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Abstract
Machine Learning is becoming a standard part of
Computer Science curriculums at universities. This
paper aims to contribute to the education of Ma-
chine Learning in Computer Science, specifically
through teaching concepts related to Gradient De-
scent (GD) through analogies. First, concepts re-
lated to Gradient Descent were collected through
the use of academic textbooks, and analogies were
created based on the definitions found. These
analogies were then evaluated by experts, scoring
the analogies on Target Concept Coverage, Map-
ping Strength, and Metaphoricity. The analogies
that scored highest on a mean average were then
used in an A/B survey distributed amongst Com-
puter Science students that had not followed any
Machine Learning course. One group was given
the concept definitions, the other both the defini-
tions and the analogies. The learning proficiency
was measured, and no statistically significant result
was found. In the end, this research explores the
possibilities of creating analogies to explain ma-
chine learning concepts, and provides a modular
framework for evaluating quality and measuring ef-
fectiveness of analogies.

1 Introduction
Artificial Intelligence (AI) and Machine Learning (ML) are
applied in many important sectors of the world, such as
healthcare, finance, transportation and education [1]. Ma-
chine Learning is being taught in more and more lecture halls
every year. As [2] shows, it is a core part of many Computer
Science curriculums at universities. With the increase of in-
terest in and importance of the subject, it is critical to take
a look at the pedagogical methods that are used to convey
abstract knowledge to students. Furthermore, [1] states that
”Establishing ethical guidelines and frameworks is essential
to prevent misuse and ensure that AI is used responsibly”. Ed-
ucation in ML, amongst other things, ”will play a vital role in
promoting ethical practices and informed decision-making”
[3]. It is clear that education in Machine Learning is a re-
search topic worth investigating. 1

In a study published in 2020, [4] defines Notional Ma-
chines (NMs) and looks at their use in Computing Education.
They present three categories of NMs: Machine-generated
representations, Hand- made representations, and Analogy.
They also state that ”NMs often relied on analogy to make
salient and visible some aspect of the largely hidden underly-
ing system” [4].

As ML is a large topic with many concepts to cover, a
smaller domain of topics was chosen to be the focus of this
research, namely Gradient Descent (GD). GD is present in
both ML and Deep Learning books used in textbooks [5] [6].

This study investigates the following research question:
How does the use of analogies in explaining Gradient De-
scent affect the learning proficiency for Computer Science
students?

To address this question, the following subquestions were
defined:

• SQ1: How do experts in Machine Learning evaluate
different analogies?

• SQ2: What knowledge do Computer Science stu-
dents gain from learning about Gradient Descent us-
ing analogies?

• SQ3: How do Computer Science students evaluate
their engagement with the topic when using analogies
to teach Machine Learning?

The background section of this paper gives an overview
of the relevant existing work this paper builds upon. The
methodology involves the steps required to setup the experi-
ment that can answer the research (sub)questions. The survey
results are then analysed to assess differences in expert eval-
uation, as well as learning outcomes. The results are sum-
marized and evaluated whether analogical instruction leads
to improved comprehension of Gradient Descent. Ethics and
Responsible Research are then discussed, to give an overview
of ethical considerations that were taken into account for this
research. Finally, the discussion reflects on the implications
for ML education and suggests directions for future research,
including refining analogy design and extending the approach
to other ML concepts.

2 Background
2.1 Notional Machines
In a study from 1981, [7] states that ”Novices should be intro-
duced to programming through languages that embody sim-
ple notional machines with the facilities for making certain of
the actions of the notional machine open to view”. [4] gives
a historic overview of various NMs found in literature 2. Fol-
lowing that, [8] notes that NMs are made to help students
understand a concept. They note that analogies ”provide scaf-
folding to help refine the learner’s mental model” [8], due to
the student’s mental model being incomplete or inaccurate.

2.2 Machine Learning Education
It is clear that NMs are used to teach concepts within Com-
puting Education, but not much research exists on the topic
of ML education [9], let alone the use of analogies. [10]
later outlines two initiatives to teach ML to K-12 classes,
where one ”provides professional learning opportunities”
which ”empowers educators to deliver quality [Computer Sci-
ence] education. Finally, [11] mentions the use of analo-
gies in teaching ML concepts. Pendyala contributes analo-
gies that explain ML concepts, also highlighting the similar-
ity between some of the concepts and the real-world/simpler

1. Also stated by Amy J. Ko: “We need to learn how to teach Ma-
chine Learning”. https://medium.com/bits-and-behavior/we-need-to-learn-
how-to-teach-machine-learning-acc78bac3ff8. Accessed June 2025.

2. An overview of these notional machines is available at
https://notionalmachines.github.io/analogies.html.



analogies. He notes that ”this fundamental way of learning
remains unexplored to a significant extent in human learning
of difficult topics” [11]. The work itself does not contain em-
pirical analysis, and hopes that it can inspire new research in
this field. This research aims to answer that call by providing
and evaluating analogies that can be used to explain core ML
concepts, specifically related to Gradient Descent.

3 Methodology
This research aims to have three main contributions:

1. A set of analogies that can be used to explain concepts
related to Gradient Descent.

2. An evaluation of these concepts done by experts.

3. An overview of the effects of using these analogies to
teach concepts related to Gradient Descent, by measur-
ing the learning proficiency for novice students.

3.1 Selecting Concepts and Creating analogies
In order to generate analogies, a list of concepts must first
be chosen that will be explained to the student. For this, [6]
and [5] were used to gather concepts and their definitions.
Then, recalling that [4] mentioned that most NMs were hand-
made rather than Machine-generated, analogies were created
per concept. An overview of all analogies can be found in
Appendix A.

Category Text

Concept
Definition

Optimization refers to the task of
either minimizing or maximizing
some function f(x) by altering x.
When we are minimizing it, we may
also call it the cost function, loss
function, or error function.

Analogy Imagine you’re in a radioactive zone.
We’re using a geiger counter (func-
tion) to measure the radiation in dif-
ferent spots, Optimization refers to
the task of either looking for a safe
zone (minimization), or looking for
high spots of radiation (maximiza-
tion). When we are looking for a
safe spot, we are minimizing the ra-
diation we measure on our geiger
counter through measurements and
calibration (loss function).

Table 1: An example concept definition, alongside an analogy.

Before continuing, it is good to recognize that analogies or
metaphors have a multitude of definitions in literature, and
are sometimes used interchangeably. This research builds on
the work of [12], where we use the definition present to de-
fine analogies as “a description of an object or event, real or
imagined, using concepts that cannot be applied to the object
or event in a conventional way”. In order to create a clear

overview of how an analogy was formed, a concept map is
created [13]. For the purposes of this research, we define a
concept map to be a table that maps properties of an analogy
to the properties of a concept. This was made in order to help
experts with reviewing the analogies.

Concept property Analogy counterpart

f(x) or function Geiger counter

Spots in the radioactive zone Datapoints

Error / loss / cost Radiation

Minimization Looking for a safe zone

Maximization Looking for highest radiation levels

Table 2: An example concept map of the analogy for Optimization
and Loss / Error / Cost function.

3.2 Expert Evaluation
Participant selection
The study done in this section of the research targeted experts
in ML, which was minimally defined as having completed a
course on ML. Experts were surveyed anonymously via an
online form, and were asked to select their level of knowl-
edge from the following options: Having passed a course on
ML in a CS Bachelor, having Teaching Assistant experience
for an ML course, having passed an ML course in a Masters
program, or being a lecturer/professor on an ML course. This
ensured that participants in the survey had minimal familiar-
ity with the concepts, but allowed for differentiation between
different levels of expertise and their ratings. Experts were
given a random order of analogies to rank, and were asked to
review as many as they had the time for. This means that not
all analogies were rated an equal number of times, nor that
analogies were reviewed by the same experts.

Criteria for evaluating analogies
In the survey, analogies were presented alongside the concept
definition, as well as their concept mapping. Experts were
asked to review analogies on three metrics. These metrics
were originally introduced by [14] and later updated 3. The
criteria and their definitions are as follows:

• Target concept coverage (TCC): How well the analogy
covers the topics in the description.

• Mapping Strength (MS): The logical soundness and
consistency of the correspondence between source and
target concepts.

• Metaphoricity (M): Conceptual distance between the
source and the target concept.

The experts were asked to rate each analogy on a Three-
point Likert scale, with the options being ”1 - Low”, ”2 -
Mid” and ”3 - High” 4.

3. These definitions https://sites.google.com/illinois.edu/analogyeval24/analogy-
evaluation-criteria.

4. This scale corresponds with the three-point scale presented on the web-
site in the previous footnote.



Figure 1: A full overview of the Methodology.

3.3 Student Survey
After the results from the expert evaluation are evaluated, a
selection of analogies and concepts to be used in the student
survey was made. The results of this selection as well as the
metrics used are shown in Section 4.1.

Participant selection
In order to measure learning proficiency effectively, students
that are novices in ML were selected to be the participants of
the student survey. As [15] states, ”students already function-
ing at a formal operational level may have an adequate un-
derstanding of the target and the inclusion of analogy might
add unnecessary information”. It follows from this that in-
cluding students that have taken a course on ML would be
detrimental to measuring the learning proficiency. Students
were surveyed anonymously through an online form, through
personal networks and chain-referrals.

Learning objectives
Bloom’s Taxonomy [16] considers six categories in the cog-
nitive process, where each category is considered more com-
plex than the one below it. From this taxonomy, we look at
two specific goals in the cognitive domain: Remembering and
Understanding. These are the two lowest goals in the cogni-
tive domain, and achieving these in a subject means that the
student is able to recall concepts and their properties, as well
as summarize and organize knowledge related to the concept.
Due to the structure of the survey and the nature of analogies,
the learning objectives were created to match the second cat-
egory of Bloom’s revised Taxonomy, Understand [16]. The
third category in the taxonomy, Apply, is not applicable to
the research question, as it sets the objective to apply or use

Figure 2: A diagram showcasing the setup for the first part of the
student survey.

the given knowledge in a given situation. The list of learning
objectives can be found in the Appendix, section C.

Survey structure
In order to measure the learning proficiency of the analo-
gies used, some form of comparison must be made. This re-
search employs an A/B survey: Participants were randomly
put into either a control group (Group A) or an experiment
group (Group B).

For each concept chosen to evaluate, a multiple-choice
question was asked. Aside from thee possible answers, an
option labelled ”I don’t know” was present. At the beginning
of the survey, it was explained to the participant that this op-
tion was to be selected if the student could not explain for
themselves why they would pick a certain answer. This was
to dissuade participants from randomly guessing.

After the student picked an answer, the concept definition
was shown. If the user was part of the experiment group, they
would also be shown the relevant analogy. After this, the stu-



dent would be given another multiple-choice question, again
with three possible answers and an option labelled ”I don’t
know”. This setup where each concept definition (and anal-
ogy, if the student was in the experiment group) was preceded
and followed by a knowledge test was then repeated for every
concept selected from the expert evaluation. The questions
can be found in the Appendix, Section D.1.

Knowledge Gain and Engagement Evaluation
The knowledge gain is calculated by giving each answer a
student gives either a 1 for a correct answer, and a 0 other-
wise. If a student states that he does not know the answer, it is
counted as incorrect. Then, the difference between the score
of the question after the concept definition (and analogy, if
applicable) and the score of the question before the concept
definition is taken to be the knowledge gain for a student for
that given topic.

The final part of the survey is done by both groups, and fol-
lows an adapted RIMMS structure [17]. The RIMMS is a 12-
item questionnaire measuring self-reported Attention, Rele-
vance, Confidence and Satisfaction. The adapted form that
was chosen contained only 5 questions, in order to shorten
the time required to fill in the survey. The idea was to make
the survey more enticing to fill in, as it would take a student
less time to participate in the survey. The questions can be
found in the Appendix, Section D.2. They are general ques-
tions that ask if the student has enjoyed the learning process,
if they felt like they were able to pay attention to the defini-
tions and analogies, and if the analogies seemed helpful.

4 Results
4.1 Expert Evaluation
In total, 16 responses were gathered, of which 15 were partic-
ipants claiming they had at least completed a course in ML.
Thus only 15 responses were evaluated. The participant pool
consisted of a professor in a course on ML, one student who
had passed a Masters course on ML, three participants who
had Teaching Assistance experience in an ML course and 10
students who had completed a bachelors course on ML. The
data can be found in the Appendix, section B.

For each concept, an average score was calculated by tak-
ing the mean of each category an analogy was rated on, and
then calculating the mean over the means. Furthermore, to
determine the inter-rater-reliability, Krippendorf’s Alpha [18]
was calculated using an online tool called the K-Alpha Calcu-
lator [19]. Both values were rounded up to 3 decimal places.

From table 3 it is seen that the average score per concept
is above 2, apart from A6. Furthermore, A1 had the highest
average score of 2.667, followed by A3 with 2.389. A6 had
an Average Score of 1.833. Looking carefully, A6 scored low
on Mapping Strength and Target Concept Coverage, scoring
1.833 and 1.667 on average respectively. A1 was reviewed
the most with 7 experts scoring the analogy, whilst the analo-
gies for A2, A4 and A5 only got 3 reviews each. On average,
each analogy was reviewed by 4.67 experts.

Calculating Krippendorf’s Alpha returned lackluster re-
sults. An Alpha value of 1 indicates perfect agreement,
whereas an Alpha value below 0.67 is an indication for poor

Analogy Average Score K-Alpha

A1 2.667 -0.064

A2 2.222 -0.185

A3 2.389 0.111

A4 2.000 -0.111

A5 2.111 -0.233

A6 1.833 -0.064

Table 3: The average score and Krippendorf’s Alpha (K-Alpha) for
each analogy, given by the experts in the expert evaluation.

Figure 3: A bar chart with the responses from the student sur-
vey grouped per question. Responses from both groups are shown.
OLEC = Optimization and Loss / Error / Cost function, GD = Gra-
dient Descent.

agreement [19]. A negative value indicates systematic dis-
agreement [19]. Gradient Descent had the highest Alpha
value, simultaneously being the only value above 0.

Based on these results, two analogies were selected to
be used in the next step of the research. The first concept
that was chosen was A1, Optimization and Loss / Error /
Cost function, as it had the highest average score. The sec-
ond concept was A3, Gradient Descent, as it had a positive
Krippendorf’s Alpha, as well as the second-highest average
score. The survey creation for the next step was previously
described in Section 3.3.

4.2 Student Survey
In total, 15 students participated in the survey. Figure 3 shows
the responses given per question. From initial observation, it
is clear that overall, students performed better on the ques-
tions shown after the concept definition and analogy. With
Optimization and Loss / Error / Cost function, 7 participants
chose to say that they did not know the answer before being
shown the concept definition. Afterwards, only one student
filled this answer in again. It also should be noted that the stu-
dents who got the second question incorrect, responded with
”I don’t know” or an incorrect answer on the first question.
This means that the 7 students who answered correctly on the
first question, also chose the correct answer on the second
question for the questions related to optimization.



As for the responses on the questions related to Gradient
Descent, there is a decrease in both incorrect answers and
students stating that they do not know the answers, after they
have been shown the concept definition and possibly the anal-
ogy. This time, 6 out 9 students who responded with ”I don’t
know” or an incorrect answer, got the correct answer after be-
ing shown the concept definition. It is also interesting to note
that out of the 4 students that stated that they did not know
the answer to the second question, 2 students had correctly
answered the first question related to Gradient Descent. Both
of these students were in the control group, and were only
shown the definition.

4.3 Knowledge Gain
Table 4 shows the average knowledge gain per concept for
each group, as well as the results from performing an inde-
pendent samples t-test. The results show no statistically sig-
nificant differences between the control and the experiment
group.

4.4 Engagement Evaluation
For unknown reasons, one participant had only filled in one
of 5 questions present in the engagement evaluation at the
end of the student survey. In order to gather more accurate
insights, this submission was omitted from this part of the re-
search. Regardless of this omission, no statistical significant
difference was found in any category of engagement between
the control and experiment group. On mean average, partic-
ipants in the experiment group gave higher scores on Atten-
tion, Confidence and Satisfaction, whilst the control group
gave higher scores on Relevance.

5 Discussion
5.1 Expert Evaluation
Figure [the one with krippendorfs alpha] immediately raises
questions, especially when looking at the low or even nega-
tive values for Krippendorf’s Alpha. This low agreement or
systematic disagreement could be explained by various fac-
tors. Recall that on average each analogy was reviewed less
than five times. This is a low sample size, meaning it is im-
possible to say what the agreement rate would look like if
a larger number of participants had reviewed the analogies.
Furthermore, each review was weighed equally to its peers,
meaning that the participant who is a lecturer/professor in
Machine Learning had an equal say in reviewing as some-
one who had passed their course. Furthermore, only a single
round of reviews were done, without an expert reviewing the
same analogy more than once. Overall, these results correlate
with the findings done by He et al., where they state that their
results ”also highlight the subjective nature of the qualitative
dimensions that characterize analogies” [20].

5.2 Student Survey
As shown in table 4, the results of the study showed no sig-
nificant differences in learning proficiency between students
who were shown analogies of concepts they were unfamiliar
with, and those who only got a definition of a concept. Figure

3 shows that students who were exposed to the material per-
formed better on the questions asked about the topics, which
trivially correlates with our understanding of knowledge gain.
It was not shown that the analogies used made significant im-
pact. This may be due to the subjective nature of the task, as
well as the method of teaching. [21] notes that actively en-
gaging when using analogies to teach concepts is appreciated
by students and leaves a stronger impression. A survey is an
interface with an information stream that goes in one direc-
tion, thus lacking any form of interaction. This could explain
the lack of difference, although further research with a higher
participant is necessary to confirm this.

It should also be noted that all participants were first year
students in Computer Science at the Technical University of
Delft at the moment the survey was distributed. Consider-
ing the course has students from all over the world, a partici-
pant might have a different interpretation of what it means for
something to be relevant, or for something to be satisfactory.

6 Responsible Research
This section discusses the ethics regarding the research.

6.1 Methodology and Reproducibility
This research has been conducted with the principles of Open
Science in mind. The method of creating analogies has been
explained in the methodology, and the analogies themselves
can be found in the Appendix in Section A. As these analo-
gies were created by hand and historically have mostly been
made that way [4], it is trivial to create new analogies. For
the expert evaluation, the survey setup alongside the metric
definitions were given. From this, future researchers are able
to recreate the survey as described in this paper. As the ques-
tions that were used for the student survey are present in Ap-
pendix D.1 and D.2, the student survey is reproducible. The
procedure for selecting participants are present in section 3.2
and 3.3.

6.2 Data collection and privacy
All participants were asked voluntarily to participate in the
surveys, and informed consent was required. No personally
identifiable information (PII) was required in order to answer
the research questions, therefore it was not collected in any
survey. Participants in the expert evaluation were asked to
select what level of expertise they had. However, as there was
no PII collection, it is impossible for someone with access to
the research data to link a submission to a person. The same
goes for the student survey. The research is compliant with
the Technical University of Delft’s policies on data storage,
and has been approved by the Human Resources and Ethics
Committee of the faculty.

7 Conclusions and Future Work
This research serves as an exploration into the world of
using analogies to teach ML concepts, as first started by
[11], through the introduction of a framework through which
analogies meant for teaching ML concepts can be reviewed
and evaluated. Furthermore, analogies were created to teach
concepts relevant to ML, by taking concepts specific to the



Analogy µ σ t-test p

Optimization Control 0.375 0.518
-0.293 0.778

Experiment 0.429 0.535

Gradient Descent Control 0.75 0.916
0.717 0.497

Experiment 0.571 0.378

Table 4: The mean knowledge gain per concept from the student survey, as well as the standard deviation. Values are rounded to 3 decimal
places.

Category Group µ σ t-test p

Attention
Control 1.625 1.708

-0.759 0.473
Experiment 2.083 1.730

Relevance
Control 3.25 1.165

0.202 0.846
Experiment 3.167 1.602

Confidence
Control 3.125 2.100

-0.505 0.629
Experiment 3.5 1.517

Satisfaction
Control 1.875 1.885

-0.438 0.674
Experiment 2.167 1.329

Table 5: The mean ARCS metrics from the responses of the student
survey, as well as the standard deviation. Values are rounded to 3
decimal places.

topic of Gradient Descent 5. Then, an expert review was done
and highlighted the subjective nature of the task through a
low value for Krippendorf’s Alpha. Two of these analogies
were then used in measuring learning proficiency for novice
students, and no statistically significant result was found. In
reviewing the self-reported engagement evaluation, no statis-
tically significant result was found.

It is unclear whether or not the analogies created in this
research improve the learning proficiency for explaining Gra-
dient Descent for Computer Science students. To prove this,
further research is required. For further research, it is recom-
mended that a larger pool of participants is found for both the
expert review, as well as the student survey. This could lead to
producing statistically significant results, as a larger data set
tends to produce less volatile results. As the student survey
does not rely on the process that the expert evaluation takes,
it is possible to solely focus on producing analogies that are
highly rated by experts. There are two recommendations for
this direction. First, the method of analogy generation could
be researched more in-depth. As was done by [11], the analo-
gies in this paper were created by hand. In a recent study, it
was shown that AI chatbots can can outperform humans in
creative thinking tasks [22]. This raises the question whether
or not AI would be able to produce higher rated analogies
than humans.

As briefly mentioned in the discussion, the analogies were
only given one review per expert, and no suggestions for im-
provement were collected for the analogies. Research could
be done to see if a general procedure for improving an anal-

ogy could be made, in order to provide a useful framework
for teachers to create analogies for concepts that do not have
them yet.

With regards to the student survey, the setup could be im-
proved to mimic a traditional examination setup. This way,
a more accurate method of determining whether or not a stu-
dent has had an increase in learning proficiency could be em-
ployed. For this to be most effective, the research would ide-
ally mimic the environment in which it is going to be used.
In this case, that would be a classroom or an online course
environment.

To summarize: This work is exploratory and aims to in-
spire others by providing a framework through which to eval-
uate analogies for use in education. With AI and Machine
Learning becoming more and more prevalent in everyday life,
it is important to recognize the ethical challenges engineers
face today. Through the use of quality educational tools, we
can empower a new generation of engineers to responsibly
write a new chapter in the history of mankind.
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A Overview of concepts and analogies
See table 6.

B Expert Evaluation Results
See table 7.

C Learning Objectives for the Student Survey
• Optimization and Loss / Error / Cost function: The

student is able to determine the importance of the use of
a loss / error function in Machine Learning.

• Gradient Descent: The student can reason about the
role of the gradient in Gradient Descent, and what hap-
pens when moving in the negative direction of the gradi-
ent.

D Student Survey Questions
D.1 Multiple-choice questions
Correct answers are emphasised.

1. What is a loss or error function used for in Machine
Learning?

• A - Measuring the performance of a model.
• B - Decreasing the complexity of the data to better

fit the model.
• C - Decreasing the complexity of a model to per-

form better on the given data.
• D - I don’t know.

2. Why is the loss or error function important to the process
of training a model?

• A - It provides a method of quantifying model com-
plexity.

• B - It defines the objective that the model seeks
to optimize.

• C - It defines a function to optimize the usage of the
model on given data.

• D - I don’t know.
3. What role does the derivative play in the Gradient De-

scent algorithm?
• A - It identifies the size of a step the algorithm can

take in order to determine a new position.
• B - It determines the direction in which the al-

gorithm can move in order to determine a new
position.

• C - It determines the loss or error of the current
position compared to the new position.

• D - I don’t know.
4. Why does Gradient Descent update model parameters in

the negative direction of the gradient?
• A - A positive gradient represents a larger loss or

error.
• B - The negative of the gradient points towards the

maximum of the loss function.
• C - Moving towards the negative of the gradient

reduces the loss.
• D - I don’t know.

D.2 Engagement Evaluation Questions
Categories the questions belong to are parenthesised and were
not shown to the participant. All questions had 5 possible
answers: 1. Not true, 2. Slightly true, 3. Moderately true, 4.
Mostly true, 5. Very true.

1. The quality of the text helped to hold my attention. (At-
tention)

2. The variety of reading passages, exercises, illustrations,
etc., helped keep my attention on the questions. (Atten-
tion)

3. The content of these questions will be useful to me.
(Relevance)

4. As I worked with these questions, I was confident that
I could learn how Gradient Descent works in Machine
Learning. (Confidence)

5. I enjoyed working with these questions so much that I
was stimulated to keep on working. (Satisfaction)

E Student Survey Answers
E.1 Learning Proficiency Answers
See table 8.

E.2 Engagement Evaluation Answers
See table 9.



ID Concept Definition Analogy
A1 Optimization

& Loss /
error / cost
function

Optimization refers to the task of either minimiz-
ing or maximizing some function f(x) by altering
x. When we are minimizing it, we may also call it
the cost function, loss function, or error function.

Imagine you’re in a radioactive zone. We’re using
a geiger counter (function) to measure the radia-
tion in different spots, Optimization refers to the
task of either looking for a safe zone (minimiza-
tion), or looking for high spots of radiation (max-
imization). When we are looking for a safe spot,
we are minimizing the radiation we measure on our
geiger counter through measurements and calibra-
tion (loss function).

A2 Gradient We often minimize functions that have multiple in-
puts: f : Rn → R. For the concept of ”minimiza-
tion” to make sense, there must still be only one
(scalar) output. For functions with multiple inputs,
we must make use of the concept of partial deriva-
tives. The partial derivative f ∂

∂xi
(x) measures how

f changes as only the variable xi increases at point
x. The gradient generalizes the notion of derivative
to the case where the derivative is with respect to
a vector: the gradient of f is the vector containing
all the partial derivaties, denoted ∇xf(x). Element
i of the gradient is the partial derivative of f with
respect to xi.

We often have multiple sources of radiation that
affect our readings. In order to know if we’re in a
safe zone, we simply want to know our radiation
level as a single number. In order to do this, we
can measure how the radiation changes if we only
walk in one direction. We can then summarize this
into a single reading for our current location (the
gradient).

A3 Gradient
Descent

We can decrease f by moving in the direction of
the negative gradient. This is known as the method
of steepest descent, or gradient descent. Steepest
descent proposes a new point x′ = x − ϵ∇xf(x).
Where ϵ is the learning rate, a positive scalar deter-
mining the size of the step.

Gradient descent is like moving in the direction of
a safer area, to a new spot. The new spot is chosen
by walking in the direction of safety for some an
amount of time that we decide beforehand. Once
we arrive at a place with less radiation, we take
a new measurement and decide on where to move
next.

A4 Critical
Points

When f’(x) = 0, the derivative provides no informa-
tion about which direction to move. Points where
f’(x) = 0 are known as critical points. A local min-
imum is a (critical) point where f(x) is lower than
all neighboring points, so it is no longer possible
to decrease f(x) by making infinitesimal steps. A
local maximum is a point where f(x) is higher than
all neighboring points. Some critical points are nei-
ther maxima nor minima. These are known as sad-
dle points.

In some places, the direction we need to move in
is unclear. There are three such uncertain cases: 1.
Every step we take brings us closer to radiation, so
it may be that we’ve found the optimal location to
stay. 2. Every step we take brings us further from
radiation. 3. Every step we take doesn’t change
our radiation levels.

A5 Batch
Gradient
Descent

Note that the error function is defined with respect
to a training set, and so each step requires that the
entire training set be processed in order to evaluate
∇ f(x). Techniques that use the whole data set at
once are called batch methods.

Our geiger counter takes measurements from its
surroundings in order to calculate a direction that
we need to move to. Batch gradient descent is like
using all of our surroundings to calculate what di-
rection we need to go to. This, of course, means
our calculations are tied to how large our surround-
ings are. If our area grows, so does the time it takes
to calculate the radiation and the direction we need
to go into.

A6 Stochastic
Gradient
Descent

The computational cost of calculating the gradi-
ent descent is O(m), where m is the training set
size. As the training set size grows to billions of
examples, the time to take a single gradient step
becomes prohibitively long. The insight of SGD
is that the gradient is an expectation. The expecta-
tion may be approximately estimated using a small
set of samples. Specifically, on each step of the al-
gorithm, we can sample a minibatch of examples
drawn uniformly from the training set. The mini-
batch size m’ is typically chosen to be a relatively
small number of examples, ranging from one to a
few hundred. Crucially, m’ is usually held fixed as
the training set size m grows. We may fit a training
set with billions of examples using updates com-
puted on only a hundred examples.

We measure radiation based on our surroundings,
so every measurement requires us to sample our
surroundings. If we have a huge area to check,
this would take a long time to process. However,
if we configured our geiger counter to only (ran-
domly) sample a couple of spots, we could still
get useful measurements, meaning our time taken
to measure stays consistent regardless of the area
size that we’re walking through. This also means
that we don’t fully measure all directions that we
can walk in, meaning we might end up in a loca-
tion that doesn’t give us any safe direction to move
in, even though there may be an even safer place
somewhere else.

Table 6: An overview of all concepts with their analogies.



OLEC G GD CP BGD SGD
Knowledge level TCC MS M TCC MS M TCC MS M TCC MS M TCC MS M TCC MS M
Bachelor 3 3 2 2 3 2 3 2 2 3 2 2
TA 3 2 1
Bachelor 2 3 3 2 1 2
Bachelor 3 3 2 3 2 3
Bachelor 3 3 2 3 2 2 3 2 2
Bachelor 3 3 3 3 3 2 3 2 3 1 2 2 2 2 2
Bachelor 1 2 2
Master 1 2 2
Bachelor 2 2 1
Bachelor
Bachelor 1 1 3 3 2 2 1 1 2
TA 3 3 3
TA 2 2 3
Lecturer/Professor 3 3 3 2 2 3 1 1 2
Bachelor

Table 7: The rankings given to concepts by experts. 1 = Low, 2 = Mid, 3 = High. TCC = Target Concept Coverage, MS = Mapping Strength,
M = Metaphoricity. OLEC = Optimization & Loss / Error / Cost Function, G = Gradient, GD = Gradient Descent, CP = Critical Points, BGD
= Batch Gradient Descent, SGD = Stochastic Gradient Descent.



Group What is a loss or er-
ror function used for in
Machine Learning?

Why is the loss or er-
ror function important
to the process of train-
ing a model?

What role does the
derivative play in the
Gradient Descent algo-
rithm?

Why does Gradient De-
scent update model pa-
rameters in the negative
direction of the gradi-
ent?

A I don’t know. It defines the objective
that the model seeks to
optimize.

It determines the direc-
tion in which the algo-
rithm can move in order
to determine a new posi-
tion.

Moving towards the neg-
ative of the gradient re-
duces the loss.

A Decreasing the complex-
ity of the data to better fit
the model.

It defines a function to
optimize the usage of the
model on given data.

It determines the loss or
error of the current posi-
tion compared to the new
position.

Moving towards the neg-
ative of the gradient re-
duces the loss.

A Decreasing the complex-
ity of the data to better fit
the model.

It defines the objective
that the model seeks to
optimize.

It determines the direc-
tion in which the algo-
rithm can move in order
to determine a new posi-
tion.

I don’t know.

A Measuring the perfor-
mance of a model.

It defines the objective
that the model seeks to
optimize.

It determines the loss or
error of the current posi-
tion compared to the new
position.

Moving towards the neg-
ative of the gradient re-
duces the loss.

A I don’t know. It defines a function to
optimize the usage of the
model on given data.

I don’t know. Moving towards the neg-
ative of the gradient re-
duces the loss.

A I don’t know. It defines a function to
optimize the usage of the
model on given data.

It determines the loss or
error of the current posi-
tion compared to the new
position.

Moving towards the neg-
ative of the gradient re-
duces the loss.

A I don’t know. It defines the objective
that the model seeks to
optimize.

Moving towards the neg-
ative of the gradient re-
duces the loss.

A Measuring the perfor-
mance of a model.

It defines the objective
that the model seeks to
optimize.

It determines the direc-
tion in which the algo-
rithm can move in order
to determine a new posi-
tion.

I don’t know.

B Measuring the perfor-
mance of a model.

It defines the objective
that the model seeks to
optimize.

It determines the direc-
tion in which the algo-
rithm can move in order
to determine a new posi-
tion.

Moving towards the neg-
ative of the gradient re-
duces the loss.

B I don’t know. It defines the objective
that the model seeks to
optimize.

It determines the direc-
tion in which the algo-
rithm can move in order
to determine a new posi-
tion.

Moving towards the neg-
ative of the gradient re-
duces the loss.

B I don’t know. I don’t know. I don’t know. I don’t know.
B Decreasing the complex-

ity of the data to better fit
the model.

It defines the objective
that the model seeks to
optimize.

I don’t know. Moving towards the neg-
ative of the gradient re-
duces the loss.

B Measuring the perfor-
mance of a model.

It defines the objective
that the model seeks to
optimize.

I don’t know. A positive gradient repre-
sents a larger loss or er-
ror.

B I don’t know. It defines the objective
that the model seeks to
optimize.

I don’t know. I don’t know.

B Measuring the perfor-
mance of a model.

It defines the objective
that the model seeks to
optimize.

It determines the direc-
tion in which the algo-
rithm can move in order
to determine a new posi-
tion.

Moving towards the neg-
ative of the gradient re-
duces the loss.

Table 8: Responses on the Learning Proficiency part of the student survey.



Group The quality of
the text helped
to hold my atten-
tion.

The variety of
reading passages,
exercises, illus-
trations, etc.,
helped keep my
attention on the
questions.

The content of
these questions
will be useful to
me.

As I worked with
these questions,
I was confident
that I could learn
how Gradient
Descent works in
Machine Learn-
ing.

I enjoyed work-
ing with these
questions so
much that I was
stimulated to
keep on working.

A Not true Slightly true Moderately true Mostly true Moderately true
A Mostly true Mostly true Mostly true Mostly true Mostly true
A Slightly true Not true Moderately true Slightly true Slightly true
A Slightly true Not true Moderately true Very true Slightly true
A Mostly true Slightly true Mostly true Very true Slightly true
A Moderately true Moderately true Moderately true Not true Not true
A Mostly true Not true Very true Very true Very true
A Not true Not true Slightly true Slightly true Not true
B Not true Not true Not true Moderately true Moderately true
B Slightly true Slightly true Mostly true Mostly true Moderately true
B Very true - - - -
B Mostly true Slightly true Moderately true Moderately true Slightly true
B Mostly true Not true Mostly true Very true Slightly true
B Moderately true Mostly true Mostly true Slightly true Slightly true
B Mostly true Moderately true Mostly true Very true Mostly true

Table 9: Responses on the adapted RIMMS part of the student survey.
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