

Y.Huang-14@student.tudelft.nl

16th November 2018

mailto:Y.Huang-14@student.tudelft.nl

Author
Yuchen Huang (Y.Huang-14@student.tudelft.nl)

Title
A Dynamic Multipath File Transfer Engine for Software-Defined Networking

MSc presentation
16th November 2018

Graduation Committee
Fernando A. Kuipers Delft University of Technology
Przemek Pawelczak Delft University of Technology
Edgar van Boven Delft University of Technology & KPN

mailto:Y.Huang-14@student.tudelft.nl

Abstract

With the fast development of the internet, it is widely expected that data
traffic will grow exponentially. To fulfill the internet users’ demand of Qual-
ity of Experience (QoE), the way we deal with “the tsunami of data” be-
comes a big problem. How to transfer data, especially those very big files, as
fast as possible can be a very important part of that problem. One promising
solution could be using multiple paths instead of a single path transmission.
Different conditions on different paths make it difficult to handle multipath
transmission well. However, Software-Defined Networking (SDN), a central-
ized network model, provides new solutions to make multipath transmission
possible. In a SDN network, the network status can be monitored. With
such monitoring information, an optimal multipath solution can be found
to transfer a file as fast as possible.

In this thesis, the optimal multipath transmission problem is studied.
The objective is to minimize file transfer time between two end systems in
a given SDN network. First, we model this as a linear programming prob-
lem on a time-expanded network. The time-expanded network used makes
that the complexity of this solution is pseudo-polynomial. From this solu-
tion, we are able to derive a Fully Polynomial-Time Approximation Scheme
(FPTAS) where we can accurately control the speed versus accuracy trade-
off. Lastly, we have build an SDN-based proof-of-concept implementation
through which we have evaluated our two algorithms.

iv

Preface

First, I would like to thank Professor Fernando A. Kuipers. It is his pro-
fessional advises and kindness that help me overcome all technical problems
and finish this thesis. Then, I’d like to thank all the friends I’ve met in
Delft. I will remember all the wonderful time and terrible food we enjoyed
together. Finally, I’d like to thank my beloved girlfriend Lina He and my
parents, I can’t image how my life will be without their support and endless
love.

Yuchen Huang

Delft, The Netherlands
16th November 2018

v

vi

Contents

Preface v

1 Introduction 1

2 Software Defined Networking 3

2.1 SDN . 3

2.1.1 SDN Architecture . 3

2.2 OpenFlow . 4

2.2.1 Flow Table . 5

2.2.2 Group Table . 6

2.2.3 OpenFlow Messages 6

3 Related work 9

3.1 Multipath routing . 9

3.2 Traffic engineering in SDN . 10

3.3 Dynamic control in SDN . 10

3.4 Summary . 11

4 Algorithm 13

4.1 Network model . 13

4.2 Problem definition . 14

4.3 Exact pseudo-polynomial algorithm 15

4.4 Fully polynomial-time approximation algorithm 18

4.4.1 Algorithm and proof 18

5 Proposal and Design 23

5.1 System design . 23

5.2 Monitoring component . 25

5.2.1 Link Delay . 25

5.2.2 Link Load . 26

5.3 Forwarding component . 27

5.4 Enable multipath forwarding in Open vSwitch 27

5.4.1 Modify group bucket selection algorithm 27

5.4.2 Ensure file partition and bandwidth usage 29

vii

5.5 Enable dynamic control in path selection 30
5.5.1 Process of dynamic path control 30

6 Evaluation 33
6.1 Algorithm test . 33

6.1.1 Random graph . 34
6.1.2 Square lattice graph 37

6.2 SDN network experiments . 40
6.2.1 Test over different number of paths 40
6.2.2 Test with delay different delays 43
6.2.3 Test with dynamic path control 45

7 Conclusion & Future Work 49
7.1 Conclusion . 49
7.2 Future Work . 50

A Open vSwitch 2.7.0 Group Table Modification 55
A.1 ovs/ofproto/ofproto-dpif-xlate.c 55

viii

List of Figures

2.1 The SDN architecture. [13] 4

2.2 Main components of an OpenFlow switch. [22] 5

4.1 Example input graph G(V,E) and the corresponding optimal
solution when σ = 13. 14

4.2 Example input graph G(V,E) and corresponding auxiliary
graph GA(V A, EA, τ = 4). 16

5.1 The architecture of our SDN-based file transfer system 24

5.2 Application layer . 24

5.3 Process of detecting link delay 25

5.4 Process of link load monitoring 26

5.5 Example of original and modified select group in Open vSwitch 28

5.6 Example of file partition using select group. 29

5.7 Dynamic path control process. 30

6.1 Running time results on the random graphs. 34

6.2 Relative errors in BFMS-A on the random graphs. 35

6.3 Relative errors in BFMS-A with different ε 36

6.4 Results of tests with 30 nodes and 1000000 units file when ε
changes. 36

6.5 Running time results on the square lattice graphs. 38

6.6 Relative errors in BFMS-A on the square lattice graphs. . . . 39

6.7 Relative errors in BFMS-A with different ε. 39

6.8 Results of tests with 36 nodes and 1000000 units file when ε
changes. 40

6.9 Example topology when 3 redundant paths are available. . . . 41

6.10 Transfer speed over different path numbers 43

6.11 Transfer speed over different path numbers when bandwidth
is guaranteed . 44

6.12 Topology of delay differential experiment 45

6.13 Transfer speed over different path delay 46

6.14 Scenario for dynamic path control experiment 47

ix

6.15 Throughput with and without dynamic control. Additional
paths are available after 50 and 100 seconds. 47

x

List of Tables

2.1 Main components of a flow entry. [22] 5
2.2 Main components of a group entry. [22] 6
2.3 OpenFlow Messages . 7

xi

xii

Acronyms

ACO Ant Colony Optimization. 9

APIs Application Program Interfaces. 3

BFMS Big File Multipath Scheduling. 14, 15

DCN Data Center Networking. 9

FPTAS Fully Polynomial-Time Approximation Scheme. iii, 18, 49

IETF Internet Engineering Task Force. 9

MAF Maximum Auxiliary Flow. 17, 18

MPTCP MultiPath TCP. 9–11, 27

MTU Maximum Transmission Unit. 1

NBIs NorthBound Interfaces. 3, 4

ONF Open Network Foundation. 4

OVS Open vSwitch. 3, 27, 30, 55

QoE Quality of Experience. iii, 1, 11

QoS Quality of Service. 1, 11

RTT Round-Trip Time. 25

SDN Software-Defined Networking. iii, ix, 1–4, 9–11, 23–25, 27, 33, 40, 49,
50

SFTS Single File Transfer Scheduling. 15

TE Traffic Engineering. 1, 9, 10

xiii

xiv

Chapter 1

Introduction

With internet becoming more and more important in people’s lives, enorm-
ous amounts of data are generated and transferred. Cisco Visual Networking
Index forecasts that, by 2021, overall IP traffic will grow to 278 exabytes
per month [3]. New technologies and new internet services make this trend
more obvious. Users now require video services to provide 2K, 4K, and even
8K resolution. The data or files transferred in the internet are getting bigger
and bigger. Inefficient bandwidth and long latency will have huge negative
impact on users’ QoE.

SDN has introduced a new way to provide Traffic Engineering (TE) and
Quality of Service (QoS). Compared to traditional IP network, SDN has
a centralized architecture in which the control plane and data plane are
decoupled. This enables network managers to configure a network device to
have various functions. Applications can also access the status of each port
on each device and each link connected to it, which allows applications to
make suitable decisions for better TE and QoS.

Multipath is a promising approach to the TE problem. It can offer bet-
ter resource utilization, better reliability, and often even much better QoE.
However, these advantages are not free, other problems are also introduced
by multipath routing, such as variable path Maximum Transmission Unit
(MTU), variable path latency, and even increasing difficulty of debugging on
network management. But with SDN, new solutions can be found to reduce
those disadvantages.

In this thesis, our objective is to reduce the transfer time of big size files
in an SDN-enabled network. To realize our objective, we will address the
following research problems:

1. How to take advantage of Software Defined Networking and achieve
multipath file transfer in its environment?

2. How to find a multipath solution in reasonable time?

1

3. How to deal with the rapid change in network status?

Our main contributions are:

1. We propose and implement a big file transfer engine in an SDN-enabled
network which can provide network monitoring, flow scheduling and
multipath packet forwarding.

2. We propose a fully polynomial-time approximation algorithm to find
a multipath file transfer solution.

3. We propose a dynamic scheduling scheme to reschedule flow according
to the current network status.

The outline of this thesis is as follows. In chapter 2, we introduce Software
Defined Networking and the OpenFlow protocol. They are the basic archi-
tecture and protocol for our solution. Before proposing our solution, related
work is presented in chapter 3. In chapter 4, we explain our network model
and the research problem. We also propose our fully polynomial-time ap-
proximation algorithm in this chapter. In chapter 5, we present the details
of our proposal from the overall design of the whole system to the details of
each component. Next, we perform many experiments in different scenarios
to evaluate our solution in chapter 6. The results and evaluation are also
in this chapter. Finally, the conclusions and future work are described in
chapter 7.

2

Chapter 2

Software Defined Networking

2.1 SDN

Traditional networks are now facing several problems. First, the control
of these networks is completely distributed to every single device. Current
networks can easily contain more than thousands of network devices, so net-
work managers can hardly control and manage the behavior of every device.
Second, network control and forwarding are integrated into one device: any
update or change on both parts cannot be easily achieved. Third, network
managers cannot control the forwarding process directly, but over indirectly
through configuring network protocols. Fourth, the inflexibility of network
protocols becomes an obstacle to current fast-changing network applications.

SDN brings a new way of controlling networks. It introduces a network ar-
chitecture where network control is decoupled from packet forwarding. The
new architecture controls networks in a centralized way and network man-
agers can apply their control policies directly via programmable Application
Program Interfaces (APIs).

2.1.1 SDN Architecture

Figure 2.1 shows the basic components of an SDN architecture. It con-
sists of three layers: infrastructure layer, control layer and application layer.
The infrastructure layer, also known as data plane, comprises all network
devices. A network device can be a physical switch, a virtual switch like
Open vSwitch (OVS), or even another device like a router. All these net-
work devices need to support an SDN southbound interface so that they
can communicate with the control layer via it. OpenFlow is one of the most
popular southbound interfaces, other choices can be OpFlex, POF and P4.
The control layer, or the control plane, consists of one or more SDN control-
lers. The controllers manage the devices in the data plane in a centralized
way and they are directly programmable via SDN NorthBound Interfaces
(NBIs) specified by the controller. Controllers are the core elements of the

3

Figure 2.1: The SDN architecture. [13]

SDN architecture. There are many controllers available on the market, such
as Ryu, Floodlight and Pox. Business applications exist in the application
layer, and communicate their network requirements toward the controller
via the NBIs. The applications can be load balancing, firewall, monitoring
and other more complicated business services.

2.2 OpenFlow

OpenFlow is the most popular implementation of the SDN concept. It
provides an open source Southbound API between controllers and switches.
OpenFlow was originally proposed by Stanford University to help research-
ers to utilize the network hardware and design new protocols [13]. Now,
OpenFlow is maintained by the Open Network Foundation (ONF). More
and more commercial groups and companies are using OpenFlow to design
their SDN platform and hardware [26].

The control plane is represented by controllers, while the data plane stays
in OpenFlow switches. Figure 2.2 shows the main components of an Open-
Flow switch. An OpenFlow switch consists of one or more OpenFlow chan-
nels, which can be used to communicate with controllers through the Open-
Flow protocol, and one or more flow tables and one group table, which
together perform the forwarding function [22].

4

Figure 2.2: Main components of an OpenFlow switch. [22]

2.2.1 Flow Table

Flow tables are the most important feature in the OpenFlow switch. A flow
table consists of flow entries. Table 2.1 shows the main components in a
flow entry.

Match Fields Priority Counters Instructions Timeouts

Table 2.1: Main components of a flow entry. [22]

The match fields contain a subset of values that can be found in a packet
header which can be used to match against packets. Additionally, one can
also set ingress port value in the match fields to match packets coming
from a specific port. The priority is used when a packet can be matched
to multiple flow entries. The flow entry with highest priority is chosen to
match the packet. When a packet is matched, the instructions in the flow
entry show how the packet is going to be handled. Possible instructions
can be Apply-Actions like output and drop, which perform immediately,
and Goto-Table, which forward the packet to another flow table for pipeline
processing. The timeouts contain information about the maximum living
time or idle time of the corresponding flow entry. The counters show how
many packets have been matched for the flow entry so far.

5

2.2.2 Group Table

Group table is another important feature of OpenFlow. Table 2.2 shows the
main components of a group entry in a group table.

Group Identifier Group Type Counters Action Buckets

Table 2.2: Main components of a group entry. [22]

Each group entry represents a group. A group is identified by the number
in the group identifier. Flow tables can send packets to a specific group
by using this number. Counters, similar to that in a flow entry, show the
number of processed packets. The action buckets consist of an ordered list
of action buckets. Each action bucket contains a set of actions and other
associated parameters. In the group type, a group can be set to four different
types:

• Indirect: Execute the only action bucket in the group. This is the
simplest type of group, it only contains one action bucket. Indir-
ect groups are designed for saving hardware resources. Multiple flow
entries can point to the same indirect group to perform the actions in
the action buckets.

• All: Execute all the action buckets in the group. A packet processed
by an all group is copied and forwarded to all the action buckets in
that group. Each bucket then applies actions to its own copy of the
packet.

• Select: Execute one action bucket in the group. Multiple action buck-
ets can be defined in a select group, but only one can be applied to
one packet according to a selection algorithm specified by the switch.

• Fast failover: Execute the first live action bucket. This group is used
for protection. When one route is broken, the switch can quickly shift
to a pre-computed backup route.

2.2.3 OpenFlow Messages

The OpenFlow protocol defines OpenFlow Messages transmitted between an
OpenFlow controller and an OpenFlow switch. These messages enable the
controller to control the switch through the add, update, and delete actions
on the flow entries in the flow tables. There are three types of messages, as
shown in Table 2.3.

• Controller-to-Switch Messages: These messages are initiated by the
controller and sent to the switch. They can modify the logical state of

6

the switch, for example, its configuration and flow/group entries. In
some cases, these messages require a response from the switch. The
packet-out message will be sent from the controller to the switch when
the controller decides not to drop the packet, but to direct it to a
switch port.

• Asynchronous Messages: These messages are sent without solicitation
from the controller, for example, the port and flow status sent to the
controller. They also include the Packet-in message, which can be
used by the switch to send a packet to the controller when there is no
flow-table match.

• Symmetric Messages: These messages are sent without solicitation
from either the controller or the switch. Hello messages are exchanged
between the controller and switch to establish the first connection.
Echo request&reply messages are used by either the switch or control-
ler to measure the latency or bandwidth of a controller-switch con-
nection or just verify that the device is operating. The Experimenter
message is used to build features in future versions of OpenFlow.

Table 2.3: OpenFlow Messages

Controller-to-Switch

Handshake Identify the switch and its capabilities.

Configuration Set and query configuration parameters.

Modify-State Modify flow/group entries, port behavior, and meters.

Multipart Request statistics or state information from switch.

Packet-out Send a packet to a specified port on the switch.

Barrier Ensure message dependencies have been met or
receive notifications for completed operations.

Role-Request Change the controller role in multiple-controller situation

Asynchronous
-Configuration

Set and query filter on asynchronous messages in
multiple-controller situation.

Asynchronous

Packet-in Transfer packet to controller.

Flow-Removed Inform the controller about the time out or deleted flow

Port-Status Inform the controller of a change on a port.

Error Notify controller of error or problem condition.

Symmetric

Hello Exchanged between the switch and controller
upon connection start-up.

Echo Request & Reply between the switch and the controller.

Experimenter For additional functions.

7

8

Chapter 3

Related work

In this chapter, we present our review of the current research progress around
traffic scheduling in traditional IP networks and SDN-enabled networks. We
classify those related works into three major topics: (1) multipath routing
based traffic scheduling approach; (2) TE in SDN-enabled networks and (3)
Dynamic control in traffic scheduling.

3.1 Multipath routing

Since multipath routing has its natural advantages over single path rout-
ing in terms of throughput, fail-over protection and many other aspects,
enormous research efforts have been spent in this direction. In [31], Ya et
al. show a way to provide load balancing using multipath in Data Center
Networking (DCN). They propose an improved Ant Colony Optimization
(ACO) algorithm, which uses the idea of data flow segmentation to improve
the network throughput and resource utilization. In [12], L. He proposed a
survivability scheme for optical networks named Hybrid Single and Multiple
Backup Protection (HSMBP). This scheme uses multiple paths to protect
the primary path. It shows that HSMBP can effectively improve the network
performance by reducing Bandwidth Blocking Probability (BBP).

Recently, MultiPath TCP (MPTCP) has become popular in the mul-
tipath routing research area. MPTCP is an extension to the regular TCP
protocol. It was originally a Linux kernel project and now is standard-
ized by the Internet Engineering Task Force (IETF) [10]. Multipath TCP
provides the ability to split one transport connection into multiple “sub-
flows” and simultaneously use multiple paths between peers. In [28], Pol et
al. measured the end-to-end goodput with MPTCP in their intercontinental
OpenFlow testbed. The results shown that they could indeed reach a much
higher throughput with multiple paths compared to a single path. Much re-
search has been published to take advantage of the multipath routing based
on MPTCP. However, the usage of MPTCP is limited, since it works at

9

the transport layer. To set up an MPTCP connection, we need both host
devices support it. Currently, not all devices support MPTCP, although
many networks have redundant paths that can be used to set up multipath
connections. As a result, MPTCP applications are still hardly used.

3.2 Traffic engineering in SDN

SDN is a key technique to achieve intelligent TE. Under the architecture of
SDN, TE applications are applied to traffic in the data plane though the
SDN controller.

One typical example is B4 which is a private WAN connecting Google’s
data centers. It uses an SDN architecture to control TE services centrally.
The corresponding paper shows that B4 can make links to nearly 100% util-
ized and balance capacity against application priority/demands by splitting
application flows among multiple paths [14]. In [17], J. Lin et al. pro-
posed a system named MonArch to monitor and measure resources based
on the concept of Software Defined Infrastructure (SDI). Users can generate
monitoring tasks to conduct TE. In [9], Y. Guo et al. explored TE in an
SDN/OSPF hybrid network. In their scenario, the SDN controller can arbit-
rarily split the coming flows into outgoing links. Under this scenario, they
proposed an algorithm to solve the TE problems and obtain lower maximum
link utilization. In [25], Porxas et al. proposed a multi-tenancy management
framework to meet the quality-of-service requirements through tenant isol-
ation, prioritization and flow allocation. In a centralized SDN scenario,
it can improve the network performance regarding traffic congestion and
packet delay.

Like the aforementioned solutions, most solutions about TE problems are
based on static scheduling, which can not guarantee the scheduling require-
ments in actual scenarios.

3.3 Dynamic control in SDN

SDN is a core technology for adaptive and flexible networks. It enable the
network to dynamically optimize itself to the needs of diverse services. There
is some research about dynamic control in SDN.

In [20], Rashid et al. used the SDN controller to efficiently manage re-
sources. The virtual network is dynamically adjusted to various network
states in the substrate network. The central controller can monitor the re-
sources in virtual networks, in particular the average loading of links and
switches in substrate networks. Such information will help the controller
to control flows, and consequently more requests can be accepted with less
resource cost. In [1], Iris et al. focused on TE considering the character-
istics of running applications in the network. They proposed a software

10

framework based on SDN to allow dynamic provisioning to meet the QoS of
different services. In [18], Hui et al. worked on workload balancing. They
proposed a novel path-switching algorithm under the architecture of SDN
to dynamically balance the traffic during the transmission.

Furthermore, Hyunwoo et al. proposed to dynamically control MPTCP
flows under the architecture of SDN [21]. The results show that their mech-
anism can improve the network performance. In terms of adaptive rate video
streaming, they got faster download and better QoE.

3.4 Summary

Multipath routing has attracted a lot of attention. However, we still lack of
algorithms that take advantage of the centralized SDN to provide an optimal
solution when transfer a file with multipath. Also, some dynamic control
can be added to keep the optimal solution up-to-date when network status
changes.

11

12

Chapter 4

Algorithm

In this chapter, we first present our network model and introduce our re-
search problem. Then, we give an exact algorithm with pseudo-polynomial
time complexity to solve the problem. Based on this result, we also propose
a fully polynomial-time approximation algorithm and prove its correctness
and time complexity.

4.1 Network model

Before we introduce the algorithm, we first model the question we want to
solve. We use the network model from [16]. Our network can be modeled as
a weighed directed graph G(V,E), where V is the set of nodes and E is the
set of edges. For each link e ∈ E, we have bandwidth b(e) > 0 and delay
d(e) ≥ 0. For a node pair (s, t) ⊆ V , p = (s, v1, v2, ..., t) is a path from node
s to node t. The bandwidth of a path p is

b(p) = min
e∈p

b(e) (4.1)

and the delay of a path p is

d(p) =
∑
e∈p

d(e) (4.2)

Assume we are transferring a file of size σ with a set P of paths from node
s to node t. For each path pi ∈ P, a sub-file of size σi is transferred with the
used bandwidth f(pi) ≤ b(pi), where

∑
i∈[1,k] σi = σ. The total bandwidth

used to transfer the file, f(P), is

f(P) =
∑
pi∈P

f(pi) (4.3)

and sub-file transfer time T (pi) on path pi is

T (pi, f(pi), σi) = d(pi) +
σi

f(pi)
, i ∈ [1, k] (4.4)

13

The total file transfer time T (P, f(P), σ) on the path set P is

T (P, f(P), σ) = max
i∈[1,k]

T (pi, f(pi), σi) (4.5)

4.2 Problem definition

Big File Multipath Scheduling (BFMS) problem: Let σ be the size of a file
that needs to be transferred from node s to node t, find a set of feasible
paths P, a feasible s − t flow f , and a file distribution among the paths
pi ∈ P, such that T (P, f(P), σ) is minimized.

1

S 2 T

(5, 1)

(5, 1) (8,1)

(5, 1)

(a) Input graph

S 2 T(5, 1) 5 (8,1) 5

(b) Path p1

1

S 2 T

(5, 1) 3

(8,1) 3

(5, 1) 3

(c) Path p2

1

S 2 T

(5, 1) 3

(5, 1) 5 (8,1) 8

(5, 1) 3

(d) Path set P = {p1, p2}

Figure 4.1: Example input graph G(V,E) and the corresponding optimal
solution when σ = 13.

An example is shown in Figure 4.1. Figure 4.1a shows the topology of
the network where the number on each link gives the information of the link
weight in the form (bandwidth, delay). Assume we want to transfer a file
of size σ = 13 units. Solutions should contain three parts, namely the path
set, the bandwidth usage, and the file distribution. In this example, the
optimal solution should be a path set P = {p1 = (s, 1, 2, t), p2 = (s, 2, t)}
with bandwidth usage f(p1) = 3, f(p2) = 5, and a sub-file of 3 unit size is
transferred on p1 while a sub-file of 10 unit size is transferred on p2. Thus,
according to Equation 4.5, the total transferring time T (P, f(P), σ) = 4
units.

14

Like the original Single File Transfer Scheduling (SFTS) problem in [16],
our BFMS problem is NP-hard.

4.3 Exact pseudo-polynomial algorithm

To solve the BFMS problem, we propose the BFMS-E algorithm which is
a variant of the sfts-a algorithm in [16]. Before introducing our algorithm,
first we discuss some techniques used in the sfts-a algorithm.

In the sfts-a algorithm, auxiliary graphs, also known as time-expanded
networks, are used to solve sub-file distribution problems. The original sfts-
a algorithm only returns a solution when it is feasible to transfer the file
within a time constraint τ . In our problem, we do not have a pre-defined
time constraint, we set the initial value of τ to be the transfer time needed
in the shortest path solution. Since the shortest path solution is one of the
possible solutions to our problem, the τ we set is definitely feasible for the
algorithm to solve. An auxiliary graph GA(V A, EA, τ) can be constructed
from G(V,A) with the following steps:

1. For each node u ∈ V, u 6= s, τ nodes, u0, u1, ..., uτ , are added to V A.
For node s ∈ V , add only node s0 to V A.

2. For each link (u, v) ∈ E, u 6= s, (τ − d(u, v)) links are added to EA in
the form (ui, ti+d(u,v)), where i = 0, 1, ..., τ − d(u, v)− 1. For each link
(s, u) ∈ E, add link (s0, ud(s,u)).

3. Add node tτ to V A and link (tτ−1, tτ) to EA. For each node u ∈
V A, u 6= s0, ti, where i = 0, 1, ..., τ , remove node u whose in-degree or
out-degree is 0.

Figure 4.2 shows an example of an input graph and the process of con-
structing its corresponding auxiliary graph following the aforementioned
steps. Assume we want to transfer a file of size σ = 20 units. The shortest
path from s to t in the input graph is path p = (s, 2, t). The maximum
bandwidth b(p) = 5 units and delay d(p) = 2 units. According to Equation
4.4, the transfer time T (p, b(p), σ) = 6 units, which is then assigned to τ .
In Figure 4.2d, the dark nodes show the final auxiliary graph and the light
nodes are removed.

When comparing the auxiliary graph GA with the original input graph G,
we can find GA contains two important pieces of information:

1. Path information: The same path information is “copied” from G to
GA. For each path from s0 to ti in GA, there is also a corresponding
path from s to t in G.

2. Delay information: The additional link path delay information is in-
troduced in GA. The superscript of each node shows the path delay
from s0 to itself.

15

1

S 2 T

(5, 1)

(5, 1) (8,1)

(5, 1)

(a) Input graph

13

S0

23 T3

12 22 T2

11 21 T1

10 20 T0

13 23 T3

14 24 T4

15 25 T5

(b) Step 1

13

S0

23 T3

12 22 T2

11 21 T1

10 20 T0

13 23 T3

14 24 T4

15 25 T5

(c) Step 2

13

S0

23 T3

12 22 T2

11 21 T1

10 20 T0

13 23 T3

14 24 T4

15 25 T5

T6

(d) Step 3

Figure 4.2: Example input graph G(V,E) and corresponding auxiliary graph
GA(V A, EA, τ = 4).

16

So we can conclude that GA shows all the paths from s to t in G with its path
delay less than the time limitation τ . Then the scheduling problem, called
Maximum Auxiliary Flow (MAF) problem, can be expressed as follows:

min
∑

∀(u,v)∈EA

d(u, v) · f(u, v)− f(GA) · τ (4.6)

s.t.
∑

(s0,vd(s,v))∈EA

f(s0, vd(s,v)) = f(GA) (4.7)

∑
(vi,ti+d(v,t))∈EA

f(vi, ti+d(v,t)) = f(GA) (4.8)

∑
(x,y)∈EA

f(x, y) =
∑

(y,z)∈EA

f(y, z), ∀y ∈ V A, y 6= s, t (4.9)

∑
ui∈V A

f(ui, vi+d(u,v)) ≤ b(u, v), ∀(u, v) ∈ EA (4.10)

f(u, v) ≥ 0, ∀(u, v) ∈ EA (4.11)

such that the maximum amount of file that can be transferred from node s
to node t in graph GA within time limitation τ is

M(GA, τ) = f(GA) · τ −
∑

∀(u,v)∈EA

d(u, v) · f(u, v) (4.12)

Algorithm 1 BFMS-E algorithm

1: procedure MyProcedure
2: Compute the shortest path p∗ from s to t in G.
3: τ ← T (p∗, b(p∗), σ).
4: x← d(p∗) + 1; y ← τ .
5: do
6: Construct the auxiliary graph GA(V A, EA, τ).
7: Solve the MAF formalation.
8: if M(GA, τ) ≥ σ then
9: y ← τ

10: else
11: x← τ
12: τ ← b(x+ y)/2c
13: while y 6= x+ 1
14: τ ← y
15: Output the s-t path set P obtained from the MAF solution with the

corresponding flow allocation f(pi) for each pi ∈ P.

Based on this formulation, we propose algorithm 1 (Algorithm BFMS-E).
As explained before, we do not just want to transfer the file within a time

17

constraint, instead we try to transfer the file as fast as possible. The main
idea is using binary search to narrow the difference between the upper and
lower bounds until we find the optimal solution. We initial the upper bound
y of time constraint τ to be the time needed to transfer the file with the
shortest path solution. Since the shortest path solution must be a possible
solution, we can view it as a known upper bound. The initial value of the
lower bound is set to be the total link delay of the shortest path between node
s and t plus 1 time unit. We set this lower bound because no matter how
we optimize the transfer time, we can not make it less than the minimal link
delay between the two nodes. Then, we change the value of τ in a binary
search way. Each time after the MAF formation is solved, if a feasible
solution is found, assign the current τ to the upper bound y, otherwise,
assign τ to the lower bound x. Then solve the new MAF formation with
τ to be the halve of the sum of x and y. The execution ends when the
minimal transfer time τ is found. Although Algorithm BFMS-E can give
the optimal result, the introduction of the time-expanded network makes its
time complexity pseudo-polynomial [8].

4.4 Fully polynomial-time approximation algorithm

Although the proposed algorithm can solve the problem exactly, its pseudo-
polynomial time complexity makes it still computational unfeasible when the
problem size grows too big. In this section, we propose a fully polynomial-
time approximation algorithm to solve this problem. We use the FPTAS
derived by Lorenz for the restricted shortest path problem [19]. We prove
that this scheme can also be applied to our problem and give an ε-solution
with time complexity to be O(poly · (nε log n

ε + n log n log log(UBLB)).

4.4.1 Algorithm and proof

The main idea of this algorithm is to apply the rounding and scaling tech-
nique to the original sfts-a algorithm. We use ∼ to indicate the notation is
for the scaled graph and ∗ to indicate the optimal. We scale an instance of
the problem by setting d̃(e) = bd(e)S c + 1 and b̃(e) = b(e)S. Also, when we
apply a solution for the original problem to its scaled problem, we scale the
bandwidth usage f̃(P, σ) = f(P, σ)S. Similarly, when applying the solution

of a scaled problem to its original problem, f(P, σ) = f̃(P,σ)
S .

Lemma 4.4.1. Let T ∗(P, f∗(P, σ), σ) be the optimal solution, ∀p ∈ P,
T ∗(P, f∗(P, σ), σ) = T (p, f∗(p, σ), σ∗p).

Proof. We use a proof by contradiction. Suppose the claim is false. We
first assume that pi is the latest path to finish the transfer and pj be any
path that finishes earlier than pi, σi and σj are the corresponding file sizes

18

Algorithm 2 SFTS-A(G(V,E), s, t, τ)

1: procedure
2: Construct the auxiliary graph GA(V A, EA, τ).
3: Solve the MAF formulation.
4: if M(τ,GA) ≥ σ then
5: Compute the shortest s− t path p.
6: x← d(p) + 1; y ← τ
7: while y 6= x+ 1 do
8: τ ← b(x+ y)/2c
9: Construct the auxiliary graph GA(V A, EA, τ).

10: Solve the MAF formulation.
11: if M(τ ,GA) ≥ σ then
12: y ← τ
13: else
14: x← τ
15: τ ← y
16: return the s-t path set P obtained from the MAF solution with

the corresponding flow allocation f(P, σ).
17: else
18: return FALSE

Algorithm 3 Scaled SFTS-A [SSA] (G(V,E), s, t, σ, U, L, ε)

1: procedure
2: S ← Lε

n+1

3: G̃(Ṽ , Ẽ)← G(V,E)
4: for each e ∈ Ẽ do
5: define d̃(e) ≡ bd(e)S c+ 1

6: define b̃(e) ≡ b(e)S
7: Ũ ← bUS c+ n+ 1

8: return SFTS-A(G̃(Ṽ , Ẽ), s, t, σ, Ũ)

transferred over pi and pj . Since T ∗(pi, f
∗(pi, σ), σi) > T ∗(pj , f

∗(pj , σ), σj),
we can always find a new file distribution f ′(P, σ) that σ′i + σ′j = σi + σj ,
T ′(pi, f

′(pi, σ), σ′i) = T ′(pj , f
′(pj , σ), σ′j) and other paths remain the same.

Obviously, T ′(pi, f
′(pi, σ), σ′i) < T ∗(pi, f

∗(pi, σ), σi), which means the op-
timal result can still be improved. This is a contradiction.

Lemma 4.4.2. Let p be any path, and d̃(p) is the scaled path delay, then
d(p) ≤ d̃(p)S ≤ d(p) + nS.

Proof. For each e ∈ E we have d(e)/S ≤ d̃(e) ≤ d(e)/S + 1 hence d(e) ≤
d̃(e)S ≤ d(e) + S and

d(p) =
∑

e∈p d(e) ≤ S
∑

e∈p d̃(e) = d̃(p)S ≤ d(p) + nS.

19

Algorithm 4 BFMS-A (G(V,E), s, t, σ, UB,LB, ε)

1: procedure
2: BL ← LB
3: BU ← dUB/2e
4: while BU/BL > 2 do
5: B ← (BL ·BU)1/2

6: if D(1, B) = YES then
7: BL ← B
8: else
9: BU ← B

10: return SSA(G(V,E), s, t, σ, 2BU , BL, ε)

Lemma 4.4.3. Any path set P returned by Algorithm SSA (Algorithm 3)
satisfies

T ∗ ≤ T (P) ≤ U + (n+ 1)S = U + Lε.

Proof. By definition, T ∗ ≤ T (P). Since T̃ (P) ≤ Ũ , we have T̃ (P)S ≤ ŨS ≤
U + (n+ 1)S = U + Lε.

Lemma 4.4.4. If U ≥ T ∗ then Algorithm SSA (Algorithm 3) returns a
feasible path set, P, that satisfies T (P) ≤ T ∗ + Lε.

Proof. For each path p∗ ∈ P∗ and for each e ∈ p∗, we have d̃(p∗) ≤ d(p∗)/S+
n. Let p∗i be the latest path to finish the transfer when apply the optimal
path set P∗ to the scaled problem. Thus,

T̃ (P∗) = d̃(p∗i) +
σp∗i

f∗(σ, p∗i)S

≤ d(p∗i)/S + n+
σp∗i

f∗(σ, p∗i)S

= T ∗/S + n

≤ U/S + n

≤ Ũ

Since the algorithm finds an optimal solution, we must have T̃ (P) ≤ T̃ (P∗).
Combining with Lemma 4.4.2 we get

T (P) ≤ T̃ (P)S

≤ T̃ (P∗)S

= d̃(p∗i)S +
σp∗i

f̃∗(σ, p∗i)
S

≤ d(p∗i) +
σp∗i

f∗(σ, p∗i)
+ nS

= T (P∗) + ns

≤ T ∗ + Lε

20

Lemma 4.4.5. The test

D(1, B) =

{
YES if SSA(G(V,E), s, t, σ,B,B, 1) returns FALSE

NO otherwise

is a 1-test.(I.e., an ε-test with ε = 1).

Proof. We have to proof that SSA(G(V,E), s, t, σ,B,B, 1) returns FALSE
when T ∗ > B, otherwise T ∗ ≤ 2B. The first part follows from Lemma 4.4.4
with U = B and ε = 1, since if T ∗ ≤ B, SSA must return a feasible path set.
The second part follows from Lemma 4.4.3 since L = U = B and any path
set returned by SSA satisfies T ∗ ≤ T (P) ≤ U+(n+1)S = U+Lε = 2B.

Complexity. Due to the introduction of the time-expanded network, the
size of the MAF formulation in Algorithm 2 is linearly depended on the time
bound τ [8]. We denote the time complexity of Algorithm 2 to be O(poly ·τ),
where O(poly) is polynomially bounded by m and n.
Complexity. In Algorithm 3, we call Algorithm 2 with τ = Ũ . With
the binary search style, the MAF formulation can be solved at most log(Ũ)
times. The overall complexity of Algorithm 3 is

O(poly · Ũ log(Ũ)) = O(poly · (nUεL + n)log(nUεL + n)).
If we have U ≥ L, and ε ≤ 1, then

O(poly · log(Ũ)) = O(poly · nUεL log(nUεL))
Complexity. Calling Algorithm 3 with U = L = B and ε = 1 requires
O(poly · nlog(n)) steps.

Theorem 4.4.6. Given valid bounds 0 < LB ≤ T ∗ ≤ UB, an ε-approximate
solution can be found in O(poly · (nε log n

ε + n log n log log(UBLB)).

Proof. Consider Algorithm 4. We first find a lower bound BL, and an ap-
proximate upper bound BU such that their ratio BU/BL ≤ 2 and 2BU is a
valid upper bound. Then we call Algorithm 3 with the two bounds.

The bounds are found using a binary search on logBL, logBU in the
range logLB to log(UB/2), which terminates when BU/BL ≤ 2. After
each iteration the new value of log(BU/BL) is either log(BUBL)1/2/BL
or log(BU/(BUBL)1/2). Since log(BUBL)1/2/BL = log(BU/(BUBL)1/2) =
1
2 logBU/BL, the new value of log(BU/BL) is half of the old one. There-
fore, the binary search requires O(log log(UB/LB)) tests. Each test re-
quires O(poly · nlogn), thus, we can find the final values of BL and BU in
O(poly · n log n log log(UB/LB)) steps.

By Lemma 4.4.5, D(1, B) is a valid test, thus lines 7 and 9 in Algorithm
4 ensure that at each iteration BL is a valid lower bound and 2BU is a valid
upper bound. After we call Algorithm 3 with valid bounds, by Lemma
4.4.4, T (P) ≤ T ∗ + BLε ≤ T ∗(1 + ε). The call to Algorithm 3 with
U/L = 2BU/BL = O(1) requires O(poly · nε log n

ε).

21

22

Chapter 5

Proposal and Design

This chapter explains the design of our proposed big file transfer engine.
The traditional way of transferring a single file is calculating one path and
transferring all the file data on that path. The goal of our file transfer
mechanism is to find multiple paths between the source and destination,
divide the file data properly on each path and transfer them as fast as
possible. Additionally, we also make use of our network monitoring function
to deal with the network status changes by using dynamic path control. The
whole project contains about 2000 lines of codes.

5.1 System design

The file transfer engine makes use of SDN as presented in Figure 5.1. The
advantage of SDN’s centralized design provides us an easy way to monitor
and deal with variable network status and makes it possible for us to find a
better file scheduling strategy. The engine is composed of three layers. The
first layer is the infrastructure layer, which has several OpenFlow-enabled
switches. Those switches provide the topology of the network in our system.
The second layer is the control layer in which the Ryu controller [26] is used
to control and communicate with the switches in the infrastructure layer
through OpenFlow protocol. The Ryu controller also provides northbound
APIs to the third layer, the application layer, to run applications on top of
the control layer. The application layer consists of two components: (1) a
monitoring component and (2) a forwarding component.

Figure 5.2 shows how modules at the application layer work with each
other and how controller and switches work with the applications. Since
knowing the current network state is needed for deciding which paths we
want to use, a monitoring component is added to the system to collect
the relative statistics from all the OpenFlow switches in the infrastructure
layer through the controller. After getting topology, delay and bandwidth
data from the monitoring component, the forwarding component calculates

23

Figure 5.1: The architecture of our SDN-based file transfer system

Figure 5.2: Application layer

the best paths based on the delay and also, it should properly allocate a
portion of the file to each path to reduce the total transfer delay. Following
the calculation, the controller generates and installs the corresponding flow
entries or group entries to each OpenFlow switch in the infrastructure layer.

24

5.2 Monitoring component

Beside basic topology information, there are two kinds of network inform-
ation needed, namely link delay and link load. This means the monitoring
component should be able to get those data from the statistics provide by
the OpenFlow switches. Since OpenNetMon [27] has been proved to have
enough accuracy and has been used in many other SDN applications where
monitoring is needed [4], we adopt the similar techniques used in OpenNet-
Mon to implement our monitoring module.

5.2.1 Link Delay

The OpenFlow protocol does not require the switches to provide any inform-
ation about link delay directly. Thus, the link delay can only be estimated by
testing the Round-Trip Time (RTT) on each link. The monitoring compon-
ent gets the estimated link delay by two steps, measuring the time packet
travel on the circle of controller-link-controller and measuring the packet
travel time between controller and switch as shown in Figure 5.3.

(a) (b)

Figure 5.3: Process of detecting link delay

Figure 5.3a shows the procedure of measuring the time Dcircle that a
packet travels through a controller-link-controller circle. The link between
s1 and s2 is the link being estimated. The controller packs the current
time t1 into a packet, and sends s1 a PacketOut message with that packet
and lets s1 send the packet to s2. When s2 receives the packet, it then
triggers a PacketIn message and sends the packet back to the controller.
The controller records the time t2 when it receives the packet back. Then
we can get Dcricle = t2 − t1.

25

Figure 5.3b illustrates the procedure of measuring the communication
time Ds1 between the controller and switch s1. The controller first packs
current time t3 with an EchoRequest message and sends it to the switch
s1. Switch s1 then sends an EchoReply message back after it receives the
EchoRequest message. The controller then records the current t4 when it
received the reply. Ds1 can be calculated as (t4 − t3). A similar procedure
can be applied to the controller and switch s2; the communication delay
between them is denoted as Ds2.

The delay on the link between s1 and s2 can be calculated as Dcircle −
(Ds1 +Ds2)/2.

5.2.2 Link Load

Link load can be measured by counting how much data are transferred on
that specific link in a fixed time interval tinterval. The data transferred on
a link equals the data sent or received by the ports connected to that link,
which can be requested by the ofp port stats request message. For example,
in Figure 5.4, the load of link s1 to s2, links1→s2, will be measured. In every
time interval tinterval, the controller sends an ofp port stats request message
to the egress port of links1→s2 on switch s1. The total transmitted data,
Numnow, can be extracted from the reply message, assuming in the previous
time interval we get the data Numpre, then the link load can be estimated
as (Numnow −Numpre) /tinterval.

Figure 5.4: Process of link load monitoring

26

5.3 Forwarding component

Forwarding component is the core of the system. It can take advantage of
the information gathered by our monitoring component and run the preset
algorithm to decide which path or paths are going to be used and how to
separate the file for each path. In our case, we use the two algorithms
proposed in Chapter 4. After getting the result, the forwarding component
then dispatches flow entries and group entries to switches on the selected
paths to make them start the transfer.

5.4 Enable multipath forwarding in Open vSwitch

Although a lot of multipath research has been done in the SDN domain,
they either did it at the flow level [5] [30] [24], which means packets from
the same flow using the same path, or work together with MPTCP [23] [6] [2],
of which the usage can be limited by the end systems. How to realize packet
level multipath forwarding in SDN without the help of MPTCP remains
a problem. In this section, we propose a novel implementation method to
achieve packet level weighed multipath forwarding in normal OVS-enabled
switches to fit our big file transfer engine.

Multipath forwarding can only be achieved when the switch supports it.
However, Open vSwitch does not originally support multipath forwarding
at the packet level. Some modifications and other methods are needed to
make the switches work according to our routing algorithm. The modified
source codes can be found in Appendix A.

5.4.1 Modify group bucket selection algorithm

With a group table configured to the select type, the switch can achieve
load balancing by forwarding packets to different ports. In Open vSwitch
and most OpenFlow-enabled switches, the bucket selection is done at the
flow level. The selection uses a hash algorithm on the mac address of the
destination host. As a result, the packets coming from the same flow will
be attached to the same action bucket and it cannot perform multipath
forwarding within a single flow. For example, in Figure 5.5a two flows go
from h1 to both h2 and h3. To balance the load, a group table with two
action buckets to each outgoing port is set on switch s. Since the two flows
have different destination hosts, s will select different action buckets for each
flow, and then the load can be well balanced over the two paths. However,
the packets coming from one flow have the same destination mac address,
and then the same action bucket will be selected for all packets in that
flow. So multipath forwarding cannot be achieved on Open vSwitch with
the original group bucket selection algorithm.

27

(a) Original select group

(b) Modified select group

Figure 5.5: Example of original and modified select group in Open vSwitch

To extend the bucket selection to the packet level, the original hash se-
lection algorithm is replaced by a random selection algorithm. Then all the
packets match to a group table with select type, no matter whether they
come from the same flow or not, and will select an action bucket randomly.
Now, for each flow that we want to transfer using multipath, we set up an
exclusive group table on each switch. The packets from that flow then can
be all matched to this group table and randomly select one action. For
example, in Figure 5.5b, there is one flow from h1 to h2. To perform mul-
tipath forwarding, the same group table is configured on s as in Figure 5.5a.
We only match the packets from this flow to this group table so that other
flows would not be influenced by this multipath setting. Since the modified
selection algorithm works on each packet instead of each flow, all packets
will randomly select an action bucket and then forward to different ports.
OpenFlow does not specify how to select a bucket in a group table, so the

28

design is still OpenFlow compatible.

5.4.2 Ensure file partition and bandwidth usage

In the our algorithms, not only multipath, but also the file size transferred
in each path is settled to reduce the overall delay in the file transfer. To
help the switches control the number of packets forwarded to each egress
port and meet the requirement of file partition and output speed from the
algorithm, other methods like queue and group weight are introduced.

To properly divide the ingress flow to each egress port, group bucket
weight can be set according to the portion of bandwidth that is going to be
used in each path to control the process of the bucket selection. A simple
example is shown in Figure 5.6, assuming a 25 Mb file will be sent from
h1 to h2, the bandwidth and delay of each link is shown in the (Mbps,
second) format above that link. The algorithm shows the optimal solution
will be transferring 6Mb file at a speed of 3Mbps on the path s1-s2-s3-s4
and 15Mb file at 5Mbps on the path s1-s3-s4. In theory, the total delay of
the transfer will be 5 seconds. Then group bucket weight in s1 can be set
according to the selected bandwidth on each path, thus 3Mbps and 5Mbps
respectively in the given example. Since the ingress data speed equals the
total of all egress ports speeds, the egress port bandwidth can be calculated
as ingressSpeed× weidthOfPath/totalWeight. In the example, the max-
imum total bandwidth is 8Mbps, so the used bandwidth on each path will
be 3Mbps and 5Mbps.

Figure 5.6: Example of file partition using select group.

When the bandwidth of each path meets the requirement of the algorithm,
the file size transferred on each path should also meet the requirement. On

29

path s1-s2-s3-s4, the actual working time is 2 seconds (total transfer delay -
total path delay), so the data transferred on the path is 3Mbps×2seconds =
6Mb, and the same way shows 15Mb file transferred on path s1-s3-s4.

A more accurate way to control the bandwidth is to combine the group
bucket weight with the OVS queue management. In [15], OVS queue man-
agement is used to provide guaranteed bandwidth reservation. This can also
be introduced to our project to achieve more accurate and guaranteed file
partition. However, in our virtual testing environment, the usage of queue is
limited, so the queue is left behind as an improvement of the current design.

5.5 Enable dynamic control in path selection

Network state varies over time, low load paths may meet congestion and
flows on the heavy load paths may also finish their work and make the
paths a better choice during the file transfer. A dynamic change on the
current path selection can help our system to take advantage of current
network state.

5.5.1 Process of dynamic path control

Figure 5.7: Dynamic path control process.

30

To enable the dynamic control in path selection, two additional paramet-
ers are introduced. One is the detection interval Int, another is the changing
threshold α. The detection interval is used to control the frequency of the
topology detection. After each Int, if the transfer is not completed, then we
compute the remaining file size σr and recompute our algorithm according
the latest topology information. The changing threshold controls whether
we need to update our new path set or not. After the recomputation, we
will get new transfer time τ ′. If the absolute difference between the new
transfer time τ ′ and current expected remaining transfer time τ is greater
than the threshold α, we update the flow tables and group tables.

31

32

Chapter 6

Evaluation

This chapter shows the evaluation results from the proposed big file transfer
engine. We start with a complexity evaluation of our algorithms to show
they are practically usable and then test our entire proposed engine in an
SDN environment. The network experiments begin with a description of
the experiment scenario and tools used to build it, and finishes with the
obtained results. First, an experiment of multipath file transfer over different
redundant paths is conducted to show the performance of the proposed
model when multiple paths are available. After that the influence of delay on
each path will be evaluated. Finally, we test our engine in a variable network
environment to show its abilities to make use of the updating network status
to transfer the file.

6.1 Algorithm test

Since our big file transfer engine is expected to be used in a real network
situation, the running time efficiency of the algorithms is important to decide
whether our engine is usable or not. In this section, we test the complexity
of our two scheduling algorithms, and we also show errors introduced in our
approximation algorithm.

In all the BFMS-A algorithm tests, we set UB to be the time that trans-
ferring all the file on the shortest path between s and t, since the shortest
path must be a possible solution. We set LB to be the time to transfer all
the file with smaller one between the sum of all egress bandwidth of node s
and the sum of all ingress bandwidth of node t. This is based on the fact
that no multipath solution can achieve higher throughput than the total
egress bandwidth of node s and the total ingress bandwidth of node t.

33

6.1.1 Random graph

Test topology

To show the results in a more general situation, we test our algorithm on
Erdős-Rényi graphs [7]. The model can be used to generate a random graph
G(n, p), where n is number of the nodes in the graph and p is the connectivity
probability between each pair of nodes. We test our algorithms with several
random graphs with n changing from 5 to 40, and we set p to be 0.5 to
provide enough redundant paths between our source and destination nodes.
The link delay d(e) is uniformly distributed between 100 and 500 units, and
the bandwidth b(e) is uniformly distributed between 5 to 10 units. For each
graph, we randomly select two nodes and transfer files varying from 1000 to
1000000 units between them.

Test result

(a) BFMS-E (b) BFMS-A ε = 0.5

(c) BFMS-A ε = 1.0 (d) BFMS-A ε = 2.0

Figure 6.1: Running time results on the random graphs.

Figure 6.1 shows the running time results of BFMS-E and BFMS-A with
ε = 0.5, 1.0 and 2.0 on different sizes of random graphs. In all the figures, we
increase the file size exponentially to show the time complexity of BFMS-E
in the worst case and the advantage of BFMS-A. In Figure 6.1a, due to

34

(a) ε = 0.5 (b) ε = 1.0

(c) ε = 2.0

Figure 6.2: Relative errors in BFMS-A on the random graphs.

the essential of a pseudo-polynomial algorithm, the running time increases
dramatically when the problem size increases exponentially. In the biggest
problem setting where the file size is 1000000 and the nodes number is 40,
BFMS-E needs 1588 seconds to solve the problem on our test machine.
To the contrary, BFMS-E performs much better when the file size grows.
When nodes number is small, the file size almost has no influence on the
running time. And when the nodes number increases to more than 20, we
can even find that the running time decreases when files size goes bigger.
This is caused by our setting of UB and LB. When the file size is small, the
propagation time is also small. In this case, The delay of the shortest path
has a bigger influence on UB, which makes the ratio of UB and LB also
larger. Although BFMS-A may need more time when file size is small, the
overall performance is still much better than BFMS-E. Even in the worst
case, BFMS-A only needs 32 seconds, 12 seconds and 5.8 seconds when ε is
set to be 0.5, 1.0, and 2.0.

Figure 6.2 and Figure 6.3 show the relative errors of BFMS-A when com-
pare to the results from BFMS-E. In Figure 6.2, we can see that the highest
errors are all shown when nodes number is small. Figure 6.3 shows that
when ε increases, the relative error also rises, although no test case shows
an error that is close to the theoretical maximum error.

35

Figure 6.3: Relative errors in BFMS-A with different ε

(a) running time (b) relative error

Figure 6.4: Results of tests with 30 nodes and 1000000 units file when ε
changes.

36

To show the influence of different ε in a clear way, we also test the scenario,
30 nodes and 1000000 units file, with a varying ε. Figure 6.4a shows how the
running time changes with different ε. When we set ε = 0.01, the algorithm
still needs more than 140 seconds to solve the problem, although we can see,
in Figure 6.4b, there is no error introduced to the result. The running time
drops very fast when we increase ε, the problem can be solved in seconds
when ε is higher than 0.2. The relative error also increases, but still in a
very low level (less than 0.1) in our test scenario.

6.1.2 Square lattice graph

Test topology

Now we test our algorithms on n × n square lattice graphs. The number of
n increases from 2 to 7 in different tests. The link delay d(e) is uniformly
distributed between 100 to 500 units, and the bandwidth b(e) is uniformly
distributed between 5 to 10 units. For each graph, we transfer files from the
top left node to the bottom right node. The file size varies from 1000 to
1000000 units.

Test result

Figure 6.5 presents the running time test results of BFMS-E and BFMS-A
on the square lattice graphs. The results are similar to those in the random
graphs. We can see that BFMS-A shows great advantages when the problem
size is relatively large. In the largest problem, it costs BFMS-E 1369 seconds
to solve it, while for BFMS-A, it only uses 15.5 seconds, 6.5 seconds and
3.3 seconds when ε = 0.5, 1.0, and 2.0 in the worst cases. One difference
we find when compared to the random graph tests is that the running time
of BFMS-E on square lattice graphs dose not increase as fast as that on
the random graphs. This is caused by the reason that the number of edges
increases exponentially in the random graphs, while in the square lattice
graph, the increment is still polynomially bounded.

The relative errors shown in Figure 6.6 also do not change much from the
results of the random graphs. Bigger errors are shown when the graph is
smaller. Consider all the test cases with nodes number to be 4, when we set
ε = 0.5 and 1.0, we can still find that no error is introduced to the result
in some test, however, when ε increases to 2.0, all test results show errors.
The maximum relative errors in tests with ε = 0.5, 1.0, and 2.0 are 0.16,
0.34, and 0.34 respectively. The maximum relative errors when ε = 1.0 and
2.0 are close, but in Figure 6.7, we can still find the results with ε = 1.0 are
better, when we compare all tests.

Figure 6.8 shows the results of test with different ε on a square lattice
graph with 36 nodes and transferring a 1000000 units file. The outcome is

37

(a) BFMS-E (b) BFMS-A ε = 0.5

(c) BFMS-A ε = 1.0 (d) BFMS-A ε = 2.0

Figure 6.5: Running time results on the square lattice graphs.

38

(a) ε = 0.5 (b) ε = 1.0

(c) ε = 2.0

Figure 6.6: Relative errors in BFMS-A on the square lattice graphs.

Figure 6.7: Relative errors in BFMS-A with different ε.

39

(a) running time (b) relative error

Figure 6.8: Results of tests with 36 nodes and 1000000 units file when ε
changes.

similar to our previous random graph test. The increment on ε results on a
rapid decrease on the running time, but slightly raises the relative error.

6.2 SDN network experiments

In our previous tests, We have established that Algorithm BFMS-E can be
used when the problem size is relatively small, while Algorithm BFMS-A
shows more advantages in some big size problems. Now we test our file
transfer engine in SDN networks set up by Mininet and Open vSwitches.
Due to the limitation of our current experiment environment, we cannot
create a very complex scenario. We only show the results with Algorithm
BFMS-E, which is more suitable for our small size tests.

6.2.1 Test over different number of paths

In theory, multipath file transfer can utilize more free bandwidth and free
paths to achieve a decrease on the file transfer delay. This test evaluates the
performance of the proposed multipath file transfer model when different
numbers of redundant paths are available.

Experiment setup

In this experiment, different numbers of redundant paths need to be created
for each test, so the topology of the testing network varies from test to test.
Figure 6.9 illustrates the example topology when three redundant paths are
available for the transfer. Two hosts h1 and h2 are connected to the source
switch s1 and the destination switch s5 respectively. The file is sent from

40

h1 to h2. Three switches s2, s3 and s4 are connected to both s1 and s3 to
provide three paths. Other tests in this experiment will also use a similar
topology where the number of switches between the source and destination
switches changes to provide different numbers of redundant paths. In each
test of this experiment, the link delay is set to be 100ms and a file of 1GB
is transferred through the network.

Figure 6.9: Example topology when 3 redundant paths are available.

41

Experiment result

Figure 6.10 shows the test outcomes when different numbers of paths are
provided. In each graph, the red line illustrates the real time transfer speed
during the test, while the blue line shows the overall average throughput.

Although we can see the average throughput increases almost linearly
when the number of paths goes up, the real time transfer speed fluctuates
wildly as long as there are multiple paths available. According to previous
research, we think the fluctuation may be a side effect of the multipath
transfer. As stated in [11], the fluctuation could be due to the different
delays in different paths, so packets sent later may arrive earlier. Duplicate
acknowledgments are sent to trigger the fast retransmission. Part of the
bandwidth is wasted to retransfer the packets that are not actually lost. So
we set the Linux tcp fack parameter to 0 to turn off TCP fast retransmission.
Unfortunately, we do not get any considerable improvement after the change.
We use Wireshark to inspect the network during the transfer, not much fast
retransmission packets are shown in the tests. Instead, we capture a lot of
regular retransmission packets. So our file transfer is suffering from network
congestion due to the lack of available bandwidth.

Now we try to figure out the real performance of our system when no
network congestion occurs. In [15], OVS egress traffic shaping was used to
ensure the bandwidth reservation. However, in our experiments environ-
ment, Mininet is used to provide the virtual network environment and both
Mininet and OVS use Linux netem to implement functions associated with
QoS. To use the OVS egress traffic shaping, we would need to wipe out
the previous configuration set by Mininet, which destroys our entire test
environment. So, due to the limitation of our experiment environment, the
same method can not be used in our experiments to achieve the bandwidth
guarantee. Here we just slightly increase the bandwidth set on each link
and use higher bandwidth to avoid network congestion. Though we have
higher bandwidth now, we can still transfer the file according to the result
of our algorithm. That means we do not take any advantage of the extra
bandwidth for the file transfer, the extra bandwidth is only to ensure other
flows do not occupy the bandwidth we need for the file transfer.

We redo the experiments with the same topologies mentioned before, the
only change is the bandwidth on each link increases from 5Mbps to 6Mbps
to avoid network congestion. Our system shows a remarkable result when
bandwidth guarantee is provided. From Figure 6.11, we can see that in all
tests, the process of each transfer is very stable. This supports our idea about
the fluctuations shown in Figure 6.10 that our design does not introduce the
fluctuations, we only make the TCP connection difficult to apply its current
congestion control. The average transfer speed goes up linearly when more
paths are available to be used.

42

0 200 400 600 800 1000 1200 1400 1600 1800
time(s)

0

10

20

30

40

50
th

ro
ug

hp
ut

(M
bp

s)

(a) path = 1

0 200 400 600 800
time(s)

0

10

20

30

40

50

th
ro

ug
hp

ut
(M

bp
s)

(b) path = 2

0 100 200 300 400 500 600
time(s)

0

10

20

30

40

50

th
ro

ug
hp

ut
(M

bp
s)

(c) path = 3

0 100 200 300 400 500
time(s)

0

10

20

30

40

50

th
ro

ug
hp

ut
(M

bp
s)

(d) path = 4

0 50 100 150 200 250 300 350 400
time(s)

0

10

20

30

40

50

th
ro

ug
hp

ut
(M

bp
s)

(e) path = 5

0 25 50 75 100 125 150 175 200
time(s)

0

10

20

30

40

50

th
ro

ug
hp

ut
(M

bp
s)

(f) path = 10

Figure 6.10: Transfer speed over different path numbers

6.2.2 Test with delay different delays

Previous experiments showed that our multipath transfer design works quite
well when each path has a similar delay. In this experiment, we test how
different delays can influence the performance of our design.

Experiment setup

In this experiment, only two paths are provided to get rid of the influence
of path numbers. As shown in Figure 6.12, links in the upper path have a

43

0 200 400 600 800 1000 1200 1400 1600 1800
time(s)

0

10

20

30

40

50
th

ro
ug

hp
ut

(M
bp

s)

(a) path = 1

0 200 400 600 800
time(s)

0

10

20

30

40

50

th
ro

ug
hp

ut
(M

bp
s)

(b) path = 2

0 100 200 300 400 500 600
time(s)

0

10

20

30

40

50

th
ro

ug
hp

ut
(M

bp
s)

(c) path = 3

0 100 200 300 400
time(s)

0

10

20

30

40

50

th
ro

ug
hp

ut
(M

bp
s)

(d) path = 4

0 50 100 150 200 250 300 350
time(s)

0

10

20

30

40

50

th
ro

ug
hp

ut
(M

bp
s)

(e) path = 5

0 25 50 75 100 125 150 175
time(s)

0

10

20

30

40

50

th
ro

ug
hp

ut
(M

bp
s)

(f) path = 10

Figure 6.11: Transfer speed over different path numbers when bandwidth is
guaranteed

fixed delay, 100ms, while the delays of links in the bottom path vary in each
test. A file of 512MB is transferred from host h1 to host h2 during the tests.

Experiment Result

Figure 6.13 shows the test outcomes when increasing the link delay of the
bottom path from 100ms to 600ms. When the link delay is less than 300ms,
the delay has hardly any influence on the transfer and the advantage of
multipath is fully taken by our system to reduce the transfer time. When

44

Figure 6.12: Topology of delay differential experiment

increasing the link delay to 400ms, the impact of delay on each path in-
creases. The connection takes about 20 seconds to adjust itself to the cur-
rent network, however, after it reaches the maximum speed, the transfer still
is fairly stable. When we continue to increase the link delay to 500ms, the
transfer becomes completely unstable. The connection can not adjust itself
to reach a stable state and transfer the file at maximum speed. The average
transfer speed is only 3.62Mbits/sec, which is worse than a normal single
path transfer. An even worse result with a average speed of 2.51Mbits/sec
appears in the test with the delay set to 600ms.

6.2.3 Test with dynamic path control

In the previous chapter, we introduced a dynamic path control module
to deal with the change of the network status. When the network status
changes, for example the end of an other flow releases free bandwidth, there
is a high chance for us to find a more suitable path set to transfer our re-
maining file. In this section, we test our engine with a variable network
situation to show the advantage of our dynamic path control module.

Test scenario

Figure 6.14 shows the test scenario for our dynamic control module. We
have 6 switches in our network and in total they can provide 4 paths from

45

0 50 100 150 200 250 300 350 400 450
time(s)

0

2

4

6

8

10
th

ro
ug

hp
ut

(M
bp

s)

(a) delay = 100

0 100 200 300 400
time(s)

0

2

4

6

8

10

th
ro

ug
hp

ut
(M

bp
s)

(b) delay = 200

0 100 200 300 400
time(s)

0

2

4

6

8

10

th
ro

ug
hp

ut
(M

bp
s)

(c) delay = 300

0 100 200 300 400
time(s)

0

2

4

6

8

10

th
ro

ug
hp

ut
(M

bp
s)

(d) delay = 400

0 200 400 600 800 1000
time(s)

0

2

4

6

8

10

th
ro

ug
hp

ut
(M

bp
s)

(e) delay = 500

0 200 400 600 800 1000 1200 1400 1600
time(s)

0

2

4

6

8

10

th
ro

ug
hp

ut
(M

bp
s)

(f) delay = 600

Figure 6.13: Transfer speed over different path delay

H1 to H2. A file with 1GB is transferred through the network from H1
to H2. Initially, only the path S1-S2-S3-S6 and path S1-S3-S6 are usable.
After 50 seconds, we start switch S4 to provide a new path S1-S4-S6. After
another 50 seconds, we start switch S5 to provide all usable paths. We test
our file transfer engine with and without dynamic path control.

Test result

Figure 6.15a shows the throughput when the dynamic path control module
is enabled. In this test, we set the detecting interval Int to be 2 seconds. Ini-

46

Figure 6.14: Scenario for dynamic path control experiment

0 25 50 75 100 125 150 175 200
time(s)

0

10

20

30

40

50

60

th
ro

ug
hp

ut
(M

bp
s)

(a) with dynamic path control

0 100 200 300 400
time(s)

0

10

20

30

40

50

60

th
ro

ug
hp

ut
(M

bp
s)

(b) without dynamic path control

Figure 6.15: Throughput with and without dynamic control. Additional
paths are available after 50 and 100 seconds.

tially, our algorithm can find two paths and the data is sent with a through-
put of about 20Mbps. After the new path S1-S4-S6 becomes available at
50 seconds, our engine successfully detects the change in the network. And
at the time of 58 seconds, we start to take advantage of the new path and

47

send the file data at a throughput of about 40Mbps. A similar situation
happens when path S1-S5-S6 becomes available. At time 107 seconds, our
engine starts to use the new path available at time 100 seconds to send the
file at a speed of more than 50Mbps. In total, we use only 219 seconds to
finish the transfer while in the test without dynamic path control, as shown
in Figure 6.15b, it can not be aware of the additional new paths at time 50
and 100 seconds, and the whole transfer lasts 475 seconds.

48

Chapter 7

Conclusion & Future Work

7.1 Conclusion

The main contribution of this thesis are methods to provide multipath file
transfer in SDN networks. SDN is a centralized network architecture, which
allows network managers to write their own applications on it. Different than
traditional network architectures, SDN’s centralized vision of the entire net-
work can provide the real-time network status. Based on the network status,
a file can be transferred with multipath when the resources are provided.
The aim of this thesis is to model the problem that minimize the transfer
time of a file with multipath and propose solutions for it.

First, delay and bandwidth are chosen to be the parameters, and with
the introduce of time-expanded network, the problem is modeled using the
linear programming formulation. A pseudo-polynomial algorithm BFMS-E
is then proposed to give an exact solution to this problem. Based on this
solution, a FPTAS algorithm BFMS-A is then proposed.

Second, an SDN-based proof-of-concept file transfer engine is implemen-
ted. The file transfer engine consists of two components. The monitoring
component collects the real-time network status and then provides the in-
formation to the forwarding component. When a file needs to be transferred,
the forwarding component uses the network status as the input to run the
proposed algorithms and dispatches flow and group entries to the modi-
fied Open vSwitches. The modified Open vSwtiches can provide per-packet
multipath forwarding using group table and remain OpenFlow compatible.
A dynamic control mechanism is also added to the file transfer engine to
update our transfer process when a new solution is found to be sufficiently
better than our current solution due to the change of network status.

Finally, the proposed two algorithms are tested on simulated graphs and
also with the file transfer engine in SDN networks. The simulated graph
tests show that, when the problem size grows, algorithm BFMS-A achieves
a much better time complexity over algorithm BFMS-E with only small

49

errors introduced under our test setting. Then with the file transfer engine,
files can be transferred with multipath, dynamic control is also shown when
network status changes.

7.2 Future Work

The proposed BFMS-A algorithm is now polynomially bounded by the upper
and lower bound ratio UB

LB . This makes it possible that, in some situations,
the algorithm still gives a bad time complexity. A more promising solution
can be derived by finding a polynomial bound on UB

LB . The SDN test results
show that congestion can have a huge influence on our transfer process, an
end-to-end bandwidth guarantee is also necessary to add to our file transfer
engine.

50

Bibliography

[1] Iris Bueno, Jose Ignacio Aznar, Eduard Escalona, Jordi Riera, and Joan
Garćıa-Esṕın. An opennaas based sdn framework for dynamic qos control.
In Future Networks Serv. (SDN4FNS), 2013 IEEE SDN for, volume 11, pages
1–7, 11 2013.

[2] C. Cajas, C. Valdivieso, D. Mej́ıa, and I. Bernal. On programming an mp-tcp
analyzer plugin using opendaylight beryllium as the sdn controller. In 2017
IEEE Second Ecuador Technical Chapters Meeting (ETCM), pages 1–6, Oct
2017.

[3] Cisco. Cisco visual networking index: Forecast and methodology, 2016–2021,
September 2017.

[4] A. F. de la Cruz, J. P. Muñoz-Gea, P. Manzanares-Lopez, and J. Malgosa-
Sanahuja. Network failures support for traffic monitoring mechanisms in
software-defined networks. In NOMS 2016 - 2016 IEEE/IFIP Network Oper-
ations and Management Symposium, pages 691–694, April 2016.

[5] M. Doshi and A. Kamdar. Multi-constraint qos disjoint multipath routing in
sdn. In 2018 Moscow Workshop on Electronic and Networking Technologies
(MWENT), pages 1–5, March 2018.

[6] J. Duan, Z. Wang, and C. Wu. Responsive multipath tcp in sdn-based data-
centers. In 2015 IEEE International Conference on Communications (ICC),
pages 5296–5301, June 2015.

[7] P. Erdös and A. Rényi. On random graphs, I. Publicationes Mathematicae
(Debrecen), 6:290–297, 1959.

[8] L.R. Ford and D.R. Fulkerson. Flows in Networks. Rand Corporation research
study. University Press, 1962.

[9] Y. Guo, Z. Wang, X. Yin, X. Shi, and J. Wu. Traffic engineering in sdn/ospf
hybrid network. In 2014 IEEE 22nd International Conference on Network
Protocols, pages 563–568, Oct 2014.

[10] M. Handley, A. Ford, C. Raiciu, and O. Bonaventure. Tcp extensions for
multipath operation with multiple addresses. RFC 6824, RFC Editor, January
2013.

[11] C. He, K. L. Yeung, and S. Jamin. Packet-based load-balancing in fat-tree
based data center networks. In 2014 IEEE International Conference on Com-
munications (ICC), pages 4011–4016, June 2014.

[12] L. He. Online survivability in software defined elastic optical networks. Msc
thesis, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Neth-
erlands, Jan 2018.

[13] F. Hu, Q. Hao, and K. Bao. A survey on software-defined network and open-
flow: From concept to implementation. IEEE Communications Surveys Tu-
torials, 16(4):2181–2206, Fourthquarter 2014.

51

[14] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski,
Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jon
Zolla, Urs Hölzle, Stephen Stuart, and Amin Vahdat. B4: Experience with a
globally-deployed software defined wan. SIGCOMM Comput. Commun. Rev.,
43(4):3–14, Aug. 2013.

[15] H. Krishna, N. L. M. van Adrichem, and F. A. Kuipers. Providing band-
width guarantees with openflow. In 2016 Symposium on Communications and
Vehicular Technologies (SCVT), pages 1–6, Nov 2016.

[16] C. Lin and F. A. Kuipers. Time-constrained data transfer scheduling. Tech-
nical report for SURFnet, Dec 2016.

[17] J. Lin, R. Ravichandiran, H. Bannazadeh, and A. Leon-Garcia. Monitoring
and measurement in software-defined infrastructure. In 2015 IFIP/IEEE In-
ternational Symposium on Integrated Network Management (IM), pages 742–
745, May 2015.

[18] H. Long, Y. Shen, M. Guo, and F. Tang. Laberio: Dynamic load-balanced
routing in openflow-enabled networks. In 2013 IEEE 27th International Con-
ference on Advanced Information Networking and Applications (AINA), pages
290–297, March 2013.

[19] Dean H. Lorenz and Danny Raz. A simple efficient approximation scheme for
the restricted shortest path problem. Operations Research Letters, 28(5):213
– 219, 2001.

[20] R. Mijumbi, J. Serrat, J. Rubio-Loyola, N. Bouten, F. D. Turck, and S. Latré.
Dynamic resource management in sdn-based virtualized networks. In 10th
International Conference on Network and Service Management (CNSM) and
Workshop, pages 412–417, Nov 2014.

[21] H. Nam, D. Calin, and H. Schulzrinne. Towards dynamic mptcp path control
using sdn. In 2016 IEEE NetSoft Conference and Workshops (NetSoft), pages
286–294, June 2016.

[22] Open Networking Foundation. OpenFlow Switch Specification Version 1.3.5,
March 2015.

[23] J. Pang, G. Xu, and X. Fu. Sdn-based data center networking with collab-
oration of multipath tcp and segment routing. IEEE Access, 5:9764–9773,
2017.

[24] S. T. V. Pasca, S. S. P. Kodali, and K. Kataoka. Amps: Application aware
multipath flow routing using machine learning in sdn. In 2017 Twenty-third
National Conference on Communications (NCC), pages 1–6, March 2017.

[25] A. Xifra Porxas, S. C. Lin, and M. Luo. Qos-aware virtualization-enabled
routing in software-defined networks. In 2015 IEEE International Conference
on Communications (ICC), pages 5771–5776, June 2015.

[26] Ryu project team. Ryu sdn framework. https://osrg.github.io/ryu/.
Accessed August 12, 2017.

[27] N. L. M. van Adrichem, C. Doerr, and F. A. Kuipers. Opennetmon: Network
monitoring in openflow software-defined networks. In 2014 IEEE Network
Operations and Management Symposium (NOMS), pages 1–8, May 2014.

[28] Ronald van der Pol, Michael Bredel, Artur Barczyk, B. Overeinder, Niels L. M.
van Adrichem, and Fernando Kuipers. Experiences with mptcp in an inter-
continental openflow network. In Proceedings of the 29th TERENA Network
Conference (TNC2013), 2013.

[29] Open vSwitch community. Open vswitch 2.7. https://github.com/

openvswitch/ovs/tree/branch-2.7. Accessed August 12, 2017.

52

https://osrg.github.io/ryu/
https://github.com/openvswitch/ovs/tree/branch-2.7
https://github.com/openvswitch/ovs/tree/branch-2.7

[30] Q. Wang, J. Xue, G. Shou, Y. Liu, Y. Hu, and Z. Guo. Implementation
of multipath network virtualization scheme with sdn and nfv. In 2017 IEEE
28th Annual International Symposium on Personal, Indoor, and Mobile Radio
Communications (PIMRC), pages 1–6, Oct 2017.

[31] N. Ya, X. Wang, and M. Huang. Multipath load-balancing routing mechan-
ism in data center network. In 2017 3rd IEEE International Conference on
Computer and Communications (ICCC), pages 167–172, Dec 2017.

53

54

Appendix A

Open vSwitch 2.7.0 Group
Table Modification

As we specified in our thesis, to support packet level multipath transfer on
OVS, we need to change the action buckets selection method from its original
hash based method to our random selection. In this appendix, we will show
where and how the source code need to be modified. All the modifications
are based on OVS 2.7.0 [29].

A.1 ovs/ofproto/ofproto-dpif-xlate.c

1 #inc lude <s t d l i b . h>
2 #inc lude <time . h>
3

4 s t a t i c bool i s i n i t i a l i z e d = f a l s e ;
5

6 s t a t i c s t r u c t o f pu t i l b u c k e t ∗
7 g r oup be s t l i v e bu ck e t (const s t r u c t x l a t e c t x ∗ ctx ,
8 const s t r u c t g roup dp i f ∗group ,
9 u in t 32 t ba s i s)

10 {
11 i f (! i s i n i t i a l i z e d)
12 {
13 srand ((unsigned i n t) time (NULL)) ;
14 i s i n i t i a l i z e d = true ;
15 }
16

17 s t r u c t o f pu t i l b u c k e t ∗bucket ;
18 u in t 16 t t o t a l we i gh t = 0 ;
19 LIST FOR EACH (bucket , l i s t n od e , &group−>up . buckets)
20 {
21 i f (b u c k e t i s a l i v e (ctx , bucket , 0))
22 {
23 t o t a l we i gh t += bucket−>weight ;
24 }

55

25 }
26

27 u in t 16 t rand num = rand () % to t a l we i gh t + 1 ;
28

29 s t r u c t o f pu t i l b u c k e t ∗ bes t bucket = NULL;
30

31 // s t r u c t o f pu t i l b u c k e t ∗bucket ;
32 u in t 16 t summed weight = 0 ;
33 LIST FOR EACH (bucket , l i s t n od e , &group−>up . buckets)
34 {
35 i f (b u c k e t i s a l i v e (ctx , bucket , 0))
36 {
37 summed weight += bucket−>weight ;
38 i f (rand num <= summed weight)
39 {
40 re turn bucket ;
41 }
42 }
43 }
44

45 re turn bes t bucket ;
46 }
47

48 s t a t i c void
49 x l a t e d e f a u l t s e l e c t g r o u p (s t r u c t x l a t e c t x ∗ ctx , s t r u c t

g roup dp i f ∗group)
50 {
51 s t r u c t f l ow w i l d ca rd s ∗wc = ctx−>wc ;
52 s t r u c t o f pu t i l b u c k e t ∗bucket ;
53 u in t 32 t ba s i s ;
54

55 ctx−>xout−>s low |= SLOWCONTROLLER;
56

57 ba s i s = f l ow hash symmetr i c l 4 (&ctx−>xin−>f low , 0) ;
58 f l ow mask ha sh f i e l d s (&ctx−>xin−>f low , wc ,

NX HASH FIELDS SYMMETRIC L4) ;
59 bucket = g r oup be s t l i v e bu ck e t (ctx , group , ba s i s) ;
60 i f (bucket)
61 {
62 x la t e g roup bucke t (ctx , bucket) ;
63 x l a t e g r o up s t a t s (ctx , group , bucket) ;
64 } e l s e i f (ctx−>xin−>xcache)
65 {
66 o fp ro to g roup unr e f (&group−>up) ;
67 }
68 }
69

70 s t a t i c void
71 x l a t e s e l e c t g r o up (s t r u c t x l a t e c t x ∗ ctx , s t r u c t g roup dp i f ∗

group)
72 {
73 const char ∗ s e l e c t i on method = group−>up . props .

s e l e c t i on method ;
74

56

75 /∗ Se l e c t groups may ac c e s s f low keys beyond L2 in order to
76 ∗ s e l e c t a bucket . Re c i r cu l a t e as appropr ia t e to make t h i s

p o s s i b l e .
77 ∗/
78 i f (ctx−>was mpls)
79 {
80 c t x t r i g g e r f r e e z e (ctx) ;
81 }
82

83 ctx−>xout−>s low |= SLOWCONTROLLER;
84 x la t e commit ac t i on s (ctx) ;
85 x l a t e d e f a u l t s e l e c t g r o u p (ctx , group) ;
86

87 }

Listing A.1: Part of ovs/ofproto/ofproto-dpif-xlate.c

57

	Preface
	Introduction
	Software Defined Networking
	SDN
	SDN Architecture

	OpenFlow
	Flow Table
	Group Table
	OpenFlow Messages

	Related work
	Multipath routing
	Traffic engineering in SDN
	Dynamic control in SDN
	Summary

	Algorithm
	Network model
	Problem definition
	Exact pseudo-polynomial algorithm
	Fully polynomial-time approximation algorithm
	Algorithm and proof

	Proposal and Design
	System design
	Monitoring component
	Link Delay
	Link Load

	Forwarding component
	Enable multipath forwarding in Open vSwitch
	Modify group bucket selection algorithm
	Ensure file partition and bandwidth usage

	Enable dynamic control in path selection
	Process of dynamic path control

	Evaluation
	Algorithm test
	Random graph
	Square lattice graph

	SDN network experiments
	Test over different number of paths
	Test with delay different delays
	Test with dynamic path control

	Conclusion & Future Work
	Conclusion
	Future Work

	Open vSwitch 2.7.0 Group Table Modification
	ovs/ofproto/ofproto-dpif-xlate.c

