Delft
e t University of
Technology

A Master Thesis presented to
Delft University of Technology
Faculty of Computer Engineering

Techniques for Memory Mapping on
Multi-Core Automotive Embedded

Systems

For the Degree
Master of Science (M.Sc.) Embedded Systems

By Rakshith Amarnath

Master Thesis Number: | CE-MS-2012-07 |
Date of commencement: 01.10.2011
Date of submission: 08.06.2012

Abstract

The demand to increase performance while conserving power has led to the invention of multi-
core systems. The software until now had the convenience of gaining better performance over
faster processors without any need for a change. The advances in the multi-core hardware
have shifted the responsibility of software performance from hardware architects to software
developers. To harness the true power of the multi-core, the software must utilize the available
cores and memories. In this thesis, we focus on the issue of multi-core memory mapping

which is an area of active research.

The availability of multiple memories creates several possibilities for memory mapping. Fur-
ther, with an increase in the number of memories and application parameters there is an
exponential increase in the number of possible mappings. In this context, the challenge is to
find techniques which automate the process of finding an efficient mapping for a given use
case. The use case under consideration is an automotive software running on a multi-core
electronic control unit (ECU). The proposed techniques help to optimize memory accesses by
performing efficient memory mapping and reduce the runtime on a system which employs a

non uniform memory access (NUMA) characteristic.

The optimal memory mapping problem is NP-complete, it is tackled using integer linear pro-
gramming (ILP) for smaller problems and heuristics to practically solve bigger problems. We
also propose metaheuristics as an add-on to mitigate the drawbacks of ILP and heuristics.
The experiments on the dual-core ECU hardware show that our flash memory mapping tech-
niques reduce runtime by 2.76% when caches are enabled and up to 8.73% when caches are
disabled. Also, the benefit of the ILP technique for RAM is 50.48% when compared to the
placement of all the variables in global RAM.

Acknowledgments

“No Man is an Island” and there are many people whom I would like to thank. First
and foremost, I would like to thank my parents and well-wishers who supported me

during crucial times when I wanted to pursue my higher studies abroad.

I am very grateful to my supervisors Mr. Simon Kramer, Dr. Zaid Al-Ars and my
energetic manager Dr. Jochen Haerdtlein. I thoroughly enjoyed the brainstorming
sessions we had and you always helped me in thinking better. My research was care-
fully supervised by Simon and I thank him very much for his advise, patience and
support. I thank professor Zaid for his cheerful cooperation, guidance and help with
the administrative formalities. My good friend Soeren Braunstein helped me in various
phases of the thesis both professionally and emotionally. Thank you Soeren. I thank
all my reviewers who took painstaking efforts in identifying the preliminary errors in
my report and also my multi-core team members who gave valuable inputs during our

team meetings.

I express my gratitude to the Bosch organization for giving me this wonderful op-
portunity to perform research. Sincere thanks to Delft University of Technology, its
motivating faculty and the Erasmus study abroad program. I am lucky to have good
friends who made my stay in Germany and Netherlands a memorable one and I also
thank them wholeheartedly.

Contents

(1__Introduction 1
(1.1 _Research Incentives 2
(1.2 Problem Statement and Contributionsl 2
(.3 Thesis Outlinel. 4

2 Background| 5
2.1 Trends in Automotivel.o 5
22 Multi-Corel. 6

R21 Trendd 6
2.2.2 Overview of Architectures 7
2.2.3 Multi-Cores in Automotivel 8
2.3 Related Worklo 9
2.4 Summary| 13

[3 Techniques for Memory Mapping] 14

[3.1 The Memory Mapping Process|. 15
[3.1.1 Terminology| 15
[3.1.2 Memory Mapping| 16
[3.1.3 Memory Mapping Strategies| 17
[3.1.4 Steps in Memory Mapping| 19
[3.1.50 Mapping of Stack Datal 19

(3.2 ILP Formulation for Memory Mapping| 23
[3.2.1 Notationsl 23
3.2.2 Formulation|o 24
[3.2.3 Assumptions|. oo 26

[3.3 Greedy Heuristics tor Memory Mapping|.

[3.3.1 Greedy Heuristic for the Placement of Mapping Parameters|

[3.3.2 Assumptions|.
(3.4 Practical Considerations
[3.5 Summary|

Memory Mapping for an ECU|

[4.1 Environment and Setup|
[4.1.1 Application| o o
4.1.2 Workstationl oo
[4.1.3 Target Hardwarel
[4.1.4 Settings for Theoretical Evaluation|

4.2 Theoretical Evaluationl L.
[4.2.1 ILP versus Greedy Heuristics|
4.2.2 Selecting an Algorithm| 0.
[4.2.3 Algorithm versus Naive Mapping|
[4.3.1 The Effect of Distributing Parameters in Flash[.
[4.3.2 The Effect of Distributing Parameters in RAM|.

4.4 Summary|

Refinement using Metaheuristics|

[b.3.1 Operating Principle|. 000000
[0.3.2 Design|
[>.3.3 Assumptions|.
Hh.4 Metaheuristic Ilo
[>.4.1 Operating Principle].
[0.4.2 Designl
[b.4.3 Assumptions|.
.o PFvaluationlo
[5.6 Summary|

(G.1 Main Working Topics of the AUTOSAR] .
|G.2 AUTOSAR Layered Sottware Architecture

Introduction

A modern passenger car hosts several embedded systems and offers a wide range of
vehicle safety and comfort features such as anti-lock braking system (ABS), electronic
stability control (ESC), engine control, and adaptive cruise control (ACC) among oth-
ers. These features are provided by electronic control units (ECUs) alongside sensors
and actuators. The term ECU refers to microcontroller hardware plus the real-time
automotive software. In contrast with traditional mechanically controlled systems,
modern drive by wire systems are software controlled. The automotive software runs
entirely on a single core in the current generation ECUs. Due to the increasing demand
for performance and features, the embedded market has turned towards multi-core
technology for efficacy. The paradigm shift brought by the multi-core revolution has
changed the way we manage and run the software. The multiple cores and memor-
ies create numerous possibilities in their usage. The challenge lies in the selection
of the best solution from a large set of solutions. Thus, efficient software techniques
are needed to utilize hardware resources of multi-core. In this thesis we focus on
techniques to solve the challenges that arise in effectively utilizing the memories of
a multi-core embedded system. Though the automotive use case is the target, the
concepts can be suitably adapted to other fields with similar challenges. This chapter
highlights the research incentives, problem statement and the thesis outline.

1 Introduction

1.1 Research Incentives

Modern ECUs running intensive software applications demand high performance from
the hardware. In a uniprocessor, the performance improvement was achieved by in-
creasing the clock frequency. This trend could no longer be continued because of
diminishing returns in performance, mainly due to: the difficulties in exploiting fur-
ther benefits from instruction level parallelism, increasing gap between processor and
memory speeds, and abnormal increase in power dissipation with increasing frequency.
An answer to these technological challenges is the multi-core architecture. The term
multi-core refers to the processing technology which integrates multiple processor cores

on a single die of silicon to provide improved performance at lower power.

Since the introduction of multi-core hardware, the burden of software performance
has shifted from hardware architects to software developers [25], and this is driving
research towards development of techniques to parallelize the application which effi-
ciently utilize the available cores and memories. Further, the trends in automotive
standardization such as AUTomotive Open System Architecture (AUTOSAR) also
help to identify inherent parallelism by organizing the software architecture into in-
dependent layers. Reducing the dependency between software modules allows for an
effective usage of multi-cores. These incentives and trends are driving the automotive

industry to switch towards multi-core.

1.2 Problem Statement and Contributions

Software design for multi-core is extensively studied in the automotive industry. In the
central area of research and development at Robert Bosch GmbH, our team specializes
in the development of software methods that assist the migration of legacy automotive

software towards multi-core.

To efficiently utilize the cores and memories, the tasks E] (work-loads) have to be
distributed and the memory has to be allocated. These activities are called task
distribution and memory mapping respectively and there is no rule of thumb dictating
the order of performing them. It is important to note that both the activities are
interlinked i.e. the location where the memory is allocated for a task depends on

TA task is the smallest schedulable unit managed by the OS

1 Introduction

the core to which the task is assigned and vice versa. However, performing task
distribution and memory mapping together results in a problem of bigger complexity.
Therefore, in our research group, we have decided to distribute tasks first and then
map the memory. Task distribution is already studied and thus the central focus of
this thesis is memory mapping on multi-core ECUs.

The benefit from task distribution is partial because the memory now forms the bot-
tleneck for further performance benefits when all the cores access the same memory.
The bottleneck increases the memory access time of the application and also leads to
indeterministic task response times which cannot be tolerated in safety critical embed-
ded systems where predictability is also a requirement. In addition, the importance
of memory mapping is high when the memory access time is a significant fraction of
the total program execution time. This is true especially for software intensive auto-
motive applications which frequently access memory. Therefore, after the tasks are
distributed, distributing the memory allocation forms the next crucial step towards

performance optimization in multi-core.

Memory mapping can be done in several ways. A random mapping creates sub-par
application performance especially in architectures where the memory accesses are
not uniform. Such architectures are termed as non uniform memory access (NUMA)
where the distance of a memory from the core determines its access time and thus
local memories can be accessed faster than remote ones. Therefore, on these architec-
tures, it becomes important to leverage the data access locality and choose optimum
placement. But optimal memory placement is guaranteed when all the application
parameters are examined for their placement in different memories before choosing
the best placement. One approach is to manually examine all possibilities to find out
the best placement which becomes laborious and impractical when either the number
of application parameters or the number of memories change. The other approach
is to avoid rework by automating the memory mapping process by using algorithms.
The challenge lies in providing efficient techniques that scale well with the underlying
architecture.

Multi-core machines featuring several cores and memories inevitably use the NUMA
architecture [24] [15]. Lack of memory mapping or sub-optimal memory layout creates
severe bottlenecks in memory accesses and hinders performance. It is desirable to
distribute the memory accesses in such a way that locality of accesses are preserved
and remote accesses are reduced. Therefore it is important for task distribution to
be backed up by memory mapping. This brings us to the main problem statement of

1 Introduction

this thesis: “To design scalable techniques which perform efficient memory
mapping on multi-core systems” where we hypothesize that: efficient memory
mapping techniques help to reduce the total memory access time of a parallelized
application which runs on a multi-core NUMA machine.

Optimal memory placement is a problem of NP-complete complexity [23], 21]. With
an increase in problem size (number of memories or number of parameters to be
mapped), there is an exponential increase in complexity making optimal solutions
impractical. For the memory mapping problem on NUMA machines, our contributions
are as follows: we use Integer Linear Programming (ILP) to provide optimal mapping
for smaller problems and use heuristics (greedy heuristics) when ILPs are intractable.
We apply these techniques to an automotive application and show the benefits by
performing measurements on the ECU hardware. In addition, we improve on ILP and
heuristic techniques to provide metaheuristics as an add on.

1.3 Thesis Outline

In this chapter, we have highlighted the research incentives and the problem state-
ment. The rest of the thesis is structured as follows: Chapter [2] gives the background
where the trends in automotive and multi-core are discussed along with the existing
techniques in the field of NUMA memory mapping. In Chapter [3] the techniques of
ILP and greedy heuristics for memory mapping are presented. Chapter [4] describes the
experiments that indicate the benefits of using our memory mapping techniques on an
ECU. In Chapter [5], we refine the earlier techniques by proposing meta-heuristics and
in Chapter [6] we end the thesis with the conclusions and recommendations for future
work.

2

Background

This chapter describes the trends in the automotive domain, brief background about
multi-core and existing research related to the memory mapping problem.

2.1 Trends in Automotive

The increasing complexity of software in automotive systems has given rise to stand-
ardized software architectures. This is one of the primordial reasons for the genesis of
AUTOSAR. The AUTomotive Open System Architecture (AUTOSAR) provides an
open and standardized automotive software architecture which is jointly developed by
automobile manufacturers, suppliers and tool developers [4]. Currently the AUTO-
SAR consortium has organizations like BMW, Bosch Group etc as its core partners
and several other members. AUTOSAR is responsible for setting the standards which
serves as a platform on which automotive applications can be developed.

“Cooperate on standards, compete on implementation” is the simple and powerful
idea behind AUTOSAR. Thus AUTOSAR compliant software aims towards reducing
complexity of integration while improving the flexibility, quality and reliability. The
benefits of the AUTOSAR is not only restricted to original equipment manufacturers
(OEMs) but also to suppliers and tool providers. The OEMSs benefit by enhanced

design flexibility, reuse of software modules across variants, simplified integration and

2 Background

reduced development costs. The supplier benefits from reduction of version prolifera-
tion and the ease of functional development. And finally the tool providers can now
develop seamless and optimized landscapes for tools. Thus, AUTOSAR allows for a
smoother integration, exchangeability between supplier’s solution and manufacturer’s
applications while also allowing exchangeability between vehicle platforms. Further
information related to the main working topics of AUTOSAR and its layered software
architecture is included in the Appendix [G|

2.2 Multi-Core

As seen in research incentives there is a demand for better performance with lower
power consumption. The only solution for such requirement is the shift towards multi-
cores and this section we highlight the multi-core trends, architectures and their usage

in automotive industry.

2.2.1 Trends

In processors with a single core, the increase in performance was brought by increas-
ing the most important factor, the clock frequency. Software development on these
machines was under the assumption that every processor generation would run much
faster than its predecessor [25]. This era of steady growth of single processor per-
formance is over due to the practical limits on power dissipation and the lack of
exploitable instruction-level parallelism. Figure shows different techniques to in-
crease processor performance using higher clock frequencies or more transistor gates
(circuitry). It is seen that multi-core has better performance per milliwatt. Therefore,
the common practice to increase processor performance is by placing multiple compu-
tational cores on one die, the multi-core architecture. Multi-core was initially targeted
towards desktop computing but new devices for embedded applications are increas-
ingly adopting multi-core architectures [16]. In future, it is expected that multi-core
chips will be readily available at a cheaper price due to large-scale manufacturing by
all device vendors.

2 Background

4.0

35
3.0
2.5
2.0
15
1.0 1
0.5 +
0.0 -
Reference =1 CPU @ f 2 CPUs @ f MHz 1 CPU w/ 2x gates @ 1.41f 1 CPU w/ 3x gates @ 1.15f 1 CPU w/ 4x gates @ 1.00f
MHz MHz MHz MHz

® Aggregate Performance ™ Power

Figure 2.1: This figure shows the alternatives to improve performance. It is seen that
by increasing the clock frequency or increasing the number of gates (tran-
sistors), power dissipation problems overshadow the performance benefit
[16].

2.2.2 Overview of Architectures

Multiprocessors differ from multi-core architectures where the latter implements the
features of former in a single package or chip (a die of silicon). For this reason, multi-
core is also known as chip-level multi-processor (CMP). As per Flynn’s taxonomy,
a multi-core machine is classified as a multiple instruction, multiple data (MIMD) E|
processor. The interconnect is the medium responsible for the connection between
cores. Depending on the cores used, we can distinguinsh two types of multi-core
architecture i.e. homogeneous and heterogeneous. In homogeneous multi-core, the
cores have the similar processor and instruction-set architecture for example - Intel
Core 2 Quad Processors [19]. Heterogeneous multi-core on the other hand contains
at least one core that has a different or customized architecture for example - the
Cell Broadband Engine [12]. Of late, there is a new trend where a system employing
several tens of cores are regarded as many-core. We do not distinguish them in this

thesis and regard both types as multi-cores hereafter.

The memory subsystem in a multi-core architecture can be configured in several ways.
Based on how the memory is accessed, they can be classified either as uniform memory
access (UMA) or as non-uniform memory access (NUMA) machines. The differences
between these multi-core memory architectures are shown in Figure In UMA

architectures, memory accesses are uniform or symmetric i.e. all cores require same

I'Multiple autonomous processors simultaneously execute different instructions on different data.

2 Background

time to access memories. For example, central shared memory equally accessible by
all the cores. In NUMA machines, the accesses to the memories are not uniform
i.e. some accesses are faster than the others. This difference is due to the fact that
memory access time depends on the distance of a memory from the processor. In such
case, the cores have faster access to local memories than to remote memories. It is
the presence of NUMA architecture which makes memory mapping an important step
and the ignorance of NUMA can result in sub-par application memory performance

NUMA
Core 0 Core 1 Core 0 Core 1

Interconnect

Local Memory Local Memory

Central Shared Memory : : ::

Interconnect

Figure 2.2: In UMA, accesses from cores to central shared memory is uniform. In
NUMA, a core can access its local memory directly via a fast bus but the
requests to the local memory of other cores have to be routed through the
interconnect. This leads to non uniform memory access.

2.2.3 Multi-Cores in Automotive

The automotive industry uses a customized microcontroller multi-core architecture.
Since predictability is a key requirement for these real-time systems, the hardware
varies widely in comparison to general purpose multi-core machines. The software is
static in nature i.e. the schedule sequence and priorities are fixed and there is no need

2 Background

for hardware supported features such as memory management and virtual memory.
In some cases, though there are hardware features like branch prediction and caches
to support better average case performance, their usage is very restricted as it hinders

determinism.

A UMA machine does not scale well with cores due to the bottleneck in accessing
memory. Keeping the future scalability into account, microcontrollers in the automot-
ive domain are expected to have NUMA architectures. In some cases vendors adopt a
hybrid approach where they offer symmetric access to some and asymmetric accesses
to other memories. The Infineon TriCore system is an example and from [I8], it is
seen that the local memory of a core forms the level 1 (L1) of the hierarchy and has
the fastest access from that core. Remote memory (memory not local to the core)

forms the level 2 (L2) of the hierarchy and thus take longer time to access.

AUTOSAR has specifications for multi-core hardware and memory. The hardware
assumption by the AUTOSAR indicates that cores should have identical Instruction
Set Architecture (ISA) and identical data representation. The memory is accessible
to all the cores using a single address space. These guidelines dictate the design of
multi-core hardware in the future.

Though there can be many customized hardware implementations, our hardware
primarily uses flash as a storage medium for read only data and Static Random Access
Memory (SRAM) to store the read write data. Since the memory capacity require-
ments of our systems is small, the hardware hosts all the memories on the chip and
does not use off-chip or external memory interfaces, though this possibility is offered.
The techniques proposed in this thesis can also be extended to other architectural

configuration.

2.3 Related Work

In modern multi-core machines which scale to a large number of processors, non uni-
formity of memory access has become an inevitable feature of memory architecture
thus giving rise to NUMA. One implication of the NUMA architectural design decision
is that the placement and movement of code and data become crucial to performance
[24]. Therefore “Data Locality” dictates the performance on NUMA machines. This
problem is a topic of extensive research and this section highlights some of the related

work referred during literature analysis.

2 Background

The problem of placing data between on-chip and off-chip memory is studied by Panda
et al. in [30] where a strategy to partition variables of an application code is presented.
The goal is to minimize the total execution time of embedded applications by tech-
niques which efficiently make use of on-chip scratch-pad RAM (SPRAM). Memory on
the chip refers to either cache or SPRAM. Though cache and SPRAMs are in most
cases made of static random access memory (SRAM), their functionality is contrast-
ing. Caches flush in and flush out data resulting in an uncertainty (hit or miss) of
finding the data in cache. This is done to exploit locality of reference in order to
improve the average memory access time. On the other hand, data used in SPRAMs
are guaranteed to be present during the lifetime of the program and there is no un-
certainty. At first, the decision regarding placement of variable on or off the chip
is analyzed. Variables placed on the chip are further examined for conflict misses
in cache placement. Conflicting variables are identified and mapped to SPRAMs.
Then, variables possessing high locality of reference and fewer conflicts are placed in
cache. From benchmark experiments, they show that efficient distribution of memory
between cache and SPRAM resulted in improved performance. The work done by
Panda et al. in [30] and [29] gives a good starting point to understand the benefits of
optimum memory placement in embedded systems and memory exploration strategies.
In this thesis, memory exploration is not possible as we use packaged (off-the-shelf)
processors. Thus keeping NUMA architecture and memory placement as the focus,

we refer to other related works.

Avissar et al. in [8] propose an efficient compiler method by modeling the problem as
a 0/1 ILP to distribute data among several memory units in an embedded processor.
They target embedded systems with scratchpad memories without caches. The ILP
formulated has the objective of minimizing the total memory access time of all the
memory accesses in the application. The work done by Avissar et al. has majorly
influenced the ILP formulation of this thesis. This formulation is suitably adapted to
handle multi-core use case and is discussed in subsequent chapters. It is claimed in the
paper that for large programs with few thousand variables, the ILP is fast. But even
a small sized automotive application considered in this thesis takes a huge amount
of time and in some case the ILP does not give a solution when the constraints are
too strict. These experiments are discussed later. Due to the exponential increase
in problem complexity, it is evident that big problems (many-core use case) cannot
be solved using ILP and hence we also propose heuristics to give practical solutions
to it. Despite a few shortcomings, their work provides a starting point for the ILP
formulation in this thesis.

10

2 Background

The exploration of on-chip memory architecture for embedded System-on-Chip (SoC)
is discussed in [23]. This work deals with exploration of memory architecture and
data layout optimization of the explored architecture. We only refer the data layout
optimization as it is the main topic of this thesis. The author considers a Digital Signal
Processor (DSP) and an on-chip memory architecture which is organized as multiple
memory banks. DSPs typically have two or more address generation units and multiple
on-chip buses to facilitate multiple memory accesses. It is for this reason, the memories
are organized into multiple banks to facilitate simultaneous data accesses. In contrast
to DSPs, we have microcontroller units (MCUs) that generate only one memory access
per cycle. Therefore the memories of cost effective MCUs seldom have multiple banks.
However, the introduction of multi-core now offers the possibility of more than one
access (by two different cores). The work done in [23] focuses on data dominated
DSP applications rather on control-dominated MCU applications. Their techniques
involve an ILP formulation, formulation of a genetic algorithm (GA) and a heuristic
for optimizing the data layout. There is a notable difference in the their approaches
and this thesis. The author is able to get the number of simultaneous accesses to data
sections and uses this as an input to minimize memory access stalls due to conflicting
access of data sections placed in the same memory bank. However, the same technique

cannot be used in our case for these reasons:

1. Simultaneous accesses depend on task distribution. Profiling for simultaneous
accesses is a tedious process and it has to be repeated for every change in task
distribution.

2. Different relationships between the use cases. In case of DSP, there is a one to
many relationship - i.e. one processor needs different data in one cycle. But in
multi-core MCU, there is many to one relationship - i.e. many different cores
contend on the memory when they need same data. And problem arises when
this data (neglecting duplication) resides on only one memory.

Therefore in this thesis, the attempt to minimize contention is stochastically performed
by calculating probabilities of contention. This aspect is discussed later during the
design of meta-heuristics.

Automatic optimization in using memory resources of high performance, scalable com-
puting systems has been studied in [I4]. The allocation problem is viewed as a com-
bination of optimal packing problem and contention reduction problem. The problem
is encoded such that it is manipulated by a GA. The GA starts assuming a random

11

2 Background

initial population, then via the process of crossover (60%) and mutation (40%), evolves
the population and selects the best candidate while maintaining diverse population at
the same time. The work has adopted different encoding mechanisms such as integer
encoding and order encoding to solve the memory mapping problem. In their work,
we see the application of GAs to solve the problem of memory mapping.

An approach to combat non-uniformity in NUMA machines is to hide it using a
memory management system in the operating system kernel [13]. This work envisions
a coherent memory abstraction built into the memory management system. Coher-
ent memory is uniformly accessible from all processors in the system. Therefore, the
attempt is to ease the programming of NUMA multiprocessors without losing per-
formance. Though the abstraction hides the anomalies of NUMA architecture by in-
creasing programming convenience, it does so using Virtual Memory(VM) and paging
approaches which are not practiced in real-time embedded systems. Moreover altering
the operating system kernel is not the focus of our thesis. However with the advent of
many-core architectures, we foresee a possibility of virtualization, dynamic scheduling
and therefore include these related work regarding NUMA machines. Dynamic task
and data placement over NUMA architecture has been studied by Broquedis et al. [I1].
The work done by Bolosky et al. [9] also relates to optimal page placement strategies
for NUMA multiprocessors. Similarly, Larowe et al. in [24] show that there is no
single policy which caters all needs in case of NUMA architectures further indicating
that solution to NUMA problems require research on architectural issues, compiler
assistance, language constructs etc.

Solutions to NUMA problems have been tackled in various ways starting with support
from Operating Systems (OS) to compilers. Exploration of OS support for thread
and memory placement on NUMA architecture has been studied in [3] using concepts
of thread binding and location specific memory allocation. The compiler techniques
to distribute data and computation is studied in [27]. This work makes use of graph
theory (directed, connected graphs called LCG - Locality Communication Graph) to
represent locality and formulates compiler technique as a Mixed Integer Nonlinear
Programming (MINLP) on the LCG. The compiler builds the LCG at compile time
and then formulates the optimization problem that looks for the decomposition to
minimize overhead. In embedded systems, it is common to use tailored off-the-shelf
OS and compilers. Altering the internal behaviour of these packaged modules is costly
and tedious. But one has the freedom in altering the methodology of usage in solving
a problem. We discuss these methodologies and techniques in the subsequent chapter.

12

2 Background

The possibility of significant performance benefits by optimal data placement in NUMA
machines has been studied by Bolosky et al. in [I0]. It shows that problems like false
sharing occur when data items accessed by disjoint sets of processors are inadvertently
placed on a common page. It proposes techniques such as trace analysis to overcome
false sharing. From their tests, it is shown that performance improvement of optimal
mapping over a naive approach is around 25% to 50%. This paper reveals the import-
ance of NUMA problem especially when memory access time is a significant fraction of
program execution time. Most application intense automotive softwares spend consid-
erable amount of time in memory accesses and from Amdahl’s law it is very important
to make a design trade-off which favours the common case. Also, the improvements in
CPU performance is outstripping the memory performance, forcing future processors
to spend a larger fraction of their time waiting for memory. Therefore it becomes
important to optimize memory placement on multi-core NUMA machines.

2.4 Summary

This chapter has highlighted the trends in automotive, the background information
related to multi-core and existing work in the field of NUMA memory mapping. From
the study of literature it is evident that the placement of code and data in NUMA
machines crucially impact performance. Moreover, the benefits are higher if memory
access time is a significant fraction of program execution time. In subsequent chapters,
this problem is thoroughly analyzed, algorithms are implemented and experiments
are conducted to show the performance benefits of efficient memory mapping. Our
techniques provide scalable solutions to tackle the memory mapping problem and have

advantages in automating the process using algorithms.

13

Techniques for Memory Mapping

This part of the thesis covers the techniques to solve the memory mapping problem
and describes in detail the design and formulation of algorithms. For small problems,
ILP is used to give an optimal mapping. Bigger problems can only be addressed by
heuristics because of the NP-completeness.

This chapter is structured as follows: Section describes the memory mapping
process, where the Subsection introduces the frequently used terms and conven-
tions, in Subsection the memory mapping is illustrated to add more clarity to
our problem statement. The Subsection describes the memory mapping strategy
and Section describes the steps in which our strategies are applied. Before the
ILP and greedy techniques are applied, the stack data in RAM is mapped by using
a simple technique discussed in Subsection [3.1.5 The ILP and greedy techniques to
solve the memory mapping problem are presented in Sections and respectively.
Lastly, the practical considerations of the techniques developed in this chapter are
described in Section [3.41

14

3 Techniques for Memory Mapping

3.1 The Memory Mapping Process

3.1.1 Terminology

Simple and logical abstractions are made to describe and manage the feature-rich
automotive software. The following terminologies are used throughout the thesis.

Task. “A task is the smallest schedulable unit managed by the OS” [7, p. 79]. A
task has an existence only from the standpoint of the Real Time Operating System
(RTOS) which has the scheduler to execute different tasks depending on priority.

Process. A process is a (void void) function which belongs to a task. There is an

one to many relationship between a task and a process.

Service. A service represents common utility functions (sometimes in-line). A pro-

cess makes use of services and there is a many to many relationship between them.

Label. The global read-write RAM data in the software is called a message. Messages
are used by several processes to share the data among them. For simplicity here after
the term label is used instead of a message.

Constant. A constant represents a calibration parameter or a system constant which
is a read only global variable in the program flash. From the application point of
view, calibration parameters have significant role in tuning the software for a desired
functional output.

Flash Content. A flash content refers to code (processes, services) and constant data
(constants).

Mapping Parameter. A mapping parameter describes the parameter that is mapped
to the memory. Thus a mapping parameter can either be a label, constant, process or

a service. We use the term parameter and mapping parameter interchangeably.

15

3 Techniques for Memory Mapping

3.1.2 Memory Mapping

Here we clarify the need for memory mapping with some illustrations. A hypothetical
system containing a single core, on-chip RAM and flash is shown in the Figure [3.1
This shall serve as an example to explain the problem. Code and data are mapped to
Flash 0 and RAM 0 respectively. Tasks in a single-core system run sequentially and
there is one access at a time to each memory. Therefore, the scope of optimization is
within one memory where proper alignment of code and data is an important factor

for performance improvement.

RAM 0 Core 0 Flash 0

Figure 3.1: Hypothetical single-core system with single RAM and Flash.

The single-core system is now extended to a multi-core NUMA architecture to give a
hypothetical dual-core system as shown in Figure 3.2l To utilize the computational
capabilities of the cores, the application is parallelized by distributing the tasks to the
cores. However the memory mapping is the same as the single-core scenario above.
In this case, RAM and flash memory of the other core (RAM 1 and Flash 1) are not
utilized. Also the memories of one core (RAM 0 and Flash 0) create a bottleneck
due to simultaneous accesses from both the cores (Core 0 and Core 1). This leads to
contention [[] which increases memory access time. Even if memory mapping distrib-
utes the placement, another reason for increased memory access time can occur due
to improper distribution of code and data. For example, data needed by Core 0 takes
more time to be accessed from remote memories (RAM 1 or Flash 1) and a poor map-
ping fails to consider the non-uniformity of memory accesses. Therefore, the objective
of memory mapping is to minimize the total memory access time by distributing the
memory placements optimally among different memories. Such systems are not merely
a hypothesis. Upcoming multi-core architectures [I7] provide multiple memory mod-
ules with independent read and write interfaces. Such architectural changes in the

hardware necessitate the need for efficient memory mapping.

'Due to cost reasons, memories have only one read/write access port which support one access at a
time

16

3 Techniques for Memory Mapping

Therefore, the memory mapping problem deals with efficient distribution of code and
data to multiple memories to reduce the total memory access time. Since we deal with
NUMA architectures, reduction in access time is also due to maximization (minimiza-
tion) of local accesses (remote accesses). Hence, we see that task distribution utilizes
multiple cores and distributing the memory placement utilizes multiple memories.
This way of parallelizing the work load and memory accesses is an important step

towards software distribution for multi-cores.

RAM 0 Core 0 Flash 0

Interconnect @ Global RAM

RAM 1 Core 1 Flash 1

Figure 3.2: Hypothetical dual-core system with multiple RAM and flash memories.
Additional Global RAM is added to explain the concepts later. It is as-
sumed that accesses to Global RAM are very costly.

3.1.3 Memory Mapping Strategies
In literature, different (manual and automatic) approaches have been taken to solve the

memory mapping problem. But irrespective of the methods used to find the optimal

memory mapping, the steps taken to generate the memory layout are fairly the same.

17

3 Techniques for Memory Mapping

Block Purpose

Application This block contains the application code along
with the code for the operating system and other
drivers

Model Is the framework on which application and hard-

ware can be represented as inputs to the al-
gorithms. A model generates outputs that assist
linking process and helps to theoretically evaluate
the algorithms

Model Application This is a representation of application and profile
information in the syntax which is supported by
the model

Model Hardware This block holds the hardware architecture such
that the hardware properties are accurately cap-
tured

Algorithms for Memory | This is the block which hosts the algorithms that

Mapping perform efficient memory mapping

Platform Hosts the hardware and supports run time meas-

urements via traces

Table 3.1: Blocks of the memory mapping flowchart shown in Figure

Figure depicts the flowchart for the memory mapping. The important blocks are
described in the Table [3.1] In the absence of automation, the flow is straightforward
and it is necessary to manually optimize the placement of code and data. To avoid
tedious human effort in placing code and data in multiple memories, algorithms provide
an effective alternative. In the flowchart, the model plays an important role. The
model helps in the development of algorithms. Further, the algorithms developed can
be theoretically evaluated using the model. The output from the model can be used
to assist the linking phase to perform efficient memory mapping and to generate the
target specific executable. This executable can be programmed on the hardware to get
run time measurements. Another important block is the platform. The platform hosts
the hardware, models the vehicle behaviour and supports runtime measurements. The
hardware can be a fully packaged off-the-shelf microcontroller or a virtual prototype
(soft-core) given by the device vendor whereas the simulation of vehicle behaviour can
be achieved through simulation environments like Simulink [26] for example.

18

3 Techniques for Memory Mapping

3.1.4 Steps in Memory Mapping

Memory mapping strategy varies with the type of mapping parameter and the type of
memory to which the parameter is mapped. Therefore, each mapping parameter has
a separate algorithm and this section describes the sequence in which these algorithms

are used.

Stack is frequently used in high level programming languages such as C. Therefore as
a first step, the stack is mapped to RAM. No ILP or greedy algorithms are used to
map the stack because the stack is local to tasks in the core and the task distribution
determines the stack placement. Algorithms are only used for the distribution of
mapping parameters to different memories. The stack mapping is followed by the
placement of labels thus completing RAM placement. In case of flash, there is no
fixed order to map constants and code. Since constants occupy less space, they are
mapped prior to the placement of code. A visual representation of these steps is
illustrated in Figure (3.4

3.1.5 Mapping of Stack Data

Program data consists of labels, constants and stack. Stack is a segment of dynamic
memory that holds parameters, local variables and return addresses. Since the per-
formance on a NUMA machine depends on data locality, stack placement must be

performed carefully. The methodology to map the stack data is discussed here.

A program stack grows as the control is transferred to a function, while the function
exits, the stack shrinks in size. Thus, the stack is reused amongst programs whose
lifetimes do not overlap. The operations performed on a stack have the terminology
‘push’ to indicate placing of data on the stack and ‘pop’ indicating removal of data
from the stack. The stack pointer is responsible to point to the latest entry on the
stack. In our case, the stack design is simple. An assumption is made during design
time regarding the worst possible size of stack growth on each core. Then the stack
of this size is allocated on the RAM local to the core. This is a simple but pessimistic

approach because it over-estimates the required memory.

Task distribution gives the assignment of tasks to cores. The stack of the tasks are
mapped to the RAM which is local to the core on which the tasks execute. To compute

the worst case stack size, it is important to distinguish between cooperative and pree-

19

3 Techniques for Memory Mapping

mptive tasks. Switching between cooperative tasks occur only at process boundaries.
Lower priority cooperative and preemptive tasks can be preempted anywhere by a
higher priority preemptive task. When there is a mixture of cooperative and preempt-
ive tasks, the worst case stack size is the sum of stack size of process with maximum
size amongst cooperative tasks and sum of worst case stack sizes of all preemptive

tasks on the core. It is assumed that this worst case size fits to the memory.
This can be also captured by the following mathematical notation:

Let W (S;) be the worst possible size that the stack of tasks in core i can grow and
M; the initial capacity of the j* memory. Then assuming that W(S;) < M, W(S;)
is allocated to memory unit j, where j is the memory local to core 7. And let the
available space in memory unit j after this placement be M;. Then M; is as given
by Equation below:

M; = M; —W(S;) (3.1)

20

3 Techniques for Memory Mapping

Start
Application
Convert Automatic
Application <+—Yes No
Placement?
to Model
A 4
MODEL
Model
Application L v
Hand
Algorithms for Theoretical Optimization
Memory Mapping Evaluation of Code and
Model Data

Hardware

Y

Convert .
Compile and
Hardware Link <
to Model
A
A
Executable

Hardware
Properties

Runtime
measurements

Execution on
Hardware

PLATFORM

End

Figure 3.3: This figure shows the flowchart memory mapping. The block ’Algorithms
for Memory Mapping’ forms the central work of this thesis.
21

3 Techniques for Memory Mapping

Start

v

Stack Placement
in RAM

Label Placement
in RAM

v

Placement of
Constants in Flash

i

Placement of
Code in Flash

Algorithms for
Memory Mapping

Figure 3.4: This figure shows the sequence followed in applying the memory mapping
strategies.

22

3 Techniques for Memory Mapping

3.2 ILP Formulation for Memory Mapping

Linear programming (LP) is widely used to solve problems in mathematics and oper-
ations research where ones objective is to maximize profit or to minimize cost. Integer
linear programming (ILP) in particular is a subset of LP problems where the decision
variables are integers. And in 0-1 ILP also known as Binary Integer Programming
(BIP), the decision variables are either 0 or 1. Such kinds of problem formulations are
suitable to optimize digital circuits and other graph theory problems where the out-
come is usually a 0 (indicating the absence of something) or a 1 (indicating presence).

The problem of optimal memory mapping is NP-complete [23], 21]. Despite the NP-
completeness of the problem, an efficient ILP formulation can be used to get optimal
mapping for problems of small dimensions. It can be seen that for a typical multi-core
use case there are around two to four cores and three to six memories, the modern ILP
solvers are capable of converging to a solution. But, in case of a very large problem size
i.e. the many-core use case of around hundred processor cores, many memories and
very large volumes of software, there is an exponential increase in problem complexity
thus making optimal placement impractical. This motivates us to explore heuristic
approaches later in this thesis. However, at this stage it is worthwhile to use an ILP
to get an upper limit on the optimality of the solution. Because of its optimality,
ILP produces the highest quality solution for small problems. The ILP formulation is
inspired by the work done by Avissar et. al [8]. This formulation has been extended
and made applicable to the multi-core use case.

3.2.1 Notations

The general notations applicable to mapping parameters are presented here:
Let,

i, where i € [1,] be the i*" core;

4, where j € [1,J] be the j'" heterogeneous memory;

k, where k € [1, K] be the k' mapping parameter;

Nry, Vk € [1, K], Vi € [1,1] be the number of times the mapping parameter k is
read by core i;

Nuwy, Vk € [1, K] , Vi € [1, 1] be the number of times the mapping parameter k is
written by core ;

Trij, Vi e [1,1],Vj € [1,J] be the read access times for memory j by core ¢;

23

3 Techniques for Memory Mapping

Tw;;, Vi € [1,1],Vj € [1, J] be the write access times for memory j by core i;

M; be the size in bytes of j memory

M, be the size in bytes of j memory remaining the after previous placement

Si, be the size in bytes of the k' mapping parameter;

F}. be the multiplicative factor for mapping parameter k

1 if mapping parameter k is placed in j** memory

decision variable for placement Py; = 0 otherwi
otherwise

where I, J and K are the total number of cores, memories and mapping parameters
respectively.

3.2.2 Formulation

Objective function

The objective function is to minimize the total access time from all cores to all the
mapping parameters in the application. The objective function differs in case of RAM

and flash placement and assuming one memory access per cycle, they are given by:

Objective function for RAM - labels

I J K
Objective functionpay = mm(z Z Z Pyi[NriTri; + NwgTwg | Fy,) (3.2)
i=1 j=1k=1
Objective function for flash - constants and code

K
k=1

Objective function figsh = mm(z
i=1j

J
=1
Constraints

The ILP for mapping parameters in memory has the following constraints:

Placement (Equality) Constraint: Every mapping parameter has to be placed in

just one memory

zJj Py =1,Vk € [1, K] (3.4)

j=1

24

3 Techniques for Memory Mapping

Capacity (Inequality) Constraint: The size of mapping parameters placed in every

memory must not exceed the capacity of the memory

K
ZijSk SMJI,\V/] € [1,J] (35)
k=1

where Mj, for placement of labels is given by Equation 3.1} In case of flash placement,

the constants are mapped first therefore M is same as M; but for code placement,

M, is given in Equation . Where the second term gives the total space occupied

by the constants in memory j.

K
My = M; =3 PyS,Vj € [1,J] (3.6)

k=1

It is important to note the reason for the inclusion of Fj in the objective function.
This factor takes into account the effect of mapping parameter size on the number of
memory accesses. For example, assume that the microcontroller is capable of accessing
a word (CPU-word i.e. 32 bits for a 32 bit microcontroller) from RAM in one access.
Now labels of size greater than a word need more than one accesses to be fetched from
the RAM. Thus, we see that labels of size one to four bytes need one memory access
while labels of size five to eight bytes need two memory accesses and so on. Hence
generalizing, Fj, is given in Equation 3.7

Sk

o=l
¥ (Word length

| (3.7)

In case of flash memory which is accessed at the granularity of a flash line (typically
128 bits), Fy, is defined as:

Sk
Flash line length

Fp=1 | (3-8)

In the objective function 3.2, [3.3) P; is the decision variable which is the result of
the ILP solver. The solver gives the optimal placement of mapping parameter &k in
memory j under placement and capacity constraints such that total memory access
time is reduced. Having K parameters and J memories results in K - .J decision
variables. This shows that the problem explodes into a bigger problem when either
the mapping parameters or the available memories increase. In architectures which

25

3 Techniques for Memory Mapping

support more than one memory accesses per cycle, the objective function does not
consider the overlap of memory latencies into account. Also [§] indicates that the
objective function in such case becomes non-linear. Hence for the formulation of ILP,
it is assumed that there can be at most one memory access per cycle. The ILP can
be solved using public domain solvers like 1p_solve [1].

3.2.3 Assumptions

For a problem to be formulated as an ILP, the objective function and constraints must
obey the rules related to integer linear programming. The assumptions made in the
above ILP formulation are highlighted here. These assumptions are related to the
access times and number of accesses for each label.

e A core generates at most one memory request per cycle.

e The access times (read access times for flash and read-write access times for
RAM) to each memories are known. These values do not change.

e The anomalies introduced by the interconnect and by simultaneous remote ac-
cesses are indirectly accounted by considering a NUMA architecture of faster

access to local memory and slower access to remote memory.

e Given the task rate, task distribution, the number of reads and writes for a
mapping parameter is computed using the call tree E] of the task.

e Flash memory is a read-only medium and EEPROM (which is an emulation of

flash) writing is ignored as it not the common case of performance optimization.

Although the assumptions ease problem formulation, they have their own implica-
tions. The assumptions abstract the true behaviour of the hardware and may lead to
inaccurate results. At this stage, the assumptions are justified by the reasoning below.
The assumption of a single memory access per cycle is because of the MCU use case.
Unlike DSP, the MCU generates one memory request per cycle. Further, the memory
access times can be taken from the processor documentation. There is a difficulty in
accurately modeling the delay introduced by the conflicts in the interconnect. This
delay is indirectly addressed when a higher access time to remote memory is con-

sidered. Lastly, given a task to core allocation (task distribution) and the process and

2call tree gives the number of times the mapping parameters are accessed by a task

26

3 Techniques for Memory Mapping

service calls of the tasks (call tree), it is possible to statically compute the number of

reads or writes to a mapping parameter.

3.2.4 Drawbacks of the ILP

In case of ILP formulation there are many assumptions. The ILP formulation would
be more complex in the absence of these assumptions. This ease of formulation has a
drawback which impacts the accuracy of the result. Under such assumptions, cost of
accessing a mapping parameter from the memory must be calculated precisely without

introducing additional inaccuracies between theory and practice.

The assumptions work well when the accesses to memories are not uniform. But
for architectures with symmetric accesses, different values of memories have to be
deliberately added to ILP to get the distribution. In such cases, theoretical results

differ from the practical measurements on the hardware.

The assumption of asymmetric flash access time allows the ILP solver to group the
code required by one core to one memory module. But there is a potential problem
which may arise. If the cores access the same memory simultaneously then only one of
the request gets serviced on time and the others get delayed. This delay is not directly
modeled by the ILP but indirectly considered in the assumption of slower access to
remote memory. The assumptions are justified at this stage but they are reworked

later when metaheuristics are introduced.

3.3 Greedy Heuristics for Memory Mapping

The problem of finding an optimal mapping is NP-complete [23]. The memory map-
ping problem suffers from the curse of dimensionality where even a small increase in
the problem size causes an exponential increase in the complexity. For small dimen-
sions, it is seen from experiments that the ILP is practically fast. But due to the
trends in very large scale integration technology, it is likely to imagine large number
of cores and memories in the future [2, 22]. For these problems, the ILP technique
to find an optimal solution is intractable. This requires us to focus on the design of
heuristics which solve big problems quickly and efficiently. Heuristics are subjected
to approximations and therefore can only promise near to optimal (in most case),
optimal (if lucky) or no solution (even if one exists) at all. There is an uncertainty

27

3 Techniques for Memory Mapping

with the solution because it does not traverse the entire solution space but makes
approximations to traverse the most favoured solutions. It is proven that heuristics

are beneficial for most of the problems which suffer from the curse of dimensionality.

In this thesis, we use a greedy strategy to solve the memory mapping problem. This
strategy is built into a heuristic which gives an efficient placement of a mapping
parameter in its respective memory. A greedy heuristic is an algorithm that makes
locally optimal choice at each stage with the hope to find a global optimal solution.
A greedy algorithm provides optimal solution to a problem if it obeys the following
two properties:

e The greedy choice property - i.e. make the locally optimum solution at every

stage and never reconsider the choices made so far.

e The optimal substructure property - i.e. an optimal solution to a problem is
obtained by finding an optimal solution to the sub-problems.

The choice of this heuristic is justified as there are affinities in the access patterns of
automotive software. This means that the data is frequently accessed by the cores
and the benefit is more when the data is placed closer to the core which needs it the
most. This is the greedy choice which we hope to exploit at every stage. The design

of heuristics and the assumptions are discussed in the following subsections.

3.3.1 Greedy Heuristic for the Placement of Mapping Parameters

This subsection shows the design of a greedy heuristic used in the placement of Map-
ping Parameters. Two algorithms are presented:

e Algorithm [I] - Preparation of the input
e Algorithm [2] - Greedy heuristic to place Mapping Parameters.

The initialization needed to setup the greedy heuristic is given in Algorithm [T The
term affinity refers to the total number of reads and writes from a Core to a Mapping
Parameter. The objective of this algorithm is to find the Core which has the highest
affinity for a given Mapping Parameter. This is done for all the Mapping Parameters
over all the Cores to generate a list CoreParameterAffines which has the affinities
sorted in descending order. The term list is derived from the programming language
(Java) used to implement the algorithm. It is used to represent an array in which each
element contains the following information: the Mapping Parameter, the Core which

28

3 Techniques for Memory Mapping

needs this parameter the most (in terms of reads and writes) and the affinity which is

the sum of reads and writes from the Core to this Mapping Parameter.

Algorithm 1 Preparation of the input
for all Mapping Parameters do
for all Cores do
CoreParameterAffines < Add the Mapping Parameter with the most affine
Core to the list
end for
end for
Sort the list in decreasing order of their affinity
Ensure: Mapping Parameter with the maximum affinity is first in the CoreParamet-
erAffines list

The greedy heuristic is shown in the Algorithm [2l This algorithm works on the list
CoreParameterAffines generated by Algorithm [I] to minimize total memory access
time by adopting the following greedy methodology:

Until the fastest memory for the mapping parameter is available, the mapping para-
meter is placed in the fastest (most beneficial) memory of the core. But, when the fast-
est memory is full, the algorithm recursively finds the next available fastest memory

for its placement.

In other words, for every CoreParameterAffine, the FastestMemory from the core is
determined and the Mapping Parameter is checked for possible placement in the Fast-
estMemory. If the FastestMemory is fully occupied then the placement is recursively
tried over the next available FastestMemories.

Due to similar objectives, the greedy heuristic and the ILP can be compared with
respect to two metrics. One is the optimality of the solution and the second is the
time taken to solve. It is important to note that the result from the ILP is optimal
even under capacity constraints. While, the greedy heuristic can only be optimal
under no capacity constraints (i.e. memories are sufficient for the greedy choice to
work). From the experimental results discussed in Chapter , it can be concluded
that the greedy heuristic is very fast in comparison to the ILP and optimal if there
is sufficient space in the FuastestMemory at every stage. Thus there is a trade off, in
which the ILP being slow in solving does not compromise on quality while the greedy
heuristic compromises on optimality by being very quick. If an application engineer
wants to choose one, it depends entirely on the use case (problem dimension) and
the tolerance for optimality and solving time. However, it is worth mentioning that

29

3 Techniques for Memory Mapping

Algorithm 2 Greedy heuristic to place Mapping Parameters
Require: CoreParameterAffines as computed in Algorithm
for all CoreParameterAffines do
for all Memories do
Find the FastestMemory available from the C'ore
if Parameter fits into the FastestMemory then
Map Parameter to — FastestMemory
else
Recursively find the next available FastestMemory for the Mapping Para-
meter
end if
end for
end for
Ensure: That insufficient capacities are reported with an error condition
return In case of no error, return the memory mapping of Mapping Parameters to
appropriate Memories

for problems of large dimensions and problems with stringent constraints, the greedy

heuristic outperforms the ILP and it is the only promising approach of the two.

3.3.2 Assumptions

The assumptions made during the design of greedy heuristics are:

e The task distribution, task rate and the call tree of the tasks are the inputs from

which the affinities can be computed.

e The access times (read access times for flash and read-write access times for
RAM) to each memories are known. These values do not change.

e The memory accesses are non uniform (NUMA) where the local memories are

fast and remote memories are slow.

3.4 Practical Considerations

The ILP and greedy algorithms are designed at a fine granularity which makes prac-
tical implementation difficult. In other words, the algorithms have considered the

30

3 Techniques for Memory Mapping

individual placement of mapping parameters in the memory. Although these tech-
niques theoretically give better results as seen in theoretical evaluation experiments
later in Chapter [in practice a mapping parameter is too small to be mapped to the
memory hardware. Therefore, the above algorithms need to be modified by working
on a bigger granularity. To achieve this, mapping parameters are grouped to form
bigger units and the group of mapping parameters is termed a section. Thus a section

is a group of identical mapping parameters which can be located in the memory.

The sections can be created in several ways. Compilers provide default sections like
.text, .data, .bss to hold the program code, initialized and uninitialized data respect-
ively. New sections can be introduced using compiler and linker specific keywords
when there is a need for more customized or controlled memory layout. Also AUTO-
SAR provides specification for memory mapping [5] which requires every AUTOSAR
software module to support different memory types. If the software development is
carried out based on the AUTOSAR guidelines, then it would be easier to make use
of different sections of each software module. But in the absence of these sections,
it is burdensome to change input source files to generate new sections for placement.
As an alternative, we make use of the default sections of the object files and locate
them on an object file basis in the memory. Section information present in the object
files are converted to the equivalent section description in the model. The mapping
parameters present in the sections are examined for placement in different memories

using the ILP and greedy techniques.

The underlying concepts of the ILP and greedy techniques remain the same. The
changed portions are the inputs and the outputs of the algorithms. The inputs to the
algorithms are the sections of mapping parameters (labels, constants, processes and

services). The algorithms output the mapping of a section in the memory.

Generation of Executable

Until now, the algorithm outputs are stored in the model which also helps to theor-
etically evaluate the algorithms. But for a practical evaluation on the hardware, the
entire engine control application must be compiled and linked into a target specific
executable. Therefore, the next step in the design is to interpret the algorithm outputs
and to alter the linking process.

A brief note on compiler and linker is presented here. A compiler converts the high

level source code (machine independent) to object code (machine specific instructions).

31

3 Techniques for Memory Mapping

In order to generate instructions which are specific to the target a cross compiler is
used. If there are multiple source files, the compiler creates object files for each of
source files in the project. A linker creates a single executable file from multiple
object files by resolving undefined references. To exercise greater control over the
linking process, a linker script is used. The main purpose of the linker script is to
describe how the sections in the input files should be mapped into the output file, and
to control the memory layout of the output file. The sections in the input files plus
compiler default sections are controlled by the linker script to generate the efficient
memory layout for the target. The outputs of the ILP and greedy algorithms are used
to generate header files which contain section names. These header files are included

in the linker scripts to perform memory mapping.

3.5 Summary

This chapter has given the details of the techniques used for memory mapping. The
terminologies, memory distribution, strategies and the steps to perform memory map-
ping were introduced. The ILP formulation and the design of greedy algorithms were
discussed. Lastly, the practical implementation of ILP and greedy techniques used
in the generation of executable were presented. In the following chapter, we apply
these techniques to an automotive application. Our experiments involve theoretical
evaluations to compare the ILP, greedy techniques and the practical implementation
on the ECU hardware.

32

Memory Mapping for an ECU

This chapter describes the experiments conducted to theoretically evaluate the al-
gorithms and to practically measure benefits through implementation on an ECU.
This chapter is organized as follows: in Section [{.1], the experimental setup is given
which describes the environment, the settings and other necessary details to repro-
duce the results. Sections and explain the theoretical and practical evaluation
experiments respectively. We summarize the results in Section

4.1 Environment and Setup

The environment consists of the application, the workstation on which the development
and theoretical evaluations are performed, and the target hardware on which the
benefits are evaluated. The setup indicates the settings or preconditions to evaluate
the algorithms.

4.1.1 Application

The application under consideration is an automotive software and the information

related to the number of mapping parameters and their size is shown in Table [4.1]

33

4 Memory Mapping for an ECU

Mapping Parameter | Number | Size in bytes
Labels 2720 8020
Constants 3023 18116
Processes 1460 257324
Services 1554 135710

Table 4.1: Application details

Distribution Scenario | Method of distribution

Scenario 1 All time synchronous tasks are on Core 0 and all
speed synchronous tasks are on Core 1

Scenario 2 Application Software run on Core 0 and Basic Soft-
ware are on Core 1

Scenario 3 The time synchronous tasks are split between Core
0 and Core 1

Table 4.2: Dual-core task distribution scenarios

The algorithms for memory mapping assume a given task distribution. Depending on
the nature of task activation, tasks in automotive systems can be categorized into time
synchronous and angle synchronous tasks. The tasks which are periodically activated
are termed as time synchronous tasks and the tasks which get activated depending
on the engine speed are termed as angle synchronous tasks. As per AUTOSAR [7]
and Appendix (page , the software consists of application (Application Software)
and its services (Basic Software). Task distribution gives the mapping of a task to a
core. There can be many possible task distribution scenarios, but for convenience we
consider a dual-core system with three possible task distribution scenarios as show in
Table [4.2] The dual-core system is taken as an example because our target hardware
available for testing has two cores.

4.1.2 Workstation

The workstation is a PC on which development and theoretical evaluations are con-
ducted. Its configuration along with the tools and solvers used are given in the Table

(4.3

34

4 Memory Mapping for an ECU

Type Configuration
Processor Intel Core 2 Duo
Clock Speed 3 GHz

RAM size 4 GB

Operating System Windows XP
IDE Eclipse 3.7.1
Java Version 1.6.0 31

ILP Solver Ip_solve 5.5

Table 4.3: Workstation configuration

4.1.3 Target Hardware

The target hardware which executes the automotive software is a virtual dual-core
microcontroller platform based on Infineon architecture. The virtual prototype [31] is
chosen as it guarantees the same behaviour as the upcoming hardware and also for
its ease of use earlier in the design phase. It consists of two symmetric cores each
having their own local RAMs and it has one global RAM in total. Two flash memories
with independent read interfaces are provided. Due to high latencies in accessing flash

memory, we have instruction and data cache to access code and constant data from
the flash.

The hypothetical dual-core system shown in Figure (page can be used as a
reference for visualizing the hardware. For our algorithms, we assume the memory
latency to be known and among the other properties of the hardware, the most relev-
ant inputs to our algorithms are the access times to the RAM and flash. For RAMs,
we have a single cycle access to local RAMs and each access to global RAM takes five
cycles. In case of flash memories, the accesses are symmetric. In a typical NUMA
system, the memories are uniquely addressable and share a single address space. How-
ever, in our target hardware this is not possible due to a limitation in RAM accesses.
The limitation is that the local RAMs are not shared but only the global RAM is
shared. Therefore a message passing mechanism is required to transfer the contents of
local RAM to global shared RAM to support remote memory accesses. These restric-
tions create differences in the ideally assumed theoretical calculations and practically
implemented results.

35

4 Memory Mapping for an ECU

Memory Type | Supported operation | Local latency | Remote latency
(cycles) (cycles)

RAM Read and Write 1 5

Flash Read D 10

Table 4.4: Memory access specifications for theoretical evaluation

4.1.4 Settings for Theoretical Evaluation

From the hardware memory specification, we see that the accesses to RAMs are asym-
metric and flash memories are symmetric. Since the ILP and greedy algorithms are
designed keeping NUMA architecture in mind, we deliberately give asymmetric access
times in case of flash by logically dividing them into local and remote flash memories
to distribute the placement of parameters. The memory specifications for the theoret-
ical evaluation experiments are as given in the Table [4.4] Local accesses are fast and
remote accesses are slow and these differences influence the ILP and greedy heuristics
to distribute the flash contents such that all the contents needed by a core are mapped
to an exclusive flash memory. This indirectly helps to reduce the contention due to

simultaneous flash accesses.

4.2 Theoretical Evaluation

4.2.1 ILP versus Greedy Heuristics

The objectives of the ILP and greedy heuristic are the same - to minimize the total
memory access time of an application. However, there are differences in the way they
operate. Therefore, we conduct experiments to compare them with respect to:

e Solving time
e Optimality of the solution

We define solving time as the time taken by the algorithm to perform the memory
mapping after the inputs are prepared. Solving time is compared by conducting ex-
periments without any constraints on the memory size. Because, under no capacity
constraints, the fastest memory is always available and, as the ILP, the greedy heur-
istic also gives an optimal result. Therefore, with the optimality remaining same, we

36

4 Memory Mapping for an ECU

can only compare the solving times.

To compare ILP and greedy heuristic for optimality, we conduct experiments by pla-
cing constraints on the memory capacity. The ILP always gives an optimal solution,
but the result from the greedy heuristic is sub-optimal under capacity constraints due
to locally favouring decisions.

Solving Time

The total time complexity of ILP is the complexity of preparing the input and the
complexity of solving the ILP. The input preparation of ILP comprises Cost Calcula-
tion and Formulation. The Cost Calculation is computed by calculating the number of
times a parameter is read or written by each core followed by the computation of the
time taken by cores to read memories. Formulation involves preparation of objective
function and the constraints. When it comes to the solving part, the parameter can
be placed in any memory. For an optimal placement, the number decisions made by
the ILP solver in the worst case varies exponentially with the number of parameters
and memories. Therefore, the total time complexity of ILP can be represented by the

following equation:

Input Preparation

) + (2 (Memoriesx Parameters))

Complexityrp = (’)((C’ost Calculation + Formulation
Solving

O(Cost Calculation) = O((Parameters x Cores) 4+ (Cores x Memom'es))
(

O(Formulation) = O(Pammeters x Memories
4.1)

Likewise, for the greedy heuristic, the total time complexity is the complexity of
preparing the input and complexity of solving using the greedy strategy. The input
preparation comprises Affinity Calculation and Sorting. For the Affinity Calculation
all the parameters are iterated over all the cores to form a lisiﬂ of items, each item
contains the parameter and the core which has the most affinity. This list is sorted in
descending order of the core affinities using a modified merge sort [28] in the Sorting
phase. The solving of the greedy heuristic is then performed by placing the parameter

IList here represents an array of objects in an object-oriented programming language such as Java

37

4 Memory Mapping for an ECU

in the memory fastest to the most affine core. Thus, the total time complexity of the

greedy heuristic can be represented by the following equation:

Input Preparation

Complexitycreedy = O((Affmity Calculation + Sorting) + (Parameters X Memom’es))
Solving
O(Af finity Calculation) = (’)(Parameters X C’ores)

O(Sorting) = O(Pammeters X log(Pammeters)>
(4.2)

To observe a noticeable trend in solving times of ILP and greedy heuristics, we do not
include the time for input preparation in our measurements. Since the solving time
depends on the number of memories and parameters, we vary them one after the other

in our experiments to observe the effect.

The effect of varying the number of memories on solving time

For a given application (fixed number of parameters), an experiment is conducted by
varying the problem dimensions, without any constraints on the memory capacity. For
each dimension of the problem, we have one global RAM and the cores having their
local RAMs and flash memories. For example, the hypothetical dual-core scenario of
Figure (page has one global RAM (Global RAM), two cores (Core 0, Core 1)
which have their local RAMs (RAM 0, RAM 1) and flash memories (Flash 0, Flash
1) respectively. Figure gives the manner of varying the problem dimensions. The

increase in the number of cores also increases the number of memories.

The solving time to place all the mapping parameters in different memories by the
ILP and greedy heuristic is reported in the Table The variation in solving time
is shown in Figure 1.2 from which it is observed that the greedy heuristic is very
fast when compared to the ILP. This is because, the greedy heuristic makes a local
optimum choice in every iteration. The solving time of both the ILP and greedy
heuristic increases with the number of memories. The ILP solving time increases
because of the increase in the number of decision variables, while, the greedy heuristic
needs more time when it has more memories to search before selecting the fastest

memory.

38

4 Memory Mapping for an ECU

12 Flash RAM

10 -

Number of memories
(@)}
1

Cores

Figure 4.1: Variation of problem size to compare the solving times of the ILP and
greedy

Although the solving time complexity (Equation of ILP shows an exponential
increase with the number of memories, we do not observe this trend because of the
placement constraints and relaxed capacity constraintﬂ. As per the placement con-
straints (Equation [3.4) a parameter can be placed in only one memory and according
to the capacity constraints (Equation , the size of parameters cannot exceed the
memory capacity. These constraints eliminate a lot of possibilities for the ILP solver,
enabling it to show a linear trend rather than exponential. In other words, the presence
of placement constraints and relaxed capacity constraints help in achieving a tractable
solution by reducing the search space and favouring faster convergence of the branch
and bound decisions for the ILP.

However, we expect an exponential behaviour in ILP’s solving time for very large
number of memories. This is because, the exponential trend is more evident for large
values of the exponent but when the exponent is small, the trend is approximately
linear or quadratic as seen below. Another instance when there is an exponential

increase in solving time is when the memory capacities are too constrained or strictE|

2Relaxed refers to no constraints on the memory capacity
3However it is mandatory to have enough memory capacity to fit the parameters

39

4 Memory Mapping for an ECU

allowing the branch and bound decision tree to grow larger in size. The effect of strict

capacity constraint is discussed when we compare the optimality. But before we do

that, we study the effect of parameters on the solving time.

14000

12000

10000

8000

6000

4000

ILP Solving Time (ms)

2000

0

Figure 4.2:

1 ———|LP = Greedy - 250
| - 200 @
9468 £
T [}
E
| - 150 =
[oT+]
£
S
| 4000 7 - 100 3
| 3358 65 3z
— ®
L 50 —

T T O
2 3 4 10
Cores

Solving time variation of ILP and greedy heuristics for different number

of memories

Platform Scenario Cores | Solving Time (ms)
ILP Greedy

2 Core, 3 RAM, 2 Flash 2 3358 24

3 Core, 4 RAM, 3 Flash 3 4000 25

4 Core, 5 RAM, 4 Flash 4 | 4797 2%

10 Core, 11 RAM, 10 Flash 10 | 9468 65

Table 4.5: Solving time of ILP and greedy heuristics for different number of memories

The effect of varying the number of parameters on solving time

For a given system (fixed number of memories), we conduct an experiment by increas-

ing the number of labels linearly, without any constraints on the memory capacity.

The solving time is then the time taken by the ILP and the greedy heuristic to map

all the labels in the memories. The solving time is given in Table 4.6/ and its variation

40

4 Memory Mapping for an ECU

is shown in Figure [£.3] from which it is again observed that the greedy heuristic faster
than the ILP.

With the increase in parameters, we observe an increasing trend in the ILP’s solv-
ing time. This because the parameters appear in the exponent as seen in Equation
[4.1] However, the trend is not strictly exponential due to faster convergence of ILP
under placement and capacity constraints (relaxed) as mentioned before. The trend
seen in the solving time of the greedy heuristic is also not strictly as expected in the-
ory (Equation . This is because, the algorithms are implemented using the Java
programming language and manipulating the data structures using it adds additional
complexity to the solving time.

_ 13265 _
14000 e | P Greedy 250
12000 - -
- - 200 g
£ 10000 - P
) £
£ 1 - 150 &
= 8000 w0
£ s
S 6000 A - 100 §
3 >
o 4000 - S
—)]
= - 50 -
2000 - o
0 — 0

2720 3720 4720 5720 6720 7720 8720
Labels

Figure 4.3: Solving time variation of ILP and greedy heuristics for different number of
labels

The solving time experiments show that the greedy heuristic very fast compared to
the ILP. This favours the greedy heuristic over ILP for problems of large sizes. Now,
we conduct experiments to compare the algorithms with respect to the optimality of
their solution.

41

4 Memory Mapping for an ECU

Labels | Solving Time (ms)
ILP Greedy

2720 1656 8
3720 2328 15
4720 3735 20
5720 5453 30
6720 7485 40
7720 9875 o4
8720 13265 69

Table 4.6: Solving time of ILP and greedy heuristics for different number of labels

Optimality

The experiments to compare optimality can be conducted only by placing constraints
on the memory capacity. This is because, as the ILP, the result of the greedy heuristic

is also optimal when there are no constraints on the memory capacity.

The objective of the algorithms is to minimize the total memory access time. A
suboptimal solution has a value of the objective function higher than the optimal
result. This sub-optimality induces an overhead which is expressed as a percentage,
and is given in the Equation This is the percentage overhead induced by the
greedy heuristic when compared to the ILP.

Objectivegyreedy — Objectiverrp

Overhead(%) = Objectivernr x 100 (4.3)

The greedy strategy works well when there is enough space in the fastest memory.
The fastest memory in a NUMA machine is the memory which is local to the core.
Considering the hypothetical dual-core scenario as seen in Figure (page , the
local RAMs are RAM 0 and RAM 1. We restrict the local RAMs by constraints and
use the global RAM to fit the remaining parameters. However, in case of flash, we do
not have a global flash memory. Hence, we approximate the local memory to be the
memory of the core in which most frequent tasks run and use the other flash to fit
the remaining parameters. For example, if Core 0 runs most of the memory intensive
tasks compared to Core 1, then, by placing capacity constraints on Flash 0, we can
compare the optimality of greedy heuristics and ILP. The task distribution helps in
the identification of the core which runs most of the memory intensive tasks.

42

4 Memory Mapping for an ECU

We consider local memory capacity to be a small fraction of the total memory re-
quirement for a mapping parameter. The capacity of the local (fastest) memory is
reduced in every case and the variation of the overhead is shown in Figure [4.4, The
overhead grows with the decrease in the local memory capacity because the sub op-
timality of the greedy heuristic is more evident when the local memory capacities
are less. The experiments are tabulated in Table In trial 1 through 6, the local
memories are reduced starting from 29% to 14% to observe the increase in overhead.
The maximum overhead of 9.24% is encountered when the local memory size is 14%
of the total memory size. Further readings were not possible because the problem
was too constrained in terms of memory capacity for the ILP and it took impractical
amount of solving time. This reason is attributed to the effect of capacity constraints
on the branch and bound decisions of the ILP. On one side, the placement constraints
help to reduce the total number of combinations checked by the ILP solver to con-
verge to an optimal solution. But, on the other side, if the memory capacity for the
fastest memory is too less, the branch and bound decisions take more time because
the ILP tries to find a globally best fit for this (constrained) memory. Avissar et al.
[8] indicate the practicality of ILP for a small sized application with few memories.
However, it is observed that the ILPs are intractable for problems where the capacity
constraints are very rigid. Repeating experiments with relaxed constraints has shown

faster convergence of the ILP in the experiments considered previously.

Trial Local Capacity Objective Value Overhead
(%) ILP Greedy (%)
1 29% 17806533 18543362 4.14%
2 26% 18061872 18909853 4.70%
3 23% 18404045 19280973 4.76%
4 20% 18566848 19501374 5.03%
5 17% 19395909 20807558 7.28%
6 14% 19737307 21561739 9.24%
7 11% No solution 22039346 | No comparison

Table 4.7: Shows that as local memory capacity is reduced, the overhead induced by
greedy heuristic increases. But if the problem has a strict constraint on
memory capacity, then the ILP is intractable

43

4 Memory Mapping for an ECU

30.00%

28.00%

26.00%

24.00%

22.00%

20.00%

Local Capacity

18.00%
16.00%
14.00%
12.00%

10.00%

Figure 4.4:

1 = | 0cal Capacity Overhead - 10.00%
9.24% [9.00%
- 8.00%
T More overhead due to 0
less local capacity
- 7.00% -
(5]
]
. £
()]
8
- 6.00%
Overhead reduces due
T to more local capacity . 5.00%
4.14% - 4.00%
. R The region where the capacity
constraints are too strict for
. . the ILP . . 3.00%
1 2 3 4 5 6

Trial

The overhead increases with the decrease in the local memory capacity.
Having more capacity in the local memory reduces the overhead as seen in
the graph. In the experiments, we observe that if the problem has strict
capacity constraint, then the ILP is no longer practical.

4.2.2 Selecting an Algorithm

We have presented the ILP and greedy algorithms and here we discuss their selection.

As a general approach, for small problems, ILP can be selected first as it provides an

optimal solution. Greedy heuristic can be selected whenever ILP becomes intractable

due to problem being big or capacity constraints being too strict. When we conducted

experiments to compute the optimality, we observed that the greedy heuristic is a

practical alternative and even under strict capacity constraints, it induces an overhead

44

4 Memory Mapping for an ECU

whose magnitude is about 10%, which can be tolerated in practice. It is also worth
noting that greedy heuristic is the only alternative to manual placement for a problem
to which ILP is intractable.

4.2.3 Algorithm versus Naive Mapping

In this section, we make a theoretical comparison of the algorithms with a naive
approach of mapping the labels in RAM. The naive mapping approach is one in which
the developer does not want to invest any time in the placement of labels to different
memories but chooses only one memory for placement. Given a hypothetical dual-core
system as shown in Figure (page and an application with Scenario 1 (from
Table as task distribution, a naive approach would be to select the mapping of all
labels to one of RAM 0, RAM 1 or global RAM. As the baseline, we take the minimum
number of cycles which are needed to access the labels which can be computed by
assuming a single cycle latency for every memory. The total number of access cycles
for baseline, along with the ILP and naive mapping approaches are tabulated in Table
The memory utilization is the percentage of the time the memory is being utilized
which is the defined in Equation 4.4 A memory bandwidth of 80 MHz (80 million

cycles per second) is assumed.

Total access cycles

Memory Utilization(%) = Memory bandwidih x 100 (4.4)
Case Total access cycles | Memory Utilization(%)
Baseline 2731879 3.41
ILP 3463099 4.33
All RAM 0 7117063 8.90
All RAM 1 9274211 11.59
All RAM global 13659395 17.07

Table 4.8: Shows how a naive mapping approach requires more access cycles thereby
utilizing the memory more than required.

Observation shows that when all the parameters are accessed in a single cycle as
given in the baseline, memory is utilized 3.41% of time thus giving the minimum
possible memory utilization. ILP reduces the total memory access cycles and results

in a memory utilization of 4.33%. This value is greater than the minimum memory

45

4 Memory Mapping for an ECU

utilization because the shared labels are ultimately placed in one memory, resulting in
more than a single cycle access from the remote core. For task distribution Scenario 1,
Core 0 does more amount of work as it executes the most frequent time periodic tasks.
Thus naive approach of mapping everything to RAM 0 results in less utilization when
compared to mapping everything in RAM 1. Finally, all the labels mapped to global
memory gives the worst mapping leading to a utilization of 17.07%. This experiment
shows that naive mapping approaches end up utilizing memory more than required.
The ILP approach outperforms the naive mapping approaches by reducing the time
for which the memories are utilized.

4.3 Evaluation on a Dual-Core ECU Platform

The implementation is carried out using the concept of sections which were introduced
in the practical considerations (page of the previous chapter. For the practical
evaluation, we only use the ILP for distributing the parameters because the problem
is small and the memory sizes of the hardware are much bigger than the size of the
automotive application (capacity constraints are not strict). The precondition for
these experiments is an application which is parallelized for dual-core by distributing
the tasks as per Scenario 1.

The objective of memory mapping is to reduce the total memory access time. This
reduction in access time is reflected in the runtime of the cores. The percentage of time
the core spends in effective computation is defined as the core utilization. In a dual-
core scenario, the overall utilization is the aggregated utilizations of both the cores. We
compare the dual-core utilizations before and after memory mapping and represent
the improvement as a percentage reduction in utilization as given in Equation
The utilization when the parameters are distributed is less because the cores spend

less time in accessing memory which is due to efficient memory mapping.

Utilizationyngistrivuted — Utilizationgserivute
Improvement(%) = szlil;z';ttz'odn — distributed 100 (4.5)

We express the percentage of Relative Runtime as given by Equation 4.6

46

4 Memory Mapping for an ECU

Utilizationgisirivuted

Relative Runtime(%) =

= x 100 4.6
Utilizationundistributed ()

Depending on its type, a mapping parameter can be mapped in either flash memory
or RAM. We conduct experiments to observe the effect of distributing the parameters
among flashes and RAMs.

4.3.1 The Effect of Distributing Parameters in Flash

At first, we conduct experiments to observe the benefit of distributing parameters
to different flash memories. The dual-core utilization without any distribution of
flash parameters is the reference. Flash content comprises constants, code and we
observe the effect of distributing these components by, distributing only constants,
distributing only code and distributing both constants and code. To compare the
result of algorithm, we also include the result when the code placement is manually
performed by distributing it depending on the task placement. Table shows the
improvements and the relative runtimes for these different mappings. The variation
in the relative runtimes are as shown in the Figure and we observe that the code
distribution using algorithm gives a better reduction in runtime when compared to
the manual code placement. It is also observed that the reduction in runtime is more

when both code and constants are distributed.

Memory Mapping Improvement | Relative Runtime
(Cache Enabled) (%) (%)
No distribution (Single flash) Reference Reference 100%
Constant distribution 1.29 98.71
Code distribution (manual) 1.44 98.56
Code distribution 1.83 98.17
Code and constant distribution 2.76 97.24

Table 4.9: In this experiment, the caches are active. The table shows the improve-
ment of distributing parameters in flash memories and the corresponding
reduction in runtime when compared to the memory mapping without dis-
tribution. In comparison to the manual approach, the improvement is better
when the algorithm is used.

From Table [4.9] the improvement is maximal when both code and constants are dis-

tributed. The maximum improvement in the runtime achieved from the experiment

47

4 Memory Mapping for an ECU

100%

98.71%
= No distribution

m Constant distribution

m Code distribution (manual)

98.17% S
1 Code distribution

m Code and constant distribution

90.00% 92.00% 94.00% 96.00% 98.00% 100.00%
Relative Runtime

Figure 4.5: The figure shows the reduction in core runtime relative to the runtime
when there is no distribution - in the presence of cache.

is 2.76% which is not high enough to justify a real benefit. The reason for this is the
presence of cache which is employed to reduce the effective latency of flash memory ac-
cess. When the cache has a high hit rate, the accesses to the flash memory are reduced
and the improvements seen by memory mapping appears to be less because the cache
causes the memory access time to be a less significant fraction in the total program
execution time. To observe a greater effect, we can either choose a software which
uses the flash memory more intensively or we can repeat the experiment by disabling
the caches such that accesses to flash are increased. Choosing another application and
representing it in our model requires some effort, therefore as an easier alternative,
we repeated the experiments by disabling cache to get a higher flash utilization. The
measurements are tabulated in Table [£.10] and the variation in the relative runtimes
are as shown in Figure Firstly, we observe that the distribution of constants has
not shown much improvement when data caches are disabled. This is because the con-
stants are accessed in a random fashion and this causes higher flash access penalties
when the flash lines are flushed in and out multiple times. However, the improvement
is more pronounced in case of code distribution because the code access exhibits high
locality of reference such that the flash lines (which act as secondary cache) are ef-
fectively utilized. When caches are disabled, the memory access time is a significant

48

4 Memory Mapping for an ECU

fraction of program execution time. In such situations, memory mapping results in

better improvement of about 8.73%.

Memory Mapping Improvement | Relative Runtime
(Cache Disabled) (%) (%)

No distribution (Single flash) Reference Reference 100%
Constant distribution 0.9 99.10

Code distribution (manual) 6.87 93.13

Code distribution 7.44 92.56

Code and constant distribution 8.73 91.27

Table 4.10: This experiment is conducted by disabling caches. The distribution of
parameters in flash now show a greater improvement of 8.73% when com-
pared to the improvement of 2.76% seen when caches were enabled.

93.13%

92.56%

91.27%

100.00%

99.10%

T T T T

1

90.00% 92.00% 94.00% 96.00% 98.00% 100.00%

Relative Runtime

No distribution

Constant distribution
Code distribution (manual)
Code distribution

Code and constant distribution

Figure 4.6: The figure shows that when caches are disabled, the benefit of memory
mapping is clearly visible as there is more reduction in the relative runtime.

Though our target hardware exhibits an UMA characteristic for flash, we have deliber-

ately used the ILP algorithms with asymmetric access times to get the distribution of

flash parameters. The distribution helps in reducing the contention of simultaneously

accessing a flash memory. When the accesses to the flash are symmetric, flash contents

can be placed to any flash memory but we have shown that, by distributing the flash

49

4 Memory Mapping for an ECU

contents, we reduce the memory access time by minimizing contention. The benefits
of optimal mapping will be better in case of a hardware that exhibits non-uniformity
in memory accesses. This is because our placement is performed in a way that the
costly remote accesses are reduced.

4.3.2 The Effect of Distributing Parameters in RAM

The stack is the most frequently used portion of RAM and hence its allocation to
local memory crucially impacts performance. Since the stack is local to a task, the
allocation of stack is performed without using algorithms. Thus, we do not measure
the benefit of distributing the program stack but consider this optimization as a base
for further distribution.

Distributing parameters in RAM mainly deals with the distribution of labels in dif-
ferent RAMs. As indicated before, we have a limitation in the hardware which does
not support remote accesses to local memories. In the case of this hardware limita-
tion, when the tasks are distributed to different cores, the labels needed by both the
cores have to be copied from remote memory to local memory via the global RAM.
This is the preferred and the best label distribution for the hardware under consid-
eration. The worst distribution will then be the mapping of all labels in the global
RAM. The ILP approach implemented as a workaround for the hardware limitation
does the following: Firstly, the labels are distributed individually to RAMs and it is
worth noting that no labels get placed to global RAM because of its high access cost.
Then, the shared labels are mapped to global RAM (as a workaround). Lastly, as per
the specifications from AUTOSAR memory mapping [5], new sections are formed by
grouping the labels of same size into a section to avoid RAM wastage due to gaps.
In this scenario of label distribution using ILP, the number of labels in global RAM
(and hence also the utilization) are in between the best and the worst cases mentioned
above. If the best and worst case utilizations represent a normalized benefit of 100%
and 0% respectively, the benefit of using the ILP (which lies between them) can be
calculated by using interpolation as given in Equation [4.7] The Table shows these
normalized benefits.

Benefitrpp(%) = 100 (Utilization;p — Utilizationpes;) X 100
ILP = —

4.7
(Utilizationyy orst — Utilizationpges;) (4.7)

The memory access to labels in the application are only a fraction of other memory

20

4 Memory Mapping for an ECU

Case Normalized Benefit
(%)

Worst (All global) 0

ILP (Local and global) 50.48

Best (All local) 100

Table 4.11: This table shows the normalized benefits when all the labels are placed in
global RAM, when labels are placed using ILP and when all the labels are
in local RAM. It is observed that result of ILP shows a benefit of 50.48%
when compared to mapping everything in global RAM.

accesses. Also, if advanced hardware acceleration techniques are used, the impact of
accessing labels on the total application runtime will be minimal. This causes the
labels accesses to have a little effect on the core utilization. In such a case, comparing
absolute core utilization does not indicate a real benefit and therefore we have chosen
to normalize the benefit. By interpolating the core utilization of ILP between the best
and the worst cases, we observe a benefit of 50.48% which represents the advantage

of using ILP when compared to mapping all the labels in global RAM.

4.4 Summary

In this chapter, we have described the environment and the setup in Section 1.1} In
Section related to the theoretical evaluation, we compared the ILP and greedy
heuristics with respect to their solving time and optimality. Our experiments show
that greedy heuristic is very fast when compared to ILP which favours the usage of
greedy heuristic over ILP for problems of large sizes. It is seen that the ILP always gives
an optimal result and the result from the greedy heuristic is suboptimal under capacity
constraints which induces an overhead in the magnitude of 10% when compared to
the ILP. We observed the effect of capacity constraints on the solving time of ILP and
conclude that if the problem has a lot of decision variables, ILP becomes intractable
if the capacity constraints are too tight. Hence when it comes to choosing between
ILP and greedy, our conclusion is to first use ILP for small problems and choose
greedy heuristic when the ILP is intractable. The ILP memory mapping technique
was applied to a dual-core ECU in Section [£.3] It is observed that the distribution
of parameters in flash results in 2.76% reduction in total runtime when caches were

enabled and 8.73% reduction in runtime when caches were disabled. The benefit of

o1

4 Memory Mapping for an ECU

distributing the parameters is more when the accesses to the flash memories are more
and further benefits can be expected when flashes exhibit NUMA characteristics as
we perform placement to reduce the remote memory accesses that are costly. Due to
limitations in the hardware, we had to alter our methodologies to identify the benefits.
Finally, we implemented the distribution of labels in RAM using ILP and measured
the benefit to be 50.48% when compared to mapping all the labels in global RAM.

52

Refinement using Metaheuristics

The ILP and greedy heuristics described thus far are beneficial. However, their as-
sumptions simplify formulation and disregard the actual hardware behaviour. Fur-
ther, they have limitations because of contention not being thoroughly addressed.
Metaheuristics provide a refinement of earlier techniques and a means to overcome
the limitations. A metaheuristic is also a heuristic which makes approximations to
efficiently solve combinatorial optimization problems. Metaheuristics are classified
depending on different criteria [32]. The focus of this chapter is on the design of me-
taheuristics by means of stochastic optimization. Alternatives to metaheuristics using
stochastic optimization can be exact methods like Mixed Integer Non Linear Program-
ming (MINLP) or other metaheuristics based on evolutionary algorithms like GA. As
ILP is one of the exact methods which we have already applied and evolutionary con-
cepts are better suited towards exploration problems, we rely on metaheuristics which
are stochastic in nature. Starting with a brief introduction to contention, limitations
of ILP and greedy techniques, we present two metaheuristics to solve the memory

mapping problem.

5.1 An Introduction to Contention

A single port memory can only serve one request per memory access cycle. In such

a memory, contention is a phenomenon which occurs when there are more than one

23

5 Refinement using Metaheuristics

requests at the same time. In the case of contention, requests to the memory are
delayed and this reflects in increased memory access time for the contended memory.
Therefore it can be said that minimizing contention, minimizes the memory access
time as well. Previously, the ILP and greedy heuristic worked with the objective of
minimizing the total memory access time without directly addressing contention. In

this chapter, the metaheuristic works with the objective of minimizing contention.

The notion of contention is explained with reference to the hypothetical dual-core
system in Figure (page . Assuming the case of less latency for local memories
and more latency for remote and global memory, the ILP and greedy algorithms fill
the local memories until their capacity limit and choose the global memory only if the
local memories are full. Further, access times once initialized remain unchanged. But
due to existing placements in local memories, there is a possibility of contention which
results in increased access time in these memories. Though the assumption of a fixed
latency helps in practically getting good results, there is a scope for improvement. A
better design is an algorithm which estimates contention in existing placements and
diverts future placements to unused (less contentious) memories. The essence of the
above idea is captured in two metaheuristics presented in this chapter. Before we
discuss them, we highlight the limitations of the previous techniques.

5.2 Limitations of ILP and Greedy Techniques

The limitations in the formulation of ILP and greedy heuristics are due to their sim-
plifying assumptions. The limitations are as below:

e The interconnect conflicts are only indirectly taken care via increased cost to

remote memories.
e The assumption of constant memory access time is not always true.

e In case of symmetric accesses to the memories, the ILP and greedy heuristic do
not distribute the parameter placement as they disregard contention. Thus the

previous techniques work well only for asymmetric accesses.

These limitations are mitigated by using metaheuristics.

o4

5 Refinement using Metaheuristics

5.3 Metaheuristic |

5.3.1 Operating Principle

The fundamental operation of every memory is the same. When a request is sent, the
memory takes time to service the request. This service time is constant irrespective
of the fact that the request is local or remote. In other words, there is no distinction
between the request of local or remote cores as far as memory is concerned. The reason
for overall faster or slower access times with local or remote memories respectively are
latencies in the bus and possible conflicts in the interconnect. The metaheuristic is
designed to overcome the limitations of ILP and Greedy, to capture the real behaviour
of memory and interconnects. The operating principle is given below.

After the placement of some mapping parameters, examine the contention. Compute
the probability of contention. Depending on the probability of contention, increase the
cost of memory access. The metaheuristic now sees the increased cost due to contention

and diverts further placements to less contentious memories.

The details of these steps are discussed in the design of metaheuristic.

5.3.2 Design

The steps taken in the design of metaheuristic are as shown in the Figure [5.1, The
access costs (in terms of cycles) of all the memories are initialized with costs being
symmetric or asymmetric depending on whether the architecture is UMA or NUMA.
In the next step, the rate of examining contention is set. This rate corresponds to the
number of placements (iterations). The heuristic starts the placement using a greedy
approach. Depending on the rate, after a few iterations, the heuristic stochastically
computes the contention and alters the access specs. The alteration of access specs
is a function of the probability of contention (i.e. higher probability implies higher
costs) which depends on the nature of the hardware. The subsequent placements are
affected by this increased access cost and the placements are routed to the memory
with least cost (incidentally the memory with a low probability of contention). The
blocks Stochastic Computation and Alter Access Specs are described below.

25

5 Refinement using Metaheuristics

Cores Total Probability of Contention

2 POP1

3 PP+ PoPy+ PP, — 2P P Py

> 2in general 1- (Pno core access 1 Pea:actly one core access)

Table 5.1: Stochastic computation of contention

Stochastic Computation

Total contention is stochastically computed. The maximum rate at which a memory
can service requests is limited by the memory bandwidth. Thus the probability of a
core utilizing a memory is given by the Equation [5.1]

N ccess
Piccess = % (51)

Max access

Where Num gecess is the number of accesses from a core to the memory and M ax gccess
is the maximum possible accesses to memory (limited by memory bandwidth). These
probabilities are calculated for all the cores and memories in the system. For example,
consider the dual-core scenario of Figure (page. For RAM 0, let the probability
of access from Core 0 and Core 1 be Fy and P, respectively. Clearly the accesses
from Core 0 to RAM 0 are independent of the accesses from Core 1 to RAM 0.
Since these events are independent, the total probability of contention at RAM 0 is
the multiplication of these two probabilities. For every memory, the probability of
contention is computed depending on the number of cores as given in Table

Alter Access Specs

Depending on the probability of contention at a memory, the access cost to the memory
is altered. The amount by which the access specs have to be altered has to be determ-
ined by hardware tests. If the probability of contention is high, then the likelihood
of contention is more. Therefore highly contentious memories are made costlier for
subsequent iterations and the greedy heuristic chooses the memory with least cost
which incidentally is also the memory with least contention.

The metaheuristic is given in Algorithm @] The steps are identical to the greedy
heuristic discussed before. The notable difference is the addition of routines for com-

26

5 Refinement using Metaheuristics

puting contention and altering the access specs. The initialization algorithm required

to prepare and sort the list of parameter affinities is given in Algorithm [3]

Algorithm 3 Preparation of the input for greedy metaheuristic
for all Mapping Parameters do
for all Cores do
CoreParameterAffines <— Add the Mapping Parameter, its most affine Core
along with the affinity to the list
end for
end for
Sort the list in decreasing order of their affinity

Ensure: Mapping Parameter with the maximum affinity is first in the CoreParamet-
erAffines list

Algorithm 4 Greedy metaheuristic for Mapping Parameters
Require: A list CoreParameterAffines as computed in
Initialize memory access specs
Initialize Rate of Contention Check
for all CoreParameterAffines do
Find the FastestMemory available from the Core
if Parameter fits into the FastestMemory then
Map Parameter to — FastestMemory
if Rate of contention satisfied then
Compute Contention
Alter Access Specs
end if
else
Recursively find the next available FastestMemory for the Mapping Parameter
end if
end for
Ensure: That insufficient capacities are reported with an error condition
return In case of no error, return the memory mapping of Mapping Parameters to
appropriate Memories

5.3.3 Assumptions

The following assumptions are made during the design of metaheuristic:

e The values by which we can increase the access specs are determined from hard-
ware tests.

57

5 Refinement using Metaheuristics

Start

Initialize
Memory
Access
Specs

Initialize
Rate of
Contention
Check

Greedy Placement (<

All parameters
mapped?

No

Iteration %

Yes

End

Rate ==07?

Yes

v

Stochastic
Computation

Alter Access

Specs

Figure 5.1: Steps in the design of metaheuristic 1.

5 Refinement using Metaheuristics

5.4 Metaheuristic |l

The metaheuristic disscussed has limitations that the increase in memory access spe-
cification has to be determined from tests and the rate at which contention is checked
has to be found out using trial and error. Also, all the ILP, greedy and the meta-
heuristic techniques discussed till now work well only under the assumption that the
number of memories are greater than or equal to the number of cores. For example,
even in the hypothetical dual-core scenario, we had three RAMs and two flash memory.
We face problems when there are more cores but less memories because the access cost
from a core to a memory can no longer be the used to distinguish a better placement.
This affects the choice of selecting a particular memory for the best placement and
therefore we propose another heuristic which performs distribution even when the
number of memories are lesser than the number of cores. Such architectures are fore-
seeable especially when the device vendor stops adding more memories but instead
increases the capacity of the existing ones.

5.4.1 Operating Principle

The metaheuristic II works on the following principle:

After initializing the contention probabilities of the memories, a parameter is mapped
to the memory with least contention. The contention probabilities for this memory
is updated, in subsequent iterations, the memory with least contention is chosen for
mapping and the process repeats.

5.4.2 Design

This metaheuristic is shown in Algorithm 5] All the contention probabilities of the
memories are initialized to zero in the beginning. In every iteration, a mapping para-
meter is mapped to the memory with least contention followed by a subsequent re-
computation of probabilities. This re-computation increases the contention probab-
ilities after placement. The probability of memory access by a core is as given in
Equation and the total contention probability for different number of cores can be
computed using Table 5.1 Therefore this mechanism creates an equalization in the

29

5 Refinement using Metaheuristics

memory accesses to different memories and minimizes the contention by distributing

the placement to several available memories.

Algorithm 5 Metaheuristic IT for Mapping Parameter
Initialize contention probabilities of memory
for all Mapping Parameters do
Map Parameter — Memory with least contention
Re-compute contention
end for
Ensure: That insufficient capacities are reported with an error condition
return In case of no error, return the memory mapping of Parameters to Memories

5.4.3 Assumptions

This metaheuristic is based on the following assumption:

e Accesses to memories are uniform.

5.5 Evaluation

Due to the difficulties in accurately increasing the memory access time in case of
the metaheuristic I, the theoretical evaluation experiments are conducted only using
metaheuristic II.

The metaheuristic II aims at reducing the contention by distributing the memory
accesses to different memories. To measure the reduction in contention, the meta-
heuristic is used in the placement of constants and the experiments are repeated by
varying the number of flash memories. The application details are the same as given
in the Table (page [4). It is assumed that the flash memory has a symmetric
access of five cycles (note that the number of cycles for this heuristic is not regarded)
from all the cores and offers a bandwidth of 10 million accesses per second. In case
of symmetric accesses, the distribution performed by the ILP and greedy techniques
does not take contention into consideration. To overcome this limitation, the meta-
heuristic is designed and from evaluation, we show that the contention reduces when

this metaheuristic is used.

60

5 Refinement using Metaheuristics

The aount of flash memories are increased from one to six and this reduces the prob-
ability of contention at a memory because the metaheuristic can now distribute the
placement among several memories. Further, the probability of contention is equally
distributed between the different flash memories. This reduction in contention reduces
the memory access time. Table [5.2]shows the contention probabilities at each memory

for different number of flash memories.

Flash memory | Contention Probability

at each memory
(10°%)
0.96233
0.22491
0.09982
0.05550
0.03597
0.02422

S UL W N+~

Table 5.2: This table shows the reduction in contention probability with the increase
in the number of flash memories.

5.6 Summary

In this chapter, we have identified the potential drawbacks of the ILP, greedy tech-
niques and proposed two metaheuristics to overcome the limitations. The limitation
mainly arises when there is a mixture of symmetric and asymmetric memory accesses
in the system. When we have asymmetric accesses, ILP and greedy techniques can be
used but this approach does not help in reducing the contention in case of symmet-
ric accesses to memories. The metaheuristic I makes use of stochastic optimization
to compute the contention in memories and accordingly increase the cost of memory
access for subsequent iterations. This however has a drawback and cannot be applied
to scenarios when the number of cores exceed the number of memories. As an al-
ternative to metaheuristic I, we have proposed metaheuristic II which does not rely
on memory access cost but stochastically minimizes the total memory contention. In
the experiments of placing constants, we evaluated the benefit of metaheuristic II by
increasing the number of symmetric flash memories. We see that the metaheuristic
IT reduces the total memory access time by reducing contention. We have kept the

implementation of metaheuristics for our future work.

61

Conclusions and Recommendations

6.1 Conclusions

Memory mapping forms an important step towards optimization in embedded sys-
tems. The advances in multi-core hardware have created research opportunities for
the development of software techniques to efficiently utilize multiple cores and memor-
ies. The software parallelization techniques to utilize different cores are only partial
answers to the multi-core challenge because memory now forms the bottleneck for
further performance benefits especially when all the cores access the same memory.
Further, the non-uniform memory accesses in NUMA machines require an optimal
memory layout such that the total memory access time of the application is reduced.
Moreover, practical and scalable techniques are needed because the optimal memory
mapping problem is NP-complete [23, 21]. In this thesis, we have proposed scalable
memory mapping techniques and applied it to a multi-core automotive embedded sys-
tem to support our hypothesis that the techniques help to reduce the total memory

access time.

Our techniques for the memory mapping involve ILP formulation, the design of greedy
heuristics and a proposal for using metaheuristics. In our experiments, we have the-
oretically evaluated the ILP and greedy techniques and it is seen that the greedy
technique is about 10% inferior when compared to the ILP. Choosing between ILP
and greedy heuristic depends on the number of memories, application parameters and

62

6 Conclusions and Recommendations

the capacity constraints of the memory. It is better to choose ILP for small problems
and choose the greedy heuristic for problems where ILP is not feasible. To measure the
practical benefits, we have implemented the ILP technique on a dual-core ECU plat-
form. The distribution of parameters in flash reduced the total application runtime
by 2.76% when caches were enabled and a runtime reduction of 8.73% was observed
when the caches were disabled. We expect higher benefits from memory mapping if
the flash memories have asymmetric accesses as we perform placement to reduce the
costly remote memory accesses. The ILP technique for memory mapping in case of
RAM showed a benefit of 50.48% when compared to mapping all the labels in global
RAM. We observed that the ILP and greedy heuristics work only when the accesses
to the memories are not uniform and we proposed two metaheuristic approaches as
add-ons which minimize contention in case of symmetric accesses. However, we could
not thoroughly evaluate the metaheuristics for their benefit. Preliminary theoretical
evaluation for one of the metaheuristic approach (the Metaheuristic IT) shows the re-
duction of contention with the increase in the number of symmetric flash memories.
We have identified the practical implementation of metaheuristics as a part of our

future work.

There are benefits observed from the proposed memory mapping techniques. However,
applying them for a given use case makes sense only when there is a foreseeable
advantage. The introduction of hardware features like caches mask the importance
of memory mapping and also its benefit is limited if the labels are less or if they are
occasionally accessed. A good indication for the benefit is the fraction of the total
execution time spent on memory accesses. If this fraction is a good contribution to
the total program execution time, then the benefit from memory mapping techniques
will also be higher. The automotive application under consideration was not software
intensive and we predict higher benefits in case of softwares which utilize more memory.
We have explored the option of increasing the memory utilization by disabling caches
for the flash memory, and this has shown a greater benefit. Experiments to prove
increased importance of memory mapping by considering a more intensive software

can be considered during future work.

6.2 Recommendations

In this section, we highlight the future work and recommend a few approaches which

could not be incorporated in this thesis. We see that the metaheuristics are flexible as

63

6 Conclusions and Recommendations

they support multiple objectives in their design. The implementation of the proposed
metaheuristics is one of our future work which will provide interesting answers to the
benefit of using them over the other techniques. These metaheuristics can be easily
extended by adding more objectives.

Another possible approach is to use a combination of the above techniques. For
example, if we perform an optimal distribution using ILP and then use metaheuristics
to reduce contention, the benefits can be higher. Also, to prove improved benefits from
the proposed techniques, an intensive software can be chosen and the implemented on
the hardware.

We outline a potential problem that arises with respect to multi-core memory mapping
here. A mapping parameter shared between two or more cores is ultimately mapped to
one memory due to the placement constraint. If the parameter is heavily shared, then
the contention at the memory is also higher. This contention was not considered in
the metaheuristics but we have potential ideas which can be investigated in our future
work. One solution to minimize the contention due to shared data is to duplicate
them among several memories. But this is only applicable for read-only data whereas
a read-write data needs other mechanisms to ensure consistency. Further, to avoid
memory wastage, the duplication has to be controlled and the challenge is to identify
the data which benefits the most by duplication. Other techniques to restrict the
distribution of tasks to different cores when the tasks share a lot of data can also be
employed.

An extension of the proposed memory mapping techniques is a cache aware placement
which can be especially performed in the case of flash memory because the access
time is higher than RAM. The objective of the cache aware placement technique is to
maximize the cache hit rate by proper alignment of data within a flash memory. As
a first step, we can use the proposed techniques to identify the placement of mapping
parameters to different memories which is then followed by cache aware placement to
maximize cache hit.

The task distribution and memory mapping problems are interlinked but there is no
fixed order in performing them. One possible approach is to encode the entire task
distribution and memory mapping problem in a GA. The GA iteratively improves
the candidate solution over generations to identify the best task distribution and its
appropriate memory mapping. Though the complexity of the problem is high, efficient
encoding of GA can be investigated.

64

6 Conclusions and Recommendations

Due to the interdependence between the distribution of task and mapping of memory,
we notice that the granularity at which tasks are distributed must be the same as the
granularity at which memory is allocated. As an example, if the tasks are distributed
depending on functions, then, the memory mapping has to consider the allocation of
memory at the level of a function. A finer task distribution followed by a coarser
memory distribution and vice versa is not preferred. Therefore, finding the right
granularity levels for distributing tasks and memories can be another topic which is
worth investigating.

65

Appendix

G.1 Main Working Topics of the AUTOSAR

There are three main topics which are addressed in AUTOSAR:

e Architecture - refers to the Software Architecture including the AUTOSAR Basic
Software [[| which serves as an integration platform for hardware independent
software applications.

e Methodology - deals with the exchange formats to enable a seamless integration
of Basic and Application Software[’]in the ECUs and additionally a methodology
stating the use of this framework.

e Application Interfaces - specification of syntactical and semantic interfaces in a

view to standardize application software.

Among these topics, the software architecture is more relevant to our work therefore it
is described next and additional information can be found on the AUTOSAR homepage
[4].

'Basic Software - Software responsible for infrastructural functionalities in an ECU [7]
2 Application Software - Software running on AUTOSAR infrastructure which realizes a defined
functionality on an application level

66

G Appendix

G.2 AUTOSAR Layered Software Architecture

The software architecture is organized in terms of layers. The AUTOSAR layered
architecture provides a well defined abstraction of the hardware and a structured
interface definition. Figure [G.1] shows the various layers of the AUTOSAR software
architecture. In Table [G.T], the purpose of each of these layers is summarized.

Application Layer

AUTOSAR Runtime Environment (RTE)

Figure G.1: AUTOSAR: layered software architecture [6]

67

G Appendix

Layer

Purpose

Application Layer

This is a hardware independent layer which hosts
the Application Software Components (SW-C : ap-
plication running on the AUTOSAR infrastruc-
ture)

AUTOSAR Runtime Envir-
onment (RTE)

Enables implementation of AUTOSAR SW-Cs in-
dependent from mapping to a specific hardware or

ECU

Services Layer

Provides basic services to the application layer and
also abstracts the microcontroller and ECU hard-
ware from the above layers

ECU Abstraction Layer

Abstracts the ECU layout from the above layers

Complex Drivers

Fulfils the special functional and timing require-
ments for handling complex sensors and actuators

Microcontroller Abstraction
Layer (MCAL)

Makes the upper layers microcontroller independ-
ent by abstracting the ECU sensors and actuators

Table G.1: Purpose of AUTOSAR layers

68

1]

[10]

Bibliography

Ip_solve, A Mixed Integer Linear Programming (MILP) solver.
http://Ipsolve.sourceforge.net /, 2008.

TILEG4 Processor: A 64-Core SoC with Mesh Interconnect (2008).

ANTONY, J., JANES, P. P., AND RENDELL, A. P. Exploring thread and
memory placement on numa architectures: solaris and linux, ultrasparc/fireplane
and opteron/hypertransport. In Proceedings of the 15th international conference
on High Performance Computing (Berlin, Heidelberg, 2006), HiPC’06, Springer-
Verlag, pp. 338-352.

AUTOSAR. Autosar home. www.autosar.org.

AUTOSAR. Autosar specification of memory mapping, 2006.
AUTOSAR. AUTOSAR Technical Overview R3.0 Rev 1, February 2008.
AUTOSAR. AUTOSAR Glossary R4.0 Rev 2, October 2010.

AVISSAR, O., BARUA, R., AND STEWART, D. Heterogeneous memory manage-
ment for embedded systems. In Proceedings of the 2001 international conference

on Compilers, architecture, and synthesis for embedded systems (New York, NY,

USA, 2001), CASES 01, ACM, pp. 34-43.

BoLosky, W., FITZGERALD, R., AND ScoTT, M. Simple but effective tech-

niques for numa memory management. SIGOPS Oper. Syst. Rev. 23, 5 (Nov.
1989), 19-31.

Borosky, W. J., ScorT, M. L., FITZzGERALD, R. P., FOWLER, R. J., AND
Cox, A. L. Numa policies and their relation to memory architecture. In Proceed-

ings of the fourth international conference on Architectural support for program-

69

Bibliography

[11]

[14]

[16]

[17]

ming languages and operating systems (New York, NY, USA, 1991), ASPLOS-IV,
ACM, pp. 212-221.

BroQueDIS, F., FURMENTO, N., GOGLIN, B., NAMYST, R., AND WACREN-
IER, P.-A. Dynamic task and data placement over numa architectures: An
openmp runtime perspective. In Proceedings of the 5th International Workshop
on OpenMP: Evolving OpenMP in an Age of Extreme Parallelism (Berlin, Heidel-
berg, 2009), IWOMP ’09, Springer-Verlag, pp. 79-92.

CHEN, T., RAGHAVAN, R., DALE, J. N., AND IwaTA, E. IBM Journal of
Research and Development, 5, 559 —572.

Cox, A., AND FOWLER, R. The implementation of a coherent memory abstrac-
tion on a numa multiprocessor: experiences with platinum. In Proceedings of the
twelfth ACM symposium on Operating systems principles (New York, NY, USA,
1989), SOSP 89, ACM, pp. 32-44.

D. Cousins, J. Loowmis, F. R. P. S., AND ToOBIN, A.-E. The embedded ge-
netic allocator—a system to automatically optimize the use of memory resources

in high performance, scalable computing systems. In IEEE Int. Conf. Systems,
Man, and Cybernetics (1998), vol. 3, p. 2166-2171.

DanpaMUDI, S. P., AND CHENG, S. P. Performance impact of run queue

organization and synchronization on large-scale numa multiprocessor systems. J.
Syst. Archit. 43, 6-7 (Apr. 1997), 491-511.

FREESCALE. Rationale for multicore architectures in automotive applications.
FreeScale Technology Forum, June 2011.

INFINEON. Infineon introduces microcontroller mul-
ticore architecture for automotive applications.
www.infineon.com/cms/en/corporate/press/news/releases/2011/INFATV201110-
003.html, 2011.

INFINEON TECHNOLOGIES AG. Memory Access Time in TriCore® 1 TCIM
Based Systems, v 1.1 ed., June 2004.

INTEL. Intel core 2 quad. www.intel.com /products/processor /core2quad.

INTEL®). Optimizing applications for numa http://software.intel.com/en-
us/articles/optimizing-applications-for-numa/, 2011.

70

Bibliography

[21] JuA, P., AND DutT, N. Library mapping for memories. In European Design
and Test Conference, 1997. ED TC 97. Proceedings (mar 1997), pp. 288 —292.

[22] KoNsTADINIDIS, G. K., TREMBLAY, M., CHAUDHRY, S., RASHID, M., LAI,
P. F., OTAGURO, Y., ORGINOS, Y., PARAMPALLI, S., STEIGERWALD, M.,
GuUNDALA, S., PvyapraLl, R., RARIcK, L. D., ELkIN, 1., GE, Y., AND
PARULKAR, I. Architecture and Physical Implementation of a Third Generation
65 nm, 16 Core, 32 Thread Chip-Multithreading SPARC Processor. Solid-State
Circuits, IEEE Journal of 44, 1 (2009), 7-17.

[23] KuMAR, T. R. On-Chip Memory Architecture Exploration of Embedded System
on Chip. PhD thesis, Indian Institute of Science, 2008.

[24] LAROWE, JR., R. P.; AND SCHLATTER ELLIS, C. Experimental comparison of
memory management policies for numa multiprocessors. ACM Trans. Comput.

Syst. 9, 4 (Nov. 1991), 319-363.
[25] LARUS, J. Spending moore’s dividend. Commun. ACM 52, 5 (May 2009), 62-69.
[26] MATHWORKS. Simulink http://www.mathworks.com/products/simulink/index.html.

[27] NAVARRO, A., ZApATA, E., AND PADUA, D. Compiler techniques for the
distribution of data and computation. IEFE Trans. Parallel Distrib. Syst. 14, 6
(June 2003), 545-562.

[28] ORACLE. Java™ platform, standard edition 6 api specification
http://docs.oracle.com/javase/6/docs/api/. Refer sort method in Collections
class.

[29] PaNDA, P. R., DurT, N. D.,; AND NICOLAU, A. Architectural exploration
and optimization of local memory in embedded systems. In Proceedings of the
10th international symposium on System synthesis (Washington, DC, USA, 1997),
ISSS 97, IEEE Computer Society, pp. 90-97.

[30] PaANDA, P. R., DutrT, N. D., AND NicoLAU, A. On-chip vs. off-chip memory:
the data partitioning problem in embedded processor-based systems. ACM Trans.
Des. Autom. Electron. Syst. 5, 3 (July 2000), 682-704.

[31] SYNOPSYS. Virtual prototyping. Web Article.
http://www.synopsys.com/systems/virtualprototyping /Pages/default.aspx.

71

Bibliography

[32] TALBI, E.-G. Metaheuristics: From Design to Implementation. John Wiley &
Sons, Inc., 2009.

72

	Introduction
	Research Incentives
	Problem Statement and Contributions
	Thesis Outline

	Background
	Trends in Automotive
	Multi-Core
	Trends
	Overview of Architectures
	Multi-Cores in Automotive

	Related Work
	Summary

	Techniques for Memory Mapping
	The Memory Mapping Process
	Terminology
	Memory Mapping
	Memory Mapping Strategies
	Steps in Memory Mapping
	Mapping of Stack Data

	ILP Formulation for Memory Mapping
	Notations
	Formulation
	Assumptions
	Drawbacks of the ILP

	Greedy Heuristics for Memory Mapping
	Greedy Heuristic for the Placement of Mapping Parameters
	Assumptions

	Practical Considerations
	Summary

	Memory Mapping for an ECU
	Environment and Setup
	Application
	Workstation
	Target Hardware
	Settings for Theoretical Evaluation

	Theoretical Evaluation
	ILP versus Greedy Heuristics
	Selecting an Algorithm
	Algorithm versus Naive Mapping

	Evaluation on a Dual-Core ECU Platform
	The Effect of Distributing Parameters in Flash
	The Effect of Distributing Parameters in RAM

	Summary

	Refinement using Metaheuristics
	An Introduction to Contention
	Limitations of ILP and Greedy Techniques
	Metaheuristic I
	Operating Principle
	Design
	Assumptions

	Metaheuristic II
	Operating Principle
	Design
	Assumptions

	Evaluation
	Summary

	Conclusions and Recommendations
	Conclusions
	Recommendations

	Appendix
	Main Working Topics of the AUTOSAR
	AUTOSAR Layered Software Architecture

