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Abstract

Quantum random walks are the quantum analogs of classical random walks and appear to
be promising tools to design fast quantum algorithms. Therefore it is important to study their
time-related features and see how these differ compared to the classical case. For the discrete-
time quantum walk on the line it has been shown that the probability to be absorbed by an
absorbing boundary equals 2

π
in contrast to the classical case where this probability equals 1,

hence a quantum walk may continue forever without getting absorbed. It is also shown that
mixing times of discrete-time quantum walks on the hypercube scale with n, the dimension of the
hypercube, which is faster than O(n log(n)) for the classical random walk. So the quantum walk
might offer a slight speed-up compared to the classical case. Finally, it is shown that the mixing
times of the continuous-time quantum walk on a 2-layer multiplex graph depend on the eigenvalue
gaps of the corresponding Laplacian matrix L. When the strength of the connections between the
layers of a multiplex graph becomes very large, the eigenvalues of the Laplacian matrix converge.
Thus the mixing times of the continuous-time quantum walk on 2-layer multiplex graphs converge.
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1 Introduction

Classical random walks play an important role in theoretical computer science as well as in other
disciplines such as physics, e.g. to simulate the motion of molecules, and financial theories, for ex-
ample to predict stock prices. In computer science random walks find their use in a wide range of
algorithms. They are used in PageRank algorithms[PBMW98] where random walks walk among web
pages to calculate their importance. They also find their applications in algorithms that solve k-SAT
problems[Sch99], which are problems about deciding whether Boolean variables can be assigned true or
false values such that a Boolean expression of a specific form is true. For example, the problem of decid-
ing whether the variables x1, x2, x3 can be assigned truth values such that (x1∨x2)∧(x2∨x3)∧(x̄1∨x2)
is true is a 2-SAT problem, since the Boolean expression is a conjunction of clauses that contain ex-
actly 2 literals. Random walks are also implemented in algorithms that solve graph connectivity
problems[MR95]. They can for example be used to decide whether there exists a path between two
vertices of a given graph.

These are all examples of how classical random walks are used in algorithms implemented on
classical computers. Over the last few decades however, the field of quantum information theory has
seen a surge of interest. Much research is being done on designing efficient quantum algorithms to be
implemented on quantum devices. To design these algorithms new sets of tools are needed. Quantum
random walks appear to be one such set of tools that could be of great use in the setting of quantum
computing.

Quantum random walks are the analogues of classical random walks. A particle walks on the
vertices of a graph, but unlike the classical case the particle can be in a superposition of position
states. There exist both discrete- and continuous-time versions of the walk. In both cases an initial
particle state is transformed by a unitary operator; therefore the evolution of the particle state is
deterministic. Randomness is only introduced through measurement of the particle state and thus this
model is often simply called a ’quantum walk’.

Quantum walks have several features that indicate them to be useful tools to build quantum
algorithms that can outdo their classical counterparts. One important feature is that the standard
deviation of the position distribution of the quantum walk on a line is proportional to the elapsed
time T , in contrast to the classical case where the standard deviation is proportional to

√
T [POR19].

Quantum walks thus travel quadratically faster. It has also been shown that the hitting time of a
particle performing a quantum walk on a hypercube traveling from one corner to its opposite corner is
polynomial in the dimension of the hypercube[Kem05]. The classical hitting time, on the other hand,
is exponential in its dimension. The quantum random walk thus offers an exponential speed-up in this
particular case.

An example of the implementation of quantum walks in quantum algorithms is a recently found
spatial search algorithm that is quadratically faster than any classical algorithm[ACNR22]. There also
exists a quantum version of the PageRank algorithm based on quantum walks[PMD11].

In this report temporal features of both discrete- and continuous-time quantum walks on different
types of graphs, specifically multiplex graphs, are studied and compared to features of classical random
walks.

The report can roughly be divided into three parts. In the first two chapters the discrete quantum
walk on the line is defined and the probability that a particle performing a quantum walk gets absorbed
by an absorbing boundary is studied. It turns out that a quantum walk on the line may be performed
for an infinite amount of time without getting absorbed by the boundary. Then in chapter 4 the
discrete quantum walk on graphs is defined and another time-related quantity is studied. In contrast
to the absorption time, we would now like to study a quantity that is always finite. Hence mixing times
of the quantum walk on the hypercube are considered. Finally, in chapter 5 we define the continuous-
time quantum walk and study mixing times of the continuous quantum walk on multiplex graphs. In
Appendix A the most important pieces of code can be found that are used in this report.
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2 The Discrete Quantum Random Walk on the Line

In this chapter we will define the discrete quantum random walk on a line and compare it to the
classical random walk. We will first recall the definition of the classical discrete random walk and then
define the analogous quantum version. It will be explained that the discrete quantum walk describes
a time evolution of a particle living in a Hilbert space H = Hc ⊗ Hp, the tensor product of the coin
space and the position space. The basis states of the coin space Hc give the direction in which the
particle wants to walk, left or right, and the basis states of the position space Hp give the position of
the particle. The particle state evolves by repeatedly applying the operator U = S · (C ⊗ I), which
is the consecutive application of a coin operator, changing the direction of the particle, and the shift
operator, moving the particle to the left or right based on its direction.

2.1 The Classical Random Walk

The classical discrete random walk on a line can be described as a particle living in a one-dimensional
space, a line, moving randomly within this set over time[GA17]. We consider both time and space to
be discrete, thus we observe the particle at points 0, 1, 2 . . . in time, and for each point in time we
consider the particle’s location to be given by one of the elements of Z, the integers. The particle
moves over this line as follows. Given an initial position, at each time step the particle moves to the
right with probability 0 < p < 1 or to the left with probability q = 1 − p. So when St denotes the
position of the particle at time t

St+1 =

{
St + 1 with probability p,

St − 1 with probability 1− p.
(2.1)

If p = q = 1/2 the random walk is called symmetric.
The probability distribution of the particle’s location as a function of time can be computed and

is plotted for different times in figure 11. One can see that the distribution is centered around 0 and
that the standard deviation in position scales with

√
t[POR19]. This is in contrast to the quantum

case as we will see in the next section.

Figure 1: Figure taken from [POR19]. The probability that the particle performing the random walk
is found at position n is plotted for different times. The probability distribution is seen to be centered
around its initial position 0 and its standard deviation scales with

√
t. Since for even time steps the

probability to be at odd positions is 0, the curves drawn are actually the envelopes of the probability
distribution.

1Since the probability to be at positions of parity unequal to that of time t equals 0, the curves in the figure are
actually the envelopes of the probability distributions.
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2.2 The Discrete Quantum Walk

We will define the discrete quantum random walk analogously to the classical random walk. Again we
consider discrete times and again the particle is located at discrete points in a one-dimensional space.
So we define the Hilbert space Hp as the space spanned by basis states {|i⟩ : i ∈ Z} and call this space
the position space. We would like the quantum random walk to incorporate quantum effects such as
the particle being in a superposition of position states. Naively, we could therefore define the particle
as living in Hp and define the quantum walk by the following transformation applied to every basis
state of Hp for each time step

|i⟩ → 1√
2
|i− 1⟩+ 1√

2
|i+ 1⟩ . (2.2)

However, one can see that this transformation is not unitary. The state 1√
2
|−1⟩ + 1√

2
|1⟩ will for

example be mapped to 1
2 |−2⟩+ |0⟩+ 1

2 |2⟩, which is not normalized.
To define a quantum walk that is unitary, we need to introduce an extra degree of freedom that

indicates in which direction the particle wants to walk. Let Hc be the Hilbert space, which we will call
the coin space, spanned by the elements of the set {|↑⟩ , |↓⟩}. Now the particle performing the walk
lives in the Hilbert space H = Hc ⊗Hp. So the state of the particle is given by a superposition of the
basis states {|↑⟩ ⊗ |i⟩ , |↓⟩ ⊗ |i⟩ : i ∈ Z}. A basis state |↑⟩ ⊗ |i⟩ represents the particle being located
at position i and wanting to take a step to the right. We thus define the unitary shift operator S as
follows

S |↑⟩ ⊗ |i⟩ = |↑⟩ ⊗ |i+ 1⟩ , S |↓⟩ ⊗ |i⟩ = |↓⟩ ⊗ |i− 1⟩ . (2.3)

Since we want the particle to walk in both directions, we need to apply another unitary operator
before the shift operator that works on the coin space and sends each basis state of the coin space to
a superposition of |↑⟩ and |↓⟩. We call such an operator a coin operator C in analogy to the coin-flip
in the classical random walk. An example of a coin operator is the Hadamard coin defined by

H |↑⟩ = 1√
2
|↑⟩+ 1√

2
|↓⟩ , H |↓⟩ = 1√

2
|↑⟩ − 1√

2
|↓⟩ , (2.4)

or in matrix form when |↑⟩ =
(
1
0

)
, |↓⟩ =

(
0
1

)

H =
1√
2

(
1 1
1 −1

)
. (2.5)

A full step of the quantum random walk is then defined by the transformation U given by

U |ψ⟩ = S · (C ⊗ I) |ψ⟩ . (2.6)

When we for example start in the state |↑⟩ ⊗ |0⟩ and apply the transformation U with H as coin
operator C, we get for the first three time steps

U |↑⟩ ⊗ |0⟩ = S · (C ⊗ I) |↑⟩ ⊗ |0⟩ = S
1√
2
(|↑⟩+ |↓⟩)⊗ |0⟩ = 1√

2
|↓⟩ ⊗ |−1⟩+ 1√

2
|↑⟩ ⊗ |1⟩ ,

U2 |↑⟩ ⊗ |0⟩ = U
1√
2
(|↓⟩ ⊗ |−1⟩+ |↑⟩ ⊗ |1⟩) = 1

2
(− |↓⟩ ⊗ |−2⟩+ (|↑⟩+ |↓⟩)⊗ |0⟩+ |↑⟩ ⊗ |2⟩),

U3 |↑⟩ ⊗ |0⟩ = 1

2
√
2
(|↓⟩ ⊗ |−3⟩ − |↑⟩ ⊗ |−1⟩+ (2 |↑⟩+ |↓⟩)⊗ |1⟩+ |↑⟩ ⊗ |3⟩).

(2.7)

Note that for the Hadamard coin U sends a basis state of H to the left and right with prefactors of
equal magnitude squared, hence the probability to find the particle one step to the right of its initial
position upon measurement is equal to the probability of finding it one step to the left of its initial
position. This is similar to the symmetric classical random walk. A coin operator with this property
of sending the basis states of Hc to a superposition of |↑⟩ , |↓⟩ with prefactors of equal magnitude is
called a balanced coin.

Even though we used a balanced coin, we can see that already after three steps the distribution
is not symmetric anymore unlike the classical random walk. This asymmetry remains for larger time
steps; in figure 2 the probability distribution of the location of the particle after 100 steps is shown.
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The reason for this asymmetry is destructive interference caused by the coin operator. When H, see
equation 2.5, is applied to |↓⟩ a minus sign is introduced, but whenH is applied to |↑⟩ there is no change
in phase. This causes more destructive interference for left-traveling paths, while it causes constructive
interference for right-traveling paths. We can also see that the distribution is peaked towards the right
end of the distribution. This peak is always present for large time scales. The particle is most likely
to be found away from the origin as if it is traveling to the right; the quantum walk has a ballistic
behaviour.

Figure 2: Figure taken from [POR19]. The probability distribution of the particle’s position upon
measurement after 100 time steps with initial state |↑⟩ ⊗ |0⟩. The distribution is asymmetric unlike in
the classical case.

We can make the distribution symmetric by changing the initial particle state to |↑⟩−i|↓⟩√
2

⊗ |0⟩.
For 100 steps the distribution is plotted in figure 3. We now see two peaks, one at each end of the
distribution. Similar to the asymmetric case, the quantum walk shows ballistic behaviour.

The standard deviation in position as a function of time can be computed and turns out to be
proportional to T , the number of time steps, unlike the classical random walk that has standard
deviation proportional to

√
T [POR19]. A particle performing a quantum walk thus travels away from

the origin and spreads quadratically faster than the classical random walk.
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Figure 3: Figure taken from [POR19]. The probability distribution of the particle’s position upon
measurement after 100 time steps. The distribution is symmetric and has two peaks, one at the left
edge and another at the right edge.

8



3 Absorption Probability of a Semi-Infinite Quantum Walk

In this chapter we will consider the probability that a particle performing a quantum walk on the line
is eventually absorbed by an absorbing boundary placed at the origin. There is no absorbing boundary
located to the right of the origin. The particle can travel infinitely far in one direction, but it can
never reach negative locations. The quantum walk performed in this way is semi-infinite. It turns out
that the absorption probability of the quantum walk equals 2

π . The particle performing the quantum
walk thus has a finite probability to escape the boundary. This is unlike the classical case where the
absorption probability equals 1.

3.1 Absorption Probability of the Classical Random Walk

We consider a symmetric random walk with our particle initialized in position 1. The random walk
terminates as soon as the particle reaches the origin. We want to find the probability

p∞ = probability that the particle gets absorbed at location 0 eventually. (3.1)

It turns out that p∞ = 1 in the classical case as shown by the following proof that can be found
in [Kem03]. Starting in 1 the particle has probability of 1

2 to step to position 0, otherwise we step
to position 2. The probability to reach position 0 from 2 eventually equals the probability to reach
position 1 from 2 eventually times the probability to reach position 0 from 1 eventually. Since the
probability to reach position 1 from 2 eventually equals p∞, we get the following equation

p∞ =
1

2
+

1

2
p2∞. (3.2)

Solving this equation gives us that p∞ = 1 in the classical case. The particle cannot escape from the
absorbing boundary.

3.2 Absorption Probability of the Quantum Walk

Suppose we start in the state |↑⟩ ⊗ |1⟩. One step of the quantum walk is now defined by applying
evolution operator U , see equation 2.6, with the Hadamard coin, see equation 2.4, as coin operator
and a subsequent local measurement in the origin on the state |↓⟩ ⊗ |0⟩2. When the particle is found
in the origin, the walk terminates. When the particle is not found in the origin, we again apply U and
perform a measurement in the origin.

We want to find the probability

p∞ = probability that the particle gets absorbed at location |0⟩ eventually. (3.3)

In [ABN+01] the following theorem is proven.

Theorem 3.1. p∞ = 2
π

The proof has been replicated below. The result has also been numerically verified with the code
in Appendix A.1.

Proof. It must hold that

p∞ =

∞∑
t=1

∥∥ΠU [(I −Π)U ]t−1 |↑⟩ ⊗ |1⟩
∥∥2, (3.4)

where Π = |↓⟩ ⊗ |0⟩ ⟨↓| ⊗ ⟨0|. The tth term of this sum equals the probability that after t time steps
the particle is absorbed for the first time.

To find p∞ we consider all paths via which we can walk to |↓⟩⊗ |0⟩. Every path can be represented
by a tuple (a1, a2, . . . , at) with ai ∈ {−1, 1} and

∑
i≤j ai ≥ 0 for j < t and

∑t
i=1 ai = −1. So all paths

of t ∈ N time steps are represented in

At = {(a1, a2, . . . , at) ∈ {−1, 1}t : for all 0 ≤ j < t,

j∑
i=1

ai ≥ 0 and

t∑
i=1

ai = −1}. (3.5)

2Note that it is not necessary to measure the state |↑⟩ ⊗ |0⟩, since this state can only be reached from location |−1⟩.
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We want to partition each At into the paths that correspond to |↓⟩⊗|0⟩ getting a positive prefactor

A+
t and those that give |↓⟩ ⊗ |0⟩ a negative prefactor A−

t . The paths in A+
t will have prefactor

(
1√
2

)t
since we apply the Hadamard coin operator at each step. The elements in A−

t will have prefactor
−( 1√

2
)t. We can then write the absorption probability as the following infinite series

p∞ =

∞∑
t=1

(#(A+
t )−#(A−

t ))
2

2t
. (3.6)

This follows from the fact that we have to sum over all possible number of steps to reach the barrier
and that the paths with positive and negative prefactors interfere destructively. If we define

A+
t = {x = (a1, . . . , at) ∈ At : #{i : ai = ai+1 = −1} is even} (3.7)

and A−
t as

A−
t = {x = (a1, . . . , at) ∈ At : #{i : ai = ai+1 = −1} is odd} (3.8)

we see that we indeed get our desired partition.
We attempt to find the sum in equation 3.6 by defining the following generating function for

(#(A+
t )−#(A−

t ))

f(z) =

∞∑
t=1

(#(A+
t )−#(A−

t ))z
t. (3.9)

We will now show that

f(z) = z − z(zf(z) + (zf(z))2 + (zf(z))3 + · · · ), (3.10)

by showing that −z(zf(z))k for k ≥ 1 equals an analogous generating function. Namely,

−z(zf(z))k =

∞∑
t=1

ctz
t =

∞∑
t=1

(#(A+
t,k)−#(A−

t,k))z
t. (3.11)

A+
t,k here equals the set containing all paths, t steps long, starting off in the state |↑⟩⊗|1⟩ and ending in

state |↓⟩⊗ |0⟩, such that our final state has a positive prefactor and such that we visit |1⟩ k times after
leaving our initial position. A−

t,k contains all paths of t steps from our initial state to |↓⟩ ⊗ |0⟩, such
that we visit our initial position k times, but this time our final state must have negative prefactor.

We will prove equation 3.11. First we write out −z(zf(z))k,

−z(zf(z))k =

∞∑
t1=1

∞∑
t2=1

· · ·
∞∑

tk=1

−(#(A+
t1)−#(A−

t1))(#(A+
t2)−#(A−

t2)) · · · (#(A+
tk
)−#(A−

tk
))zt1+t2+···+tk+k+1.

(3.12)
For this expression to be equal to the right side of equation 3.11, we need to show that the coefficients

in equation 3.12 equal the coefficients ct. Firstly, we need to show that ct = 0 for t ≤ 2k. This is
indeed the case, because we have to step from |1⟩ to |2⟩ and back again exactly k times and after our
kth visit to |1⟩ we have to go to |0⟩. So there are no paths of length shorter than 2k + 1, hence our
coefficients ct for t ≤ 2k are zero. For t ≥ 2k + 1 we want that

ct = #(A+
t,k)−#(A−

t,k) =
∑

t1,t2,··· ,tk∑
tj=t−k−1

−(#(A+
t1)−#(A−

t1))(#(A+
t2)−#(A−

t2)) · · · (#(A+
tk
)−#(A−

tk
)).

(3.13)
We will show that equation 3.13 is true for k = 1 first. We will show that

#(A+
t,1)−#(A−

t,1) = −(#(A+
t−2)−#(A−

t−2)). (3.14)

For k = 1, we can split each path up in three parts. The first step from |1⟩ to |2⟩, the middle part which
consists of a path in At1 with t1 = t− 2 from |2⟩ to |1⟩, and the last step from |1⟩ to |0⟩. Note that for
the path to end in |↓⟩ ⊗ |0⟩ with positive prefactor, the middle part of the path must be an element
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of A−
t1 , since the last step reverses the sign. For the path to end with a negative prefactor, the middle

part of the path must be an element of A+
t1 . So indeed #(A+

t,1) = #(A−
t−2) and #(A−

t,1) = #(A+
t−2).

We will now prove equation 3.13 for general k. A path from |1⟩ to |0⟩, that visits |1⟩ k times after
leaving can be seen as composed of 2k + 1 paths. Namely, 1 step from |1⟩ to |2⟩, followed by a path
of length t1 back to |1⟩, again 1 step from |1⟩ to |2⟩, followed by a path of length t2 back to |1⟩ and
so on, until we visit |1⟩ for the kth time followed by the last step to |0⟩. Note that

∑
tj = t − k − 1

must hold. Every path that steps back from |2⟩ to |1⟩ in ti steps can be seen as an element of either
A+

ti or A−
ti . If the number of paths stepping back from |2⟩ to |1⟩ that reverses sign is odd, the total

path will end with positive prefactor, since the last step to |0⟩ reverses the sign. So the number of

paths in #(A+
t,k) equals the sum over all products Π t1,...,tk∑

tj=t−k−1
#(A

+/−
tj ) with odd number of factors

#(A−
tj ). In equation 3.12 every such product is included with positive sign. Similarly, the number of

paths in #(A−
t,k) equals the sum over all products Π t1,...,tk∑

tj=t−k−1
#(A

+/−
tj ) with even number of factors

#(A−
tj ). All these products are included in equation 3.12 with negative sign. Since there are no other

terms included, the equality of equation 3.11 must hold.
Now we can show that equation 3.10 holds by writing

f(z) = (#(A+
1 )−#(A−

1 ))z +

∞∑
t=2

(#(A+
t )−#(A−

t ))z
t = z +

∞∑
t=2

∞∑
k=1

(#(A+
t,k)−#(A−

t,k))z
t

= z +

∞∑
t=1

∞∑
k=1

(#(A+
t,k)−#(A−

t,k))z
t = z +

∞∑
k=1

∞∑
t=1

(#(A+
t,k)−#(A−

t,k))z
t = z +

∞∑
k=1

−z(zf(z))k.

(3.15)
This of course equals

f(z) = z +−z2f(z) 1

1− zf(z)
. (3.16)

Solving for f(z) gives

f(z) =
1 + 2z2 −

√
1 + 4z4

2z
. (3.17)

Now this expression is very similar to the generating function of the Catalan numbers. So

#(A+
t )−#(A−

t ) =


1 if t = 1,

(−1)k+1Ck t = 4k + 3,

0 else,

(3.18)

where Ck = k
k+1

(
2k
k

)
is the kth Catalan number.

We can use this to rewrite the sum in equation 3.6 as follows

p∞ =

∞∑
t=1

(#(A+
t )−#(A−

t ))
2

2t
=

1

2
+

1

8

∞∑
k=0

C2
k2

−4k. (3.19)

It can be proved by induction that

N∑
k=0

C2
k2

−4k = (16N3 + 36N2 + 24N + 5)C2
N2−4N − 4. (3.20)

Since CN ( 22N

N3/2
√
π
)−1 −→ 1 as N goes to infinity, we get

∞∑
k=0

C2
k2

−4k =
16

π
− 4. (3.21)

Plugging this into equation 3.19 we find the desired result

p∞ =
2

π
. (3.22)
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4 The Discrete Quantum Random Walk on the Hypercube

In this chapter we will define the discrete quantum walk on graphs and subsequently perform the
quantum walk on the hypercube. Whereas in the last chapter we studied a temporal quantity that
may be infinite, namely the time it takes for a particle to be absorbed by an absorbing boundary, we
would now like to study a quantity that is always finite. Hence the mixing time on the hypercube is
considered. It is seen that this quantity scales linearly with the dimension n of the hypercube, unlike
the classical case where the mixing time is of order O(n log n)[MPAD08].

4.1 The Discrete Quantum Walk on a Graph

In this section we define the quantum random walk on a graph. Similar to the case of the quantum
random walk on a line, our particle lives in a Hilbert space that is a tensor product of a coin and
position space HC ⊗ HP . The position space HP is spanned by the basis states giving the location
of the particle and the coin space HC is spanned by the basis states that can be thought of as giving
the direction in which the particle wants to walk. Again, given an initial state, the quantum walk is
performed by repeatedly applying a coin operator and then a shift operator to the particle state. Let
us define this more formally.

Consider a d -regular graph. Let HP be the position Hilbert space spanned by the vertices of the
graph. Thus {|vi⟩ : i = 1, 2, . . . , N} spans HP for a graph with N vertices.

To define the coin space, for each vertex, we label the d incident edges by 1, 2, . . . , d on the side of
the vertex. So each edge has two, possibly distinct, labels, one for each of its endpoints, and for each
vertex the labels of the incident edges are all distinct. See figure 4 for an example of a correct labeling3.
Now, when the particle is at a certain vertex, given by a basis state of HP , and it wants to walk in
one of the d directions, all we have to do is specify the label corresponding to that direction. Thus we
define the coin space HC to be the Hilbert space spanned by the set of the d labels {|j⟩ : j = 1, . . . , d}.

1

2 1

2

2 1
1

2

3

Figure 4: This figure shows a graph with a correct labeling. When our particle is at a certain vertex,
say vertex 1 and wants to walk to vertex 3, we say that it is in the state |2⟩ ⊗ |1⟩, since the label of
the edge pointing in the direction of vertex 3 has label 2 on the side of vertex 1.

As mentioned above, our particle performing the quantum random walk lives in the Hilbert space
H = HC ⊗ HP . A basis state |j⟩ ⊗ |v⟩ corresponds to the particle being at vertex v, pointing in the
direction of the edge with label j on v ’s side.

Let us call ejv the edge (v, w) with label j on v ’s side. We can now define the shift operator S by

S |j⟩ ⊗ |v⟩ = |j⟩ ⊗ |w⟩ , w ∈ ejv. (4.1)

When the particle is originally at vertex v it moves along the edge labeled with label j to vertex w.
The coin operator C can be any d -dimensional unitary operator acting on the coin space. An

example of a balanced coin, a coin that gives equal probability for the particle to be found in each of

3It must be noted that there is an extra condition on the labeling such that a quantum random walk can be performed.
This issue is addressed in Appendix B.
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the d directions upon measurement, is the DFT-coin defined as:

DFT-coin =
1√
d


1 1 1 . . . 1
1 ω ω2 . . . ωd−1

1 ω2 ω2(2) . . . ω2(d−1)

...
1 ωd−1 ω2(d−1) . . . ω(d−1)(d−1)

 , (4.2)

where ω = e
2πi
d and d the degree of the regular graph. One can clearly see that every coin basis state

|j⟩ will be sent to an equally weighted superposition of all coin basis states.
The quantum random walk of T steps is defined by the transformation UT , where

U = S · (C ⊗ I) (4.3)

is the consecutive application of the coin and shift operator.
In this paragraph we have defined the quantum random walk on regular graphs. We can easily

perform quantum random walks on graphs that are not regular by adding self-loops to the vertices
that have a degree smaller than the maximum degree of the graph, see figure 5.

1

1
2

1
2 2

1

2

3

Figure 5: A graph with a correct labeling is shown. Self-loops were added to vertices 2 and 3 such
that for every vertex there are d = 2 directions.

4.2 Quantum Random Walk on a Hypercube

In this section, we will look at the quantum random walk on a hypercube. An n-dimensional hypercube
graph is a simple graph that has 2n vertices. Each vertex corresponds to an n-bit string, see figure
6. The Hamming weight of a vertex is the number of ones in its n-bit string. The Hamming distance
between two vertices equals the number of bits that one needs to flip to convert the n-bit string of
one vertex into the n-bit string of the other. Two vertices are connected by an edge if their Hamming
distance equals 1. Note that the n-dimensional hypercube is n-regular. In figure 6, a 3D-hypercube is
shown.

To define a quantum random walk on a hypercube, we have to label all the edges of the hypercube
at both its endpoints, such that for each vertex all incident edges have a distinct label. It turns out
that in the special case of a hypercube we can label each edge by one label, i.e. both endpoints get
the same number. The labeling is defined by the following rule: when an edge connects two vertices
whose n-bit strings differ in position i, assign this edge the label i.

A Python script was written that could perform quantum random walks on general n-dimensional
hypercubes, see Appendix A.2. In figure 7 the 2D-hypercube for 8 steps of the quantum random walk
is shown, where the vertex colour indicates the probability to find the particle at that vertex upon
measurement of the particle location. The darker the vertex, the more likely it is to find the particle
there. The initial state of the particle was 1√

2
(|1⟩ ⊗ |(00)⟩ + |2⟩ ⊗ |(00)⟩). Looking at the figure, one

might expect that the particle state oscillates over time and has period 8. This turns out to be indeed
the case. By writing the shift and coin operators as matrices, we can write their consecutive application

13



Figure 6: This figure was taken from [p. 8][Kem03]. It shows a 3D-hypercube where each vertex is
labeled by a 3-bit string. The edges between the vertices are labeled with the numbers 1, 2, 3. An edge
is labeled with the number i, if the edge connects two vertices whose bit strings differ only in the ith
position.

Figure 7: A quantum random walk on a 2D-hypercube was performed with the DFT-coin as coin
operator. The probability to find the particle at a certain vertex is indicated by the intensity of the
colour of the vertex. The darker the vertex, the more likely it is to find the particle there. The initial
position and the first 8 steps are shown. One can see the oscillatory behaviour of the quantum random
walk on the hypercube. The particle state oscillates with period 8.

as a matrix as well. By using Mathematica the following eigenvalues for this larger matrix were found
{− 1−i√

2
,− 1+i√

2
, 1+i√

2
, 1−i√

2
,−1,−1, 1, 1}. Now since our initial state can be written as a superposition of

eigenvectors
∑t

i=1 ci
#»v i, after 8k steps we end up in state

∑t
i=1 λ

8kci
#»v i =

∑t
i=1 ci

#»v i. If we start our
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quantum walk in the nodes (0,0) and (1,1), so in the state 1√
4
(|1⟩⊗|(0, 0)⟩+|2⟩⊗|(0, 0)⟩+|1⟩⊗|(1, 1)⟩+

|2⟩ ⊗ |(1, 1)⟩), we can even get a quantum walk oscillating with a period of 2, since the eigenvectors of
this initial state correspond to the eigenvalues 1 and −1.

One can also perform the quantum walk on the hypercube with different coin operators. One such
coin operator is the Grover coin.

Grover-coin =


2
d − 1 2

d
2
d . . . 2

d
2
d

2
d − 1 2

d . . . 2
d

...
2
d

2
d

2
d . . . 2

d − 1

 , (4.4)

where d is the degree of the regular graph. The Grover coin is permutation symmetric, which means
that interchanging the vertices of equal Hamming distance does not change the random walk.

In figure 8 we perform a quantum walk on a 2D-hypercube with the Grover-coin. The probability
distribution of the location of a particle upon measurement is shown for 8 steps of the quantum walk.
The initial state is the same as in figure 7. As expected by the permutation symmetry of the Grover
coin, vertices of equal Hamming weight have equal probability to find the particle on them. For
this case one can see that the period of the quantum walk is 4, since the eigenvalues are given by
{−1,−1,−i,−i, i, i, 1, 1}.

Figure 8: A quantum random walk on a 2D-hypercube, now performed with the Grover-coin as coin
operator. The probability to find the particle at a certain vertex is again indicated by the intensity of
the colour of the vertex. The darker the vertex, the more likely it is to find the particle there. The
initial position and the first 8 steps are shown. The quantum walk oscillates and its period is 4 steps.

As we go to hypercubes of higher dimensions, the quantum walks performed on these graphs
will not be periodic anymore. However, it turns out that all quantum walks on any finite graph
will be quasi-periodic as described by the quantum mechanical version of the Poincaré recurrence
theorem[BL57][Sch78]. The proof given below was taken from [Sch78].

Theorem 4.1 (Discrete-time finite-dimensional quantum recurrence theorem). Consider a finite-
dimensional Hilbert space H and a unitary operator U. Let |ψi⟩ be a wave function evolving in time
under the operator U, such that at time step T, |ψT ⟩ = UT |ψ0⟩. Then for every ϵ > 0 there exist
infinitely many positive integers N, such that

||ψn+N ⟩ − |ψn⟩| < ϵ, n ∈ Z.
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Proof. Since U is unitary and H is finite-dimensional, we can write the states |ψn⟩ and |ψn+T ⟩ as
linear combinations of orthonormal eigenstates {|ϕi⟩ : i = 1, . . . , D} of U ,

|ψn⟩ =
D∑
i=1

ci |ϕi⟩

and

|ψn+T ⟩ =
D∑
i=1

cie
−iθiT |ϕi⟩ .

So

||ψn+T ⟩ − |ψn⟩|2 =

∣∣∣∣∣
D∑
i=1

ci(e
−iθiT − 1) |ϕi⟩

∣∣∣∣∣
2

= 2

D∑
i=1

|ci|2(1− cos (θiT ))

We must therefore show that there exist infinitely many positive numbers T = N , such that

2

D∑
i=1

|ci|2(1− cos (θiN)) < ϵ,

as is done in Appendix C.

This result is in contrast to the behaviour of classical random walks on graphs that often reach a
stationary distribution eventually[POR19].

4.3 Mixing Times on the Hypercube

In section 3.2 we saw that the time it takes for a particle performing a quantum walk to get absorbed
may be infinite. For the quantum walk on the hypercube we would like to study a quantity that
reflects the temporal behaviour of the walk as well, but is always finite. We will thus consider the
mixing time of the quantum walk on the hypercube. For the classical random walk on the hypercube,
the probability distribution of the particle location converges to a stationary distribution. The mixing
time of the classical walk is the time it takes the probability distribution to get close to this limiting
distribution. The quantum walk, however, does not converge to a stationary distribution, hence the
mixing time must be defined in a different way. Since the quantum walk is (quasi-)periodic, it would
not be surprising if the time average of the probability distribution of the location of the particle would
converge. This is indeed the case as shown below and we will use this fact to define the mixing time
of discrete quantum walks on graphs. It turns out that the mixing time of the discrete quantum walk
on the hypercube is proportional to n, the dimension of the hypercube. This is faster than for the
classical random walk where the mixing time is of order O(n log n)[MPAD08].

We first want to show that the time average of the probability distribution of the particle location
converges. Since the probability to be found at vertex v at time t is the sum

∑d
j=1 |(⟨j| ⊗ ⟨v|)U t |Ψ0⟩|

2

with d the degree of the graph, we only have to show that

1

N

N∑
n=0

|(⟨j| ⊗ ⟨v|)Un |Ψ0⟩|2 (4.5)

converges for N −→ ∞. We can write an initial state |Ψ0⟩ as

|Ψ0⟩ =
∑
λi

di |λi⟩ , (4.6)

where |λi⟩ is the eigenstate of evolution operator U corresponding to eigenvalue λi = e−iθi . Similarly
we can write

|j⟩ ⊗ |v⟩ =
∑
λi

ci |λi⟩ . (4.7)

So

1

N

N∑
n=0

|(⟨j| ⊗ ⟨v|)Un |Ψ0⟩|2 =
1

N

N∑
n=0

∣∣∣∣∣∑
λi

c̄i ⟨λi|Un
∑
λi

di |λi⟩

∣∣∣∣∣
2

. (4.8)

16



Since ∑
λi

c̄i ⟨λi|Un
∑
λi

di |λi⟩ =
∑
λi

c̄idie
−iθin, (4.9)

the sum in equation 4.5 becomes

1

N

N∑
n=0

∑
λi

∑
λj

c̄icjdid̄je
−i(θi−θj)n. (4.10)

As N −→ ∞, all terms with θi ̸= θj average out to zero and the sum converges to a constant∑
λi,λj

λi=λj

c̄idicj d̄j . (4.11)

Now that we know that the time average of the probability distribution converges, we will define
the mixing time of the quantum walk for a given initial state. Given the time t, denote the average
probability distribution up to time t by P̄t. Denote the limit of P̄t as t −→ ∞ by #»π .

Definition 4.1 (ϵ-mixing time discrete quantum walk). The ϵ-mixing time of a discrete quantum walk
on a graph with limiting average distribution #»π for a given initial state is given by

Mϵ = min{T : ∀t ≥ T,
∥∥P̄t − #»π

∥∥ < ϵ},

where ∥·∥ is the 1-norm4.

For different values of ϵ and dimensions n of the hypercube, the mixing time was computed, see
figure 9, using the code that can be found in Appendix A.3. The Grover coin was used as coin operator
and the initial state was given by 1√

n

∑n
j=1 |j⟩ ⊗ |(00 . . . 0)⟩. The mixing time seems to scale linearly

with n. This is indeed the case, in contrast to the classical case where the mixing time is of order
O(n log n), as is confirmed numerically in [MPAD08].

Figure 9: ϵ-mixing times for different values of ϵ and dimensions n of the hypercube. The initial state
is given by

∑n
j=1 |j⟩ ⊗ |(00 . . . 0)⟩. It can be seen that the mixing time on the hypercube is of order

O(n), which is faster than the classical case where the mixing time is of order O(n log n)[MPAD08].

4Since ∥ #»x∥p ≤ ∥ #»x∥1, p ≥ 1 for all vectors #»x in a finite dimensional vector space, this definition gives a larger value
of T than if any other p-norm would have been used.
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5 Mixing Times of the Continuous-Time Quantum Walk on
2-Layer Multiplex Graphs

In this chapter we consider the continuous-time quantum walk and its mixing time on multiplex graphs.
First we take a look at the continuous-time Markov chain in section 5.1 and then define the continuous
quantum walk analogously in section 5.2. Then in section 5.3 the eigenvalues of the Laplacian of
multiplex graphs are analysed. This analysis is then used in section 5.4 to consider the behaviour of
mixing times of continuous-time quantum walks on multiplex graphs.

5.1 The Continuous-Time Markov Chain

We consider a continuous-time classical Markov chain first. Consider a graph G with vertex set V
containing N vertices. Let #»p (t) be the probability distribution of the particle location at time t.
When the particle is at vertex i, it will jump to neighbouring vertex j with transition rate γij . So the
probability to jump from vertex i to vertex j is γij per unit time. We take γij = γji and γij = 0 if
vertex i and j are not connected by an edge. We can then write down a differential equation for the
probability distribution #»p (t)

dpi(t)

dt
=

N∑
j=1

γij(pj(t)− pi(t)). (5.1)

If we define the Laplacian matrix as follows

Lij =

{∑N
k=1 γik if i = j,

−γij if i ̸= j,
(5.2)

equation 5.1 can be rewritten as
d #»p (t)

dt
= −L #»p . (5.3)

The solution to this equation is
#»p (t) = e−Lt #»p (0). (5.4)

Since L is a normal matrix, there exists an orthonormal basis of eigenvectors { #»vj : j = 1 . . . , N}.
We can write #»p (0) =

∑N
j=1 cj

#»vj . Then #»p (t) equals
∑N

j=1 e
−λjtcj

#»vj , where λj is the eigenvalue of L
corresponding to #»vj . Note that for the eigenvalues of L it holds that 0 = λ1 < λ2 ≤ . . . ≤ λN , since L
is positive semidefinite and only #»v1 =

#»
1 has eigenvalue 0. Thus as t→ ∞ the probability distribution

#»p (t) converges to a stationary distribution and the time this takes is proportional to 1
λ2
, the inverse

of the second smallest eigenvalue of L, in the worst case.

5.2 The Continuous-Time Quantum Walk

The continuous-time quantum walk is defined analogously to the continuous-time classical Markov
chain. Again consider the graph G with vertex set V of size N . Let H be the Hilbert space spanned by
the vertices of the graph. So H is spanned by the set {|vi⟩ : vi ∈ V }. For the continuous-time quantum
walk we do not need a coin space and the state of the particle |Ψ(t)⟩ consists only of a superposition
of basis states |vi⟩.

Now we consider the following differential equation for the particle state

d |Ψ(t)⟩
dt

= −iH |Ψ(t)⟩ , (5.5)

with H a Hermitian operator. This equation looks very similar to the Schrödinger equation with ℏ
set equal to 1. When we choose H = L the Laplacian operator, we get an equation very similar to
equation 5.3, only with #»p (t) replaced by the particle state and the right side multiplied by i. The
solution of equation 5.5 is very similar in form to the solution of the classical Markov Chain, namely

|Ψ(t)⟩ = e−iHt |Ψ(0)⟩ . (5.6)

We take this as the definition of the continuous quantum walk. Given a Hermitian operator H, the
Laplacian L for our purposes, the initial particle state is transformed to the particle state at time t
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by applying the unitary operator e−iHt. When we write our particle state as a column vector, we can
again write down the particle state as a superposition of eigenstates of H. When |Ψ(0)⟩ =

∑N
j=1 cj

#»vj ,

|Ψ(t)⟩ =
∑N

j=1 e
−iλjtcj

#»vj , where λj is the eigenvalue of L corresponding to #»vj .

5.3 Laplacian Eigenvalues of 2-Layer Multiplex Graphs

In this section we consider the eigenvalues of the Laplacian of a special type of graph, namely a
multiplex graph. A multiplex graph is made up of multiple layers and has the property that vertices
in different layers can only be connected if they are each other’s counterparts. See figure 10 for an
example. The strength of the connections between the layers can be varied and we want to study the
behaviour of the eigenvalues of the Laplacian as we vary this strength. We will replicate the analysis
of the eigenvalues of L for different strengths as is done in [GDGGG+13]. Since for the continuous-
time Markov chain the probability distribution #»p (t) converges to a stationary distribution in time
proportional to 1

λ2
, we will pay extra attention to the second smallest eigenvalue of the Laplacian. The

results of this section will also be applied to the continuous quantum walk in the next section.
Let us first explain the concept of a multiplex graph. A multiplex graph is a special type of

multilayer graph. The vertices of different layers are replicates of each other. So for every two layers,
a vertex in one layer has a counterpart in the other. The way the vertices are connected within a layer
however, differs for different layers. The layers themselves are connected by edges between the vertices
that are each other’s counterparts. See figure 10 for an example of a 2-layer multiplex graph.

The different layers of the multiplex graph can for example represent different transportation net-
works (e.g., the bus, the subway)[Bar11] or social networks(e.g., Facebook, Threads)[GDGGG+13].
When the connections between the layers have a different strength compared to the connections within
the layers, for example when the value of the transition rate γ varies, multiplex graphs can be useful
tools to analyse these networks.

Figure 10: An example of a multiplex graph made up of two layers taken from [GDGGG+13]. The
vertices in both layers are copies of each other, but the connections within the layers are different. The
connections between the layers are formed by the edges connecting duplicate vertices. In section 5.4
the red vertex is taken as the starting point of a quantum walk for which the mixing time is computed.

We will only consider 2-layer multiplex graphs. Let N be the number of vertices in each layer.
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We set the transition rate γ1 within the layers equal to 1 and vary the transition rate γ2 between the
layers. When L1, L2 are the Laplacians of the layers when isolated,

L =

(
L1 0
0 L2

)
+ γ2

(
I −I
−I I

)
(5.7)

is the Laplacian of the multiplex graph. When γ2 = 0, the set of eigenvalues of L is the union of the
set of eigenvalues of L1 and the set of eigenvalues of L2. So λ2 = min{λ12, λ22}, where λ

1,2
2 are the

second smallest eigenvalues of L1 and L2 respectively.

When γ2 ̸= 0, 2γ2 is always an eigenvalue of L with corresponding eigenvector

( #»
1

− #»
1

)
. So for small

values of γ2, λ2 = 2γ2.
We now consider the case for γ2 very large. Write ϵ = 1

γ2
, then

L = γ2

[(
I −I
−I I

)
+ ϵ

(
L1 0
0 L2

)]
= γ2L̃. (5.8)

Note that

(
I −I
−I I

)
has the N -degenerate eigenvalues 0 and 2 with eigenvectors

(
#»u
#»u

)
and

(
#»u
− #»u

)
respectively. Thus as γ2 −→ ∞, L has N eigenvalues 2γ2 diverging to infinity and N eigenvalues
converging to some finite value as a result of the undetermined limit (0 ·∞). We will use perturbation
theory to find these eigenvalues.

We propose that the eigenvalues and eigenvectors of L̃ have the following form

λ̃i = λ̃
(0)
i + ϵλ̃

(1)
i +O(ϵ2), (5.9)

#»
ṽi =

#»
ṽi

(0) + ϵ
#»
ṽi

(1) +O(ϵ2). (5.10)

Since we only want to consider the eigenvalues that converge for γ2 −→ ∞, we consider the following
perturbed eigenvalues and -vectors

λ̃ = 0 + ϵλ̃′ +O(ϵ2), (5.11)

#»
ṽ =

(
#»u
#»u

)
+ ϵ

(
#»u ′

1
#»u ′

2

)
+O(ϵ2). (5.12)

When we put this in the equation L̃
#»
ṽ = λ̃

#»
ṽ ,

ϵ

(
L1

#»u + ( # »u1
′ − # »u2

′)
L2

#»u + (− # »u1
′ + # »u2

′)

)
= ϵλ′

(
#»u
#»u

)
+O(ϵ2). (5.13)

So we can write
(L1 + L2)

#»u = 2λ̃′ #»u +O(ϵ). (5.14)

by adding the bottom of expression 5.13 to the top and multiplying by γ2. Thus #»u must be an
eigenvector of L1 + L2 and we expect the eigenvalues of L to converge to

λ = λ̃′ =
λs
2
, (5.15)

where λs is an eigenvalue of L1+L2. So the second smallest eigenvalue of L converges to to the second
smallest eigenvalue of L1+L2

2 . Since it must hold that this eigenvalue is larger than min{λ12, λ22},
we see that for large γ2, the convergence of #»p (t) in the multiplex graph is faster than in the layer
argmini{λi2 : i = 1, 2}.

For the multiplex graph in figure 10, the eigenvalues of the Laplacian were computed using Mathe-
matica and are plotted in figure 11. We see that as γ2 −→ ∞ half of the eigenvalues converge to some
finite value and the other half diverge like 2γ2 as expected.
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Figure 11: The eigenvalues of the multiplex graph in figure 10 are plotted for varying γ2. We see that
indeed half of the eigenvalues diverge to infinity and the other half converges.

In figure 12 λ2 as a function of γ2 is plotted using Mathematica. We see that 2γ2 is indeed a good
approximation of λ2 for small values of γ2 and that the second smallest eigenvalue of L1+L2

2 is a good
approximation for large values of γ2. We can also see that in this case λ2 of L is larger than the second
smallest-eigenvalues of both L1 and L2.
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Figure 12: The smallest eigenvalue λ2 of the Laplacian L is plotted as a function of γ2 for the multiplex
graph in figure 10. We see that 2γ2 is a good approximation for λ2 for small values of γ2 and that the
second smallest eigenvalue of the L1+L2

2 is a good approximation for large values of γ2.

5.4 Mixing Times of The Continuous Quantum Walk on 2-Layer Multiplex
Graphs

Similar to the discrete quantum walk, the time average of the probability distribution of the continuous
quantum walk converges. We will use this fact to define the mixing time of the continuous quantum
walk and consider how this quantity behaves on multiplex graphs with varying γ2. Specifically, we will
consider multiplex graphs whose layers are generated by the Erdős–Rényi model.

To show that the time average of the probability distribution of the continuous quantum walk
converges we will consider the integral

1

T

∫ T

0

∣∣⟨v| e−iHt |Ψ(0)⟩
∣∣2 dt (5.16)

which equals the time average of the probability to find the particle in vertex v upon measurement
from time 0 to time T . Again we expand |v⟩ , |Ψ(0)⟩ in the orthonormal basis of eigenvectors of H.

1

T

∫ T

0

∣∣∣∣∣
(∑

λi

c̄i ⟨λi|

)
e−iHt

(∑
λi

di |λi⟩

)∣∣∣∣∣
2

dt =
1

T

∫ T

0

∣∣∣∣∣∑
λi

c̄idie
−iλit

∣∣∣∣∣
2

dt

=
1

T

∫ T

0

∑
λi

∑
λj

c̄idicj d̄je
−i(λi−λj)t dt =

∑
λi,λj

λi=λj

c̄idicj d̄j +
1

T

∑
λi,λj

λi ̸=λj

c̄idicj d̄j
−i(λi − λj)

(e−i(λi−λj)T − 1),

(5.17)

which must converge to a constant value as T −→ ∞.
Denote the time average of the probability distribution from time 0 to t by P̄ (t) and its limit by #»π .

We can then define the ϵ-mixing time for the continuous quantum walk similar to how it was defined
for the discrete case.
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Definition 5.1 (ϵ-mixing time continuous quantum walk). The ϵ-mixing time of a continuous quantum
walk on a graph with limiting average distribution #»π for a given initial state is given by

Mϵ = inf{T : ∀t ≥ T,
∥∥P̄ (t)− #»π

∥∥ < ϵ},

where ∥·∥ is the 1-norm.

Given the final expression in equation 5.17, we can write for a graph G with vertex set V such that
for v ∈ V , |v⟩ =

∑
λi
cvi |λi⟩,

∥∥P̄ (T )− #»π
∥∥ =

∑
v∈V

∣∣∣∣∣∣∣∣
1

T

∑
λi,λj

λi ̸=λj

c̄vi dic
v
j d̄j

−i(λi − λj)
(e−i(λi−λj)T − 1)

∣∣∣∣∣∣∣∣ ≤
1

T

∑
v∈V

∑
λi,λj

λi ̸=λj

∣∣∣∣∣ c̄vi dic
v
j d̄j

−i(λi − λj)
(e−i(λi−λj)T − 1)

∣∣∣∣∣.
(5.18)

Then as in [CLR20] we can write

∥∥P̄ (T )− #»π
∥∥ ≤ 1

T

∑
λi,λj

λi ̸=λj

∑
v∈V

∣∣c̄vi cvj ∣∣ ∣∣did̄j∣∣2|λi − λj |
≤ 1

T

∑
λi,λj

λi ̸=λj

∣∣did̄j∣∣2
|λi − λj |

, (5.19)

since5
∣∣c̄vi cvj ∣∣ = |⟨v|λi⟩ ⟨λj |v⟩| ≤ 1

2 (|⟨v|λi⟩|
2
+ |⟨λj |v⟩|2) and

∑
v∈V |⟨v|λi⟩|2 = 1.

Hence we expect the ϵ-mixing time to be bounded by

1

ϵ

∑
λi,λj

λi ̸=λj

∣∣did̄j∣∣2
|λi − λj |

. (5.20)

Thus whereas in the classical case the convergence rate of #»p (t) is determined by the second smallest
eigenvalue, in the quantum case it is determined by all eigenvalue gaps |λi − λj | ≠ 0 of the Laplacian.

Now we want to look at how the mixing time behaves on 2-layer multiplex graphs for varying
γ2. We expect that, analogous to the classical case, the mixing time converges as γ2 goes to infinity,
since the eigenvalues of the Laplacian converge and hence the values of the eigenvalue gaps. For the
multiplex graph in figure 10, the sum

∑
λi,λj

λi ̸=λj

1
|λi−λj | as a function of γ2 has been computed and

plotted in figure 13 using Mathematica. The code can be found in Appendix A.4. We see that the sum
is particularly large around 1 and converges for large values of γ2. This is as expected if we consider
figure 11. Around 1 the different eigenvalues are very close to each other, hence the sum grows very
large. For large values of γ2 the eigenvalues converge to the eigenvalues of (L1 + L2)/2, so the sum
converges as well.

5a2 + b2 ≥ 2ab for any two real numbers a and b.
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Figure 13: The sum
∑

λi,λj

λi ̸=λj

1
|λi−λj | has been computed as a function of γ2 for the multiplex graph in

figure 10. We see that the sum peaks around 1, where the eigenvalues of the Laplacian of the graph
are very close to each other. We also see that for large γ2 the sum converges as expected, since the
eigenvalues converge as well.

In figure 14, the 0.1-mixing time of the quantum walk starting on the red vertex in figure 10 has
been plotted. We see that the mixing time peaks in the same places around 1 as the sum does in figure
13. For large values of γ2 the mixing time seems to converge as expected, however there are a few
unexpected peaks that do not correspond to any peaks of the sum. These peaks might be caused by
variations in the coefficients ci, di of the expansions of the initial state |Ψ(0)⟩ and vertex state |v⟩ in
terms of the orthonormal basis of eigenvectors as γ2 changes. Note that the mixing time depends on
the initial position. When we would have started on a different vertex than the red one, the behaviour
of the mixing time would have been slightly different.
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Figure 14: Mixing time of the continuous quantum walk on the graph in figure 10 starting on the red
vertex for different values of γ2. The peaks in mixing time around 1 correspond to the peaks in figure
13. The mixing time also seems to converge for large values of γ2, however there are a few unexpected
peaks.

The 0.05-mixing time has also been computed for 2-layer multiplex graphs where each layer is a
graph generated by the G(300, 1/2) Erdős–Rényi model. This model constructs a graph of 300 vertices
and every two vertices are connected with probability 1/2. Since this model generates a different graph
each time it is called upon, for every value of γ2 we compute the average of the 0.05-mixing times of
1000 multiplex graphs. These averages are plotted in figure 15 together with the standard deviation.
The Python code used to compute these values can be found in Appendix A.6. Note that since the
statistical properties of every vertex are the same, the starting vertex of each of the 1000 quantum
walks is not expected to have much influence on the value of the average mixing time.
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Figure 15: For different values of γ2 the average of the 0.05-mixing times of 1000 multiplex graphs is
shown. Every multiplex graph consists of 2 layers that are generated by the G(300, 1/2) Erdős–Rényi
model. The standard deviation is also plotted. We see that initially the average mixing time peaks
and then converges. This is as expected since the eigenvalues of the Laplacian converge as described
in the last section.

We see that the average mixing time initially increases rapidly. It then converges for large values
of γ2 as expected since the eigenvalues of the Laplacian L converge to the eigenvalues of (L1 + L2)/2.
In this case, however, the matrices L1 and L2 are the random matrices

∑
i̸=1X1i −X12 · · · −X1N

−X21

∑
i̸=2X2i · · · −X2N

...
. . .

...
−XN1 · · · −XN(N−1)

∑
i ̸=N XNi

 (5.21)

where Xij are independent p = 1
2 Bernoulli random variables for j > i and Xij = Xji. The matrix

L1 + L2 then equals 
∑

i ̸=1 Y1i −Y12 · · · −Y1N
−Y21

∑
i̸=2 Y2i · · · −Y2N

...
. . .

...
−YN1 · · · −YN(N−1)

∑
i ̸=N YNi

 (5.22)

with Yij = X1
ij+X

2
ij binomial B(n = 2, p = 1/2) independent random variables for j > i and Yij = Yji.

In further research lower bounds on the eigenvalue gaps of these matrices could be investigated in terms
of their size N to find upper bounds for the mixing time in the limits γ2 −→ 0 and γ2 −→ ∞.
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6 Conclusions

For the discrete quantum walk on the line with an absorbing boundary it has been shown that the
probability of the particle performing the quantum walk to be eventually absorbed equals 2

π . The
particle could therefore walk forever without getting absorbed. This is in stark contrast to the classical
case where the probability to be eventually absorbed equals 1.

In chapter 4 it has been shown that quantum walks are quasi-periodic in contrast to classical
random walks which often reach stationary distributions. It has also been shown that the mixing time
of the discrete quantum walk on the hypercube scales linearly with the dimension n of the hypercube,
unlike the classical random walk for which the mixing time is of the order O(n log n). The quantum
walk thus offers a slight speed-up compared to the classical random walk.

Finally, in chapter 5 it has been shown that the mixing times of continuous-time quantum walks
on multiplex graphs are determined by the eigenvalue gaps of the Laplacian. This is in contrast to
the classical case where only the value of the second smallest eigenvalue λ2 is relevant. Similar to the
classical case, we conclude that the mixing times converge as γ2 −→ ∞, since the eigenvalues of the
corresponding Laplacian matrix converge to the eigenvalues of the sum of the Laplacian matrices of
the layers (L1+L2)/2. When the two layers are graphs generated by the Erdős–Rényi model, L1+L2

is a random matrix and further research could be conducted to derive bounds on the eigenvalue gaps
of this graph such that bounds on the mixing time can be found.
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A Code

In this part of the appendix the most important pieces of code used in this report are collected.

A.1 Absorption Probability Semi-Infinite Quantum Walk

In section 3.2 it is shown that the probability to be eventually absorbed by an absorbing boundary
placed at the origin equals 2

π for the quantum walk on the line. This result was numerically verified
by the following code.

import numpy as np

import math

import scipy.sparse as sparse

'''

We try to approximate the probability to be absorbed by the boundary placed at

0 eventually,sum ||Pi U ((I - Pi)U)^(t-1) |psi_0>||^2 , by using a finite sum

'''

#number of terms of sum

lengte_som = 1000

#Making operators

#Identity minus projection

IminPi = np.identity(2*(lengte_som + 2))

IminPi[lengte_som+2, lengte_som+2] = 0

#Projection

Pi = np.zeros((2*(lengte_som + 2), 2*(lengte_som + 2)))

Pi[lengte_som+2, lengte_som+2] = 1

#Hadamard coin

H = (1/np.sqrt(2))*np.array([[1, 1],[1, -1]])

I = np.identity(lengte_som + 2)

#Shift

S = np.block([[np.eye(lengte_som + 2, lengte_som + 2, -1),

np.zeros((lengte_som + 2, lengte_som + 2))],

[np.zeros((lengte_som + 2, lengte_som + 2)),

np.eye(lengte_som + 2, lengte_som + 2, 1)]])

#U = S(CxI)

U = np.matmul(S, np.kron(H, I))

IminPiU = sparse.csr_matrix(np.matmul(IminPi, U))

PiU = sparse.csr_matrix(np.matmul(Pi, U))

#Initial state

psi_0 = np.zeros(2*(lengte_som + 2))

psi_0[1] = 1

#Summing

som = 0

for i in range(lengte_som):

som += np.linalg.norm(sparse.csr_matrix.dot(PiU, psi_0), ord = 2)**2

psi_0 = sparse.csr_matrix.dot(IminPiU, psi_0)

#Sum total

print('approximation:', som)
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print('2/pi:', (2/np.pi))

A.2 Quantum Walk on the Hypercube

To perform a quantum walk on a Hypercube as done in section 4.2 the following code was used.

import numpy as np

import matplotlib.pyplot as plt

import networkx as nx

import math

import scipy.sparse as sparse

def WalkNsteps(G, degree, N_steps, particle, coin = 'DFT'):

if coin == 'DFT':

CoinxI = CoinOperatorDFT(degree, int(len(particle)/degree))

elif coin == 'Grover':

CoinxI = CoinOperatorGrover(degree, int(len(particle)/degree))

#Shift operator

S = sparse.csr_matrix(ShiftOperator(G, len(particle)))

#Walking

for i in range(0, N_steps):

print(i)

#Apply coin operator

particle = np.dot(CoinxI, particle)

#Now we apply the shift operator

particle = sparse.csr_matrix.dot(S, particle)

#Return the final particle state

return particle

def ShiftOperator(G, DegreeTimesNodes):

S = np.zeros((DegreeTimesNodes, DegreeTimesNodes))

for j in range(DegreeTimesNodes):

#The label corresponding to index j

lab = math.ceil((j+1)/N_nodes)

#The node corresponding to index j, when we call node (0,0,...,0)

#0, node (0,0,..,0,1) 1 etc. So we count in binary.

node = j % N_nodes

noot = list(G)[node]

#Looking for the neighbour on the other side of the edge with the right

#label

for nbr in range(0, len(G[noot])):

neighbour = list(G[noot])[nbr]

if G[noot][neighbour]['label'] == lab:

#Now our node with label gets shifted to the neighbour

#that is on the other end of the edge with the right label

#We need to get the right index for our

#neighbouring node

nummer_neighbour = list(G.nodes()).index(neighbour)

S[(lab - 1) * N_nodes + nummer_neighbour, j] = 1

return S

#Making the DFT coin operator

def CoinOperatorDFT(degree, N_nodes):

w = np.exp(2j*np.pi/degree)

DFT_coin = np.zeros((degree, degree), dtype = complex)

for i in range(0, degree*degree):

#Computing row column for given i
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row = math.ceil((i+1)/degree)

column = (i+1) % degree

if column == 0:

column = degree

else:

True

#raising w (representing omega) to the correct power

#corresponding to that row and column

DFT_coin[row-1][column - 1] = w**((row-1)*(column-1))

DFT_coin = 1/np.sqrt(degree) * DFT_coin

#Taking the kronecker product, because we have to take tensor products

I = np.identity(N_nodes)

DFTxI = np.kron(DFT_coin, I)

return DFTxI

def CoinOperatorGrover(degree, N_nodes):

#Making the coin operator

Grover_coin = np.full((degree, degree), 2/degree) - np.diag(np.ones(degree))

I = np.identity(N_nodes)

GroverxI = np.kron(Grover_coin, I)

return GroverxI

def NodeProbs(particle, degree):

#Computing the probabilies to be at each node

node_weights = np.zeros(N_nodes)

for i in range(degree):

node_weights += np.abs(particle[(i*N_nodes):((i+1)*N_nodes)])**2

return node_weights

###############################################################################

#Dimension of hypercube

n_dim = 2

#The degree

degree = n_dim

#The number of nodes

N_nodes = 2**n_dim

#Number of steps we take during the walk

N_steps = 100

#Which coin we use

coin = 'Grover'

#Making hypercube of dimension n

G = nx.hypercube_graph(n_dim)

###############################################################################

#Labeling the edges.

#Running through all edges

#i can be ((0,0,0),(1,0,0)) for example

for i in G.edges():

#Comparing the bits of the neighbouring nodes

for j in range(len(i[0])):

if i[0][j] != i[1][j]:

#Labeling the edges by which bit flipped

G.edges[i]['label'] = j + 1
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###############################################################################

#Initializing particle state

#Particle state, we run through nodes (0,0,..,0) up to (1,1,...,1)

#for each label 1 up to degree = n_dim

particle = np.zeros(degree * N_nodes, dtype = complex)

#initialize our particle uniformly over all labels and as being at node 0

particle[0] = 1/np.sqrt(2)

particle[N_nodes] = 1/np.sqrt(2)

###############################################################################

#Now walking

#Drawing graph with probabilities

particle_final = WalkNsteps(G, degree, N_steps, particle, coin)

node_weights = NodeProbs(particle_final, degree)

A.3 Mixing Times on the Hypercube

To compute mixing times on the hypercube, see section 4.3, the following code was used. It makes use
of some of the functions as found in the code in Appendix A.2.

import numpy as np

import matplotlib.pyplot as plt

import networkx as nx

import math

import scipy.sparse as sparse

def MixingTime(G, degree, N_times, particle, coin = 'DFT'):

#Make coin operator

if coin == 'DFT':

CoinxI = sparse.csr_matrix(CoinOperatorDFT(degree,

int(len(particle)/degree)))

elif coin == 'Grover':

CoinxI = sparse.csr_matrix(CoinOperatorGrover(degree,

int(len(particle)/degree)))

#Shift operator

S = ShiftOperator(G, len(particle))

#First compute average distribution

particle_0 = np.copy(particle)

av_dist = NodeProbs(particle_0, degree)

for i in range(0, N_times):

print('to stationary', i, degree)

#Apply coin operator

particle_0 = sparse.csr_matrix.dot(CoinxI, particle_0)

particle_0 = sparse.csr_matrix.dot(S, particle_0)

av_dist += NodeProbs(particle_0, degree)

av_dist = av_dist/N_times

#Compute mixing time

particle_0 = np.copy(particle)

#Time step

step = 0

#Number of steps we have been epsilon close

steps_under = 0

#Average distribution up till now

av_dist_step = NodeProbs(particle_0, degree)

#Distance
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epsilon = np.linalg.norm(av_dist_step - av_dist, ord = 1)

if epsilon < 0.3:

steps_under += 1

while steps_under < 500:

step += 1

print('Convergence:', step)

particle_0 = sparse.csr_matrix.dot(CoinxI, particle_0)

particle_0 = sparse.csr_matrix.dot(S, particle_0)

av_dist_step += NodeProbs(particle_0, degree)

epsilon = np.linalg.norm(av_dist_step/(step) - av_dist, ord = 1)

if epsilon < 0.3:

steps_under += 1

else:

steps_under = 0

mix_time = step - 499

#Return the mixing time

return mix_time

###############################################################################

#Mixing time

#all mixing times up to dimension

n = 12

MixTime = np.zeros(n-1)

for i in range(0, n-1):

#Dimension of hypercube

n_dim = i + 2

#The degree

degree = n_dim

#The number of nodes

N_nodes = 2**n_dim

#Which coin we use

coin = 'Grover'

#Making hypercube of dimension n

G = nx.hypercube_graph(n_dim)

###############################################################################

#Labeling the edges.

#Running through all edges

#i can be ((0,0,0),(1,0,0)) for example

for j in G.edges():

#Comparing the bits of the neighbouring nodes

for k in range(len(j[0])):

if j[0][k] != j[1][k]:

#Labeling the edges by which bit flipped

G.edges[j]['label'] = k + 1

###############################################################################

#Initializing particle state

#Particle state, we run through nodes (0,0,..,0) up to (1,1,...,1)

#for each label 1 up to degree = n_dim

particle = np.zeros(degree * N_nodes, dtype = complex)

#initialize our particle uniformly over all labels and as being at node 0

for j in range(n_dim):

particle[j*N_nodes] = 1/np.sqrt(n_dim)
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###############################################################################

MixTime[i] = MixingTime(G, degree, 10000, particle, coin)

A.4 Sum of Eigenvalue Gaps

The following Mathematica code was used to compute the sum
∑

λi,λj

λi ̸=λj

1
|λi−λj | in section 5.1 for the

multiplex graph in figure 10.

L1 = {{2, 0, 0, 0, -1, -1}, {0, 3, 0, -1, -1, -1}, {0, 0, 2, 0, -1, -1},

{0, -1, 0, 2, -1, 0}, {-1, -1, -1, -1, 5, -1}, {-1, -1, -1, 0, -1, 4}}

L2 = {{2, 0, -1, -1, 0, 0}, {0, 3, 0, -1, -1, -1}, {-1, 0, 2, -1, 0, 0},

{-1, -1, -1, 4, -1, 0}, {0, -1, 0, -1, 2, 0}, {0, -1, 0, 0, 0, 1}}

fdist[gamma_] :=

Module[{L, lambda},

L = ArrayFlatten[{{(L1 + gamma*IdentityMatrix[6]), -gamma*IdentityMatrix[6]},

{-gamma*IdentityMatrix[6], (L2 + gamma*IdentityMatrix[6])}}];

Eigs = Eigenvalues[L];

Som = 0;

Do[Do[Som +=

If[Abs[Eigs[[i]] - Eigs[[j]]] == 0, 0, 1/Abs[Eigs[[i]] - Eigs[[j]]]]

, {j, 1, 12}]

, {i, 1, 12}];

Return[Som]

]

A.5 Mixing Times of a Small Multiplex Graph

To compute the mixing times of the continuous quantum walk starting in the red vertex of the graph
in figure 10, the following Python code was used.

import networkx as nx

import numpy as np

from scipy.linalg import expm

import scipy.sparse as sparse

def MakeH(G_top, G_bottom, gamma2):

#The 2 layers of the multiplex graph

L1 = sparse.csr_matrix.todense(nx.laplacian_matrix(G_top))

L2 = sparse.csr_matrix.todense(nx.laplacian_matrix(G_bottom))

#Making off-diagonal part

N_nodes_layer = len(G_top.nodes)

OD = gamma2*np.identity(N_nodes_layer)

#Making matrix H

H = np.block([[L1 + OD, -OD],[-OD, L2 + OD]])

return H

#Number of nodes per layer

N_nodes_layer = 6

#List of values of gamma2

gamma2list = np.logspace(-3, np.log10(300), 10000)

#Making top layer

G_top = nx.Graph()
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G_top.add_nodes_from([1,2,3,4,5,6])

G_top.add_edges_from([(1,5),(1,6),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(5,6)])

#Making bottom layer

G_bottom = nx.Graph()

G_bottom.add_nodes_from([1,2,3,4,5,6])

G_bottom.add_edges_from([(1,3),(1,4),(2,4),(2,5),(2,6),(3,4),(4,5)])

#Stepsize

dt = 0.05

#Steps we take to reach the average

N_steps = 20000

#Computing the mixing times for the different gamma2s

#index of for loop

ind = 0

#mix time array

mix_time = np.zeros(len(gamma2list))

for gamma2 in gamma2list:

#Make Laplacian

H = MakeH(G_top, G_bottom, gamma2)

#Operator

U_sp = expm(-1j*H*dt)

#Computing average distribution

particle = np.zeros(N_nodes_layer*2)

particle[2] = 1

particle_t = np.copy(particle)

av_dist = np.abs(particle_t)**2

for i in range(N_steps):

particle_t = U_sp.dot(particle_t)

av_dist += np.abs(particle_t)**2

print(i, gamma2, N_nodes_layer)

av_dist = av_dist/(N_steps+1)

#Mixing time

particle_t = np.copy(particle)

#Step taken during loop to compute mixing time

step = 0

#average distribution to compare to av_dist

sum_dist = np.abs(particle_t)**2

#Distance between average distribution and stationary distribution

epsilon = np.linalg.norm(sum_dist - av_dist, ord = 1)

#Number of steps epsilon has been smaller than 0.1

steps_under = 0

if epsilon < 0.1:

steps_under += 1

while steps_under < 100:

step += 1

particle_t = U_sp.dot(particle_t)

sum_dist += np.abs(particle_t)**2

epsilon = np.linalg.norm(sum_dist/(step + 1) - av_dist, ord = 1)

if epsilon < 0.1:

steps_under += 1

else:

steps_under = 0
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#Save mixing time

mix_time[ind] = step - 99

ind += 1

mix_time = mix_time*dt

A.6 Mixing Times of a 2-Layer Erdős–Rényi Multiplex Graph

To compute the mixing time of a continuous quantum walk on 2-layer multiplex graphs where each
layer is generated by the Erdős–Rényi model as described in section 5.4, the following Python code
was used. The function MakeH() from the last section is necessary to run this code.

import networkx as nx

import numpy as np

from scipy.linalg import expm

import scipy.sparse as sparse

def MixTimeAverage(gamma2, N_nodes_layer):

#List of average mixing times

mix_average_list = np.zeros(N_graphs)

for g in range(N_graphs):

#We want a connected graph

con = False

#Making layers

while con == False:

#Can be quite slow

G_top = nx.erdos_renyi_graph(N_nodes_layer, 1/2)

G_bottom = nx.erdos_renyi_graph(N_nodes_layer, 1/2)

#Making multilayer graph

con = (nx.is_connected(G_top) and nx.is_connected(G_bottom))

#Make Laplacian

H = MakeH(G_top, G_bottom, gamma2)

#Stepsize

dt = 0.05

#Steps we take

N_steps = 10000

#Operator

U_sp = expm(-1j*H*dt)

#Computing average distribution

particle = np.zeros(N_nodes_layer*2)

particle[0] = 1

particle_t = np.copy(particle)

av_dist = np.abs(particle_t)**2

for i in range(N_steps):

particle_t = U_sp.dot(particle_t)

av_dist += np.abs(particle_t)**2

print(i, g, gamma2, N_nodes_layer)

av_dist = av_dist/(N_steps+1)

#Mixing time

particle_t = np.copy(particle)

#Step taken during loop to compute mixing time

step = 0

#average distribution to compare to av_dist

sum_dist = np.abs(particle_t)**2
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#Number of steps epsilon has been smaller than 0.05

steps_under = 0

#Distance between average distribution and stationary distribution

epsilon = np.linalg.norm(sum_dist - av_dist, ord = 1)

if epsilon < 0.05:

steps_under += 1

while steps_under < 100:

step += 1

particle_t = U_sp.dot(particle_t)

sum_dist += np.abs(particle_t)**2

epsilon = np.linalg.norm(sum_dist/(step + 1) - av_dist, ord = 1)

if epsilon < 0.05:

steps_under += 1

else:

steps_under = 0

mix_time = step - 99

mix_average_list[g] = mix_time

#Return mean and standard deviation

mix_average = np.mean(mix_average_list)

mix_average_std = np.std(mix_average_list)

return (mix_average, mix_average_std)

#Number of graphs to average over

N_graphs = 1000

#Number of nodes per layer

N_list = np.array([300])

#List of different values of gamma2

gamma2_list = np.array([0, 0.005, 0.01])

start = time()

#Array to store average mixing times in

data = np.zeros((len(gamma2_list), len(N_list)))

data_std = np.zeros((len(gamma2_list), len(N_list)))

#Finding all mixing times for different gammas and nodes

for g in range(len(gamma2_list)):

for n in range(len(N_list)):

res = MixTimeAverage(gamma2 = gamma2_list[g],

N_nodes_layer = N_list[n])

data[g][n] = res[0]

data_std[g][n] = res[1]
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B Labeling of Discrete Quantum Walks on General Graphs

To perform a discrete quantum random walk on a graph one first needs to find a labeling as explained
in section 4.1. In the case of a hypercube one can easily find a correct labeling by assigning an edge
the label i, if the n-bit strings of its endpoints differ in position i. In this way we find a labeling with
for each edge the same label at its endpoints. For general graphs it is not always possible to assign the
same label to an edge at both its endpoints, since this could lead to two different edges incident to a
vertex having the same label on the side of this vertex. See for example figure 16. Hence in general the
two endpoints of an edge will have different labels. One might think that to label such more general

1 2
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2
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4

Figure 16: This figure shows a graph with a labeling that is not allowed. Both edges incident to vertex
3 have label 2 on the side of vertex 3.

graphs one can simply take each vertex of the graph and give all incident edges a distinct label on the
side of that vertex. It turns out that this method of labeling the edges does not always give an allowed
labeling, since the shift operator defined in equation 4.1 might not be unitary. To see this we can look
at figure 17. Suppose we are in the state 1√

2
(|1⟩⊗ |2⟩+ |1⟩⊗ |3⟩), so we are in a superposition of being

at node 2, label 1 and node 3, label 1. If we now apply the shift operator as defined in equation 4.1,
we will end up in the state 2√

2
|1⟩ ⊗ |1⟩, which is not normalized.

1
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Figure 17: This figure shows a graph with a labeling that is not allowed. When applying the shift
operator to the state 1√

2
(|1⟩⊗ |2⟩+ |1⟩⊗ |3⟩), we end up in the state 2√

2
|1⟩⊗ |1⟩, which has norm

√
2.

The problem with the labeling in figure 17 is that there is a vertex, vertex 1, with two incident
edges that have the same label on the sides of its neighbours, vertices 2 and 3. In this way, two different
states, same label, but different vertex, will be mapped to the same state by the shift operator, hence
the shift operator is not unitary anymore. Thus, the condition on the labeling that guarantees the
shift operator to be unitary is that for every vertex, the labels of its incident edges on the sides of its
neighbours should be distinct.

It turns out that such a labeling can always be found. We can always rewrite a given graph, possibly
with added self-loops, as a d-regular directed graph by replacing each edge between two distinct vertices
by two directed edges and every self-loop by one directed edge, see for example figure 18. If we now can
label all directed edges with labels 1, . . . , d, such that for each vertex all outgoing edges have a distinct
label and all incoming edges have a distinct label, but an outgoing and incoming edge may have the
same label, then we have found a correct labeling for our original undirected graph by mapping the
label of the directed edge (v,w) to the undirected edge (v,w) on v ’s side.
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1
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Figure 18: The graph of figure 17 is rewritten as a directed graph. To find a correct labeling of the
original graph using labels 1, 2, we must label for every vertex all outgoing edges with a distinct label
and all incoming edges with a distinct label. An incoming and outgoing edge, however, may have
the same label. There is a bijective mapping between the labeling of this graph and its undirected
counterpart by assigning the label corresponding to a directed edge (v, w) to the undirected edge (v, w)
on the side of v.

To find a correct labeling, we can rewrite this directed graph as a d-regular bipartite graph[hp].
First we double the vertices, so the first set of the bipartite graph contains all vertices of the original
graph {vi : i = 1, . . . , N} and the second set contains their duplicates {v′i : i = 1, . . . , N}. Now
for every directed edge (v, w), draw an edge between v and w′, such that there exists a one-to-one
correspondence between the edges of the bipartite graph and the directed graph. See figure 19 for an
example.
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Figure 19: The graph of figure 18 is rewritten as a directed graph. The vertices are doubled and every
directed edge (v, w) corresponds to an edge (v, w′) in the bipartite graph. When we label the edges
with the labels 1, 2 in such a way that for every vertex all incident edges have a distinct label, we will
have found a correct labeling for the directed graph and hence for our original graph.
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If we can label the edges with d labels in such a way that for every vertex all incident edges have
a distinct label, we have found a correct labeling for our directed graph and thus a correct labeling
for our original graph. Indeed, for a vertex v in the directed graph all outgoing edges are incident to
vertex v in the bipartite graph and must therefore have a different label. Similarly, all incoming edges
correspond to the edges incident to vertex v’ in the bipartite graph and must also have a distinct label.
This problem of labeling the edges of a bipartite graph is a well-known edge-colouring problem and
there exist fast algorithms that solve this problem in O(E log(E))[Alo03] or even O(E log(d))[COS01]
time, where E and d are the number of edges and degree of the bipartite graph respectively. However,
repeatedly applying the Hopcroft–Karp–Karzanov algorithm[HK73], which takes at most O(E

√
V d)

time, might be easier, since it is already implemented in the NetworkX Python library.
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C Completing the Proof of Theorem 4.1

To complete the proof of theorem 4.1, we must prove the following claim.

Claim C.1. For any ϵ > 0 and ri ∈ (0,∞), θi ∈ (0, 2π), i = 1, 2, . . . , D, there exist infinitely many
positive integers N, such that

2

D∑
i=1

r2i (1− cos (θiN)) =

D∑
i=1

∣∣rie−iθiN − ri
∣∣2 < ϵ.

To do this, we will use Poincaré’s recurrence theorem as proven in [BV13a].

Theorem C.1 (Poincaré’s recurrence theorem). Let (X,Σ, µ) be a finite measure space. Let f : X →
X be a measurable map and let µ be an f -invariant measure on X. For each set E ∈ Σ, we have

µ(x ∈ E : fn(x) ∈ E for infinitely many values of n) = µ(E).

Now we can prove the claim.

Proof of claim C.1. Let X = (0, 2r1)×(0, 2π)×(0, 2r2)×· · ·×(0, 2rD)×(0, 2π). Consider the measure
space (X,B(X), µ), where B(X) is the Borel σ-algebra and µ is the Lebesgue measure. Now consider
the set

A = {(c1, ϕ1, . . . , cD, ϕD) ∈ X :

D∑
i=1

∣∣cieiϕi − ri
∣∣ < ϵ

2
}.

This set is open and thus an element of B(X); to see this, consider the standard metric on X

and ρ(x, y) =
∑D

i=1 |xi − yi| on CD. Since there is a continuous map g : X → CD defined by
g((c1, ϕ1, . . . , cD, ϕD)) = (c1e

iϕ1 , . . . , cDe
iϕD ) under which A is the preimage of an open ball, A must

be open.
Now consider the map f : X → X defined by

f((c1, ϕ1, . . . , cD, ϕD)) = (c1, ϕ1 − θ1 mod 2π, . . . , cD, ϕD − θD mod 2π).

Since this map only shifts points in X it preserves µ as shown in [BV13b]. Using theorem C.1, we
conclude that there must be a point x ∈ A, such that there are infinitely many N > 0 for which it
holds that fN (x) ∈ A. In other words, there exists a vector (c1, ϕ1, . . . , cD, ϕD), such that

D∑
i=1

∣∣cieiϕi − ri
∣∣ < ϵ

2

and
D∑
i=1

∣∣∣ciei(ϕi−θiN) − ri

∣∣∣ < ϵ

2
.

So for infinitely many positive integers N

D∑
i=1

∣∣rie−iθiN − ri
∣∣2 ≤

D∑
i=1

∣∣rie−iθiN − ri
∣∣ < D∑

i=1

∣∣∣rie−iθiN − cie
i(ϕi−θiN)

∣∣∣+ D∑
i=1

∣∣∣ciei(ϕi−θiN) − ri

∣∣∣ < ϵ,

where the first inequality holds, because when ϵ ≤ 1, the terms of the sum must be less than or equal
to 1 as well, and we only need to consider small ϵ.
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Lay Summary

Quantum mechanics has changed the way we look at our world. For most people it will be hard to
grasp that in the quantum world a particle does not have a well-defined position but is in a combina-
tion of multiple positions, even though when we look at the particle, it takes on a specific position.
Concepts such as these are confusing, yet they also hold much power and can be used to our own
benefit. Quantum mechanical phenomena can be exploited in special types of computers called quan-
tum computers. These devices are potentially capable of breaking widely used encryption schemes or
search through databases much faster than any classical computer could. Such applications are based
on quantum algorithms that can outdo classical algorithms on classical computers. To develop such
new quantum algorithms, new sets of tools are needed that are not yet present in classical comput-
ing. Quantum random walks appear to be one such set of tools that can help in the development
of quantum algorithms. They are the quantum versions of classical random walks, which are widely
used in classical computing. In a classical random walk, a particle walks randomly over a line by
repeatedly throwing up a coin. When the coin toss returns heads, the particle steps to the right; when
the toss returns tails, the particle steps to the left. In a quantum random walk, the particle does not
walk to the left or right, but walks both to the left and right as long as we don’t look at it. Only
when we look at the particle it takes on a specific position. It turns out that quantum random walks
walk significantly faster than classical random walks and could therefore be useful in developing fast
quantum algorithms. It is useful to know more about the tools you use and therefore it is important
to examine more features of the quantum random walk, which is the subject of this report.
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