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Bit by bit, I’ve realized
That’s when I need them

That’s when I need my father’s eyes
My father’s eyes

That’s when I need my father’s eyes,
look into my father’s eyes

My father’s eyes
Then the jagged edge appears

Through the distant clouds of tears
I’m like a bridge that was washed away

My foundations were made of clay
As my soul slides down to die

How could I lose him?
What did I try?

Bit by bit, I’ve realized
That he was here with me

And I looked into my father’s eyes

Eric Clapton
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Abstract

In the early years of numerical simulation methods, Fermi, Pasta, Ulam and Tsingou (FPUT) discovered that
an undamped, weakly nonlinear equation describing the motion of a chain of masses and springs could show
complex dynamics. Integration of these equations from an initial displacement in the form of the fundamen-
tal mode resulted in significant mode coupling: energy was transferred from the fundamental mode to several
other modes, before the energy would return to the initial condition. To date, very little observations of such
behavior in mechanical vibrations have been reported. Recent developments in fabrication of high stress
Silicon-Nitride (Si3N4) string resonators have shown that it is possible to generate resonators with extremely
high Q-factors, proving a potential testbed for these mechanics. This research shows, through modal con-
version of the FPUT potential, that one may observe significant FPUT behavior in systems with non-integer
frequency ratios and certain coupling coefficients. In addition, it is shown that for the default FPUT β-model,
the effect of damping is negligible for fundamental mode Q-factors higher than 10,000. Simulations of the ex-
perimental frequency response of a high-Q Si3N4 string resonator show that the nonlinear dynamics of these
resonators may be approximated by an analytical model that does not possess the required frequency ra-
tios and coupling coefficients for FPUT behavior. Another string model, for which no mechanical equivalent
has (yet) been found, may potentially show FPUT behavior. Several string-like resonator designs are tested
using a numerical tool which can extract the modal coefficients. These resonators are modelled using simpli-
fied deformation models, which account only for axial deformation of the structure. The results for various
string-like designs show that the eigenfrequencies and nonlinearity may be engineered easily, but these do
not generate the required coupling coefficient for FPUT behavior.
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1
Introduction

The document that lies in front of you is a study on the nonlinear dynamics of string resonators. Nonlinear
dynamics are inherently present in any structure. However, whether these -often complex- dynamics become
visible is largely related to the size of the structure and the environment it resides in.

Let’s for example take a guitar string. Gently plucking this string will generate a wave in the string, which will
cause vibration at its fundamental frequency. The air surrounding this string will also start to vibrate at this
frequency, generating waves. Eventually, these waves will enter the human ear, which the human perceives
as a sound or a tone. Once the guitar string is plucked, the tone will slowly fade out as time progresses. The
mechanism behind this fading-out is damping, which causes the string to lose the energy that was put into it
by plucking the string. Imagine that the fading-out happens on a much longer time-scale: the string will then
vibrate at a certain frequency for a very long time, as very little energy is lost in each vibration cycle.
By plucking the string stronger and stronger, one can generate waves that are so strong that the sound gener-
ated by the string changes slightly or that it may even cause one of the other strings to vibrate as well. Imagine
that we would pluck an undamped string so strongly that some of the other strings on the guitar are excited
as well, generating a different sound. Plucking this string strongly will thus excite other strings, which will
change the sound guitar produces as this sound will consist of many tones. In dynamics, these tones are of-
ten referred to as a ”mode”: each of these modes has its own tone (frequency) and a corresponding shape of
vibration (wavelength). The effect where a string of a guitar is excited through excitation of another string, is
caused by a coupling between various strings. However, this coupling is not only present between multiple
strings. Excitation of a single string can also cause excitation of multiple modes of this single string, which is
known as mode coupling. This mode coupling is most significant when a string is plucked strongly, specifi-
cally in the regime where the plucking force and the resulting string amplitude no longer follow a linear, but
a nonlinear relationship: the nonlinear regime.
Nonlinear dynamics are most easily observed for systems which have very little (or negligible) damping. Ex-
perimentally testing structures without any damping is quite an intensive process, as it requires very strict
environmental conditions. However, since the emergence of computers in the Fifties of the last century, this
has become significantly easier, since these computers can compute solutions to certain sets of equations
which represent the dynamics of the studied structures.
Before diving into the exact topic of this research, it is important to first look at some theories on dynamics,
as will be done in the next three sections.

1.1. Linear and nonlinear dynamics
Dynamics is the part of physics that is concerned with the response of systems to forces. The response of
a system to a force will cause motion of the system. In linear dynamics, the response to an (external) force
function F at time t is dependent on three system parameters: mass m, stiffness k and damping coefficient
c. This motion may be expressed in an equation; which is commonly referred to as an equation of motion.

1



2 1. Introduction

For a linear system, this equation of motion is as follows:

q̈ + c

m
q̇ + k

m
q = F (t )

m
. (1.1)

The equation clearly scales linearly with q , q̇ and q̈ , the amplitude, velocity and acceleration of the motion,
respectively. Once a system starts to vibrate, e.g. due to an excitation in the form of a instantaneous force
(e.g. by plucking it), it will deform, generating kinetic and potential energies. During the resulting vibration
cycle, the kinetic and potential energy will be exchanged continuously. These vibrations, like guitar strings,
do not continue infinitely, as some of the energy will be lost in each vibration cycle. At a certain frequency,
the response of the system is largest, and the kinetic and potential energies have equal magnitudes [31]. This
frequency is commonly referred to as the eigenfrequency and it is a function of the mass and stiffness of the
system, according to the following formula:

ω0 =
√

k

m
. (1.2)

In the absence of damping, any excitation would lead to an infinitely sustained motion. Should damping be
present in the system (i.e. c > 0), some of the energy will dissipate and thus this will (slightly) decrease the
eigenfrequency, generating a resonance frequency. The damping coefficient is often written in terms of the
resonance frequency and the (dimensionless) Q-factor: c = ω0

Q . This Q-factor is expressed as the ratio of in-
ternal energy versus the dissipated energy of a system [29, 36]. A system that has a clear response at a certain
frequency is called a resonator. The resonance frequency is often considered to be equal to the eigenfre-
quency under the assumption that damping is small. Any physical system, e.g. the guitar string, has many of
these eigenfrequencies, which each have their own shape, the combination is commonly referred to as modes
[19, 31]. Each of the modes of a string may be visualized, as is done in Figure 1.1 for the first three modes of
a string. The total response of a string may be a function of multiple modes. In the linear regime, the effects

Figure 1.1: The first three mode shapes of a string.

of other modes are usually small. However, as the force is increased, the amplitude increases and the linear
equation (Eq. 1.1) can no longer accurately describe the response of the system, as the displacement of the
string no longer scales linearly with the applied force. The origin of this behavior may be sought in the fact
that any vertical displacement (w in Fig. 1.2) of the string with length L will also cause the string to stretch
in the length direction by a factor ∆L. For small (linear) amplitudes (w ¿ L), this ∆L is negligible. For larger
amplitudes, this stretching is no longer negligible and thus a different formulation is required [19]. The effect
of this larger displacement is that the structure stretches, which in turn increases the tension in the material.
This additional displacement-induced-tension increases the resistance of the structure to displacements in a
nonlinear manner, resulting in a stiffness that scales with the cube of the displacement. This type of (geomet-
ric) nonlinearity commonly referred to as the Duffing nonlinearity. The following formula describes motion
of such a nonlinear resonator for a nonlinear coefficient b and a force of F̄ = F

m :

q̈ + ω0

Q
q̇ +ω2

0q +bq3 = F̄ cos(ω f t ). (1.3)
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Figure 1.2: String element of length L under a vertical displacement denoted by w . This displacement causes the length to increase
from L to L+∆L.

The example showed that the displacement-induced-tension increases the stiffness. For hardening nonlin-
earity, b is positive. If the displacement-induced-tension decreases the stiffness (softening), b is negative.
The frequency response of such a hardening Duffing resonator is depicted in Figure 1.3. Here, clearly, the

Figure 1.3: The response of a resonator with Duffing nonlinearity. The response is shown for several values of F. The frequencyΩ is
defined as ω0 −ω f . Source: [19].

frequency of the resonator that is associated to a certain amplitude increases as the drive power is increased,
due to the increase in stiffness from the positive (hardening) Duffing coefficient.
The previous examples have considered the vibration of a single mode. In reality, a system has multiple (an
infinite number of) modes, which become increasingly important once a system is driven further into the
nonlinear regime. The response for two modes (q1 and q2) can be expressed using the following formula [19]:

q̈1 + ω1

Q1
q̇1 +ω2

1q1 +b(1)
111q3

1 +b(1)
122q1q2

2 = F̄1 cos(ω f 1t )

q̈2 + ω2

Q2
q̇2 +ω2

2q2 +b(2)
112q2

1 q2 +b(2)
222q3

2 = F̄2 cos(ω f 2t ).
(1.4)

Both of these equations of motion contain a term that is dependent on the amplitude of both modes, the
b(1)

122- and b(2)
112-terms. These terms create a coupling between modes 1 and 2. This coupling may be induced

via various types of forces, but this report is primarily focused on the mechanical coupling between modes.
For special conditions of ω1 and ω2, this coupling is strongest, resulting in a stronger response of mode 2
through increased driving of mode 1. These special conditions are most significant for cases where ω1 = nω2

and n is integer. This relation, the internal resonance condition, couples the internal modes of the resonator.
The effects of this relation may be found by assuming that the modal amplitudes can be written in terms of a
trigonometric function, e.g. q1 = cos(ω1t ) and q2 = cos(ω2t ). Substituting these modal amplitudes into the
nonlinear parts of the first equation of motion gives Eq. 1.5.

F̄N L.1 = b(1)
111 cos3 (ω1t )+b(1)

122 cos(ω1t )cos2 (ω2t ) (1.5)

Using that cos3(ωt ) = 1
4 (3cos(ωt )+cos(3ωt )) and cos(ωi t )2 cos(ω j t ) = 1

4

(
cos((2ωi −ω j )t )+2cos(ω j t )+cos((2ωi +ω j )t )

)
will generate the following nonlinear force term:

F̄N L.1 = b(1)
111

1

4
(3cos(ω1t )+cos(3ω1t ))+b(1)

122

1

4
(cos((2n −1)ω1t )+2cos(ω1t )+cos((2n +1)ω1t )) (1.6)
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Which shows that the Duffing term (b(1)
111) excites both ω1 and a harmonic at 3ω1. The b(1)

122-term only excites
uneven harmonics of the first mode, causing coupling between the modes at these uneven harmonics of the
first mode. For example, if n = 3, the harmonic of the first mode in the Duffing term will weakly excite the
third mode and the coupling terms will also become stronger, generating energy transfer.

1.2. Fermi-Pasta-Ulam-Tsingou behavior
During the period when computers emerged as methods that could ”compute” solutions of complicated sci-
entific problems, many researchers began to see their potential in generation of new knowledge. Some of
these researchers were Fermi, Pasta, Ulam and Tsingou, who conducted a series of numerical experiments on
an undamped chain of N masses (of mass m = 1kg) and N +1 linear springs (of k = 1Nm−1), to which a small
nonlinear perturbation (α or β, Fig. 1.4a) was added, to generate the following equations of motion (EoM) of
mass i :

ẍi = (xi+1 +xi−1 −2xi )+α[(xi+1 −xi )2 − (xi −xi−1)2] (1.7)

ẍi = (xi+1 +xi−1 −2xi )+β[(xi+1 −xi )3 − (xi −xi−1)3], (1.8)

where i = 1,2, ..., N . The nonlinear perturbation, quadratic in the degrees of freedom for the α-model and
cubic for the β-model, was expected to aid in the rate at which the system would ”thermalize” to reach
equipartition: the state where all modes of the system have equal energy. However, to their astonishment,
they observed that when they would excite the first mode and let the system vibrate freely (ring down) over
time, the energy would first transfer to several higher modes (modes 3, 5 and 7 in Fig. 1.4b), before (nearly)
all of it returned to the initial condition after 15,000 cycles [11]! Similar to what was previously shown for the

(a)

(b)

Figure 1.4: 1.4a a chain of N masses of mass m, connected by N +1 springs of linear and nonlinear stiffness of k and β, respectively.
A.1a FPUT recurrence for the β-model, for N = 16 and β= 8N m3. Source: [11].

vibration of a guitar string, they thus observed that energy was exchanged between the modes (or tones) of
the string, before showing recurrent behavior, where the energy returned to the initially excited mode. This
phenomenon is referred to as Fermi-Pasta-Ulam-Tstingou (FPUT) recurrence.
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Since the publication of these results, many researchers have tried to explain the observed behavior through
mathematical and dynamical theories. A prominent explanation is provided by Zabusky and Kruskal, who
claim that the behavior may be approximated by the solutions of the Korteweg-de-Vries equation, which
generates stable waves which can interact while keeping their form (solitons), resulting in exchange of en-
ergy [4].
Later, Chirikov proposed an explanation that deals with chaos [4]. Chaos basically implies that a system is
extremely sensitive to the initial conditions; a slight change in these initial conditions may generate signifi-
cantly different dynamics. Chirikov claimed that the exchange of energy was generated through overlapping
nonlinear resonances of several modes of the system [6]. This theory theory of resonance is widely adopted
in later studies [12, 28, 33, 34].
Though many theories try to explain this behavior, the number of physical observations is scarce. There are
several reports of this behavior in optical waves, but for mechanical vibrations, this is hardly ever observed
as is shown in [23, 35]. Recently, Barnard showed that the thermal vibrations of a carbon nanotube (CNT)
can show quasi-periodic modulations over time (see Fig. 1.5), which is associated to a change in the reso-
nance frequencies the system [3]. Several modal frequencies appear to have an influence in these changes in
frequencies, and numerical simulations show that this is closely related to FPUT-behavior.

Figure 1.5: Amplitude of the CNT over time, showing quasi-periodic modulations in the amplitude over time. Source: [3].

Other than this work, there are no observations of such behavior in mechanical systems. Midtvedt stated
that FPUT behavior will only become visible for systems which have a strong (nonlinear) coupling already
for low energies, as well as a long time scale for dissipation to the environment, such that energy can be
exchanged among other modes before it is dissipated to the environment [21]. The first topic, the strength of
the nonlinearity, is often related to the geometry and/or material of a system, as was shown in the previous
section. The second topic, that of low dissipation (i.e. high Q-factors in Eq.’s 1.3 and 1.4), could be achieved by
using a material or structure which inherently has small energy dissipation. The next section will show what
the most dominant damping mechanisms in string resonators are, as well as means to mitigate this damping.

1.3. High Quality factor Silicon-Nitride string resonators
Recent developments in manufacturing techniques of Silicon-Nitride (Si3N4) (nano)resonators have made
these very small nanoresonators a promising test-bed system for FPUT behavior [10, 13, 37]. These nanores-
onators typically have lengths of around a millimeter and width and thicknesses even smaller than 10% of the
thickness of a hair. Si3N4 (string) resonators have been shown to exhibit excellent sensing performance: the
material is stable, allowing for constant dynamical characteristics and above all, these resonators have been
shown to achieve very low dissipation per vibration cycle (high Q-factors) [36, 37].
Many mechanisms appear to dissipate energy, e.g. through intrinsic, medium and clamping loss mecha-
nisms. Placing a resonator in a vacuum will reduce the medium losses, and thus two mechanisms remain:
clamping losses and internal (material) losses.
Material losses could result from irreversible motion of the atoms of the material, which results in energy
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losses. This type of dissipation mechanism is always present in a system; its magnitude depends on the type
of material of the resonator. Clamping losses are related to the shape of the resonator under vibration: near
the clamped edges of a string resonator, the string cannot deflect into a perfect mode shape (as is shown in
Fig. 1.1), which will cause energy to dissipate into the substrate of the resonator. Several methods have been
proposed to reduce this effect. Increasing the internal energy is one of them, as is shown in the following
equation.

Qstr ≈ Wtensi on

2πWbendi ng
Qbendi ng ≈ 0.5σA

∫ L
0 [ ∂

∂x u(x)]2d x

0.5E Iz
∫ L

0 [ ∂2

∂x2 u(x)]2d x
Qbending (1.9)

Here, Qbending is the Q-factor that accounts for losses in due to bending of the string in relaxed states [30].
The Q-factor of a string resonator may thus be increased by increasing the numerator of Eq. 1.9 by increasing
the pre-stress of the material [36, 37].

Secondly, by using strain engineering techniques [10, 13] one can reduce the clamping loss even further. This
method uses local variations in the strain of a resonator that localize a mode shape far away from the clamped
edges, as well as local increases in stress that further increase the internal energy, as is displayed in Fig. 1.6.
Internal (material) losses in string resonators could have two origins, volume and surface losses. In strings of

Figure 1.6: A design that reduces clamping losses by localizing the mode shape near the centre of the resonator. Source: [10].

thickness smaller than 400nm, the surface losses are most significant. The largest surface loss mechanisms
are those related to material and manufacturing roughness. Additionally, non-uniform strain fields will result
in thermal losses as the resulting non-uniform deformation causes heat production.
Several research groups have shown that high stress string resonators with a constant cross-section may reach
Q-factors around 1 million [30, 37]. Further reduction of the losses through strain engineering may increase
the Q-factor by another order of magnitude [10, 13]. Furthermore, the wide manufacturing possibilities of
these Si3N4 materials show that more complex geometries may also be fabricated [27], making this material
a possible test-bed for FPUT mechanics.

1.4. Goals of the research
This thesis is focused on dynamics and specifically the nonlinear dynamics of string-like resonators. The
goal of this thesis is to determine whether one may possibly observe Fermi-Pasta-Ulam-Tsingou recurrence
through mode coupling in string resonators.
To explore this, the following research questions are set-up:

1. What are the requirements of FPUT behavior?

2. Which models may predict the nonlinear dynamics of vertical vibrations in continuous string res-
onators?

3. Which string resonator designs could (in theory) potentially show FPUT behavior?

The research will first elaborate upon the requirements for Fermi-Pasta-Ulam-Tsingou (FPUT) recurrence.
Subsequently, analytical string models are proposed, which show what the origin of the nonlinearity in string
resonators is. These analytical string models are subsequently verified using experiments. Finally, the re-
semblance between the numerical FPUT experiment and string models is analyzed, before showing possible
improvements in string resonator designs to improve mode coupling in such resonators. The main findings
of this research are elaborated upon in a scientific paper format in Chapter 2. The conclusions, discussions
and recommendations of the research may be found in Chapter 3. More detailed information about the FPUT
problem, string vibrations and FPUT mechanics in string resonators may be found in Appendices A, B and C.
Supplementary material may be found in Appendix D to F.



2
Paper

This chapter will contain the main findings of the research. they are presented in a scientific paper.
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ABSTRACT
In the early years of numerical simulation methods, Fermi, Pasta, Ulam and Tsingou (FPUT) discov-
ered that an undamped, weakly nonlinear equation describing the motion of a chain of masses and
springs could show complex dynamics. Integration of these equations from an initial displacement in
the form of the fundamental mode resulted in significant mode coupling: energy was transferred from
the fundamental mode to several other modes, before the energy would return to the initial condition.
To date, very little observations of such behavior in mechanical vibrations have been reported. Re-
cent developments in fabrication of high stress Silicon-Nitride (Si3N4) string resonators have shown
that it is possible to generate resonators with extremely high Q-factors, proving a potential testbed for
these mechanics. This research shows, through modal conversion of the FPUT potential, that one may
observe significant FPUT behavior in systems with non-integer frequency ratios and certain coupling
coefficients. In addition, it is shown that for the default FPUT �-model, the effect of damping is negli-
gible for fundamental mode Q-factors higher than 10,000. Simulations of the experimental frequency
response of a high-Q Si3N4 string resonator show that the nonlinear dynamics of these resonators
may be approximated by an analytical model that does not possess the required frequency ratios and
coupling coefficients for FPUT behavior. Another string model, for which no mechanical equivalent
has (yet) been found, may potentially show FPUT behavior. Several string-like resonator designs are
tested using a numerical tool which can extract the modal coefficients. These resonators are mod-
elled using simplified deformation models, which account only for axial deformation of the structure.
The results for various string-like designs show that the eigenfrequencies and nonlinearity may be
engineered easily, but these do not generate the required coupling coefficient for FPUT behavior.

1. Introduction
In 1953, during the early years of numerical simulation

methods, Fermi, Pasta, Ulam and Tsingou conducted a series
of numerical experiments on the thermalization of various
nonlinear systems. One of those nonlinear systems was an
undamped chain of N masses, connected by N + 1 springs
with a linear stiffness and a weak nonlinear perturbation;
quadratic for the �-model and cubic for the �-model. The
Equations of Motion (EoMs) for this �-model are as follows
[11]:

ẍi = (xi+1 + xi−1 − 2xi) + �[(xi+1 − xi)3 − (xi − xi−1)3] (1)
here i = 1, 2, ..., N . The researchers hypothesized that this
nonlinear perturbation would cause the energy in the sys-
tem to thermalize quickly, leading to equipartition of energy.
However, to their astonishment, the energy appeared to be
distributed among several modes of the system, before re-
turning to the initial condition (Fig. 1). Up to now, many
research groups have undertaken efforts to explain this be-
havior: its origin is sought in nonlinear resonances which are
closely linked to chaos theories in nonlinear dynamics [6,
12]. Though many reports of theoretical research on these
Fermi-Pasta-Ulam-Tsingou (FPUT)mechanics have been pub-
lished, reports of experimental observations are scarce. Sev-
eral reports claim to have observed FPUT behavior in opti-
cal waves [23, 35]. However, observations of this behavior
in mechanical vibrations are much more scarce. Recently,
Barnard linked quasiperiodic behavior in the amplitude of
a carbon nanotube to FPUT behavior, but full recurrence is
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not observed there [3]. The lack of observations in mechan-
ical vibrations may be attributed to effects from damping
and (manufacturing) imperfections, which could limit en-
ergy transfer [26]. Recent advances in design and manufac-
turability of high stress Silicon-Nitride (Si3N4) resonatorsmay circumvent these limitations. High stress Si3N4 nanos-trings are shown to have low damping at room temperature
and good mechanical stability [37]. In addition, recent re-
search shows that more complicated designs may further in-
crease the Q-factors, through reduction of clamping losses
[10, 27]. This report will show which requirements should
be satisfied to observe this FPUT behavior in string-like res-
onator designs. The procedure is as follows: Section 2 will
first explore the requirements and limitations of FPUT be-
havior. Subsequently, two analytical string models will be
presented and experimentally verified in Section 3. Section
4 will then show if FPUT behavior may be observed for any
of these string models, as well as methods to improve the
modal coefficients of some designs. Finally, Section 5 will
elaborate upon the conclusions and possible improvements
of the research.

2. Fermi-Pasta-Ulam-Tsingou mechanics
The present study is focused on the �-model, as this (cu-

bic) order of nonlinearity is inherently present in string sys-
tems (Section 3). Time integration of the EoMs of Eq. 1,
and subsequent Fourier transformations generate a formula-
tion for the modal linear energy. This linear energy (con-
sisting of the kinetic and potential energy generated of the
system) was assumed to sufficiently represent the total en-
ergy, since the nonlinear energy remained small [11]. The
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FPUT researchers found that for an undamped chain of 16
mass elements (N = 16) of mass 1kg, connected to one
another with springs with linear stiffness k = 1Nm−1 and
nonlinearity � = 8Nm−3 (referred to as the ”default” FPUT
�-model), energy transfer and subsequent energy recurrence
may be observed. This section will show that by performing
a modal coordinate transformation, one may find the direct
relations between the respective modes of the model.

Figure 1: FPUT mechanics for N = 16 and � = 8N∕m3.
Adopted from [11].

2.1. FPUT model in modal coordinates
A modal coordinate transformation is quite an intensive

process, as the increase of Degrees of Freedom (DoFs) or
number of considered modes increases the number of equa-
tions and modal interactions. The number of DoFs may not
just be chosen randomly. Tuck and Menzel (née Tsingou)
have shown that the number of DoFs (N) determines the
magnitude of the initial nonlinearity in the EoMs: few DoFs
increase the initial nonlinearity, which could show different
dynamics [34].
The modal conversion is conducted for the default FPUT �-
model. The procedure is as follows: first, the EoMs from Eq.
1 are integrated to find the equations for the kinetic and po-
tential energies (Eq. 2). Subsequently, the modal energy for-
mulations are derived through substitution of Eq. 3 (where
subscript u denote max-1 eigenvectors, where �u) = 1). Theconversion from these max-1 eigenvectors to mass normal-
ized eigenvectors is conducted using the scaling parameter
� =

√
2
mtot

. Finally, the modal EoMs are found by taking
the derivatives of the energies with respect the modal coor-
dinates, generating Eq. 4.

T =
N∑
i=1

m
2
ẋ2i , V =

N+1∑
i=1

k
2
(xi − xi−1)2 +

�
4
(xi − xi−1)4 (2)

x = �T
u qu = ��

T
u qm → xi = �

6∑
n=1
sin

( �ni
N + 1

)
qk (3)

q̈r + k(r)r qr +
6∑
j=1

6∑
k=j

6∑
l=k

b(r)jklqjqkql = 0, r = 1, 2, ..., 6 (4)

Table 1
Single-mode modal coefficients for the default FPUT �-model.
The variables are normalized with respect to the first mode.

n (1) (2) (3) (4) (5) (6)
k̃n 1.00 3.97 8.80 15.33 23.34 32.55
!̃n 1.00 1.99 2.97 3.92 4.83 5.71
b̃nnn 1.00 15.73 77.39 236.39 625.60 1059.65

In thismodal conversion, it is assumed that the first sixmodes
of the system can represent the dynamics with sufficient ac-
curacy (hence the summation from 1 to 6 in Eq. 3). The lin-
ear frequency ratio of the fifth mode which is computed us-
ing the above-mentioned method is different to that resulting
from a modal analysis: 5.00 versus 4.83 respectively (App.
A.2). The former ratio generates little energy transfer, as
is shown in Fig. 2, which is a ringdown simulation (using
Matlab’s ODE45 solver) from an initial excitation of the first
mode. The origin of this discrepancy likely originates from
the modal conversion. The modal coefficients of the default
FPUT model are tabulated in Table 1, the nonlinear modal
coupling coefficients may be found in Table A.4.

Figure 2: FPUT simulation for N = 16 and � = 8Nm−3.
The linear frequency ratios of the first six modes of !0

!0
=

1.00, 1.99, 2.97, 3.92, 5.00 and 5.71.

The linear stiffness ratios from the modal analysis (k̃n)follow the equation:

k̃n =
!2n
!20

= 4 sin2
(

�n
2(N + 1)

)
∕ 4 sin2

(
�

2(N + 1)

)
(5)

which generates non-integer frequency ratios (shown by !̃nin Table 1), which are slightly lower than the mode number n
[33]. Irrational frequency ratios can generate quasiperiodic
behavior [24]. This could generate modulation of the am-
plitude (beatings, where the local minima and maxima vary
over time), as is shown in Fig. 3, resulting from a ringdown
simulation for initial excitation of the first mode. The energy
plot in Fig. 3 is similar to Fig. 1: it shows energy trans-
fer and energy recurrence. The exclusion of higher modes
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Figure 3: Numerical ring-down simulation for the modal EoMs
of the N = 16 and � = 8Nm−3, from initial excitation of the
first mode. (a) depicts the linear energy vs. time. (b) depicts
the modal amplitude vs. time.

Table 2
Modal coupling coefficients for modes 1,3, and 5 of the N =
16 FPUT �-model, normalized with respect to b(1)111.

Eq. (1) (3) (5)
b̃111 1 0.99 0
b̃113 2.97 17.59 14.83
b̃115 0 14.83 50.02
b̃133 17.59 0 43.99
b̃135 29.67 87.99 0
b̃155 50.02 0 0
b̃333 0 77.38 0
b̃335 43.99 0 440.05
b̃355 0 440.05 0
b̃555 0 0 625.60

than mode 6 causes some -expected- differences in the en-
ergy plots. The modal amplitude plot shows that though the
third mode’s energy is dominant for some time, its modal
amplitude remains smaller than that of the first mode. This
implies that while the amplitude of this mode remains small,
energy dominance may still occur due to higher linear stiff-
ness of higher modes. Energy transfer is generated by the
nonlinear coupling terms of the uneven modes (Table 2),
where the nonlinear parts of the EoMs are represented by
b(r)jklqjqkql of each column (r). These coefficients are derived
from a single potential, Etot, which accounts for all possi-
ble modal contributions. The energies associated to modes
1 and 3 are represented by many terms, e.g. E1113(∝ q31q3):
d
dq1
E1113 = 3

d
dq3
E1113, and thus (b(1)113 = 3b(3)111).

Fig. 3 shows that only the uneven modes are excited, as the
energy (and amplitude) of the even modes remain zero. The
origin of this behavior may be explained through the theory
of resonant terms. The first mode’s equation for the nonzero
nonlinear parts from Table 2 are written in Eq. 6.
F (1)
NL = b

(1)
111q

3
1+b

(1)
113q

2
1q3+b

(1)
133q1q

2
3+b

(1)
135q1q3q5+b

(1)
155q1q

2
5+b

(1)
335q

2
3q5.
(6)

Distinction can be made between three amplitude dependen-

cies, which scale with either onemode (q3j ), twomodes (q2j qk)or threemodes (qjqkql). Assuming that thesemodal displace-
ments may be approximated by harmonic solutions of the
form qn = cos (n!0t) (where the mode frequencies follow an
integer relation with the mode number n) results in the fol-
lowing equation:

qjqkql =
1
4
[
cos ((j − k − l)!0t) + cos ((j + k − l)!0t)

+ cos ((j − k + l)!0t) + cos ((j + k + l)!0t).
(7)

Now, any combination of uneven j, k and l will yield an un-
even pre-factor from the (j±k±l)-terms. This implies that the
uneven modes j , k and l will only excite uneven harmonics
of !0, generating energy transfer between only the uneven
modes. The equations of motion for this default FPUT prob-
lemmay thus be reduced to only those for the uneven modes.
The unique feature of FPUT behavior is that under initial
static deflection of (only) the first mode, multiple modes are
excited. At t = 0, q0.1 ≠ 0, q0.3 = 0 and q0.5 = 0 will generatethe following equations:

q̈1 + k
(1)
1 q0.1 + b

(1)
111q

3
0.1 = 0, q̈3 + b

(3)
111q

3
0.1 = 0 and q̈5 = 0. (8)

Which shows that the initial excitation of the first mode gen-
erates a nonzero term in the EoM of mode 3, which will ini-
tiate energy transfer [33]. Without this b(3)111-term (the back-
coupling term), the energy will only be distributed through
excitation of the harmonics of the first mode, which will pre-
vent energy dominance by the third mode (Fig. A.6).
2.2. Limitations of the FPUT problem

The previous subsection has shown that energy recur-
rence is generated through two variables: the linear frequency
ratios and a back-coupling term. To determine if this FPUT
behavior may be observed in mechanical resonators, it is im-
portant to characterize its limitations first. Possible limita-
tions of the FPUT behavior may be influenced by (1) damp-
ing, (2) linear frequency ratios, (3) the nonlinearity of the
resonator, and (4) the initial conditions.
The influence of damping on this default FPUT problem is
studied first, by tracing the percentage of energy that returns
to the first mode during the first recurrence period, for var-
ious Q-factors. The Q-factors of the higher modes are as-
sumed to scale with the fundamental mode Q-factor (Q) and
the inverse of the mode number n: Qn =

Q
n
, i.e. if n = 3,

Q3 =
Q
3
. The effect of damping is checked by sweeping the

first mode’s Q between 500 and 1 million (and the Q-factors
of the higher modes scale according to the above relation).
Using this relation, it was found that for Q-factors larger than
10,000 more than 99.5% of the initial energy returns to the
initially excited mode, showing that damping is negligible
for those Q-factors (Fig. A.7). Should the damping of the
highermodes be (much) higher, then these highermodeswill
dissipate part of their energy to the environmental bath, re-
ducing the magnitude of the following recurrence peak.
The three remaining parameters are swept altogether, as these
are related through the ratio of initial linear versus initial
nonlinear forces:

rNL2L =
b(1)111q

3
0.1

k1q0.1
=
b(1)111
k1

q20.1 (9)
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For the default FPUT model, this ratio is 21%. The linear
stiffness (or frequencies) are swept by varying the stiffness
of the higher modes (kn, where n = 2, 3, ..., 6) with respect
to the first mode. In this sensitivity study, the stiffness of
these modes is swept between 90% and 110% of their orig-
inal value (as is reported in the first row of Table 1). The
nonlinear stiffness is subsequently swept between � = 0 and
20Nm−3 . Finally, the maximum initial amplitude of the first
mode (qu0.1 = �q0.1 ) is swept between 0.1and 3.25m. Fig. 4depicts the results of the parameter sweep for the default ini-
tial amplitude qu0.1 = 1m. The results are presented in terms
of the maximum linear energy of the third mode with re-
spect to the fundamental mode (max(E3(t)−E1(t)

E0
)), which will

show if, and by how much the third mode’s energy domi-
nates that of the first mode. The figure shows that gener-

Figure 4: Energy dominance of the third mode w.r.t. the initial
energy, for initial excitation of the first mode: qu0.1 = 1m. The
simulations were run with a Q-factor of 100,000.

ally, for low nonlinearity (� = 0Nm−3 or 4Nm−3) or increased
linear stiffness (percentages ≥ 105%), there is little energy
dominance. On the other hand, for lower stiffness percent-
ages (≤ 100%) and higher nonlinearity (� ≥ 8Nm−3); there
is significant energy dominance. This is a result of the Duff-
ing nonlinearity, which causes frequencies to increase with
increasing amplitude (and magnitudes of the nonlinearity).
The decreased linear frequencies could thus be compensated
through increased nonlinearity. Similar effects may be seen
for the fifth mode (App. A.3). Increasing the magnitude
of the initial conditions may increase the energy dominance
and vice versa. However, the assumption that the nonlinear
energy remains small becomes less valid for increased non-
linearity and higher initial amplitudes - these increase the
initial nonlinear force ratio from Eq. 9.
Nelson reported a similar result for a tolerance study of the
quadratic FPUT �-model [26]. They found that inhomoge-
neously adding tolerances to both the linear and nonlinear
stiffness may promote energy transfer compared to the cases
where these tolerances were added to only the linear or non-
linear terms. In addition, for higher numbers of elements

N , they observed less energy transfer. This is verified here
as well, as increasingN will increase the linear frequencies
to near-integer values (Eq. 5); in the present study this is
observed for percentages larger than 100%.

3. String models
The previous section has shown that FPUT behavior is

visible for systems with certain modal coefficients. This sec-
tionwill showwhat dynamics are visible in pre-stressed string
resonators with a constant cross-section, which could be po-
tential test beds for FPUT mechanics. Two models will be
analysed: the first model accounts only for vertical string
displacements, the second model accounts for both vertical
and longitudinal displacements of the string. These models
will subsequently be fitted to experimental results, to deter-
mine which model shows the best agreement.
3.1. Analytical string models

Analytical models for string vibrations are extensively
studied in literature. The analysis in this paper is based on
the studies by Anand, Nayfeh and Zhao [2, 24, 38]. Fig. 5
depicts a string and its associated displacement directions.
The displacements in x-, y- and z-directions are referred to
as longitudinal, transverse and vertical displacements, which
are denoted by u, v and w, respectively. It is assumed here
that the forces related to bending are negligible, due to the
small thickness of the string. The Young’s modulus, density

Figure 5: Simply supported string of length L. Shown is an
element with length dx. The initial configuration of the string
is shown in black; the deformed string is shown in red. The
string is pre-loaded in the x-direction with load T0 = �0A.

and cross-sectional area are given by E, � and A, respec-
tively. The derivatives with respect to x are denoted by a
subscript (e.g. ux). The deformation of element dx to ds
may be found using Pythagoras’ theorem:

ds =
√
(dx + du)2 + dv2 + dw2 = dx

√
(1 + ux)2 + v2x +w2

x.

(10)
The total tension (T (x, t) = EA�tot) in the string is dependent
on the initial strain due to the pre-load

(
�0 =

T0
EA

)
and the

displacement-induced strain
(
ds−dx
dx

)
:

T (x, t) = EA(�0 + �) = T0 + EA
ds − dx
dx

=

T0 + EA
[√

(1 + ux)2 + v2x +w2
x − 1

]
.

(11)
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The tension in each displacement direction is given by the
ratio of each displacement with respect to the total displace-
ment ds. The EoMs for all three directions are found by eval-
uating the following equation, wherem = �A; the linear mass
density of the string:

utt =
1
m
)
)x
[Tx], vtt =

1
m
)
)x
[Ty] and wtt =

1
m
)
)x
[Tz]. (12)

The longitudinal and vertical (and transverse) wave speeds
may be formulated as c0 =

√
�0
�
and c1 =

√
E
�
, respectively.

The initial stress (�0 ≈ 1GPa) ismuch smaller than theYoung’s
modulus (E ≈ 250GPa) of the material: c21 − c20 ≈ c21 .Two displacement formulations will be analysed here. The
first is based on the assumption that the displacement of the
string will consist of vertical displacements only, here ux =
0, vx = 0 and wx ≠ 0. This results in the following EoM:

wtt = c20wxx +
3
2
c21w

2
xwxx. (13)

The second model is based on the assumption that the verti-
cal displacement cannot occur without stretching the string
in the longitudinal direction: ux ≠ 0, vx = 0 and wx ≠ 0. TheEoMs for this displacement formulation are:

utt = c20uxx +
1
2
c21
)
)x

[
w2
x

] (14a)
wtt = c20wxx + c21 [uxwxx + uxxwx +

3
2
w2
xwxx]. (14b)

Eq. 14 is dependent on two displacement directions: u and
w. The inertia of the longitudinal vibrations (utt) will besmall for vertical vibrations, where w >> u. This allows
for formulation of u in terms of w. The EoM for the vertical
vibration is thus written as:

wtt = c20wxx +
c21
2L

[
∫

L

0
w2
xdx

]
wxx. (15)

This is clearly of a different form than Eq. 13. The EoMs
may be converted to modal EoMs, using Galerkin’s method.
The physical coordinates are first transformed intomodal co-
ordinates using the relation between the displacement w and
the mode shapes �un :

w(x, t) =
N∑
n=1

�un (x)qun (t), where �un (x) = sin
(n�x
L

)
. (16)

The linear (in w) parts of Eq.’s 13 and 15 are equal AND
generate the following linear stiffness, which is the square
of the linear frequencies:

kn = !2n =
n2�2

L2
�0
�
. (17)

The fundamental mode frequency is denoted by !0(= !1).Galerkin’smethod uses aweight function�ur ; themode shape
of mode r to determine the influence of mode n onto mode
r. For example, for the w-displacement model, this requires
solving the following equation:

∫
L

0
�ur

(
�unqun ,tt − c

2
0�un ,xxqun −

3
2
c21 (�un ,x)

2�un ,xxq
3
un

)
dx = 0.

(18)

Table 3
Modal coupling coefficients for the first three modes of two
displacement models. The coefficients are normalized with
respect to �2

4
E
�0
.

w-displacement uw-displacement
Eq. (1) (2) (3) (1) (2) (3)
b̃111 1.5 0 1.5 1 0 0
b̃112 0 4.5 0 0 4 0
b̃113 4.5 0 27 0 0 9
b̃122 12 0 18 4 0 0
b̃123 0 36 0 0 0 0
b̃133 27 0 0 9 0 0
b̃222 0 24 0 0 16 0
b̃223 18 0 108 0 0 36
b̃233 0 108 0 0 36 0
b̃333 0 0 121.5 0 0 81

where the derivatives with respect to x and t are denoted by
the subscripts , x and , t. The free vibrations of a single mode
(n = r ) for thew- and uw-displacement models are given by
the following (non-dimensional) equations, respectively:

q̃′′un + n
2q̃un +

3
8
�2n4 E

�0
q̃3un = 0 (19a)

q̃′′un + n
2q̃un +

1
4
�2n4 E

�0
q̃3un = 0. (19b)

The non-dimensionalisation was conducted using that � =
!0t and q = q̃L(App. D.2). These equations show the lin-
ear stiffness scales with the mode number n squared. The
nonlinear part of equations scales with the ratio of Young’s
modulus and pre-stress, and the mode number to the power
four. The magnitude of the Duffing term forw-displacement
model is larger than that of the uw-displacement model. For
both models, this strength may be tuned through variance of
E, �0 and n. Neglecting the displacement in the longitudi-
nal direction hence overestimates the nonlinear stiffness. A
similar trend may be observed in the coupling coefficients,
as is shown in Table 3, where it is clear that both the cou-
pling coefficients (b̃(r)jkl) as well as the Duffing nonlinearities
of the modes (b̃(j)iii ) are larger for the w-displacement model.
This model contains some nonzero coupling terms, which
are zero for the uw-displacementmodel; e.g. the back-coupling
b̃(3)111-term, which is required for FPUT behavior. The ori-
gin of this term is in the nonlinear parts of the equations of
motion: thew- and uw-displacement models have nonlinear
terms of 3

2
wxxw2

x and wxx
2L

∫ L
0 w2

xdx. A string model for the
uvw-displacements is analysed in App. B.1; it shows cou-
pling for degenerate transverse and vertical mode frequen-
cies. This model is however not considered in this paper, as
it is assumed here that vibrations remain planar.
3.2. Numerical string models

The modal coupling coefficients may also be found us-
ing numerical methods. Muravyov andRizzi have developed
the STiffness Evaluation Procedure (STEP), which can cal-
culate the (nonlinear) modal coefficients from prescription
of multiple mode shapes [22]. A former DMN student (V.
Bos) has successfully generated software which computes
these coefficients using Matlab and COMSOL Multiphysics
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[5]. Bos’ STEP method showed excellent agreement for the
coefficients of the uw-displacement model.
3.3. Verification of experimental results

To verify which analytical model can accurately predict
string vibrations, the experimental frequency response of two
Si3N4 strings was analysed by placing the resonator in a vac-uum chamber. Excitation of this resonator was achieved by
using a piezo-element; measurements were conducted using
a Polytech vibrometer.
Experimental ringdown of the first string resonator (with
characteristics L = 1110�m,w = 4�m, t = 92nm,E = 250GPa,
�0 = 509MPa and � = 3100kgm−3) from a weakly nonlin-
ear condition generated a Q-factor of the fundamental mode,
which is estimated to be around 200,000 at a pressure of
2.69 × 10−6mbar (Fig. B.6). The experimental frequency re-
sponse is subsequentlymeasured for several drive levels, gen-
erating multiple frequency response curves. The experimen-
tal results showDuffing behavior, where from a certain drive
level, the frequency and amplitude cease to increase under an
increase of the driving force. This phenomenon is a multi-
mode interaction which is known as frequency locking. This
phenomenon is often seen in multi-mode nonlinear Duffing
systems [17].
These experiments are simulated using AUTO, a numeri-
cal bifurcation software, which can trace periodic solutions
of nonlinear systems. The w- and uw-displacement mod-
els replicate the amplitude-frequency curves very well for
Young’s moduli of E = 450GPa and E = 675GPa, respec-
tively (Fig. 6), but these models do not instantly replicate
this frequency locking. This frequency locking is however
observed for the uw-displacement model if the higher mode
frequencies are increased by 0.5% (Fig. 6(a)). This slight
shift of the frequency ratios increases the effect of the reso-
nant terms, generating larger amplitudes of the higher (un-
even) modes (according to Eq. 6). Conversely, no appropri-
ate frequency shift fraction could be found to replicate the
locking behavior for the w-displacement model (Fig. 6(b)).
Both displacement models are fitted for high Young’s mod-
uli, which indicate that there is a (significant) discrepancy
between the experimental and numerical results. The ex-
perimental ringdown from a weakly nonlinear initial con-
dition (Fig. B.6) show little energy transfer, which implies
that -for this resonator- the uw-displacement model (which
also replicates the frequency locking) is expected to most
accurately simulate the string’s dynamics. Similar results
are found for a second experiment, which is conducted on
a Si3N4 string with characteristics L = 700�m, w = 4�m,
t = 344nm, �0 = 850MPa and a fundamental mode Q-factor
of 1.36 × 106 at a pressure of 9.81 × 10−5 mbar (Fig. B.19).
The Q-factor of this resonator is about six times higher than
that of the 1110�m string, which was found for a lower air
pressure. This high Q-factor may result from the significant
pre-stress of this 700�m resonator, which increases the stored
energy in the resonator. A remarkable result, since the in-
creased thickness (344nm versus 92nm ) increases the bend-
ing resistance of the resonator, which should -in theory- in-

Figure 6: Experimental and simulated frequency response (at
0.36L) of a 1110�m string. The colored lines display exper-
imental results for various drive voltages, showing locking
from 0.3V. The black dots depict the simulation results
for a driving voltage of 0.32V. The simulation in (a) is
run for the uw-displacement model, showing locking for
a small shift (0.5%) in the higher modes’ linear frequen-
cies. The simulation in (b) is run for the w-displacement
model, which does not generate frequency locking.

crease the bending energy loss (App B.4). The experimen-
tal results of this specimen reveal small nonlinear Duffing
effects: the frequency shifts are small; only 0.2% of the fun-
damental mode frequency. Some minor frequency locking
is observed as well, where the frequencies -instead of lock-
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increase only by a very small fraction under an increase of
driving voltage. The results are fitted for both the w- and
uw-displacementmodels for Young’smoduli of 3667GPa and
5500GPa respectively. Neither model shows locking, which
could be related to the small nonlinearity: excitation of the
first mode in the weakly nonlinear regime will not cause suf-
ficient excitation of the higher modes to cause significant
modal interaction to generate frequency locking. This small
(relative) nonlinearity could result from the higher pre-stress
(Eq. 19). These high Young’s moduli required for fitting
imply that the discrepancy of the numerical and experimen-
tal results becomes more significant for increased thickness
and/or pre-stress. The experimental ringdown shows a linear
decay of the first mode; this could imply that there is little
energy transfer, which is expected for the uw-displacement
model. However, it is important to note that this ringdown is
conducted from a weakly nonlinear initial condition, where
nonlinear effects are small. This, together with the obser-
vation that both models fit the Duffing behavior quite accu-
rately, while neither model generates locking, does not gen-
erate conclusive results regarding which model is most valid
for this 700�m resonator.

4. FPUT mechanics in string resonators
The previous sections have elaborated upon the possible

limitations of FPUT behavior and the dynamics of continu-
ous cross-sectional string resonators. This section will show
which string models could theoretically display FPUT be-
havior. Furthermore, some design methods are tested to de-
termine whether they can generate the required coefficients.
4.1. Linear variables

The linear stiffness (and frequencies) of the FPUT prob-
lem ratios fromTable 1 are -unlike strings- non-integer. Shift-
ing these frequencies in strings may be achieved through a
small change in the stiffness of the string. The magnitudes
of the linear stiffness of the FPUTmodel and that of a nanos-
tring are much different, which will be elaborated in a later
section.
4.2. Nonlinear variables

The nonlinear variables consist of two parts: the Duffing
terms (b(n)nnn), which scale with the amplitude of only a sin-
gle mode, and the modal coupling terms (b(n)jkl), which scale
with the amplitudes of multiple modes. The ratios of the
Duffing terms of both the w- and uw-displacement mod-
els are approximately equal to those of the FPUT model:
they scale with the frequency ratios of the consideredmodes.
However, Table 3 shows that the magnitude of the nonlinear
terms is larger for thew-displacementmodel than for the uw-
displacement model. Furthermore, the former model has
more nonzero coupling coefficients, generating a stronger
coupling. This stronger coupling is especially related to the
nonzero b(3)111-term, which is required for FPUT behavior: it
generates energy transfer from mode 1 to mode 3 under pure
excitation of the first mode. Thisw-displacement model will
therefore be studied next. Theoretically, the uw-displacement

Table 4
Variables for the FPUT model and a L = 1110�m Si3N4 string.

FPUT w-disp. model
!0 [rads−1] 0.19 1.15 × 106

b(1)111 [m−2s−2] 8.19 × 10−4 3.07 × 1033
� [-] 0.34 1.26 × 106
ℎ [m] 6.45 2.07 × 10−11

model does not generate this initial energy transfer (as this
b(3)111-term is zero), reducing the likelihood of it displaying
FPUT behavior.
4.3. Initial force ratio

Provided that the frequency ratios are shifted slightly,
one could thus set the hypotheses that this w-displacement
model can show FPUT behavior. Though the magnitudes of
the (non)linear coefficients are different, one could still de-
termine if a system can generate the required initial nonlinear-
to-linear force ratio rNL2L. For the default FPUT problem,
this ratio was 21%. In non-dimensional terms, this equation
writes:

r̃NL2L =
F̃nonlin
F̃lin

=
b̃(1)111q̃

3
0.1

k̃(1)1 q̃0.1
= q̃20.1 =

(
wmax

�Φu.maxℎ

)2

. (20)

Where, b̃(1)111∕k̃(1)1 = 1 by choosing the space scaling param-
eter to be ℎ = !0(b

(1)
111)

− 12 . For equal initial force ratios, it
should thus hold that q̃0.1FPU = q̃0.1string. The maximum physi-
cal displacementwmax of the 1110�m string resonator may be
calculated from these modal amplitudes using the modal co-
ordinate transformation relation (Eq. 3) and the parameters
from Table 4:

wmax.string = q̃0.1�stringℎstring = 11.82�m. (21)
Fig. 7 depicts the numerical ringdown from a static displace-
ment of 11.82�m for the first mode. This simulation is con-
ducted for linear frequency ratios from Table 1, as the inte-
ger frequency ratios show less energy transfer (Fig. 2). The
linear energy depicts FPUT behavior. However, since the
strength of the nonlinear terms has increased significantly,
the single-mode energy (En = 1

2
m(n)n q̇

2
n +

1
2
k(n)n q

2
n +

1
4
b(n)nnnq

4
n) ismonitored as well; this indicates that the nonlinear energy

fraction is still small, probably due to the initially satisfied
initial force ratio. Themodal amplitudes clearly show the ex-
pected beatings, though the modal amplitudes of the higher
modes do not exceed the first modes, similar to the original
FPUT problem.
Two remarks can be made for the required initial condition.
First, the magnitude of the displacement is quite large: it is
nearly times larger than the maximum displacement of the
experimental results, which could be hard to achieve without
breaking the resonator. Secondly, the displacement of these
simulations is a static displacement of the first mode. Exper-
imentally creating such a static displacement is not (yet) pos-
sible in these nanostructures. To verify whether this may be
observed in an experimental set-up, one should apply a more
physical initial condition, for example by adding a velocity
to the first mode. The results of such dynamic initial condi-
tions are shown in App. C.1, where the first mode is given an
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Figure 7: Numerical ringdown from a maximum displacement
of 11.82�m of the first mode. (a) depicts the linear energy
vs. time, (b) depicts the single-mode (linear + nonlinear)
energy vs. time and (c) shows the modal amplitudes vs.
time. The simulation was run with a fundamental mode
Q-factor of 100,000.

initial velocity and some higher modes are (weakly) excited
as well. FPUT-like behavior is still observed for these initial
conditions.
4.4. Design for FPUT behavior

Section 3 shows that the modal coupling coefficients are
dependent on the displacement formulation for continuous
strings. Additionally, in order to see FPUT behavior, one re-
quires non-integer frequency ratios, as well as some coupling
coefficients: primarily a nonzero back-coupling to generate
initial energy transfer. However, the analytical model that
generates such a coupling term (the w-displacement model)
cannot fit the experimental results accurately, as it does not
generate all observed dynamics. Furthermore, from a con-
tinuum mechanics point of view, this model appears to be
inaccurate, as a longitudinal displacement is required to al-
low for vertical displacement of the resonator. This chapter
will therefore explore (using the STEP method) some possi-
bilities to generate an improved coupling for string-like res-
onator models that include longitudinal displacements. The
present form of the STEP software only works for truss ele-
ments in COMSOL, which account only for axial deforma-
tions due to u- and w-displacements. The procedure is as
follows: a string design of length L is divided into n truss-
elements. The cross-section of each of these elements may
be varied, such that the mass and stiffness of the string may
be altered locally. The STEP method is subsequently used

to find the modal coefficients of the design.
The local variance of the cross-section (and thus the mass
and stiffness) will alter the mode shapes and the resonance
frequencies of the string. By changing the mode shapes, one
should thus also be able to alter the modal coupling coeffi-
cients (App. B.7).
Fig. 8 depicts a design which has such an asymmetric mass
density. It is found that such a design does not generate new
coupling terms. However, it does shift the frequencies and
it allows for significant tuning of the nonlinearity, which -
compared to continuous strings- significantly increases the
relative nonlinearity of the higher modes.
Recent research by Dou and Li shows that the Duffing coef-

Figure 8: First mode shape of an asymmetrical string-like res-
onator design with two cross-sectional areas, with a respective
ratio of 10.

ficients of clamped-clamped beams may be tuned in a sim-
ilar manner [9, 18]. Their method was tested for string res-
onators (with much smaller thickness to increase the valid-
ity of using truss models). It was found that their results
cannot be verified by only using truss models (App. C.2),
indicating that their improvements likely result from more
advanced deformation modelling.
For string-like resonators, it appears that the local variance
of cross-sectional area does generate different relative non-
linearity (especially for the higher modes), but it does not
generate new coupling terms. Nonetheless, this does not
mean that string-like resonators may never show FPUT be-
havior. More complicated string designs, or different struc-
tures (e.g. the T-design from Dou and Li [9, 18]) could still
generate FPUTbehavior as this generates a nonzero (quadratic)
back-coupling term.

5. Discussion & Conclusion
This paper has shown methods to generate FPUT behav-

ior in string resonators. A coordinate transformation of the
�-model from physical to modal coordinates may generate
a better understanding of the coupling between the eigen-
modes of the system [28, 33]. This transformation showed
that FPUT behavior is caused by initial excitation of the third
mode through a back-coupling term; a b(3)111-term. In addi-
tion, an eigenfrequency analysis of the original equations of
motion (Eq. 1) has shown that the linear frequencies ratios
are non-integer (Eq. 5). A subsequent sensitivity study has
shown that FPUT behavior (for the default FPUT problem,
whereN = 16 and � = 8Nm−3) is hardly influenced by damp-
ing in the high-Q regime, for Q-factors of the first, third and
fifth mode larger than 10,000, 3333 and 2000 respectively.
This sensitivity study also indicates (in Fig. 4) that a de-
crease in the magnitude of the frequency ratios may be com-
pensated by increasing the magnitude of the nonlinearity,
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which implies that FPUT behavior is not associated to the
variables from the original FPUT report only [11]. FPUT
behavior may thus be observed for structures with different
relative nonlinearities, such as nanostrings, provided that the
initial nonlinear to linear force ratio satisfies some ratio.
Two analytical string models were presented: a model that
includes only vertical (w) displacements and amodel that in-
cludes both longitudinal (u) and vertical (w) displacements
(Fig. 5). It was found that the formermodel generates stronger
nonlinearity than the latter model. This stronger nonlinear-
ity was present in both a stronger Duffing strength, as well as
stronger coupling coefficients and a nonzero back-coupling
term (Table 3). The nonlinearity of both models was found
to scale with the mode number n and the ratio of Young’s
modulus and pre-stress ( E

�0
).

Simulations of experimentally obtained frequency responses
on a high-stress Si3N4 nanostring of length 1110�m show
that the uw-displacement model generates qualitatively the
same results. This model shows frequency locking and a
proper fits of the Duffing curves (Fig. 6), where the w-
displacement model only replicates the Duffing curve. A
second experiment on a shorter (though thicker) string res-
onator shows a small nonlinear effect: the frequency shift
is small and frequency locking is minor, which may be ex-
plained by the higher pre-stress (lower relative nonlinearity)
in the resonator. The w-, as well as the uw-displacement
model were fitted onto the Duffing curves, but neither model
showed locking behavior. This may be an effect of the small
relative nonlinearity, which does not excite the higher modes
sufficiently to cause significant modal interaction.
The observation that both displacement models seem to fit
both experimental Duffing curve quite well is not peculiar,
since both experimental results are dominated by the Duffing
nonlinearity of the first mode. However, this does not gener-
ate conclusive results that can determinewhich displacement
model is most accurate. Nonetheless, the experimental ring-
down of both resonators show a constant decay of the first
mode. This works in favor of the uw-displacement model,
since the modes are less strongly coupled to the other modes
than thew-displacement model. This latter model would -in
absence of other nonlinearities- exchange energy directly to
the third mode through excitation of the first mode, which
would probably show a different decay (including a possible
increase of the amplitudes of the higher modes and subse-
quent increase of the first mode). It is important to note that
the experimental ringdown experiments were conducted in
the weakly nonlinear regime, where the effect of such non-
linearities is small, which does not have significant mode
coupling, generating a linear decay (nonlinear damping then
is small as well).
The simulations replicate the strings’ qualitative dynamics
fairlywell: slope fits and (for one resonator) resonator). How-
ever, quantitative agreement could be found, as the Young’s
moduli were significantly higher, varying from 450GPa to
5500GPa: 1.8 and 22 times larger than the default Young’s
modulus of Si3N4. This discrepancy could originate from in-
correct conversion of the experimental data, or from the neg-

ligence of other significant nonlinearities (e.g. from bend-
ing), requiring more advanced modelling of the strings’ dis-
placements.
To determine whether any of these analytical string mod-
els could show FPUT behavior, their coefficients were com-
pared to the FPUTmodel, and it was shown numerically that
the w-displacement model for the 1110�m nanostring can
show FPUT behavior for initial conditions which generate
an initial nonlinear to linear force ratio of 21%, for an initial
displacement of 11.82�m (nearly thee times that of Fig. 6). A
larger nonlinearity of the resonator, which may be achieved
by lowering the pre-stress, may decrease the required initial
displacement to more ”physical” quantities. The frequency
ratios of this w-displacement model should be non-integer;
integer frequency ratios will generate energy some transfer,
but this is not sufficient to generate energy dominance.
Finally, it was shown that the nonlinearity of string resonators
may be changed through local variance of the cross-sectional
area of the string. The numerical software that was used to
find these coefficients is only valid for truss elements, which
neglect possibly significant displacement mechanisms, such
as bending. It was found that local increase of the cross-
section of strings may increase the relative nonlinearity of
higher modes. However, this procedure did not generate
nonzero back-coupling coefficients. Research has shown that
such coefficients (though different in terms of nonlinearity),
may be found for different structures [9, 18]. To determine
whether a string resonator may ever show FPUT behavior,
one could do a topology optimization study that is focused
on finding structures that have such nonzero back-coupling
coefficients as well as the required frequency ratios. Before
this optimization is initiated, one should expand the current
software for the STEP method, such that this software may
also account for more accurate displacement models (e.g.
beam elements). Additionally, one should include the cou-
pling between the (degenerate) vertical and transversemodes
of square or circular cross-sectioned strings, as these appear
to be strongly coupled, as is shown in App. B.8.

In summary, this research has shown that to observe FPUT
behavior, one should design a resonator that has certainmodal
coefficients. This resonator should have non-integer frequency
ratios, a nonzero back-coupling coefficient and it should be
placed in an environment where Q-factors are sufficiently
high. Simulations of experimentally obtained frequency re-
sponses have shown that continuous cross-section string res-
onators generate the desired dynamics. Additionally, this re-
search has shown that the nonlinearity of string resonators
may be tuned by varying the ratio of E over �0 and a non-
constant cross-sectional area along the length of the string.
Expansion of the STEP method to include more displace-
ment formulations and geometries may result in structures
which could show FPUT behavior. These structures could
then be used for various applications, e.g. sensors with non-
constant measurement characteristics, filters, and possibly
many more applications.
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3
Conclusion, Discussion and

Recommendations

3.1. Conclusion and discussion
The goal of this thesis was to determine whether a string resonator could show Fermi-Pasta-Ulam-Tsingou
recurrence. The research has been summarized in the research paper. The research questions are answered
in the next three subsections.

3.1.1. Requirements for FPUT behavior
The modal coefficients of the FPUT problem were determined through a modal coordinate transformation of
the FPUT potential. This transformation indicated that to see FPUT behavior, one requires the non-integer
linear frequency ratios (and slightly lower than the nearest internal resonance condition) and certain cou-
pling coefficients. Specifically, the system should have a nonzero back-coupling coefficient, which will excite
the third mode under pure excitation of the first mode.
FPUT behavior becomes visible as the energy of the initially excited mode is dominated by some other mode(s),
before the energy returns to the initially excited mode again. It was shown that energy dominance of a certain
mode does not directly imply that the modal amplitude of the dominant mode is largest. To verify that the
system shows FPUT behavior, one should thus always check both amplitudes and (linear) energies of each
mode. Furthermore, it was shown that the dynamics of the default FPUT problem (for N = 16 andβ= 8Nm−3)
-where the first mode is excited only- is relatively insensitive to Q-factors for the first, third and fifth mode that
exceed 10,000, 3333 and 2000, respectively. In addition, it was shown in A.11 that one may still observe FPUT
behavior for a system with increased nonlinearity and (linear) frequency ratios lower than the internal reso-
nance condition. The increased nonlinearity compensates the lower frequency ratios, due to the hardening
nonlinearity. FPUT behavior may be observed for systems where the initial nonlinear to linear force ratios are
larger than approximately 21%. Energy transfer will become more significant for systems with larger nonlin-
earities and initial conditions. However, for these conditions, the negligence of the nonlinear energy fraction
is no longer valid.

3.1.2. Dynamics in continuous string resonators
The vibrations of continuous string resonators were approximated using three displacement models that ac-
count only for axial deformation of the resonator. Two of these models were considered in the research paper:
one that accounts only for vertical (w) displacements, and another that accounts for longitudinal (u) and
vertical (w) displacements. It is assumed that though the coupling between transverse and vertical modes
of degenerate modes is strong (App. E.2.2), the vibrations still remain planar, since the resonator’s transverse
and vertical frequencies are non-degenerate.
All analytical models generate the same linear stiffness parameters (for the vertical modes of the string),
which scale with the mode number n, generating integer frequency ratios. On the other hand, it was found
that the w-displacement model generates significantly stronger nonlinear (coupling) coefficients than the
uw-displacement model, which implies that negligence of a displacement direction will cause overestima-
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tion of the stiffness. Both analytical models show that the relative nonlinearity of strings is dependent on the
ratio of Young’s modulus and pre-stress, as well as the mode number. Using frequency response simulations,
it was shown that the uw-displacement model replicates the frequency response of a physical resonator of
length 1110µm fairly accurately, as it shows slope fits of the Duffing curve and frequency locking. The w-
displacement model generates similar Duffing curves for this resonator, but it does generate frequency lock-
ing. The experimentally obtained Duffing response of another string resonator (of length 700µm, and a much
larger thickness) could be simulated using both displacement models, but neither model could replicate fre-
quency locking. The simulations of this second experimental frequency response hence remain inconclusive
regarding which displacement formulation is most valid, as the Duffing response could be fitted using both
analytical models. The results of the experimental ringdowns (from the weakly nonlinear regime) for both
resonators of this resonator do not show modal significant interactions either, as the decay is linear. This
could -together with the notion that in reality, a vertical displacement is only possible for some longitudi-
nal displacement- imply that the uw-displacement model is probably most valid. However, this conclusion
should be drawn carefully, as the ringdown experiments were conducted from the linear regime.
All frequency response simulations showed qualitative agreement in the form of fits of the Duffing curve
(and frequency locking for one of the two experiments), but they did not show qualitative agreement, as the
Young’s modulus in simulations should have been increased to values that are 1.8 times (E = 450GPa) or even
22 times larger (E = 5500GPa). This implies that there is still some error present in the analysis, which could
be related to experimental data conversion, or assumptions regarding the considered deformation models
of these resonators. Interestingly, the model appears to be most inaccurate for a larger resonator thickness,
which could have more significant bending deformation.

3.1.3. FPUT recurrence in string resonators
A string-like resonator may potentially show FPUT behavior if certain requirements are met. One of these
requirements is that the frequency ratios are non-integer, and slightly lower than the nearest internal reso-
nance condition. Another requirement is that the system should have a nonzero back-coupling coefficient.
For these criteria, the w-displacement model may potentially show FPUT behavior for an initial nonlinear
to linear force ratio of 21%, which is achieved for a displacement that is nearly three times larger than the
experimental displacements. To achieve a more realistic displacement, the relative nonlinearity should be
increased. Though this w-displacement model may display FPUT mechanics, simulations of frequency re-
sponses show that the w-displacement model (which has this nonzero back-coupling coefficient) is the least
valid analytical model. This implies that a different resonator design should be found, which either allows
for negligence of the longitudinal displacements, or it should possess a nonzero back-coupling term for the
uw-displacement model as well.
In this regard, STEP method was employed to show that an asymmetry in the resonator’s cross-sectional area
allows for shifting of the linear frequencies and variation of the relative nonlinearity. However, these designs
did not generate nonzero back-coupling coefficients. Hence, to observe FPUT recurrence in string-like res-
onators, one should try different designs, with more complicated geometries. The current implementation
of the STEP method only works for axial deformation models; it does not work for more complicated defor-
mation models, such as those for beams or plates. The coefficients of the improved designs, where the mass
density was varied, are thus computed using a simplified deformation model, which is only valid for systems
with large pre-stresses, where possible bending of the structure is neglected.

3.2. Recommendations
This research has clarified why FPUT behavior may, or may not be observed in a structure. This research is
not perfect, and there is certainly room for improvements. This section will elaborate upon further steps,
which may taken into account when improving the nonlinearity in (string) resonators -possibly even with the
target to design a system that displays FPUT recurrence. The recommendations are divided into three topics
concerning the FPUT study, (simulated and experimental) string vibrations and design for FPUT behavior.

3.2.1. Recommendations regarding the FPUT study
• The present study is focused primarily on the FPUT β-model, which only includes a cubic nonlinearity.

The α-model (for quadratic nonlinearities) is not considered here, since the nonlinearity of string res-
onators is cubic. This results in the fact that the present study may not be taken one-to-one for other
structures, which could have different types of nonlinearities. Furthermore, this research neglects all
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linear couplings in resonators. Subsequent studies should characterize the influence of these addi-
tional coupling methods as well, and possibly even combine them.

• The simulated FPUT study is an approximation of the original experiment, as it only accounts for the
first three uneven modes (modes 1, 3 and 5). There appears to be a slight difference in the energy
plots of the third and fifth modes. This could be improved by adding higher (uneven) modes to the
simulation.

• The FPUT study was conducted for 16 mass elements, which basically simulates a strongly discretized
string, generating linear frequency ratios that are far from integer values. It was shown that for ring-
down from a certain initial nonlinear to linear force ratio, these non-integer frequency ratios generate
the most significant energy transfer. The hardening nonlinearity of the resonator increases the fre-
quency ratios, which should be taken into account during the design of a resonator. The effects of
larger numbers of masses -which approach integer frequency ratios- should be characterized together
with the corresponding hardening effect of the nonlinearity, to generate a design that displays the most
significant energy transfer.

3.2.2. Recommendations for the experimental validation of analytical models
• The simulation method has thus far only been tested for two string resonators. The simulations of

both resonators’ frequency responses were found for significant increases of the Young’s modulus in
the simulation. Neither simulation model generated a fully conclusive result regarding which model is
most valid. Additional tests on multiple string resonators with different relative nonlinearities (e.g. by
decrease of the pre-stress) and thickness could fully characterize the discrepancy and limitations of the
considered (analytical) models. Once these limitations are known, one can generate a more accurate
simulation model (with possibly more deformation mechanisms, e.g. bending deformations). This
model could then potentially be used for characterization of a material’s Young’s modulus [8].

• The analytical study is based on a square or circular cross-sectioned string, which was shown to have
degenerate transverse and vertical eigenfrequencies, generating strong coupling between these two
modes (as shown in Fig. B.27). In reality, this effect is expected to be less significant, since the res-
onators’ cross-sections is are rectangular, and thus these frequencies will not be degenerate. However,
this effect should be characterized first, before it may be safely neglected. In addition, such structures
will also posses torsional modes, of which the coupling with respect to the transverse modes is un-
known. Experimental measurements in combination with modelling of the frequency response of the
resonator for transverse and torsional motion could validate the true coupling between these trans-
verse, vertical and torsional modes. This way, the assumption that vibrations remain planar can be
verified or rejected.

3.2.3. Recommendations for the design of resonators showing FPUT behavior
• It was shown that string resonators with constant cross-sectional areas do not posses the required cou-

pling coefficients, nor do they have the required non-integer frequency ratios. A string-like resonator
with a local increase in cross-sectional can be designed to have non-integer frequency ratios and im-
proved (relative) nonlinearity, but it does not have the required coupling coefficients. These results
should be experimentally verified.

• Similarly to the recommendation about the analytical deformation models, the STEP method only
works for string-like resonators that allow for simulation using truss models, which account for axial
deformations only. This method should be expanded to account for additional deformation formula-
tions, such bending deformations.

• Once a solid numerical framework has been established, additional geometries should be tested for
improvement of the coupling coefficients. This could be done efficiently using topology optimization,
which could then be used to extract the modal coefficients of various designs. The goal would then be
to find a system which has non-integer frequency ratios (below the internal resonance condition) and
a nonzero back-coupling term. However, the nonlinear problem that is solved to yield the nonlinear
modal coupling coefficients, may complicate this topology optimization study significantly.





A
The FPUT β-model

This chapter will first characterize the modal interactions in the FPUT β-model through a modal coordinate
transformation. A subsequent study will explore the limitations for occurrence of FPUT behavior. Finally,
requirements are formulated for systems to show FPUT behavior.

A.1. The default FPUT β-model
The original FPUT study analysed several models; quadratic (α-model), cubic (β-model) and broken linear
models. All of these models resulted in significant energy transfer, followed by recurrence of the initial condi-
tion [11]. Fig. A.1a depicts a result for the β-model, which is analysed in this section. This model consists of
16 mass elements (N = 16) of m = 1kg, a linear stiffness of k = 1Nm−1, and a nonlinear stiffness ofβ= 8Nm−3.
The equations of motion are are shown in Eq. A.1.

ẍi = (xi+1 +xi−1 −2xi )+β[(xi+1 −xi )3 − (xi −xi−1)3], where i = 1,2, ...N (A.1)

(a) (b)

Figure A.1: FPUT β-model simulations, for N = 16, β= 8, δt 2 = 1
8 and the initial conditions were half a sine wave (similar to the first

mode of a string). A.1a depicts the result from the original report [11]. A.1b depicts a reproduction that is based on Dauxois’ paper [7].

Fig. A.1 depicts a plot from the original report of the FPUT study, as well as a reproduction of the original
experiment, which is produced using a modified code from Dauxois’ paper on FPUT mechanics [7].
In the FPUT experiment, the linear modal energy (consisting of a kinetic and a potential part) is monitored
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under the assumption that the nonlinearities remain small; the energy residing in each involved mode k is
calculated using the Fourier transforms of the amplitudes, as is shown in Eq. A.2.

E l i n
ak

= E ki n
ak

+E pot
ak

= 1

2
ȧ2

k +2a2
k sin2

(
πk

2N

)
where ak =

N∑
n=1

sin

(
nkπ

N

)
(A.2)

These Fourier functions map the displacement of each individual mass element i (given by xi ) to the modal
displacement of mode k of the system, ak . Several differences may be distinguished from both graphs. The
first is that the recurrent behavior is present in Fig. A.1b, but the quantities along the horizontal and vertical
axes of the plots do not seem to match. This could be due to some scaling of the time response in the original
experiment. Secondly, the energy versus time graph from the original experiment is smooth, whereas the
reproduced experimental plot shows a rough graph. This is due to the fact that the original plot was drawn
manually, which generated these smooth graphs [34]. In addition, it is clear that the local minimum of the
third mode’s energy (and corresponding local maximum of the fifth mode’s energy) at t = 8 in Fig. A.1a is
not of the same magnitude as the same behavior in Fig. A.1b. This difference could have various origins: for
example, different integration tolerances may be used in the left and right simulations, or a (slightly) different
magnitude of the initial conditions could have been used in either computation. The difference may also be
present due a slight shift in the linear frequencies. The full effect of shifted linear frequencies will be shown
later in this chapter. Though the exact origin of these differences is not known, the author of this report will
continue with the same simulation scheme, as the reproduced experiment still reproduces FPUT behavior
with sufficient accuracy.

A.2. The β-model in terms of modal coordinates
To determine the origin of the recurrent behavior, it is convenient to transform the physical coordinates xi of
each mass element to modal coordinates, which represent state of the system in terms of its eigenmodes. This
will generate linear and nonlinear modal coefficients, which will show what relations are present between all
considered modes.

A.2.1. Relation of considered modes and initial conditions
The number of considered modes (or degrees of freedom) in the model determines the accuracy of the mod-
eled dynamics. Tuck and Menzel (née Tsingou) [34] stated that for FPUT behavior to become visible, the
imposed initial condition should not generate nonlinear forces that exceed 10% of the linear force:

rN Lv sL = FN L

FL
= β[(xi+1 −xi )3 − (xi −xi−1)3]

(xi+1 +xi−1 −2xi )
< 0.1, where i = 1,2, ...N (A.3)

Which implies that for a decreased number of elements N, the difference between the initial coordinates
(x(n)−x(n −1)) increases.
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Figure A.2: Discretisation of a string’s first mode shape. Shown are discretisations for N = 2, N = 8 and N = 16.

Decreasing the mode number N will result in a large difference between the initial amplitudes, as is depicted
in Fig. A.2. Comparing the amplitudes of the first point (denoted by A1) along the string for the N = 2 and

the N = 16 cases, shows that the initial amplitudes are A1 =
p

2
2 = 0.71 and A1 = 0.18 respectively. These

amplitudes generate cubic nonlinear forces (FN L =βA3
1). Comparing these nonlinear forces with each linear

counterpart, by dividing the nonlinear force over the linear force (FL = k A1), the following nonlinear to linear
force relation is found:

FN L

FL
= βA3

1

k A1
=βA2

1. (A.4)

For N = 2 and N = 16, these nonlinear-to-linear force ratios equal:

N = 2:

(p
2

2

)2

β≈ 0.50β and for N = 16: (0.18)2β≈ 0.03β (A.5)

which amounts to 50% and 3%, respectively. Hence, discretising the string into N elements might have sig-
nificant influence in the computational efficiency, as the initial nonlinearity increases significantly with a
decrease in the number of elements.

A.2.2. Modal coupling coefficients of the FPUT β-model
If one were to take into account the comments that were made in the above paragraph, it would be sensible to
continue with system with a number of elements that does not exceed this 10%-threshold. Clearly, the N = 16
case obeys this condition, and hence we could derive the modal coupling coefficients of this model, by first
writing the kinetic and potential energies of this system, which derive from the equations of motion from Eq.
A.1.

T =
N∑

i=1

1

2
mẍi , where i = 1,2, ...N (A.6)

V =
N+1∑
i=1

1

2
k(xi −xi−1)2 + 1

4
β(xi −xi−1)4, where i = 1,2, ...N (A.7)

Where the boundary conditions imply that x0 = 0 and xN+1 = 0.
The physical coordinates of the mass elements i (denoted above in terms of xi ) do not provide information
about the interaction between the eigenmodes of the system. It is hence convenient to convert the FPUT
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equations of motion from these physical coordinates (in terms of xi ) into modal coordinates (in terms of qi )
to derive the modal coefficients. These coefficients indicate what interaction is present between the modes
of the system. These coefficients could generate requirements (e.g. required frequency ratios) for FPUT be-
havior.
To determine these modal coupling coefficients of this system, one should substitute the mode shapes into
the energy formulation and take the derivatives to find the modal equations of motion. This method is em-
ployed, because if the opposite procedure would be followed, where first the equations of motion (in physical
coordinates) are derived and subsequently the mode shapes are substituted, the energy potential will change,
resulting in equations of motion that derive from different energy potentials.
The linear and nonlinear elastic (modal) forces are dependent only on the potential energy of the system
(scleronomic system) and they may be derived by taking the derivative with respect to the considered modal
degree-of-freedom qn :

F (n)
el = dV

d qn
(A.8)

The modal potential energies may be computed by substituting the following relations into the potential
energy of the system:

x =φT
u qu =φT

m q =αφT
u q. (A.9)

Where α is a parameter that scales the max-1 eigenvectors (max(φu) = 1 and associated displacement qu)
to the mass-normalized eigenvectors, φm (and its associated displacement qm = q ). The displacement of a
single mass element -in terms of modal displacements- is given by Eq. A.10.

xi =α
N∑

n=1
sin

(
πni

N +1

)
qn . (A.10)

First, the modal coefficients of the first mode (n = 1) mode may be derived, this results in the following po-
tential:

Vmode1 = 0.017027kq2
1 +0.000026βq4

1 . (A.11)

Using Eq. A.8, this will generate the following elastic force:

F (1)
El = 0.034054kq1 +0.000102βq3

1 . (A.12)

The first six modes are considered here, as they generate the most significant dynamics. Repeating the pro-
cedure for modes 2 to 6 will then result the single-mode coefficients from Table A.1, where k = 1Nm−1 and
β= 8Nm−3.

Table A.1: Single mode coefficients for the FPUT β-model, normalized with respect to the first mode (n = 1).

n (1) (2) (3) (4) (5) (6)
kn 0.0341 0.1351 0.2996 0.5220 0.8518 1.1085
k̃n 1.00 3.97 8.80 15.33 25.0 32.56
ωn
ω1

1.00 1.99 2.97 3.92 5.00 5.71

b̃nnn 1.00 15.73 77.39 236.39 625.60 1059.65

The validity of these linear variables may be verified by conducting an eigenvalue analysis of the mass and
stiffness matrices that result from the original equations of motion (Eq. A.1). This yields a slightly different
result for the fifth mode, as is shown in Table A.2.

Table A.2: Linear stiffness for the FPUT β-model (from an eigenvalue analysis).

n (1) (2) (3) (4) (5) (6)
kn 0.0341 0.1351 0.2996 0.5220 0.7947 1.1085
k̃n 1.00 3.97 8.80 15.33 23.34 32.55
ωn
ω1

1.00 1.99 2.97 3.92 4.83 5.71
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Which shows that the employed method for computing the modal coefficients of the FPUT model is at least
valid for the first four modes, as it shows some discrepancy with the fifth mode’s eigenfrequency.
This eigenfrequency analysis is considered to be the most accurate approximation of the linear variables of
the FPUT model, as these are derived directly from the original equations of motion. The linear variables
from Table A.1 are calculated indirectly, as they are transformed into modal coordinates first, which could
lead to approximation errors. Dauxois [7] and Pace [28] have shown that the frequencies of the FPUT chain
follow the following relation:

ωn = 2sin

(
πn

2(N +1)

)
(A.13)

Which exactly generates the frequencies from Table A.2. The effects of such inaccuracies in the linear stiffness
are elucidated in section A.2.4.

A.2.3. Modal coupling coefficients of the FPUT β-model
Table A.3 displays the modal coupling coefficients for the FPUT β-model, which are derived by first prescrib-
ing displacements of multiple modes into the potential energies of the system and subsequently deriving the
modal equations of motion by taking the modal derivatives (Eq. A.8). Eventually, this will generate all terms
for the following equations of motion from Eq. A.14.

m(r )q̈r +k(r )qr +
6∑

j=1

6∑
k= j

6∑
l=k

b(r )
j kl q j qk ql = 0, r = 1,2, ...,6 (A.14)

Table A.3 displays the modal coupling coefficients for any β. This does not generate much insight, and hence
one should normalize these coefficients with respect to the b(1)

111-term to find the ratios of these coupling co-
efficients. The resulting normalized variables are shown in Table A.4. This table is quite crowded: it contains
quite some nonzero values. Most of these values are non-integer, which likely results from the discretization
of system. Still, there is a trend visible in these modal coupling coefficients: they appear to follow -with some
margin, and certainly some exceptions- the scaling law with the considered linear frequency ratio, which is
denoted by nr for mode r . For strings (App. B), there is no difference between the mode numbers and the
frequency ratios, as these follow an integer relationship. Contrary to the model that is considered here -the
FPUT model-, there is such a difference. This likely results from the discretization, and there is thus a like-
lihood of disappearance of this difference once more elements are considered, as the frequencies approach
integer values as N is increased in Eq. A.13. The relation between the coupling coefficients and the normal-
ized mode frequencies is as follows:

b̃(r )
i j k = 2nr n j n j nl . (A.15)

One of the aforementioned exceptions is present for the cases where j = k and l 6= j . For example for the
b̃(1)

113-term:

b̃(r )
j kl = 2nr n j nk nl : b̃(1)

113 = 1.00×1.00×1.00×2.97 = 2.97. (A.16)

This shows that the coupling coefficients, though calculated for a discretized model, follow the relation where
the coupling coefficients have a dependency on the frequency ratios.

A.2.4. Accuracy of the linear modal stiffness
Now that the nonlinear coefficients are known, one may check the accuracy of the conversion from physical
to modal coordinates, by checking if the calculated modal coefficients actually show FPUT behavior. The
linear energy formulation of mode n is given by Eq. A.17.

El i n = 1

2
q̇2

n + 1

2
kn q2

n where n = 1, ..., N (A.17)

Fig. A.3 shows the linear energy versus time plots of two simulations, for two sets of linear stiffness coef-
ficients: one simulation is run for the linear coefficients that result from the method where the modal dis-
placements are substituted into the potential energy, and another simulation with the linear coefficients that
result from an eigenfrequency analysis of the linear part of the FPUT equations of motion. These simulations
are conducted using Matlab’s ODE45 solver. The difference is present only in the frequency ratio for the fifth
mode; 5.00 for the first method (Table A.1) and 4.83 for the second method (Table A.2). However, there is
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Table A.3: Modal coupling coefficients for the N = 16 FPUT β-model, for the first 6 modes.

Eq. (1) (2) (3) (4) (5) (6)
b111 0.000102323β 0 0.000101162β 0 0 0
b112 0 0.000811615β 0 0.000797796β 0 0
b113 0.000303485β 0 0.00180024β 0 0.00151779β 0
b114 0 0.000797796β 0 0.00313685β 0 0.00228564β
b115 0 0 0.00151779β 0 0.00511861β 0
b116 0 0 0 0.00228564β 0 0.00666166β
b122 0.000811615β 0 0.0012036β 0 0.00202953β 0
b123 0 0.00240721β 0 0.00473244β 0 0.00689652β
b124 0.00159559β 0 0.00473244β 0 0.00797988β 0
b125 0 0.00405905β 0 0.00797988β 0 0.011629β
b126 0 0 0.00689652β 0 0.011629β 0
b133 0.00180024β 0 0 0 0.00450168β 0
b134 0 0.00473244β 0 0 0 0.0135582β
b135 0.00303558β 0 0.00900335β 0 0 0
b136 0 0.00689652β 0 0.0135582β 0 0
b144 0.00313685β 0 0 0 0 0
b145 0 0.00797988β 0 0 0 0
b146 0.00457128β 0 0.0135582β 0 0 0
b155 0.00511861β 0 0 0 0 0
b156 0 0.011629β 0 0 0 0
b166 0.00666166β 0 0 0 0 0
b222 0 0.00160941β 0 0 0 0.00153696β
b223 0.0012036β 0 0.00713965β 0 0 0
b224 0 0 0 0.0124406β 0 0
b225 0.00202953β 0 0 0 0.0203001β 0
b226 0 0.00461088β 0 0 0 0.0264198β
b233 0 0.00713965β 0 0.00701808β 0 0
b234 0.00473244β 0 0.0140362β 0 0.0236679β 0
b235 0 0 0 0.0236679β 0 0.0344909β
b236 0.00689652β 0 0 0 0.0344909β 0
b244 0 0.0124406β 0 0 0 0.0178208β
b245 0.00797988β 0 0.0236679β 0 0 0
b246 0 0 0 0.0356416β 0 0
b255 0 0.0203001β 0 0 0 0
b256 0.011629β 0 0.0344909β 0 0 0
b266 0 0.0264198β 0 0 0 0
b333 0 0 0.0079182β 0 0 0
b334 0 0.00701808β 0 0.0275943β 0 0
b335 0.00450168β 0 0 0 0.0450276β 0
b336 0 0 0 0 0 0.0586016β
b344 0 0 0.0275943β 0 0.0232649β 0
b345 0 0.0236679β 0 0.0465298β 0 0.0678072β
b346 0.0135582β 0 0 0 0.0678072β 0
b355 0 0 0.0450276β 0 0 0
b356 0 0.0344909β 0 0.0678072β 0 0
b366 0 0 0.0586016β 0 0 0
b444 0 0 0 0.0240411β 0 0
b445 0 0 0.0232649β 0 0.0784589β 0
b446 0 0.0178208β 0 0 0 0.102111β
b455 0 0 0 0.0784589β 0 0.0571685β
b456 0 0 0.0678072β 0 0.114337β 0
b466 0 0 0 0.102111β 0 0
b555 0 0 0 0 0.0640134β 0
b556 0 0 0 0.0571685β 0 0.166622β
b566 0 0 0 0 0.166622β 0
b666 0 0 0 0 0 0.108426β
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Table A.4: Modal coupling coefficients for the first 6 modes of the N = 16 FPUT β-model, normalized with respect to b(1)
111.

Eq. (1) (2) (3) (4) (5) (6)
b̃111 1 0 0.99 0 0 0
b̃112 0 7.93 0 7.80 0 0
b̃113 2.97 0 17.59 0 14.83 0
b̃114 0 7.80 0 30.66 0 22.34
b̃115 0 0 14.83 0 50.024 0
b̃116 0 0 0 22.34 0 65.10
b̃122 7.93 0 11.76 0 19.83 0
b̃123 0 23.53 0 46.25 0 67.40
b̃124 15.59 0 46.25 0 77.99 0
b̃125 0 39.67 0 77.99 0 113.65
b̃126 0 0 67.40 0 113.65 0
b̃133 17.59 0 0 0 43.99 0
b̃134 0 46.25 0 0 0 132.50
b̃135 29.67 0 87.99 0 0 0
b̃136 0 67.40 0 132.50 0 0
b̃144 30.67 0 0 0 0 0
b̃145 0 77.99 0 0 0 0
b̃146 44.68 0 132.50 0 0 0
b̃155 50.02 0 0 0 0 0
b̃156 0 113.65 0 0 0 0
b̃166 65.10 0 0 0 0 0
b̃222 0 15.73 0 0 0 15.02
b̃223 11.76 0 69.78 0 0 0
b̃224 0 0 0 121.58 0 0
b̃225 19.83 0 0 0 198.39 0
b̃226 0 45.06 0 0 0 258.20
b̃233 0 69.78 0 68.59 0 0
b̃234 46.25 0 137.8 0 231.31 0
b̃235 0 0 0 231.31 0 337.08
b̃236 67.40 0 0 0 337.08 0
b̃244 0 121.58 0 0 0 174.16
b̃245 77.99 0 231.31 0 0 0
b̃246 0 0 0 348.32 0 0
b̃255 0 198.39 0 0 0 0
b̃256 113.65 0 337.08 0 0 0
b̃266 0 258.20 0 0 0 0
b̃333 0 0 77.38 0 0 0
b̃334 0 68.59 0 269.68 0 0
b̃335 43.99 0 0 0 440.05 0
b̃336 0 0 0 0 0 572.71
b̃344 0 0 269.68 0 227.37 0
b̃345 0 231.31 0 454.73 0 662.68
b̃346 132.50 0 0 0 662.68 0
b̃355 0 0 440.05 0 0 0
b̃356 0 337.08 0 662.68 0 0
b̃366 0 0 572.71 0 0 0
b̃444 0 0 0 234.95 0 0
b̃445 0 0 227.37 0 766.78 0
b̃446 0 174.16 0 0 0 997.93
b̃455 0 0 0 766.78 0 558.71
b̃456 0 0 662.68 0 1117.41 0
b̃466 0 0 0 997.93 0 0
b̃555 0 0 0 0 625.60 0
b̃556 0 0 0 558.71 0 1628.39
b̃566 0 0 0 0 1628.39 0
b̃666 0 0 0 0 0 1059.64
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still a clear difference in the resulting dynamics. Fig. A.3a(i) indicates some energy transfer between only the
uneven modes, though none of the higher modes seem to dominate the first mode’s energy at any point in
the considered time frame. Fig. A.3b(i) shows dominance in terms of energy, where the behavior is similar
to the original experiment for the FPUT β-model from Fig. A.1a, where energy is distributed among only the
uneven modes. Figures A.3a(ii) and A.3b(ii) depict the modal amplitudes of each simulation. The left figure
shows that the small energy of the higher modes is related to small amplitudes of modes 3 and 5. The right fig-
ure shows that higher amplitudes do relate to this energy transfer, though the difference in magnitude of the
modal amplitudes for the left and right figures is small. This implies that though a system shows modulations
in the modal amplitudes (beatings), one cannot discern whether a system shows energy transfer between
modes. One should there always calculate the linear energy of each mode, to verify any presence of modal
energy dominance.
The difference in the two energy plots of Fig. A.3 clearly indicates that an non-integer frequency ratio (which
is slightly smaller than the internal resonance condition, which requires an integer relation: ω5 = 5ω0) for
the fifth mode is required to generate the classical FPUT behavior. This could mean that one of the possible
origins of the FPUT behavior lies in these non-integer frequency ratios. This FPUT behavior is closely re-
lated to quasiperiodic behavior, which requires a system with N modes to have incommensurate (irrational)
frequency ratios [24]. These frequencies should follow the relation from Eq. A.18, where all nr -terms are
integers.

n1ω1 +n2ω2 + ...+nNωN = 0 (A.18)

This relation should only be valid if all nr -terms are zero. To observe quasiperiodic behavior, none of the
frequency ratios should be integer. The FPUT phenomenon, where energy is seen to be transferred from the
fundamental mode to higher modes, before it returns to the fundamental mode essentially results from some
quasiperiodicity in the amplitude of the system. In subsequent steps, the linear values from the eigenfre-
quency analysis (Table A.2) will be employed as these are calculated accurately and the resulting dynamics
agree very well with the original experiments.

(a)
ωi
ω0

= 1.00,1.99,2.97,3.92,5.00 and 5.71. (b)
ωi
ω0

= 1.00,1.99,2.97,3.92,4.83 and 5.71.

Figure A.3: Ringdown simulations from an initial displacement of the first mode for the undamped FPUT system. The model consists of
the first six eigenmodes. The nonlinear coefficients from Table A.3 for β= 8Nm−3 are used here. A.3a depicts the results for the linear

variables from the potential substitution method in Table A.1. A.3a(i) depicts the energy, A.3a(ii) depicts the amplitude. A.3b depicts the
results with linear variables that follow from an eigenfrequency analysis of the FPUT equations (Table A.2). A.3b(i) depicts the energy,

A.3b(ii) depicts the amplitude. The star indicates the first recurrence of energy at approximately 150 seconds. 99.8% of the initial energy
is recovered in this point.

A.2.5. Required coupling coefficients
The equations of motion consist of nonlinear terms, which result in energy transfer through cross-terms (i.e.
bi j k -terms where i 6= j and/or j 6= k). This energy transfer is most dominant for the cases where the internal
resonance condition is satisfied (as is shown in Section B.5). The nonlinear coupling coefficients from Table
A.4 show that the amount of nonzero cross-terms is quite large. Before determining which these terms are
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the origin of the FPUT behavior, it is important to note that the total nonlinear energy may be found by
integrating any of the six modal equations of motion, according to the following formula for the total energy:

Etot =
∫ qr

0

[
N∑

j=1

N∑
k= j

N∑
l=k

b(r )
j kl q j qk ql

]
d qr where n = 1,2, ..., N and r = 1 or 2 or ... or N (A.19)

which is valid for any choice of the variable r , because all equations of motion basically result from the same
energy potential, which consists of all considered modes. The variable r basically sets which modal equation
of motion is integrated; it determines which column of Table A.4 is used for integration. The integration will
generate a pre-factor, which will generate certain relations between these coupling coefficients. One of these
relations is shown in Eq. A.20.

E ( j )
j j l =

1

3
b( j )

j j l q3
j ql

E (l )
j j j = b(l )

j j j q3
j ql

E ( j )
j j l = E (l )

j j j →
1

3
b( j )

j j l q3
j ql = b(l )

j j j q3
j ql

(A.20)

This implies that the following relation should always be valid:

b( j )
j j l = 3b(l )

j j j . (A.21)

Using a similar method, it can be proven that the following relations should also be valid:

b(r )
j kl = b( j )

r kl = b(l )
r j k = b(k)

r j l . (A.22)

The total energy may be considered to consist of two parts: a part that accounts for the energy that resides
in only one mode (i.e. if r = j = k = l = 1, this term is denoted by 1

4 b(1)
111q4

1 ) and a part that allows for energy
transfer between several modes; the coupling energy. The coupling energy -for the first mode- may be written
as Ecoupling:

Ecoupling =
∫ q1

0

[
N∑

j=1

N∑
k= j

N∑
l=k

b(1)
j kl q j qk ql

]
d q1 where l > 1 (A.23)

The variable l should be larger than one, such that only the nonlinear coupling energy is considered. For the
default FPUT system (where β = 8Nm−3), the coupling energy may be found at each time integration point.
Plotting all three quantities over time, which are (1) the linear energy per mode El i n.n = 1

2 mq̇n + 1
2 k(n)q2

n , (2)

the total single mode energy (Etot .n = 1
2 mq̇n + 1

2 k(n)q2
ni + 1

4 b(n)
nnn q4

n) and (3) the coupling energy (Eq. A.23),
will generate the following plots:
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Figure A.4: Several plots of quantities over time. (a) depicts the linear energy, (b) shows the total single-mode energy, (c) depicts the
coupling energy, (d) depicts the modal amplitudes and (e) depicts the modal velocity.

Fig. A.4 reveals several interesting topics:

• Only the uneven modes are excited: the even modes appear to remain zero during the entire simulation.

• The linear modal energy and the single mode energy (which also accounts for the nonlinear energy
fraction) do not differ much: their difference is hardly visible in these plots. This could be due to the
small magnitudes of the nonlinear coefficients, as well as amplitudes that remain smaller than one,
resulting in small nonlinear energy fractions;

• The coupling energy follows an expected trend: this quantity increases as the first mode’s energy de-
creases, indicating that energy flows from the first mode to the higher modes. On the contrary, once the
first mode’s energy increases, the coupling energy decreases. The trend of the maxima of the coupling
energy is likely to show the total coupling energy, where the lower peaks (e.g. the one between 0 and
50s) could indicate that energy flows to the third mode. These trends are accompanied by the local
increase of the amplitude of the third mode (and similarly for the fifth mode). This observation is in
agreement with Eq. A.23: the coupling energy may only increase as the amplitude of the higher modes
increase.

• The amplitude plot indicates that the amplitudes are modulated (generating beatings). As was men-
tioned before, this energy dominance of a higher mode does not necessarily imply that the modal am-
plitude of the corresponding mode dominates. FPUT behavior may hence be present in structures for



A.2. The β-model in terms of modal coordinates 33

which these beatings are visible in the amplitude signal. The modal velocity does show this dominance:
the FPUT behavior may thus be predicted for systems that show beatings in both the modal amplitudes
and modal velocities.

The coupling energy (as mentioned before) is dependent on the amplitudes of at least two modes. To deter-
mine which terms are required to see FPUT behavior, the coupling energy should be analyzed. Keeping only
the nonzero coupling terms (from Table A.3) results in Eq. A.24.

Ecoupling.1 =
1

3
b(1)

113q3
1 q3 + 1

2
b(1)

122q2
1 q2

2 +
1

2
b(1)

124q2
1 q2q4 + 1

2
b(1)

133q2
1 q2

3 +
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2
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144q2
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2
b(1)

166q2
1 q2

6 +b(1)
223q1q2

2 q3 +b(1)
225q1q2

2 q5 +b(1)
234q1q2q3q4 +b(1)

236q1q2q3q6+
b(1)

245q1q2q4q5 +b(1)
256q1q2q5q6 +b(1)

335q1q2
3 q5 +b(1)

346q1q3q4q6
(A.24)

For this problem, where the even modes always have zero amplitude (Fig. A.4), there is no coupling energy
generated by any term that dependent on the amplitude of an even mode, since q2(t ) = 0, q4(t ) = 0 and
q6(t ) = 0 for t ≥ 0, Eq. A.24 may thus be simplified to Eq. A.25.

Ecoupling.1 =
1

3
b(1)

113q3
1 q3 + 1

2
b(1)

133q2
1 q2

3 +
1

2
b(1)

135q2
1 q3q5 + 1

2
b(1)

155q2
1 q2

5 +b(1)
335q1q2

3 q5 (A.25)

This shows that there are only five terms which are responsible for this coupling energy. Of course, the nonlin-
ear parameter of a single mode (for cubic nonlinearity, this is the Duffing term), also excites the other modes’
harmonics, as is shown in Section B.5. However, the energy that is associated to this Duffing behavior has no
dependency on the amplitudes of the other modes. Hence, should these terms (the b(1)

113-, b(1)
133-, b(1)

135-, b(1)
155-

and the b(1)
335-terms) not be present, it is likely that this FPUT phenomenon cannot be observed. It is however

important to note that this simplification (from Eq. A.24 to Eq. A.25) is only valid in the regimes where these
even modes are not excited. Any other initial condition, where one of these even modes does have nonzero
initial amplitude, most likely results in different dynamics, as the even modes will most likely also receive
energy.

The required coupling terms (from Table A.3) may be determined by checking which coefficients generate a
nonzero force from the nonzero coupling coefficients multiplied by the nonzero modal amplitudes (in this
case, this is q1(t ), q3(t ) and q5(t ), as was shown in Fig. A.4). This results Equations A.26, A.27 and A.28 for the
first, third and fifth equation of motion, respectively.

q̈1 +k(1)
1 q1 +b(1)

111q3
1 +b(1)

113q2
1 q3 +b(1)

133q1q2
3 +b(1)

135q1q3q5 +b(1)
155q1q2

5 +b(1)
335q2

3 q5 = 0 (A.26)

q̈3 +k(3)
3 q3 +b(3)

111q3
1 +b(3)

113q2
1 q3 +b(3)

115q2
1 q5 +b(3)

135q1q3q5 +b(3)
333q3

3 +b(3)
355q3q2

5 = 0 (A.27)

q̈5 +k(5)
5 q5 +b(5)

113q2
1 q3 +b(5)

115q2
1 q5 +b(5)

133q1q2
3 +b(5)

335q2
3 q5 +b(5)

555q3
5 = 0 (A.28)

The nonlinear parts of the equations consist of Duffing parameters (b(1)
111,b(3)

333 and b(5)
555), coupling parameters

which were be found using Equations A.21, A.22 and A.25, and coupling coefficients between the third and
fifth modes (b(3)

355 and b(5)
335, which are only present in the equations of motion for the third and fifth modes).

Table A.5 shows (in the highlighted terms) which coefficients are thus required to see this FPUT behavior.
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Table A.5: Modal coupling coefficients for the first 6 modes of the N = 16 FPUT β-model, normalized with respect to b(1)
111. The

coefficients that generate a nonzero force for the amplitude condition q1(t ) 6= 0, q2(t ) = 0, q3(t ) 6= 0, q4(t ) = 0, q5(t ) 6= 0 and q6(t ) = 0 are

highlighted here. The coefficients that are highlighted in yellow are the Duffing terms, the terms which are highlighted in green are

the coupling terms.

Eq. (1) (2) (3) (4) (5) (6)

b̃111 1 0 0.99 0 0 0
b̃112 0 7.93 0 7.80 0 0

b̃113 2.97 0 17.59 0 14.83 0
b̃114 0 7.80 0 30.66 0 22.34

b̃115 0 0 14.83 0 50.024 0
b̃116 0 0 0 22.34 0 65.10
b̃122 7.93 0 11.76 0 19.83 0
b̃123 0 23.53 0 46.25 0 67.40
b̃124 15.59 0 46.25 0 77.99 0
b̃125 0 39.67 0 77.99 0 113.65
b̃126 0 0 67.40 0 113.65 0

b̃133 17.59 0 0 0 43.99 0
b̃134 0 46.25 0 0 0 132.50

b̃135 29.67 0 87.99 0 0 0
b̃136 0 67.40 0 132.50 0 0
b̃144 30.67 0 0 0 0 0
b̃145 0 77.99 0 0 0 0
b̃146 44.68 0 132.50 0 0 0

b̃155 50.02 0 0 0 0 0
b̃156 0 113.65 0 0 0 0
b̃166 65.10 0 0 0 0 0
b̃222 0 15.73 0 0 0 15.02
b̃223 11.76 0 69.78 0 0 0
b̃224 0 0 0 121.58 0 0
b̃225 19.83 0 0 0 198.39 0
b̃226 0 45.06 0 0 0 258.20
b̃233 0 69.78 0 68.59 0 0
b̃234 46.25 0 137.8 0 231.31 0
b̃235 0 0 0 231.31 0 337.08
b̃236 67.40 0 0 0 337.08 0
b̃244 0 121.58 0 0 0 174.16
b̃245 77.99 0 231.31 0 0 0
b̃246 0 0 0 348.32 0 0
b̃255 0 198.39 0 0 0 0
b̃256 113.65 0 337.08 0 0 0
b̃266 0 258.20 0 0 0 0

b̃333 0 0 77.38 0 0 0
b̃334 0 68.59 0 269.68 0 0

b̃335 43.99 0 0 0 440.05 0
b̃336 0 0 0 0 0 572.71
b̃344 0 0 269.68 0 227.37 0
b̃345 0 231.31 0 454.73 0 662.68
b̃346 132.50 0 0 0 662.68 0

b̃355 0 0 440.05 0 0 0
b̃356 0 337.08 0 662.68 0 0
b̃366 0 0 572.71 0 0 0
b̃444 0 0 0 234.95 0 0
b̃445 0 0 227.37 0 766.78 0
b̃446 0 174.16 0 0 0 997.93
b̃455 0 0 0 766.78 0 558.71
b̃456 0 0 662.68 0 1117.41 0
b̃466 0 0 0 997.93 0 0

b̃555 0 0 0 0 625.60 0
b̃556 0 0 0 558.71 0 1628.39
b̃566 0 0 0 0 1628.39 0
b̃666 0 0 0 0 0 1059.64

To verify that these terms generate this behavior, the green highlighted terms are set to zero, and another
ringdown simulation is run. This results in Fig. A.5.
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Figure A.5: Simulated ringdown for the first 6 modes of the FPUT β-problem. The initial condition is an initial amplitude of the first
mode. β= 8Nm−3 and all green variables in Table A.5 are zero.

This clearly shows that all energy remains in the first mode. The energy of the higher modes does not increase,
indicating that the energy is not transferred. It may hence be concluded that the green highlighted terms in
Table A.5 and/or the coupling terms from Eq.’s A.26, A.27 and A.28 are required to see this FPUT behavior.

Effect of initial conditions
Tuck and Menzel stated that this behavior was sensitive of the initial force ratio, which was (in terms of spatial
coordinates) given by Eq. A.4 [34]. Its modal equivalent may be written as:

rNLvsL = FN L

FL
= b(1)

111q3
0.1

k(1)
1 q0.1

= b(1)
111

k(1)
1

q2
0.1 (A.29)

Substitution of these variables from Table A.1 combined with q0.1 = qu0.1
αF PU T

= 2.93 m gives a initial force ratio
that equals 0.21. This implies that for the default problem, this modal initial nonlinear force equals 21% of
the initial linear force.

For the initial condition where only the first mode is excited, this will only generate nonzero forces for the
terms which are only dependent on the amplitude of the first mode. Plugging the initial condition q1 = q0.1,
q3 = 0 and q5 = 0 into the equations A.26, A.27 and A.28 gives:

q̈1 +k(1)
1 q0.1 +b(1)

111q3
0.1 = 0 (A.30)

q̈3 +b(3)
111q3

0.1 = 0 (A.31)

q̈5 = 0. (A.32)

These equations show that the first equation of motion is excited through the linear stiffness (k(1)
1 ) and the

Duffing term (b(1)
111). The fifth mode’s equation of motion remains zero. However, for the third equation of

motion, there is a term that is excited as well: the term that scales with b(3)
111. This generates an excitation of

the third mode, through an initial excitation of the first mode. This could be the term that is responsible for
the initial energy transfer from the first mode to the third mode. Again, to verify that this term is responsible
for the initial energy transfer, the simulation may be run once more, though this time with b(3)

111, (and thus

b(1)
113) equal to zero. The results are depicted in Fig. A.6. This shows that no energy is transferred to the other

modes. This b(3)
111-term (referred to as the back-coupling term) may thus be seen as the ”catalyst”-term: the

term that initiates excitation of another mode under pure excitation of a single mode, as is verified by Sholl
[33].

The origin of the b(3)
111-term may be traced by checking the potential that is associated to a prescribed dis-

placement that is a function of both the first and third mode. This procedure is shown for two analytical
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Figure A.6: Simulated ringdown for the first 6 modes of the FPUT β-problem. The initial condition is an initial amplitude of the first

mode. β= 8 and b(3)
111 = 0 and b(1)

113 = 0.

string models in Section B.7; for the FPUT model, this is basically identical to the w-displacement string
model.

A.2.6. Conclusions
From this study on the default FPUT β-model, the following conclusions may be drawn:

• FPUT behavior may become visible through energy transfer from the initially excited mode to other
modes and subsequent recurrence of energy to the initially excited mode. To generate this in- and de-
crease in the energy, local modulations of the modal amplitudes (beatings) are required. However,
though beatings in the amplitude signal of a mode could mean that energy is transferred to other
modes, it is not sufficient to only check amplitude versus time plots to determine whether a system
shows FPUT behavior. To verify whether a system shows FPUT recurrence, one should check both the
modal amplitude versus time plots, the modal velocity versus time plots and preferably the energy ver-
sus time plots.

• The conversion from physical to modal parameters is done with sufficient accuracy: the converted
variables generate FPUT behavior. However, the linear frequencies from this conversion do not equal
those of a linear eigenfrequency analysis of the equations of motion in terms of the physical coordi-
nates. Therefore, in this section, the frequency ratio from this eigenfrequency analysis (Table A.2) was
used in combination with the found nonlinear modal coefficients in Table A.3.

• In addition to the previous point one may conclude that to generate FPUT behavior, one should have
linear frequency ratios which are non-integer and slightly lower than the nearest internal resonance
condition.

• The modal coupling coefficients seem to show a relation to these frequency ratios. Note that this is not
related to the (integer) mode number.

• For the studied nonlinearity (β= 8Nm−3) and magnitude of the initial conditions, it is sufficient to only
account for the linear fraction of the total energy, as the nonlinear energy remains fairly small (Fig.
A.4(a) vs. Fig. A.4(b)).

• Though it was shown that the nonlinear energy remains small, this nonlinear energy is responsible for
the energy transfer, as was shown in Fig. A.4(c). The coupling energy follows an expected trend: it
increases as energy is transferred from the first mode to others, and it decreases for cases where energy
is transferred from the higher modes to the first mode.

• To see FPUT-behavior, a coupling between the uneven modes is required. This coupling may be es-
tablished through nonzero modal coupling terms, which couple the amplitudes of several (in this case,
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uneven) modes of vibration. Eq.’s A.26, A.27 and A.28 display the required nonzero coefficients. It
was shown that without these coefficients, especially the b(3)

111-term (the back-coupling term) there

would not be any energy transfer. This b(3)
111-term may be seen as the ”catalyst”-term, which produces

a nonzero force in the equation of motion of the third mode, under excitation of only mode 1. Hence,
to see FPUT behavior, these terms should be nonzero.

• The study in this section shows FPUT behavior under exactly the same conditions as the original exper-
iment [11]: the initial conditions, damping, linear stiffness and nonlinear stiffness were all identical. To
see whether this behavior may be visible for different conditions, another study should be conducted.
This will be done in the next section.

A.3. Limiting conditions of the FPUT β-problem
The previous section comprised a study of the default FPUT problem, using initial conditions and linear ver-
sus nonlinear relations which were in agreement with the original experiment. This study showed -among
many others- that the linear frequency ratios should not be integer, as well as the necessity for certain modal
coupling coefficients to be nonzero. This section will explore the limits of this behavior: this will generate
insight into which conditions should be met in order to see the desired behavior. These conditions aim to an-
swer the following questions, regarding what damping, linear strength, nonlinear strength or initial condition
should be present to see FPUT-like behavior:

1. What quality-factor (Q) is needed?

2. What linear frequency ratio is required?

3. What ratio of linear to nonlinear stiffness is required?

4. What initial ratio of the nonlinear versus linear force is required?

The first question accounts for damping, which is not present in the original FPUT experiment. Should a
mechanical system allow for the required energy transfer, then the damping should be small enough to be
able to observe this exchange [21]. This question is answered independently of the three other questions,
as this has no direct relation to the others: a change in the magnitude of damping does not immediately
generate large difference in the linear, nonlinear and initial condition of the system. The second question
is formulated such that the required linear frequency ratios may be determined. The third question aims to
quantify the required strength of nonlinearity. Finally, the last question generates insight into what the initial
force ratio (nonlinear versus linear) should be. Tuck and Menzel claimed that this ratio should not exceed
10% for the default FPUT problem [34]. The previous section has shown that in terms of modal coordinates,
this is more: about 20%. Since the present study goes beyond this default problem (in different regimes of
nonlinearity), this condition may no be valid. The latter three questions are all related to one another, as e.g.
any change in the linear stiffness will impact the initial force ratio (Eq. A.29) as well.

A.3.1. The influence of linear damping on FPUT mechanics
This paragraph will aim to answer the question which quality factor is required to see FPUT-like behavior.
This may be done quite easily by adding a modal damping coefficient to the default FPUT β-problem. The
present analysis will assume linear damping, which is expressed in terms of the Q-factor of the first mode,
where the Q-factors of the higher modes are assumed to scale with the inverse of the mode number (Qn = Q1

n ),
this appears to be approximately valid for strings, as is shown in Section B.4. By setting the quality factor of
the first mode (Q1), the modal damping may thus be tuned. The equations of motion (from Eq. D.16) become,
with inclusion of this additional damping factor and exclusion of the quadratic coupling coefficients:

q̈r +k(r )
r qr + ωr

Qr
q̇r +

N∑
j=1

N∑
k= j

N∑
l=k

br
j kl q j qk ql = 0, r = 1,2, ..., N . (A.33)

Where k(r )
r = ω2

r and again, the first six modes are considered: N = 6. These equations are solved using the
linear stiffness parameters from Table A.2, in combination with the nonlinear variables from Table A.3 for
β = 8Nm−3. The quality factor is swept for 20 logarithmically spaced variables between 500 and 1 million.
This produces the energy evolution over time that is depicted in Fig. A.7. Evidently, the recurrent behavior is
still visible, though is is suppressed heavily for quality factors below 1000. From Q-factors of 8230 and higher,
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(a) Modal energy versus time for the first six modes of the FPUT β-model with β= 8Nm−3 and initial excitation of the first mode. These plots were generated
for simulations with 20 logarithmically spaced Q-factors between 500 and 1 million.

(b) Fraction of initial energy returning to the first mode at the first recurrent peak.

Figure A.7: Modal energy versus Q-factor plots. A.7a depicts the versus time for the first six modes of the FPUT β-model for β= 8 and
initial excitation of only the first mode. These plots were generated for simulations with 20 logarithmically spaced Q-factors between

500 and 1 million. A.7b depicts the fraction of energy returning to the initially excited mode.

more than 95% of the initial energy returns to the first mode. For quality factors of approximately 135,000,
this has increased to nearly 99.5%, which shows that for Q-factors higher than approximately 100,000, the
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(a) (b)

Figure A.8: Simulations of the damped default FPUT problem for a first mode Q-factor of 100,000. In 1.8a Q3 = 1000 and Q5 = 200. In
A.8b Q3 = 100 and Q5 = 20.

effect of damping on this default FPUT problem (where N = 16 and β= 8Nm−3) may be assumed to be very
small. Note that this is observed for Q-factors of the higher modes that scale with the inverse of the mode
number. For lower Q-factors of the higher modes, part of the transferred energy will dissipate to the environ-
mental bath. This dissipation will influence the recurrent peak of the first mode, as the total energy dissipates
quickly for these cases. Fig. A.8 depicts two iterations, where the Q-factors of modes 3 and 5 have deteri-
orated significantly. Figures A.8(a) and A.8(b) show that less energy is present in the first recurrence peaks,
indicating that part of the energy that is distributed among these higher modes is dissipated sooner than that
it is returned to the first mode. Fig. shows that for Q3 = 1000 and Q5 = 200, a large amount of energy returns
to the initial condition, indicating that recurrence is still present. Now, if one were to manufacture a Si3N4

string-like resonator, it is very likely that a Q of 100,000 can be achieved in high vacuum. In the subsequent
iterations in this section, the effect of damping is however not neglected. Rather, the fundamental Q-factor is
set to 100,000, and the Q-factors of the higher modes are assumed with the inverse of the mode number.

A.3.2. Linear frequency ratios
The second question that was set-up in the beginning of this section considered the required frequency ra-
tio to observe FPUT behavior. Table A.2 and Fig. A.3 have previously shown that the FPUT behavior for the
default FPUT system is most significant for non-integer frequency ratios near the internal resonance condi-
tion. Although it may be clear that these linear frequency ratios should be non-integer, it is not clear by how
much. This may be checked by manually varying the linear stiffness. Nine options for these stiffness ratios
will be analyzed in this section. These nine values are expressed in terms of the percentage of the default
FPUT problem parameters. This percentage ranges between 90% and 110%. The higher modes (modes 2, 3,
4, 5 and 6) are multiplied by this percentage only, to check the influence with respect to the first mode. The
following procedure shows how these linear stiffness values are swept:

1. The non-dimensional linear stiffness parameters of the default FPUT system are (from Table A.2):

k̃ = [1.00, 3.97, 8.80, 15.33, 23.34, 32.55]. (A.34)

2. The higher modes (2, 3, 4, 5 and 6) are multiplied by the sweep percentage p, using the following for-
mula:

k̃p = [1.00, 3.97p, 8.80p, 15.33p, 23.34p, 32.55p]. (A.35)

3. For example, for a percentage of p = 90%, the linear parameters will become:

k̃p = [1.00, 3.57, 7.92, 13.80, 21.00, 29.30]. (A.36)

4. The linear frequency ratios for p = 90% are thus given by:
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ω=
√

k̃p = [1.00, 1.89, 2.81, 3.71, 4.58, 5.41]. (A.37)

A.3.3. Nonlinear versus linear stiffness ratio

The third question, concerning the ratio of nonlinear over linear stiffness,
b(1)

111

k(1)
1

, may determine the regime for

which FPUT behavior may be observed. The linear and nonlinear modal variables for the default FPUT prob-
lem are listed in Table A.1. The parameter sweep that is conducted in this paragraph uses various variables of
β, since the linear stiffness is swept already for the method that is shown in the previous paragraph. In this
analysis, this β-variable is chosen to be in the same order of magnitude of the original variable (β= 8Nm−3);
the variable range consists of six linearly spaced values between 0 and 20Nm−3.

A.3.4. Initial ratio of nonlinear versus linear force
The final question treats the ratio of nonlinear versus linear force. This ratio could determine what effect
the initial condition may have on the resulting dynamics. This analysis is conducted on the initial force ra-
tio generated by the first mode, it is expressed by Eq. A.29. This equation shows the dependency on three
variables: the nonlinear stiffness b(1)

111, the linear stiffness k(1)
1 and the initial amplitude qu0.1 . The previous

two paragraphs have already set values for the first two, leaving only one ”free” variable: the initial modal
amplitude qu0.1 (=αF PU T q0.1). This variable is swept for several values ranging between 0.1 and 3.25m, where
for small values (0.1m), the initial nonlinearity is suppressed due to the quadratic dependency in Eq. A.29:
rN L2L(qu0.1 = 0.1m) ¿ 1. On the contrary, for initial amplitudes larger than unity, the initial ratio is already
strongly nonlinear: rN L2L(qu0.1 = 3.25m) À 1.

A.3.5. Three conditions to determine the sensitivity of the FPUT β-problem
The previous paragraphs have shown that four questions may be set up to define the sensitivity of the FPUT
behavior to certain conditions for damping, linear stiffness, nonlinear stiffness and initial conditions. This
paragraph will show several results from this sensitivity study. The study consists of three free parameters: (1)
the linear frequency ratio, (2) the strength of the nonlinearity and (3) the magnitude of the initial conditions.
The range of the swept variables are:

p = [90%,92.5%,95%,97.5%,100%,102.5%,105%,107.5% and 110%] (A.38)

for the linear stiffness, where the higher modes’ stiffness is multiplied with this variable, according to Eq.
A.35. The nonlinear stiffness is swept for 6 variables between 0 and 20Nm−3:

β= 0,4,8,12,16 and 20Nm−3. (A.39)

The last variable, the initial condition qu0.1 (=αF PU T q0.1) is swept for 8 variables between 0.1 and 3.25m:

qu0.1 = 0.1,0.55,1.00,1.45,1.90,2.35,2.80 and 3.25m. (A.40)

These parameters are swept for 9, 6 and 8 magnitudes, for the linear stiffness ratio, nonlinear strength and
the initial conditions, respectively. In total, there are 9×6×8 = 432 combinations possible. The default FPUT
problem is considered here as well: this is the combination where p = 100%,β= 8Nm−3 and qu0.1 = 1.00m.
During these sweeps, several quantities are monitored: the linear energy, the modal amplitude, the recur-
rence fraction in terms of the initial energy and the energy dominance of the third and fifth mode. The latter
quantity is calculated as the maximum difference between the energy of the first mode (E1) and the third (E3)
or fifth mode (E5), with respect to the initial energy E0 (at t = 0):

Edom.n(t ) = max(
En(t )−E1(t )

E0
), ∀ t , and n = 3, 5. (A.41)

The sweep results are depicted for constant initial conditions, because this allows for proper comparison of
the behavior for different conditions over the simulated time. Fig. A.9 depicts the energy and amplitude
versus time plots for a sweep for qu0.1 = 1.00m and the values from Equations A.38 and A.39.
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(a) Energy versus time plots for sweeps for linear frequency ratios and nonlinear stiffness and a constant initial condition q0.1 = 1m.

(b) Energy versus time plots for sweeps for linear frequency ratios and nonlinear stiffness and a constant initial condition q0.1 = 1m.

Figure A.9: A.9a (A.9b) depict the energy versus time (amplitude versus time) plots for various combinations of linear and nonlinear
stiffness. The first mode is indicated by blue lines, the third mode is indicated by yellow lines and the fifth mode is indicated by the
green lines. The rows show (from top to bottom) an increasing percentage for the linear stiffness: [90%, 92.5%, 95%, 97.5%, 100%,
102.5%, 105%, 107.5% and 110%]. The columns depict (from left to right) the sweep for β, for β= 0,4,8,12,16 and 20 Nm−3, which

generate an initial nonlinear force ratio of 0,10,21,31,41,51%. The red rectangle annotates the default FPUT problem, for p=100% and
β= 8Nm−3. The stars in the plots indicate the recurrence of energy of the first mode, after another mode has been dominant over the

first mode.

This figure shows several interesting things:
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• As expected, the energy transfer is zero for zero nonlinear stiffness (β= 0Nm−3). The amplitude of the
first mode remains constant.

• For low nonlinear stiffness (e.g. for β= 4Nm−3, the second column) there is some energy transfer, but
the energy of the third mode dominates the energy of the first mode for only one combination: the case
where p = 100%.

• For a nonlinear stiffness that is equal to the default FPUT variable, β= 8Nm−3 (an initial force ratio of
21%), the energy transfer is stronger than for the case where β= 4Nm−3 (initial force ratio of 10%). The
recurrent behavior is only visible for the linear frequency ratios which are equal to the default FPUT
system. Hence, this behavior (as was also shown in Fig. A.3a) appears to be quite sensitive to variations
in the linear frequency ratios. The increase in energy of the higher modes is accompanied by an increase
in the amplitude of these modes.

• The last three columns (for initial force ratios larger than 31%) show that the dynamics become more
complicated for stronger nonlinearity, as there is more energy exchange visible. Clear modulations in
amplitude are visible for all modes.

• The bottom two rows, for values of p equalling 107.5 and 110%, the energy exchange is present, though
the E1 is never dominated by E3 nor E5. The increasing nonlinearity does show that the energy transfer
(and the amplitude of the higher modes) increase accordingly.

• The upper right plots show that there is quite some energy exchange visible, both in energy and ampli-
tude. A trend is visible if one were to draw a (diagonal) line from the default FPUT problem to the up-
per right-hand corner of the figure. Along this line, the nonlinearity is increased as one moves towards
the right, and the frequency ratio is decreased further as one moves upwards. This implies that for de-
creasing linear stiffness ratios and increasing nonlinear stiffness, the behavior remains -approximately-
similar to the default problem. The decrease in the linear stiffness ratios may be thus be compensated
by increasing the nonlinear stiffness, which in turn increases (hardens) the effective frequency of the
modes, similar to the Duffing behavior from Section B.3.2.

• During this increase in nonlinearity, the recurrence time appears to decrease, showing that for systems
with stronger nonlinearity, this behavior may occur on a smaller time scale.

Before expanding to various other initial conditions, it is important to compare the abovementioned obser-
vations with literature.

A.3.6. Literature
Nelson et. al recently presented a study that shows what the influence of tolerances to the nonlinear stiffness
is [26]. They conducted numerical simulations of the FPUT α-model, where they placed tolerances (ti ) on
the linear and/or nonlinear stiffness of Eq. A.42:

ẍi = ti+1xi+1 + ti−1xi−1 −2ti xi +α[(ti+1xi+1 + ti xi )2 − (ti xi + ti−1xi−1)2]. (A.42)

These tolerances were considered to cover the manufacturing tolerances which are commonly present in pas-
sive electronics; their magnitudes are claimed to vary between ±0.1% and ±10% of the considered strength.
Their study covered three topics: (1) the effects of tolerances on the linear, nonlinear, or both terms; (2) the
effects of tolerances on the number of elements (N ) in the model, and (3) the effects of asymmetry in the
coupling coefficients, where ti 6= ti−1 6= ti+1. The study that is conducted in this report is primarily focused on
Nelson’s first topic, but the others may also be quite relevant during further design stages. Nelson’s research
showed that the effects of adding such tolerances to either the linear, nonlinear or both linear and nonlinear
terms may quickly reduce the recurrent behavior of the system.
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Figure A.10: From Nelson et. al, [26]. The effect of tolerance on different parts of a 1D FPUT-α array with a coupling coefficient of α =
0.25 and N = 64 oscillators. Panels (a)–(c) show examples with tolerance in both the linear and nonlinear terms, panels (d)–(f) show

examples with tolerance in only the linear terms, and panels (g)–(i) show examples with tolerance in only the nonlinear terms. Observe
that adding tolerance to only the linear terms has a comparable effect on recurrence to adding tolerance to only the nonlinear terms.
Tolerance in both linear and nonlinear terms: (a) ±1%, (b) ±5%, and (c) ±10%. Tolerance in the linear terms: (d) ±1%, (e) ±5%, and (e)

±10%. Tolerance in the nonlinear terms: (g) ±1%, (h) ±5%, and (i) ±10%.

Figures A.10(a)-(c) from Nelson [26] depict that increase of tolerances to both the linear and nonlinear stiff-
ness result in deteriorating recurrent behavior. For tolerances larger or equal to ±5%, in A.10 (b-c), the recur-
rent behavior is hardly visible. Adding tolerances only to the linear (Fig. A.10(d-f)) or nonlinear terms (Fig.
A.10(g-i)) show approximately the same behavior: the energy dominance and recurrent behavior disappears
as the tolerance is increased. Comparing the case where a tolerance to only the linear fraction or nonlinear
fraction is added with the case where a tolerance is added both linear and nonlinear fractions, it is clear that
the other modes receive more energy for the case where the tolerances are added to both. Nelson subse-
quently shows that asymmetry in the tolerances of the coupling elements and a lower number of elements
may enhance the recurrent behavior as well. The latter statement may be verified using the results from the
previous subsection, where it was shown that FPUT recurrence is most likely to occur for non-integer fre-
quency ratios. Now, imagine one were to discretize a string into N elements: using a lot of elements (large
N) will approximate a string’s properties with increasing accuracy. This in turn generates frequencies that are
close to the frequencies of a string, which follow integer relations. By using less elements, these frequencies
will approximate the string frequencies with less accuracy, generating non-integer ratios, which were previ-
ously shown to generate strong recurrent behavior.

This research by Nelson shows that the recurrent behavior in the FPUT-αmodel is very sensitive to the applied
tolerances, and it is shown to be most significant for the cases where the tolerances are added to both the
linear and nonlinear variables. These effectively generate similar results (showing recurrent behavior) to what
was shown in the upper right corner of Fig. A.9a, where both the linear and nonlinear stiffness deviated from
the default problem. Though the dynamics of these FPUT-α and FPUT-β models may appear to be similar,
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Figure A.11: Energy dominance of the third mode over the first mode, for several parameter sweeps. The results are grouped per initial
condition. Each plotted point depicts a combination of 3 parameters: the magnitude of the initial condition, the percentage of the

default linear stiffness and the magnitude of the nonlinearity. The output of each iteration -the magnitude of the energy dominance- is
plotted along the vertical axis and plotted in different colors, depending on its magnitude.

the comparison should be executed carefully, as their global dynamics are different. For instance, in the α-
model, there is a coupling between even and uneven modes, due quadratic nonlinearity.

A.3.7. Results of the sensitivity analysis
In the previous section, it was found that the quantitative dynamics of the FPUT α-model agree fairly well
with the observations that were made in Fig. A.9. However, these observations should not be considered
to be valid for the FPUT β-model. This section will elaborate upon the results of the parameter sweeps for
linear, nonlinear stiffness and initial conditions, as were presented in Section A.3.5. The parameter sweeps
are grouped per initial condition, and the results for each parameter sweep are plotted in a 3-dimensional
scatter plot. The x-, y- and z-axes contain the linear frequency ratio (expressed in terms of a percentage p,
Eq. A.38), the magnitude of β (Eq. A.39) and the magnitude of the energy dominance (Eq. A.41), respectively.
The magnitude of the energy dominance will also be expressed in a color, which will show gradual effect of
the swept parameters.

The initial force ratio of each of these initial conditions depends only on the initial amplitude of the first mode
and the magnitude of β, since the first mode’s linear frequency is kept constant. The initial force ratios may
thus be calculated for each initial condition and value of β, using Eq. A.29. Figures A.11 and A.12 depict the
results for 8 initial conditions, which are each swept for 6 values of β. Table A.6 depicts the initial force ratios,
where each row indicates an initial condition from Figures A.11 and A.12.
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Figure A.12: Energy dominance of the fifth mode over the first mode, for several parameter sweeps. The results are grouped per initial
condition. Each plotted point depicts a combination of 3 parameters: the magnitude of the initial condition, the percentage of the

default linear stiffness and the magnitude of the nonlinearity. The output of each iteration -the magnitude of the energy dominance- is
plotted along the vertical axis and plotted in different colors, depending on its magnitude.
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Table A.6: Initial nonlinear force ratios (Eq. A.29). Rows indicate the initial force percentages for all subplots in Figures A.11 and A.12,
for the nonlinearities in each column.

β[Nm−3]
qu0.1 [m] 0 4 8 12 16 20
0.10 0 0 0 0 0 1
0.55 0 3 6 9 12 16
1.00 0 10 21 31 41 51
1.45 0 22 43 65 87 108
1.90 0 37 74 111 149 186
2.35 0 57 114 170 227 284
2.80 0 81 161 242 323 403
3.25 0 109 217 326 435 543

The results for the third and fifth mode in Figures A.11(a-b) and A.12(a-b) show that for small initial condi-
tions, where qu0.1 < 1m (FN L2L ≤ 16%), the dominance of the modal energy is small: there is little significant
energy transfer for the case where qu0.1 = 0.1m, since the dominance remains well below 0. The case where
qu0.1 = 0.550m indicates that the energy transfer is more significant. For the case where the linear frequen-
cies equal 100% of the FPUT variables, there is energy dominance, which increases as the nonlinear strength
increases. For Figures A.11(c) and A.12(c), where q0 = 1m, there is significant energy transfer, which follows
the trend which was already observed in Fig. A.9a: for a smaller value of p and increased nonlinearity, the
energy transfer seems to increase in magnitude. Interestingly, for the cases where the linear frequencies have
shifted to a higher frequency (p > 100%), this energy dominance magnitude decreases, for both the third and
fifth modes. Figures A.11(d-e) and A.12(d-e) show that as the magnitude of the initial condition increases
(to qu0.1 = 1.45m or qu0.1 = 1.8m), where the initial nonlinear force ratio exceeds 37%, the energy dominance
seems to be destroyed for increased nonlinearity and shifted frequencies. However, the cases where the lin-
ear stiffness is increased, we start to see more significant energy transfer. This effect is also present in the
remaining Figures Fig. A.11(f-h) and A.12(f-h), though it is less significant: the energy transfer first increases
before it drops for β = 8Nm−3, and increases again for higher nonlinearity. The latter plots, Fig. A.11(h) and
A.12(h), show that the energy transfer mostly increases for all considered conditions. Generally, large initial
force ratios (exceeding 100%, for higher nonlinearities and larger magnitudes of the initial condition) increase
energy transfer. For higher initial amplitudes and increased magnitudes of nonlinearities, the energy domi-
nance increases beyond the point where Edom.n(t ) > 1 (Eq.A.41), implying that there is more energy located
in the studied mode, than there was initially present in the first mode. The reason for this could be that the
initial energy is defined as the initial linear energy. For higher nonlinearity and increasing magnitudes of the
initial conditions, this linear approximation of the energy will no longer be valid, implying that the fraction of
nonlinear energy will become larger and no longer negligible. Nonetheless, this analysis has shown that it is
possible to see FPUT behavior for stronger nonlinearities (and magnitudes of the initial conditions), as long
as the initial force ratios remain larger than 21%, which was found for the default FPUT model.

A.3.8. Conclusion
In summary, from this sensitivity study on the default FPUT system, it may be concluded that FPUT behavior
is not confined to the default FPUT problem only, where k = 1Nm−1 and β= 8Nm−3. In this section, the the
influence of a linear damping factor on the default FPUT system (where N = 16 and β = 8Nm−3) was inves-
tigated first. This showed that the behavior is still visible for relatively low Q-factors, where roughly 80% of
the initial energy returned to the initial condition for Q-factors of the first mode of around 1,000 (and higher
mode Q-factors were here assumed to scale with the inverse of the mode number). For first mode’s Q-factors
that exceed this 100,000, it could be observed that less than 1% of the initial energy was lost in single recur-
rence period. For lower Q-factors of the higher modes, part of the energy that is distributed to these modes
will dissipate sooner than it can be transferred back to the first mode, which reduces the recurrent peak.
The observations that were made here are in line with the study on the α-model from Nelson [26], who re-
ported that by increasing the tolerances of both the linear and nonlinear stiffness terms of the α-model, one
will more or less conserve the FPUT mechanics. Where Nelson included maximum tolerances of 10%, the
present research does not include tolerances, but it varies the magnitude of the nonlinear stiffness in larger
steps than this 10%. The present research shows that for a weakly damped β-model, which includes a cubic
(Duffing) nonlinearity, one may compensate the decrease of the linear frequencies by increasing the non-
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linear stiffness. This model is weakly damped, the first mode’s Q = 100,000 and higher modes are assume to
scale with this Q and the inverse of the mode number. In addition, contrary to what Nelson reported, it can be
concluded that the FPUT mechanics in these regimes for high nonlinearity are less sensitive to the changes
of these nonlinearities. Fig. A.9a indicates that for example that two of the requirements for FPUT behavior
(energy dominance of another mode over the initially excited mode, followed by recurrence of the initial con-
dition) may be observed for higher magnitudes of nonlinearity. However, increasing the nonlinear magnitude
of the system will also increase the nonlinear energy, which therefore should be taken into account as well,
especially for large amplitudes of vibration.





B
String vibrations

This chapter elaborates upon string vibrations. First, two analytical models are presented which are sub-
sequently compared to a numerical model. Finally, experimentally obtained frequency responses of string
resonators will be simulated using these analytical models.

B.1. Analytical string models
This section will show in what form nonlinearities appear in the equations of motion of a continuous string
resonator. Many theoretical studies investigate the nonlinearities in strings. The analysis that is presented
here is a combination of research by Anand, Zhao and Nayfeh [2, 38, 25]. Zhao derives the equations of mo-
tion from Hamiltons priciple, but Nayfeh and Anand follow a more direct approach using force equilibrium.
Eventually, both methods will generate the same equations of motion.

These string resonators may be modelled by the following system, a simply supported string of length L. The
string is made of a material with density ρ and Young’s modulus E . The string is under a pre-load in the
longitudinal direction with magnitude T0, which is distributed over a cross-sectional area A, resulting in a
pre-stress of σ0 = T0

A .

Figure B.1: Simply supported string of length L. Shown is an infinitesimal element with length d x. The initial configuration of the string
is shown in black; the large deformation case is shown in red. The string is pre-loaded in the x-direction with load T0.

49
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Now, as can be seen in Fig. B.1, the string consists of a infinitesimal element which has length d x in the
initial (black) configuration. The deformed configuration (in red) shows that the element is displaced in the
vertical direction. The two points that initially were at locations x1 = [x1, y1, z1] and x2 = [x2 = x1+d x, y2, z2]
have displaced to x′1 = [x ′

1, y ′
1, z ′

1] and x′2 = [x ′
2, y ′

2, z ′
2] respectively. The longitudinal displacement (in the

x-direction) is denoted by u, the transverse displacement (the y-direction) is denoted by v and the vertical
displacement (in the z-direction) is denoted by w . The following equations show how these displacements
are formulated:

x ′
1 −x1 = u

y ′
1 = v

z ′
1 = w

x ′
2 − (x1 +d x) = u +du

y ′
2 = y ′

1 +d v = v +d v

z ′
2 = z ′

1 +d w = w +d w.

(B.1)

Pythagoras’ theorem is can be used to determine the length of the stretched element d s:

d s =
√

(x ′
2 −x ′

1)2 + (y ′
2 − y ′

1)2 + (z ′
2 − z ′

1)2 =
√

(d x +du)2 +d v2 +d w2) = d x

√(
1+ du

d x

)2

+
(

d v

d x

)2

+
(

d w

d x

)2

.

(B.2)
The derivatives with respect to x may be written as du

d x = ux , d v
d x = vx and d w

d x = wx :

d s = d x

√(
1+ du

d x

)2

+
(

d v

d x

)2

+
(

d w

d x

)2

= d x
√

(1+ux )2 + v2
x +w2

x (B.3)

The analytical models in this chapter are based on the assumption that the bending motion of the string
may be neglected, as the area moment of inertia is very small for small string thickness. This area moment of
inertia scales with the string thickness to the power three (for a rectangular cross-section, the area moment of
inertia equals 1

12 bh3, where b and h are the width and thickness, respectively). For the small thicknesses that
are considered here, this will result in a magnitude that is considered to be small with respect to the energy
that is associated to the axial deformation of the resonator. This latter quantity is large due to the significant
pre-stress of the resonator.

Anand’s method is based on the assumption that though the displacements will be relatively large, they will
still be small enough for Hooke’s law to be valid [2]. This assumption allows one to also assume that the
derivatives of the displacement (ux , vx and wx ) are very small compared to unity. Assuming that v À u
and w À u (small longitudinal displacement w.r.t. the transverse or vertical displacements) allows us to get
rid of u-terms that scale with higher orders than 2 and to get rid of terms that scale with the cube of the
displacement in the transverse and vertical directions: v and w respectively.

Approximating d s by Taylor expanding ux up to second order gives:

d s ≈

√
v2

x +w2
x +1+ ux√

v2
x +w2

x +1
+O (u2

x )

d x. (B.4)

Subsequently Taylor expanding vx and wx up to the power three, will then give, after some algebra:

d s ≈
[

1+ux + 1

2
v2

x +
1

2
w2

x

]
d x. (B.5)

The axial tension force that is present the string results from two parts, (1) the pretension force -denoted by
T0- and (2) the stretching force of the element from length d s to d x -denoted by E A d s−d x

d x , where E is the
Young’s modulus of the string material and A is the cross-sectional area of the string. This can be given by the
following formula for the tension at location x and time t :

T (x, t ) = T0 +E A
d s −d x

d x
= T0 +E A(ux + 1

2
v2

x +
1

2
w2

x ). (B.6)
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The tension due to the stretching in the longitudinal direction is given by the ratio of the longitudinal stretch-
ing over the total stretched length d s:

Tx (x, t ) = T (x, t )
(1+ux )d x

d s
. (B.7)

And similarly for the tension in the transverse (Eq. B.8) and vertical (Eq. B.9) directions.

Ty (x, t ) = T (x, t )
vx d x

d s
(B.8)

Tz (x, t ) = T (x, t )
wx d x

d s
(B.9)

Where the fraction d x
d s is given by:

d x

d s
= 1−ux − 1

2
v2

x −
1

2
w2

x . (B.10)

Force equilibrium in all directions will give us three expressions: one for the each of the three displacement
directions. The linear mass density of the element is given by m and it is equal to the product of the density
and the cross-sectional area: m = ρA. The force that results from a change in displacement should thus be
equal to the inertia terms in these directions.

mut t = ∂

∂x

[
T (x, t )(1+ux )

d s

d x

]
= ∂

∂x

[
[T0 +E A

(
ux + 1

2
v2

x +
1

2
w2

x

)
](1+ux )

(
1−ux − 1

2
v2

x −
1

2
w2

x

)]
(B.11)

mvt t = ∂

∂x

[
T (x, t )(vx )

d s

d x

]
= ∂

∂x

[
[T0 +E A

(
ux + 1

2
v2

x +
1

2
w2

x

)
]vx

(
1−ux − 1

2
v2

x −
1

2
w2

x

)]
(B.12)

mwt t = ∂

∂x

[
T (x, t )(wx )

d s

d x

]
= ∂

∂x

[
[T0 +E A

(
ux + 1

2
v2

x +
1

2
w2

x

)
]wx

(
1−ux − 1

2
v2

x −
1

2
w2

x

)]
(B.13)

Expanding Eq.’s B.11, B.12, B.13 and neglecting the O (u2
x ), O (v3

x ), O (w3
x ) and cross-terms that scale with ux

results in the equations of motion for all three directions:

mut t = E Auxx + 1

2
(E A−T0)

∂

∂x

[
v2

x +w2
x

]
(B.14)

mvt t = T0vxx + (E A−T0)[ux vxx +uxx vx + 3

2
v2

x vxx +wx wxx vx + 1

2
w2

x vxx ] (B.15)

mwt t = T0wxx + (E A−T0)[ux wxx +uxx wx + 1

2
v2

x wxx + vx vxx wx + 3

2
w2

x wxx ] (B.16)

Several analytical models will be shown in this chapter: the first model will show how the linear resonance
frequencies may be determined through linearization of the strains which result from vertical displacements
of strings. Subsequently, a nonlinear model will be derived that includes only vertical displacements. There-
after, the modal equations of motion for planar vibrations (where the transverse displacement is assumed to
be zero) are derived from a model that accounts for all three displacement directions. Finally, the full modal
equations of motion for strings will be derived. In the latter model, all displacement directions (longitudinal,
transverse and vertical) will be considered.

B.1.1. Analytical string model for vertical displacements
Zhao recently presented an analytical string model which only accounts for vertical displacements [38]. Here,
it is assumed that (1) the vibrations remain planar (in the xz-plane) and (2) that the displacement in the
longitudinal direction is much smaller than that in the vertical direction: d v = 0 and du ¿ d w . Therefore,
it may be assumed that the displacement du is negligible with respect to the displacement d w . This then
results in the following displacement directions:

ux = 0, vx = 0, and wx 6= 0. (B.17)

The equation (Eq. B.3) for the stretched element d s reduces to the following expression when these assump-
tions of planar vibrations and small longitudinal displacements are applied:

d s = d x
√

1+w2
x . (B.18)
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Linear string models for vertical vibrations

If it is furthermore assumed that the strain may be approximated by using that
√

1+w2
x ≈ 1+ 1

2 w2
x , the fol-

lowing strain formulation is found:

εvertical =
√

1+w2
x −1 ≈ 1+ 1

2
w2

x −1 = 1

2
w2

x . (B.19)

The equation of motion for w then becomes, after assuming that only linear terms in w should be kept (O (w2
x )

and higher are zero):
mwt t = T0wxx . (B.20)

This equation could also be found from Eq. B.16 when neglecting longitudinal and vertical displacement
directions (u = 0 and v = 0) and negligence of all nonlinear terms.

This equation results in the following equation of motion if the relation for the pre-tension force T0 is substi-
tuted for σ0 A in Eq. B.20:

∂2w

∂t 2 = σ0

ρ

∂2w

∂x2 . (B.21)

This yields the familiar (linear) wave equation. This equation is a strong simplification of the vibrations of a
string as it relies on the assumptions that the vibrations remain small. In subsequent (nonlinear) analyses, it
will be shown that this equation becomes much more complex when the vibrations become large.

The linear frequencies of the string may be determined by separating Eq. B.21 into two parts, which are
time and space dependent, respectively. If we assume that the displacement may be divided into a time-
dependent part p(t ) and a space dependent part W (x), we can rewrite the wave equation assuming that both
terms equal some constant −ω2 [20], as is shown in Eq. B.22.

p̈(t )

p(t )
= σ0

ρ

W ′′(x)

W (x)
=−ω2 (B.22)

The space-dependent part of the above equation can be rewritten as:

W ′′(x)+ω2 ρ

σ0
W (x) = 0. (B.23)

This is just a harmonic ordinary differential equation with solutions of the following form:

W (x) = A cos

(
ω

√
ρ

σ0
x

)
+B sin

(
ω

√
ρ

σ0
x

)
. (B.24)

Imposing the boundary conditions of a simply-supported string of length L, i.e. that W (0) = 0 and W (L) = 0,
we can immediately see that A = 0 and that the following equation should be satisfied:

W (L) = B sin

(
ω

√
ρ

σ0
L

)
= 0. (B.25)

This requires that either B = 0 or that sin
(
ω

√
ρ
σ0

L
)
= 0. The latter is the only feasible solution, and hence the

following relation should be satisfied:

ω

√
ρ

σ0
L = nπ, n = 1,2, ... (B.26)

This yields the following equation for ωn , the string’s nth eigenfrequency:

ωn = nπ

L

√
σ0

ρ
. (B.27)

The space-dependent part can thus be written as,

Wn(x) = sin
(nπ

L
x
)
. (B.28)
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Which shows that the eigenfrequencies of a string scale with mode number n, these linear frequencies thus
scale with the real mode number n as well.
Now the frequencies of the system are known, a non-dimensionalization and a coordinate transformation to
modal coordinates may be performed as well. The non-dimensionalisation of Eq. B.21 is conducted using
the following relations D.2.2:

w̄ = w

L
, x̄ = x

L
, ω0 = π

L

√
σ0

ρ
, τ=ω0t . (B.29)

Substitution of these relations into Eq. B.21, gives Eq. B.30.

π2

L

σ0

ρ

d 2w̄

dτ2 − σ0

ρ

1

L

d 2w̄

d x̄2 = 0 → d 2w̄

dτ2 − 1

π2

d 2w̄

d x̄2 = 0 (B.30)

Now, in order to determine the modal equations of motion, a modal coordinate transformation should be
performed. The displacement w̄ may be written as:

w̄(x̄,τ) =φun (x̄)q̃n(τ). (B.31)

Where φun (x̄) is the linear mode shape of mode n, which has a maximum of unity:

φun (x) = sin(nπx̄) = sin(πx̄). (B.32)

Substitution of the mode shapes results in the following expression for the modal equations of motion:

¨̃qun (τ)sin(nπx̄)+ 1

π2 n2π2 sin(nπx̄)q̃un (τ) = 0. (B.33)

Evaluating the integrals over the domain of x̄, which ranges from 0 to 1, gives:∫ 1

0
( ¨̃qun (τ)sin(nπx̄)+n2 sin(nπx̄)q̃un (τ))d x̄ = ¨̃qun (τ)(1−cos(nπ))+n2q̃un (τ)(1−cos(nπ)) = 0 (B.34)

The first mode is considered only: n = 1. The linear (non-dimensional) equation of motion of a string will
thus become:

¨̃qun (τ)+n2q̃un (τ) = ¨̃qu1 (τ)+ q̃u1 (τ) = 0 (B.35)

Which shows that the dimensionless linear modal equation of motion does not depend on any string param-
eters. This means that the inertia term and the linear stiffness term both scale with the same parameters,
which can also be seen in Eq.’s B.21 and B.30, where all string’s dimensional parameters appear to drop out.
The equation in Eq. B.21 is often written as q̈u1 +ω2

n qu1 = 0, where the ω-terms for a string scale linearly with
mode number n. The effect of dimensional parameters on the nonlinear or large-amplitude vertical vibration
of strings is examined in the next subsection.

Nonlinear string models for vertical vibrations: the w-displacement model
If one still were to take into account only the vertical vibrations w and that terms that scale nonlinearly in
wx are nonzero, (i.e. for which O (w2

x ) and higher are nonzero), we arrive (using Eq. B.16) at the following
equation of motion for w :

ρAwt t − [E A−T0]

(
3

2
wxx w2

x

)
−T0wxx = 0 (B.36)

After division with the mass density, the constants in this equation can be rewritten as c0 =
√

T0
ρA =

√
σ0
ρ and

c1 =
√

E A
ρA =

√
E
ρ , which are the vertical and longitudinal wave velocities in a string. Their ratio,

c2
1

c2
0
À 1, as

the Young’s Modulus is much larger than the pre-stress of the strings that are considered in this research (250
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GPa vs. 1 GPa, respectively). Hence, it is assumed that c2
1 − c2

0 ≈ c2
1 for the considered string characteristics.

Finally, this simplification will generate the following equation of motion:

wt t − (c2
1 − c2

0 )

(
3

2
wxx w2

x

)
− c2

0 wxx = 0 → wt t − c2
1

(
3

2
wxx w2

x

)
− c2

0 wxx = 0. (B.37)

Now, in order to compute the modal variables, current (physical) coordinates should be transformed to modal
coordinates, which allow for separation of space and time, similarly to the previous section. This may be done
using the following equation:

w(x, t ) =
N∑

n=1
φun (x)qun (t ) (B.38)

where the (dimensional) displacement w is written as a combination of N eigenmodes. Here, φun (x) is gives
the max-1 shape of the eigenmode n, and qun (t ) is the time dependent modal amplitude of mode n. The
modal shape function may be assumed to be a function that is equal to one of the eigenmodes of the string.
In this case, this is a Sine-function (according to Eq. B.32), the mode shape of mode n may be written as
follows:

φun (x) = sin
(nπx

L

)
(B.39)

To determine the modal parameters of the system, we should imply the Galerkin method, where the equation
is first multiplied by a certain weight function, before it is integrated over the length of the string [20]. This
weight function is just another mode shape of the system; this allows one to decompose the modal variables
into parts that are only present in the equation for mode r . This weight function is denoted by φur , the mode
shape of mode number r . Note that the mode numbers r and n are not necessarily equal: if not, this method
allows for computation of the influence of mode n onto mode r .

φur (x) = sin
( rπx

L

)
(B.40)

To determine the modal parameters of mode n in equation of motion r (i.e. the modal equation of mode
r ), one should evaluate the following integral (where qun (t ) is written as qun for simplicity). For r = n, the
integral from Eq. B.41 should be solved to arrive at Eq. B.42.∫ L

0
φur (x)

(
wt t − c2

0 wxx − 3

2
c2

1 w2
x wxx

)
d x = 0 (B.41)

L

2
q̈un +

π2n2c2
0

2L
qun +

3π4n4c2
1

16L3 q3
un

= 0 (B.42)

Which generated the modal mass, stiffness and nonlinear stiffness (all normalized with the linear mass-
density, ρA). This shows that the modal mass is independent of the mode number, where the linear and
nonlinear stiffness are dependent of the mode number.

q̈un +
π2n2c2

0

L2 qun +
3π4n4c2

1

8L4 q3
n = q̈un +ω2

n qun +b(n)
nnn q3

un
= 0 (B.43)

The equation may then be normalized with respect to the length of the string for the space variable q , and
the fundamental mode frequency ω0 for the time t .

q̃un = qun

L
, τ= tω0, where ω0 = π

L

√
σ0

ρ
(B.44)

If these variables are substituted into Eq. B.64, the following non-dimensional equation is found:

ω2
0Lq̃ ′′

un
+ π2n2c2

0

L
q̃un +

3π4n4c2
1

8L
q̃3

un
= 0 (B.45)

Normalization with respect to the inertia term then gives:

q̃ ′′
un

+n2q̃un +
3

8
π2n4 c2

1

c2
0

q̃3
un

= q̃ ′′
un

+n2q̃un +
3

8
π2n4 E

σ0
q̃3

un
= 0 (B.46)
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Where it is clear that the nonlinearity (for one mode, this is the Duffing parameter) is dependent on ratio of
Young’s modulus (E) over the pre-stress (σ0), and the mode number. The Duffing strength of a mode may
hence be improved by either decreasing the pre-stress or increasing the Young’s modulus. Additionally, the
relation with the mode number shows that the higher the mode number, the larger the relative nonlinearity
(the linear stiffness scales with n2, and the Duffing parameter with n4). This results in the following terms for
n = 1:

q̃ ′′
u1

+ q̃u1 +
3π2

8

E

σ0
q̃3

u1
= 0. (B.47)

Which generates the following modal variables:

k̃(1)
1 = 1, b̃(1)

111 =
3π2

8

E

σ0
= 1b̃(1)

111. (B.48)

Repeating the same procedure for the higher modes, where n = 1,2, ..,6, generates the following modal pa-
rameters:

k̃(2)
2 = 22 = 4, b̃(2)

222 =
3π224

8

E

σ0
= 16b̃(1)

111

k̃(3)
3 = 32 = 9, b̃(3)

333 =
3π234

8

E

σ0
= 81b̃(1)

111

k̃(4)
4 = 42 = 16, b̃(4)

444 =
3π244

8

E

σ0
= 256b̃(1)

111

k̃(5)
5 = 52 = 25, b̃(5)

555 =
3π254

8

E

σ0
= 625b̃(1)

111

k̃(6)
6 = 42 = 36, b̃(6)

666 =
3π264

8

E

σ0
= 1296b̃(1)

111

(B.49)

The modal coupling terms can be computed by letting w(x, t ) be a combination of all considered modes. For
example, if modes 1 and 2 are considered, one can compute the magnitudes of terms such as b̃(1)

122, which
quantifies the coupling between mode 1 and 2 on mode 1. If the first three modes are considered (N = 3),
w(x, t ) writes (using Eq. B.38):

w(x, t ) =
3∑

n=1
φun (x)qun (t ) = sin

(πx

L

)
qu1 + sin

(
2πx

L

)
q̃u2 + sin

(
3πx

L

)
qu3 (B.50)

This, together with the space and time normalization, will generate the following equation of motion for the
first mode (k = 1):

q̃ ′′
u1

+12q̃u1 +
3

8
π2 E

σ0

[
14q̃3

u1
+8q̃u1 q̃2

u2
+3q̃2

u1
q̃u3 +12q̃2

u2
q̃u3 +18q̃u1 q̃2

u3

]= 0 (B.51)

The nonzero coupling terms appear to follow the following relations:

b̃(r )
r r n = r 3n

3π2

8

E

σ0
and b̃(r )

r nn = 2r 2n2 3π2

8

E

σ0
(B.52)

Which shows that these nonzero coupling terms are dependent on the mode numbers of these coupled
modes (r and n). The equation delivered the following modal coefficients (note that the coupling terms have
been normalized with respect to b̃(1)

111):

k̃(1)
1 = 1, b̃(1)

111 =
3π4

8

E

σ0
= 1b̃(1)

111

b̃(1)
113 = 3b̃(1)

111, b̃(1)
122 = 8b̃(1)

111, b̃(1)
133 = 18b̃(1)

133, b̃(1)
223 = 12b̃(1)

111

(B.53)

Once the same procedure has been repeated for r = 2 and r = 3, the following nonlinear modal coefficients
may be obtained:
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Table B.1: Linear modal coefficients for a string model that includes only vertical displacements. These values are normalized with

respect to k(1)
1 .

Eq. (1) (2) (3)
k̃1 1 0 0
k̃2 0 4 0
k̃3 0 0 9

Table B.2: Modal coupling coefficients for a string. Note that the coefficients are scaled with respect to b̃(1)
111

Eq. (1) (2) (3)
b̃111 1 0 1
b̃112 0 8 0
b̃113 3 0 18
b̃122 8 0 12
b̃123 0 24 0
b̃133 18 0 0
b̃222 0 16 0
b̃223 12 0 72
b̃233 0 72 0
b̃333 0 0 81

The results of the procedure for an inclusion of up to six modes is shown in Table E.2 in E.1.1.

Conclusion
The analytical model that accounts only for the linearized vertical displacements of a string generates the
linear wave equation, which may give insight into the linear frequencies of a string. A more advanced model,
which uses a nonlinear strain formulation for the vertical displacements, generates identical linear frequen-
cies. Additionally, this model contains nonlinear terms which have a cubic dependency on the modal coor-
dinates. A string with this cubic nonlinearity will thus contain Duffing terms. The relative strength of this
Duffing parameter is dependent on the ratio of Young’s modulus over the pre-stress ( E

σ0
), and scales with the

mode number (to the power four). The higher the mode number, the higher the relative nonlinearity of this
mode. The linear stiffness scales with n2 and the Duffing nonlinearity scales with n4. The modal coupling co-
efficients are also dependent on the mode numbers of the modes that are involved; for the b̃(r )

j kl -term, scales

with nr n j nk nl , which shows the dependency on the mode numbers for the coupling coefficients.

B.1.2. Nonlinear equations of motion including vertical, transverse and longitudinal dis-
placements

Equations B.14, B.15 and B.16 showed a string’s equations of motion for all three directions. Before diving into
the equations where one of these displacements may be neglected, one could approximate these equations
under the assumption that the longitudinal inertia (ut t ) is most likely to be small under excitation of one
of the first transverse or vertical modes. If this inertia is neglected, and it is again assumed that the ratio of
pre-tension over Young’s modulus will still be very small (E A À T0 and thus E A −T0 ≈ E A), Eq. B.14 can be
simplified to the following expression:

uxx =−1

2

(
1− T0

E A

)
∂

∂x
[v2

x +w2
x ] =−1

2

∂

∂x
[v2

x +w2
x ] =−vx vxx −wx wxx . (B.54)

This expression should also obey the boundary conditions of a pinned-pinned string, where the displacement
in both directions is zero at x = 0 and x = L, as follows:

u(0, t ) = v(0, t ) = w(0, t ) = 0 and u(L, t ) = v(L, t ) = w(L, t ) = 0 (B.55)

Integration then gives:

ux =−1

2

(
v2

x +w2
x

)+ 1

2L

∫ L

0

(
v2

x +w2
x

)
d x (B.56)
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And the second integration gives:

u =− 1

2L

∫ x

0

(
v2

x +w2
x

)
d x + x

2L

∫ L

0

(
v2

x +w2
x

)
d x. (B.57)

This generates the following equations of motion:

mvt t = T0vxx +E A[ux vxx +uxx vx + 3

2
v2

x vxx +wx wxx vx + 1

2
w2

x vxx ] =

mvt t = T0vxx +E A

[(
−1

2

(
v2

x +w2
x

)+ 1

2L

∫ L

0

(
v2

x +w2
x

)
d x

)
vxx + (−vx vxx −wx wxx ) vx + 3

2
v2

x vxx +wx wxx vx + 1

2
w2

x vxx

]
=

mvt t = T0vxx +E A

[
1

2L

∫ L

0

(
v2

x +w2
x

)
d x

]
vxx

(B.58)

mwt t = T0wxx +E A[ux wxx +uxx wx + 1

2
v2

x wxx + vx vxx wx + 3

2
w2

x wxx ] =

mwt t = T0wxx +E A

[(
−1

2

(
v2

x +w2
x

)+ 1

2L

∫ L

0

(
v2

x +w2
x

)
d x

)
wxx + (−vx vxx −wx wxx ) wx + 1

2
v2

x wxx + vx vxx wx + 3

2
w2

x wxx

]
=

mwt t = T0wxx +E A

[
1

2L

∫ L

0

(
v2

x +w2
x

)
d x

]
wxx

(B.59)

Which decouples the dependency of the vertical and transverse equations from the longitudinal displace-
ments.

Nonlinear string models for longitudinal and vertical vibrations: the uw-displacement model
This subsection will show what the equations of motion are for strings which include both vertical and lon-
gitudinal displacements. These vibrations are still assumed to remain planar (v = vx = vxx = 0), but they
account for stretching in the longitudinal direction (ux ) as well. This assumption is valid only when the eigen-
frequencies in the transverse direction are sufficiently far away, or for transverse frequencies which are very
weakly excited through internal resonance. The governing equation for this uw-displacement model, which
accounts for vertical and longitudinal vibrations will thus be equal to Eq. B.60.

mwt t −T0wxx −E A

(
1

2L

∫ L

0
w2

x d x

)
wxx = 0 (B.60)

After division with the linear mass density, we can again rewrite the constants in this equation as c0 =
√

T0
m

and c1 =
√

E A
m , the transverse and longitudinal wave velocities in the string. Their difference, i.e. c2

1 − c2
0 may

(again) be approximated by c2
1 , generating the following equation of motion:

wt t − c2
0 wxx − c2

1

(
1

2L

∫ L

0
w2

x d x

)
wxx = 0. (B.61)

This equation of motion is thus a function of both the longitudinal and transverse wave speeds, which in turn
depend on the Young’s modulus and the pre-stress of the material, respectively. Now, in order to compute
the modal variables, it is important to change to modal coordinates, which allow for separation of space and
time. The modal coordinates may be written as follows using Equations B.38, B.39 and B.40, to arrive at the
single-mode equation of motion (r = n):

∫ L

0
φur (x)

(
mwt t −T0wxx −E A

(
1

2L

∫ L

0
w2

x d x

)
wxx

)
d x = 0∫ L

0
sin

( rπx

L

)[
m sin

(nπx

L

)
q̈un +T0

n2π2

L2 sin
(nπx

L

)
qun +E A

(
1

2L

∫ L

0
(

n2π2

L2 cos2
(nπx

L

)
q2

un
)d x

)
n2π2

L2 sin
(nπx

L

)
qun

]
d x = 0

mL

2
q̈un +

π2n2T0

2L
qun +

π4n4E A

8L3 q3
un

= 0

(B.62)



58 B. String vibrations

Which provided us with the modal mass, stiffness and nonlinear stiffness. This again shows that the modal
mass is constant for each mode, whereas the linear and nonlinear stiffness are dependent of the mode num-
ber.

q̈un +ω2
n qun +bnnn q3

un
= 0

q̈un +
π2n2T0

L2m
qun +

π4n4E A

4L4m
q3

un
= 0

(B.63)

After substitution of the linear mass density m = ρA and the tension force as a function of the pre-stress and
the cross-sectional area (T0 =σ0 A), we will arrive at the following modal equation of motion for mode n:

q̈un +
π2n2σ0

L2ρ
qun +

π4n4E

4L4ρ
q3

un
= 0 (B.64)

The following non-dimensional variables may then be used: q̃n = qn
L and τ = tω0, where ω0 = π

L

√
σ0
ρ : the

fundamental mode frequency. The derivatives may then be computed as follows, using the non-dimensional
time τ:

d q

d t
= d q

dτ

dτ

d t
=ω0

d q

dτ
,

d 2q

d t 2 = d

dτ

[
d q

dτ

dτ

d t

]
=ω2

0
d 2q

dτ2 . (B.65)

Also using the space scaling, q = q̃L:

d q

d t
= d(q̃L)

dτ

dτ

d t
= Lω0

d q̃

dτ
= Lω0q̃ ′,

d 2q̃L

d t 2 = d

dτ

[
L

d q̃

dτ

dτ

d t

]
=ω2

0L
d 2q̃

dτ2 =ω2
0Lq̃ ′′. (B.66)

Substitution of these relations into Eq. B.64, generates the non-dimensional equation in Eq. B.67.

ω2
0Lq̃ ′′

un
+ π2n2σ0

Lρ
q̃un +

π4n4E

4Lρ
q̃3

un
= 0 (B.67)

Normalization with respect to the inertia term then gives:

q̃ ′′
un

+n2q̃un +
1

4
π2n4 E

σ0
q̃3

un
= 0. (B.68)

Here, it is clear that the nonlinearity (for one mode, this is the Duffing parameter) is also dependent on ratio
of Young’s modulus (E) over the pre-stress (σ0). The Duffing strength may hence be improved by either de-
creasing the pre-stress or increasing the Young’s modulus. This Duffing parameter is 1.5 times smaller than
that of the previous model, the w-displacement model.

This results in the following terms for n = 1:

q̃ ′′
u1

+ q̃u1 +
π2

4

E

σ0
q̃3

u1
= 0 (B.69)

Which generates the following modal variables:

k̃(1)
1 = 1, b̃(1)

111 =
π2

4

E

σ0
= 1b̃(1)

111 (B.70)

For n = 1,2, ..,6, this results in:

k̃(2)
2 = 22 = 4, b̃(2)

222 =
π224

4

E

σ0
= 16b̃(1)

111

k̃(3)
3 = 32 = 9, b̃(3)

333 =
π234

4

E

σ0
= 81b̃(1)

111

k̃(4)
4 = 42 = 16, b̃(4)

444 =
π244

4

E

σ0
= 256b̃(1)

111

k̃(5)
5 = 52 = 25, b̃(5)

555 =
π254

4

E

σ0
= 625b̃(1)

111

k̃(6)
6 = 62 = 36, b̃(6)

666 =
π264

4

E

σ0
= 1296b̃(1)

111

(B.71)
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Eq. B.50 can also be used to write w(x, t ) as a combination of all considered modes; this will then generate the
coupling terms. If this transformation is conducted, and a subsequent non-dimensionalization is conducted,
we will get the following modal coefficients, for r = 1 (note that the coupling terms have been normalized with
respect to b̃(1)

111):

k̃(1)
1 = 1, b̃(1)

111 =
π4

4

E

σ0
= 1b̃(1)

111

b̃(1)
122 = 4b̃(1)

111, b̃(1)
133 = 9b̃(1)

111

(B.72)

If the same procedure is repeated for r = 2 and r = 3, the following parameters will be found:

k̃(2)
2 = 4π2

L2

σ0

ρ
, b̃(2)

222 =
64π4

4L4

E

ρ
= 16b̃(1)

111

b̃(2)
112 = 4b̃(1)

111, b̃(2)
233 = 36b̃(1)

111

(B.73)

k̃(3)
3 = 9π2

L2

σ0

ρ
, b̃(3)

333 =
324π4

4L4

E

ρ
= 81b̃(1)

111

b̃(3)
113 = 9b̃(1)

111, b̃(3)
223 = 36b̃(1)

111

(B.74)

Table B.3: Linear modal coefficients for a string model that includes vertical and longitudinal displacements. These values are

normalized with respect to k(1)
1 .

Eq. (1) (2) (3)
k̃1 1 0 0
k̃2 0 4 0
k̃3 0 0 9

Table B.4: Modal coupling coefficients for a string model that includes vertical and longitudinal displacements Note that the

coefficients are scaled with respect to b̃(1)
111

Eq. (1) (2) (3)
b̃111 1 0 0
b̃112 0 4 0
b̃113 0 0 9
b̃122 4 0 0
b̃123 0 0 0
b̃133 9 0 0
b̃222 0 16 0
b̃223 0 0 36
b̃233 0 36 0
b̃333 0 0 81

The results of the procedure for an inclusion of up to six modes are shown in Table E.4 in E.1.2.

Nonlinear string models for non-planar vibrations, the uv w-displacement model
In the previous analyses, the influence of the modes in the transverse direction was neglected, since the as-
sumption was made that the vibrations of the string remained planar as the transverse mode frequencies
were assumed to be of negligible influence. For strings with a square or circular cross-section, this may not
be a safe assumption, since the modes will likely be resonant since the modal frequencies of both modes are
degenerate. To determine the modal coupling coefficients of a string while accounting for vertical, longitu-
dinal and transverse vibrations, one cannot further simplify Equations B.58 and B.59. The vertical (modal)
displacements are still assumed to be well approximated by Equations B.38, B.39 and B.40. However, the
transverse (modal) displacements should now also be formulated. This may be done by assuming that the
mode shapes are still of the same function (φun (x)), since the transverse and vertical modes are identical in
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terms of mode shape, but they are perpendicular to each other. The modal displacement in the transverse
direction is written as pun .

v(x, t ) =
N∑

n=1
φun (x)pun (t ) (B.75)

Substitution of equations B.38, B.75, B.39 and B.40 into equations B.59 and B.58 and applying the Galerkin
method once again, one will arrive at the modal variables from Tables B.5 and B.6.

Table B.5: Linear modal coupling coefficients for a string model that includes vertical, longitudinal and transverse displacements.

These values are normalized with respect to k(1)
1 . Note that the uneven (even) modes are the vertical (transverse) modes.

Eq. (1) (2) (3) (4)
k̃1 1 0 0 0
k̃2 0 1 0 0
k̃3 0 0 4 0
k̃4 0 0 0 4

Table B.6: Modal coupling coefficients for a string model that includes vertical, longitudinal and transverse displacements. The

coefficients are scaled with respect to b̃(1)
111. Note that the uneven (even) modes are the vertical (transverse) modes.

Eq. (1) (2) (3) (4)
b̃111 1 0 0 0
b̃112 0 1 0 0
b̃113 0 0 9 0
b̃114 0 0 0 9
b̃122 1 0 0 0
b̃123 0 0 0 0
b̃124 0 0 0 0
b̃133 9 0 0 0
b̃134 0 0 0 0
b̃144 9 0 0 0
b̃222 0 1 0 0
b̃223 0 0 9 0
b̃224 0 0 0 9
b̃233 0 9 0 0
b̃233 0 0 0 0
b̃244 0 9 0 0
b̃333 0 0 81 0
b̃334 0 0 0 81
b̃344 0 0 81 0
b̃444 0 0 0 81



B.2. Comparison of three models 61

B.2. Comparison of three models
Three models may be used to simulate the planar dynamics of strings. These models are as follows:

1. The analytical model (w-displacement model), which only considers vertical displacements from Sec-
tion B.1.1;

2. The analytical model (uw-displacement model), which that considers both longitudinal and vertical
displacements from Section B.1.2;

3. The numerical model that is based on the STEP method from Section D.1.1.

To determine what the differences are between each method, a high stress Silicon-Nitride string with the
material properties and dimensions from Table B.7 is considered.

Table B.7: Si3N4 string variables

Variable Symbol Magnitude

Density ρ 3100 kg
m3

Young’s modulus E 250 GPa
Poisson’s ratio ν 0.23

Pre-stress σ0 849.2 MPa
Length L 1110µm
Width w 4µm

Thickness t 92 nm

The modal coefficients of a Silicon-Nitride string
For the considered string variables, these three models generate the modal parameters from Tables B.8 and
B.9.

Table B.8: Si3N4 string frequencies

Variable w-displacement uw-displacement STEP
f1 [kHz] 235.76 235.76 235.77
f2 [kHz] 471.52 471.52 471.60
f3 [kHz] 707.28 707.28 707.54
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Table B.9: Modal nonlinear coupling strength (normalized by π2

4
E
σ0

) for a Si3N4 string, computed by a model that only considers

vertical displacement (w-displacement model), an analytical model that considers both vertical and longitudinal displacements
(uw-displacement) and a numerical model that considers both transverse and longitudinal displacements (STEP).

w-displacement uw-displacement STEP
Eq. (1) (2) (3) (1) (2) (3) (1) (2) (3)
ã11 0 0 0 0 0 0 0 0 0
ã12 0 0 0 0 0 0 0 0 0
ã13 0 0 0 0 0 0 0 0 0
ã22 0 0 0 0 0 0 0 0 0
ã23 0 0 0 0 0 0 0 0 0
ã33 0 0 0 0 0 0 0 0 0
Eq. (1) (2) (3) (1) (2) (3) (1) (2) (3)
b̃111 1.5 0 1.5 1 0 0 1.00 -0.00 0.00
b̃112 0 4.5 0 0 4 0 -0.00 4.04 0.00
b̃113 4.5 0 27 0 0 9 0.02 0.00 9.09
b̃122 12 0 18 4 0 0 4.04 0.00 0.13
b̃123 0 36 0 0 0 0 0.00 0.26 0.00
b̃133 27 0 0 9 0 0 9.09 0.00 0.00
b̃222 0 24 0 0 16 0 0.00 16.00 0.00
b̃223 18 0 108 0 0 36 0.13 0.00 36.37
b̃233 0 108 0 0 36 0 0.00 36.37 0.00
b̃333 0 0 121.5 0 0 81 0.00 0.00 80.99

The linear frequencies of all three models are approximately equal, as was shown in Table B.8. It is hence
expected that the w-displacement model shows a stronger nonlinear response than the other models.
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B.3. Experimental results of a 1110µm string resonator
A. Keşkekler and M. Xu conducted experiments on a Si3N4 string resonator with the following characteristics:

Table B.10: Characteristics of the experimentally tested string resonator of length 1110µm. * This is the stress in the axial direction.

Quantity Variable Magnitude
length L 1110 um
width w 4 um

thickness t 92 nm
Young’s modulus E 250 GPa

pre-stress σ0 850 MPa*
density ρ 3100 kg/m3

This string was initially manufactured out of a Silicon Nitride film which was at an initial pre-stress of 1100
MPa, in both the x- and y-directions of the film. After etching the string, the stress redistributed to an unidi-
rectional stress of approximately 850 MPa.

The forced and free response of this string was monitored using the (simplified) set-up that is displayed in
Fig. B.2.

Figure B.2: Simplified experimental set-up, showing the Polytech, the vacuum chamber, the piezo-element and the chip which contains
the string specimen.

The set-up consists of a measurement device (the Polytech), which monitors the vibrations of the string.
The figure also depicts a vacuum chamber, which houses a piezo-element. The chip that contains the string
resonator is connected to the piezo-element (using tape) for excitation. The pressure in the vacuum chamber
-for this specimen- was brought to 2.69×10−6mbar.

B.3.1. Verification of the mode shapes
Frequency response experiments were conducted to characterize the response at the first mode’s resonance
frequency. Once the system is brought into the nonlinear regime, Duffing characteristics may start to influ-
ence the displacement and stiffness of the string, which will also influence its mode shapes. For a system
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that shows hardening (and thus an increase in the stiffness), the mode shapes of the system could change
with respect to the previously assumed linear mode shapes. Though the maximum amplitude will probably
increase in the nonlinear regime, it can be expected that the mode shape becomes slightly flattened (due to
increased tension in the nonlinear regime) when comparing it to the linear mode shapes.
The response of the first mode was measured for three locations along the string. These three points were at
0.175L, 0.364L and 0.506L respectively. One of the measurements (at 0.506L) was conducted near the center
of the string, which may be considered as the centre position of the string. Two other measurements are -due
to the symmetry of the first mode- mirrored about this centre point. This generates a total of five points,
for which the experimental mode shapes may be compared to the linear mode shapes. Fig. B.3 depicts the
amplitude for several force levels at these five measurement points.

Figure B.3: Experimental amplitude at positions 1, 2, 3, 4 and 5 at x= 0.175 (stars), 0.364 (circles), 0.506 (squares), 0.636 (stars) and 0.825
(squares), respectively. A sine shape is plotted using the maximum amplitude (at 0.506L).

The plot clearly shows that though the string is driven to large amplitudes, the first mode’s linear mode shape
fits quite well, indicating that it is safe to assume that the amplitude in this nonlinear regime follows this
linear mode shape. This mode shape can thus be used in the simulations, to determine modal amplitudes
and modal forces.

B.3.2. Experimental Duffing response
The frequency response of the string is analyzed for 20 force levels; expressed in the applied voltage to the
piezo-element. These voltage levels are linearly spaced between 0.001 and 0.5 Volts. The piezo-force is as-
sumed to scale linearly with the applied voltage [32]. Fig. B.4 depicts the frequency response for three loca-
tions, for each of the 20 force levels.

The first mode’s resonance frequency is located at approximately 182.7kHz, which implies that the pre-stress
of the string has decreased significantly. For a pre-stress of 850MPa, one would expect (from Eq. B.27) a
resonance frequency at approximately 268 kHz. The pre-stress has thus decreased significantly, from 850
to 509MPa. The underlying mechanism of this reduction of pre-stress is suspected to be a creep-like phe-
nomenon, which causes the strength of a strained material to deteriorate over time. The response clearly
displays the Duffing behavior, where the frequency increases as the amplitude increases under larger driving
voltages. However, for drive levels higher than approximately 0.32V, this increase in amplitude and frequency
ceased: the frequency appears to be "locked" at 185.5 kHz. This phenomenon is known as frequency locking;
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Figure B.4: Experimental frequency of an 1110µm Si3N4 string resonator, measured at three locations. The driving voltage ranged from
1mV to 0.5V.

where the frequency is seen to "lock" at a certain frequency while the drive power is increased. By plotting
the compliance of this response, one can determine if there is any type of nonlinear dissipation process in
this system. Fig. B.5 shows the compliance, which is the ratio of the amplitude and the driving voltage of the
response (from Fig. B.4).
The compliance clearly decreases, indicating that there is some form of (nonlinear) dissipation present in the

system. This dissipation could have several origins, among which the two most likely options are nonlinear
damping or mode coupling [17]. The first option is an irreversible process, where energy is dissipated to an
external bath. The latter option, mode coupling, allows for energy transfer from one mode to another, which
is a reversible process (as is shown in the FPUT experiment). To verify which of these processes is the present
here, one should check the ringdown data and the frequency response for the harmonics of the higher modes.
This ringdown data serves three purposes: it will show whether or not nonlinear damping is present in the
system. Otherwise, it will allow for fitting of the Q-factor, which may then be used in simulations to simulate
this frequency response. Lastly, the exchange of energy to the other modes may be verified, to see to what
degree this system shows FPUT behavior.
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Figure B.5: Compliance of an experimental frequency response for an 1110µm Si3N4 string resonator, measured at three locations. The
driving voltage ranged from 1mV to 0.5V.

Figure B.6: Ringdown of a string, showing the response for the first six modes and fits for the quality factors for the first and third modes.
This ringdown was conducted from a weakly nonlinear initial condition.
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This ringdown plot (from a weakly nonlinear initial condition) shows that (1) there is little energy transfer (the
second mode, in red, does appear to increase somewhat during the ringdown) and (2) that -on a logarithmic
scale- the decay of the amplitude appears to remain linear. Finally, (3), no energy recurrence is visible, as
most modal amplitudes appear to decrease over the entire interval. To see significant energy transfer, one
would expect the amplitude of other modes to increase significantly with respect to that of the initially excited
(in this case the first) mode, which is not present in this figure. The second mode’s amplitude appears to
increase slightly, but this is negligible as it still significantly lower than the first mode’s amplitude. Possibly,
the initial condition is not far enough into the nonlinear regime to generate significant nonlinear effects. The
first mode’s decay appears to be fitted for a Q-factor of approximately 2×105, at a pressure of 2.69×10−6mbar.
The Q-factor for the third mode appears to scale with that of the first mode and the inverse of the mode
number: Qn = Q1

n . The other Q-factors are assumed to scale accordingly in subsequent simulations.

B.3.3. Simulated frequency response of a string
The STEP method (Section D.1.1) is used to find the modal quantities of the string. This method deter-
mines the modal coefficients for longitudinal and vertical displacement directions (identical to the uw-
displacement model). The nonlinear modal parameters of the w-displacement model may be substituted
in the results from STEP by multiplying the Duffing coefficient of the first mode by 1.5 and subsequently sub-
stituting the nonlinear variables by those of Table E.2. The frequency response is simulated (using AUTO,
App. D.1.2) for the linear variables from Table B.11.

Table B.11: Simulated modal variables (for the first six vertical modes) of the experimentally tested string specimen.

Eq. (1) (2) (3) (4) (5) (6)
mn

mtot
0.4999 0.4997 0.4993 0.5007 0.4979 0.4970

ωn
ω1

1.0000 1.9998 2.9990 4.0054 4.9951 5.9914
Qi
Q1

1.0000 0.5001 0.3334 0.2497 0.2002 0.1669

The modal mass is -by approximation- constant to half the total string mass. The normalized frequencies
(with respect to the fundamental mode) nearly follow the linear relationship with the mode number n. It
was shown in the previous paragraph that the Q-factor of the fundamental mode was found to equal approx-
imately 2× 105 and that the higher modes may be assumed to scale with the inverse of the mode number.
The cubic nonlinear variables follow the relation that is shown in Table E.2 and Table E.8 for the w- and uw-
displacement models, respectively. All quadratic nonlinear variables (a(r )

j k ) are zero for this system. All modal

variables may be substituted in the following equation of motions, where F (r ) is nonzero only for r = 1:

m(r )q̈r +k(r )qr + c(r )q̇r +
6∑

k=1

6∑
l=1

a(r )
j k q j qk +

6∑
j=1

6∑
k= j

6∑
l=k

b(r )
j kl q j qk ql = F (r ) sin(ω f t ), r = 1,2, ...,6 (B.76)

The fitting procedure is shown in Section D.3. The results for simulations for a force level of 0.32V are depicted
in Figures B.7 and B.8. These fits were achieved for the w- and uw-displacement models for Young’s moduli
of 450GPa and 675GPa, which both exceed the default Young’s modulus of Si3N4 of 250GPa significantly.
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(a)

(b)

Figure B.7: Simulated (black) vs. experimentally obtained frequency response (yellow), for a drive voltage of 0.32V. The simulation was
conducted for the w-displacement model, accounting for the first six vertical eigenmodes. B.7a depicts the response at 0.364L. B.7b

depicts the modal contributions.
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(a)

(b)

Figure B.8: Simulated (black) vs. experimentally obtained frequency response (yellow), for a drive voltage of 0.32V. The simulation was
conducted for the uw-displacement model, accounting for the first six vertical eigenmodes. B.8a depicts the response at 0.364L. B.8b

depicts the modal contributions.

Although the Young’s moduli are significantly higher than the default value, these simulations do produce
decent fits. The experimental results show that the Duffing behavior of the first mode is the most signifi-
cant nonlinearity. Both the w- and the uw-displacement models generate a Duffing nonlinearity, which may
thus be fitted easily, as long as the modal interactions are ignored. The Duffing nonlinearities of the analytical
models show a 1.5 factor difference, which is clearly conveyed in the fitted Young’s moduli as well: E = 450GPa
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and 1.5E = 675GPa for the w- and uw-displacement models, respectively. Clearly, the simulated responses
does not show the locking behavior of the experimental result; both overshoot the locking frequency from
the experimental results at approximately a normalized frequency of 1.016. To find accurate fits, one should
apply some nonlinear dissipation mechanism to the simulation. Generally, two methods could be used for
this: the first method is to add nonlinear damping, but as was shown in Fig. B.6, the decay does not show two
slopes: it is linear [14]. The second method is probably more valid, as it assumes that energy is likely to be
extracted from this first mode through a modal coupling, supplying other modes with energy.
By allowing modes to become resonant at a certain frequency, the energy of the fundamental mode may be
supplied to the higher harmonics of the fundamental mode. This will then cause the first mode’s energy (and
hence amplitude) to remain (approximately) constant, while the modes that coincide with these harmonics
are supplied with energy.
To replicate the experimental behavior, and especially the locking behavior, the linear frequencies in the nu-
merical models could be shifted, such that the resonant terms are strongest at this locking frequency. By
looking at the resonant terms of the equation of motion of the first mode, one may determine which (nonlin-
ear) parameters influence this coupling (Eq. B.77) for the uw-displacement model.

F (1)
l q = 1

4
b(1)

111 [3cos(ω1t )+cos(3ω1t )]+ 1

4
b(1)

122 [2cos(ω1t )+cos(3ω1t )+cos(5ω1t )]+
1

4
b(1)

133 [2cos(ω1t )+cos(5ω1t )+cos(7ω1t )]
(B.77)

This equation originates from Section B.5, which results from negligence of all coupling terms that equal
zero. It is shown there that excitation at the first mode’s frequency may result in excitation of harmonics
of the first mode as well. Here, these nonzero coupling terms result in excitation of the (uneven) modes at
integer harmonics of the first mode: 3ω1, 5ω1 and 7ω1, as is depicted in the simulated frequency response
in Fig. B.8b. This shows that there is some interaction between the first, third and fifth modes, which is
dependent on the amplitude of the first mode: increasing the amplitude of the first mode results in a stronger
coupling. Fig. B.8b clearly depicts that the amplitude at ω/ω1 = 1.015 is much larger than the amplitude at
ω/ω1 = 1.000. The normalized locking frequency is at approximately 1.016, as is depicted in Figures B.7 and
B.8. The simulated integer frequency ratios of the string (from Table B.11) hence should be shifted such that
the resonant terms are stronger at this frequency of 1.016.
Iterations have shown that the uw-displacement model is highly sensitive to these (small) frequency shifts,
where the w-displacement models do not show this sensitivity: it does not show significant effects for values
of ωs between −0.05 and 0.05. Fig. B.9 depicts a simulated response (for the uw-displacement model) where
the resonance frequencies of all modes (except the fundamental modes) have been shifted by a small value
ωs , according Eq. B.78.

ω∗
n = (1+ωs )ωn , where n = 2,3, ..., N (B.78)

In Figures B.8a and B.9, this shift (ωs ) is equal to 0.000 and 0.005 respectively. The latter value implies that the
frequencies have been shifted by 0.5% of the fundamental mode’s frequency. The experimentally obtained
frequency response is simulated using the uw-displacement model with these shifted linear frequencies, to
result in response from Fig. B.10; this replicates the experimental results quite well, as the Duffing curves and
the frequency locking are simulated quite accurately. Aside from the large Young’s moduli, it is thus possible
to find good fits for the uw-displacement model by shifting the linear frequencies of the higher modes. The
w-displacement model appears to remain fairly insensitive to these slight frequency shifts.

These frequency responses show that the solution becomes unstable from approximately ω/ω1 = 1.016. Typ-
ically, the onset of instability is caused by a bifurcation of some type (e.g. Period Doubling or Torus bi-
furcations). These bifurcations are associated with a change in the solution: it may for example become
quasiperiodic through either a Period Doubling or Torus bifurcation [24]. The periodicity of the solution may
be checked easily by selecting a data point along the frequency response curve, and subsequently checking
the steady state motion by solving the forced equations of motion for these points as initial conditions.
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Figure B.9: Simulated frequency response graph for the uw-displacement model, accounting for the first six vertical eigenmodes. The
linear frequencies are shifted by ωs = 0.005. The drive voltage is approximately 0.32V. The uneven harmonics have clearly increased in

magnitude. Solid lines denote stable solutions, dotted lines denote unstable solutions.

B.3.4. Forced vibrations from the frequency response curve
The steady state response of a string to continuous forcing may possibly show quasiperiodic motion of this
string under constant forcing frequencies (and force levels). By selecting a data point on the frequency re-
sponse curve, one may integrate the equations of motion at the considered force level, amplitude and fre-
quency of the selected data point. The equations of motion from Eq. B.76 are integrated using Matlab’s ODE45
solver. Since the uw-displacement model can replicate the experimental response quite well (it shows slope-
fits and frequency locking), this model is used here. Again, all variables a(r )

j k are zero. The force vector, F (r )

is only nonzero for r = 1, implying that only the first mode is excited. Fig. B.10a depicts two points: a fully
stable solution (denoted by the red star) and a solution at the onset of instability (denoted by the black star).
These two points will be analyzed in the next sections.

Forced vibrations for a stable solution on the resonance curve
The response at the red star is checked first. The normalised frequency driving frequency for this star is
at approximately 1.01 (Fig. B.10a). The force level is 0.32V. The time response to the constant driving is
depicted in Fig. B.11. The total amplitude plot shows that there are amplitude modulations (beatings) visible:
the minima and maxima of the amplitude in- and decrease as the time progresses. This implies that the
amplitude consists of (at least) two (sinusoidal) signals of two different frequencies: when they are out-of-
phase, their sum is of a small magnitude, generating the minima. Oppositely, when these signals are in-phase,
the sum is of a larger magnitude, generating the maxima.
The FFT plot in Fig. B.11 shows more than two frequency peaks; it depicts four peaks (labeled from left to
right as ω̃A ,ω̃B ,ω̃C and ω̃D ), at normalised frequencies of approximately ω̃A = 0.97, ω̃B = 1.01, ω̃C = 1.05 and
ω̃D = 1.09. The magenta color is visible only, indicating that the frequency content of this fourth time frame
is equal to that of the previous three. This implies that the frequency content is approximately constant over
the four considered time periods. The peak at ω̃B = 1.01 may be attributed to the forcing frequency. The
peaks are spaced at a constant frequency difference, namely ω̃C − ω̃B = 0.04, which implies that the peak at
ω̃C = 1.05 is the average of ω̃B and ω̃D : ω̃C = ω̃B+ω̃D

2 = 1.05. The peak at ω̃A may thus be approximated by

ωA = 3ωB−ωD
2 = 0.97. It is uncertain what the origin is of these peaks, but it is likely to be present a nonlinear

effect. It may for example be a result of some harmonics of the first mode. To verify that this is the case, the
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(a)

(b)

Figure B.10: Simulated frequency response graph for the uw-displacement model, accounting for the first six vertical eigenmodes. The
linear frequencies were shifted slightly, by ωs = 0.005. The drive voltage is approximately 0.32V . Solid lines denote stable solutions,
dotted lines denote unstable solutions. B.10a depicts the total response when measuring at one point along the length of the string.
B.10b displays all modal contributions. Note that there is an unstable branch generated at the maximum of all modal amplitudes.

simulation is run once more, though this time for the case where only one mode is considered: the first mode.
Fig. B.12 depicts the resulting amplitude and the frequency content.
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Figure B.11: Simulated time response of forced oscillations from the stable (red) point on Fig. B.10a at
ω f
ω1

= 1.01. The simulation model

is the uw-displacement model, it consists of the first six vertical modes of the string. (a) Depicts the total amplitude of the string at
0.364L. The colored bars on the bottom of the plot indicate four time windows, for which (b) depicts the FFT of each time window.

Figure B.12: Simulated time response of forced oscillations from the stable (red) point on Fig. B.10a at
ω f
ω1

= 1.01. The simulation model

is the uw-displacement model, it consists of the only the first vertical mode of the string. (a) depicts the total amplitude of the string at
a point at 0.364L. (b) depicts the FFT of the signal from (a).
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The amplitude versus time plot of Fig. B.12 depicts two interesting topics. The first is that -to the eye- the total
amplitude remains approximately similar to Fig. B.11, showing that the first mode is the dominant over the
higher modes. Secondly, it is clear that the frequency content has not changed significantly. This implies that
the contribution of the higher modes is very small. The peaks at ω̃A ,ω̃B ,ω̃C and ω̃D are thus likely to result
from the nonlinearity of the first mode. This may be verified by checking the response of the linear equations
for the first mode (b(1)

111 = 0), as is depicted in Fig. B.13.

Figure B.13: Simulated time response of linear forced oscillations for an initial condition at
ω f
ω1

= 1.01. The simulation model is a linear

displacement model, it consists of the only the first vertical mode of the string. (a) depicts the total amplitude of the string at a point at
0.364L. (b) depicts the FFT of the signal from (a).

The beatings in the amplitude seem to have become more distinct: the oscillations in the amplitude are now
clearly visible. Additionally, the maximum of the total amplitude has increased from 7µm in Fig. B.11 to ap-
proximately 25µm. This could imply that the nonlinearity drains quite some energy (as was shown in Fig.
B.11), which suppresses the amplitude significantly, by distributing energy to multiple harmonics of the first
mode. Additionally, it could be due to the nonlinearity, which shifts the resonance frequency: driving the
system slightly outside the resonance frequency could already generate less significant amplitudes. Lastly,
the FFT in Fig. B.13(b) depicts two clear peaks: one at a normalised frequency of 1.00 and another at 1.01.
These could both be clarified by the linear resonance and the driving frequency, which are at 1.00 and 1.01
respectively. The latter observations imply that the driving near the resonance frequency of a nonlinear sys-
tem that includes just one mode of vibration, will generate modulations (beatings) of the amplitude signal.
The resulting behavior may be further analysed by checking what the origin of these modulations is, through
an analysis of a single-degree-of-freedom linear mass-spring-damper system under harmonic sine-wave ex-
citation, as is shown in Appendix B.6. Eq. B.99 shows that -under the assumption of negligible influence from
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damping and dependency of the initial conditions-, a solution may be formulated as follows:

qest(t ) = f

ω2
0 −ω2

f

[
2cos

(
ω f +ω0

2

)
sin

(
ω f −ω0

2

)]
(B.79)

This shows that two signals determine the estimated solution: a Cosine signal which is dependent on the av-
erage of the drive (ω f ) and resonance (ω0) frequencies and a Sine-signal that is dependent on the difference
between the two frequencies. The first signal (represented by the Cosine-function), oscillates at a high fre-
quency (small period), and the second signal (the Sine-function) oscillates at a low frequency (long period).
This results in the beatings that are shown in Figures B.23 and B.24. Comparison of these two figures shows
that the closer one excites near resonance, the slower the period of the slow oscillation, as is verified by Eq.
B.79. Fig. B.14 depicts the extimated (linear) solution (for zero initial conditions) of the simulated string from
this section. The analysis of an undamped linear system shows that the estimated solution is approximately

Figure B.14: The estimated solution for the amplitude of a linear (undamped) string. The normalised forcing frequency is equal to 1.01.
(a) depicts the amplitude (at a point at 0.364L) versus time. (b) depicts the FFT of the amplitude signal.

correct: the total amplitude shows similar behavior to that of the nonlinear string from Fig. B.12. Note that
the amplitudes in the estimated (from Eq. B.79) and simulated solutions do not match. This could have sev-
eral origins; first, the initial conditions are zero for the estimated solution, where they are nonzero and quite
large in the simulation model (the total amplitude is approximately 3.6µm in Fig. B.10a). Additionally, this
initial condition is for strong driving power in the nonlinear regime.
Generally, it may be concluded that the simulated oscillations (from a stable point on the resonance curve) of
a nonlinear and weakly damped (Q = 200,000) string under constant excitation remain fairly well understood
through the comparison with single-mode nonlinear and linear models. The single-mode nonlinear model
shows that some of the peaks in the FFT plots of the simulated oscillations may be attributed to the linear
resonance and forcing frequencies. Additional peaks may hence be attributed to harmonics of the first mode,
as they are also present in the single-mode model. Lastly, a linear undamped model shows qualitative agree-
ment with the linear single-mode model, indicating that -for the linear system- the influence of damping is
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negligible for the considered fundamental mode Q-factor (of 200,000). For the nonlinear model, this negligi-
ble damping assumption cannot be made with certainty. However, one can deduct that the nonlinear effects
of the first mode are dominant, as they are present in both the multi-mode, as well as the single mode model:
these nonlinear effects generate a more complex amplitude modulation, originating from multiple frequency
peaks.

Forced vibrations for a solution at the onset of instability
The results of the forced response from the black star (at the onset of intstability) in Fig. B.10a are depicted in
Fig. B.15.

Figure B.15: Simulated time response of forced oscillations from the unstable (black) point on Fig. B.10a at
ω f
ω1

= 1.016. The simulation

model consists of the first six eigenmodes. (a) Depicts the total amplitude of the string at 0.364L. The colored bars on the bottom of the
plot indicate four time windows, for which (b) depicts the FFT of each time window.

The amplitude versus time plot shows similar behavior to that of Fig. B.11(a), where amplitude modulations
are visible in the amplitude signal. Similar to the response on the stable solution, these modulations occur
on a relatively small time frame. Hence, though the excitation frequency is further from resonance, the slow
period of these modulations did not change significantly. The frequency content is similar to that from Fig.
B.11, though the peaks in the FFT in B.15(b) seem to have shifted slightly. This may be due to larger effect of
the nonlinearity, as the system is brought further into the nonlinear regime. The increase in the amplitude in
this nonlinear regime will result in higher frequencies (as was shown in B.10a), which will in turn generate a
difference in the period of the beatings. The relations between the four peaks are identical to those from Fig.
B.11.
Altogether, this implies that the response near the onset of instability does not show much different results
compared to those along the stable branch. Further analyses of a single mode nonlinear model or a un-
damped linear model will hence not generate much (more) insight, as the phenomena that are elucidated
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here correspond very well to those of the previously analysed point (Section B.3.4).

B.3.5. Conclusion - simulations of of 1110µm string
This section has shown that the experimentally obtained frequency response of the first mode of a Si3N4 string
is largely dominated by a Duffing-like behavior. Increase of the driving power in experiments has shown that
at some point, the frequencies and amplitudes ”lock”, where both measured quantities appear to remain con-
stant. Simulated solutions of a numerical uw-displacement model (STEP) show that this may be explained
by interaction with the uneven eigenmodes in the system, which have been shifted slightly (by approximately
0.5% of the first mode’s frequency). On the other hand, it is found that the w-displacement shows decent
slope fits, but it cannot not generate the locking behavior. To achieve these slope fits, the Young’s moduli
have been increased from the default value of 250GPa to 675GPa and 450GPa for the uw- and w-displacement
models (D.3), respectively. This could result from either an error in the conversion of the experimental data,
or that the assumption that the strings’ dynamics can be reproduced using only axial deformation models is
invalid, as other deformation mechanisms could generate additional nonlinearities.

Two solutions along the nonlinear resonance curve were analysed (using the uw-displacement model) to de-
termine whether the system would show any (nonlinear) quasiperiodic motion. This quasiperiodic motion
could originate from various bifurcations in the frequency response figures. Two points were analysed: a
stable nonlinear solution and a solution near the onset of instability (the bifurcation point). The solutions
indicate that the behavior may be well explained through the nonlinearity of only the first mode, since the re-
sults for a single-mode system are similar to those of a multi-mode system. The beating behavior is expected,
since an undamped linear system that is excited near resonance also produces these beatings, consisting of
two distinct frequencies. A added nonlinearity, though small (the maximum frequency shift is only by 1.6%)
generates a different frequency content, where more peaks are visible.
It may thus be concluded that the forced oscillations from the two analysed points remain dominated by the
first mode’s nonlinearity, though the frequency response curves show locking: a multi-modal interaction. It is
probable that the effect of the higher modes is still too small to become significant in the forced oscillations.

B.4. Experimental results on a 700µm string resonator
Zichao Li conducted similar experiments on a second Si3N4 string resonator with the characteristics from
Table B.12.

Table B.12: Characteristics of the experimentally tested string specimen of length 700mum. * This is the stress in the axial direction.

Quantity Variable Magnitude
length L 700 um
width w 4 um

thickness t 344 nm
Young’s modulus E 250 GPa

pre-stress σ0 850 MPa*
density ρ 3100 kg/m3

While the pre-stress and the width of this string are equal to the previously studied string resonator (Table
B.10), this string has a significantly larger thickness than the previous experimentally tested resonator: 344nm
versus 92nm. This implies that the string’s bending area moment of inertia (which scales with the thickness

to the power 3) has increased by
( 344

92

)3 = 52.3 times, increasing the resistance to bending. The assumption
that bending may be neglected could thus become less valid for this particular string resonator.

B.4.1. Verification of the mode shapes
Five force measurements were conducted at three points along the length of the string: L

6 , L
3 and L

2 . The mode

shapes for each of these points may be verified by mirroring the measurements at L
6 , L

3 about the centre point.
For each of these five sweeps, a sine function in the form of the first mode with a maximum amplitude equal
to the amplitude at L

2 is fitted. The measurements and the fitted functions are depicted in Fig. B.16.
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Figure B.16: Fitted mode shapes in the form of a Sine function for five measurement locations along the length of the string: L
6 (stars), L

3
(circles), L

2 (squares), 2L
3 (circles) and 5L

6 (stars).

This shows that the linear mode shapes agree quite well, also in the nonlinear regime.

B.4.2. Experimental Duffing response
This experiment consists of five force sweeps ranging between 0.03 and 0.15V. The measurements were con-
ducted for air pressures of approximately 9.81×10−5mbar: slightly higher than that of the experiments on the
1110µm string (2.69×10−6mbar). The experimental frequency response and the corresponding compliance
are depicted in Figures B.17 and B.18. The responses show Duffing behavior. Contrary to the Duffing response
of the 1110µm string, this response does not show such perfect locking, where the amplitude and frequency
cease to increase under increase of the driving voltage. However, these experimental results show a smaller
increase in frequency and amplitude from driving voltages larger than 0.09V, showing that there is probably
some locking present. Interestingly, the frequency shift for this specimen is quite low: it is approximately
0.2% of the fundamental mode frequency.
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Figure B.17: Experimentally obtained frequency response for three measurement locations.
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Figure B.18: Experimentally obtained compliance for three measurement locations.

The compliance appears to decrease for increasing driving voltages, but for a drive level of 0.09V, the com-
pliance suddenly increases for all three measurement points. The origin of this behavior may become clear
from frequency response simulations, which will be shown in the next section. To conduct proper simula-
tions, one should first determine the Q-factor of the considered mode. A ringdown experiment shows that
this fundamental mode’s decay is linear with a Q-factor of 1.326×106 (Fig. B.19). This is a significantly larger
Q-factor than the 1110µm string, which was found for an even lower air pressure: in theory, a higher air
pressure generates lower Q-factors.
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Figure B.19: Ringdown of the first mode for a L = 700µm string.

From Eq. B.80, one would expect the Q-factor to decrease with increased thickness [31].

Qstr =
[

n2π2

12

(
t

L

)2 E

σ
+ 1p

3

t

L

√
E

σ

]−1

Qintr (B.80)

Here, Qintr is the intrinsic Q-factor of the resonator. The left and right terms inside the square brackets denote
the Sine-shape bending and the edge bending respectively. For strings, where t ¿ L, the edge bending is pro-

portional to
( t

L

)2
; it is much larger than the Sine-shape bending (∝ t

L ). The Q-factor for this thicker 700µm
string would thus be expected to have decreased with respect to that of the 1110µm string (Q ≈ 200,000).
Rather, the Q-factor has increased significantly for an increased thickness. This could be related to the de-
crease in pre-stress of the 1110µm string resonator, which decreases the Q-factor due to a decrease of the
denominator of Eq. 1.9. Furthermore, the 1110µm string resonator already was quite old, which could have
accumulated more (dust) particles from the environment, which limit the Q-factor.
An additional effect of this higher pre-stress is that it limits the relative nonlinearity of the resonator, which
depends on the ratio of E

σ0
. This may clarify the limited frequency shift.

B.4.3. Simulated frequency response
Though the frequency response does not show significant frequency shifts, it does show some weak locking
behavior, where the amplitude and frequency increase at a much slower rate. This is the result of system
slowly losing its sensitivity to the applied force, where any energy is transferred from the first mode into the
higher order modes. The uw-displacement model showed good agreement with the locking behavior for the
1110µm string, and thus it was used to simulate the frequency response of this second string as well. This uw-
displacement model (including the first six vertical eigenmodes) was fitted for a Young’s modulus of 5500GPa,
approximately 22 times larger than the default Young’s modulus of 250GPa. Fig. B.20a depicts the fit for the
uw-displacement model, Fig. B.20b depicts the magnitudes of each of the involved modes.

To determine whether this simulation model can show locking, the linear frequency was perturbed by the
parameter ωs . Many combinations were analysed (ranging from -0.05 to 0.05), but this did not generate the
desired locking behavior. A possible explanation of this may be sought in the small magnitude of the relative
nonlinearity in the simulation model: this does not generate sufficient excitation of the higher modes to
cause significant modal coupling. Comparing Fig. B.20b to Fig. B.10a shows that the higher modes increase
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(a)

(b)

Figure B.20: Simulated frequency responses for a (uw-displacement) string model accounting for the first six vertical eigenfrequencies.
The drive power is estimated to be approximately 0.15V . Solid lines denote stable solutions, dotted lines denote unstable solutions.
B.20a depicts the total response when measuring at one point along the length of the string. B.20b displays all modal contributions.

Note that there is an unstable branch generated at the maximum of all modal amplitudes.
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in magnitude when the system is brought further into the nonlinear regime. Should this condition not be
achieved, one cannot reproduce this behavior using this uw-displacement model.

Since it was previously found that the w-displacement model generates stronger nonlinearities and (perhaps
for this simulation most importantly) stronger coupling coefficients, this model was fitted as well. A decent fit
was found for a Young’s modulus of 3667GPa; reviewing Table B.9 shows that the first mode’s Duffing stiffness
for this model is 1.5 times larger than that of the uw-displacement model. The same relation holds between
the fitted Young’s moduli of both models: 5500GPa = 3

2 3667GPa. Fig. B.21a clearly does not show locking
either. Unfortunately, for this w-displacement model, no suitable frequency shift parameter could be found.
Hence, although the third and fifth modes’ magnitudes at ω̃= 1 are significantly higher than that of the uw-
displacement model (Fig. B.20b), this is still not sufficient to generate the locking behavior, probably due to
the stronger coupling term and the nonzero back-coupling term.

B.4.4. Conclusion - simulations of a 700µm string resonator
This section has shown that a large part of the pre-stress was still present in the 700µm string. This re-
sults weakly nonlinear response, were small frequency shifts of maximum 0.2% of the fundamental mode
frequency were obtained. Both simulation models were fitted for very high -unphysical- Young’s moduli. The
locking behavior was not observed in either model, possibly due to the small excitation of the higher modes
in this weakly nonlinear regime. Other possible effects may be that the estimated damping coefficients of
these higher modes do not scale with the inverse of the mode number, which could possibly significantly
influence modal contributions.
The simulations for this 700µm string resonator are thus inconclusive regarding which displacement for-
mulation model is most appropriate, as the Duffing behavior can be fitted using both models. However,
ringdown results of the first mode do not depict significant energy transfer to other modes, which would gen-
erate a different (a much faster, nonlinear) decay of the first mode. Should this significant energy transfer be
present, this could be related to a nonzero back-coupling term, and thus a fit for the w-displacement model.
On the contrary, a linear decay would suggest that the uw-displacement model is probably more valid. How-
ever, since this ringdown was conducted from the weakly nonlinear regime, this modal coupling will be small
(and probably invisible) for both models, invigorating the statement about the inconclusiveness of the most
appropriate displacement formulation.
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(a)

(b)

Figure B.21: Simulated frequency responses for a (w-displacement) string model accounting for the first six vertical eigenfrequencies.
The drive power is estimated to be approximately 0.15V . Solid lines denote stable solutions, dotted lines denote unstable solutions.
B.21a depicts the total response when measuring at one point along the length of the string. B.21b displays all modal contributions.

Note that there is an unstable branch generated at the maximum of all modal amplitudes.
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B.5. Appendix - Resonant terms in strings
If it is assumed that the solutions of Eq.’s B.76 (for r = 3) are of the form q1(t ) = cos(ω1t ), q2(t ) = cos(ω2t )
and q3(t ) = cos(ω3t ) (where, since it is assumed that the system is a string resonator: ωn = nω1) and if we
substitute this to determine the nonlinear coefficients that cause the strongest (resonant) coupling, Eq. B.81
is found. Note here that the quadratic coupling coefficients of this system are zero.

F (r ) = k(r )
r qr +b(r )

111q3
1 +b(r )

112q2
1 q2 +b(r )

113q2
1 q3 +b(r )

122q1q2
2+

b(r )
123q1q2q3 +b(r )

133q1q2
3 +b(r )

222q3
2 +b(r )

223q2
2 q3 +b(r )

233q2q2
3 +b(r )

333q3
3 =

k(r )
1 cos(ω1t )+b(r )

111 cos(ω1t )3 +b(r )
112 cos(ω1t )2 cos(ω2t )+b(r )

113 cos(ω1t )cos(ω2t )cos(ω3t )+
b(r )

122 cos(ω1t )cos(ω2t )2 +b(r )
123 cos(ω1t )cos(ω2t )cos(ω3t )+b(r )

133 cos(ω1t )cos(ω3t )3+
b(r )

222 cos(ω2t )3 +b(r )
223 cos(ω2t )2 cos(ω3t )+b(r )

233 cos(ω2t )cos(ω3t )2 +b(r )
333 cos(ω3t )3

(B.81)

The trigonometric relations from Equations B.82 and B.83 show how a nonlinear equation will generate exci-
tation of the harmonics of a mode.

cos(ωt )3 = 1

4
(3cos(ωt )+cos(3ωt )) (B.82)

cos(ωi t )2 cos(ω j t ) = 1

4
(cos((2ωi −ω j )t )+2cos(ω j t )+cos((2ωi +ω j )t ) (B.83)

To reduce the length of the Eq. B.81, the following notation is defined: F (r ) − k(r )
r qr = F (r )

l q , which may be

assumed to be linear in qr . Using this simplification, together with the relations from equations B.82 and
B.83 and substituting ωn = nω1 into Eq. B.81 results in Eq. B.84.

F (r )
l q = 1

4
b(r )

111[3cos(ω1t )+cos(3ω1t )]+ 1

4
b(r )

112[2cos(2ω1t )+cos(4ω1t )+1]+ 1

4
b(r )

113[cos(ω1t )+2cos(3ω1t )+cos(5ω1t )]+
1

4
b(r )

122[2cos(ω1t )+cos(3ω1t )+cos(5ω1t )]+ 1

4
b(r )

123[cos(2ω1t )+cos(4ω1t )+cos(6ω1t )+1]+
1

4
b(r )

133[2cos(ω1t )+cos(5ω1t )+cos(7ω1t )]+ 1

4
b(r )

222[3cos(2ω1t )+cos(6ω1t )]+ 1

4
b(r )

223[cos(ω1t )+2cos(3ω1t )+cos(7ω1t )]+
1

4
b(r )

233[2cos(2ω1t )+cos(4ω1t )+cos(8ω1t )]+ 1

4
b(r )

333[3cos(3ω1t )+cos(9ω1t )]

(B.84)
This shows that shows that the b112,b222,b123 and b233-terms only excite harmonics of the even modes. The
other terms; the b111,b113,b122,b133,b223 and b333-terms only harmonics of the uneven.

Now, one may check which modes are (resonantly) coupled with the first mode, by setting r = 1 and keeping
only the nonzero terms for the first modal equation of motion (Tables E.3 and E.4):

F (1)
l q = 1

4
b(1)

111(3cos(ω1t )+cos(3ω1t ))+ 1

4
b(1)

122(2cos(ω1t )+cos(3ω1t )+cos(5ω1t ))+
1

4
b(1)

133(2cos(ω1t )+cos(5ω1t )+cos(7ω1t )).
(B.85)

This equation shows that if an external excitation would be present at the first mode’s frequency, these reso-
nant terms will cause excitation of the higher harmonics as well. In this model, where cubic coefficients are
present only, the uneven modes will be excited through excitation of the first mode.

B.6. Appendix - Single DoF forced mass-spring-damper system
This section will show what dynamics may be visible for a one-dimensional mass-spring-damper system that
is under harmonic excitation. This analysis is based on an analysis from Inman [16].
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Figure B.22: One-dimensional mass spring damper system under a harmonic forcing.

The single degree-of-freedom (SDOF) system in Fig. B.22 consists of a block with mass m, the stiffness of the
(massless) spring is k, the damping coefficient is c and a forcing is present at amplitude F and frequency ω f .
The equation of motion for the degree of freedom q writes:

mq̈ + cq̇ +kq = F sin(ω f t ) (B.86)

Mass-normalization gives:

q̈ + c

m
q̇ + k

m
q = F

m
sin(ω f t ) (B.87)

Whereω0 =
√

k
m , f = F

m , and it may be assumed that the damping c -for now- is zero, resulting in the equation
of motion:

q̈ +ω2
0q = f sin(ω f t ) (B.88)

To solve this equation, one should assume that there are two types of solutions: a homogeneous solution
(qh(t )), which is the solution in absence of the forcing term, and a particular solution (qp (t )), which is the
solution of the forcing term. The total solution is hence written as a combination of the two:

q(t ) = qh(t )+qp (t ) (B.89)

qp (t ) may be assumed to be of the same form of the forcing equation: qp (t ) = X0 sin(ω f t ), substitution of
this equation into the Eq. B.88 results in:

q̈p +ω2
0qp = f sin(ω f t )

−ω2
f X0 sin(ω f t )+ω0X0 sin(ω f t ) = f sin(ω f t ).

(B.90)

The equality allows for cancellation of the sin(ω f t )-terms, to generate the following equation:

−ω2
f X0 +ω2

0X0 = f . (B.91)

Where X0 may be written as Eq. B.92.

X0 = f

ω2
0 −ω2

f

(B.92)

Which is hence dependent on the ”closeness” of the resonance and the forcing frequency. The particular
equation is given by:

qp (t ) = f

ω2
0 −ω2

f

sin(ω f t ) (B.93)
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The homogeneous equation is assumed to be a function of both Cosine- and Sine-terms: qh(t ) = A cosω0t +
B sin(ω0t ). The total solution (from Eq. B.89) is given by Eq. B.94.

q(t ) = qh(t )+qp (t )

q(t ) = A cos(ω0t )+B sin(ω0t )+ f

ω2
0 −ω2

f

sin(ω f t )
(B.94)

The variables A and B may be determined using the initial conditions, q(0) = q0 and q̇(0) = q̇0.

q(0) = A cos(ω00)+B sin(ω00)+ f

ω2
0 −ω2

f

sin(ω f 0)

q0 = A → A = q0

(B.95)

q̇(t ) =−ω0q0 sin(ω0t )+ω0B cos(ω0t )+ f ω f

ω2
0 −ω2

f

cos(ω f 0)

q̇(0) = q̇0 =−ω0q0 sin(ω00)+ω0B cos(ω00)+ f ω f

ω2
0 −ω2

f

cos(ω f 0)

q̇0 =ω0B + f ω f

ω2
0 −ω2

f

→ B = q̇0

ω0
− ω f

ω0

[
f

ω2
0 −ω2

f

]
(B.96)

The total solution is thus:

q(t ) = q0 cos(ω0t )+
[

q̇0

ω0
− ω f

ω0

(
f

ω2
0 −ω2

f

)]
sin(ω0t )+ f

ω2
0 −ω2

f

sin(ω f t ) (B.97)

Then, if the excitation frequency ω f is close to the resonance frequency of the undamped, unforced system

ω0, it is valid to assume that
ω f

ω0
≈ 1. In addition, if it is assumed that the initial conditions are -for now- zero,

the solution will equate to:

q(t ) =−
(

f

ω2
0 −ω2

f

)
sin(ω0t )+ f

ω2
0 −ω2

f

sin(ω f t )

q(t ) = f

ω2
0 −ω2

f

[
sin(ω f t )− sin(ω0t )

]
.

(B.98)

Using the trigonometric identity, which states that sin(x)− sin(y) = 2cos
( x+y

2

)
sin

( x−y
2

)
, the solution may be

re-written as follows:

qest(t ) = f

ω2
0 −ω2

f

[
sin(ω f t )− sin(ω0t )

]
qest(t ) = f

ω2
0 −ω2

f

[
2cos

(
ω f +ω0

2

)
sin

(
ω f −ω0

2

)]
.

(B.99)

The latter equation of Eq. B.99 shows that the solution consists of two functions, which both oscillate at

different frequencies. The Cosine-term oscillates at a frequency of
ω f +ω0

2 , where the Sine-term oscillates at a

frequency of
ω f +ω0

2 . This implies that the Cosine-term oscillates at a much higher frequency than the Sine-
term.
The produced response is thus a function of two frequencies: a fast frequency and a slow frequency, which
generate a total response that consists of an oscillation that slowly changes in amplitude, while these slow
changes in amplitude consist of rapid oscillations. For a system with m = 1kg , k = 1Nm−1, F = and ω f

between 0.9 and 1.01, this results in the amplitude versus time plots of Fig. B.23.
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Figure B.23: Plots of qest(t ) for ω0 = 1r ad/s, ω0 = 0.9,0.825,0.85,0.975,1.00,1.025,1.05 or 1.1 rad/s for F = 1N.

Which shows that there are indeed two frequencies present in the system, as beatings are present, For forc-
ing frequencies even closer to the resonance frequencies, e.g. for ω0 = 1 rad/s, this phenomenon is more
pronounced, as is depicted in Fig. B.24.

Figure B.24: Plots of qest(t ) for ω0 = 0.9900,0.9925,0.9950,0.9975,1.0000,1.0025,1.0050,1.0075 or 1.0100 rad/s rad/s for F = 1N.
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B.7. Appendix - Origin of coupling terms
B.7.1. Origin of the coupling terms of the w-displacement model
The coupling terms from Tables B.1 and B.2 seem to follow the relation from Eq. B.52. This section will elab-
orate upon the coupling terms that are generated between the first and third modes. It was shown that the
modal coupling coefficients of the FPUT problem resemble those w-displacement analytical model. It was
shown that the behavior that is typical for FPUT -the immediate energy exchange to the third mode from an
initial excitation of the first mode- is related to a nonzero b(3)

111-term.

The origin of these coupling terms will become clear after revisiting the equation of motion of the analytical
model that accounts for vertical displacements only (Eq. B.37):

wt t − c2
0 wxx − c2

1

(
3

2
wxx w2

x

)
= 0 (B.100)

The first two terms of this equation generate terms which are linear in the modal displacement (due to the
linear relation with w), as has been shown for the linear model in Equations B.21 and B.35. The latter (non-
linear) term hence produces the nonlinear coupling terms. This section will hence focus solely on the part of
the equations of motion that follow from this nonlinear part:

− c2
1

3

2
wxx w2

x . (B.101)

The modal coefficients may be found by substitution of Equations B.38 and B.39 and through integration of
the mode shape from Eq. B.40. Assuming that the displacements can be written in terms of the first and third
modes, the displacement can be written as:

w(x, t ) =φu1 (x)q1(t )+φu3 (x)q3(t ), where φu1 = sin
(πx

L

)
and φu3 = sin

(
3πx

L

)
(B.102)

and its derivatives with respect to x equal:
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The weight function of the third mode is given by Eq. B.104.

φu3 (x) = sin

(
3πx

L

)
(B.104)

The nonlinear part of the equation of motion is then found using the following equation:∫ L
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The equation may be split up in various modal contributions and using that x

L = x̄ results in more simple
equations, as is shown by Equations B.106 to B.109.

c2
1

3

2

π4

L3

∫ 1

0

[
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0
MNLD3111
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d x̄q3

1 (B.106)
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The terms inside the integration terms may be seen as the modal nonlinear displacement function, this func-
tion is dependent on the modal displacements and their derivatives with respect to the axial coordinate x̄.
Fig. B.25 depicts the magnitudes of these functions as a function of x̄. In these figures, the modal nonlinear
displacement functions of modes j , k, and l onto mode r are defined as MNLDr j kl .

Figure B.25: The normalized modal nonlinear displacement functions with respect to the fractional length of the string. The colors blue,
red, yellow and purple depict the magnitudes of the to be integrated functions in B.106 to B.109.

This figure shows that the integral that is represented by Equation B.106 (which basically is surface between
the blue line and the zero displacement line), is larger than zero, which will generate a positive coupling term.
The same may be said for the red and purple lines, which generate the b113- and b333-terms. The surface
under the yellow line will most likely be zero. Solving the integrals confirm this, and the following terms are
found:
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Normalization with respect the b(1)
111-term (from Eq. B.42) results in the expected normalized variables:

b(3)
111 = 1b(1)

111, b(3)
113 = 18b(1)

111, b(3)
133 = 0 ,b(3)

333 = 81b(1)
111. (B.114)

The relations with respect to the mode numbers may also be discerned from Equations B.110, B.111, B.112
and B.113.
The origin of the nonzero b(3)

111-term hence lies in the formulation of the displacement. For this term to be-
come nonzero, one should hence have a term in the equation of motion that follows the relation from Eq.
B.101. The uw-displacement model follows a different displacement relation, due to the inclusion of the
in-plane (longitudinal) displacements in the strain formulation. The next section will elaborate upon this
equation and it will show the modal coupling terms for this model.

B.7.2. Origin of the coupling terms of the uw-displacement model
The previous section served as a means to show the origin of the coupling between the first and third mode
for the w-displacement model. This section will show why the terms that are nonzero in the w-displacement
model, could become zero in the uw-displacement model. Revisiting the equation of motion for w of the
uw-displacement model in Eq. B.115 (from Eq. B.61) will show what the difference is.

wt t − c2
0 wxx − c2

1

(
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2L

∫ L

0
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x d x

)
wxx = 0 (B.115)

For this displacement model, the nonlinear part is given by the −c2
1

(
1

2L

∫ L
0 w2

x d x
)

wxx -term. Similar to the

previous section, this analysis will study the third equation of motion under the influence of the first and
third modes as well. Using Equations B.102, B.103 and B.104 will generate the following equation for the
nonlinear part of the equation of motion:∫ L
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The integral term inside the square brackets of Eq. B.116 may be solved to find Eq. B.117.
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Substitution of this result into Eq. B.116 generates the following integral:
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This may be split up in the following terms:
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Normalization with respect the b(1)
111-term (from Eq. B.62) results in the expected following normalized non-

linear variables:

b(3)
111 = 0b(1)

111, b(3)
113 = 9b(1)

111, b(3)
133 = 0 ,b(3)

333 = 81b(1)
111. (B.123)

This shows that the b(3)
111-term is zero. Fig. B.26 depicts the (normalized) magnitudes of the modal nonlinear

displacement functions over x̄.

Figure B.26: The normalized modal nonlinear displacement functions with respect to the fractional length of the string. The blue, red,
yellow and purple lines the magnitudes of the to be integrated functions in B.119 to B.122.

The figure shows that the purple and the red lines overlap. The integral of these functions over the region
0 ≤ x̄ ≤ 1, results in the nonzero b(3)

333- and b(3)
113-terms, respectively. The blue line is overlapped by the yel-

low which appears to have an equal surface above the zero-displacement line, as well as below the zero-
displacement line. These b(3)

111- and b(3)
133-terms are thus zero.

B.7.3. Conclusion
The coupling terms were shown to result from different displacement functions, which in turn generate dif-
ferent dependencies on the modal displacements (here, this is presented by the modal nonlinear displace-
ment functions). In theory, one should be able to change these coupling terms using two methods: changing
the nonlinear part of the equation of motion, and through variance of the mode shapes of the resonator. A
change in the nonlinear part of the equation of motion would require different strain formulations, which
could become different for varying cross-sections in the resonator. Additionally, one should be able to tune
the nonlinear coefficients with different mode shapes, which may be achieved in a similar method; by local
variance of the cross-section of the resonator, which locally change the mass and (nonlinear) stiffness, this
will definitely influence the linear and nonlinear stiffness coefficients of the resonator.

B.8. Appendix - frequency response of the uv w-displacement model
The string vibrations which are analysed in this research are based on the assumption that the vibrations
remain planar (in the xz-plane), where the displacement of the string in the transverse direction is zero (v = 0).
This assumption is approximately valid for systems where the transverse and vertical mode frequencies are
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sufficiently apart, such that they are not resonantly coupled. However, for square or circular strings, these
(theoretical) frequencies are always degenerate (of equal values, but different direction). To determine what
the influence of these degenerate modes is, the frequency response is simulated using the variables from
section E.2.2 for the 1100µm string which was analysed in section B.4. This results in the frequency response
graphs in Fig. B.27. Fig. B.27 depicts a strong interaction between the these vertical and transverse modes,

Figure B.27: Frequency response of a model that includes uvw-displacements. The uneven modes are the vertical modes, the even
modes are the transverse modes.

while the transverse modes are initially not excited. Their excitation results from the modal coupling between
the transverse and vertical modes. The coupling is quite significant, as both perpendicular modes are of the
same order of magnitude. This coupling will generate out-of-plane or transverse displacement of the string,
resulting in a whirling motion.





C
FPUT mechanics in string resonators

The present chapter will show how, and for which type of string resonators, FPUT mechanics may be ob-
served. This chapter will first compare the FPUT and string models, before the requirements to string systems
are set. Lastly, some string designs will be tested for their (improved) nonlinearity and frequency ratios.

C.1. The FPUT β-model verus string models
The difference in behavior for the FPUT β-model and string models have several origins, which will be elabo-
rated in this section. Section B.1 presented three (analytical) string models: a model which accounts only
for vertical displacements (w-displacement model), a model that accounts for both vertical and longitu-
dinal displacements (uw-displacement model) and finally a model which accounts all three displacement
directions (the uv w-displacement model). This section will first compare the linear string variables with
the FPUT-model, before comparing the nonlinear (coupling) coefficients of strings to the FPUT model. The
FPUT model is based on a hypothetical system, for which a physical equivalent has yet been found. The anal-
ysis in this section will mostly consist of comparison of the ratios of the modal coefficients, as evidently, the
magnitudes of these coefficients are entirely different.

C.1.1. Linear variables
The normalized linear coefficients of the vertical modes of all analytical string models are shown in Table C.1.
The linear stiffness has a linear dependency on the mode number according to Eq. B.27).

Table C.1: The linear stiffness and frequency ratios of the simple string model versus the linear stiffness ratios for FPUT β-model (from
an eigenvalue analysis).

n (1) (2) (3) (4) (5) (6)
string : k̃string 1.00 4.00 9.00 16.00 25.00 36.00
string : ω̃string 1.00 2.00 3.00 4.00 5.00 6.00

FPUT : k̃FPU 1.00 3.97 8.80 15.33 23.34 32.55
FPUT : ω̃string 1.00 1.99 2.97 3.92 4.83 5.71

The table shows that the frequency ratios of strings are integer, where the frequency ratios of the FPUT model
(from Section A) are non-integer. Furthermore, it was shown that the frequencies of the third and fifth mode
should be 2.97 and 4.83 (and thus lower than the nearest internal resonance condition) to generate FPUT
behavior, as is depicted in Fig. A.3. Hence, to observe FPUT-like behavior in strings, one should design a
string system which contains these non-integer frequency ratios. Though the difference in the frequency
ratios is only several per-cents e.g.

( 5.00−4.83
5.00 ×100% = 3.4%

)
, the effect on the dynamics is still significant.

Analytical models for continuous strings (with constant cross-sectional areas) generally follow this integer
frequency relation, which also generate certain relations between the coupling terms. A string system which
would have these non-integer frequency ratios could hence also generate modal coupling parameters of a
different magnitude.

95
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Until now, the comparison mostly consisted of analyses of frequency ratios, and it has yet included an analysis
of the magnitudes of the linear variables, as these are dependent on the geometry of the structure.

C.1.2. Nonlinear variables
The nonlinear modal variables consist of two types. The first type of variables are the Duffing coefficient
(denoted by the b(n)

nnn-terms), which generates a force that is only dependent on the amplitude of the consid-
ered mode (of number n). The second type are the modal coupling coefficients, which generate a force that
depends on the amplitudes of several modes. The Duffing coefficients are studied first, before the coupling
coefficients are compared.

Duffing coefficients
The Duffing coefficients of the analytical models were shown to be dependent on the amount of displacement
directions that were considered. It was shown that the Duffing coefficients of the w-displacement model were
1.5 times larger than those of the uw- and uv w-displacement models. This may be an important requirement
for FPUT dynamics (which was shown to be dependent on the ratio of nonlinear versus linear forces for the
initial conditions). Comparison of the Duffing nonlinearities of the FPUT model and the analytical models
may be done through normalization with respect to the first mode. This yields Table C.2.

Table C.2: Normalized Duffing nonlinearities, for the first six (vertical) modes, for the FPUT β model and three analytical string models.
The last row shows the Duffing coefficients of the uneven (even) vertical (transverse) modes.

n (1) (2) (3) (4) (5) (6)
FPU : b̃FPUT 1.00 15.73 77.39 236.39 625.6 1059.69

string.u: b̃string 1.00 16.00 81.00 256.00 625.00 1096.00
string.uw: b̃string 1.00 16.00 81.00 256.00 625.00 1096.00

string.uvw: b̃string 1.00 1.00 16.00 16.00 81.00 81.00

This shows that the ratios of the Duffing coefficients for the FPUT problem nearly resemble those of the string
models that include the w- or uw-displacements. The discrepancy between the FPUT and string models is
likely to result from the discretization into N elements. The FPUT model shows that the Duffing nonlinearity
approximately follows the same trend as the w- and uw-displacement models: it scales with the frequency
ratio to the power four. The uv w-displacement model is included here as well, because this may also show
desired dynamics: perpendicular modes were shown to be strongly coupled in Table E.6.

Modal coupling coefficients
This section will compare the modal coupling coefficients of string models to those of the FPUT model. Ref-
erence will often be made to Tables E.2, E.4 and E.6. The modal coupling coefficients of the FPUT model are
shown in Table A.4.

Table C.3: Coupling coefficients for the first three uneven modes: 1, 3 and 5. From left to right: the required coupling coefficients for the
FPUT β-model, the coupling coefficients of the w-displacement string model, and the uw-displacement string model. The

uv w-displacement string model is excluded here, since these modes are defined differently.

FPUT model String model (w) String model (uw)
Eq. (1) (3) (5) (1) (3) (5) (1) (3) (5)
b̃111 1.00 0.99 0 1.00 1.00 0 1.00 0 0
b̃113 2.97 17.59 14.83 3.00 18.00 15.00 0 9.00 0
b̃115 0 14.83 50.02 0 15.00 50.00 0 0 25.00
b̃133 17.59 0 43.99 18.00 0 45.00 9.00 0 0
b̃135 29.67 87.99 0 30.00 90.00 0 0 0 0
b̃155 50.02 0 0 50.00 0 0 25.00 0 0
b̃333 0 77.38 0 0 81.00 0 0 81.00 0
b̃335 43.99 0 440.05 45.00 0 450.00 0 0 225.00
b̃355 0 440.05 0 0 450.00 0 0 225.00 0
b̃555 0 0 625.60 0 0 625.00 0 0 625.00
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Section A.2.5 showed that FPUT behavior may only be observed for systems with a nonzero back-coupling
coefficient (the b̃(3)

111-term). This term causes excitation of the third mode through initial excitation of the first

mode. Table C.3 shows that b̃(3)
111.w is nonzero, where it is zero for uw-model (b̃(3)

111.uw = 0.00). This implies
that the w-displacement model is the only string model that satisfies this requirement. Additionally, none of
the higher modes contain nonzero b̃(r )

j j j -terms (here, r > j ). This implies these modes do not cause excitation

of mode r through excitation of only mode j .
Interestingly, the three-dimensional (uv w-displacement) model, which includes an additional displacement
direction, shows coupling between perpendicular (vertical and transverse) degenerate modes (Table E.6),
but these are not directly excited for the default FPUT initial condition, reducing the possibility to see FPUT
behavior for this uv w-displacement model. In summary, it may be stated that the simplest string model,
the w-displacement model, is the only model that could potentially show FPUT behavior, since its coupling
coefficients are in good agreement with those of the FPUT β-model. However, (as was shown in section B.4)
this model does not capture all experimentally observed dynamics. To observe FPUT behavior in a string-like
resonator, one may thus concluded that a string system should be designed for which the assumption may
be made that the longitudinal and transverse displacements remain negligible.

C.1.3. Comparison of modal quantities
Where previous subsections have shown comparison of the modal coefficients in terms of their ratios with
respect to the first modes of each model, this section will compare the actual quantities of the FPUT model
and the w-displacement string model.
The FPUT model is a hypothetical model, of which no mechanical equivalent has (yet) been found. The
default FPUT problem that was studied in Section A consisted of 16 elements with mass m = 1kg , connected
to springs with a linear stiffness of k = 1Nm−1 and a nonlinear perturbation to the stiffness of β = 8Nm−3.
The total mass of the system would thus be mtot = mN = 16kg .
The modal equation of motion for the first mode of the FPUT β-model was found to write:

q̈1 +3.41×10−2kq1 +1.02×10−4βq3
1 = 0. (C.1)

Where the total equation has been normalized with respect to the modal mass, which -by approximation-
equals half the total mass of the system: mtot

2 ≈ 16
2 = 8kg. For a Si3N4 nanostring, this modal mass will be

multiple orders of magnitude lower, due to its significantly smaller size. The dimensions and properties of
a Si3N4 nanostring with similar properties to those of the experimentally tested specimen of length 1110µm
are (once more) tabulated in Table C.4.

Table C.4: Characteristics of the experimentally tested string specimen.

Quantity Variable Magnitude
length L 1110 um
width w 4 um

thickness t 92 nm
Young’s modulus E 250 GPa

pre-stress σ0 509 MPa
density ρ 3100 kg/m3

cross-sectional area A = t w 3.68×10−13 m2

total mass mstring = ρAL 1.27×10−12 kg

The modal coefficients of the w-displacement string model were found in Section B.1. For a single mode, the
following modal equations of motion were found (from Eq. B.42). This equation, here once again multiplied
with the mass density ρA, equates to:

ρAL

2
q̈un +

π2n2T0

2L
qun +

3π4n4E A

8L3 q3
un

= 0. (C.2)

This equation shows that for strings, the modal mass is defined by ρAL
2 = mstring

2 : half the total mass. After the
mass normalization, using mass-normalized eigenvectors (according to the method that is shown in Section
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D.2.1), the following equation of motion is found for the first mode:

q̈u1 +
π2σ0

L2ρ
qu1 +

2

ρAL

3π4E

8L4ρ
q3

u1
= 0. (C.3)

The mass-normalized coefficients of both the FPUT model and the string’s equations of motion are tabulated
in Table C.5.

Table C.5: Mass-normalized modal coefficients for the FPUT β-model (left) and the coupling coefficients for the simple string model,
which only accounts for vertical displacements (right).

Variable Unit FPUT-model String model (w)
m(1) [−] 1 1

α [−]
√

2 kg
mtot

= 0.35
√

2 kg
ρAL = 1.26×106

k(1)
1 =ω2

0

[
1
s2

]
3.41×10−2k = 3.41×10−2 π2n2σ0

ρL2 = 1.32×1012

b(1)
111

[
1

m2s2

]
1.02×10−4β= 8.19×10−4 α2 3π4E

8L4ρ
=α21.94×1021 = 3.07×1033

h [m]

√
ω2

0

b(1)
111

= 6.45

√
ω2

0

b(1)
111

= 2.07×10−11

The table depicts a difference in relative nonlinearity, which may be defined through the ratio of
b(1)

111

k(1)
1

: this

value is much larger for strings than for the FPUT model, since b(1)
111 >> k(1)

1 for a string, whereas for the FPUT
model, this is the opposite. However, since the amplitudes of both systems are on very different orders of
magnitude, it is more useful to compare the non-dimensionalized quantities. This non-dimensionalization
is conducted using the equations from Section D.2.2.

t = τ

ω0
, qn = q̃nh, where h =

√√√√ ω2
0

b(1)
111

. (C.4)

In this non-dimensionalization, time is scaled from dimensional variable t to non-dimensional time τ using
the time constant ω0. Space is scaled through the introduction of the variable h, which chosen such that the
non-dimensional b̃(1)

111-term is unity.
Recall from Section A that the initial force ratio should be approximately 21% for the default FPUT system, for
N = 16 and β= 8Nm3. The initial force ratio quantifies the relative nonlinearity of the initial condition, and it
may be written as the ratio of these the nonlinear and linear forces:

rNL2L = F̃nonlin

F̃lin
= b̃(1)

111q̃3
1

k̃(1)
1 q̃1

= b̃(1)
111

k̃(1)
1

q̃2
1 (C.5)

The initial displacement is -for the default FPUT problem- defined as half a sine wave, or the mode shape
of the first mode of a string. This mode shape is maximum at its center ( L

2 ): the vertical displacement of
this point is defined as wc . For the FPUT problem, this centre-point displacement was defined to be one
meter: wc.F PU = 1m. The displacement may be scaled to the (mass-normalized) modal displacement using
the following formula:

w =φT
u1

qu1 =φT
m1

q1 =αφT
u1

q1. (C.6)

The max-1 eigenvectors, which are denoted by the Φuk -terms, have a maximum of 1 (max
(
Φu1

) = 1). The
maximum (mass-normalized) non-dimensional modal displacement (Eq. C.7) may thus be written as a func-
tion of the maximum string displacement (wc ), the maximum of the max-1 eigenmode and the parameter
that scales the eigenvectors from max-1 eigenvectors to mass-normalized eigenvectors, α.

q̃1 = wc

max(Φu1 )

1

αh
. (C.7)

Finally, the comparison of both models can be made. For a string system to generate the same initial force
ratio as the FPUT model, the following equation needs to be satisfied:

rN L2L.FPUT = rN L2L.string (C.8)
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Since b̃(1)
111.FPUT and k̃(1)

1.FPUT are scaled such that b̃(1)
111.FPUT = 1 and k̃(1)

1.FPUT = 1, Eq. C.5 may be simplified, which
results in a dependency on the square of the initial (non-dimensional) amplitude:

rNL2L.FPUT = b̃(1)
111.FPUT

k̃(1)
1.FPUT

q̃2
1.F PU T = q̃2

1.F PU T . (C.9)

The same normalization has been applied to the string model, which implies that k̃(1)
FPUT = k̃(1)

string and b̃(1)
111.FPUT =

b̃(1)
111.string. This thus implies that the following relation should be satisfied:

rNL2L.FPUT = rNL2L.string =
q̃2

1.FPUT = q̃2
1.string → q̃1.FPUT = q̃1.string.

(C.10)

The latter equation states that the non-dimensional (mass-normalized) amplitudes should be equal. This
equation is subsequently combined with Eq. C.7 to find the relation between the string and the FPUT models.

q̃1.FPUT = q̃1.string = wFPUT

αFPUThFPUT
= wstring

αstringhstring

→ wstring = wFPUT
αstringhstring

αFPUThFPUT

(C.11)

C.1.4. FPUT mechanics for the w-displacement string model
Substitution of the variables from Table C.5 and assuming again that wFPUT = 1m, gives the following required
displacement for the string model:

wstring = wFPUT
αstringhstring

αFPUThFPUT
= 11.82×10−6 = 11.82µm (C.12)

Which implies that -to generate the same initial force ratio- for the w-displacement string model, an initial
displacement of centre point in the form of the first mode with a magnitude of 11.82 micron is required.

Fig.C.1 depicts a (damped, Q1 = 100,000,Q3 = 33,333 and Q5 = 20,000) ringdown simulation for this initial
condition (and the parameters from E.1.1), it generates energy transfer, but it does not generate FPUT be-
havior. Though the linear energy is exchanged among the higher modes, no energy dominance is visible. In
addition, comparison of the linear and nonlinear energy magnitudes shows that the magnitude of the non-
linear energies still is small (Fig. C.1(b and c)). The modal amplitudes and velocities (Fig. C.1(d and e)) show
beatings, but the effect not significant. This simulation was run for the linear frequency ratios from Table
E.1, which follow an integer relation with the mode number. Section A has shown that non-integer frequency
ratios generate more significant energy transfer than integer frequency ratios. This simulation is therefore
run again, but this time for the frequency ratios of the default FPUT problem; the results are depicted in Fig.
C.2.

The energy and amplitude plots show that this weakly damped (w-displacement) string model can show
FPUT-like behavior. This FPUT behavior is visible in the linear energy plot, which only accounts for part of
the total energy. Fig. C.2(b) shows this behavior is still present when accounting for the nonlinear energy
fraction, which is associated to only this mode (the Duffing energy). Though the nonlinear stiffness has in-
creased significantly, the nonlinear energy thus remains small. This is due to the small orders of magnitude
of the vibrations, which basically suppress magnitude of the nonlinear energy.
The remaining nonlinear energy, which is associated to the coupling terms, is depicted in Fig. C.2(c). This
plot clearly shows that while the first mode’s energy decreases, the coupling energy increases, increasing the
energy of the higher modes. Similar to what was shown for the default FPUT model, the highest peaks in the
coupling energy seem to follow a similar trend as the third and fifth modes combined. In addition, the lower
peaks in the coupling energy depict the trends which follow from solely the third or fifth mode.
The modal amplitude and velocity plots clearly show beatings, where the first mode decreases while the other
modes strongly increase, up to the point where the higher modes’ amplitudes and velocities are of the same
order of magnitude.
The magnitude of this initial displacement could require some further attention, as the maximum displace-
ment that is required for this string equals nearly 12 micron. Comparing this value to the amplitudes which
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Figure C.1: Numerical simulation for a string model that includes only vertical displacements. The linear stiffness ratios are integer. The
initial condition resembles the first mode with a maximum displacement of 11.82µm. This simulation was run with a quality factor of
the fundamental mode of 100,000, the Q-factors of the higher modes scale with the inverse of the mode number. Shown in (a), (b) and

(c) are the linear, single mode and coupling energies, respectively. The modal amplitudes and velocities in are shown in (d) and (e).

were found in the experiments, e.g. Fig. B.4, one may deduct that the required amplitudes for this FPUT
behavior are significantly higher than those of the experiments: 11.82µm versus 4µm respectively. Achieving
such a displacement without breaking the resonator is likely to be impossible. However, simulations of the
frequency response of this 1110µm resonator (Section B.4) indicate that the Young’s modulus should be much
higher than the estimated Young’s modulus of Si3N4: 450GPa (for the w-displacement model) versus the es-
timated 250GPa. For a larger Young’s modulus, the nonlinearity increases (through Eq. C.3), increasing the

ratio of
b(1)

111

k(1)
1

. The required initial amplitude should thus be lower to generate the required initial force ratio.
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Figure C.2: Numerical simulation for a string model that includes only vertical displacements. The linear stiffness ratios are
non-integer and equal to those of the FPUT problem ([1.00, 1.97, 2.97, 3.92, 4.83 and 5.71]). The initial condition resembles the first

mode with a maximum displacement of 11.82µm. This simulation was run with a quality factor of the fundamental mode of 100,000,
the Q-factors of the higher modes scale with the inverse of the mode number. Shown in (a), (b) and (c) are the linear, single mode and

coupling energies, respectively. The modal amplitudes and velocities in are shown in (d) and (e).
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For a Young’s modulus of 450GPa, one an initial displacement of 8.81 micron is required, which appears to be
about double the maximum midpoint amplitude that is seen in experiments on strings (B.4). This displace-
ment of 8.81 micron would equal 0.79% of the resonator’s length.
This latter analysis has shown that for an increased nonlinearity, which could be present in strings, a smaller
initial displacement is required. The section on the analytical string models has shown that this effective
nonlinearity is dependent on the ratio of Young’s modulus and pre-stress: E

σ0
. The effective nonlinearity may

thus be increased through either increasing the Young’s modulus, or decreasing the pre-stress.

Sensitivity of initial conditions
The previous subsection has shown that FPUT behavior may be observed for string resonators that are rep-
resented by the w-displacement string model for an initial condition that resembled the first mode’s mode
shape. This is a static initial condition, as the amplitudes and velocities of all other modes is assumed to be
zero. Should a resonator be manufactured that suits the requirements, one may still never exactly replicate
this initial condition in experiments. This is due to the fact that little (simple) non-destructive methods exist
that can statically displace these nanoresonators. This section will therefore explore the sensitivity to an ini-
tial velocity for the first mode, as well as some displacement of the first modes uneven harmonics (the third
and fifth mode).

First, the dynamic first mode’s initial condition may be considered, where an initial velocity is added to the
first mode, to replicate ringdown from an initial condition where the system is driven near the first mode’s
resonance frequency. The initial velocity is assumed to be related to the initial amplitude through Equations
C.13 and C.14, where it is assumed that the displacement is a function of a trigonometric function.

w(t ) =
N∑

n=0
An sin(ωn t ) (C.13)

ẇ = d w

d t
= d

d t

[
N∑

n=0
An sin(ωn t )

]
=

N∑
n=0

Anωn cos(ωn t ) (C.14)

For a pure initial displacement of the first mode, A1 = w0 and An = 0 for n ≥ 2. The velocity is then given by:
ẇ = w0ω1.
To see FPUT behavior in a string-like resonator, one requires an initial displacement of 11.82 micron. For a
string-like resonator with a fundamental mode frequency ofω0 =ω1 =

p
1.32×1012 = 1.15×106 rad/s, this ini-

tial modal velocity should thus be ẇ = w0ω1 = 13.59m/s. Such an initial condition will generate the dynamics
from Fig. C.3

For this dynamic initial condition, there is immediate energy transfer, but no immediate energy dominance.
Before this dominance occurs, the first mode’s energy first decreases (in the first 0.1ms, under increase of the
higher modes), it subsequently increases and then decreases before the higher modes start to dominate the
first mode’s energy. After this dominance, the first recurrence of the first mode (at approximately 0.18ms) is
not as ”perfect” as that for a static initial condition: at this time, the higher modes still have quite some energy
due to the nonzero amplitude of the higher modes. The amplitudes of the higher modes decrease to smaller
magnitudes at around 0.78ms. The first mode then increases and generates near full recurrence (note that
the system is weakly damped) at 0.78ms, which is significantly longer than the first recurrence from Fig. C.2.
At this time point, the coupling energy is also very small. FPUT-like behavior is thus still visible for dynamic
initial conditions, where both the velocity and amplitude of the first mode are nonzero.
However, to achieve such large initial conditions (e.g. the required 11.82 micron), one will have to force the
system far into the nonlinear regime. It was shown in the experimental section that in this nonlinear regime,
one will also see excitation of higher modes through harmonics of the first mode. The subsequent ringdown
simulation will thus be run for nonzero amplitudes (and velocities) of the first, third and fifth modes. It is
assumed that the third and fifth mode have no larger magnitude than 15% and 5% of the initial amplitude,
respectively, generating the following initial amplitudes (and velocities):

A1 = 80%w0 = 9.46µm, A2 = 0µm, A3 = 15%w0 = 1.77µm, A4 = 0µm, A5 = 5%w0 = 0.59µm, A6 = 0µm

Ȧ1 = A1w0 = 10.85m/s, Ȧ2 = A2ω2 = 0m/s, Ȧ3 = A3ω3 = 6.04m/s,

Ȧ4 = A4ω4 = 0m/s, Ȧ5 = A5ω5 = 3.28m/s, Ȧ6 = A6ω6 = 0m/s
(C.15)

The results of such initial conditions are presented in Fig. C.4. Initial weak excitation of the higher uneven
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Figure C.3: Numerical simulation for a string model that includes only vertical displacements. The linear stiffness ratios are
non-integer and equal to those of the FPUT problem. The initial condition resembles the first mode with a maximum displacement of

11.82µm and an initial velocity of 13.59m/s. This simulation was run with a quality factor of the fundamental mode of 100,000, the
Q-factors of the higher modes scale with the inverse of the mode number. Shown in (a), (b) and (c) are the linear, single mode and

coupling energies, respectively. The modal amplitudes and velocities in are shown in (d) and (e).
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Figure C.4: Numerical simulation for a string model that includes only vertical displacements. The linear stiffness ratios are
non-integer and equal to those of the FPUT problem. The initial condition resembles dynamic excitation of the first, third and fifth

modes, as is shown in Eq. C.15. This simulation was run with a quality factor of the fundamental mode of 100,000, the Q-factors of the
higher modes scale with the inverse of the mode number. Shown in (a), (b) and (c) are the linear, single mode and coupling energies,

respectively. The modal amplitudes and velocities in are shown in (d) and (e).



C.2. Design for FPUT behavior 105

modes still generates energy transfer (as expected, since all these modes are initially excited), as well as dom-
inance. The initial energy (at t = 0s) is distributed among all three uneven modes through a nonzero initial
condition. A large fraction of the energy is located in the first mode after approximately 0.06ms. Thereafter,
the third and fifth mode dominate the first mode for some time, before some of the energy is returned to the
first mode at 0.15ms, but this time for a larger amount of energy, since the amplitudes of the third and fifth
modes have decreased (Fig. C.4(d)).
Later, at approximately 0.23ms, the energy, amplitude and velocity states from 0.065ms are achieved again.
Similarly, the state at approximately 0.15ms appears to return at around 0.30ms. The previous analysis shows
that energy exchange may still be observed for less ”perfect” initial conditions, where the higher modes have
a nonzero initial energy. The typical FPUT phenomenon; the immediate recurrent behavior in the energy plot
is more difficult to define. For these initial conditions, one should distinguish between recurrence of the ini-
tial conditions, or recurrence of a certain state (e.g. where all energy is located in the first mode). Nonetheless,
both types of recurrence may be observed here.

C.1.5. Conclusion
This section has shown that though the magnitudes of the modal coefficients of the w-displacement string
model and the FPUT model do not match, they could display similar behavior for some non-integer fre-
quency ratios and certain sets of initial conditions. The linear and single-mode energy still show that there
is recurrent behavior visible, which is verified by the modulations of the amplitude. This single-mode energy
is assumed to sufficiently represent the modal energies since the (nonlinear) terms only become significant
when the amplitudes of the associated modes are large.

C.2. Design for FPUT behavior
The previous sections have shown that FPUT behavior may be observed for a string model which only ac-
counts for vertical displacements. However, experiments have shown that for at least one resonator, this
model probably does not replicate the string’s dynamics accurately, as this requires the inclusion of longi-
tudinal displacements. To design a resonator that could potentially show FPUT behavior, one should thus
optimize the structures which account for displacements in vertical and longitudinal directions. This section
will show methods that may be used to improve the nonlinearity of these string resonators. The requirements
of the system will be elaborated upon first. Thereafter, a method which could improve the nonlinearity of
beams in literature will be presented, before the STEP method is employed to test this method.

C.2.1. Requirements for FPUT behavior
Other than the requirement that Q-factors should be sufficiently large, two requirements have previously
been established, which determine whether a structure could show FPUT-like behavior:

1. The frequency ratios should be a non-integer value; slightly lower than the integer frequency ratios for
strings.

2. A back-coupling term (the b(n)
111-term) should be nonzero, this will cause initial excitation of mode n

through excitation of the first mode.

Section B.1 has shown that the continuous cross-sectional strings do not posses all these requirements, since
its frequency ratios are integer. It was previously shown that a system that is represented by the w-displacement
model with non-integer frequency ratios may show FPUT behavior; this model is only valid for resonators for
which it is safe to ignore the longitudinal displacements. Experimental results have however shown that it
is likely that this w-displacement model is not entirely accurate for the considered string resonators; from a
mechanics point of view, it is sensible to include the longitudinal displacements of a system. Hence, a method
should be sought that can generate the required modal coupling coefficients and frequency ratios for a system
that does include longitudinal displacements. This section will therefore -numerically- show which methods
may be employed to design a resonator that will generate such coefficients. The origin of the nonzero back-
coupling coefficients was shown in Section B.7, it essentially depends on the mode shape and the nonlinear
displacement formulation. The mode shapes of these resonators may be easily changed by local variance
of the cross-sectional area of the string. The next section will show some theories on improvement of the
nonlinearity in literature.
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C.2.2. Literature - improvement of the nonlinearity of beam resonators
Several studies (e.g. those by Dou and Li [9, 18]) have shown that the Duffing nonlinearity of clamped-
clamped beam resonators may be enhanced by local variance of the beams’ geometries. Dou and Li found
that the nonlinearity of a constant cross-sectional area beam (Fig. C.5a) could be improved by locally increas-
ing the beam’s thickness, specifically at approximately 0.25L and 0.75L (Fig. C.5b). Oppositely, by decreasing
the thickness at certain locations (Fig. C.5c), the Duffing nonlinearity can be decreased. The results of these
iterations show that the resonance frequency decreases with increasing nonlinearity and vice versa. Li has
experimentally validated the results for Dou’s designs, showing that by locally varying the thickness, one may
tune the resonators behavior: one may increase the size of the linear regime by decreasing the magnitude
of the nonlinearity and vice versa for a smaller linear regime [18]. The design optimization was constrained
through a condition on the frequency ratios, which was set to remain close to the (integer) internal resonance
conditions.

(a) Initial design.

(b) Design for maximum nonlinearity.

(c) Design for minimum nonlinearity.

(d) Design for maximum modal coupling.

Figure C.5: Four designs which have been analysed for their nonlinear behavior. C.5a-C.5c depict three designs for clamped-clamped
beam structures which have been designed for a certain Duffing nonlinearity. C.5a depicts the initial design, C.5b shows a design for

maximum nonlinearity and C.5c shows a design for minimum nonlinearity. C.5d depicts the results of the iterations to find the
strongest coupling between two modes (which are in 2:1 IR) of the T-structure. Adopted from [18].

The coupling terms of these improved clamped-clamped beam structures are not reported. However, Li does
report a modal coupling optimization scheme for a T-structure (Fig. C.5d). This optimization is focused on
the coupling between two modes, and it is sought for the condition where these modes are in 2:1 internal
resonance. Fig. C.5d depicts initial and final designs; the latter was found to have the largest modal coupling.
This structure is claimed to have a quadratic (passive back-)coupling term (a(2)

11 ). This a(2)
11 -term passively

excites mode 2 through excitation of mode 1. This method may be employed to find structures that display
FPUT behavior. However, the nonlinearity should be cubic for the FPUT β-model (and, through the theory of
resonant terms, the coupled mode should be located at mode 3). Regardless, this T-structure may be tested
to see if it replicates FPUT behavior that is similar to the FPUT α-model.
It is important to note here that the studies by Dou and Li are based on beam elements, which account for
more strain formulations (e.g. mid-plane stretching and bending) than the truss-structures in the current
research [9, 18]. This assumption may be valid for the dimensions and pre-stress of the present structures.
The next sections will first attempt to verify (using the STEP method) the results form Figures C.5a and C.5b,
before attempting more complex geometries.

C.2.3. Limitations of the STEP method
Before attempting to verify the results from Dou and Li using STEP, it is paramount to first characterize the
limitations of this method.
The STEP method allows for rapid computation of the modal variables for various designs. The system has
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shown to work for strings (including longitudinal and transverse displacements), square and circular mem-
branes, fully clamped plates and cantilevers. The STEP method (in its present form) may thus be used for
fully constrained systems, such as the fully clamped strings and membranes/plates which are clamped on all
sides.
The STEP method produces reliable results for (continuous) strings: the linear as well as nonlinear variables
agree very well with the analytical (uw- and uv w-displacement) models. However, these string systems are
modelled based on some assumptions. The first is that the cross-section of the string is assumed to be con-
stant and square. For the Si3N4 resonators that are considered in the present study, this is not the case, but
this model generated sufficient agreement with experiments on continuous strings, since the axial deforma-
tion is assumed to be the governing displacement model. A string-like resonator with non-integer frequency
ratios may be generated by varying the cross-sectional area along the length of the string (i.e. by making the
string’s cross-sectional area discontinuous).
Such designs would be most sufficiently represented by a model that includes the non-uniform tension along
the length of the string. Plate deformation models allow for such non-uniform tension due to the inclusion of
additional displacement directions in the strain formulation, causing an inhomogeneous stress distribution
along the width of the resonator [15]. However, the present STEP software does not allow for this, as the pre-
scribed displacements of plates (clamped on 2 edges) are not sufficiently constrained, generating incorrect
displacements and subsequently incorrect coupling coefficients. The modelling method is hence restricted
to the use of truss models (which account only for axial deformations due to a displacement), for systems
which are pinned at each end.
Such a discontinuous cross-sectioned string may however be modelled through discretization of string mod-
els. This discetization entails that a single string is divided into multiple string elements, where the cross-
sectional area of each element may be varied. Fig. C.6 depicts a structure which consists of several cross-
sections. The structure consists of 5 elements, of which three have dimensions L1, w1 and two have dimen-
sions L2 and w2; the thickness is assumed to remain constant.

Figure C.6: A string design consisting of 5 elements, of which 3 have have dimensions L1, w1 and two have dimensions L2 and w2. The
system is pre-stressed on the edges with a pre-stress of σ0. The system has a constant thickness (into the paper) of t .

The pre-stress generates a force that is assumed to scale linearly with the the cross-sectional area (Ai = t wi ).
This force is constant over the length of the resonator.

Fpr e =σ1t w1 =σ0t w1 =σ2t w2 (C.16)

The thickness is constant, and σ1 is equal to the pre-stress at the edges: σ1 = σ0. The constant force allows
for computation of the pre-stress in the second element, as follows:

σ2 =σ0
t w1

t w2
=σ0

w1

w2
. (C.17)

This method allows one to check whether this method of locally varying a string’s cross-sectional area can
generate (1) shifted frequencies and (2) additional coupling coefficients. The next section will show how this
is modelled using COMSOL.

C.2.4. Design method
The design from Fig. C.7 consists of 100 truss elements. It is assumed that the length and thickness of each
of these elements is constant. The width of each element may be varied, generating a different cross-section
and thus different stresses in these elements. Additionally, through this variance in the width, the mass and
stiffness of each element is varied, which will influence the modal quantities. Tables E.11 and E.12 depict the
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Figure C.7: A COMSOL model of a string design. The design consists of 100 elements (with constant length and width), the width may
be varied per element.

linear and nonlinear modal coefficients, which show that there is some small (negligible) discrepancy with
the continuous model (from Tables E.7 and E.8). In addition, there are some coefficients that are nonzero
which should be zero, though their influence is assumed to remain small due to the small magnitudes of
these coefficients with respect to the others; these terms are multi-mode coefficients, of which the effect will
be negligible when the amplitude of one of these modes remains small.

Comparison of beam elements and truss elements
The present form of STEP cannot accurately replicate the results that were found by Dou, since it can only
account for axial deformations in truss models. This simplification -from beam elements to truss elements-
will probably result in different results, since some deformation mechanisms (e.g. mid-plane stretching due
to bending) are neglected. However, the qualitative results from Dou and Li [9, 18], may be compared to
those for truss models, to see whether this theory will still hold for systems that account only for axial defor-
mations.
The designs from Li have considerably larger ratio of width versus thickness ( w

t = 20µm
6µm = 3.33 for Li, and

w
t = 4µm

92nm ≈ 40 for the considered 1110µm string), generating much larger bending stiffness for Li’s struc-
tures. Modelling these beam designs using truss elements would hence be very inaccurate. The present
analysis will therefore compare the qualitative results of local variance of a systems cross-sectional area (i.e.
beam elements versus string elements); this will generate insight on how the eigenfrequencies and Duffing
nonlinearities change for string systems. Another difference is that Dou and Li vary the thickness, where for
truss models, one should change the cross-sectional area, which is achieved in this (truss) analysis through
variance of the width.

The resulting coefficients of several designs similar to those in Fig.’s C.5a, C.5b and C.5c are shown in Table
C.6. All modal coefficients (up to the sixth mode) are shown in Sections E.3.1, E.3.2 and E.3.3, respectively.

Table C.6: Single mode coefficients for the first 3 vertical modes of a discretized string of 100 elements. The characteristics of the string
are similar to Table C.4. The coefficients are tabulated for three designs: the default design (constant width), a design for increased

width near the clamping points and at 0.25L and 0.75L (similar to Fig. C.5b, and wspring = 4µm and wmass = 3wspring = 12µm) and a

design for decreased width near at 0.25L and 0.75L (similar to Fig. C.5c and wspring = 4µm and wmass = 1
3 wspring = 1.33µm.). The

coefficients were found using STEP.

Design Default (const. width) Max Min
Eq. (1) (2) (3) (1) (2) (3) (1) (2) (3)
kn [s−2] 1.32×1012 5.26×1012 1.18×1013 2.55×1012 7.34×1012 2.24×1013 1.57×1012 8.03×1012 1.66×1013

ωn [rads−1] 1.15×106 2.29×106 3.44×106 1.60×106 2.71×106 4.73×106 1.25×106 2.83×106 4.08×106

bnnn [ms−2] 2.05×1033 3.27×1034 1.66×1035 1.17×1033 9.66×1033 9.01×1034 1.83×1033 4.80×1034 2.05×1035

b(n)
nnn
kn

[m] 1.55×1021 6.22×1021 1.41×1022 4.59×1020 1.32×1021 4.02×1021 1.17×1021 5.98×1021 1.23×1022

k̃n 1.00 4.00 9.00 1.00 2.88 8.78 1.00 5.11 10.58
ω̃n 1.00 2.00 3.00 1.00 1.70 2.96 1.00 2.26 3.25
b̃nnn 1.00 16.00 80.98 1.00 8.26 76.97 1.00 26.17 111.95

The modal coefficients of the string designs based on local in- or decrease of the cross-sectional area are
shown in Tables E.13 and E.15. Clearly, these string-like structures do not follow the same trend as beam
structures: locally increasing or decreasing the width results in higher frequencies than the default model.
The nonlinearity of the first mode is decreased as well, for both designs. The linear frequency ratios appear
to decrease with a local increase of the width, and vice versa. The ratios of the Duffing coefficients follow the

same trend, and the relative nonlinearity ( b(n)
nnn
kn

) also decreases with the variance of the dimensions. The effect
of the coupling coefficients, which may be found by comparison of Tables E.12, E.14 and E.16, is small. Some
parameters slightly increase, where some slightly decrease. It is however clear that the coupling coefficients
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(especially those of the higher modes) increase the most trough the local decrease in width. However, the
b(3)

111-term is zero for all designs, implying that these designs do not generate coupling terms that can generate
FPUT behavior.

Zipper-like designs
Another method that may be (numerically) tested is a zipper-like design. This design is similar to what is
depicted in Fig. C.6, but it may contain more thin (referred to as string elements) and thick (referred to
as mass elements) elements, generating a chain of such elements. This system replicates the (hypothetical)
FPUT system trough the alternating spring-mass elements, which represents a discretized string. An example
of such a zipper-like design is depicted in Fig. C.8. This design consists of 16 masses (each mass consists of 2
elements of width wmass) and 17 springs (here, each of these strings consists of 4 elements of width wspring).
Two designs were tested: one with wspring = 4µm and wmass = 4wspring = 16µm and another with a larger
mass width: wspring = 4µm and wmass = 10wspring = 40µm. The single-mode coefficients of each iteration are
tabulated in Table C.7.

Figure C.8: A string design in COMSOL. The design consists of 100 elements (with constant length and width). The black elements are
the spring elements with wspring and the blue elements have width wmass. All other design characteristics are similar to Table C.4.

Table C.7: Single mode coefficients for the first 3 vertical modes of a discretized string of 100 elements. The coefficients are tabulated for
two zipper-like designs: a design wspring = 4µm and wmass = 4wspring = 16µm) and a for wspring = 4µm and

wmass = 10wspring = 40µm.). All other design characteristics are similar to Table C.4. The coefficients were found using STEP.

Design wmass = 4wspring wmass = 10wspring
Eq. (1) (2) (3) (1) (2) (3)
kn [s−2] 6.57×1011 2.63×1012 5.90×1012 3.29×1011 1.31×1012 2.94×1012

ωn [rads−1] 8.11×105 1.62×106 2.43×106 5.73×105 1.14×106 1.71×106

bnnn [ms−2] 6.72×1032 1.07×1034 5.41×1035 1.79×1032 2.85×1033 1.43×1034

b(n)
nnn
kn

[m] 1.02×1021 4.07×1021 9.17×1022 5.44×1020 2.19×1021 4.86×1021

k̃n 1.00 4.00 8.97 1.00 3.99 8.94
ω̃n 1.00 2.00 3.00 1.00 2.00 2.99
b̃nnn 1.00 15.96 80.48 1.00 15.92 79.92

The results are shown in Tables E.17, E.18, E.19 and E.20 which indicate that the linear frequencies ratios have
not changed much: they have only decreased for a couple per cents. The same is visible for the ratios of the
nonlinear coupling coefficients: the influence is hence very small; they are close to those of a constant width
design.

These two designs show that the zipper-like designs with 16 mass elements of width wmass and 17 spring ele-
ments of width wspring do not have a significant influence on the modal parameter ratios. The linear variables
seem to decrease with an increase width of the masses, which tends to the required non-integer frequency
ratios for the default FPUT system. However, the effect on the nonlinear coefficients is small: the coefficients
hardly change with respect to those of a continuous cross-sectioned string. The reason behind this small
effect may be that the mode shapes of such resonators remain fairly similar to those of continuous strings,
which will generate modal variables that are similar to those of continuous strings. The mass and stiffness are
uniformly distributed over the length of the string, which generates symmetrical mode shapes. Appendix B.7
shows that the origin of the coupling is in the displacement formulation, which in turn generates coupling
terms from the nonlinear displacement formulations. These nonlinear displacement formulations depend
on the shape of each mode, where symmetry along the length of the mode shapes may result in zero coupling
coefficients. Theoretically, by tuning the shapes of the modes, one should thus be able to generate different
coupling coefficients. These mode shapes may be tuned by introducing asymmetry to the system, by inho-
mogeneously distributing the mass or stiffness over the length of the string. This may be achieved by locally
increasing the number of ”mass” elements, as will be shown in the next section.
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Asymmetric designs
An asymmetrical mode shape may be generated by inhomogeneously distributing the mass (or stiffness)
along the length of the string. Fig. C.9a depicts such a design, where (from left to right) the first 10 elements
have width wspring, the following 30 elements have width wmass, and the last 60 elements have width wspring.
The mode shapes are shown in C.9b to C.9g. The mode shapes clearly show asymmetry.

(a) Asymmetrical string design.

(b) First mode shape.

(c) Second mode shape.

(d) Third mode shape.

(e) Fourth mode shape.

(f) Fifth mode shape.

(g) Sixth mode shape.

Figure C.9: Design and mode shapes of an asymmetrical string design. C.9a depicts a design where the black elements (the first 10 from
the left and the last 60 elements from the right) have width wspring = 4µm, elements 11 to 40 (in blue) have width wmass = 40µm. All

other design characteristics are similar to Table C.4.
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Table C.8: Linear stiffness and Duffing coefficients for the first 6 modes of an asymmetrical discretized string of 100 elements from Fig.
C.9. The coefficients were found using STEP. wspring = 4µm and wmass = 40µm. All other design characteristics are similar to Table C.4.

Eq. (1) (2) (3) (4) (5) (6)
kn [s−2] 2.86×1011 1.88×1012 3.77×1012 6.80×1012 1.23×1013 1.60×1013

ωn [rad s−1] 5.35×105 1.37×106 1.94×106 2.61×106 3.51×106 4.00×106

bnnn [m−2s−2] 1.33×1032 5.75×1033 2.30×1034 7.52×1034 2.47×1035 4.15×1035

b(n)
nnn
kn

[m] 4.65×1020 3.06×1021 6.10×1021 1.11×1022 2.01×1022 2.59×1022

k̃n 1.00 6.58 13.18 23.76 43.11 55.93
ω̃n 1.00 2.56 3.63 4.87 6.57 7.48
b̃nnn 1.00 43.32 173.50 566.05 1860.76 3127.26

The results of the STEP analysis of this design are tabulated in Tables C.8, E.21 and E.22. These indicate that
the linear stiffness (and hence the linear resonance frequencies) have dropped to non-integer ratios. The
relative nonlinearity has increased significantly with respect to the mode number, showing that the (rela-
tive) nonlinearity of a mode may in fact be engineered in this manner. However, though most of the modal
coupling coefficients have increased, none of the b(n)

111-coefficients are nonzero for n > 0. It is hence likely
that these coefficients generate little initial energy transfer, which reduce the likelihood of observing FPUT
behavior for these structures.

C.2.5. Conclusion
This section showed that through variance of the cross-sectional area of string-like systems, one may tune
the frequency ratios, tune the (Duffing) nonlinearity of especially the higher modes while the coupling ra-
tios hardly improve. Nonetheless, the method that is employed here is far from perfect, as it is limited to
string-like resonators, which can be modelled by truss elements only. This implies that deformations of these
systems only generate axial deformation in the resonator, while in reality, much more displacement mecha-
nisms may be present. Expansion of this method is thus necessary, such that all possible displacements are
accounted for in the computation of the modal variables. Dou and Li found that a structure consisting of two
perpendicular beams may also have nonzero quadratic back-coupling coefficients [9, 18]. This STEP method
should be expanded to work for such designs as well. Lastly, since the possibilities for geometries are endless,
a topology optimization or machine learning algorithm could be linked to the STEP software, such that the
modal coefficients of each design may be efficiently analysed. Such study would have several constraints,
among which two should be as follows: (1) the frequency ratios of the system should be non-integer (and
lower than the mode number) and (2) the method should find nonzero back-coupling coefficients.
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Methods

This section will elaborate on some of the methods that are employed in this research, these consist of nu-
merical methods, analytical (scaling) methods and numerical simulations. The numerical methods will first
elaborate upon a method which is used to determine the modal coefficients: the STEP method. Subsequently,
the resulting numerical integration methods are shown, which allow for solving of the differential equations
and subsequent analysis of the resulting dynamics. Three clear distinctions in the integration methods may
be made: (1) frequency characterization, (2) forced vibrations and (3) free vibrations (ringdown). All three
methods -though somewhat similar- will be explained in this section. The analytical methods will show some
scaling methods, which are used for further analyses. The last section will highlight the procedure for numer-
ical simulation of experimental results.

D.1. Numerical methods
D.1.1. Numerical determination of the modal coefficients
Nonlinear effects may become visible in structures if a (large-amplitude) out-of-plane displacement is ap-
plied to this structure. A (geometric) nonlinearity becomes apparent in the fact that the imposed out-of-plane
displacement does not only result in an vertical (out-of-plane) deformation, rather it also shows deformation
in a plane perpendicular to this out-of-plane displacement: the longitudinal (in-plane) direction. A common
-though simple- example is that of applying a transverse load to an elastic band: here, the band will deflect in
the transverse (out-of-plane) direction, but it will also show some deformation in the longitudinal (in-plane)
direction. Now, if we would consider a linear model, where all displacements follow a linear relationship, we
cannot capture this effect; the system should be expanded to higher orders to find an equation that suits this
(nonlinear) behavior sufficiently. The dynamics of a resonator may be approximated by the following modal
equations of motion, if two modes are considered and the nonlinearity is approximated up to third order:

q̈1 +k(1)
1 q1 +a(1)

11 q2
1 +a(1)

12 q1q2 +a(1)
22 q2

2 +b(1)
111q3

1 +b(1)
112q2

1 q2 +b(1)
122q1q2

2 +b(1)
222q3

2 = F (1)

q̈2 +k(2)
2 q2 +a(2)

11 q2
1 +a(2)

12 q1q2 +a(2)
22 q2

2 +b(2)
111q3

1 +b(2)
112q2

1 q2 +b(2)
122q1q2

2 +b(2)
222q3

2 = F (2).
(D.1)

The coefficients of these equations can be found using two methods: analytical and numerical methods.
The former method is quite an intensive process, as it requires solving lengthy equations, as was shown in B.
Furthermore, to reduce complexity of the equations, the analytic method is limited to continuous or constant
cross-section geometries. If one would try to build an analytic model that accounts for discontinuities in e.g.
the cross-section of the structure, the model will quickly become complicated. The numerical models could
make use of finite element methods (FEM) to determine the nonlinear stiffness of the structures. Muravyov
and Rizzi presented a method, the STiffness Evaluation Procedure (STEP), to find the nonlinear coefficients of
the modal equations of motion for any structure using FEM-software [22]. The following citation of Muravyov
and Rizzi’s article accurately portrays how this method works:

”The equations of motion of a multiple degree-of-freedom, viscously damped geometrically non-

113
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linear system can be written in the form:

MẌ(t )+CẊ(t )+KX(t )+Γ(X (t )) = F(t ) (D.2)

where M, C, K are the mass, proportional damping, and linear stiffness matrices, respectively,
and X is the displacement response vector and F is the force excitation vector. For the problems
of interest, the nonlinear stiffness force vector Γ(X) represents a deviation from the linear stiff-
ness force vector KX and is more than adequately represented by second and third order terms
in X(t ). When displacements are small, the second and third order terms become negligible and
the total stiffness- related force vector is reduced to the regular linear term KX(t ). Solution to Eq.
(1) via any method requires knowledge of the system matrices. In the context of a commercial
finite element program, M, C, K are generally available. The nonlinear stiffness is related to Γ,
which is typically not available within a commercial finite element program. Therefore, a means
of numerically evaluating Γ to determine the nonlinear stiffness was developed. A set of cou-
pled modal equations with reduced degrees- of-freedom is first obtained by applying the modal
coordinate transformation

X =Φq (D.3)

to Eq. (1), whereΦ is the eigenvectors obtained from (1) without Γ, q is the vector of modal coor-
dinates, and the time dependence is implied. Generally, a subset of L eigenvectors are included
in the solution such that (L ≤ N ), and N is the number of physical degrees of freedom. In the SI
system,Φ has units of [m]; q is non-dimensional

This coupled set is expressed as

M̃q̈+ C̃q̇+ K̃q+γ(q1, q2, ..., qL) = F̃ (D.4)

where
M̃ =ΦT MΦ= [I]

C̃ =ΦT CΦ= [2ζrωr ]

K̃ =ΦT KΦ= [2ζrωr ]

γ=ΦTΓ

F̃ =ΦT F

(D.5)

q1, q2, ..., qL are the components of q, and ωr are the undamped natural frequencies. In the SI
system, entries of M̃ have units of [Nms2], entries of C̃ have units of [Nms], and entries of K̃, γ
and F̃ have units of [Nm]. By writing the nonlinear force vector in the form

γr (q1, q2, ..., qL) =
L∑

j=1

L∑
k= j

ar
j k q j qk +

L∑
j=1

L∑
k= j

L∑
l=k

br
j kl q j qk ql , r = 1,2, ...,L (D.6)

the problem of determining the nonlinear stiffness is reduced from one in which a large set of
simultaneous nonlinear equations must be solved to one involving simple algebraic relations, as
will be subsequently shown. This form is sufficient for characterizing the type of nonlinearity of
interest in this paper and facilitates the subsequent solution of the equivalent linear system. Its
evaluation entails solving for the coefficients a j k and b j kl using a new procedure developed for
use with finite element programs having a nonlinear static solution capability. The procedure
is based on the restoration of nodal applied forces by prescribing nodal displacements in both
linear and nonlinear static solution settings. The total nodal force FT may be written in physical
coordinates as

FT = FL +FNL = KXc +Γ(Xc) (D.7)

where Xc is a prescribed physical nodal displacement vector, and FL and FNL are the linear and
nonlinear contributions to the total nodal force. Note that when displacements Xc are small,
the nodal force vector is approximated by a regular linear term FL = KXc, since nonlinear terms
become negligible. FL is first obtained by prescribing Xc in the linear static solution. FT is then
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obtained by prescribing Xc in the nonlinear static solution. Finally, the nonlinear contribution
FNL is obtained by subtracting FL from FT, or

FN L = Γ(Xc) = FT −FL (D.8)

To illustrate the technique, one can begin by prescribing the displacement fields

Xc =+φ1q1

Xc =−φ1q1
(D.9)

The nonlinear nodal force contributions FNL are determined using (7) after solving the linear and
nonlinear static solutions. These may be written in modal coordinates as

F̃N L1 =ΦT FN L1 =ΦTγ(+φ1q1) = [ar
11]q1q1 + [br

111]q1q1q1

F̃N L2 =ΦT FN L2 =ΦTγ(−φ1q1) = [ar
11]q1q1 − [br

111]q1q1q1
(D.10)

where the sought stiffness coefficients [ar
11] and [br

111] are vectors of length L. Note that the other
nonlinear terms do not appear in (9) since q j = 0 for j 6= 1. Since q1 is a known scalar, the coef-
ficients [ar

11] and [br
111] for r = 1,2, ...,L can be determined from the resulting system (9) of 2×L

linear equations. The remaining coefficients [ar
j j ] and [br

j j j ] for j = 2,3, ...,L can be determined

in an analogous manner. A similar technique can be employed to determine stiffness coefficients
with two unequal lower indices, e.g. [ar

12], [br
112] and [br

122]. Coefficients of this type appear only
if the number of retained eigenvectors is greater than or equal to two (L ≥ 2). Prescribing the
displacement fields

Xc =+φ1q1 +φ2q2

Xc =−φ1q1 −φ2q2

Xc =+φ1q1 −φ2q2

(D.11)

results in the following equations

F̃N L1 =ΦTΓ(+φ1q1 +φ2q2) =
[ar

11]q1q1 + [br
111]q1q1q1 + [ar

22]q2q2 + [br
222]q2q2q2 + [ar

12]q1q2 + [br
112]q1q1q2 + [br

122]q1q2q2

F̃N L2 =ΦTΓ(−φ1q1 −φ2q2) =
[ar

11]q1q1 − [br
111]q1q1q1 + [ar

22]q2q2 − [br
222]q2q2q2 + [ar

12]q1q2 − [br
112]q1q1q2 − [br

122]q1q2q2

F̃N L3 =ΦTΓ(+φ1q1 −φ2q2) =
[ar

11]q1q1 + [br
111]q1q1q1 + [ar

22]q2q2 − [br
222]q2q2q2 − [ar

12]q1q2 − [br
112]q1q1q2 + [br

122]q1q2q2
(D.12)

Summing the first two of Eq. (11) results in

F̃N L1 + F̃N L2 = 2[ar
11]q1q1 +2[ar

22]q2q2 +2[ar
12]q1q2 (D.13)

from which the coefficients [ar
12] may be determined, since [ar

11] and [ar
22] were previously found.

Then, from the first and third of Eq. (11), the coefficients [br
112] and[br

122] may be determined
from the 2×L system of equations. In this manner, all coefficients of the type [br

j j k ] and [br
kk j ]

for j ,k = 1,2, ...,L may be found. For cases when the number of retained eigenvectors if greater
than or equal to three (L ≥ 3), coefficients with three unequal lower indices, e.g. [br

123], may be
determined by prescribing the displacement field

Xc =+φ1q1 +φ2q2 +φ3q3 (D.14)

The resulting equation

F̃N L =φTΓ(+φ1q1 +φ2q2 +φ3q3) =
[ar

11]q1q1 + [ar
22]q2q2 + [ar

33]q3q3 + [ar
12]q1q2 + [ar

13]q1q3 + [ar
23]q2q3 + [br

111]q1q1q1+
[br

222]q2q2q2 + [br
333]q3q3q3 + [br

112]q1q1q2 + [br
221]q2q2q1 + [br

113]q1q1q3 + [br
331]q3q3q1+

[br
223]q2q2q3 + [br

332]q3q3q2 + [br
123]q1q2q3

(D.15)
contains one column of unknown coefficients [br

123]. All coefficients of type [br
j kl ]( j 6= k 6= l ) can

be found in this manner.”
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Matlab COMSOL

Set parameters Build model In-plane
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disp.

Nonlinear 
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Figure D.1: Method for numerical analysis of the modal equations of motion. The dashed box is the STEP method. The subsequent
steps are elaborated in the next section.

Eventually, the coefficients of the following mass-normalized nonlinear reduced order model (ROM) -of N
modes- are found:

q̈r +k(r )
r qr +

N∑
j=1

N∑
k= j

a(r )
j k q j qk +

N∑
j=1

N∑
k= j

L∑
l=k

b(r )
j kl q j qk ql = 0, r = 1,2, ..., N (D.16)

This method was implemented by Vincent Bos, a former DMN student, who built software which combines
both Matlab and COMSOL Multiphysics. The software operates according to the flowchart in Fig. D.1.

The ”in-plane” block indicates in what method the in-plane (longitudinal direction) modes are included in
the model. Here, static condensation is used. This static condensation basically implies that the in-plane
displacement direction is left free, such that the solver can search for an equilibrium position where the in-
plane forces result in a small potential energy. This is quite an efficient procedure, as it only explicitly solves
for the out-of-plane modes [5]. A more complicated procedure would be to explicitly include in-plane modes
in the model, but this will significantly increase computation time.

This STEP method is employed on string models in COMSOL. These string models are built using COMSOL’s
truss physics, which account only for axial forces. The downsides of this method are as follows:

• The cross-sectional area of the model is assumed to be square or circular;

• Complicated displacement phenomena, such as bending or shear in the system are neglected. These
will become more dominant with larger cross-sectional areas. Truss elements will have a constant stress
distribution in the vertical and transverse directions;

• The resonator’s boundary conditions are simply supported, where it would probably be more fit to
model the system with clamped-clamped boundary conditions.
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D.1.2. Vibration simulation schemes
Three simulation schemes are employed in this thesis: (1) frequency response simulations, (2) forced oscil-
lation simulations and (3) free oscillation simulations (ringdown). Generally, each of these three methods
solves the following equations of motion. Here, each method is based on a free parameter:

m(r )q̈r (t )+k(r )qr (t )+c(r )q̇r (t )+
N∑

j=1

N∑
k=1

a(r )
j k q j (t )qk (t )+

N∑
j=1

N∑
k= j

N∑
l=k

b(r )
j kl q j (t )qk (t )ql (t ) = F (r ) sin(ω f t ), r = 1,2, ..., N .

(D.17)
Where r denotes the mode number of the equation of motion: this ranges from 1 to the total amount of
modes that are considered in the simulation: N . The variables m(r ), k(r ), c(r ) and F (r ) denote the modal mass,
stiffness, damping and force coefficients. The nonlinear variables, a(r )

j k and b(r )
j kl denote the quadratic and

cubic nonlinear modal coefficients of the equation. The sin(ω f t )-term generates a harmonic excitation of
the system, at forcing frequency ω f . The degrees of freedom (the modal coordinates), are denoted by qr (t )-
and q j (t )-, qk (t )- and ql (t )-terms. To generate shorter notations, the time dependency of these coordinates
is not written down.

m(r )q̈r +k(r )qr + c(r )q̇r +
N∑

j=1

N∑
k=1

a(r )
j k q j qk +

N∑
j=1

N∑
k= j

N∑
l=k

b(r )
j kl q j qk ql = F (r ) sin(ω f t ), r = 1,2, ..., N (D.18)

Frequency response simulation
The frequency response of Eq. D.18 is simulated in AUTO, a powerful differential equation solver which gen-
erates periodic solutions which also allow for detection of bifurcations and continuation after such bifurca-
tions.

This simulation consists of two sweeps: the force sweep and the frequency sweep. Initially, the force magni-
tude (F (r )) is swept over a specified range of values (while the forcing frequencyω f remains constant). There-
after, the opposite is done: the force magnitude is kept constant while the forcing frequency is swept. The
software subsequently calculates the modal responses for all N modes: q (r ) for r = 1,2, ..., N . This generates
amplitude versus frequency plots, which may be used to quantify the nonlinear behavior of resonators. These
amplitude versus frequency plots depict the modal response to a certain (drive) frequency, which generate
insight into both Duffing nonlinearity and modal coupling.

Forced oscillation simulations
The time evolution of forced oscillations may be monitored by solving Eq. D.18 for a constant force magnitude
F (r ). The results of this simulation are the modal amplitude and velocity over time. These simulations are
conducted in Matlab, using the ODE45 solver, which may compute the solutions for non-stiff ODEs. The
results from this method provide insight into the periodicity of the solution.

Free oscillation simulations
The time evolution of free oscillations (ringdown) may be monitored by solving Eq. D.18 for zero-force mag-
nitudes, providing the time response of a system. The equation of motion that is solved here is hence as
follows:

m(r )q̈r +k(r )qr + c(r )q̇r +
N∑

j=1

N∑
k=1

a(r )
j k q j qk +

N∑
j=1

N∑
k= j

N∑
l=k

b(r )
j kl q j qk ql = 0, r = 1,2, ..., N . (D.19)

These simulations are also conducted using Matlab’s ODE45 solver. This method is particularly relevant for
studies on the decay of a system.

Simulation of forcing
The simulations of forced oscillations in this research are conducted for application of forces through base
excitation. In experiments, this base excitation is generated by fixing (with tape) the chip (which contains the
resonator) to a piezo-element. By applying a voltage to this piezo-element, a force is generated on the chip
and is subsequently applied to the resonator. The force that is applied to the resonator through excitation
of the chip is considered to be distributed homogeneously over the length of the resonator. The conversion
from this distributed load to a modal force is shown in the following.

Consider a string of length L and a distributed force of Fdistr = Ftot
L , as is depicted in Figure D.2.



118 D. Methods

Figure D.2: Distributed force over a clamped-clamped string.

If the string is discretized over n elements, this will generate a distributed force vector Fd .n of length n. Sub-
sequently, to find the modal force (of mode r , F (r )), one should multiply this distributed force vector of length
n by the eigenvector (of length n) of the excited mode r :

F (r ) =φT
(r )Fd .n (D.20)

D.2. Equation scaling
D.2.1. Eigenvector scaling
Generally, there are two methods to express eigenvectors. The first method is to express the eigenvectors
of mode n in terms of max-1 vectors (denoted by φun ), the maximum magnitude (max(φun )) of this vector
is unity, making it particularly useful for analytical derivations (as was shown in Section B.1). The second
method expresses the eigenvectors in terms of mass-normalized vectors φmn , which generates a mass matrix
for which the maximum is unity; this reduces the effort to solve the resulting equation.

To convert from one method to the other, it should be clear how each of the terms depend on any scaling
parameters. This will will be shown in this section. The displacement is denoted by x and it is a function of the
eigenvectorsφ and the modal displacement q . This analysis is similar to that from Bos [5]. The displacements
in terms of modal coordinates may be written as:

x =φun qun =φmn qmn (D.21)

Where the relation between the two eigenvectors is as follows:

φmn =αnφun . (D.22)

The modal displacements (qun and qmn ) are thus related through this scaling parameter α as well:

qmn = qun

αn
. (D.23)

The equation of motion (in matrix form) for the max-1 eigenvectors is written as:

φT
un

Mφun q̈un +φT
un

Kφun qun +γu(qu j , quk , qul ) =φT
un

F (D.24)

Where the cubic nonlinear part of the equation -of which the nonlinear dependency on the eigenvectors is
yet unknown- is written as γu(qu j , quk , qul ). Substitution of equations D.22 and D.23 into Eq. D.24 gives the
following equations:

1

αn
φT

mn
Mφmn

1

αn
q̈mnαn + 1

αn
φT

mn
Kφmn

1

αn
qmnαn +γu(qm jα j , qmkαk , qmlαl ) = 1

αn
φT

mn
F (D.25)
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1

αn
φT

mn
Mφmn q̈mn +

1

αn
φT

mn
Kφmn qmn +γu(qm jα j , qmkαk , qmlαl ) = 1

αn
φT

mn
F (D.26)

φT
mn

Mφmn q̈mn +φT
mn

Kφmn qmn +αnγu(qm jα j , qmkαk , qmlαl ) =φT
mn

F (D.27)

Now, the γu-term essentially represents the following relation:

γu = b(i )
u j kl

qu j quk qul . (D.28)

The nonlinear term of the Eq. D.27 is thus:

γm =αnγu(qm jα j , qmkαk , qmlαl ) =αnα jαkαl b(n)
u j kl

qm j qmk qml = b(n)
m j kl

qm j qmk qml . (D.29)

Which shows that the nonlinear part has quartic depedency on the eigenvector scaling (α). However, to go
from the mass matrix for max-1 eigenvectors (φT

un
Mφun ) to the mass matrix in terms of the mass-normalized

eigenvectors (φT
mn

Mφmn ), this mass matrix has been multiplied by α2
n (assuming that αn ≈ α j ≈ αk ≈ αl ).

Hence, the nonlinear part of the equation scales yet another time by α2
n .

Eigenvector scaling for the w-displacement string model

For the w-displacement string model, with modal mass mL
2 , (Section B.1.1) this (dimensionless)αn-parameter

should be chosen to be
√

1kg
mL

2
=

√
2kg
ρAL , where m = ρA. The nonlinear part of Eq. A.10 (for n = 1) may be ap-

proximated as:

1

αn
γu(

qmn

αn
) = 1

αn

3π4n4E A

16L3

(
qmn

αn

)3

= γm q3
mn

= 1

α4
n

3π4n4E A

16L3 q3
mn

= 3π4n4E A

4m2L5 q3
mn

(D.30)

D.2.2. Space and time scaling
For computation efficiency, it convenient to scale the equations with respect to space and time. Consider the
following (dimensional) equation of motion:

q̈r +k(r )qr + c(r )q̇r +
N∑

j=1

N∑
k=1

a(r )
j k q j qk +

N∑
j=1

N∑
k= j

N∑
l=k

b(r )
m j kl

q j qk ql = F (r ) sin(ω f t ), r = 1,2, ..., N (D.31)

Now, if we choose an undamped single-degree-of-freedom model, where r = 1 and N = 1, we will arrive at the
following modal equation of motion:

q̈1 +ω2
1q1 +a(1)

11 q2
1 +b(1)

111q3
1 = F sin(ω f t ), (D.32)

The equation is normalized using the following relations to normalize space and time respectively:

qn = q̃nh, t = τ

ω0
(D.33)

This generates the following derivatives:

d

d t
[qn] = d

dτ

d t

dτ
[qn] =ω0

d

dτ
[q̃nh] = hω0

d

dτ
q̃n = hω0 ˙̃qn ,

d 2

d t 2 [qn] = d

dτ

d t

dτ

[
d

dτ

d t

dτ
[qn]

]
=ω0

d

dτ

[
ω0

d

dτ
[q̃nh]

]
= hω2

0
d 2

dτ2 q̃n = hω2
0

¨̃qn

(D.34)

Plugging these derivatives and the space scaling of Eq. D.33 into equation D.32 gives:

hω2
0

¨̃q1 +ω2
1hq̃1 +a(1)

11 h2q̃2
1 +b(1)

111h3q̃3
1 = F sin(

ω f

ω0
τ) (D.35)

Normalizing the inertia term:

¨̃q1 +
ω2

1

ω2
0

q̃1 +
a(1)

11 h

ω2
0

q̃2
1 +

b(1)
111h2

ω2
0

q̃3
1 = F

hω2
0

sin(
ω f

ω0
τ)

¨̃q1 +
ω2

1

ω2
0

q̃1 + ã(1)
11 q̃2

1 + b̃(1)
111q̃3

1 = F̃ sin(
ω f

ω0
τ)

(D.36)
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The mass and linear stiffness terms appear to have no dependency on the variable h. It is thus possible to
choose h to be any value, depending on what is most computationally efficient. Setting b̃(1)

111 = 1 would be
most convenient, since this is a small nonlinearity. This requires the following relation for h:

h = ω0√
b(1)

111

(D.37)

The coefficients will thus be:

k̃1 =
ω2

1

ω2
0

, ã(1)
11 = a(1)

11

ω0

√
b(1)

111

, b̃(1)
111 =

b(1)
111ω

2
0

b(1)
111ω

2
0

= 1, F̃ =
F

√
b(1)

111

ω3
0

(D.38)

D.3. Numerically reproducing experiments
Section B.3 showed experimental results of frequency characterization measurements on Si3N4 strings. Gen-
erally, to fit frequency response simulation results to experimental data, one should follow five steps. These
steps allow the experimental response to be simulated properly. During these steps, the magnitudes of four
variables are determined: Q, ω, F and E ; the Q-factor, the resonance frequency, excitation force and the ef-
fective Young’s modulus of the resonator, respectively. This section will show how the numerical results were
fitted to the experimental results of a string with characteristics of Table B.10, according to the following five
steps:

1. Convert the measurement data into the desired magnitudes;

2. Find the experimental Q-factor from ringdown and/or linear frequency response plots;

3. Find the linear resonance frequency to calculate the pre-stress of the string resonator. This pre-stress
is used in numerical and/or analytical models;

4. Fit the baselines of the experimental data by varying the magnitude of the forcing;

5. Guess a Young’s modulus and simulate the corresponding response. Plot the simulated amplitude ver-
sus frequency and amplitude squared versus frequency data for both the simulations and the experi-
ments. Continue iterations to find accurate fits.

Step 1: Data conversion
The first step requires proper conversion of the data. The amplitudes of a single mode are measured using a
Polytech vibrometer in combination with a lock-in amplifier and an attenuator, which attenuates noise below
−20dB . The relation between the input and output voltages is:

Vout

Vi n
[dB ] = 20log

(
Vout

Vi n

)
→−20dB = 20log

(
Vout

Vi n

)
→Vout = 10Vi n (D.39)

The outputted voltage (Vout ) is expressed in a root-mean-square (RMS) voltage VRMS = Vout = 10Vi n . To
determine the peak values (Vpeak ), one should convert this RMS voltage to the peak values, by imposing Eq.
D.40 [1].

Vpeak =VRMS
p

2 = 10
p

2Vi n (D.40)

Two options can be employed to convert this (peak) voltage into an amplitude in meters. The option that
should be employed depends on the measurement scheme:

• If the modal velocities are detected, one should first convert the voltage Vpeak into a velocity ẋ(t ), using

a parameter CV 2vel [ m/s
V ], before integrating with respect to time to find the amplitude x(t ). Assuming

that the velocity signal is a Cosine function, the equations will become:

ẋ(t ) =Ȧ cos(2π f t ) = 10
p

2Vi nCV 2vel cos(2π f t ) (D.41)

x(t ) = Ȧ

2π f
sin(2π f t ) = 10

p
2Vi nCV 2vel

2π f
sin(2π f t ) (D.42)
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Where f is the measured frequency. The amplitude that is measured at this frequency is thus given by

x = 10
p

2Vi nCV 2vel
2π f [m].

• If the modal amplitudes are detected, one should first convert the voltage Vpeak into an amplitude x(t ),
using a parameter CV 2amp [ m

V ]:

x(t ) = A sin(2π f t ) = 10
p

2Vi nCV 2amp sin(2π f t ) (D.43)

The amplitude that is measured at this frequency is thus given by x = 10
p

2Vi nCV 2amp [m].

After this conversion, the experimental frequency response may be plotted. One measurement location will
be shown here, but the same procedure works for any other frequency characterization measurement. Fig.
D.3 depicts the experimental frequency response for 20 force levels, ranging from 0.001 to 0.5V.

Figure D.3: Frequency response of a Si3N4 string of length 1110µm for drive levels ranging from 0.001 to 0.5V.

This response shows a hardening nonlinear effect. Before simulating the responses in the nonlinear regime,
it is important to find proper fits for the linear response. This linear part determines the magnitude of the
resonance frequency.

Step 2: Finding Q
The Q-factor of this response was already found in Section B.4 (Fig. B.6 depicts the ringdown). The Q-factor
of this measurement was estimated to be approximately 2.00×105.

Step 3: Find the linear resonance frequency
The linear frequency in Fig. D.3 may be estimated to be around 182.65 kHz (where there is still some deep
dark blue line visible). Fig. D.4 displays a zoom-in of the linear response (for a force level of 0.001V).



122 D. Methods

Figure D.4: Frequency response of a Si3N4 string at a drive level of 0.001V.

By using the equation (Eq. D.44) for the linear resonance frequency of the string, one may determine some
parameters of the string, such that a numerical model may be formulated to replicate the string’s dynamics.

ω1 = π

L

√
σ0

ρ
(D.44)

This equation consists of three free parameters: the length L, the pre-stress of the string σ0 and the material
density ρ. Two of these variables are assumed to be known and constant: the length of the string and the
material mass density. This leaves one unknown variable: the pre-stress σ0. By choosing this pre-stress to
be one of the fitting parameters, one may account for possible stress reduction in the material over time.
Re-writing Eq. D.44 for the resonance frequency will deliver an expression for the pre-stress of the resonator:

σ0 = 4ρ f 2L2. (D.45)

For the considered resonator, one will find a pre-stress of approximately 509 MPa. This results in a linear plot
that is shown in Fig D.5a, which shows good agreement for the linear response.

Step 4: Fitting the baselines
The following variable that needs to be determined is the excitation force. This variable is responsible for
the amount of energy that is ”pumped” into the system: increasing this force will increase the amplitude.
Simulations with the correct excitation force will thus deliver correct simulation amplitudes. During this
step, one should find a near perfect fit for the linear regime, though the fits in the nonlinear regime may still
differ with the experimental response, as these will be improved in the next step. Fig. D.5 depicts the region
that needs to be fit properly: the baselines of the experimental results should be simulated accurately, as is
shown in Fig. D.5c.
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(a)

(b)

(c)

Figure D.5: Baseline fits for various drive forces. D.5a: Linear frequency response of a Si3N4 string for a drive level of 0.001V. Shown are
the experimental (black line) and the simulated response (colored line). Note that the frequency axis is normalized with respect to the

first mode’s frequency. D.5b: Baseline fit in the nonlinear regime for an excitation level of 0.316V. Note that (to clarify this particular
step) an incorrect magnitude of nonlinearity is used here. This may not be the case in the initial fit. D.5c Zoom-in of D.5b, showing the

region of interest. Note the small magnitude of the linear response: the small peak at ω̃= 1.
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The accuracy of the force estimation can be verified by checking the relation between the fitted force level and
the drive voltage. For piezo-elements, the produced force is known to scale linearly with the applied voltage,
as shown in D.46 [32].

F ≈ k∆l0, where ∆l0 ∝V (D.46)

The force-voltage plot for the considered fits are depicted in Fig. D.6, which shows a required near-linear
relation between the force values and the drive voltage.

Figure D.6: Force versus voltage plot, showing a near-linear relation between the experimental drive voltage and the fitted force values.

Step 5: Guess the Young’s modulus and iterate
Now that the resonance frequency, the linear damping factor and the force level are determined, the non-
linear response may be simulated. To do so, one should revisit the single-mode equation of motion for the
uw-displacement model from Eq. B.64 and set n = 1.

ρAL

2
q̈un +

π2n2T0

2L
qun +

3π4n4E A

8L3 q3
un

= 0

q̈u1 +
π2σ0

L2ρ
qu1 +

2

ρAL

π4E

4L4ρ
q3

u1
= F (n)

u sin(ωn t )

(D.47)

Here, the part of the equation that is linear in qn is equal to the square of Eq. D.44. The last term of the
equation is nonlinear in qun and it is dependent on the Young’s modulus E , the length L and mass density ρ.
The length and mass density of the string are known, which leaves one free variable for fitting: the Young’s
modulus. Using this as the fitting parameter allows for compensation for changes in the Young’s modulus over
time (creep-like phenomena). To start the simulations, one could set a first guess for the magnitude of this
parameter: 250GPa, the default Young’s modulus of Silicon-Nitride. Fig. D.7 depicts two plots: an amplitude
vs. frequency plot and an amplitude squared vs. frequency plot. The latter plot indicates how ”good” the
estimation of the nonlinear strength is. The frequency shift in a Duffing oscillator with nonlinearity b is
dependent on the square of the amplitude (here, denoted by q), as is indicated by Eq. D.48 [19]. This equation
shows that the shift of the frequency scales with the square of the modal amplitude q .

ωshift =ω0 + b

mω0
q2 (D.48)

Plotting the amplitude squared versus the frequency thus shows how good the estimation of the nonlinear
parameter is.
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(a) Amplitude versus frequency. (b) Amplitude squared versus frequency.

Figure D.7: Experimental (solid lines) and simulated (dashed lines) frequency response of a Si3N4 string for five drive levels, ranging
between 0.001V and 0.5V. The estimated Young’s modulus in the numerical model is 250GPa. Note that the frequency axis is normalized

with respect to the first mode’s frequency.

These plots indicate that the nonlinearity in the experiments is larger than that in the simulations, since the
frequency shift in the experimental response is larger than the frequency shift in the simulated response. To
find accurate fits, the Young’s modulus should hence be increased. For this resonator, a Young’s modulus of
675GPa shows a proper slope fit, as is shown in Fig. D.8.

(a) Amplitude versus frequency. (b) Amplitude squared versus frequency.

Figure D.8: Experimental (solid lines) and simulated (dashed lines) frequency response of a Si3N4 string for five drive levels, ranging
between 0.001V and 0.5V. The estimated Young’s modulus in the numerical model is 675GPa. Note that the frequency axis is normalized

with respect to the first mode’s frequency.

The overshooting of the numerical simulations is due to the continuation by AUTO from a bifurcation point,
yielding an unstable solution which still increases both amplitude and frequency. Since this unstable solution
cannot be traced in physical experiments: the amplitude jumps down after the bifurcation point, which is the
origin of the vertical lines in the experimental plots.

Possible additional steps
This system showed no nonlinear damping, as could be seen from the ringdown plot in Fig. B.6 in Section B.3.
In this figure, the decay was approximated very well by assuming that the decay is linear. Should this linear
approximation be invalid, it would have been necessary to add another step in the fitting process: the inclu-
sion of a nonlinear damping coefficient. This additional step could decrease the maximum amplitude in the
frequency response. In addition, if frequency locking is observed, one could shift the resonance frequencies
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of the higher modes slightly, such that the modal interaction at the bifurcation point is most significant. This
technique is elaborated further in Section B.4.

Conclusion
These simulations show that the estimated effective Young’s modulus of 675GPa is significantly higher than
the Young’s modulus of Silicon-Nitride (this is estimated to be 250GPa). The general string’s dynamics could
hence be predicted using this method, though quantitative conclusions should not be drawn from it. Addi-
tional experiments should be conducted, with multiple specimens (strings of different dimensions), to char-
acterize the validity of this simulation method.



E
Modal coefficients

This section contains the single-mode and nonlinear coefficients of several models. All modal variables are
computed for a string with characteristics similar to those from Table C.4, unless noted otherwise.

E.1. Modal coupling coefficients of the analytical models

127
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E.1.1. w-displacement model

Table E.1: Single mode coefficients for the first 6 modes of an analytical string model that includes only vertical displacements
(w-displacement model). The variables are computed for a string with characteristics similar to those from Table C.4.

Eq. (1) (2) (3) (4) (5) (6)
kn [s−2] 1.32×1012 5.27×1012 1.19×1013 2.11×1013 3.29×1013 4.74×1013

ωn [rads−1] 1.15×106 2.30×106 3.44×106 4.59×106 5.74×106 6.89×106

b(n)
nnn [m−2s−2] 3.07×1033 4.91×1034 2.49×1035 7.84×1035 1.92×1036 4.00×1036

b(n)
nnn
kn

[m] 2.33×1021 9.32×1021 2.09×1022 3.72×1022 5.84×1022 8.44×1022

k̃n 1.00 4.00 9.00 16.00 25.00 36.00
ω̃n 1.00 2.00 3.00 4.00 5.00 6.00

b̃(n)
nnn 1.00 16.00 81.00 256.00 625.00 1296.00

Table E.2: Modal coupling coefficients for the first 6 modes of an analytical string model that includes only the vertical displacements

(w-displacement model). Note that the coefficients are scaled with respect to b̃(1)
111.

Eq. (1) (2) (3) (4) (5) (6)
b̃111 1 0 1 0 0 0
b̃112 0 8 0 8 0 0
b̃113 3 0 18 0 15 0
b̃114 0 8 0 32 0 24
b̃115 0 0 15 0 50 0
b̃116 0 0 0 24 0 72
b̃122 8 0 12 0 20 0
b̃123 0 24 0 48 0 72
b̃124 16 0 48 0 80 0
b̃125 0 40 0 80 0 120
b̃126 0 0 72 0 120 0
b̃133 18 0 0 0 45 0
b̃134 0 48 0 0 0 144
b̃135 30 0 90 0 0 0
b̃136 0 72 0 144 0 0
b̃144 32 0 0 0 0 0
b̃145 0 80 0 0 0 0
b̃146 48 0 144 0 0 0
b̃155 50 0 0 0 0 0
b̃156 0 120 0 0 0 0
b̃166 72 0 0 0 0 0
b̃222 0 16 0 0 0 16
b̃223 12 0 72 0 0 0
b̃224 0 0 0 128 0 0
b̃225 20 0 0 0 200 0
b̃226 0 48 0 0 0 288
b̃233 0 72 0 72 0 0
b̃234 48 0 144 0 240 0
b̃235 0 0 0 240 0 360
b̃236 72 0 0 0 360 0
b̃244 0 128 0 0 0 192
b̃245 80 0 240 0 0 0
b̃246 0 0 0 384 0 0
b̃255 0 200 0 0 0 0
b̃256 120 0 360 0 0 0
b̃266 0 288 0 0 0 0
b̃333 0 0 81 0 0 0
b̃334 0 72 0 288 0 0
b̃335 45 0 0 0 450 0
b̃336 0 0 0 0 0 648
b̃344 0 0 288 0 240 0
b̃345 0 240 0 480 0 720
b̃346 144 0 0 0 720 0
b̃355 0 0 450 0 0 0
b̃356 0 360 0 720 0 0
b̃366 0 0 648 0 0 0
b̃444 0 0 0 256 0 0
b̃445 0 0 240 0 800 0
b̃446 0 192 0 0 0 1152
b̃455 0 0 0 800 0 600
b̃456 0 0 720 0 1200 0
b̃466 0 0 0 1152 0 0
b̃555 0 0 0 0 625 0
b̃556 0 0 0 600 0 1800
b̃566 0 0 0 0 1800 0
b̃666 0 0 0 0 0 1296
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E.1.2. uw-displacement model

Table E.3: Single mode coefficients for the first 6 modes of an analytical string model that includes only the longitudinal and vertical
displacements (uw-displacement model). The variables are computed for a string with characteristics similar to those from Table C.4.

Eq. (1) (2) (3) (4) (5) (6)
kn [s−2] 1.32×1012 5.27×1012 1.19× 1013 2.11×1013 3.29×1013 4.74×1013

ωn [rads−1] 1.15×106 2.30×106 3.44×106 4.59×106 5.74×106 6.89×106

b(n)
nnn [m−2s−2] 2.04×1033 3.27×1034 1.66×1035 5.23×1035 1.28×1036 2.65×1036

b(n)
nnn
kn

[m] 1.55×1021 6.20×1021 1.39×1022 2.48×1022 3.89×1022 5.59×1022

k̃n 1.00 4.00 9.00 16.00 25.00 36.00
ω̃n 1.00 2.00 3.00 4.00 5.00 6.00

b̃(n)
nnn 1.00 16.00 81.00 256.00 625.00 1296.00

Table E.4: Modal coupling coefficients for the first 6 modes of an analytical string model that includes only the longitudinal and

vertical displacements (uw-displacement model). Note that the coefficients are scaled with respect to b̃(1)
111.

Eq. (1) (2) (3) (4) (5) (6)
b̃111 1 0 0 0 0 0
b̃112 0 4 0 0 0 0
b̃113 0 0 9 0 0 0
b̃114 0 0 0 16 0 0
b̃115 0 0 0 0 25 0
b̃116 0 0 0 0 0 36
b̃122 4 0 0 0 0 0
b̃123 0 0 0 0 0 0
b̃124 0 0 0 0 0 0
b̃125 0 0 0 0 0 0
b̃126 0 0 0 0 0 0
b̃133 9 0 0 0 0 0
b̃134 0 0 0 0 0 0
b̃135 0 0 0 0 0 0
b̃136 0 0 0 0 0 0
b̃144 16 0 0 0 0 0
b̃145 0 0 0 0 0 0
b̃146 0 0 0 0 0 0
b̃155 25 0 0 0 0 0
b̃156 0 0 0 0 0 0
b̃166 36 0 0 0 0 0
b̃222 0 16 0 0 0 0
b̃223 0 0 36 0 0 0
b̃224 0 0 0 64 0 0
b̃225 0 0 0 0 100 0
b̃226 0 0 0 0 0 144
b̃233 0 36 0 0 0 0
b̃234 0 0 0 0 0 0
b̃235 0 0 0 0 0 0
b̃236 0 0 0 0 0 0
b̃244 0 64 0 0 0 0
b̃245 0 0 0 0 0 0
b̃246 0 0 0 0 0 0
b̃255 0 100 0 0 0 0
b̃256 0 0 0 0 0 0
b̃266 0 144 0 0 0 0
b̃333 0 0 81 0 0 0
b̃334 0 0 0 144 0 0
b̃335 0 0 0 0 225 0
b̃336 0 0 0 0 0 324
b̃344 0 0 144 0 0 0
b̃345 0 0 0 0 0 0
b̃346 0 0 0 0 0 0
b̃355 0 0 225 0 0 0
b̃356 0 0 0 0 0 0
b̃366 0 0 324 0 0 0
b̃444 0 0 0 256 0 0
b̃445 0 0 0 0 400 0
b̃446 0 0 0 0 0 576
b̃455 0 0 0 400 0 0
b̃456 0 0 0 0 0 0
b̃466 0 0 0 576 0 0
b̃555 0 0 0 0 625 0
b̃556 0 0 0 0 0 900
b̃566 0 0 0 0 900 0
b̃666 0 0 0 0 0 1296
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E.1.3. uv w-displacement model

Table E.5: Single mode coefficients for the first 6 modes of an analytical string model that includes only the longitudinal, transverse
and vertical displacements (uv w-displacement model). The variables are computed for a string with characteristics similar to those

from Table C.4.

Eq. (1) (2) (3) (4) (5) (6)
kn [s−2] 1.32×1012 1.32×1012 5.27×1012 5.27×1012 1.19×1013 1.19×1013

ωn [rads−1] 1.15×106 1.15×106 2.30×106 2.30×106 3.44×106 3.44×106

b(n)
nnn [m−2s−2] 2.04×1033 2.04×1033 3.27×1034 3.27×1034 1.66×1035 1.66×1035

b(n)
nnn
kn

[m] 1.55×1021 1.55×1021 6.20×1021 6.20×1021 1.39×1022 1.39×1022

k̃n 1.00 1.00 4.00 4.00 9.00 9.00
ω̃n 1.00 1.00 2.00 2.00 3.00 3.00

b̃(n)
nnn 1.00 1.00 16.00 16.00 81.00 81.00

Table E.6: Modal coupling coefficients for the first 6 modes of an analytical string model that includes longitudinal, transverse and

vertical displacements (uv w-displacement model). Note that the coefficients are scaled with respect to b̃(1)
111. The uneven modes

represent vertical modes, the even modes represent the transverse modes.

Eq. (1) (2) (3) (4) (5) (6)
b̃111 1 0 0 0 0 0
b̃112 0 1 0 0 0 0
b̃113 0 0 4 0 0 0
b̃114 0 0 0 4 0 0
b̃115 0 0 0 0 9 0
b̃116 0 0 0 0 0 9
b̃122 1 0 0 0 0 0
b̃123 0 0 0 0 0 0
b̃124 0 0 0 0 0 0
b̃125 0 0 0 0 0 0
b̃126 0 0 0 0 0 0
b̃133 4 0 0 0 0 0
b̃134 0 0 0 0 0 0
b̃135 0 0 0 0 0 0
b̃136 0 0 0 0 0 0
b̃144 4 0 0 0 0 0
b̃145 0 0 0 0 0 0
b̃146 0 0 0 0 0 0
b̃155 9 0 0 0 0 0
b̃156 0 0 0 0 0 0
b̃166 9 0 0 0 0 0
b̃222 0 1 0 0 0 0
b̃223 0 0 4 0 0 0
b̃224 0 0 0 4 0 0
b̃225 0 0 0 0 9 0
b̃226 0 0 0 0 0 9
b̃233 0 4 0 0 0 0
b̃234 0 0 0 0 0 0
b̃235 0 0 0 0 0 0
b̃236 0 0 0 0 0 0
b̃244 0 4 0 0 0 0
b̃245 0 0 0 0 0 0
b̃246 0 0 0 0 0 0
b̃255 0 9 0 0 0 0
b̃256 0 0 0 0 0 0
b̃266 0 9 0 0 0 0
b̃333 0 0 16 0 0 0
b̃334 0 0 0 16 0 0
b̃335 0 0 0 0 36 0
b̃336 0 0 0 0 0 36
b̃344 0 0 16 0 0 0
b̃345 0 0 0 0 0 0
b̃346 0 0 0 0 0 0
b̃355 0 0 36 0 0 0
b̃356 0 0 0 0 0 0
b̃366 0 0 36 0 0 0
b̃444 0 0 0 16 0 0
b̃445 0 0 0 0 36 0
b̃446 0 0 0 0 0 36
b̃455 0 0 0 36 0 0
b̃456 0 0 0 0 0 0
b̃466 0 0 0 36 0 0
b̃555 0 0 0 0 81 0
b̃556 0 0 0 0 0 81
b̃566 0 0 0 0 81 0
b̃666 0 0 0 0 0 81
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E.2. Modal coupling coefficients from STEP
E.2.1. uw-displacement model

Table E.7: Single mode coefficients for the first 6 modes of a STEP model that includes only the longitudinal and vertical displacements
(uw-displacement model). The variables are computed for a string with characteristics similar to those from Table C.4.

Eq. (1) (2) (3) (4) (5) (6)
kn [s−2] 1.32×1012 5.27×1012 1.19×1013 2.11×1013 3.30×1013 4.76×1013

ωn [s−2] 1.15×106 2.30×106 3.44×106 4.59×106 5.74×106 6.90×106

b(n)
nnn [m−2s−2] 2.05×1033 3.28×1034 1.66×1035 5.25×1035 1.28×1036 2.67×1036

b(n)
nnn
kn

[m] 1.55×1021 6.22×1021 1.39×1022 2.49×1022 3.88×1022 5.61×1022

k̃n 1.00 4.00 9.01 16.02 25.05 36.10
ω̃n 1.00 2.00 3.00 4.00 5.00 6.01

b̃(n)
nnn 1.00 16.01 81.12 256.70 627.59 1303.91

Table E.8: Modal coupling coefficients for the first 6 modes of a STEP model that includes only the longitudinal and vertical

displacements (uw-displacement model). Note that the coefficients are scaled with respect to b̃(1)
111.

Eq. (1) (2) (3) (4) (5) (6)
b̃111 1.00 0.00 0.00 −0.00 −0.01 −0.00
b̃112 0.00 4.01 −0.00 0.03 −0.00 0.00
b̃113 0.01 −0.00 9.04 −0.00 0.05 −0.00
b̃114 −0.00 0.03 −0.00 16.08 −0.00 −0.08
b̃115 −0.04 −0.00 0.05 −0.00 25.14 −0.01
b̃116 −0.00 0.00 −0.00 −0.08 −0.01 36.25
b̃122 4.01 0.00 0.04 0.00 0.06 0.00
b̃123 −0.00 0.08 −0.00 0.16 −0.00 −0.25
b̃124 0.05 0.00 0.16 0.00 0.27 0.00
b̃125 −0.00 0.13 −0.00 0.27 −0.00 −0.42
b̃126 0.00 0.00 −0.25 0.00 −0.42 0.00
b̃133 9.04 −0.00 0.00 0.00 0.15 0.00
b̃134 −0.00 0.16 0.00 −0.00 −0.00 −0.51
b̃135 0.10 −0.00 0.30 −0.00 0.00 −0.01
b̃136 −0.00 −0.25 0.00 −0.51 −0.01 −0.00
b̃144 16.08 0.00 −0.00 −0.00 −0.00 0.00
b̃145 −0.01 0.27 −0.00 −0.01 0.01 0.01
b̃146 −0.16 0.00 −0.51 0.00 0.01 −0.00
b̃155 25.14 −0.00 0.00 0.00 −0.00 0.01
b̃156 −0.01 −0.42 −0.01 0.01 0.01 −0.02
b̃166 36.25 0.00 −0.00 −0.00 −0.01 −0.00
b̃222 0.00 16.01 −0.00 0.00 0.00 −0.05
b̃223 0.04 −0.00 36.16 −0.01 0.01 −0.01
b̃224 0.00 0.00 −0.01 64.33 −0.01 0.01
b̃225 0.06 0.00 0.01 −0.01 100.61 −0.02
b̃226 0.00 −0.16 −0.01 0.01 −0.02 145.04
b̃233 −0.00 36.16 0.00 0.24 −0.01 0.01
b̃234 0.16 −0.01 0.48 −0.02 0.85 −0.00
b̃235 −0.00 0.01 −0.01 0.85 −0.01 −1.31
b̃236 −0.25 −0.02 0.02 −0.00 −1.31 −0.02
b̃244 0.00 64.33 −0.01 0.00 −0.01 −0.67
b̃245 0.27 −0.02 0.85 −0.02 0.02 0.04
b̃246 0.00 0.02 −0.00 −1.33 0.04 −0.04
b̃255 −0.00 100.61 −0.01 0.01 −0.00 0.02
b̃256 −0.42 −0.04 −1.31 0.04 0.04 −0.05
b̃266 0.00 145.04 −0.01 −0.02 −0.02 −0.01
b̃333 0.00 0.00 81.12 0.00 0.00 −0.00
b̃334 0.00 0.24 0.00 144.81 −0.04 0.04
b̃335 0.15 −0.01 0.01 −0.04 226.48 −0.06
b̃336 0.00 0.01 −0.00 0.04 −0.06 326.51
b̃344 −0.00 −0.01 144.81 −0.00 0.87 −0.04
b̃345 −0.00 0.85 −0.07 1.73 −0.11 −2.66
b̃346 −0.51 −0.00 0.07 −0.07 −2.66 −0.07
b̃355 0.00 −0.01 226.48 −0.06 0.00 −0.06
b̃356 −0.01 −1.31 −0.11 −2.66 −0.11 0.11
b̃366 −0.00 −0.01 326.51 −0.04 0.06 0.00
b̃444 −0.00 0.00 −0.00 256.70 0.00 −0.00
b̃445 −0.00 −0.01 0.87 0.00 402.93 −0.05
b̃446 0.00 −0.67 −0.04 −0.00 −0.05 580.90
b̃455 0.00 0.01 −0.06 402.93 0.00 −2.16
b̃456 0.01 0.04 −2.66 −0.10 −4.31 0.02
b̃466 −0.00 −0.02 −0.04 580.90 0.01 −0.00
b̃555 −0.00 −0.00 0.00 0.00 627.59 −0.00
b̃556 0.01 0.02 −0.06 −2.16 −0.00 908.50
b̃566 −0.01 −0.02 0.06 0.01 908.50 0.00
b̃666 −0.00 −0.00 0.00 −0.00 0.00 1303.91
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E.2.2. uv w-displacement model

Table E.9: Single mode coefficients for the first 6 modes of a STEP model that includes only the longitudinal, transverse and vertical
displacements (uv w-displacement model). The variables are computed for a string with characteristics similar to those from Table C.4.

Eq. (1) (2) (3) (4) (5) (6)
kn [s−2] 1.32×1012 1.32×1012 5.27×1012 5.27×1012 1.19×1013 1.19×1013

ωn [s−2] 1.15×106 1.15×106 2.30×106 2.30×106 3.44×106 3.44×106

b(n)
nnn [m−2s−2] 2.02×1033 2.02×1033 3.32×1034 3.32×1034 1.66×1035 1.66×1035

b(n)
nnn
kn

[m] 1.53×1021 1.53×1021 6.30×1021 6.30×1022 1.39×1022 1.39×1022

k̃n 1.00 1.00 4.00 4.00 9.01 9.01
ω̃n 1.00 1.00 2.00 2.00 3.00 3.00

b̃(n)
nnn 1.00 1.00 16.00 16.44 81.97 81.97

Table E.10: Modal coefficients for the first 6 modes of a STEP model that longitudinal, transverse and vertical displacements

(uv w-displacement model). Note that the coefficients are scaled with respect to b̃(1)
111. The uneven modes represent vertical modes, the

even modes represent the transverse modes.

Eq. (1) (2) (3) (4) (5) (6)
b̃111 1.00 −0.00 0.00 0.00 −0.03 −0.00
b̃112 −0.00 1.01 −0.00 0.00 0.00 −0.00
b̃113 0.00 −0.00 4.06 0.01 −0.00 −0.00
b̃114 0.00 0.00 0.01 4.05 −0.00 −0.00
b̃115 −0.10 0.00 −0.00 −0.00 9.11 0.02
b̃116 −0.01 −0.00 −0.00 −0.00 0.02 9.13
b̃122 1.01 0.00 −0.00 0.00 0.00 0.00
b̃123 −0.00 −0.00 −0.02 0.01 0.00 0.00
b̃124 0.00 0.00 0.01 0.02 −0.00 0.00
b̃125 0.01 0.00 0.00 −0.00 0.03 0.02
b̃126 −0.00 0.01 0.00 0.00 0.02 −0.03
b̃133 4.06 −0.01 −0.00 0.00 0.01 0.03
b̃134 0.02 0.01 0.00 0.00 0.02 0.01
b̃135 −0.00 0.00 0.01 0.02 −0.00 −0.00
b̃136 −0.00 0.00 0.06 0.01 −0.00 −0.00
b̃144 4.05 0.01 0.00 −0.00 0.02 0.01
b̃145 −0.00 −0.00 0.02 0.04 −0.00 −0.00
b̃146 −0.00 0.00 0.01 0.02 −0.00 −0.00
b̃155 9.11 0.02 −0.00 −0.00 0.01 −0.00
b̃156 0.03 0.02 −0.00 −0.00 −0.00 −0.00
b̃166 9.13 −0.02 −0.00 −0.00 −0.00 −0.01
b̃222 0.00 1.00 −0.00 0.00 −0.00 0.03
b̃223 −0.00 −0.00 4.05 −0.01 −0.00 −0.00
b̃224 0.00 0.00 −0.01 4.06 −0.00 −0.00
b̃225 0.00 −0.01 −0.00 −0.00 9.13 −0.02
b̃226 0.00 0.10 −0.00 −0.00 −0.02 9.11
b̃233 −0.01 4.05 0.00 −0.00 0.01 −0.02
b̃234 0.01 −0.02 −0.00 −0.00 −0.01 0.02
b̃235 0.00 −0.00 0.02 −0.01 −0.00 0.00
b̃236 0.00 −0.00 −0.04 0.02 0.00 0.00
b̃244 0.01 4.06 −0.00 −0.00 0.03 −0.01
b̃245 −0.00 −0.00 −0.01 0.06 −0.00 −0.00
b̃246 0.00 −0.00 0.02 −0.01 −0.00 0.00
b̃255 0.02 9.13 −0.00 −0.00 −0.01 0.00
b̃256 0.02 −0.03 0.00 −0.00 0.00 −0.00
b̃266 −0.02 9.11 0.00 0.00 −0.00 −0.01
b̃333 −0.00 0.00 16.00 0.05 −0.00 0.00
b̃334 0.00 −0.00 0.14 16.20 −0.00 −0.00
b̃335 0.01 0.01 −0.00 −0.00 36.42 −0.00
b̃336 0.03 −0.02 0.00 −0.00 −0.00 36.57
b̃344 0.00 −0.00 16.20 −0.14 −0.00 −0.00
b̃345 0.02 −0.01 −0.00 −0.00 −0.01 0.15
b̃346 0.01 0.02 −0.00 −0.00 0.15 0.01
b̃355 −0.00 −0.00 36.42 −0.00 −0.00 −0.00
b̃356 −0.00 0.00 −0.01 0.15 −0.00 −0.00
b̃366 −0.00 0.00 36.57 0.00 −0.00 −0.00
b̃444 −0.00 −0.00 −0.05 16.44 0.00 0.00
b̃445 0.02 0.03 −0.00 0.00 36.57 0.00
b̃446 0.01 −0.01 −0.00 0.00 0.00 36.42
b̃455 −0.00 −0.00 −0.00 36.57 −0.00 −0.00
b̃456 −0.00 −0.00 0.15 0.01 −0.00 −0.00
b̃466 −0.00 0.00 0.00 36.42 −0.00 −0.00
b̃555 0.00 −0.00 −0.00 −0.00 81.97 0.05
b̃556 −0.00 0.00 −0.00 −0.00 0.15 82.06
b̃566 −0.00 −0.00 −0.00 −0.00 82.06 −0.15
b̃666 −0.00 −0.00 −0.00 −0.00 −0.05 81.97
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E.3. Modal coupling coefficients of new designs
E.3.1. Discretized string design with constant cross-sections

Table E.11: Single mode coefficients for the first 6 modes of a discretized string of 100 elements. The coefficients were found using STEP.
The variables are computed for a string with characteristics similar to those from Table C.4.

Eq. (1) (2) (3) (4) (5) (6)
kn [s−2] 1.32×1012 5.26×1012 1.18×1013 2.10×1013 3.29×1013 4.74×1013

ωn [rad s−1] 1.15×106 2.29×106 3.44×106 4.59×106 5.73×106 6.88×106

b(n)
nnn [m−2s−2] 2.05×1033 3.27×1034 1.66×1035 5.24×1035 1.28×1036 2.65×1036

b(n)
nnn
kn

[m] 1.55×1021 6.22×1021 1.41×1022 2.50×1022 3.89×1022 5.93×1022

k̃n 1.00 4.00 9.00 16.00 25.00 36.00
ω̃n 1.00 2.00 3.00 4.00 5.00 6.00

b̃(n)
nnn 1.00 16.00 80.98 255.96 624.94 1295.99

Table E.12: Modal coupling coefficients for the first 6 modes of a discretized string of 100 elements. The coefficients were found using

STEP. Note that the coefficients are scaled with respect to b̃(1)
111.

Eq. (1) (2) (3) (4) (5) (6)
b̃111 1.00 0.00 0.00 0.00 −0.01 0.01
b̃112 0.00 4.01 −0.00 0.03 −0.00 −0.00
b̃113 0.00 −0.00 9.03 0.00 0.05 0.00
b̃114 0.01 0.03 0.00 16.05 0.00 0.09
b̃115 −0.02 −0.00 0.05 0.00 25.09 0.01
b̃116 0.03 −0.00 0.00 0.09 0.01 36.14
b̃122 4.01 −0.00 0.04 −0.00 0.07 −0.00
b̃123 −0.00 0.08 −0.00 0.16 −0.00 0.24
b̃124 0.05 −0.00 0.16 −0.00 0.27 −0.00
b̃125 −0.00 0.13 −0.00 0.27 −0.01 0.42
b̃126 −0.00 −0.00 0.24 −0.00 0.42 −0.00
b̃133 9.03 −0.00 0.00 −0.00 0.15 −0.00
b̃134 0.00 0.16 −0.00 0.00 0.00 0.51
b̃135 0.10 −0.00 0.30 0.00 0.01 0.01
b̃136 0.00 0.24 −0.01 0.51 0.01 0.00
b̃144 16.05 −0.00 0.00 −0.00 −0.00 −0.01
b̃145 0.00 0.27 0.00 −0.00 −0.01 −0.01
b̃146 0.17 −0.00 0.51 −0.01 −0.01 −0.02
b̃155 25.09 −0.00 0.01 −0.01 0.01 −0.01
b̃156 0.01 0.42 0.01 −0.01 −0.02 −0.00
b̃166 36.14 −0.00 0.00 −0.01 −0.00 −0.01
b̃222 −0.00 16.00 0.00 −0.01 0.01 0.03
b̃223 0.04 0.01 36.12 0.00 0.01 0.01
b̃224 −0.00 −0.02 0.00 64.21 0.01 0.01
b̃225 0.07 0.04 0.01 0.01 100.36 0.02
b̃226 −0.00 0.10 0.01 0.01 0.02 144.55
b̃233 −0.00 36.12 −0.00 0.24 −0.01 −0.01
b̃234 0.16 0.00 0.47 −0.00 0.83 0.02
b̃235 −0.00 0.01 −0.02 0.83 −0.02 1.30
b̃236 0.24 0.01 −0.01 0.02 1.30 −0.03
b̃244 −0.00 64.21 −0.00 0.01 −0.01 0.67
b̃245 0.27 0.02 0.83 −0.03 −0.01 0.01
b̃246 −0.00 0.02 0.02 1.33 0.01 0.05
b̃255 −0.00 100.36 −0.01 −0.01 −0.01 −0.02
b̃256 0.42 0.04 1.30 0.01 −0.03 −0.06
b̃266 −0.00 144.55 −0.02 0.03 −0.03 0.03
b̃333 0.00 −0.00 80.98 0.01 −0.01 0.03
b̃334 −0.00 0.24 0.02 144.50 0.03 0.04
b̃335 0.15 −0.01 −0.04 0.03 225.82 0.05
b̃336 −0.00 −0.01 0.08 0.04 0.05 325.27
b̃344 0.00 −0.00 144.50 0.00 0.87 0.03
b̃345 0.00 0.83 0.06 1.74 0.10 2.74
b̃346 0.51 0.02 0.08 0.06 2.74 0.05
b̃355 0.01 −0.01 225.82 0.05 0.01 0.05
b̃356 0.01 1.30 0.10 2.74 0.10 0.13
b̃366 0.00 −0.02 325.27 0.02 0.07 −0.02
b̃444 −0.00 0.00 0.00 255.96 0.01 −0.03
b̃445 −0.00 −0.01 0.87 0.04 401.52 0.14
b̃446 −0.01 0.67 0.03 −0.08 0.14 578.34
b̃455 −0.01 −0.01 0.05 401.52 0.00 2.35
b̃456 −0.01 0.01 2.74 0.28 4.70 0.39
b̃466 −0.01 0.03 0.02 578.34 0.20 0.02
b̃555 0.00 −0.00 0.00 0.00 624.94 0.02
b̃556 −0.01 −0.02 0.05 2.35 0.06 903.84
b̃566 −0.00 −0.03 0.07 0.20 903.84 −0.01
b̃666 −0.00 0.01 −0.01 0.01 −0.00 1295.99



134 E. Modal coefficients

E.3.2. Discretized string design with increased width at the edges and at 0.25L and 0.75L

Table E.13: Single mode coefficients for the first 6 modes of a discretized string of 100 elements with increased width near the clamping
points and at 0.25L and 0.75L (similar to C.5b). wspring = 4µm and wmass = 3wspring = 12µm. The coefficients were found using STEP.

The variables are computed for a string with characteristics similar to those from Table C.4.

Eq. (1) (2) (3) (4) (5) (6)
kn [s−2] 2.55×1012 7.34×1012 2.24×1013 4.44×1013 6.23×1013 9.37×1013

ωn [s−2] 1.60×106 2.71×106 4.73×106 6.66×106 7.89×106 9.68×106

b(n)
nnn [ms−2] 1.17×1033 9.66×1033 9.01×1034 3.56×1035 6.99×1035 1.58×1036

b(n)
nnn
kn

[m] 4.59×1021 1.32×1021 4.02×1021 8.01×1021 1.12×1022 1.69×1022

k̃n 1.00 2.88 8.78 17.41 24.43 36.72
ω̃n 1.00 1.70 2.96 4.17 4.94 6.06

b̃(n)
nnn 1.00 8.26 76.97 304.08 597.79 1348.82

Table E.14: Nonlinear modal coefficients for the first 6 modes of a discretized string of 100 elements with increased width near the
clamping points and at 0.25L and 0.75L (similar to C.5b). The coefficients were found using STEP. wspring = 4µm and

wmass = 3wspring = 12µm. Note that the coefficients are scaled with respect to b̃(1)
111.

Eq. (1) (2) (3) (4) (5) (6)
b̃111 1.00 0.00 −0.00 −0.01 −0.01 −0.03
b̃112 0.00 2.90 0.00 −0.05 0.00 −0.01
b̃113 −0.00 0.00 8.80 0.00 −0.13 −0.00
b̃114 −0.03 −0.05 0.00 17.54 0.00 0.23
b̃115 −0.04 0.00 −0.13 0.00 24.63 −0.01
b̃116 −0.10 −0.01 −0.00 0.23 −0.01 37.01
b̃122 2.90 0.00 −0.05 0.00 0.08 −0.00
b̃123 0.00 −0.09 −0.00 0.21 −0.00 0.34
b̃124 −0.10 0.00 0.21 −0.00 −0.52 0.00
b̃125 0.00 0.15 −0.00 −0.52 −0.00 −0.84
b̃126 −0.02 −0.00 0.34 0.00 −0.84 −0.00
b̃133 8.80 −0.00 0.13 0.00 0.10 −0.00
b̃134 0.00 0.21 0.01 0.42 −0.00 −0.80
b̃135 −0.26 −0.00 0.20 −0.00 0.34 −0.00
b̃136 −0.00 0.34 −0.00 −0.80 −0.00 −0.24
b̃144 17.54 −0.00 0.21 0.00 −0.50 −0.00
b̃145 0.01 −0.52 −0.00 −1.00 −0.01 0.27
b̃146 0.46 0.00 −0.80 −0.00 0.27 0.01
b̃155 24.63 −0.00 0.17 −0.00 −0.63 −0.01
b̃156 −0.01 −0.84 −0.00 0.27 −0.01 0.86
b̃166 37.01 −0.00 −0.12 0.00 0.43 0.01
b̃222 0.00 8.26 −0.00 −0.01 0.02 −0.00
b̃223 −0.05 −0.01 25.34 0.00 −0.02 −0.00
b̃224 0.00 −0.02 0.00 50.25 0.01 0.16
b̃225 0.08 0.06 −0.02 0.01 70.59 −0.02
b̃226 −0.00 −0.00 −0.00 0.16 −0.02 106.41
b̃233 −0.00 25.34 −0.01 −0.27 0.00 0.25
b̃234 0.21 0.00 −0.54 0.00 0.88 0.01
b̃235 −0.00 −0.05 0.01 0.88 0.01 1.81
b̃236 0.34 −0.01 0.51 0.01 1.81 0.02
b̃244 −0.00 50.25 0.00 −0.21 0.01 −0.89
b̃245 −0.52 0.02 0.88 0.01 −0.27 0.01
b̃246 0.00 0.31 0.01 −1.78 0.01 −1.32
b̃255 −0.00 70.59 0.00 −0.14 −0.01 −0.37
b̃256 −0.84 −0.03 1.81 0.01 −0.75 0.06
b̃266 −0.00 106.41 0.01 −0.66 0.03 −1.52
b̃333 0.04 −0.00 76.97 0.03 −0.02 0.12
b̃334 0.00 −0.27 0.10 154.02 0.03 −0.37
b̃335 0.10 0.00 −0.05 0.03 216.06 −0.05
b̃336 −0.00 0.25 0.37 −0.37 −0.05 324.65
b̃344 0.21 0.00 154.02 0.02 −3.30 −0.03
b̃345 −0.00 0.88 0.05 −6.60 −0.09 −4.71
b̃346 −0.80 0.01 −0.74 −0.07 −4.71 0.05
b̃355 0.17 0.00 216.06 −0.05 −3.44 0.00
b̃356 −0.00 1.81 −0.09 −4.71 0.01 −3.80
b̃366 −0.12 0.01 324.65 0.03 −1.90 0.01
b̃444 0.00 −0.07 0.01 304.08 −0.05 0.70
b̃445 −0.50 0.01 −3.30 −0.14 432.09 −0.04
b̃446 −0.00 −0.89 −0.03 2.09 −0.04 645.41
b̃455 −0.00 −0.14 −0.05 432.09 −0.07 6.86
b̃456 0.27 0.01 −4.71 −0.08 13.71 0.02
b̃466 0.00 −0.66 0.03 645.41 0.01 5.78
b̃555 −0.21 −0.00 −1.15 −0.02 597.79 −0.11
b̃556 −0.01 −0.37 0.00 6.86 −0.33 905.87
b̃566 0.43 0.03 −1.90 0.01 905.87 −0.18
b̃666 0.00 −0.51 0.00 1.93 −0.06 1348.82
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E.3.3. Discretized string design with decreased width at 0.25L and 0.75L

Table E.15: Single mode coefficients for the first 6 modes of a discretized string of 100 elements with decreased width near the clamping
points and at 0.25L and 0.75L (similar to C.5c). wspring = 4µm and wmass = 1

3 = 4
3µm. The coefficients were found using STEP. The

variables are computed for a string with characteristics similar to those from Table C.4.

Eq. (1) (2) (3) (4) (5) (6)
kn [s−2] 1.57×1012 8.03×1012 1.66×1013 2.40×1013 3.89×1013 6.55×1013

ωn [s−2] 1.25×106 2.83×106 4.08×106 4.90×106 6.23×106 8.10×106

b(n)
nnn [ms−2] 1.83×1033 4.80×1034 2.05×1035 4.26×1035 1.12×1036 3.19×1036

b(n)
nnn
kn

[m] 1.17×1021 5.98×1021 1.23×1022 1.78×1022 2.88×1022 4.87×1022

k̃n 1.00 5.11 10.58 15.26 24.73 41.70
ω̃n 1.00 2.26 3.25 3.91 4.97 6.46

b̃(n)
nnn 1.00 26.17 111.95 232.44 611.07 1740.80

Table E.16: Nonlinear modal coefficients for the first 6 modes of a discretized string of 100 elements with increased width near the
clamping points and at 0.25L and 0.75L (similar to C.5b). The coefficients were found using STEP. wspring = 4µm and wmass = 1

3 = 4
3µm.

Note that the coefficients are scaled with respect to b̃(1)
111.

Eq. (1) (2) (3) (4) (5) (6)
b̃111 1.00 0.00 0.00 0.01 0.01 −0.02
b̃112 0.00 5.12 0.00 0.05 0.00 0.01
b̃113 0.01 0.00 10.63 0.00 0.07 0.00
b̃114 0.03 0.05 0.00 15.33 0.00 −0.08
b̃115 0.04 0.00 0.07 0.00 24.76 0.01
b̃116 −0.06 0.01 0.00 −0.08 0.01 41.76
b̃122 5.12 −0.00 0.11 0.00 0.17 0.00
b̃123 0.00 0.22 0.00 0.46 0.01 −0.46
b̃124 0.10 0.00 0.46 0.00 0.41 0.00
b̃125 0.00 0.34 0.01 0.41 0.01 −0.26
b̃126 0.02 0.00 −0.46 0.00 −0.26 −0.00
b̃133 10.63 0.00 0.31 0.00 0.42 0.00
b̃134 0.00 0.46 0.01 0.53 0.01 −0.74
b̃135 0.13 0.01 0.83 0.01 −0.06 0.01
b̃136 0.01 −0.46 0.01 −0.74 0.01 −0.36
b̃144 15.33 0.00 0.26 −0.00 0.22 0.00
b̃145 0.00 0.41 0.01 0.45 0.01 0.06
b̃146 −0.15 0.00 −0.74 0.01 0.06 −0.00
b̃155 24.76 0.00 −0.03 0.01 0.85 0.03
b̃156 0.01 −0.26 0.01 0.06 0.06 1.63
b̃166 41.76 −0.00 −0.18 −0.00 0.82 0.00
b̃222 −0.00 26.17 0.01 −0.01 0.03 −0.15
b̃223 0.11 0.04 54.42 0.01 −0.11 0.02
b̃224 0.00 −0.03 0.01 78.46 0.01 0.30
b̃225 0.17 0.08 −0.11 0.01 127.19 0.04
b̃226 0.00 −0.45 0.02 0.30 0.04 214.59
b̃233 0.00 54.42 0.01 0.85 0.01 −0.18
b̃234 0.46 0.02 1.69 0.03 1.88 0.01
b̃235 0.01 −0.22 0.02 1.88 −0.00 −2.60
b̃236 −0.46 0.03 −0.37 0.01 −2.60 0.00
b̃244 0.00 78.46 0.01 0.64 0.01 −1.45
b̃245 0.41 0.02 1.88 0.03 −0.39 −0.04
b̃246 0.00 0.59 0.01 −2.90 −0.04 −1.39
b̃255 0.00 127.19 −0.00 −0.20 −0.00 0.77
b̃256 −0.26 0.08 −2.60 −0.04 1.54 0.11
b̃266 −0.00 214.59 0.00 −0.70 0.06 −0.78
b̃333 0.10 0.00 111.95 0.03 −0.02 −0.08
b̃334 0.00 0.85 0.10 162.64 0.04 −0.67
b̃335 0.42 0.01 −0.07 0.04 262.98 0.06
b̃336 0.00 −0.18 −0.25 −0.67 0.06 443.41
b̃344 0.26 0.01 162.64 0.04 1.52 0.04
b̃345 0.01 1.88 0.08 3.04 0.07 −4.15
b̃346 −0.74 0.01 −1.33 0.08 −4.15 0.04
b̃355 −0.03 −0.00 262.98 0.03 −2.83 −0.01
b̃356 0.01 −2.60 0.11 −4.15 −0.02 −6.78
b̃366 −0.18 0.00 443.41 0.02 −3.39 0.02
b̃444 −0.00 0.21 0.01 232.44 0.04 0.04
b̃445 0.22 0.01 1.52 0.12 378.24 0.07
b̃446 0.00 −1.45 0.04 0.13 0.07 638.22
b̃455 0.01 −0.20 0.03 378.24 0.03 −1.08
b̃456 0.06 −0.04 −4.15 0.15 −2.17 0.16
b̃466 −0.00 −0.70 0.02 638.22 0.08 6.38
b̃555 0.28 −0.00 −0.94 0.01 611.07 −0.04
b̃556 0.03 0.77 −0.01 −1.08 −0.12 1036.92
b̃566 0.82 0.06 −3.39 0.08 1036.92 0.01
b̃666 0.00 −0.26 0.01 2.13 0.00 1740.80



136 E. Modal coefficients

E.3.4. Discretized zipper-like string designs for wmass = 4wspring

Table E.17: Linear modal coefficients for the first 6 modes of a discretized string of 100 elements from Figure C.8. The coefficients were
found using STEP. wspring = 4µm and wmass = 16µm. The variables are computed for a string with characteristics similar to those from

Table C.4.

Eq. (1) (2) (3) (4) (5) (6)
kn [s−2] 6.57×1011 2.63×1012 5.90×1012 1.05×1013 1.63×1013 2.33×1013

ωn [rad s−1] 8.11×105 1.62×106 2.43×106 3.23×106 4.03×106 4.83×106

b(n)
nnn [m−2s−2] 6.72×1032 1.07×1034 5.41×1034 1.70×1035 4.12×1035 8.46×1035

b(n)
nnn
kn

[m] 1.02×1021 4.07×1021 9.17×1021 1.62×1021 2.53×1022 3.63×1022

k̃n 1.00 4.00 8.97 15.90 24.75 35.46
ω̃n 1.00 2.00 3.00 3.99 4.98 5.96

b̃(n)
nnn 1.00 15.96 80.48 252.90 612.68 1257.60

Table E.18: Nonlinear modal coefficients for the first 6 modes of a discretized string of 100 elements from Figure C.8. The coefficients

were found using STEP. wspring = 4µm and wmass = 16µm. Note that the coefficients are scaled with respect to b̃(1)
111.

Eq. (1) (2) (3) (4) (5) (6)
b̃111 1.00 0.00 0.00 0.00 −0.01 0.01
b̃112 0.00 4.00 0.00 0.02 −0.00 −0.00
b̃113 0.00 0.00 8.99 −0.00 0.04 −0.00
b̃114 0.01 0.02 −0.00 15.95 0.00 0.07
b̃115 −0.02 −0.00 0.04 0.00 24.82 0.01
b̃116 0.02 −0.00 −0.00 0.07 0.01 35.57
b̃122 4.00 −0.00 0.03 −0.00 0.05 −0.00
b̃123 0.00 0.06 0.00 0.12 0.00 0.19
b̃124 0.04 −0.00 0.12 −0.00 0.21 −0.00
b̃125 −0.00 0.10 0.00 0.21 −0.01 0.33
b̃126 −0.00 −0.00 0.19 −0.00 0.33 −0.00
b̃133 8.99 0.00 −0.00 −0.00 0.11 −0.00
b̃134 −0.00 0.12 −0.00 0.00 −0.01 0.40
b̃135 0.07 0.00 0.23 −0.01 −0.01 −0.01
b̃136 −0.01 0.19 −0.01 0.40 −0.01 0.01
b̃144 15.95 −0.00 0.00 −0.01 −0.00 −0.01
b̃145 0.01 0.21 −0.01 −0.01 −0.01 0.00
b̃146 0.13 −0.00 0.40 −0.01 0.00 −0.02
b̃155 24.82 −0.00 −0.00 −0.01 −0.01 −0.01
b̃156 0.01 0.33 −0.01 0.00 −0.02 −0.01
b̃166 35.57 −0.00 0.01 −0.01 −0.00 −0.01
b̃222 −0.00 15.96 0.00 −0.00 0.01 0.03
b̃223 0.03 0.00 35.94 −0.00 −0.01 −0.01
b̃224 −0.00 −0.01 −0.00 63.71 0.01 0.01
b̃225 0.05 0.02 −0.01 0.01 99.18 0.02
b̃226 −0.00 0.08 −0.01 0.01 0.02 142.13
b̃233 0.00 35.94 −0.00 0.18 −0.01 −0.01
b̃234 0.12 −0.01 0.36 −0.01 0.64 −0.02
b̃235 0.00 −0.01 −0.02 0.64 0.00 1.03
b̃236 0.19 −0.02 −0.02 −0.02 1.03 0.01
b̃244 −0.00 63.71 −0.00 −0.01 −0.02 0.51
b̃245 0.21 0.02 0.64 −0.03 −0.02 0.01
b̃246 −0.00 0.02 −0.02 1.02 0.01 0.05
b̃255 −0.00 99.18 0.00 −0.01 −0.01 −0.02
b̃256 0.33 0.04 1.03 0.01 −0.04 −0.07
b̃266 −0.00 142.13 0.00 0.02 −0.03 −0.01
b̃333 −0.00 −0.00 80.48 0.00 −0.02 0.02
b̃334 −0.00 0.18 0.01 143.09 0.01 0.03
b̃335 0.11 −0.01 −0.05 0.01 222.75 0.05
b̃336 −0.00 −0.01 0.05 0.03 0.05 319.20
b̃344 0.00 −0.00 143.09 −0.00 0.63 −0.04
b̃345 −0.01 0.64 0.02 1.25 −0.01 2.13
b̃346 0.40 −0.02 0.07 −0.08 2.13 −0.10
b̃355 −0.00 0.00 222.75 −0.00 −0.02 −0.06
b̃356 −0.01 1.03 0.11 2.13 −0.13 −0.09
b̃366 0.01 0.00 319.20 −0.05 −0.05 −0.02
b̃444 −0.00 −0.00 −0.00 252.90 0.01 −0.03
b̃445 −0.00 −0.02 0.63 0.02 394.92 0.14
b̃446 −0.01 0.51 −0.04 −0.08 0.14 565.93
b̃455 −0.01 −0.01 −0.00 394.92 −0.01 1.86
b̃456 0.00 0.01 2.13 0.28 3.72 0.39
b̃466 −0.01 0.02 −0.05 565.93 0.19 −0.05
b̃555 −0.00 −0.00 −0.01 −0.00 612.68 0.01
b̃556 −0.01 −0.02 −0.06 1.86 0.03 881.02
b̃566 −0.00 −0.03 −0.05 0.19 881.02 −0.02
b̃666 −0.00 −0.00 −0.01 −0.02 −0.01 1257.60
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E.3.5. Discretized zipper-like string designs for wmass = 10wspring

Table E.19: Linear modal coefficients for the first 6 modes of a discretized string of 100 elements from Figure C.8. wspring = 4µm and
wmass = 40µm. The coefficients were found using STEP. The variables are computed for a string with characteristics similar to those

from Table C.4.

Eq. (1) (2) (3) (4) (5) (6)
kn [s−2] 3.29×1011 1.31×1012 2.94×1012 5.19×1012 8.04×1012 1.15×1013

ωn [rad s−1] 5.73×105 1.14×106 1.71×106 2.28×106 2.84×106 3.39×106

b(n)
nnn [m−2s−2] 1.79×1032 2.85×1033 1.43×1034 4.47×1034 1.07×1035 2.18×1035

b(n)
nnn
kn

[m] 5.44×1020 2.18×1021 4.86×1021 8.61×1021 1.33×1022 1.90×1022

k̃n 1.00 3.99 8.94 15.80 24.48 34.88
ω̃n 1.00 2.00 2.99 3.97 4.95 5.91

b̃(n)
nnn 1.00 15.92 79.92 249.52 599.29 1216.77

Table E.20: Nonlinear modal coefficients for the first 6 modes of a discretized string of 100 elements from Figure C.8. The coefficients

were found using STEP. wspring = 4µm and wmass = 40µm. Note that the coefficients are scaled with respect to b̃(1)
111.

Eq. (1) (2) (3) (4) (5) (6)
b̃111 1.00 0.00 0.00 0.00 −0.01 0.01
b̃112 0.00 4.00 0.00 0.02 −0.00 −0.00
b̃113 0.01 0.00 8.96 0.00 0.03 −0.00
b̃114 0.01 0.02 0.00 15.84 −0.00 0.05
b̃115 −0.03 −0.00 0.03 −0.00 24.55 0.01
b̃116 0.02 −0.00 −0.00 0.05 0.01 34.99
b̃122 4.00 −0.00 0.03 0.00 0.05 −0.00
b̃123 0.00 0.06 0.00 0.12 0.00 0.18
b̃124 0.04 0.00 0.12 −0.00 0.20 −0.00
b̃125 −0.00 0.09 0.00 0.20 −0.01 0.31
b̃126 −0.00 −0.00 0.18 −0.00 0.31 −0.00
b̃133 8.96 0.00 −0.00 0.00 0.11 −0.00
b̃134 0.00 0.12 0.00 0.00 0.01 0.37
b̃135 0.07 0.00 0.21 0.01 −0.01 −0.01
b̃136 −0.01 0.18 −0.01 0.37 −0.01 0.01
b̃144 15.84 −0.00 0.00 −0.01 −0.00 −0.00
b̃145 −0.01 0.20 0.01 −0.01 0.00 0.01
b̃146 0.11 −0.00 0.37 −0.01 0.01 −0.01
b̃155 24.55 −0.00 −0.00 0.00 −0.01 −0.01
b̃156 0.01 0.31 −0.01 0.01 −0.02 −0.01
b̃166 34.99 −0.00 0.01 −0.00 −0.00 −0.01
b̃222 −0.00 15.92 0.00 −0.01 0.01 0.02
b̃223 0.03 0.00 35.76 0.00 −0.01 −0.01
b̃224 0.00 −0.02 0.00 63.20 −0.01 −0.01
b̃225 0.05 0.02 −0.01 −0.01 97.96 0.02
b̃226 −0.00 0.07 −0.01 −0.01 0.02 139.61
b̃233 0.00 35.76 −0.00 0.18 −0.01 −0.01
b̃234 0.12 0.01 0.35 0.01 0.61 −0.00
b̃235 0.00 −0.02 −0.02 0.61 0.00 0.96
b̃236 0.18 −0.02 −0.02 −0.00 0.96 0.01
b̃244 −0.00 63.20 0.01 −0.01 −0.02 0.48
b̃245 0.20 −0.03 0.61 −0.03 0.03 −0.04
b̃246 −0.00 −0.03 −0.00 0.95 −0.04 −0.01
b̃255 −0.00 97.96 0.00 0.01 −0.01 −0.02
b̃256 0.31 0.05 0.96 −0.04 −0.04 −0.07
b̃266 −0.00 139.61 0.00 −0.01 −0.04 −0.02
b̃333 −0.00 −0.00 79.92 0.00 −0.01 0.01
b̃334 0.00 0.18 0.01 141.61 −0.02 −0.04
b̃335 0.11 −0.01 −0.04 −0.02 219.51 0.06
b̃336 −0.00 −0.01 0.04 −0.04 0.06 312.84
b̃344 0.00 0.01 141.61 −0.01 0.58 −0.04
b̃345 0.01 0.61 −0.04 1.16 −0.02 1.91
b̃346 0.37 −0.00 −0.08 −0.09 1.91 0.06
b̃355 −0.00 0.00 219.51 −0.01 −0.03 −0.07
b̃356 −0.01 0.96 0.11 1.91 −0.13 −0.08
b̃366 0.01 0.00 312.84 0.03 −0.04 −0.02
b̃444 −0.00 −0.00 −0.00 249.52 0.00 −0.02
b̃445 −0.00 −0.02 0.58 0.01 387.93 0.05
b̃446 −0.00 0.48 −0.04 −0.05 0.05 552.88
b̃455 0.00 0.01 −0.01 387.93 −0.01 1.53
b̃456 0.01 −0.04 1.91 0.10 3.07 −0.04
b̃466 −0.00 −0.01 0.03 552.88 −0.02 −0.05
b̃555 −0.00 −0.00 −0.01 −0.00 599.29 0.01
b̃556 −0.01 −0.02 −0.07 1.53 0.02 857.00
b̃566 −0.00 −0.04 −0.04 −0.02 857.00 −0.02
b̃666 −0.00 −0.01 −0.01 −0.02 −0.01 1216.77
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E.3.6. Discretized asymmetrical string design

Table E.21: Linear stiffness and Duffing coefficients for the first 6 modes of an asymmetrical discretized string of 100 elements from
Figure C.9. The coefficients were found using STEP. wspring = 4µm and wmass = 40µm. The variables are computed for a string with

characteristics similar to those from Table C.4.

Eq. (1) (2) (3) (4) (5) (6)
kn [s−2] 2.86×1011 1.88×1012 3.77×1012 6.80×1012 1.23×1013 1.60×1013

ωn [rad s−1] 5.35×105 1.37×106 1.94×106 2.61×106 3.51×106 4.00×106

b(n)
nnn [m−2s−2] 1.33×1032 5.75×1033 2.30×1034 7.52×1034 2.47×1035 4.15×1035

b(n)
nnn
kn

[m] 4.65×1020 3.06×1021 6.10×1021 1.11×1022 2.01×1022 2.59×1022

k̃n 1.00 6.58 13.18 23.76 43.11 55.93
ω̃n 1.00 2.56 3.63 4.87 6.57 7.48

b̃(n)
nnn 1.00 43.32 173.50 566.05 1860.76 3127.26

Table E.22: Nonlinear modal coefficients for the first 6 modes of an asymmetrical discretized string of 100 elements from Figure C.9.

The coefficients were found using STEP. wspring = 4µm and wmass = 40µm. Note that the coefficients are scaled with respect to b̃(1)
111.

Eq. (1) (2) (3) (4) (5) (6)
b̃111 1.00 −0.00 0.00 0.00 −0.00 0.00
b̃112 −0.01 6.59 −0.02 0.03 −0.01 −0.00
b̃113 0.00 −0.02 13.19 −0.05 0.03 0.01
b̃114 0.00 0.03 −0.05 23.84 −0.11 −0.07
b̃115 −0.01 −0.01 0.03 −0.11 43.20 0.13
b̃116 0.00 −0.00 0.01 −0.07 0.13 55.99
b̃122 6.59 0.02 −0.00 −0.03 0.12 0.07
b̃123 −0.05 −0.00 0.09 0.04 −0.09 −0.29
b̃124 0.07 −0.05 0.04 0.18 0.09 0.19
b̃125 −0.02 0.23 −0.09 0.09 0.33 −0.03
b̃126 −0.00 0.13 −0.29 0.19 −0.03 0.45
b̃133 13.19 0.04 −0.08 0.10 0.12 −0.09
b̃134 −0.09 0.04 0.20 −0.42 0.25 −0.26
b̃135 0.06 −0.09 0.24 0.25 −0.60 −0.49
b̃136 0.01 −0.29 −0.18 −0.26 −0.49 −0.61
b̃144 23.84 0.09 −0.21 0.51 −0.36 −0.27
b̃145 −0.21 0.09 0.25 −0.72 1.23 0.95
b̃146 −0.14 0.19 −0.26 −0.54 0.95 1.09
b̃155 43.20 0.17 −0.30 0.61 −0.40 −0.36
b̃156 0.26 −0.03 −0.49 0.95 −0.71 −0.75
b̃166 55.99 0.23 −0.30 0.55 −0.37 −0.55
b̃222 0.01 43.32 −0.08 −0.14 0.10 −0.04
b̃223 −0.00 −0.24 86.81 −0.22 −0.43 −0.43
b̃224 −0.03 −0.42 −0.22 157.38 −0.08 0.87
b̃225 0.12 0.30 −0.43 −0.08 284.92 1.25
b̃226 0.07 −0.12 −0.43 0.87 1.25 369.01
b̃233 0.04 86.81 −0.05 0.23 0.22 0.21
b̃234 0.04 −0.44 0.47 −0.75 1.34 −0.10
b̃235 −0.09 −0.87 0.44 1.34 −0.74 −2.08
b̃236 −0.29 −0.86 0.43 −0.10 −2.08 −0.39
b̃244 0.09 157.38 −0.37 −1.39 −0.61 −1.66
b̃245 0.09 −0.17 1.34 −1.22 −2.50 −1.23
b̃246 0.19 1.74 −0.10 −3.31 −1.23 −2.68
b̃255 0.17 284.92 −0.37 −1.25 1.12 0.73
b̃256 −0.03 2.51 −2.08 −1.23 1.47 1.45
b̃266 0.23 369.01 −0.19 −1.34 0.72 0.50
b̃333 −0.03 −0.02 173.50 −0.11 −0.19 −0.05
b̃334 0.10 0.23 −0.34 313.81 −0.02 0.39
b̃335 0.12 0.22 −0.58 −0.02 569.43 0.21
b̃336 −0.09 0.21 −0.16 0.39 0.21 738.53
b̃344 −0.21 −0.37 313.81 −2.30 0.35 −0.46
b̃345 0.25 1.34 −0.03 0.69 −3.34 −4.89
b̃346 −0.26 −0.10 0.77 −0.92 −4.89 −2.14
b̃355 −0.30 −0.37 569.43 −1.67 −2.80 −1.76
b̃356 −0.49 −2.08 0.42 −4.89 −3.52 −3.42
b̃366 −0.30 −0.19 738.53 −1.07 −1.71 −1.93
b̃444 0.17 −0.46 −0.77 566.05 −0.68 0.92
b̃445 −0.36 −0.61 0.35 −2.03 1030.41 5.49
b̃446 −0.27 −1.66 −0.46 2.77 5.49 1335.16
b̃455 0.61 −1.25 −1.67 1030.41 −2.08 −2.10
b̃456 0.95 −1.23 −4.89 10.98 −4.19 0.30
b̃466 0.55 −1.34 −1.07 1335.16 0.15 3.28
b̃555 −0.13 0.37 −0.93 −0.69 1860.76 4.25
b̃556 −0.36 0.73 −1.76 −2.10 12.75 2423.08
b̃566 −0.37 0.72 −1.71 0.15 2423.08 10.73
b̃666 −0.18 0.17 −0.64 1.09 3.58 3127.26



F
Code

F.1. Matlab codes
F.1.1. FPUT simulation

1 % FPUT code - can run default FPUT problem or run the simulation for string parameters
2 clear all; clc
3

4 % Load string variables
5 S_A_structure_par_string_Minxing
6

7 % Load FPU vars
8 N = 16;
9 k = 1; m = 1;

10 m_vec = m*ones(1,N);
11 % mass matrix
12 M = diag(m_vec);
13 % lin stiff matrix
14 kd = 2*k*ones(N,1); % diag matrix vector
15 kd_UL = -k*ones(N-1,1); % upper/lower matrix vector
16 KD = diag(kd); % diagonal matrix
17 KD_U = diag(kd_UL,1); KD_L = diag(kd_UL,-1); % upper and lower
18 K = KD + KD_U + KD_L; % total matrix
19

20 % modal analysis
21 [V, D] = eig(K,M);
22 alpha = max(max(V)); % Scaling of eigenvectors with modal mass (alpha = sqrt(2/m_tot))
23 modmassmat = V'*M*V; % should be unity
24 modstiffmat = V'*K*V; % modstiffmat = D-matrix
25

26 k_modal = diag(modstiffmat); % take diagonal since stiffmatrix is diagonal
27 ind_eig = [1 2 3 4 5 6];
28

29 % Select string parameters
30 stringvals = 1 % string parameters or not?
31 perf_freq = 0;
32

33 if stringvals == 0
34 beta = 8;
35 omega = sqrt(k_modal);
36 elseif stringvals == 1
37 % For string
38 m_string = rho*As*Length;
39 alpha = sqrt(2/(rho*As*Length)); % Eigvector scale parameter
40 for n_i = 1:length(ind_eig)
41 k_modal(n_i) = (ind_eig(n_i)^2*sig0*pi^2)/((Length^2)*rho);
42 b_simpleSTEP(n_i) = (3/8)*((ind_eig(n_i)^4*Emod*pi^4)/((Length^4)*rho))*alpha^2; ...

% this one matches with STEP
43 end

139
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44 beta = b_simpleSTEP(1)/(0.000102323); % beta for string parameters
45 end
46

47 Q = [1e5];
48 zeta = 1./(2*Q);
49 c_modal = 2.0.*zeta.*sqrt(k_modal/k_modal(1)); % ND already
50

51 n_solve = 6;
52 k_modal = k_modal(1:n_solve);
53 if perf_freq == 0
54 k_modal = k_modal(1).*diag(modstiffmat(:,1:n_solve))/modstiffmat(1,1);
55 end
56

57 % If f5 is integer
58 % k_modal(5) = k_modal(5)*1.07 % scales f5/f1 to 5.00
59

60 c_modal = 1*c_modal(1:n_solve);
61 a = zeros(21,6);
62 min_stringb = 1e-25; % onset of destroyed FPU is at 1e-3
63 if stringvals == 0
64 b_FPU = b_matrix(beta);
65 elseif stringvals == 1
66 [b_FPU, b_string] = b_matrix_string_simple(b_simpleSTEP(1), min_stringb);
67 end
68

69 %{
70 % Uncomment this to find the needed coupling terms
71 b_nonzero = ones(56,6)
72 % 1st EoM: terms with modes 1, 3 and 5
73 b_nonzero(3,1) = 0;
74 b_nonzero(12,1) = 0; b_nonzero(14,1) = 0;
75 b_nonzero(19,1) = 0; b_nonzero(39,1) = 0;
76

77 % 3rd EoM: terms with modes 1, 3 and 5
78 b_nonzero(1,3) = 0;
79 b_nonzero(3,3) = 0; b_nonzero(3,5) = 0;
80 b_nonzero(14,3) = 0; b_nonzero(44,3) = 0;
81

82 % 5th EoM: terms with modes 1, 3 and 5
83 b_nonzero(3,5) = 0; b_nonzero(5,5) = 0;
84 b_nonzero(12,5) = 0; b_nonzero(39,5) = 0;
85 b_FPU = b_nonzero.*b_FPU
86

87 % COMPARE TO STRING VALUES
88 % if stringvals == 1
89 % simple = 1;
90 % if simple == 0
91 % [b_compS, b_string, b_larger, b_string_l] = b_matrix_string(b_FPU, ...

min_stringb); % u and w-disp model
92 % elseif simple == 1
93 % [b_compS, b_string] = b_matrix_string_simple(b_FPU, min_stringb); % w-only ...

model
94 % end
95 % b_FPU = b_compS; % This sets either the simple or the full model --> dep of simple
96 % b_FPU_norm = b_FPU./b_FPU(1,1); % This normalizes the b-matrix
97 % end
98 %}
99

100 % Time and space normalization
101 T = sqrt(1/k_modal(1)); % Time scaling parameter = 1/omega_0
102 k_ND = k_modal.*T^2;
103 h = sqrt(k_modal(1))/sqrt(b_FPU(1,1));
104 a_ND = a*h/k_modal(1);
105 b_ND_FPU = b_FPU.*h^2.*T^2;
106 b_ND = b_ND_FPU;
107

108 % This is the total space scaling: also with max eigenvector
109 u_scale = h*alpha;
110

111 ND = 1; % Sets the ND or Dimensional equation of motion
112 clear t_span q_free E
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113 options = odeset('Reltol',1e-14,'Abstol',1e-12,'OutputSel',[1,2,n_solve]);
114 w0 = zeros(1,2*n_solve);
115 if ND == 1
116 dt = 0.01;
117 tspan = 0:dt:300;
118 if stringvals == 1
119 w0(1) = 11.82e-6;
120 % w0(1) = 0.8*11.82e-6;
121 % w0(3) = 0.15*11.82e-6;
122 % w0(5) = 0.05*11.82e-6;
123 % w0(7) = w0(1)*sqrt(k_modal(1));
124 % w0(9) = w0(3)*sqrt(k_modal(3));
125 % w0(11) = w0(5)*sqrt(k_modal(5));
126 elseif stringvals == 0
127 w0(1) = 1;
128 end
129 q0 = w0./u_scale; % scales it to the nondimensional space using the eigenvect and ...

space scaling
130 q0(7:end) = q0(7:end).*T;
131 [t_free,q_free] = ...

ode45(@(t,q)freeODE_6D(t,q,k_ND,c_modal,a_ND,b_ND),tspan,q0,options);
132 q_free = q_free.*h; % scales the amplitude and vel back to mass-norm space: for ...

energy comp
133 q_free(:,7:end) = q_free(:,7:end)./T; % scales the vel back to original time
134 q_free_PA = q_free.*alpha; % scales the amplitude and vel back to original space: ...

incl alpha
135 elseif ND == 0
136 q0 = w0/alpha;
137 % q0(1) = 5 % for m = 0.1
138 dt = 0.1;
139 tspan = 0:dt:2000;
140 [t_free,q_free] = ...

ode45(@(t,q)freeODE_6D(t,q,k_modal,c_modal,a,b_FPU),tspan,q0,options);
141 end
142

143 tspan = tspan.*T;
144 % Find peak values of signal to find max points for energy criterion
145 [t_maxq1, q_maxq1, i_rec, rec1_time, rec1_perc, E.E1peak, E.E1potpeak, E.E1kinpeak, ...

E.E1NLpeak] = fT_PeakFinder(q_free,tspan,1,k_modal,b_FPU);
146 [t_maxq2, q_maxq2, ¬, ¬, ¬, E.E2peak, E.E2potpeak, E.E2kinpeak, E.E2NLpeak] = ...

fT_PeakFinder(q_free,tspan,2,k_modal,b_FPU);
147 [t_maxq3, q_maxq3, ¬, ¬, ¬, E.E3peak, E.E3potpeak, E.E3kinpeak, E.E3NLpeak] = ...

fT_PeakFinder(q_free,tspan,3,k_modal,b_FPU);
148 [t_maxq4, q_maxq4, ¬, ¬, ¬, E.E4peak, E.E4potpeak, E.E4kinpeak, E.E4NLpeak] = ...

fT_PeakFinder(q_free,tspan,4,k_modal,b_FPU);
149 [t_maxq5, q_maxq5, ¬, ¬, ¬, E.E5peak, E.E5potpeak, E.E5kinpeak, E.E5NLpeak] = ...

fT_PeakFinder(q_free,tspan,5,k_modal,b_FPU);
150 [t_maxq6, q_maxq6, ¬, ¬, ¬, E.E6peak, E.E6potpeak, E.E6kinpeak, E.E6NLpeak] = ...

fT_PeakFinder(q_free,tspan,6,k_modal,b_FPU);
151

152 % total single-mode energy at these peaks
153 E.E1totpeak = E.E1peak + E.E1NLpeak(:,1); E.E2totpeak = E.E2peak + E.E2NLpeak(:,1); ...

E.E3totpeak = E.E3peak + E.E3NLpeak(:,1);
154 E.E4totpeak = E.E4peak + E.E4NLpeak(:,1); E.E5totpeak = E.E5peak + E.E5NLpeak(:,1); ...

E.E6totpeak = E.E6peak + E.E6NLpeak(:,1);
155 E.E0 = 0.5*k_modal(1)*q_free(1,1)^2 + 0.5*1*q_free(1,1+n_solve)^2;
156

157 [max_Erectot,i_rectot] = max(E.E1totpeak(2:end,1)); i_rectot = 1 + i_rectot;
158 perc_recTot = max_Erectot/E.E1totpeak(1)
159

160 % Compute energies
161 for i = 1:length(tspan)
162 E.E1(i) = 0.5*k_modal(1)*q_free(i,1)^2 + 0.5*1*q_free(i,1+n_solve)^2;
163 E.E2(i) = 0.5*k_modal(2)*q_free(i,2)^2 + 0.5*1*q_free(i,2+n_solve)^2;
164 E.E3(i) = 0.5*k_modal(3)*q_free(i,3)^2 + 0.5*1*q_free(i,3+n_solve)^2;
165 E.E4(i) = 0.5*k_modal(4)*q_free(i,4)^2 + 0.5*1*q_free(i,4+n_solve)^2;
166 E.E5(i) = 0.5*k_modal(5)*q_free(i,5)^2 + 0.5*1*q_free(i,5+n_solve)^2;
167 E.E6(i) = 0.5*k_modal(6)*q_free(i,6)^2 + 0.5*1*q_free(i,6+n_solve)^2;
168 E.E1pot(i) = 0.5*k_modal(1)*q_free(i,1)^2;
169 E.E2pot(i) = 0.5*k_modal(2)*q_free(i,2)^2;
170 E.E3pot(i) = 0.5*k_modal(3)*q_free(i,3)^2;
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171 E.E4pot(i) = 0.5*k_modal(4)*q_free(i,4)^2;
172 E.E5pot(i) = 0.5*k_modal(5)*q_free(i,5)^2;
173 E.E6pot(i) = 0.5*k_modal(6)*q_free(i,6)^2;
174 E.E1kin(i) = 0.5*1*q_free(i,1+n_solve)^2;
175 E.E2kin(i) = 0.5*1*q_free(i,2+n_solve)^2;
176 E.E3kin(i) = 0.5*1*q_free(i,3+n_solve)^2;
177 E.E4kin(i) = 0.5*1*q_free(i,4+n_solve)^2;
178 E.E5kin(i) = 0.5*1*q_free(i,5+n_solve)^2;
179 E.E6kin(i) = 0.5*1*q_free(i,6+n_solve)^2;
180 E.diffE3E1(i) = E.E3(i)-E.E1(i);
181 E.diffE5E1(i) = E.E5(i)-E.E1(i);
182 [E.NL1(i), E.NL2(i), E.NL3(i), E.NL4(i), E.NL5(i), E.NL6(i), E.coup(i), ...

E.coupuneven(i)] = fT_ModalEnergy(b_FPU,q_free,i);
183 end
184

185 [E.maxdomE3E1, E.imaxdomE3E1] = max(E.diffE3E1);
186 [E.maxdomE5E1, E.imaxdomE5E1] = max(E.diffE5E1);
187 EdomE3E1 = E.maxdomE3E1/E.E0
188 EdomE5E1 = E.maxdomE5E1/E.E0
189

190 %b-coefficients
191 count_b = 1;
192 for i = 1:6
193 for j = i:6
194 for k = j:6
195 b_name(count_b,:) = [i, j, k];
196 count_b = count_b+1;
197 end
198 end
199 end
200

201

202 % Criteria
203 % (1) linear frequency ratio
204 k_ND;
205

206 % (2) structure-specific Linear vs Nonlinear strength
207 mn = 1; % modenumber
208 b_111 = b_FPU(1,1); % this is the reference NL variable
209 k_b111 = k_modal(mn)/b_111;
210

211 % (3) Damping
212 Q;
213

214 % (4) Initial force ratio
215 b = b_FPU;
216 q1 = q0(1); q2 = q0(2); q3 = q0(3); q4 = q0(4); q5 = q0(5); q6 = q0(6);
217 q1_or = q0(1)*u_scale; q2_or = q0(2)*u_scale; q3_or = q0(3)*u_scale; q4_or = ...

q0(4)*u_scale; q5_or = q0(5)*u_scale; q6_or = q0(6)*u_scale;
218

219 F_lin_or = k_modal(1).*q1_or;
220 F_lin = k_ND(1).*q1;
221 for mn = 1
222 F_NL = ...

a_ND(1,mn)*q1^2+a_ND(2,mn)*q1*q2+a_ND(3,mn)*q1*q3+a_ND(4,mn)*q1*q4+a_ND(5,mn)*q1*q5+
223 a_ND(6,mn)*q1*q6...
224 +a_ND(7,mn)*q2*q2+a_ND(8,mn)*q2*q3+a_ND(9,mn)*q2*q4+a_ND(10,mn)*q2*q5+a_ND(11,mn)*q2*q6...
225 +a_ND(12,mn)*q3*q3+a_ND(13,mn)*q3*q4+a_ND(14,mn)*q3*q5+a_ND(15,mn)*q3*q6...
226 +a_ND(16,mn)*q4*q4+a_ND(17,mn)*q4*q5+a_ND(18,mn)*q4*q6...
227 +a_ND(19,mn)*q5*q5+a_ND(20,mn)*q5*q6...
228 +a_ND(21,mn)*q6*q6...
229 +b_ND(1,mn)*q1^3+b_ND(1,2)*q1^2*q2+b_ND(3,mn)*q1^2*q3+b_ND(4,mn)*q1^2*q4
230 +b_ND(5,mn)*q1^2*q5+b_ND(6,mn)*q1^2*q6...
231 +b_ND(7,mn)*q1*q2^2+b_ND(8,mn)*q1*q2*q3+b_ND(9,mn)*q1*q2*q4+b_ND(10,mn)*q1*q2*q5+
232 b_ND(11,mn)*q1*q2*q6...
233 +b_ND(12,mn)*q1*q3*q3+b_ND(13,mn)*q1*q3*q4+b_ND(14,mn)*q1*q3*q5+b_ND(15,mn)*q1*q3*q6...
234 +b_ND(16,mn)*q1*q4*q4+b_ND(17,mn)*q1*q4*q5+b_ND(18,mn)*q1*q4*q6...
235 +b_ND(19,mn)*q1*q5*q5+b_ND(20,mn)*q1*q5*q6...
236 +b_ND(21,mn)*q1*q6*q6...
237 +b_ND(22,mn)*q2*q2^2+b_ND(23,mn)*q2*q2*q3+b_ND(24,mn)*q2*q2*q4+b_ND(25,mn)*q2*q2*q5
238 +b_ND(26,mn)*q1*q2*q6...
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239 +b_ND(27,mn)*q2*q3*q3+b_ND(28,mn)*q2*q3*q4+b_ND(29,mn)*q2*q3*q5+b_ND(30,mn)*q2*q3*q6...
240 +b_ND(31,mn)*q2*q4*q4+b_ND(32,mn)*q2*q4*q5+b_ND(33,mn)*q2*q4*q6...
241 +b_ND(34,mn)*q2*q5*q5+b_ND(35,mn)*q2*q5*q6...
242 +b_ND(36,mn)*q2*q6*q6...
243 +b_ND(37,mn)*q3*q3*q3+b_ND(38,mn)*q3*q3*q4+b_ND(39,mn)*q3*q3*q5+b_ND(40,mn)*q3*q3*q6...
244 +b_ND(41,mn)*q3*q4*q4+b_ND(42,mn)*q3*q4*q5+b_ND(33,mn)*q3*q4*q6...
245 +b_ND(44,mn)*q3*q5*q5+b_ND(45,mn)*q3*q5*q6...
246 +b_ND(46,mn)*q3*q6*q6...
247 +b_ND(47,mn)*q4*q4*q4+b_ND(48,mn)*q4*q4*q5+b_ND(49,mn)*q4*q4*q6...
248 +b_ND(50,mn)*q4*q5*q5+b_ND(51,mn)*q4*q5*q6...
249 +b_ND(52,mn)*q4*q6*q6...
250 +b_ND(53,mn)*q5*q5*q5+b_ND(54,mn)*q5*q5*q6...
251 +b_ND(55,mn)*q5*q6*q6...
252 +b_ND(56,mn)*q6*q6*q6;
253 end
254 F_ratio = F_NL/F_lin;
255

256

257 % Visualize it
258 figure(1); clf
259 plot(t_maxq1,E.E1peak(:,1),t_maxq2,E.E2peak,t_maxq3(1:3:end),E.E3peak(1:3:end),t_maxq4,
260 E.E4peak,t_maxq5(1:5:end),E.E5peak(1:5:end),t_maxq6,E.E6peak); hold on % smooth
261 legend('Mode 1','Mode 2','Mode 3','Mode 4','Mode 5','Mode 6','1st rec.')
262 xlabel('Time (s)','FontSize',12); ylabel('Energy (a.u.)','FontSize',12)
263 xlim([0 tspan(end)])
264

265 figure(2); clf
266 subplot(5,1,1)
267 plot(tspan,E.E1,tspan,E.E2,tspan,E.E3,tspan,E.E4,tspan,E.E5,tspan,E.E6); hold on
268 plot(t_maxq1(i_rec),E.E1peak(i_rec),'k*');
269 legend('Mode 1','Mode 2','Mode 3','Mode 4','Mode 5','Mode 6','1st rec.')
270 xlabel('^{Time (s)}','FontSize',10); ylabel('Energy (a.u.)')
271 xlim([0 tspan(end)])
272 title('Total linear energy')
273

274 subplot(5,1,2)
275 E.E1tot = E.E1+E.NL1; E.E2tot = E.E2+E.NL2; E.E3tot = E.E3+E.NL3;
276 E.E4tot = E.E4+E.NL4; E.E5tot = E.E5+E.NL5; E.E6tot = E.E6+E.NL6;
277 E1diff = (E.E1tot - E.E1)/E.E1; max_E1diff = max(E1diff)
278 plot(tspan,E.E1tot,tspan,E.E2tot,tspan,E.E3tot,tspan,E.E4tot,tspan,E.E5tot,tspan,E.E6tot); ...

hold on
279 legend('Mode 1','Mode 2','Mode 3','Mode 4','Mode 5','Mode 6','1st rec.')
280 title('Single-mode (linear + nonlinear) energy')
281 xlabel('^{Time (s)}','FontSize',10); ylabel('Energy (a.u.)')
282

283 subplot(5,1,3)
284 plot(tspan,E.coup);
285 title('Coupling energy','FontSize', 9)
286 xlabel('^{Time (s)}','FontSize',10); ylabel('Energy (a.u.)')
287 xlim([0 tspan(end)])
288

289 subplot(5,1,4)
290 plot(tspan,q_free_PA(:,1),tspan,q_free_PA(:,2),tspan,q_free_PA(:,3),tspan,q_free_PA(:,4),
291 tspan,q_free_PA(:,5),tspan,q_free_PA(:,6)); hold on
292 legend('Mode 1','Mode 2','Mode 3','Mode 4','Mode 5','Mode 6','Mode 1','Mode 2','Mode ...

3','Mode 4','Mode 5','Mode 6')
293 xlabel('^{Time (s)}','FontSize',10); ylabel('Amplitude (m)','FontSize',8)
294 xlim([0 tspan(end)])
295 title('Modal amplitudes','FontSize',8)
296

297 subplot(5,1,5)
298 plot(tspan,q_free_PA(:,1+n_solve),tspan,q_free_PA(:,2+n_solve),tspan,q_free_PA(:,3+n_solve)
299 ,tspan,q_free_PA(:,4+n_solve),tspan,q_free_PA(:,5+n_solve),tspan,q_free_PA(:,6+n_solve));
300 hold on
301 legend('Mode 1','Mode 2','Mode 3','Mode 4','Mode 5','Mode 6','Mode 1','Mode 2','Mode ...

3','Mode 4','Mode 5','Mode 6')
302 xlabel('^{Time (s)}','FontSize',10); ylabel('Velocity (m/s)','FontSize',8)
303 xlim([0 tspan(end)])
304 title('Modal velocities','FontSize',8)
305

306 annotation('textbox', [0.08, 0.95, 0, 0], 'string', '\bf (a)','FontSize', 9)
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307 annotation('textbox', [0.08, 0.775, 0, 0], 'string', '\bf (b)','FontSize', 9)
308 annotation('textbox', [0.08, 0.6, 0, 0], 'string', '\bf (c)','FontSize', 9)
309 annotation('textbox', [0.08, 0.43, 0, 0], 'string', '\bf (d)','FontSize', 9)
310 annotation('textbox', [0.08, 0.26, 0, 0], 'string', '\bf (e)','FontSize', 9)

F.1.2. STEP and AUTO simulations

1 % Used to determine modal coefficients from STEP and run them in AUTO
2 % HEAD - RUNS ALL SCRIPTS
3 % Vincent Bos - adapted by Tim Jansen
4

5

6 clear all
7 close all
8 clc
9

10 matlabfolder = pwd;
11 add_folders % define location of AUTO ...

files
12 cd(autofolder); delete 'fort.*'; cd(matlabfolder); % remove old AUTO files
13

14 % SETTINGS
15 ind_eig = [1 2 3 4 5 6]; % select eigenmodes
16

17 n_eig_solve = max(ind_eig); % number of eigenmodes searched for in eigenvalue ...
solver

18 n_eig = length(ind_eig); % number of modes in the ROM
19

20 % Option 1: continuous structure
21 loc = 0.364;
22 S_A_structure_par_string_Minxing
23 [a_coefname,b_coefname,a_coef_un,b_coef_un,Km_value_un, MD] = ...

fsnaar_model_out_of_plane_Minxing(n_eig_solve,ind_eig,MP_snaar); % string
24 hardcode = 1;
25 if hardcode == 0
26 fprintf('ATTENTION! NOT hardcoded!')
27 elseif hardcode == 1
28 fprintf('ATTENTION! Hardcoded!')
29 end
30

31 if hardcode == 1
32 Km_value_un(2:end) = Km_value_un(1)*(1.00533^2)*[ind_eig(2:end).^2]
33 end
34

35 % Matching, scaling and generation of dimless variables
36 [a_coef_un,b_coef_un] = fmatchcoef(a_coef_un,b_coef_un,a_coefname,b_coefname); ...

% correct coefficients
37

38 [a_coef,b_coef,Km_value,scale_h,scale_T] = ...
fscalecoef(a_coef_un,b_coef_un,Km_value_un); %scale_h = (1/sqrt(20))*scale_h;

39 [a, b, k_modal, m_modal] = ...
fT_odevars(a_coefname,a_coef,n_eig,b_coefname,b_coef,Km_value, MD);

40

41 for n_i = 1:length(ind_eig)
42 b_analytical(n_i) = (ind_eig(n_i)^4*Emod*pi^4)/(4*(Length^4)*rho);
43 b_analySTEP(n_i) = ((ind_eig(n_i)^4*Emod*pi^4)/(4*(Length^4)*rho))*MD.alpha(1)^2;
44 k_analytical(n_i) = (ind_eig(n_i)^2*sig0*pi^2)/((Length^2)*rho);
45 end
46

47 %% AUTO
48 % AUTO preparation
49

50 % cd(autofolder); delete 'fort.*'; cd(matlabfolder); % remove old AUTO files
51 clear leg leg1 leg_exp leg_sim_point f_res
52 clear Mf7 Mf7_point
53

54 figure(100)
55 clf
56 figure(400)
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57 clf
58 Q = [2e5, 2e5]; % for characterization: 1.45e5
59 zeta = 1./(2*Q); % set damping
60 %FAST SETTING: omega_start = 0.9002, omega_end = 4, NMX = 10k
61

62 omega_start = 0.9991; % start freq sweep low values can give errors 6 modes = 0.97
63 omega_end = 1.025; % end freq sweep
64 omega_1 = 1; % keep this fixed
65 slaop = 0; savefigs = 0;
66

67 Volt = linspace(1e-3,0.5,20);
68 sweep = [13]; sweeps = [1 5 10 13 14 15 16 17 18 19 20];
69 for jj = 1:length(sweep)
70 figure(400); clf; figure(100); clf;
71 Fsweepvalues = [0.275e-13, 65e-13, 100e-13, 135e-13, 150e-13, 160e-13, 170e-13, ...

180e-13, 190e-13, 200e-13, 215e-13]; % For mode 1 only: % without any exp scaling
72

73 Fvalues = Fsweepvalues(find(sweeps==sweep(jj)));
74 Fmode_exc = ones(1,length(ind_eig)); Fmode_exc(1) = 1;
75 F_exc = zeros(length(ind_eig),1); F_exc(ind_eig==Fmode_exc) = 1;
76

77 for i = 1:length(Fvalues)
78 cd(autofolder); delete 'fort.*'; cd(matlabfolder); % remove old AUTO files
79 clear Mf7 Mf7_point leg legpoint
80 sweepno = sweeps(sweeps==sweep(jj));
81

82 Fvalue = Fvalues(i);
83

84 Cm_value = 2.0.*zeta(i).*sqrt(Km_value); Mm_value = diag(MD.mat.Mm); ...
% add damping

85

86 i_u = 1:2:n_eig*2; i_v = i_u + 1; n_dim_U = n_eig*2 + 2; % indices of U ...
with the amplitude and velocity

87 CO = ...
fvar2struc(a_coef,b_coef,a_coefname,b_coefname,Km_value,Mm_value,n_eig,i_u); ...
CO.Cm_value = Cm_value; % write coeff to structure

88 fstruc2var(MD) % load model parameters
89

90 [map1,I] = fcoord2mod_correct(coord1,MD,Length); % MAPS FORCE TO MODAL
91 % determine mapping according to excitation point
92 F_sweep = F_exc .* map1 .* Fvalue .* scale_T^2 ./ scale_h; % modal force vector
93

94 u_scale_axvec = scale_h*MD.alpha; %scales dimens to ND and modal to physical
95 % MD.alpha is the max eig vect scaling
96

97

98 u_scale_ax0 = diag(reshape(repmat(u_scale_axvec,2,1),[],1)); % scaling matrix ...
for state space dof

99

100 % ********************* FREQUENCY RESPONSE AUTO ************************ %%
101

102 error = ...
fwrite_equation(a_coef,b_coef,a_coefname,b_coefname,Km_value,Cm_value,omega_start,

103 n_eig,mostfolder,F_sweep); % write equations
104 system(command); system(command); % compile equations
105

106 S_A_auto_base_1mode % this controls the two sweeps and places them into the Mf7 ...
matrix % run AUTO frequency sweep

107

108 % READ FORT 8 INITIAL CURVE
109 n_labels = Mf7(end,4); % pre-allocate ...

for reading fort8
110 [Dat_f8] = freadfort8(n_labels,NTST,autofolder); % read fort 8
111 Xp = fFRFpoint_fast(Dat_f8,scale_h,MD,I); % map data ...

(scaled to real displ) to point (point sensor) ORIGINAL
112 Mf7_point = fpointMf7(Xp,Mf7,[],[]); % rewrite data in ...

Mf7 matrix for easy plotting
113

114 if slaop == 1
115 L = (Length - 2*5e-6)*1e6;
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116 filenamedatsave_point = ...
sprintf('Mf7_pointL%d_E%d_loc%.3f_sweep%d_F%.0fn_%.0f.mat',L,Emod/1e9,loc,

117 sweep(jj),round(Fvalue/1e-13),ind_eig(end));
118 save(filenamedatsave_point,'Mf7_point'); fprintf('Data sweep %d is ...

saved!\n',sweep(jj));
119 filenamedatsave = ...

sprintf('Mf7_L%d_E%d_loc%.3f_sweep%d_F%.0fn_%.0f.mat',L,Emod/1e9,loc,
120 sweep(jj),round(Fvalue/1e-13),ind_eig(end));
121 save(filenamedatsave,'Mf7'); fprintf('Data sweep %d is saved!\n',sweep(jj));
122 elseif slaop == 0
123 fprintf('ATTENTION! Data sweep %d is NOT saved!\n',sweep(i)')
124 end
125

126 S_A_plot_physical_base % plot physical domain
127

128 % 3. DEFINE LEGENDS
129 legpoint.length(i) = length(p1);
130 legpoint.lengthsum(i) = sum(legpoint.length(1:i));
131 if i == 1
132 figure(400)
133 title(sprintf('Frequency response physical point at %.3f*L', ...

coord1(1)/Length)); hold on
134 end
135

136 end
137

138 % PLOT THE EXPERIMENTAL DATA IN POINT PLOT
139 sweepno_exp = [1:1:20]; % Define experimental sweep data
140

141 [fwd, bwd, f_abs_exp, vel_exp, amp_exp, f_res_exp, freq_creep_exp, leg.exp] = ...
fT_plot_expdata(loc,sweepno_exp, efreq, ind_eig, colorv,Fvalues);

142 leg.all(1:length(legpoint.sim)) = legpoint.sim;
143 leg.all(length(legpoint.sim)+1:length(legpoint.sim)+length(leg.exp)) = leg.exp;
144

145 legend(leg.all,'Location','northwest')
146 title('')
147 fig100 = figure(100);
148 xlim([omega_start omega_end])
149

150 if savefigs == 1
151 filename_100 = ...

sprintf('Full_L%d_E%d_loc%.3f_sweep%d_F%.0fn_%.0f.fig',L,Emod/1e9,loc,sweep(jj)
152 ,round(Fvalue/1e-13),ind_eig(end));
153 filename_400 = ...

sprintf('Point_L%d_E%d_loc%.3f_sweep%d_F%.0fn_%.0f.fig',L,Emod/1e9,loc,sweep(jj)
154 ,round(Fvalue/1e-13),ind_eig(end));
155 saveas(fig400,filename_400); saveas(fig100,filename_100)
156 end
157 end

F.2. Mathematica codes
F.2.1. Modal conversion FPUT problem

1 In[1]:= a = 0
2 T1 = 0.5*m*y1'[t]^2; T2 = 0.5*m*y2'[t]^2; T3 = 0.5*m*y3'[t]^2; T4 =
3 0.5*m*y4'[t]^2;
4 T5 = 0.5*m*y5'[t]^2; T6 = 0.5*m*y6'[t]^2; T7 = 0.5*m*y7'[t]^2; T8 =
5 0.5*m*y8'[t]^2;
6 T9 = 0.5*m*y9'[t]^2; T10 = 0.5*m*y10'[t]^2; T11 =
7 0.5*m*y11'[t]^2; T12 = 0.5*m*y12'[t]^2;
8 T13 = 0.5*m*y13'[t]^2; T14 = 0.5*m*y14'[t]^2; T15 =
9 0.5*m*y15'[t]^2; T16 = 0.5*m*y16'[t]^2;

10 T = T1 + T2 + T3 + T4 + T5 + T6 + T7 + T8 + T9 + T10 + T11 + T12 +
11 T13 + T14 + T15 + T16 (* Total kinetic energy *)
12 V1 = 0.5*k*y1[t]^2 + (1/3)*a*y1[t]^3 + 0.25*b*y1[t]^4;
13 V2 = 0.5*k*(y2[t] - y1[t])^2 + (1/3)*a*(y2[t] - y1[t])^3 +
14 0.25*b*(y2[t] - y1[t])^4;
15 V3 = 0.5*k*(y3[t] - y2[t])^2 + (1/3)*a*(y3[t] - y2[t])^3 +
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16 0.25*b*(y3[t] - y2[t])^4;
17 V4 = 0.5*k*(y4[t] - y3[t])^2 + (1/3)*a*(y4[t] - y3[t])^3 +
18 0.25*b*(y4[t] - y3[t])^4;
19 V5 = 0.5*k*(y5[t] - y4[t])^2 + (1/3)*a*(y5[t] - y4[t])^3 +
20 0.25*b*(y5[t] - y4[t])^4;
21 V6 = 0.5*k*(y6[t] - y5[t])^2 + (1/3)*a*(y6[t] - y5[t])^3 +
22 0.25*b*(y6[t] - y5[t])^4;
23 V7 = 0.5*k*(y7[t] - y6[t])^2 + (1/3)*a*(y7[t] - y6[t])^3 +
24 0.25*b*(y7[t] - y6[t])^4;
25 V8 = 0.5*k*(y8[t] - y7[t])^2 + (1/3)*a*(y8[t] - y7[t])^3 +
26 0.25*b*(y8[t] - y7[t])^4;
27 V9 = 0.5*k*(y9[t] - y8[t])^2 + (1/3)*a*(y9[t] - y8[t])^3 +
28 0.25*b*(y9[t] - y8[t])^4;
29 {
30 {V10 = 0.5*k*(y10[t] - y9[t])^2 + (1/3)*a*(y10[t] - y9[t])^3 +
31 0.25*b*(y10[t] - y9[t])^4;},
32 {V11 = 0.5*k*(y11[t] - y10[t])^2 + (1/3)*a*(y11[t] - y10[t])^3 +
33 0.25*b*(y11[t] - y10[t])^4;},
34 {V12 = 0.5*k*(y12[t] - y11[t])^2 + (1/3)*a*(y12[t] - y11[t])^3 +
35 0.25*b*(y12[t] - y11[t])^4;
36 V13 = 0.5*k*(y13[t] - y12[t])^2 + (1/3)*a*(y13[t] - y12[t])^3 +
37 0.25*b*(y13[t] - y12[t])^4;
38 V14 = 0.5*k*(y14[t] - y13[t])^2 + (1/3)*a*(y14[t] - y13[t])^3 +
39 0.25*b*(y14[t] - y13[t])^4;}
40 }
41 V15 = 0.5*k*(y15[t] - y14[t])^2 + (1/3)*a*(y15[t] - y14[t])^3 +
42 0.25*b*(y15[t] - y14[t])^4;
43 V16 = 0.5*k*(y16[t] - y15[t])^2 + (1/3)*a*(y16[t] - y15[t])^3 +
44 0.25*b*(y16[t] - y15[t])^4;
45 V17 = 0.5*k*y16[t]^2 + (1/3)*a*y16[t]^3 + 0.25*b*y16[t]^4;
46 V = V1 + V2 + V3 + V4 + V5 + V6 + V7 + V8 + V9 + V10 + V11 + V12 +
47 V13 + V14 + V15 + V16 + V17(* Total potential energy *)
48

49 (*Check Equations of Motion*)
50 In[21]:= EoMx1 = D[D[T, y1'[t]], t] + D[V, y1[t]]
51 EoMx2 = D[D[T, y2'[t]], t] + D[V, y2[t]]
52 EoMx3 = D[D[T, y3'[t]], t] + D[V, y3[t]]
53 EoMx4 = D[D[T, y4'[t]], t] + D[V, y4[t]]
54 EoMx5 = D[D[T, y5'[t]], t] + D[V, y5[t]]
55 EoMx6 = D[D[T, y6'[t]], t] + D[V, y6[t]]
56 EoMx7 = D[D[T, y7'[t]], t] + D[V, y7[t]]
57 EoMx8 = D[D[T, y8'[t]], t] + D[V, y8[t]]
58 EoMx9 = D[D[T, y9'[t]], t] + D[V, y9[t]]
59 EoMx10 = D[D[T, y10'[t]], t] + D[V, y10[t]]
60 EoMx11 = D[D[T, y11'[t]], t] + D[V, y11[t]]
61 EoMx12 = D[D[T, y12'[t]], t] + D[V, y12[t]]
62 EoMx13 = D[D[T, y13'[t]], t] + D[V, y13[t]]
63 EoMx14 = D[D[T, y14'[t]], t] + D[V, y14[t]]
64 EoMx15 = D[D[T, y15'[t]], t] + D[V, y15[t]]
65 EoMx16 = D[D[T, y16'[t]], t] + D[V, y16[t]]
66

67

68 In[57]:= (*Define mode shapes*) (*1*)
69 A1r1 = 0.18453671892660;
70 A1r2 = 0.36278926121756; A1r3 = 0.52868745033551; A1r4 = \
71 0.67658182242300; A1r5 = 0.80143601201832; A1r6 = 0.89899825944091; \
72 A1r7 = 0.96594619936780; A1r8 = 1.00000000000000; A1r9 = \
73 1.00000000000000; A1r10 = 0.96594619936780; A1r11 = 0.89899825944091; \
74 A1r12 = 0.80143601201832; A1r13 = 0.67658182242300; A1r14 = \
75 0.52868745033552; A1r15 = 0.36278926121756; A1r16 = 0.18453671892660;
76 (*2*)
77 A2r1 = 0.36278926121756; A2r2 = 0.67658182242300; A2r3 = \
78 0.89899825944091; A2r4 = 1.00000000000000; A2r5 = 0.96594619936780; \
79 A2r6 = 0.80143601201832; A2r7 = 0.52868745033552; A2r8 = \
80 0.18453671892660; A2r9 = -0.18453671892660; A2r10 = \
81 -0.52868745033551; A2r11 = -0.80143601201832; A2r12 = \
82 -0.96594619936780; A2r13 = -1.00000000000000; A2r14 = \
83 -0.89899825944091; A2r15 = -0.67658182242300; A2r16 = \
84 -0.36278926121756;
85 (*3*)
86 A3r1 = 0.52868745033551; A3r2 = 0.89899825944091; A3r3 = \
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87 1.00000000000000; A3r4 = 0.80143601201832; A3r5 = 0.36278926121756; \
88 A3r6 = -0.18453671892660; A3r7 = -0.67658182242300; A3r8 = \
89 -0.96594619936780; A3r9 = -0.96594619936780; A3r10 = \
90 -0.67658182242300; A3r11 = -0.18453671892660; A3r12 = \
91 0.36278926121756; A3r13 = 0.80143601201832; A3r14 = 1.00000000000000; \
92 A3r15 = 0.89899825944091; A3r16 = 0.52868745033552;
93 (*4*)
94 A4r1 = 0.67658182242300; A4r2 = 1.00000000000000; A4r3 = \
95 0.80143601201832; A4r4 = 0.18453671892660; A4r5 = -0.52868745033551; \
96 A4r6 = -0.96594619936780; A4r7 = -0.89899825944091; A4r8 = \
97 -0.36278926121756; A4r9 = 0.36278926121756; A4r10 = 0.89899825944091; \
98 A4r11 = 0.96594619936780; A4r12 = 0.52868745033552; A4r13 = \
99 -0.18453671892660; A4r14 = -0.80143601201832; A4r15 = \

100 -1.00000000000000; A4r16 = -0.67658182242300;
101 (*5*)
102 A5r1 = 0.82969011373806; A5r2 = 1.00000000000000; A5r3 = \
103 0.37557915902045; A5r4 = -0.54732598014417; A5r5 = -1.03525434507065; \
104 A5r6 = -0.70043427145923; A5r7 = 0.19104244009385; A5r8 = \
105 0.93069185429715; A5r9 = 0.93069185429715; A5r10 = 0.19104244009385; \
106 A5r11 = -0.70043427145923; A5r12 = -1.03525434507065; A5r13 = \
107 -0.54732598014417; A5r14 = 0.37557915902045; A5r15 = \
108 1.00000000000000; A5r16 = 0.82969011373806;
109 (*6*)
110 A6r1 = 0.89899825944091; A6r2 = 0.80143601201832; A6r3 = \
111 -0.18453671892660; A6r4 = -0.96594619936780; A6r5 = \
112 -0.67658182242300; A6r6 = 0.36278926121756; A6r7 = 1.00000000000000; \
113 A6r8 = 0.52868745033552; A6r9 = -0.52868745033551; A6r10 = \
114 -1.00000000000000; A6r11 = -0.36278926121756; A6r12 = \
115 0.67658182242300; A6r13 = 0.96594619936780; A6r14 = 0.18453671892660; \
116 A6r15 = -0.80143601201832; A6r16 = -0.89899825944091;
117 (*7*)
118 A7r1 = 0.96594619936780; A7r2 = 0.52868745033552; A7r3 = \
119 -0.67658182242300; A7r4 = -0.89899825944091; A7r5 = 0.18453671892660; \
120 A7r6 = 1.00000000000000; A7r7 = 0.36278926121756; A7r8 = \
121 -0.80143601201832; A7r9 = -0.80143601201832; A7r10 = \
122 0.36278926121756; A7r11 = 1.00000000000000; A7r12 = 0.18453671892660; \
123 A7r13 = -0.89899825944091; A7r14 = -0.67658182242300; A7r15 = \
124 0.52868745033551; A7r16 = 0.96594619936780;
125 (*8*)
126 A8r1 = 1.00000000000000; A8r2 = 0.18453671892660; A8r3 = \
127 -0.96594619936780; A8r4 = -0.36278926121756; A8r5 = 0.89899825944091; \
128 A8r6 = 0.52868745033552; A8r7 = -0.80143601201832; A8r8 = \
129 -0.67658182242300; A8r9 = 0.67658182242300; A8r10 = 0.80143601201832; \
130 A8r11 = -0.52868745033551; A8r12 = -0.89899825944091; A8r13 = \
131 0.36278926121756; A8r14 = 0.96594619936780; A8r15 = \
132 -0.18453671892660; A8r16 = -1.00000000000000;
133 (*9*)
134 A9r1 = 1.00000000000000; A9r2 = -0.18453671892660; A9r3 = \
135 -0.96594619936780; A9r4 = 0.36278926121756; A9r5 = 0.89899825944091; \
136 A9r6 = -0.52868745033551; A9r7 = -0.80143601201832; A9r8 = \
137 0.67658182242300; A9r9 = 0.67658182242300; A9r10 = -0.80143601201832; \
138 A9r11 = -0.52868745033552; A9r12 = 0.89899825944091; A9r13 = \
139 0.36278926121756; A9r14 = -0.96594619936780; A9r15 = \
140 -0.18453671892661; A9r16 = 1.00000000000000;
141 (*10*)
142 A10r1 = 0.96594619936780; A10r2 = -0.52868745033551; A10r3 = \
143 -0.67658182242300; A10r4 = 0.89899825944091; A10r5 = \
144 0.18453671892660; A10r6 = -1.00000000000000; A10r7 = \
145 0.36278926121756; A10r8 = 0.80143601201832; A10r9 = \
146 -0.80143601201832; A10r10 = -0.36278926121756; A10r11 = \
147 1.00000000000000; A10r12 = -0.18453671892660; A10r13 = \
148 -0.89899825944091; A10r14 = 0.67658182242300; A10r15 = \
149 0.52868745033552; A10r16 = -0.96594619936780;
150 (*11*)
151 A11r1 = 0.89899825944091; A11r2 = -0.80143601201832; A11r3 = \
152 -0.18453671892660; A11r4 = 0.96594619936780; A11r5 = \
153 -0.67658182242300; A11r6 = -0.36278926121756; A11r7 = \
154 1.00000000000000; A11r8 = -0.52868745033551; A11r9 = \
155 -0.52868745033552; A11r10 = 1.00000000000000; A11r11 = \
156 -0.36278926121756; A11r12 = -0.67658182242300; A11r13 = \
157 0.96594619936780; A11r14 = -0.18453671892660; A11r15 = \
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158 -0.80143601201832; A11r16 = 0.89899825944090;
159 (*12*)
160 A12r1 = 0.80143601201832; A12r2 = -0.96594619936780; A12r3 = \
161 0.36278926121756; A12r4 = 0.52868745033552; A12r5 = \
162 -1.00000000000000; A12r6 = 0.67658182242300; A12r7 = \
163 0.18453671892660; A12r8 = -0.89899825944091; A12r9 = \
164 0.89899825944091; A12r10 = -0.18453671892660; A12r11 = \
165 -0.67658182242300; A12r12 = 1.00000000000000; A12r13 = \
166 -0.52868745033551; A12r14 = -0.36278926121756; A12r15 = \
167 0.96594619936780; A12r16 = -0.80143601201832;
168 (*13*)
169 A13r1 = 0.70043427145923; A13r2 = -1.03525434507065; A13r3 = \
170 0.82969011373806; A13r4 = -0.19104244009385; A13r5 = \
171 -0.54732598014416; A13r6 = 1.00000000000000; A13r7 = \
172 -0.93069185429715; A13r8 = 0.37557915902045; A13r9 = \
173 0.37557915902045; A13r10 = -0.93069185429715; A13r11 = \
174 1.00000000000000; A13r12 = -0.54732598014417; A13r13 = \
175 -0.19104244009385; A13r14 = 0.82969011373806; A13r15 = \
176 -1.03525434507065; A13r16 = 0.70043427145923;
177 (*14*)
178 A14r1 = 0.52868745033552; A14r2 = -0.89899825944091; A14r3 = \
179 1.00000000000000; A14r4 = -0.80143601201832; A14r5 = \
180 0.36278926121756; A14r6 = 0.18453671892660; A14r7 = \
181 -0.67658182242300; A14r8 = 0.96594619936780; A14r9 = \
182 -0.96594619936780; A14r10 = 0.67658182242300; A14r11 = \
183 -0.18453671892660; A14r12 = -0.36278926121756; A14r13 = \
184 0.80143601201832; A14r14 = -1.00000000000000; A14r15 = \
185 0.89899825944091; A14r16 = -0.52868745033551;
186 (*15*)
187 A15r1 = 0.37557915902045; A15r2 = -0.70043427145923; A15r3 = \
188 0.93069185429715; A15r4 = -1.03525434507065; A15r5 = \
189 1.00000000000000; A15r6 = -0.82969011373806; A15r7 = \
190 0.54732598014416; A15r8 = -0.19104244009384; A15r9 = \
191 -0.19104244009385; A15r10 = 0.54732598014417; A15r11 = \
192 -0.82969011373806; A15r12 = 1.00000000000000; A15r13 = \
193 -1.03525434507065; A15r14 = 0.93069185429715; A15r15 = \
194 -0.70043427145923; A15r16 = 0.37557915902044;
195 (*16*)
196 A16r1 = 0.18453671892660; A16r2 = -0.36278926121756; A16r3 = \
197 0.52868745033552; A16r4 = -0.67658182242300; A16r5 = \
198 0.80143601201832; A16r6 = -0.89899825944091; A16r7 = \
199 0.96594619936780; A16r8 = -1.00000000000000; A16r9 = \
200 1.00000000000000; A16r10 = -0.96594619936780; A16r11 = \
201 0.89899825944090; A16r12 = -0.80143601201832; A16r13 = \
202 0.67658182242300; A16r14 = -0.52868745033551; A16r15 = \
203 0.36278926121756; A16r16 = -0.18453671892660;
204

205 Vmode1 = V;
206 Vmode1 = Chop[
207 Expand[Vmode1 /. {y1[t] -> A1r1*q1, y2[t] -> A1r2*q1,
208 y3[t] -> A1r3*q1, y4[t] -> A1r4*q1, y5[t] -> A1r5*q1,
209 y6[t] -> A1r6*q1, y7[t] -> A1r7*q1, y8[t] -> A1r8*q1,
210 y9[t] -> A1r9*q1, y10[t] -> A1r10*q1, y11[t] -> A1r11*q1,
211 y12[t] -> A1r12*q1, y13[t] -> A1r13*q1, y14[t] -> A1r14*q1,
212 y15[t] -> A1r15*q1, y16[t] -> A1r16*q1 }]]
213 EoMmod1 = D[Vmode1, q1]
214

215 In[77]:= Vmode2 = V;
216 Vmode2 = Chop[
217 Expand[Vmode2 /. {y1[t] -> A2r1*q2, y2[t] -> A2r2*q2,
218 y3[t] -> A2r3*q2, y4[t] -> A2r4*q2, y5[t] -> A2r5*q2,
219 y6[t] -> A2r6*q2, y7[t] -> A2r7*q2, y8[t] -> A2r8*q2,
220 y9[t] -> A2r9*q2, y10[t] -> A2r10*q2, y11[t] -> A2r11*q2,
221 y12[t] -> A2r12*q2, y13[t] -> A2r13*q2, y14[t] -> A2r14*q2,
222 y15[t] -> A2r15*q2, y16[t] -> A2r16*q2 }]];
223 EoMmod2 = D[Vmode2, q2]
224 Vmode3 = V;
225 Vmode3 = Chop[
226 Expand[Vmode3 /. {y1[t] -> A3r1*q3, y2[t] -> A3r2*q3,
227 y3[t] -> A3r3*q3, y4[t] -> A3r4*q3, y5[t] -> A3r5*q3,
228 y6[t] -> A3r6*q3, y7[t] -> A3r7*q3, y8[t] -> A3r8*q3,
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229 y9[t] -> A3r9*q3, y10[t] -> A3r10*q3, y11[t] -> A3r11*q3,
230 y12[t] -> A3r12*q3, y13[t] -> A3r13*q3, y14[t] -> A3r14*q3,
231 y15[t] -> A3r15*q3, y16[t] -> A3r16*q3 }]];
232 EoMmod3 = D[Vmode3, q3]
233 Vmode4 = V;
234 Vmode4 = Chop[
235 Expand[Vmode4 /. {y1[t] -> A4r1*q4, y2[t] -> A4r2*q4,
236 y3[t] -> A4r3*q4, y4[t] -> A4r4*q4, y5[t] -> A4r5*q4,
237 y6[t] -> A4r6*q4, y7[t] -> A4r7*q4, y8[t] -> A4r8*q4,
238 y9[t] -> A4r9*q4, y10[t] -> A4r10*q4, y11[t] -> A4r11*q4,
239 y12[t] -> A4r12*q4, y13[t] -> A4r13*q4, y14[t] -> A4r14*q4,
240 y15[t] -> A4r15*q4, y16[t] -> A4r16*q4 }]];
241 EoMmod4 = D[Vmode4, q4]
242 Vmode5 = V;
243 Vmode5 = Chop[
244 Expand[Vmode5 /. {y1[t] -> A5r1*q5, y2[t] -> A5r2*q5,
245 y3[t] -> A5r3*q5, y4[t] -> A5r4*q5, y5[t] -> A5r5*q5,
246 y6[t] -> A5r6*q5, y7[t] -> A5r7*q5, y8[t] -> A5r8*q5,
247 y9[t] -> A5r9*q5, y10[t] -> A5r10*q5, y11[t] -> A5r11*q5,
248 y12[t] -> A5r12*q5, y13[t] -> A5r13*q5, y14[t] -> A5r14*q5,
249 y15[t] -> A5r15*q5, y16[t] -> A5r16*q5 }]];
250 EoMmod5 = D[Vmode5, q5]
251 Vmode6 = V;
252 Vmode6 = Chop[
253 Expand[Vmode6 /. {y1[t] -> A6r1*q6, y2[t] -> A6r2*q6,
254 y3[t] -> A6r3*q6, y4[t] -> A6r4*q6, y5[t] -> A6r5*q6,
255 y6[t] -> A6r6*q6, y7[t] -> A6r7*q6, y8[t] -> A6r8*q6,
256 y9[t] -> A6r9*q6, y10[t] -> A6r10*q6, y11[t] -> A6r11*q6,
257 y12[t] -> A6r12*q6, y13[t] -> A6r13*q6, y14[t] -> A6r14*q6,
258 y15[t] -> A6r15*q6, y16[t] -> A6r16*q6 }]];
259 EoMmod6 = D[Vmode6, q6]
260

261 In[92]:= Vmode12 = V;
262 Vmode12 =
263 Expand[Vmode12 /. {y1[t] -> A1r1*q1 + A2r1*q2,
264 y2[t] -> A1r2*q1 + A2r2*q2, y3[t] -> A1r3*q1 + A2r3*q2,
265 y4[t] -> A1r4*q1 + A2r4*q2, y5[t] -> A1r5*q1 + A2r5*q2,
266 y6[t] -> A1r6*q1 + A2r6*q2, y7[t] -> A1r7*q1 + A2r7*q2,
267 y8[t] -> A1r8*q1 + A2r8*q2, y9[t] -> A1r9*q1 + A2r9*q2,
268 y10[t] -> A1r10*q1 + A2r10*q2, y11[t] -> A1r11*q1 + A2r11*q2,
269 y12[t] -> A1r12*q1 + A2r12*q2, y13[t] -> A1r13*q1 + A2r13*q2,
270 y14[t] -> A1r14*q1 + A2r14*q2, y15[t] -> A1r15*q1 + A2r15*q2,
271 y16[t] -> A1r16*q1 + A2r16*q2 }]
272 EoM1mod1a2 = Chop[D[Vmode12, q1] - EoMmod1]
273

274 In[129]:= Vmode13 = V; Vmode13 =
275 Expand[Vmode13 /. {y1[t] -> A1r1*q1 + A3r1*q3,
276 y2[t] -> A1r2*q1 + A3r2*q3, y3[t] -> A1r3*q1 + A3r3*q3,
277 y4[t] -> A1r4*q1 + A3r4*q3, y5[t] -> A1r5*q1 + A3r5*q3,
278 y6[t] -> A1r6*q1 + A3r6*q3, y7[t] -> A1r7*q1 + A3r7*q3,
279 y8[t] -> A1r8*q1 + A3r8*q3, y9[t] -> A1r9*q1 + A3r9*q3,
280 y10[t] -> A1r10*q1 + A3r10*q3, y11[t] -> A1r11*q1 + A3r11*q3,
281 y12[t] -> A1r12*q1 + A3r12*q3, y13[t] -> A1r13*q1 + A3r13*q3,
282 y14[t] -> A1r14*q1 + A3r14*q3, y15[t] -> A1r15*q1 + A3r15*q3,
283 y16[t] -> A1r16*q1 + A3r16*q3 }]
284 EoM1mod1a3 = Chop[D[Vmode13, q1] - EoMmod1]
285

286

287 In[95]:= Vmode14 = V; Vmode14 =
288 Expand[Vmode14 /. {y1[t] -> A1r1*q1 + A4r1*q4,
289 y2[t] -> A1r2*q1 + A4r2*q4, y3[t] -> A1r3*q1 + A4r3*q4,
290 y4[t] -> A1r4*q1 + A4r4*q4, y5[t] -> A1r5*q1 + A4r5*q4,
291 y6[t] -> A1r6*q1 + A4r6*q4, y7[t] -> A1r7*q1 + A4r7*q4,
292 y8[t] -> A1r8*q1 + A4r8*q4, y9[t] -> A1r9*q1 + A4r9*q4,
293 y10[t] -> A1r10*q1 + A4r10*q4, y11[t] -> A1r11*q1 + A4r11*q4,
294 y12[t] -> A1r12*q1 + A4r12*q4, y13[t] -> A1r13*q1 + A4r13*q4,
295 y14[t] -> A1r14*q1 + A4r14*q4, y15[t] -> A1r15*q1 + A4r15*q4,
296 y16[t] -> A1r16*q1 + A4r16*q4 }]
297 EoM1mod1a4 = Chop[D[Vmode14, q1] - EoMmod1]
298

299 In[97]:= Vmode15 = V; Vmode15 =
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300 Expand[Vmode15 /. {y1[t] -> A1r1*q1 + A5r1*q5,
301 y2[t] -> A1r2*q1 + A5r2*q5, y3[t] -> A1r3*q1 + A5r3*q5,
302 y4[t] -> A1r4*q1 + A5r4*q5, y5[t] -> A1r5*q1 + A5r5*q5,
303 y6[t] -> A1r6*q1 + A5r6*q5, y7[t] -> A1r7*q1 + A5r7*q5,
304 y8[t] -> A1r8*q1 + A5r8*q5, y9[t] -> A1r9*q1 + A5r9*q5,
305 y10[t] -> A1r10*q1 + A5r10*q5, y11[t] -> A1r11*q1 + A5r11*q5,
306 y12[t] -> A1r12*q1 + A5r12*q5, y13[t] -> A1r13*q1 + A5r13*q5,
307 y14[t] -> A1r14*q1 + A5r14*q5, y15[t] -> A1r15*q1 + A5r15*q5,
308 y16[t] -> A1r16*q1 + A5r16*q5 }]
309 EoM1mod1a5 = Chop[D[Vmode15, q1] - EoMmod1]
310

311 In[99]:= Vmode16 = V; Vmode16 =
312 Expand[Vmode16 /. {y1[t] -> A1r1*q1 + A6r1*q6,
313 y2[t] -> A1r2*q1 + A6r2*q6, y3[t] -> A1r3*q1 + A6r3*q6,
314 y4[t] -> A1r4*q1 + A6r4*q6, y5[t] -> A1r5*q1 + A6r5*q6,
315 y6[t] -> A1r6*q1 + A6r6*q6, y7[t] -> A1r7*q1 + A6r7*q6,
316 y8[t] -> A1r8*q1 + A6r8*q6, y9[t] -> A1r9*q1 + A6r9*q6,
317 y10[t] -> A1r10*q1 + A6r10*q6, y11[t] -> A1r11*q1 + A6r11*q6,
318 y12[t] -> A1r12*q1 + A6r12*q6, y13[t] -> A1r13*q1 + A6r13*q6,
319 y14[t] -> A1r14*q1 + A6r14*q6, y15[t] -> A1r15*q1 + A6r15*q6,
320 y16[t] -> A1r16*q1 + A6r16*q6 }]
321 EoM1mod1a6 = Chop[D[Vmode16, q1] - EoMmod1]

F.2.2. Modal EoMs of strings

1 (*Displacements*)
2 ux = D[u[x], x]; vx = D[v[x], x]; wx = D[w[x], x];
3 ds = ((1 + ux)^2 + vx^2 +
4 wx^2)^0.5; (*this is initial formulation of the stretched element*)
5 dsux = Normal[
6 Series[ds, {ux, 0,
7 1}]];(*this is initial formulation of the stretched element series ux*)
8 dsvx = Normal[Series[dsux, {vx, 0, 3}]];
9 dswx = Normal[Series[dsvx, {wx, 0, 3}]]

10 dsdx = Expand[dswx] /. ux*vx^2 -> 0 /. ux*wx^2 -> 0 /.
11 vx^2*wx^2 -> 0 (*Taylor expansion of ds/dx*)
12

13 dxds = Expand[
14 Normal[Series[
15 Series[Series[1/dsdx, {ux, 0, 2}], {vx, 0, 2}], {wx, 0,
16 2}]]] /. ux*vx^2 -> 0 /. ux*wx^2 -> 0 /. vx^2*wx^2 -> 0 /.
17 ux^2 vx^2 -> 0 /. ux^2 wx^2 -> 0(*this is dx/ds*)
18

19 T = Simplify[(T0 + EA*(dsdx - 1))] ;(*Tension*)
20 (*Tension in each direction*)
21 Tx = T*(1 + ux)*dxds; Tx =
22 Chop[Expand[Tx] ] /. {ux^2 -> 0, ux^3 -> 0, ux^4 -> 0, ux*vx^2 -> 0,
23 ux*wx^2 -> 0, vx^4 -> 0, ux *vx^4 -> 0, vx^2 wx^2 -> 0, wx^4 -> 0,
24 ux*wx^4 -> 0}(*x-dir strain is 1+ux*)
25 Ty = T*vx*dxds; Ty =
26 Chop[Expand[Ty] /. {ux^2 -> 0, ux^3 -> 0, ux*wx^2*vx -> 0,
27 wx^4*vx -> 0, ux*vx^3 -> 0, wx^2*vx^3 -> 0, vx^5 -> 0}]
28 Tz = T*wx*dxds; Tz =
29 Chop[ Expand[Tz] /. {ux^2 -> 0, ux^3 -> 0, ux*vx^2*wx -> 0,
30 vx^4*wx -> 0, ux*wx^3 -> 0, vx^2*wx^3 -> 0, wx^5 -> 0}]
31

32 (*EoM in each direction*)
33 EoMx = Simplify[m*D[D[u[t], t], t] - D[Tx, x]]; EoMx = EoMx
34 EoMy = Simplify[m*D[D[v[t], t], t] - D[Ty, x]]; EoMy =
35 EoMy /. {-1.5*EA + 1.5*T0 -> -1.5*EA, -0.5*EA + 0.5*T0 -> -0.5*
36 EA, -1.*EA + 1.*T0 -> -1.*
37 EA} (*This latter assumes that EA>>T0*)
38 EoMz = Simplify[m*D[D[w[t], t], t] - D[Tz, x]]; EoMz =
39 EoMz /. {-1.5*EA + 1.5*T0 -> -1.5*EA, -0.5*EA + 0.5*T0 -> -0.5*
40 EA, -1.*EA + 1.*T0 -> -1.*
41 EA}(*This latter assumes that EA>>T0*)
42 EoMx = Chop[EoMx /. {T0 -> 0, u``[t] -> 0}]; EoMx =
43 Simplify[EoMx/(1.*EA)] (*Here we assume that EA>>T0 and utt = 0*)
44 d2udx2 = Simplify[EoMx + 1. u``[x]]
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45

46 (*Calculate modal EoM*)
47 weight = Sin[3*Pi*x/L]; (*Galerkin's weight Function of mode 3*)
48 V[x] = Sin[1*Pi*x/L]*q1y[t] + Sin[2*Pi*x/L]*q2y[t] +
49 Sin[3*Pi*x/L]*q3y[t]; (*Transverse displ. of modes 1, 2 and 3*)
50 dVdx = D[V[x], x];
51 d2Vdx2 = D[D[V[x], x], x];
52 d2Vdt2 = D[D[V[x], t], t];
53 W[x] = Sin[1*Pi*x/L]*q1z[t] + Sin[2*Pi*x/L]*q2z[t] +
54 Sin[3*Pi*x/L]*q3z[t]; (*Vertical displ. of modes 1, 2 and 3*)
55 dWdx = D[W[x], x];
56 d2Wdx2 = D[D[W[x], x], x];
57 d2Wdt2 = D[D[W[x], t], t];
58 d2Udx2 = -0.5*D[dVdx^2 + dWdx^2, x];
59 dUdx = -0.5*(dVdx^2 + dWdx^2) + (1/(2*L)) Integrate[
60 dVdx^2 + dWdx^2, {x, 0, L}];
61 U = -0.5*Integrate[(dVdx^2 + dWdx^2), {x, 0,
62 x}] + (x/(2*L)) Integrate[dVdx^2 + dWdx^2, {x, 0, L}];
63 prefacV = Integrate[weight*d2Vdt2, {x, 0, L}]/D[D[q1y[t], t], t]; (*Pre-factor = ...

modal mass*)
64 EoMVtot =
65 d2Vdt2 - 1.5* (EA/m)* (dVdx^2)* d2Vdx2 - (T0/m)*d2Vdx2 - (EA/m) *
66 dUdx*d2Vdx2 -
67 0.5*(EA/m) *(dWdx^2)*d2Vdx2 - (EA/m) *dVdx*d2Udx2 - (EA/m)*dVdx*
68 dWdx*d2Wdx2; (*Total EoM- transverse*)
69 EoMmodalV = Chop[Expand[Integrate[weight*EoMVtot, {x, 0, L}]]];
70 EoMmodalV = Expand[EoMmodalV/prefacV] (*Modal result*)
71 prefacW = Integrate[weight*d2Wdt2, {x, 0, L}]/D[D[q1z[t], t], t]; (*Pre-factor = ...

modal mass*)
72 EoMWtot =
73 d2Wdt2 - 1.5* (EA/m)* (dWdx^2)* d2Wdx2 - (T0/m)*d2Wdx2 - (EA/m) *
74 dUdx*d2Wdx2 -
75 0.5*(EA/m) *(dVdx^2)*d2Wdx2 - (EA/m) *dWdx*d2Udx2 - (EA/m)*dWdx*
76 dVdx*d2Vdx2;(*Total EoM- vertical*)
77 EoMmodalW = Chop[Expand[Integrate[weight*EoMWtot, {x, 0, L}]]];
78 EoMmodalW = Expand[EoMmodalW/prefacW]
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