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Abstract 

 

 

The fusion of measurements from distributed sensors for dynamic positioning (DP) 

system based on state estimation algorithms is studied in this thesis in order to increase 

the accuracy and redundancy of the reference system in DP and a state observer is also 

designed to estimate of the low frequency vessel motion for the input of DP controller. 

Different filters such as lowpass filter, notch filter, Kalman filter (KF), extended 

Kalman filter (EKF), unscented Kalman filter (UKF) and square-root unscented Kalman 

filter (SRUKF) are introduced and discussed in this thesis. The square-root unscented 

Kalman filter is proposed for the fusion of measurements, wave filtering and state 

estimation based on kinematics while the Kalman filter is used as an observer for the 

estimation of the state vector of a vessel mathematical model for dynamic positioning 

operation. Thereafter a Matlab/Simulink based marine system simulator containing 

external environment, vessel model, reference sensors, sensor fusion system, observer 

and controller is built to test the algorithms of sensor fusion and observer designed in 

this thesis. The results of the simulation show that the errors of low frequency position 

and heading prediction are below 0.2m and 0.3 degree respectively which is accurate 

enough for DP operation. The dead reckoning starts automatically as soon as the 

reference system fails and the error of the dead reckoning increases gradually overtime. 

The position error in dead reckoning is about 5m after 1800s in simulation, which 

means the DP system is still able to estimate the position of the vessel without any 

position measurements in certain time, avoiding collision caused by the sudden position 

loss.  
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1. Introduction 

 

This chapter first explains what the dynamic positioning (DP) system is and the 

background knowledge of DP. Then, the motivation and goal of this thesis is introduced.  

The previous work related to the topic is briefly described afterwards. At last the 

structure of this thesis is presented to give readers the outline of the work. 

1.1 Dynamic Positioning 

There are some specific operations at sea which require a vessel to keep its position. It 

can be done by mooring system in shallow water. Whereas, it becomes more difficult by 

using mooring system in deep water where dynamic positioning (DP) is applied to 

maintain the position of a vessel due to the invalidation or difficulty of mooring system. 

Three degrees of freedom (surge, sway and yaw) of a vessel which is exposed to 

environmental forces (wind, current and wave) are controlled by DP system as shown in 

Figure 1-1.  

 

Figure 1-1: What is dynamic positioning. Courtesy of [1] 

Wave
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DP system is a computer control system which keeps the position and heading of a 

vessel by controlling the propellers and thrusters.  The most significant modules of a DP 

System are (see Figure 1-3): 

• Environmental sensors (wind) 

•Reference systems (GPS, IMU, gyroscope, radar, etc.) 

• Controller 

• Thruster interface 

Figure 1-2 describes control system and involved external factors in DP and how the 

relevent componets are interconnected. 

 

Figure 1-2: Overview of a ship control system. Courtesy of [2] 
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Figure 1-3: Components of DP system. Courtesy of [3]  

 

1.2 Motivation and Goal  

The knowledge of heading and position is required in order to carry out DP operation. 

Since the motions of different points on a vessel are various, it is more convenient to 

compute the motions and forces about the same point which is usually the center of 

gravity (CG). Thus, the measurements of sensors such as GPS, IMU, radar, etc. at 

different locations should be transformed into CG. On one hand, the number of sensors 

is normally larger than the least required number for position and heading measurement 

due to the redundancy of the sensor system, so how can we utilize the extra 

measurements to increase accuracy? [4] On the other hand, the measurements at 

different points on the vessel are related by rigid body kinematics, so the rotational 

motion can be calculated based on three known translational motions of three different 

points. Is it possible to achieve that the failure of the sensor of angles dose not result in 

the loss of heading by sensor fusion so that the redundancy of the reference system can 



4 
 

be increased? There are few works of sensor fusion for dynamic positioning published 

in the past, which motivates the author to achieve the first goal of this thesis: that is to 

design a sensor fusion system to transform all reference sensors into CG and also give 

estimation about CG motion based on all available sensors. Proper fusion algorithms 

will be selected among Kalman filter family later. 

The external disturbances caused by waves, wind, current and other unmodeled 

dynamics categorized by second order low frequency (LF) disturbances and first order 

wave- induced frequency (WF) disturbances. [5] And the motion of the vessel 

corresponding to LF disturbance and WF disturbance is called the low frequency 

motion and wave frequency motion respectively. [6] Figure 1-4 shows an example of 

LF and WF motion. However, neither LF motion nor WF motion is known directly 

from the reference system which only measures the total motion (superposition of the 

LF and WF) of the vessel. The second goal of this thesis is aimed to design an observer 

to estimate the LF motion of the vessel with reference system or without reference 

system (dead reckoning) as controlling only LW motion in DP operation is a better 

choice than controlling total motion which results in unacceptable operation for the 

propulsion system due to wear of the actuators and power consumption. [5] 

 

Figure 1-4: Low frequency motion and wave frequency motion 
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1.3 Previous Work 

Simon [7], Paul and Howard [8] proposes different mathematical approaches (various 

filters are introduced) to the best possible way of estimating the state of a general 

system. Mobinder and Angus [9] have researched both the theoretical and practical 

aspects of Kalman filtering by including real-world problems in practice as illustrative 

examples. When it comes to application of sensor fusion in navigation system, Mayhew 

[10], Nassar [11] and Han [12] uses fusion of INS and GPS to enhance the position 

estimate and Mayhew also compares several algorithms for fusion parameter 

optimization. Van Der Merwe [13] extends traditional extended Kalman filter and 

deeply researches a family of sigma-point Kalman filters (SPKF). In order to improve 

the numerical performance in PC computation, Van Der Merwe [14, 15], Zhang [16] 

and Tang [17] propose square-root sigma-point Kalman filer. The properties of the 

properties of covariance matrixes of different filters (EKF, UKF, SRUKF and AEKF) 

are presented by Hovland. [18] 

Fossen [5, 19] builds mathematical model of vessel dynamics for positioning control 

systems. Muhammad [6] uses a mathematical model describing the dynamics of a 

floating vessel based on Fossen‟s work and he also sperates low frequency motion from 

position measurement. Torsetnes [20] designes an observer model for gain-scheduled 

wave filtering using contraction theory and acceleration meaurement is utilized in his 

model besides position measurement. 

 

1.4 Structure of the Thesis 

 Chapter 1 is the introduction which describes background knowledge, precious 

work, motivation and goal of this thesis.  

 Chapter 2 gives a description of reference frames corresponding to this thesis 

and transformation method between these reference frames.  
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 Chapter 3 is a short introduction for different sensors used in reference system 

for DP. 

 Chapter 4 introduces various filters that are considered useful tools in this thesis. 

 Chapter 5 is one of the core chapters in this thesis and contains the algorithms 

for multi-sensor fusion and estimation of total motion of CG. 

 Chapter 6 is another core chapter and it focuses on observer design based on the 

vessel mathematical model. 

 Chapter 7 implements the simulation and illustrates the results of the simulation. 

 Chapter 8 contains discussion and relevant future work. 

The core structure of the thesis is carried out based on Figure 1-5 which details the ship 

control system in Figure 1-2 according to the contents of the thesis. The green blocks in 

Figure 1-5 are the major work of this thesis and the „sensor fusion‟ block is the work 

done in Chapter 5 whilst the „observer‟ block is done in Chapter 6. The „sensor fusion‟ 

block receives the measurements from all reference sensors and fuses them by proper 

fusion algorithm, outputting the total motion of CG as the input of „observer‟ block 

which then estimates the low frequency motion of CG. 
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Figure 1-5: Overview diagram of DP in this thesis  
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2. Reference Frames 

 

The measurements of sensors in reference system are based on various reference frames, 

which means measured and computed quantities between different reference frames 

should be unified in the same reference frame. Several reference frames are used in 

dynamic positioning system. This chapter will introduce the reference frames involved 

in the calculation in the thesis as well as coordinate transformation between different 

coordinate systems.     

 

2.1 Earth-centered Earth-fixed Coordinate System 

The Earth-centered Earth-fixed (ECEF) coordinate system( )e e ex , y ,z , defined as a right 

handed coordinate system, has its origin at the Earth‟s center of mass with its x-axis 

fixed on the line of intersection of the prime meridian (0 degree longitude) and the 

equator (0 degree latitude) and z-axis points to the true north pole. [21] The y-axis 

complies with the right handed rule as shown in Figure 2-1. This frame rotates relative 

to the inertial frame with frequency 

 57.292115 10 /ie s     (2.1) 

Due to the earth rotation, the ECEF frame is not an inertial reference frame. 
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Figure 2-1: North-East-Down Coordinate System (NED) in relation to the ECEF frame. 

Courtesy of [22] 
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2.2 North-East-Down Coordinate System 

The North-East-Down coordinate system ( )n n nx , y ,z  is the right handed rectangular 

coordinate system defined by the tangent plane to the geodetic reference ellipse at a 

point of interest. The geometrical shape of this geodetic reference ellipse is defined by 

WGS84 geodetic system. The constants of WGS84[21] are shown in Table 2-1. The 

tangent plane is attached to the point of measurement on a vessel and this point 

determines the origin of the local frame. In this frame, the x-axis extends to the true 

north while y-axis points to the east. The z-axis points downwards, perpendicular to the 

tangent plane mentioned above. This frame is shown in Figure 2-1. 

The location of NED relative to ECEF is determined by longitude l  and latitude  . For 

a vessel operating in a local sea, the tangent plane fixed on the geodetic reference 

ellipse is used for navigation and this frame can be assumed inertial for simplicity. 

Table 2-1 WGS84 defining parameters 

Terms Symbol Value Unit 

Equatorial radius a   6378137 m 

Reciprocal flattening 
1

f
  298.257223563  

Angular rate ie  7.292115×10-5 s-1 

Gravitational constant GM 3.986004418×1014 m3/s2 
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2.3 Body-fixed Reference Frame 

The body-fixed reference frame ( )b b bx , y ,z  is rigidly fixed to the vessel as shown in 

Figure 2-2. The origin of the frame Ob is usually chosen to coincide with a point at 

midship in the water line. For marine craft, the axes of body frame are defined as (see 

Figure 2-2): 

 
bx : longitudinal axis (pointing to fore) 

 
by : transversal axis (pointing to starboard) 

 
bz : normal axis (pointing to bottom) 

One objective of dynamic position system is to determine the position, velocity and 

heading based on the measurements of different sensors mounted on the vessel.  The 

measurements of linear acceleration are expressed in the body-fixed coordinate system. 

And also it is more convenient to use body-fixed coordinate system in hydrodynamic 

computations.  

 

 

Figure 2-2: Body-fixed reference frame. Courtesy of [23] 

 

 

 

O
b
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2.4 Transformations between Body-fixed Frame and NED 

An arbitrary column vector V expressed in NED is denoted as 
nV  and in body-fixed 

reference frame 
bV . The body-fixed frame has three angular orientations referred to 

NED defined by Euler angles. [24] The three Euler angles roll, pitch and yaw are 

denoted as  ,  and  respectively. See Figure 2-3. The argument of three angles is 

  

 | [ , , ]T

E n   Θ   (2.2) 

The angular rate |E nΩ  and angular acceleration |E nΑ  with respect to time are 

respectively: 

 | | [ , , ]T

E n E n    Ω Θ   (2.3) 

 | | [ , , ]T

E n E n    Α Θ   (2.4) 
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Figure 2-3 Body-fixed frame and NED 

The principal rotation matrixes corresponding to the x, y and z axes can be respectively 

written as 

 

1 0 0 cos 0 sin cos sin 0

0 cos sin , 0 1 0 , sin cos 0

0 sin cos sin 0 cos 0 0 1

x y z

   

   

   

     
     

   
     
          

R R R  (2.5) 

An arbitrary rotation transformation from body-fixed coordinates to NED coordinates 

about a single principle axis can be written as 

 

  

 
  

O
b
 

  

  

  

O
n
 

  

  

 

  

      



14 
 

 
n i bV R V   (2.6) 

As all the transformation matrixes are orthonormal, their inverse is equivalent to their 

transpose, which yields 

 T

b i nV R V   (2.7) 

where , ,i x y z with respect to rotation about x, y or z axes. 

The three independent rotations about three axes can be cascaded through matrix 

multiplication: 

 n z y x bV R R R V   (2.8) 

Let R  denotes z y xR R R , and it can be easily proved that R  is also orthonormal. 

 
n bV RV   (2.9) 

Where  

 

cos cos sin cos cos sin sin sin sin cos cos sin

sin cos cos cos sin sin sin cos sin sin sin cos

sin cos sin cos cos

           

           

    

   
 

   
 
  

R  (2.10) 

Similarly, bV  can be expressed by nV  

 T

n bV R V   (2.11) 

This multiplication order z y xR R R  is determined by rotation order corresponding to 

axes. The multiplication order in formula (2.6) means the body-fixed frame rotates 

about its z-axis first, then y-axis and x-axis at the last, which is the only order in this 

thesis due to the measurements of Euler angles from sensors based on this order. 
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If roll and pitch motion are small, it is approximated that cos 1  , cos 1  , sin   

and sin  . Then the transformation matrix R  simplified as 

 

cos sin cos sin cos

sin cos sin cos sin

1

       

       

 

   
 

   
 
  

R    (2.12) 

According to (2.9), the transformation of a position vector between NED and body-

fixed frame is obtained by 

 
n bp Rp   (2.13) 

The position vector bp  of a fixed point in the body-fixed frame is constant, so the first 

order derivative of (2.13) with respect to time can be expressed as 

 
n bp Rp   (2.14) 

The left term np  in (2.14) is the velocity vector nv , then (2.14) yields 

 n bv Rp   (2.15) 

Through the second order derivative of (2.13) the acceleration vector is derived 

 n ba Rp   (2.16) 

R and R can be easily calculated using symbolic derivative in Matlab but their 

expressions are too large to be presented here. 

 

2.5 Conclusion 

The transformation between body-fixed frame and NED frame is derived in this chapter 

and it relates the motions in these two reference frames, which is the fundamental of 
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building kinematic equations for the filters in the later chapters. Note that the 

transformation is based on the assumption of low vessel speed where the Coriolis forces 

can be ignored. 
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3. Reference Systems 

 

In order to keep position and heading, the prerequisite is that position and heading are 

known. There are various reference sensors such as GPS, inertial measurement unit 

(IMU), hydro-acoustic position reference (HPR), laser, radar, gyroscope, etc. (see 

Figure 3-1) to determine the translational and rotational motions of the vessel in 

operation at sea. These reference sensors involved in DP system will be introduced in 

this chapter. 

 

Figure 3-1: Position reference system (Figure from [25]) 

 

3.1 GPS 

The Global Positioning System (GPS) is a satellite-based radio navigation system which 

provides continuous coverage in the globe.  The satellites roam in the orbits which are 

  

Figure 
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CG 
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Hydro- 
acoustics 



18 
 

nearly circular with inclination angles of 55 degrees and have altitudes of about 20,200 

km above the earth surface. [21] A GPS receiver decodes the signal sent by the satellites 

to determine the position. It must work with at least four observable satellites and its 

accuracy increases if more satellite signals are received.  

There are several factors causing errors in the position measurement of GPS, such as 

ionospheric effect, tropospheric effect, ephemeris error, satellite clock error, multipath 

distortion and numerical error. See Table 3-1. The accuracy of standard GPS is limited 

to about 15 meters which is not precise enough in dynamic positioning.  

Table 3-1 GPS errors 

Different errors Standard GPS /m DGPS (500 km) /m 

Ionospheric delay 5  0.5 

Tropospheric delay 0.5  0.1 

Ephemeris error 2  0 

Multipath distortion 0.5  0.7 

Satellite clock 2  0 

Receiver white noise 0.3  0.3 

 

Therefore, vessels are normally equipped with differential GPS (DGPS) which is an 

enhancement to GPS.  The errors caused by ionosphere, troposphere, satellite ephemeris 

and clock are spatially and temporally correlated. [21] These errors could be estimated 

by one base receiver and broadcast to other GPS receivers. As a result, the positioning 

accuracy is improved (Table 3-1). This kind of GPS is called DGPS. See Figure: 3-2. 
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Figure: 3-2 Differential GPS 

 

3.2 Inertial Measurement Unit 

Inertial Measurement Units (IMUs) is a self-contained system that measures linear and 

angular motion usually with a triad of gyroscopes and triad of accelerometers. An IMU 

can either be gimballed or strapdown, outputting the integrating quantities of angular 

velocity and acceleration in the sensor/body frame. They are commonly referred to in 

literature as the rate-integrating gyroscopes and accelerometers. 

Inertial Measurement Unit (IMU) sensors are designed to provide motion, position, and 

navigational sensing from a durable single device over six degrees of freedom. This is 

achieved by using MEMS (microelectromechanical system) technology to sense 

translational movement in three perpendicular axes (surge, heave  and sway) and 

rotational movement about three perpendicular axes (roll, pitch and yaw). Because the 

movement and rotation along the three axes are independent of each other, such motion 

 

  
  

  
  

 
  

Base 
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is said to have “six degrees of freedom" as shown in Figure 3-3. The output of IMU 

consists of Euler anglers, Euler angler changing rates and linear accelerations. 

 

Figure 3-3: System structure of IMU [26] 

 

3.3 Hydro-acoustic Position Reference 

Hydro-acoustic positioning system is an underwater positioning system that uses a 

vessel mounted transceiver to detect the range and bearing to a target using acoustic 

signals. [27] It consists of both a transmitter (transducer) and a receiver (transponder). 

The transducer sends signal aimed towards the seabed transponder. Then the 

transponder is activated and responds immediately to the vessel transducer which then 

calculates a position of the transponder relative to the vessel. [28] The positioning 

accuracy of hydro-acoustic positioning system is proportional to the distance between 

the transceiver and transponder. According to the length of baseline, hydro-acoustics 

system is divided into different types: Long baseline system (<10com), short baseline 

system (20m-50m) and ultra-short baseline system (100m-6000m). [29] 
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3.4 Laser 

Laser measures range by measuring the time it takes from sending the beam of light to 

receiving the reflection from the target. The introduction of scanning lasers allowed for 

vessel movement in the water by incorporating a vertical fan shaped laser beam which 

make it easier to keep the target in sight than single point laser beam does. [30] Lasers 

can the range and bearing of retro-reflective targets with high accuracy during DP 

operation and they can function 24 hours a day in most weather conditions.  

 

3.5 Radar 

RadaScan is an advanced position reference sensor for long range use in marine 

Dynamic Positioning applications. The RadaScan sensor is a rotating scanner mounted 

on the DP equipped vessel. It emits a microwave beam and accurately measures the 

range and bearing of one or more intelligent microwave targets called responders, 

allowing for the calculation of vessel position and heading. [31] 

 

3.6 Conclusion 

Reference sensors for dynamic positioning system are all mounted at different locations 

on the vessel as shown in Figure 3-1 for instance. GPS is normally located on top of a 

mast to avoid signal block. Hence, the rotational motion of the vessel results in large 

movement of GPS due to the long rotational arm between the GPS and rotating center. 

Consequently, there is an obvious error between the position measurement and the true 

position of CG. However, the measurements of GPS can be transformed to CG based on 

the method described in section 2.4. Similarly, the measurements of other position 

reference sensors like Laser CyScan, Acoustics and RadaScan can be processed in the 
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same way with GPS. Apparently, IMU is also influenced by the rotating arm and it is 

not possible to measure the acceleration of one point different from IMU location 

directly. The optimal positioning of the IMU is at the vessel center of gravity for the 

sake of best performance. [26] However, normally it is not possible to be mounted 

exactly at CG in practice. Therefore, the linear acceleration measurements of IMU 

should also be transformed to CG.  
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4. Different Filters 

 

There are complex measurement systems working in DP system. Apparently, the 

measurements are inevitably noisy, which means proper filters have to be implemented 

to eliminate the unwanted noises. Besides, the mathematical model of the system may 

be inaccurate which may be equivalent to a noisy system. Some measures have to be 

taken if the inaccurate mathematical model is used for calculation. Different types of 

filters are also available to achieve the target and they will be discussed in this chapter.  

 

4.1 Low Pass Filter and Notch Filter 

A low-pass filter is a filter that passes signals with a frequency lower than a certain 

cutoff frequency and attenuates signals with frequencies higher than the cutoff 

frequency, [32] and the transfer function of first order lowpass filter is  

   c

c

H s
s







  (3.1) 

where c is the cutoff frequency. 

A notch filter is a band-stop filter with a narrow stopband (high Q factor), which passes 

most frequencies except those in a specific range [33] and the transfer function is 

expressed as 

  
2

2 22

n

n n

s
H s

s s



 




 
  (3.2) 

where n  is the notch frequency. 
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 Low pass filter and notch filter is easy to implement but they have inherent flaws as is 

mentioned in [34],  “Early dynamic positioning systems were implemented using PID 

controllers. In order to restrain thruster rambling caused by the wave- induced motion 

components, notch filters in cascade with low pass filters were used with the controllers. 

However, notch filters restrict the performance of closed loop systems because they 

introduce phase lag around the crossover frequency, which in turn tends to decrease 

phase margin.”  

 

4.2 Kalman Filter 

Weighted average is an average in which some data count more strongly than others [35] 

and it is an important tool in mathematics and statistics to estimate the value of a 

variable with different measurements. The Kalman filter is weighted average in nature 

since it takes the weighted average of prediction and measurement.  It is a set of 

mathematical equations that provides a recursive estimate for the state of a process, to 

minimize the mean of the squared error. “The filter is very powerful in several aspects: 

it supports estimations of past, present, and even future states, and it can do so even 

when the precise nature of the modeled system is unknown.” [36]  

4.2.1 Mathematical Model of Discrete Kalman filter 

The discrete process model and measurement model of discrete Kalman filter can be 

described respectively by  

 1 1 1k k k k k k    x A x B u w   (3.3) 

 k k k k z H x υ   (3.4) 

where 
nx is state vector to be estimated. The matrix n n

k

A
 
in equation (3.3) is 

the process transition matrix which relates previous state at time step 1k   to that at 
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time step k . The matrix n l

k

B  is the control transition matrix that relates control 

vector
1

l

k u  to the state vector
kx . The matrix m n

k

H  is the measurement 

transition matrix relating the state vector x to the measurement vector z . The vector 
kw  

and
kυ  represent the process and measurement noise. Assume that they are independent 

of each other and comply with normal probability distributions 

( ) (0, )

( ) (0, )

k k

k k

N

N





p Q

p υ R

w
 

Process noise may not have physical meaning sometimes. However, it can be used as a 

parameter indicating that the model of the real world we build in the filter is not 

precise.[8] 

 

Figure 4-1: the ongoing discrete Kalman filter cycle  

Figure 4-1 shows the discrete Kalman filter cycle. The time update projects the current 

state estimate ahead in time. The measurement update adjusts the projected estimate by 

an actual measurement at that time. 

The specific equations for the time and measurement updates are presented as follows 

 

Measurement 
Update 

Time Update 
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Time update equations: 

 
1 1

ˆ ˆ
k k k k k



  x A x B u   (3.5) 

 
1

T

k k k k k



 P A P A Q   (3.6) 

Measurement update equations: 

 1( )T T

k k k k k k k

   K P H H P H R   (3.7) 

 ˆ ˆ ˆ( )k k k k k k

   x x K z H x   (3.8) 

 ( )k k k k

 P I K H P   (3.9) 

The computation procedure for on Kalman filter cycle is given by (3.5)-(3.9). The a 

priori state estimated at time step k  is defined by ˆ n

k

x , which is computed by (3.5) 

using information 
1

ˆ
kx  and 1ku  from previous time step 1k  . The a priori estimate 

error covariance is n n

k

 P  and it is computed by (3.6) based on previous 1kP . The 

Kalman gain n m

k

K  is calculated via (3.7). The a posteriori state estimate ˆ
kx  in 

(3.8) is a linear combination of ˆ
k


x  and a weighted difference between the measurement 

kz  and the predicted measurement ˆ
k k


H x . The estimation error covariance kP  is given 

by (3.9). If all transition matrixes in (3.3) and (3.4) are constant as well as the noise 

covariance matrixes kQ  and kR , the system is time invariant. Under this circumstance, 

Kalman gain kK will stabilize quickly and remain constant; [36] hence, it can be 

calculated offline to reduce the real-time computational loads. 

4.2.2 General Equations for Kalman filter 

In order to apply Kalman filter, the model of the system to be estimated must be 

described by a set of differential equations, the state space form of which is written as 

[8] 
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   x Fx Gu w   (3.10) 

and the measurement equation is 

  z Hx υ   (3.11) 

where 
nx is a column vector of state to be estimated by Kalman filter. The matrix 

n nF  in equation (3.10) is the process transition matrix which relates previous state 

at time step 1k   to that at time step k . The matrix n lG  is the control transition 

matrix that relates control vector lu  to the state vector x . The matrix m nH is the 

measurement transition matrix relating the state vector x to the measurement vector z . 

The vector w and υ  represent the process and measurement noise respectively. The 

process noise covariance matrix Q  and measurement noise covariance matrix R  is 

related to noise vector w and υ  according to  

 
[ ]

[ ]

T

T

E

E





Q

R υυ

ww
  (3.12) 

The equation (3.10) must be discretized to build a discrete Kalman filter in order to 

implement the filter on a computer. Assume that the time interval of measurements sT  

is constant, then the process transition matrix A  in section 4.2.1 is computed by the 

Taylor series expansion [8] 

 
2( ) ( )

( ) e
2! !

s

n
T s s

s s

T T
T T

n
      

F F F
A I F   (3.13) 

Then kB  in section 4.2.1 is obtained from  

 
0

( )
sT

k d  B A G   (3.14) 

and kQ  is given by 
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0

( ) ( )
sT

T

k d   Q A QA   (3.15) 

other matrix parameters in discrete Kalman filter are simply the same with that in (3.10) 

and (3.11): 

 
k H H   (3.16) 

 
k R R   (3.17) 

In conclusion, if system can be described by linear different equations (3.10) and the 

measurement equation is known as (3.11), this system can be discretized in the form of 

discrete Kalman filter in section 4.2.1 and the state is estimated according to (3.5)-(3.9). 

 

4.3 Extended Kalman Filter  

If the process to be estimated or the measurement relationship is non-linear, the 

extended Kalman filter is applied. The extended Kalman filter (EKF) is similar with the 

discrete Kalman filter. The only difference is that the system model is described by non-

linear equations instead of linear ones. The process model and measurement model of 

the EKF are written as 

 1 1 1( , , )k k k kf   x x u w   (3.18) 

 ( , )k k khz x υ   (3.19) 

The non-linear equations can be expanded by Taylor series. By ignoring the second 

order and higher order terms, the nonlinear equations are linearized and it can be 

proceeded like linear Kalman filter. The EKF is not used in the thesis as the 

performance has been proved not as good as unscented Kalman filter, which is the 
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conclusion of [13, 18, 37, 38]. Consequently, the details of EKF is not presented here, 

see  [7, 8] for more details about EKF. 

 

4.4 Unscented Kalman Filter 

The unscented Kalman filter (UKF) is a recursive minimum mean-square-error (MMSE) 

estimator for Gaussian random variables, based on the unscented transformation. The 

unscented transformation was proposed by Julier and Uhlmann [39] to compute 

statistical properties of random variables determined by nonlinear functions. The UKF 

does not linearize the nonlinear functions by using the first order term of the Taylor 

series expansion like EKF. Instead, the UKF uses the true nonlinear models and the 

propagation of a minimal set of deterministically selected sample points which capture 

the true mean and covariance of Gaussian random variables to capture the a posterior 

mean and covariance accurately to the 2nd order of nonlinear functions. [13]  

4.4.1 Unscented Transformation 

The unscented transformation (UT) is a method to calculate the mean and covariance of 

a nonlinear function by transforming the deterministic sigma points through the 

nonlinear function. [13] Consider an arbitrary nonlinear function 

  y f x   (3.20) 

where x is a L dimensional random variable and its mean and covariance are x  and xP . 

 In order to calculate the mean and covariance of y, the 2L+1 sigma points  ,i i iS w X  

are generated deterministically: 
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   
 

  
 

0 0 0

1
1,...,

2

1
1,..., 2

2

i x i
i

i x i
i

x w i
L

x L P w i L
L

x L P w i L L
L











  


    


     


X

X

X

  (3.21) 

where 
iw is the weight of ith sigma point.  is a scaling parameter and   x

i

L P is 

the ith column/row of the square root of the weighted covariance matrix which is 

normally calculated by Cholesky factorization method [40] due to its good numerical 

efficiency. 

All sigma points are propagated through the nonlinear function 

   0,...,2i if i L Y X   (3.22) 

and the mean, covariance and cross covariance of y are calculated approximately: 

 
2

0

L

i iy w Y   (3.23) 

   
2

0

L
T

y i i iP w y y   Y Y   (3.24) 

   
2

0

L
T

xy i i iP w x y   X Y   (3.25) 

These estimates of the mean and covariance are accurate to the second order (third order 

for true Gaussian priors) of the Taylor series expansion of  f x for any nonlinear 

function. [13] An example is shown here to illustrate the unscented transform:  

  y f x   (3.26) 
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where  1 2

T
x x x , 

   

 

1 2 2

1 2

cos sin

2 sin

x x x
y

x x

   
  
    

and the statistic property of x is 

known as  0 0
T

x   and 
2 1

1 1
xP

 
  
 

. 

10000 sample points of x is generated and their mean and covariance ellipse are shown 

in Figure 4-2 then these points are propagated through nonlinear function (3.26) and the 

points of y are shown Figure 4-3. As the number of y points is very large, the mean and 

covariance of y which are calculated by these points is considered as true value. Thus 

the true mean of y and its covariance ellipse are plotted in Figure 4-3 where the means 

and covariance ellipses derived from EKF and unscented transformation are compared. 

As a result, the UT almost captures the mean and covariance of y accurately while EKF 

results in larger errors. 
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Figure 4-2: Mean and covariance of sample points 

 

Figure 4-3: Mean and covariance propagation via nonlinear function by means of EKF 

and UKF 
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4.4.2 Unscented Kalman Filter Algorithm  

The unscented Kalman filter algorithm is implemented as the following steps: [14] 

1. Initialization: 

     0 0 0 0 0 0 0
ˆ ˆ ˆ,

T
E E     

 
x x P x x x x   (3.27) 

  

2.  Calculation of sigma points: 

For  1,...,k  , 

 
1 1 1 1 1 1

ˆ ˆ ˆ
k k k k k k      

   
 

X x x P x P   (3.28) 

3. Time-update equations: 

 

  | 1 1 1,k k k kf  X X u   (3.29) 

  
2

, | 1

0

ˆ
L

m

k i i k k

i

w





x X   (3.30) 

  
2

, | 1 , | 1

0

ˆ ˆ
k

L
Tc v

i i k k k i k k k

i

w  

 



         xP X x X x R   (3.31) 

4. Measurement-update equations 

 

 
| 1 | 1k k k k 

   Y H X   (3.32) 

  
2

, | 1

0

ˆ
L

m

k i i k k

i

w





y Y   (3.33) 
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  
2

, | 1 , | 1

0

ˆ ˆ
k k

L
Tc n

i i k k k i k k k

i

w  

 



         y yP Y y Y y R   (3.34) 

  
2

, | 1 , | 1

0

ˆ ˆ
k k

L
Tc

i i k k k i k k k

i

w  

 



        x yP X x Y y   (3.35) 

 1

k k k k
k


y yx yK P P   (3.36) 

  ˆ ˆ ˆ
k k k k k

   x x K y y   (3.37) 

 
k k k k

T

k k

 
x x y y

P P K P K   (3.38) 

where  2 L L    
 
and L   ,  is the new sigma-point scaling parameter, 

which controls the size of the sigma-point distribution and should ideally be a small 

number to avoid sampling non-local effects when the nonlinearities are strong. [14] v
R

and n
R are the process noise covariance and measurement noise covariance respectively. 

iw  is calculated by 

  
0 0
m

w i
L




 


  (3.39) 

 
   2

0 1 0
c

w i
L


 


    


  (3.40) 

 
   

 
1,..., 2

2

m c

i iw w i L
L




  


  (3.41) 

where   is the parameter which affects the weight of the 0th  sigma point for the 

covariance. 

There is a major flaw in UKF: the state error covariance matrix P  might lose positive 

definiteness in the update step during UKF funning due to numerical reasons, resulting 
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in the failure of Cholesky factorization for the computation of sigma points. To resolve 

this problem, the eigenvalues of P  should be checked and modified to keep this 

algorithm working properly. [18] 

4.4.3 Square-root Unscented Kalman Filter 

An alternative for UKF is square-root unscented Kalman filter (SRUKF) which 

overcomes the drawback of UKF in numerical calculation by avoiding the use of 

Cholesky factorization. The algorithms of UKF and SRUKF are quite similar except the 

method for determining the sigma points. Unlike the Cholesky factorization [41] in 

UKF, the QR decomposition [42] is used in the SRUKF which has improved numerical 

properties and robustness than the UKF.  [18] The details of the SRUKF is described as 

following: [14] 

1. Initialization: 

      0 0 0 0 0 0 0
ˆ ˆ ˆ,

T
E chol E     

 
x x S x x x x   (3.42) 

2.  Calculation of sigma points: 

For  1,...,k  , 

  1 1 1 1
ˆ ˆ ˆ

k k k k k k      X x x S x S   (3.43) 

3. Time-update equations: 

 

  | 1 1 1,k k k kf  X X u   (3.44) 

  
2

, | 1

0

ˆ
L

m

k i i k k

i

w





x X   (3.45) 

 
    1:2 , | 1

ˆc v

k i L k k kqr w 


  
  

S X x R   (3.46) 
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   0, 0
ˆ c

k k k kcholupdate w   S S X x   (3.47) 

4. Measurement-update equations 

 
| 1 | 1k k k k 

   Y H X   (3.48) 

  
2

, | 1

0

ˆ
L

m

k i i k k

i

w





y Y   (3.49) 

 
    1 1:2 , | 1

ˆ
k

c n

L k k kqr w 


  
  y

S Y y R   (3.50) 

 
  0, 0

ˆ
k k

c

k kcholupdate w 
y y

S S Y y   (3.51) 

  
2

, | 1 , | 1

0

ˆ ˆ
k k

L
Tc

i i k k k i k k k

i

w  

 



        x yP X x Y y   (3.52) 

  / /
k k k k

T

k  x y y y
K P S S   (3.53) 

  ˆ ˆ ˆ
k k k k k

   x x K y y   (3.54) 

 
kk yU K S   (3.55) 

  1k kcholupdate  S S U   (3.56) 
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4.5 Comparison of Different Filters 

Cascade of notch filter and low pass filter can filter out the high frequency signal and 

output the low frequency signal. However, the output has a phase delay that may cause 

oscillation in ship movement during dynamic positioning. Kalman filter offers several 

advantages over notch filter: [43] the Kalman filter eliminates only the harmonic noise 

without distorting the signal whereas the notch filter removes both the harmonic noise 

and the components of the signal falling in reject region; the Kalman filter is able to 

follow the frequency changes without a priori information whereas the changes of noise 

frequency results in bad performance of the notch filter. 

For nonlinear problems, the UKF and EKF are considered because standard KF is only 

valid in linear cases. The UKF does not require the computation of the partial 

derivatives of the measurement transition matrix H, compared with EKF. However, its 

computational load is still higher than EKF due to the calculations for each sigma point. 

[44] As the UKF is accurate to the 2nd order of nonlinear functions while the EKF is 

linearized at 1st order, the accuracy of UKF is higher than that of EKF. [13] The 

SRUKF with the same accuracy of the UKF is an improved version of the UKF, aimed 

on increasing the numerical performance in practice.  

 

4.6 Conclusion 

As accuracy is an important factor to be considered in DP system and the computation 

load can be well handled in normal PC, the UKF is superior to the EKF. This thesis will 

use the UKF (SRUKF) algorithm to solve nonlinear estimation problem instead of the 

EKF whilst the KF will be implemented to solve linear problem in this thesis. 
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5. Sensor Fusion 

 

Sensor fusion is a process to combine measurements from a number of sensors of same 

or different types and estimate the state of interest. It is very important in multi-sensor 

system as utilizing all available measurements from sensors will give an improved 

result compared with using single sensor. [4] Moreover, a system fusing sensors has a 

higher error tolerance capacity since multi-sensors contains redundant measurements 

which increases the reliability of the system in sensor failure case. [45] In practice it is 

quite normal that there is wanted but unknown information which cannot be measured 

directly nor described by mathematical model perfectly. But there may exist other 

measurable information which is related to the wanted information by known relations. 

Then it becomes possible to estimate the information of interest by fusing the sensors. 

Multi-sensor fusion using Kalman filter algorithm was discussed in [4] and four 

different methods were described. Thereinto, the simplest way of state estimation for a 

multi-sensor system is to combine all measurements in one measurement model and it 

will be used in this chapter. In order to fuse DP reference sensors, two different 

approaches of sensor fusion are discussed in the thesis: approach 1 is to transform all 

sensor measurements to CG and then calculate the weighted means as input of 

unscented Kalman filter; approach 2 is to fuse all measurements directly in unscented 

Kalman filter. Each approach has its merit and demerit, which will be presented later. 

Furthermore, UKF with/without acceleration measurement and the least measurement 

modes of each UKF are discussed at the end of this chapter. 

 

5.1 Approach 1 for Sensor Fusion 

Approach 1 consists of three steps as shown in Figure 5-1. At first step all linear motion 

measurements are transformed to CG. Then the weighted means and variances of same 

variables are calculated at step 2 so that there is only one measurement for each type of 
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variables in UKF implemented at step 3 regardless of the number of sensors in each 

type. Therefore, the number of measurements has no influence on the complexity of 

UKF and the computation load of the UKF always stays the same. 

 

Figure 5-1: Diagram of Approach 1 
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5.1.1 Measurements Transformed to CG 

Transformation between body-fixed frame and NED frame is described in section 2.4. 

The equation (2.13)(2.15) and (2.16) in single vector form can be rewritten in difference 

form of double vectors: 

 | | |b |b( )sensori n CG n sensori CG  p p R p p   (4.1) 

 | | |b |( )sensori n CG n sensori CG b  v v R p p   (4.2) 

 | | |b |b( )sensori n CG n sensori CG  a a R p p   (4.3) 

The notation for vectors is defined: 

3 1p , 
3 1v

 
and a 3 1  are the position vector, velocity vector and acceleration 

vector respectively, and their subscript n  and b  denote NED frame and body-fixed 

frame. For example,
3 1

|CG n

p , 
3 1

|CG n

v
 
and |CG na 3 1  are the position vector, 

velocity vector and acceleration vector of CG in NED frame respectively; Other 

variables are defined in the same way. R
3 1  rotation transition matrix in section 2.4, 

and it is a function of |E nΘ  . 

Then Linear motions of sensor i can be transformed to CG by using: 

 | | |b |b( )CG n sensori n sensori CG  p p R p p   (4.4) 

 | | |b |b( )CG n sensori n sensori CG  v v R p p   (4.5) 

 | | |b |b( )CG n sensori n sensori CG  a a R p p   (4.6) 

The angular motions of sensor i are identical to that of any other points on the vessel 

which is assumed a rigid body. Hence, angular measurements can be used directly 

without transformation. 
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5.1.2 Inverse Variance Weighting 

If there are k reference sensors to measure linear motions, k transformed measurements 

for CG can be obtained.  Normally the measurements are redundant, so they can be 

fused to get a better estimation. Assume that
1z ,…,

kz  are independent measurements 

and have respective known variances 2

1  ,…, 2

k , then the inverse variance weights is 

denoted by [46] 

 
2

2
1

1

1

i
i j k

j j

W











  (4.7) 

The weighted mean ˆ
wmz  is 

 
1

ˆ
i k

wm i i

i

z W z




   (4.8) 

The variance of the weighted mean ˆ
wmz  is given by 

 
2

2
1

1

1
wm i k

i i












  (4.9) 
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5.1.3 Sensor Fusion by Inverse Variance Weighting 

According to (4.7)-(4.9) and (4.4) the mean CG position measurement at NED frame 

|CG np  and its noise variance 
|

2

CG n


p
 can be written as 

  |

|

2

| | |b |b

1

2
1

1

1

sensori n

sensorj n

i k

CG n sensori n sensori CGj k
i

j












 
 
 

     
 
 
 




p

p

p p R p p   (4.10) 
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1

1CG n

sensorj n

j k

j












p

p

  (4.11) 

Similarly, the mean |CG nv  and noise variance 
|

2

CG n


v
 of velocity measurements at CG are 

given as 

 

  |

|

2

| | |b |b

1

2
1

1

1

sensori n

sensorj n

i k

CG n sensori n sensori CGj k
i

j












 
 
 

     
 
 
 




v

v

v v R p p   (4.12) 

 
|
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2

2
1

1

1CG n

sensorj n

j k

j












v

v

  (4.13) 

And the mean |bCGa  and noise variance 
|b

2

CG


a
 of velocity measurements at CG are 
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  |

|

2

|b |b |b |b

1

2
1

1

1

sensori n

sensorj n

i k
T

CG sensori sensori CGj k
i

j








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 
 
 

     
 
 
 




a

a

a a R R p p   (4.14) 
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j
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




a
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  (4.15) 

The transition matrix R , R and R are the functions of |E nΘ , |E nΩ and |E nΑ  which are the 

feedbacks from unscented Kalman filter in Figure 5-1. The mean and variance of 

angular measurements are also derived: 
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  (4.17) 
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1IMU
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j k
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Ω
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where 
3 1

IMU

Θ  is the mean Euler angle measurements of IMU in NED frame, 

3 1

IMU

Ω  is the mean Euler angular rate measurements of IMU in NED frame. 

Notice that yaw measurement in 
IMUΘ  is replaced by available measurement from 

gyroscope because gyro has a much higher accuracy. 
IMUΘ means roll, pitch 

measurement of IMU and yaw measurement of gyroscope instead of yaw from IMU. 

Note that |bCGa and 
IMUΩ contain the biases which is the inverse variance weighted mean 

of biases of corresponding sensors. Now multi-sensor measurements are transformed 

into the measurement vector: 

 
| | |

T

CG n CG n CG n IMU IMU
 
 p v a Θ Ω   (4.20) 

And (4.20) is the UKF (see Figure 5-1) measurement vector in (4.39). 

5.1.4 Filter Design for Approach 1 

The linear motion and rotational motion of a rigid body are given by kinematics 

 | |CG n CG np v   (4.21) 

 | |CG n CG nv a   (4.22) 

 | |E n E nΘ Ω   (4.23) 

 | |E n E nΩ Α   (4.24) 

However, the value of |CG na is beyond knowledge and it is assumed to be white noise 

 
|| CG nCG n  aa w   (4.25) 

Similarly,  
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|| CG nE n  Α

Α w   (4.26) 

The bias of acceleration measurement ,IMUa
b  and angular rate measurement ,IMUΩ

b  are 

both slowly varying terms and their time derivatives are approximately zero, so they are 

also assumed to be white noise: 

 
IMU IMU


aa bb w   (4.27) 

 
IMU IMU


ΩΩ bb w   (4.28) 

 Then the process model in matrix form is given by 

 

| 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
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 (4.29) 

It is easier to implement a discrete form of UKF compared with the continuous form. In 

this case, ( ) e sT

sT 
F

A  is exactly equal to 
2( )

2!

s
s

T
T 

F
I F , so the differential equation 

(4.29) can be accurately discretized using (3.13) and (3.15) ,  
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  (4.30) 

24 24

k

Q  in (4.30) is defined as the diagonal matrix with submatrix 
9 9

1,1k

Q ,

9 9

2,2k

Q and
6 6

3,3k

Q  on its diagonal and it is written as 

 1,1 2,2 3,3, ,k k k kdiag    Q Q Q Q  where the submatrixes are 

  
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  ,IMU,IMU

2 2

3,3k diag t  
 b Ωa

Q σ σw w
  (4.33) 
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Note that (4.31) is short for 
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σ σ σ

w w w
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w w w

 and the same rule 

applies to 2,2kQ and 3,3kQ . 

The equations for measurement model is given by 

 
|| | CG nCG n CG n  pp p υ   (4.34) 

 
|| | CG nCG n CG n  vv v υ   (4.35) 
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IMU
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Θ

Θ Θ υ   (4.36) 
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Ω Ω b υ   (4.37) 

According to (4.3) acceleration equation is expressed as  
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Then the measurement model is of the form  

  

|

|

|

|
|

|
|

| ||

|

|

( )

CG n

CG n

IMU CG b

IMU

IMU
IMU

CG n
CG n

CG n
CG n

T

E n CG nCG b

IMU E n

IMU E n

                                       

p

v

a a

Θ

Ω
Ω

υpp
υvv

R Θ a g b υa

Θ Θ υ

Ω Ω b υ

  (4.39) 
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where  
3 1g  is the local gravity in NED frame and it is positive;

|CG npυ ,
|CG nvυ  ,

|CG baυ  ,

IMUΘ
υ  and 

IMUΩ
υ 3 1  are the sensor noises. All the measurements in (4.39) comes 

from (4.20) which is the result of weighted fusion block in Figure 5-1. The 

measurement model (4.39) are nonlinear, so unscented Kalman filter is implemented to 

estimate the state. 

5.1.5 Approach 1 without Acceleration Measurement  

 Acceleration is not a must to determine the position, velocity and heading. It may be 

used to increase the accuracy of the estimate, whereas, is it very necessary to use 

acceleration measurement by adding more computation load and complexity on the 

system.  

The UKF model (4.29) (4.39) and can be simplified by eliminating the acceleration 

term and its relevant term. The new process model and measurement model is 

respectively expressed as 

 

| |3 3 3 3 3 3 3 3 3 3

| |3 3 3 3 3 3 3 3 3 3

| |3 3 3 3 3 3 3 3 3 3

| |3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3IMU IMU

CG n CG n

CG n CG n

E n E n

E n E n

    

    

    

    

    

    
    
    
    
    
   
       Ω Ω

p pO I O O O

v vO O O O O

Θ ΘO O O I O

Ω ΩO O O O O

b bO O O O O

|

|

3 3

3 3

CG n

E n

IMU





 
 
 
 


 
 
 
  Ω

v

Ω

b

O

O

w

w

w

  (4.40) 
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5.1.6 Least Measurement Mode 

A failed sensor of one measurement type will be kicked out from weighted fusion block 

in Figure 5-1 and the UKF is still running properly in most cases except that there is no 

position measurement or no angular measurement. In approach 1 position measurement 

and angular measurement must be combined to determine the state of the UKF and the 

filter cannot work if one of the information is missing. The least measurements required 

are one position measurement and one yaw measurement. In least measurement mode, 

the measurement model for the UKF is   

 
|||

|

CG n

IMU

CG nCG n

E nIMU

   
     

      

p

Θ

υpp

ΘΘ υ
  (4.42) 

where [0, 0, ]T

IMU Θ  and   is the yaw measurement while pitch and roll 

measurements are not available. Then the measurement error covariance of IMUΘ  

corresponding to roll and pitch is set to a larger value than normal because they are 

assumed to be zero which is not accurate. If the least measurement mode cannot be 

satisfied, the UKF is not able to estimate the state vector. Then the Kalman filter in 

Figure 5-1 will do dead reckoning while the state of the UKF will keep unchanged until 

enough measurements are recovered to determine the state of the filter. 
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5.2 Approach 2 for Sensor Fusion 

Unlike approach 1, all measurements of reference sensors are output to the unscented 

Kalman filter in approach 2 (see Figure 5-2), which means the size of UKF 

measurement vector of approach 2 is much larger compared with that of approach 1.  

All measurements are fused simultaneously in the UKF. Under this circumstance, the 

measurement model is variational other than invariable since the number of available 

sensors is probably changing due to sensor failure during DP operation. The loss and 

recovery of sensors should be seamless in order to increase reliability of the system, 

which requires feasible countermeasures to be done in UKF algorithm. The process 

model of UKF here is the same with that in approach 1. 
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Figure 5-2: Diagram of Approach 2 
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5.2.1 Sensor Fusion Using Unscented Kalman Filter  

The process model of approach 2 is also described by (4.29). However the measurement 

model is different from (4.39). Kinematics relates all the available measurements to 

state variables by equation (4.4)-(4.6). For position, velocity and acceleration 

measurements, the measurement equations are given by   

 | | | |( )( )
GPSiGPSi CG n E n GPSi b CG b    pp p R Θ p p υ   (4.43) 

 | | | | |( , )( )
GPSiGPSi CG n E n E n GPSi b CG b   

v
v v R Θ Ω p p υ   (4.44) 

 | | | |( )( )
OhteriOhteri CG n E n Otheri b CG b    pp p R Θ p p υ   (4.45) 

 
| | | | | IMU | |( ) ( , , )( )

IMUi IMUi

T

IMUi E n CG n E n E n E n i b CG b
        a aa R Θ a g R Θ Ω Α p p b υ  (4.46) 

where 
3 1

GPSi

p is the position measurements of GPS i; GPSiv 3 1 is the velocity 

measurements of GPS i; 
3 1

Otheri

p is the position measurements of other position 

sensor i except GPS; |( )E nR Θ is identical to the rotation transition matrix R  in section 

2.4;
GPSip

υ , 
GPSiv

υ  ,
IMUia

υ  and 
Ohterip

υ 3 1 are the corresponding measurement noises 

respectively; 
3 1

IMUi


a

b  is the bias of IMU i acceleration measurements. 

The measurement equations for rotational motion can be written directly: 

 |
IMUi

IMUi E n 
Θ

Θ Θ υ   (4.47) 

 |
IMUi IMUi

IMUi E n  
Ω Ω

Ω Ω b υ   (4.48) 

where 
3 1

IMUi

Θ  is the mean Euler angle measurements of IMU i; 
3 1

IMUi

Ω  is the 

mean Euler angular rate measurements of IMU i; 
3 1

IMUi


Ω

b  is the bias of IMU i 
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angular rate measurements; 
IMUiΘ

υ  and 
IMUiΩ

υ 3 1 are the corresponding measurement 

noises respectively. 

Then the complete form of measurement model is: 
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 (4.49) 

Normally, the bias term 
IMUia

b  and
IMUiΩ

b  are unknown variables to be estimated in state 

vector. However, they will greatly increase the size of matrixes by 6 rows per IMU in 

process model if placed in state vector.  Moreover, the size of matrixes in process model 

becomes variable while the number of available IMU changes, which makes it very 

difficult to implement the filter and it easily causes instability during UKF running. 

In order to avoid the above situation, a feasible solution is to estimate the bias 
IMUia

b  and 

IMUiΩ
b  outside the UKF instead, by transforming the estimated state variable |bCGa  and 
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|E nΩ  to each IMU location and calculating the mean of difference between measured 

value and transformed value as shown in Figure 5-2. 

After the state is estimated at the end of each running loop of UKF, the bias 
, ,IMUi outa

b
 

and , ,IMUi outΩ
b  used for output are severally calculated by  

 
, , |b | | | | IMU | |( ) ( , , )( )T

IMUi out IMUi CG E n E n E n E n i b CG b
      ab a a R Θ g R Θ Ω Α p p   (4.50) 

 , , |IMUi out IMUi E n 
Ω

b Ω Ω   (4.51) 

And their means of all previous loops become the estimated bias 
IMUia

b  and
  I M U iΩ

b
 

respectively which are the feedbacks for next UKF loop 

 
, ,

1

1
th

IMUi

n loop

IMUi out
n

 a a
b b   (4.52) 

 
, ,

1

1
th

IMUi

n loop

IMUi out
n

  ΩΩ
b b   (4.53) 

 

5.2.2 Approach 2 without Acceleration Measurement 

Acceleration is not a must to determine the position, velocity and heading. It may be 

used to increase the accuracy of the estimate, whereas, is it necessary to use acceleration 

measurement by adding more computation load on the system?  

The UKF model (4.29) (4.49) and can be simplified by eliminating the acceleration 

term and its relevant term. The new process model and measurement model is 

respectively expressed as 
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5.2.3 Least Measurement Mode 

If failure of one or several sensors is detected, the failed sensors will be kicked out from 

(4.49) and the UKF is still running properly in most cases. However, if there is only one 

position sensor or one angular sensor left, there is no enough information to determine 

the state of the UKF and it will output wrong estimate diverged quickly. The 

measurement model of minimum sensors for the UKF is 

 
| | | |

| | |

( )( )

( )( )

sensorm

sensorn

CG n E n sensorm b CG bsensorm

CG n E n sensornb CG bsensorn

    
              

p

p

υp R Θ p pp

p R Θ p pp υ
  (4.56) 
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or 

 
| | | |

|

( )( )
sensorm

sensorn

CG n E n sensorm b CG bsensorm

E nsensorn
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p

Θ

υp R Θ p pp

Θ υΘ
  (4.57) 

There are only two position measurements available in (4.56) , however, at least three 

position measurements at different locations are needed to determine the motion of a 

rigid body in three dimensional world. Therefore (4.56) seems incomplete to estimate 

the state, whereas, some extra information is known depending on the understanding of 

the physical model, which makes it possible to estimate the heading and position of a 

floating vessel.  

In operational mode, the vessel is floating on sea surface and it is in the state of stable 

equilibrium in z, roll and pitch direction in NED frame. Then it is a good assumption 

that the measurement of roll and pitch is zero, which gives an extra virtual measurement 

for the UKF 

 
_

_ |
sensor virtual

sensor virtual E n 
Θ

Θ Θ υ   (4.58) 

where _ [0, 0, ]T

sensor virtual  Θ  and    is the value of   in the last loop and the 

measurement error covariance of _sensor virtualΘ  is set to a larger value than normal 

because this virtual measurement is inaccurate. Then the augmented measurement 

model of (4.56) is written as  

 

_

| | | | ,

| | | ,

_ |

( )( )
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Θ
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p p R Θ p p υ

Θ Θ υ

  (4.59) 

For the second situation (4.57), the least measurements required are one position 

measurement and one yaw measurement. [0, 0, ]T

sensorn Θ  and   is the yaw 
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measurement and the measurement error covariance of 
IMUΘ  corresponding to roll and 

pitch is set to a larger value than normal just like what is done for (4.58). In this way, 

the redundancy of the DP system is increased since the failure of heading measurements 

will not result in position loss if there are at least two available position sensors. 

If the least sensor mode cannot be satisfied, the UKF is not able to estimate the state 

vector. Then the Kalman filter in Figure 5-1 will start dead reckoning while the state of 

the UKF will keep unchanged until enough measurements are recovered to determine 

the state of the filter. 

As mentioned above, at least three position measurements at different locations are 

needed to determine the motion of a rigid body in three-dimensional world. 

Theoretically, the filter is able to work in the condition where there are three position 

measurements of different point on the vessel without angular measurement. However, 

there is abrupt change of the output of the UKF at the moment when angular 

measurements are switched between available and unavailable. The solution is to put 

(4.58) in the measurement model when angular measurements are all lost so that there is 

always angular measurement in the measurement model. 

 

5.3 Tuning 

The general tuning of the Kalman filter is to set up the values of noise covariance 

matrixes Q  and R  so that the filter is robust enough to work properly regardless of 

initial errors. [47] R can be simply found according to the covariance of sensor noise. 

However, the value of Q is more difficult to tune despite the model knowledge is more 

or less known. It is tuned by trial or using adaptive methods. Three additional 

parameters should be tuned for the UKF.  determines the spread of the sigma points 

around x̂ and its value is chosen between 0 and 1.  For Gaussian noise, it is the optimal 
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choice that 2  . Choose 0   to guarantee positive definiteness of the covariance 

matrix and 0  is a good default choice. 

 

5.4 Conclusion 

The process models of UKF in approach 1 and approach 2 are identical; however, the 

measurement models are different. Obviously, the measurement model in approach 2 is 

more complex than that in approach 1 and its complexity is proportional to the number 

of measurements, which means the computational load of approach 2 is much higher if 

there are lots of sensors. In practice, there are indeed lots of sensors working during DP 

operation for the sake of redundancy. Nevertheless, if taking accuracy into account, 

approach 2 is expected to be more accurate because all measurements are combined by 

kinematics in measurement model while only the mean of measurements are combined 

in approach 1. Furthermore, the least sensor mode in approach 2 is easier to be satisfied 

and this will increase the redundancy of the measurement system. As a conclusion, 

approach 2 is a better choice under comprehensive consideration since the computation 

load can be handled well by current computers. Considering the numerical performance, 

SRUKF is used instead of UKF in this work.  
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6. Observer Design for DP  

 

The motions of a floating vessel consist of low frequency motions and wave frequency 

motions. In low to medium sea states, the wave frequency motion has little influence on 

the performance of DP operation. In order to reduce power consumption and wear of 

the actuators, only low frequency motions are controlled by DP system. [5] The total 

motions of low frequency motions and wave frequency motions have  already been 

estimated in the previous chapter. Hence, the work of this chapter is focused on 

estimating low frequency motions based on Kalman filter with the knowledge of the 

vessel mathematical model as well as the output of the SRUKF in the previous chapter. 

For safety reasons this observer must be able to keep working after the position 

measurements are lost. Thus, dead reckoning is discussed in this chapter as well, which 

will keep the position after the entire reference system fails. 

 

6.1 Vessel Mathematical Model 

6.1.1 Motion of a Floating Vessel 

There are six degrees of freedom (DOF) defined as surge, sway, heave, roll, pitch and 

yaw [19] as shown in Figure 2-3 and Table 6-1 where the forces and velocities are also 

defined. Floating vessels are exposed to external forces caused by current, wind and 

waves and these forces have high frequency components as well as low frequency 

components. However, only low frequency forces are of interest to motion control 

because the frequency of oscillations of the first order wave forces has little influence 

on the operational performance of a vessel. Therefore, the dynamic positioning system 

will not counteract the first order wave forces. Besides, if the controller responds to the 

first order wave frequency, the actuators would react in a high frequency which results 
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in unwanted power consumption and actuator wear. [5] For operation of a vessel, three 

degrees of freedom (surge, sway and yaw) are taken into account. 

Table 6-1 Notation for marine vessels  

DOF Description 
Forces and 

moments  

Velocities and 

angluar rates 

Positions and 

Euler angles  

1 
Translation in x 

direction (surge) 
X   u   x   

2 
Translation in y 

direction (sway) 
Y   v   y   

3 
Translation in z 

direction (heave) 
Z   w   z   

4 
Rotation about x axis 

(roll) 
K   p      

5 
Rotation about y axis 

(pitch) 
M   q      

6 
Rotation about z axis 

(yaw) 
N   r      

 

6.1.2 Low Frequency Motion 

The model of vessel kinetics is built by [48] and the equation of low frequency motion 

of a vessel in matrix form can be written as [5] 

 z bη R v   (5.1) 

 1 1 1 T

b b

      zv M Dv M τ M R b   (5.2) 

 1

b

  b T b Ψw   (5.3) 

In (5.1) the matrix  
T

n nx y η  represents the position x , y  and heading  in 

NED frame and  
T

b u v rv   describe the velocities in the body-fixed frame and 

zR is the rotation transformation matrix about z-axis of NED. b in (5.2) is a vector of 
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bias forces, which contains all unknown low frequency forces such as current and wave 

drift forces  as well as pipe tension, etc. T in (5.3) is a diagonal matrix of positive bias 

time constants.  Ψ is a diagonal matrix scaling the noise term 
bw . It is considered more 

appropriate to use 
bb Ψw under the assumption that the bias forces are almost 

constant and driven by noise because wave drift forces and current forces are changing 

slowly. The force matrix τ is the sum of known and measurable forces including control 

forces and wind forces acting on the vessel in body-fixed frame. The inertial matrix M

in (5.2) is the sum of rigid-body mass matrix 
RBM and hydrodynamic added mass 

matrix 
AM  and they are written as 
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M   (5.6) 

where m  is the mass of the vessel, gx is the longitudinal position of center of gravity of 

the vessel in body-fixed frame, zI  denotes the moment of inertia about z-axis of body-

fixed frame. The hydrodynamic added mass terms are defined as 

 , , ,u v r r

X Y Y N
X Y Y N

u v r r

   
   
   

  (5.7) 
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In low speed applications such as dynamic positioning, the linear damping matrix D  in 

(5.2) is given by 

 

0 0

0

0

u

v r

r r

X

Y Y

Y N

 
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  
 
   

D   (5.8) 

where linear damping coefficients are defined as 

 , , ,u v r r

X Y Y N
X Y Y N

u v r r

   
   
   

  (5.9) 

6.1.3 First Order Wave Frequency Motion 

The first order wave- induced motion in surge, sway and yaw direction can be modeled 

as second order harmonic oscillations driven by Gaussian white noises. [49] The wave 

frequency motion of frequency domain is written as [50] 

 ( ) ( ) ( ) ( )i i is h s w s    (5.10) 

and 
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i i i
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h s
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  (5.11) 

where i=1,2,3 representing surge, sway and yaw respectively. iw is a zero-mean white 

noise, 0i  is the dominating wave frequency which can be tracked using the method 

from [51] or [20], i is the relative damping ratio and i  is a parameter related to wave 

intensity. 

The inverse Laplace transform of (5.10) to time domain is given by 

 

2

( ) ( ) 2

0 0 ( )2
2

i i

i i i i i i

d d
w

dt dt

 
         (5.12) 
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Let  

 
1 (1) (2) (3)

T

         (5.13) 

 
(1) (2) (3)

2

T
d d d

dt dt dt
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 
  
 

  (5.14) 

  01 02 03( )diag   Ω   (5.15) 

  1 2 3( )w diag   Z   (5.16) 

  1 2 3( )diag   Σ   (5.17) 

  1 2 3

T
w w w w   (5.18) 

Then (5.12)-(5.18) compact 
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ξ2

w

O I ξ Oξ
= +

-Ω -2Z Ω ξ Σξ
w   (5.19) 

 

6.1.4 Summary of the Observer 

By combining (5.1), (5.2), (5.3) and (5.19) in one matrix form, the low frequency model 

and wave frequency model can be written as 
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 (5.20) 

and its measurement model is expressed by  
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 (5.21) 

where the measurement vector  
T

n nη v a comes from the estimated state of the UKF 

or SRUKF. 

 

6.2 Observability and Stabilizability 

The Kalman filter for state estimate for the DP system is designed in the previous sector 

and the important properties of the model including observability and stabilizability 

should also be studied.  All these properties has been discussed in [7], conclusions of 

which are used as reference here.  

The following Hautus test [52]  is used to test the observability of linear time- invariant 

systems. 

Theorem 7.1 The n state linear time- invariant system in the form of  (3.10) and (3.11) 
 

is observable if and only if  

 ,rank n



 

   
 

F I

H
  (5.22) 

where  is an eigenvalue of matrix F . 

Theorem 7.2 The n state linear time- invariant system in the form of  (3.10) and (3.11) 
 

is stabilizable if and only if [52] 

    , : 0.rank n       F I B   (5.23) 
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In this case, (5.20) and (5.21) is the linear time- invariant system to be tested, which 

means 

 

3 3 3 3 3 3 3 3

3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3

z

T

z

   

  

    

    

  

 
 
 
 
 
 
  

-1 -1

2

w

O R O O O

O -M D M R O O

F O O O O O

O O O O I

O O O -Ω -2Z Ω

  (5.24) 

 

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

3 3 2

z

T

z z z

    

   



 
 


 
   

-1 -1 2

w

I O O I O

H O R O O I

O -R M D R M R Ω Z Ω

  (5.25) 

 

3 3

3 3

3 3

3 3









 
 
 
 
 
 
  

-1

O

M

B O

O

O

  (5.26) 

and   is calculated from matrix F . 

Thus, condition (5.22) and (5.23) can be easily tested in Matlab and this system is 

proved to be observable and stabilizable as a result. 

 

6.3 Discretization of KF 

Kalman filter is used as the observer for the DP system in this thesis. The continuous 

form of Kalman filter is not convenient for the computation in practice and it need to be 

discretized. The differential form (5.20) can be discretized by the method presented in 

section 4.2.2, which yields 

 1 1 1k k k k k k    x A x B τ w   (5.27) 
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where  
T
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is simplified as 
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2

s
k s

T
T  

F
A I F  by ignoring the terms higher than 2nd order, 

however, it causes inaccuracy in this discrete model. If the system has dynamics that are 

dominantly faster than
sT , divergence problems, i.e., instability, can occur. To avoid this 

problem, two typical methods to increase numerical accuracy and stability [47], are to 

shorten the sample time or use more complex discretization schemes such as Runge-

Kutta methods [53]. 

kB
 
and 

kQ
 
are calculated based on the discretized process transition matrix

 kA . Thus, 

kB  is obtained from  
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and kQ  is given by 
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Then this discrete Kalman filter can be implemented by using (3.5)-(3.9) but the 

prediction equation 
1 1

ˆ ˆ
k k k k k



  x A x B u is replaced by fourth order Runge-Kutta method, 

and the procedure is shown below: 

1) Initialization: 

 
0 0 0 0 0 0 0

ˆ ˆ ˆ( ), ( )( )TE E      x x P x x x x   (5.31) 

2) Time update equations: 
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 
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 
F x Gu   (5.34) 

  4 1 3
ˆ

k sk T k  F x Gu   (5.35) 

  1 1 2 3 4
ˆ ˆ 2 2

6

s
k k

T
k k k k

    x x   (5.36) 

 1

T

k k k k k



 P A P A Q   (5.37) 

3) Measurement update equations: 

 1( )T T

k k k k k k k

   K P H H P H R   (5.38) 

 ˆ ˆ ˆ( )k k k k k k

   x x K z H x   (5.39) 

 ( )k k k k

 P I K H P   (5.40) 
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6.4 Tuning 

The signal- to-noise ratio (SNR) /Q R  , which sets the filter speed, is the most 

crucial in tuning. R  can be set according to sensor specification. Then Q  is tuned after 

R is fixed. The filter is able to adapt to changes fast with high SNR in the model, but 

with larger uncertainty, vice versa. 
0P  indicates the belief in the prior 

0x . Therefore, 

choose 
0P very large if no prior information of 

0x exists.  

 

6.5 Dead Reckoning under Reference System Failure 

This observer must be able to keep working after position is lost for sake of safety. 

When position is lost, the UFK will keep the current state without update and inform the 

observer that this is no position information available. Then the observer will do dead 

reckoning by estimating the state based on process model. 

An activation matrix n nf  (n is the size of  measurement vector z) is defined to 

indicate which measurement variable in measurement vector is missing [54]:  

 ,

0

1
i i

measurement missing

measurement available


 


f   (5.41) 

where f is diagonal matrix and ,i if is the element in ith row and ith column. 

The measurement update equation (5.39) is modified by 

 ˆ ˆ ˆ( )k k k k k k

   x x K f z H x   (5.42) 

As a result, the position and heading of the vessel are estimated in the worst case in 

which the whole reference system fails. The vessel is still capable of maintaining its 

position for a period the length of which depends on the external environment. If the 
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external forces are changing slowly, then the dead reckoning accuracy decreases slowly 

and vice versa. 

 

6.6 Conclusion 

In this chapter, the observer for low frequency motions estimation is designed and the 

estimated motions can be output to DP controller when the result of the UKF (SRUKF) 

is connected to this observer. By now the whole algorithm for DP observer is done and 

the next step is to simulate the system in Simulink and check the performance of this 

system. 
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7. Simulation and Results 

 

The simulation setup and results of Matlab/Simulink model are discussed in this chapter. 

The simulation program (Figure 7-1) in this thesis is developed by combining the 

author‟s modules and some modules from the existing Simulink toolbox Marine 

Systems Simulator (MSS) which provides the necessary resources for implementation 

of mathematical models of marine systems. [55] Environmental module and marine 

vessel module are directly from the library of MSS and the controller module from MSS 

is modified in the simulation program to achieve a better performance. The reference 

system is developed by the author to simulate measurement sensors at different 

locations of the vessel. Then sensor fusion module and observer module are built based 

on the algorithms described in this thesis. The results of both SRUKF and KF estimates 

will be analyzed at the end of this chapter. 

 

Figure 7-1: Overview of the simulation program 
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Figure 7-2: Blocks inside „Environment and marine vessel model‟ in Figure 7-1 

 

7.1 Simulation Program Description 

7.1.1 Environmental Module 

An irregular sea state is simulated by environmental module in Figure 7-2 where waves, 

current and wind are generated.  The wave parameters such as significant wave height, 

peak wave frequency, mean wave directions, etc. are set and then N harmonic wave 

components are generated and superposed to simulate irregular waves. The wave 

spectrum and wave realization are plotted in Figure 7-3 and Figure 7-4 respectively. 

The current is generated by specifying the current direction and speed. The wind is 

generated based on the mean angle and mean wind speed at 10 meters height and both 

the total velocity and direction of the wind are slowly varying. [56] 



72 

 

 

Figure 7-3: Wave spectrum for simulation 

 

Figure 7-4: Sea state in Simulink 

 

7.1.2 Marine Vessel Module 

The marine vessel module in Figure 7-2 is based on equations of 6 DOF motion of a 

marine system, see [57] for details. The low frequency motion of the vessel is calculated 

by the equations in [57] and the wave frequency motion is calculated based on the 

motion response amplitude operators (RAO). [58] The vessel model used for the 

simulation is a platform supply vessel (PSV) the parameters of which are shown in 

Table 7-1. This module will output low frequency motion and wave frequency motion 

of the vessel while wave, wind and current module are set up and thrust forces and 

moments are input from the controller. 

Table 7-1 Ship parameters of the PSV 

Lpp 82.8 

Length between 

perpendiculars 

(m) 

T 6 draught (m) 

B 19.2 breadth (m) 
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m 6.3622085×106 mass (kg) 

rho 1025 
density of water 

(kg/m3) 

g 9.81 
acceleration of 

gravity (m/s2) 

k44 6.84459 

radius of 

gyration in roll 

(m) 

k55 20.74078 

radius of 

gyration in pitch 

(m) 

k66 20.7 

radius of 

gyration in yaw 

(m) 

nabla 6.207032682926830×103 

volume 

displacement 

(m3) 

CB [-5.38600145 0 3.334] 

center of 

buoyancy w.r.t 

baseline and 

Lpp/2 (m) 

S 1.8201601524×103 
wetted surface 

(m2) 

GM_T 1.03628×102 

transverse 

metacentric 

height (m) 
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GM_L 2.144 

lateral 

metacentric 

height (m) 

M [
              

                         

                          
] Inertial matrix 

D [
              

                   

                   
] 

Linear damping 

matrix 

 

7.1.3 Controller Module 

The DP controller module in Figure 7-2 is a nonlinear PID set-point controller from 

MSS. [56] The set-point, estimated low frequency vessel position, heading, velocity and 

heading rate are input to this controller which will then determine the desired force and 

moment to keep the position at the set-point. However, the PID parameters must be 

tuned well to realize a good performance. [59]  

7.1.4 Reference System Module 

From the marine vessel module in Figure 7-1 the true 6 DOF motions of the vessel CG 

are output so the motions of any points with known body-fixed frame coordinates can 

be  calculated according to (4.1)-(4.3), which means the true motions of different 

sensors are known because of the knowledge of sensors location on the vessel. By 

adding white noises on the specific motions corresponding to the sensor type, the 

measurements are simulated and then the reference system is built.  

7.1.5 Sensor Fusion Module and Observer Module 

All available measurements are input to sensor fusion module (by means of SRUKF) 

and the total 6 DOF motions of CG are estimated by the algorithm in chapter 5. The 

Kalman filter algorithm discussed in chapter 6 is applied in the observer module which 

outputs the estimated low frequency 3 DOF motions and bias forces into the controller. 
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7.2 Simulation 

The parameters in the environmental module are set up as an example shown in Table 

7-2. The total 6 DOF motions of the vessel in waves are visualized in the animation 

window in Figure 7-5, and the 3 DOF low frequency motions of the vessel and vectors 

of the forces as well as moments on the vessel are plotted in Figure 7-6. The initial 

position of the vessel is [0, 0, 0] (x position, y position and heading) and the velocities 

are also initialized as zero. The set-point is [-3, 7, -20]. The reference system contains 5 

position reference sensors (two DGPS, one hydro-acoustic, one radar scan, and one 

laser cyscan) and 2 IMUs (and 2 gyroscopes for yaw). The simulation runs for the first 

1000s in normal mode where no reference system fails, and the results are shown from 

Figure 7-8 to Figure 7-20. Subsequently, the simulation runs until 2800s in dead 

reckoning mode where reference system fails at 1000s. 

Table 7-2 Environmental parameters 

Wave spectrum type Jonswap 

Significant wave height Hs (m) 4 

Wave peak frequency w0 (rad/s) 0.6 

Mean wave direction (degree) 30 

Current direction (degree) 20 

Current speed (m/s) 0.2 

Mean wind speed (m/s) 20 

Mean wind angle (degree) 26 
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Figure 7-5: Animation of the PSV in waves 
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Figure 7-6: DP with available reference system 

-60 -40 -20 0 20 40 60
-60

-40

-20

0

20

40

60

x

y



78 
 

 

Figure 7-7: Dead reckoning for 1800s after reference system fails 

In Figure 7-6 and Figure 7-7, the solid vessel outline is the true position; the blue dotted 

vessel outline is the estimated position; the red dotted vessel outline is the set point. The 

three vessels are overlapped in Figure 7-6 because the position and heading are 

estimated well. Figure 7-7 shows the results of dead reckoning for 1800s. Arrows 

represent force vectors and the moments are represented by the equivalent coupled 

forces. The blue arrows are the wind force and moment; the black arrows are the bias 

force and moment; the dotted red arrows are the thruster force and moment. 
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The estimated total position, velocity and acceleration of CG are shown from Figure 7-8 

to Figure 7-13. The three dimensional errors (
2 2 2

error error errorx y z   ) of translational 

motions and rotational motions are presented under the conditions of 2 sensor (1 

position sensor, 1 IMU), 3 sensor (2 position sensors, 1 IMU), and 7 sensors (5 position 

sensors, 2 IMUs) in Figure 7-14, Figure 7-15 and Table 7-3 where it is shown that the 

system with more sensors has more accuracy and the errors of the linear motions are 

under certain limit without increasing overtime, which means the estimation of the filter 

is stable. 
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Figure 7-8: SRUKF for the estimation of the total postion of CG in NED frame. At 
beginning the x, y position of the vessel drifts away under environmental forces because 

the sytem needs time to start up. Then the vessel moves to the wanted position after a 
while. The z position is oscillating aroud 0 m due to the waves.  
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Figure 7-9: SRUKF for the estimation of the total velocity of CG in NED frame. When 
the vessel is maintaining its position, the velocities in x, y and z direction are oscillating 
around zero because of first order wave frequency forces. 
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Figure 7-10: SRUKF for estimation of the total acceleration of CG in NED frame 

200 250 300 350 400 450 500
-0.5

0

0.5

t [s]

m
/s

2

x acceleration

 

 

Estimated acceleration x

True value

200 250 300 350 400 450 500
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

t [s]

m
/s

2

y acceleration

 

 

Estimated acceleration y

True value

200 250 300 350 400 450 500
-0.015

-0.01

-0.005

0

0.005

0.01

t [s]

m
/s

2

z acceleration

 

 

Estimated acceleration z

True value



83 
 

 

Figure 7-11: SRUKF for total Euler angles estimation 
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Figure 7-12: SRUKF for total anglar rates estimation 
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Figure 7-13: SRUKF for total anglar accelerations estimation 
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Figure 7-14: 3D mean errors of the 

estimation for position, velocity and 
acceleration  

Figure 7-15: 3D mean errors of the 

estimation for Euler angle, angular rate 
and angular acceleration 
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The low frequency motions including positions and velocities are estimated quite good 

as most wave frequency components are eliminated, see Figure 7-16 and Figure 7-17. 

The mean two dimensional errors (
2 2

error errorx y ) of estimates for position are below 

0.15 m and the heading error is below 0.2 degree in Figure 7-18; the 2D errors of 

estimates for the velocity and heading rate are below 0.004 m/s and 0.01 rad/s 

respectively in Figure 7-19. The more number of sensors also results in better 

estimation of the KF, similar with the UKF, since the input of the KF is from the results 

of the UKF (see Table 7-3). The estimated bias forces are shown in Figure 7-20 where 

the bias forces estimates gradually capture the true values as the vessel gets stationary.  

Table 7-3 Mean errors of the SRUKF and the KF for 1000s 

Filters Errors 
1 position 
sensor 1 IMU 

2 position 
sensors 1 IMU 

5 position 
sensors 2 IMUs 

SRUKF 

3D position mean error 

(m) 
0.4335 0.2688 0.1944 

3D velocity mean error 
(m/s) 

0.2621 0.1696 0.1555 

3D acceleration mean 

error (m/s2) 
0.1913 0.1860 0.1123 

3D angular mean error 
(degree) 

0.1762 0.1548 0.1265 

3D angular rate mean 

error (rad/s) 
0.007926 0.006889 0.005550 

3D angular acceleration 
mean error (rad/s2) 

0.009497 0.008818 0.007957 

KF 

2D position  mean error 

(m) 
0.1094 0.09204 0.07494 

2D velocity mean error 
(m/s) 

0.004413 0.003999 0.003723 

Heading mean error 

(degree) 
0.1167 0.1123 0.1114 

Heading rate mean 
error (rad/s) 

0.004243 0.004218 0.004170 
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Figure 7-16: KF estimates for low 

frequency position and heading 

 

Figure 7-17: KF estimates for low 

frequency velocity and heading rate 
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Figure 7-18: Position and heading mean 
error of KF 

 

Figure 7-19: Velocity and heading rate 
mean error of KF 
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Figure 7-20: Bias forces estimated by KF. The figure shows that the true bias forces are 
quite noisy and the KF is able to eliminate the noises and ouputs smooth results.  
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7.3 Conclusion 

The 6 DOF motions are estimated correctly in the SRUKF just a few seconds after the 

simulation starts. More sensors increase the accuracy and redundancy of the DP system 

if they are fused by the SRUKF. The low frequency 3 DOF motions are estimated well 

in the KF based on the total motions estimated in SRUKF after approximate 200s and it 

takes longer before the bias forces are estimated correctly, which indicates that it takes 

some time before the estimate converges to the correct value. The dead reckoning works 

well after estimated bias forces become stable as shown in Figure 7-7; the error of the 

position is only about 5m after reference system failure for 1800s, which reduces the 

probability of collision with other surrounding structures at sea. 
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8. Conclusions and Recommendations 

 

In this chapter, the main conclusions of this work are summarized due to the algorithms 

and simulation result presented in previous chapters. Recommendations for the future 

work are also presented based on the experience and knowledge obtained in this work. 

The drawbacks of the algorithms in this thesis are expected to get fixed in the future 

work. 

 

8.1 Conclusions 

The goal of this thesis is to fuse all available reference sensors and design an observer 

to estimate low frequency motion for dynamic positioning system. Therefore, there are 

two major procedures to achieve the target. At first step, all sensors are fused base on 

square-root unscented Kalman filter, which gives an estimate of total motion in 6 DOF 

about CG. The sensor fusion in the SRUKF improves the accuracy and redundancy of 

the reference system because all sensors are combined by the mathematical model in the 

filter. Since the results of the SRUKF contain wave frequency motions which should 

not be compensated by actuators, an observer based on Kalman filter is implemented at 

the next step. As the ship mathematical model is assumed linear for rotational speed that 

is the case in DP operation, standard Kalman filter is a good choice in this condition. 

Besides, ship mathematical model is combined with measurements such that this 

observer is capable of dead reckoning using the ship mathematical model when the 

reference system fails. 

In order to test the algorithms in this thesis, a simulation program is built in Simulink. 

The external environment (wind, current and waves) is generated and the motions about 

CG of a PSV with known parameters can be calculated as the true motions. Hence, 

motions of any points on the vessel are also known via reference frame transformation 
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described in this thesis. Adding noise on the motion of any specified point generates a 

sensor measurement. Therefore, any type of reference sensor can be simulated in this 

way. Then the algorithms for sensor fusion and observer are tested by connecting them 

to the measurements, the results of which are presented in Chapter 7. The simulation 

results show good performance of cascade of the SRUKF and the KF for redundancy 

improvement and the low frequency vessel motion estimation in DP. 

 

8.2 Recommendations for Future Work 

The performance of both SRUKF and KF is affected by the parameters such as 

measurement noise covariance and process noise covariance. Consequently, it is crucial 

to tune these parameters based on our knowledge of the system model and sensor 

properties. Nevertheless, it is of difficulty to tune the process noise covariance. 

Furthermore, the filters should be tuned every time they are implemented on different 

vessels and the sea state changes in order to reach the best performance. Apparently, 

manual tuning is inconvenient and it should be replaced by other algorithms like self-

tuning and adaptive filter in the future work to reduce the cost for DP system 

installation.  
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9.2 Appendix 2 Matlab/Simulink 

9.2.1 Signal Generator 

function out = signal(t,tt,eta,nu,a) 
g=[0;0;9.81]; 
psi=eta(4); 
theta=eta(5); 
phi=eta(6); 

  
dpsi=nu(4); 
dtheta=nu(5); 
dphi=nu(6); 

  
ddpsi=a(4); 
ddtheta=a(5); 
ddphi=a(6); 

  
R=[ cos(phi)*cos(theta), cos(phi)*sin(psi)*sin(theta) - 

cos(psi)*sin(phi), sin(phi)*sin(psi) + cos(phi)*cos(psi)*sin(theta) 
 cos(theta)*sin(phi), cos(phi)*cos(psi) + sin(phi)*sin(psi)*sin(theta), 

cos(psi)*sin(phi)*sin(theta) - cos(phi)*sin(psi) 
         -sin(theta),                              cos(theta)*sin(psi),                              

cos(psi)*cos(theta)]; 

  
 invR=[                              cos(phi)*cos(theta),                              

cos(theta)*sin(phi),         -sin(theta) 
 cos(phi)*sin(psi)*sin(theta) - cos(psi)*sin(phi), cos(phi)*cos(psi) + 

sin(phi)*sin(psi)*sin(theta), cos(theta)*sin(psi) 
 sin(phi)*sin(psi) + cos(phi)*cos(psi)*sin(theta), 

cos(psi)*sin(phi)*sin(theta) - cos(phi)*sin(psi), cos(psi)*cos(theta)]; 

  

  
dR=[ - dphi*cos(theta)*sin(phi) - dtheta*cos(phi)*sin(theta), 

dpsi*sin(phi)*sin(psi) - dphi*cos(phi)*cos(psi) + 

dpsi*cos(phi)*cos(psi)*sin(theta) + dtheta*cos(phi)*cos(theta)*sin(psi) 

- dphi*sin(phi)*sin(psi)*sin(theta), dphi*cos(phi)*sin(psi) + 

dpsi*cos(psi)*sin(phi) + dtheta*cos(phi)*cos(psi)*cos(theta) - 

dphi*cos(psi)*sin(phi)*sin(theta) - dpsi*cos(phi)*sin(psi)*sin(theta) 
   dphi*cos(phi)*cos(theta) - dtheta*sin(phi)*sin(theta), 

dphi*cos(phi)*sin(psi)*sin(theta) - dpsi*cos(phi)*sin(psi) - 

dphi*cos(psi)*sin(phi) + dpsi*cos(psi)*sin(phi)*sin(theta) + 

dtheta*cos(theta)*sin(phi)*sin(psi), dphi*sin(phi)*sin(psi) - 

dpsi*cos(phi)*cos(psi) + dphi*cos(phi)*cos(psi)*sin(theta) + 

dtheta*cos(psi)*cos(theta)*sin(phi) - dpsi*sin(phi)*sin(psi)*sin(theta) 
                                      -dtheta*cos(theta),                                                                                                         

dpsi*cos(psi)*cos(theta) - dtheta*sin(psi)*sin(theta),                                                                                                       

- dpsi*cos(theta)*sin(psi) - dtheta*cos(psi)*sin(theta)]; 
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ddR=[ dphi*dtheta*sin(phi)*sin(theta) - ddtheta*cos(phi)*sin(theta) - 

dphi*dphi*cos(phi)*cos(theta) - dtheta*dtheta*cos(phi)*cos(theta) - 

ddphi*cos(theta)*sin(phi) + dtheta*dphi*sin(phi)*sin(theta), 

ddpsi*sin(phi)*sin(psi) - ddphi*cos(phi)*cos(psi) + 

ddpsi*cos(phi)*cos(psi)*sin(theta) + 

ddtheta*cos(phi)*cos(theta)*sin(psi) - 

ddphi*sin(phi)*sin(psi)*sin(theta) + dphi*dphi*cos(psi)*sin(phi) + 

dphi*dpsi*cos(phi)*sin(psi) + dpsi*dphi*cos(phi)*sin(psi) + 

dpsi*dpsi*cos(psi)*sin(phi) - dphi*dphi*cos(phi)*sin(psi)*sin(theta) - 

dphi*dpsi*cos(psi)*sin(phi)*sin(theta) - 

dphi*dtheta*cos(theta)*sin(phi)*sin(psi) - 

dpsi*dphi*cos(psi)*sin(phi)*sin(theta) - 

dpsi*dpsi*cos(phi)*sin(psi)*sin(theta) - 

dtheta*dphi*cos(theta)*sin(phi)*sin(psi) - 

dtheta*dtheta*cos(phi)*sin(psi)*sin(theta) + 

dpsi*dtheta*cos(phi)*cos(psi)*cos(theta) + 

dtheta*dpsi*cos(phi)*cos(psi)*cos(theta), ddphi*cos(phi)*sin(psi) + 

ddpsi*cos(psi)*sin(phi) + ddtheta*cos(phi)*cos(psi)*cos(theta) - 

ddphi*cos(psi)*sin(phi)*sin(theta) - ddpsi*cos(phi)*sin(psi)*sin(theta) 

+ dphi*dpsi*cos(phi)*cos(psi) + dpsi*dphi*cos(phi)*cos(psi) - 

dphi*dphi*sin(phi)*sin(psi) - dpsi*dpsi*sin(phi)*sin(psi) + 

dphi*dpsi*sin(phi)*sin(psi)*sin(theta) + 

dpsi*dphi*sin(phi)*sin(psi)*sin(theta) - 

dphi*dphi*cos(phi)*cos(psi)*sin(theta) - 

dphi*dtheta*cos(psi)*cos(theta)*sin(phi) - 

dpsi*dpsi*cos(phi)*cos(psi)*sin(theta) - 

dpsi*dtheta*cos(phi)*cos(theta)*sin(psi) - 

dtheta*dphi*cos(psi)*cos(theta)*sin(phi) - 

dtheta*dpsi*cos(phi)*cos(theta)*sin(psi) - 

dtheta*dtheta*cos(phi)*cos(psi)*sin(theta) 
ddphi*cos(phi)*cos(theta) - ddtheta*sin(phi)*sin(theta) - 

dphi*dphi*cos(theta)*sin(phi) - dphi*dtheta*cos(phi)*sin(theta) - 

dtheta*dphi*cos(phi)*sin(theta) - dtheta*dtheta*cos(theta)*sin(phi), 

ddphi*cos(phi)*sin(psi)*sin(theta) - ddpsi*cos(phi)*sin(psi) - 

ddphi*cos(psi)*sin(phi) + ddpsi*cos(psi)*sin(phi)*sin(theta) + 

ddtheta*cos(theta)*sin(phi)*sin(psi) - dphi*dphi*cos(phi)*cos(psi) - 

dpsi*dpsi*cos(phi)*cos(psi) + dphi*dpsi*sin(phi)*sin(psi) + 

dpsi*dphi*sin(phi)*sin(psi) - dphi*dphi*sin(phi)*sin(psi)*sin(theta) - 

dpsi*dpsi*sin(phi)*sin(psi)*sin(theta) - 

dtheta*dtheta*sin(phi)*sin(psi)*sin(theta) + 

dphi*dpsi*cos(phi)*cos(psi)*sin(theta) + 

dphi*dtheta*cos(phi)*cos(theta)*sin(psi) + 

dpsi*dphi*cos(phi)*cos(psi)*sin(theta) + 

dpsi*dtheta*cos(psi)*cos(theta)*sin(phi) + 

dtheta*dphi*cos(phi)*cos(theta)*sin(psi) + 

dtheta*dpsi*cos(psi)*cos(theta)*sin(phi), ddphi*sin(phi)*sin(psi) - 

ddpsi*cos(phi)*cos(psi) + ddphi*cos(phi)*cos(psi)*sin(theta) + 

ddtheta*cos(psi)*cos(theta)*sin(phi) - 

ddpsi*sin(phi)*sin(psi)*sin(theta) + dphi*dphi*cos(phi)*sin(psi) + 

dphi*dpsi*cos(psi)*sin(phi) + dpsi*dphi*cos(psi)*sin(phi) + 

dpsi*dpsi*cos(phi)*sin(psi) - dphi*dphi*cos(psi)*sin(phi)*sin(theta) - 

dphi*dpsi*cos(phi)*sin(psi)*sin(theta) - 



100 
 

dpsi*dphi*cos(phi)*sin(psi)*sin(theta) - 

dpsi*dpsi*cos(psi)*sin(phi)*sin(theta) - 

dpsi*dtheta*cos(theta)*sin(phi)*sin(psi) - 

dtheta*dpsi*cos(theta)*sin(phi)*sin(psi) - 

dtheta*dtheta*cos(psi)*sin(phi)*sin(theta) + 

dphi*dtheta*cos(phi)*cos(psi)*cos(theta) + 

dtheta*dphi*cos(phi)*cos(psi)*cos(theta) 
                                                                                                                                                                                          

dtheta*dtheta*sin(theta) - ddtheta*cos(theta

ddpsi*cos(psi)*cos(theta) - ddtheta*sin(psi)*sin(theta) - 

dpsi*dpsi*cos(theta)*sin(psi) - dpsi*dtheta*cos(psi)*sin(theta) - 

dtheta*dpsi*cos(psi)*sin(theta) - dtheta*dtheta*cos(theta)*sin(psi

dpsi*dtheta*sin(psi)*sin(theta) - ddtheta*cos(psi)*sin(theta) - 

dpsi*dpsi*cos(psi)*cos(theta) - dtheta*dtheta*cos(psi)*cos(theta) - 

ddpsi*cos(theta)*sin(psi) + dtheta*dpsi*sin(psi)*sin(theta)]; 

  

  
P0_0=eta(1:3); 

V0_0=R*nu(1:3); 
a0_0=R*a(1:3); 

  
P0_1=[-5.3859196;0;7.3000002];%CoG coordinate. 1 is body frame 
Pmru_1=[-2;-2.8;-3.7]; 
Pgps_1=[3;6;30]; 

  
Pmru_0=R*(Pmru_1-P0_1)+P0_0; 
Pgps_0=R*(Pgps_1-P0_1)+P0_0; 

  
Vmru_0=dR*(Pmru_1-P0_1)+V0_0;  
Vgps_0=dR*(Pgps_1-P0_1)+V0_0;  

  
amru_0=ddR*(Pmru_1-P0_1)+a0_0; 
agps_0=ddR*(Pgps_1-P0_1)+a0_0; 
amru_1=invR*(amru_0-g);%gravity 

  

  

out.ts=t; 
out.tt=tt; 

  
out.varPGPS=[0.2^2;0.2^2;0.2^2];%GPS position error variance 
out.varVGPS=[0.5^2;0.5^2;0.5^2]; 
out.varA=[0.1^2;0.1^2;0.1^2]; 
out.varAngle=[0.001^2;0.001^2;0.001^2]*10; 
out.varDangle=[0.02^2;0.02^2;0.02^2]; 

  
out.Pmru_1.x=Pmru_1(1); 
out.Pmru_1.y=Pmru_1(2); 
out.Pmru_1.z=Pmru_1(3); 

  
out.Pgps_1.x=Pgps_1(1); 
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out.Pgps_1.y=Pgps_1(2); 
out.Pgps_1.z=Pgps_1(3); 

  
out.P0_1.x=P0_1(1); 
out.P0_1.y=P0_1(2); 
out.P0_1.z=P0_1(3); 

  
out.angle.x=psi; 
out.angle.y=theta; 

out.angle.z=phi; 

  
out.anglen.x=psi+sqrt(out.varAngle(1))*randn; 
out.anglen.y=theta+sqrt(out.varAngle(1))*randn; 
out.anglen.z=phi+sqrt(out.varAngle(1))*randn; 

  
out.dangle.x=dpsi; 
out.dangle.y=dtheta; 
out.dangle.z=dphi; 

  
out.danglen.x=dpsi+sqrt(out.varDangle(1))*randn+1; 
out.danglen.y=dtheta+sqrt(out.varDangle(1))*randn+1; 
out.danglen.z=dphi+sqrt(out.varDangle(1))*randn-1; 

  
out.ddangle.x=ddpsi; 
out.ddangle.y=ddtheta; 
out.ddangle.z=ddphi; 

  

% % % % % % % % % % % % % % % %  

  
out.P0_0.x=P0_0(1,1); 
out.P0_0.y=P0_0(2,1); 
out.P0_0.z=P0_0(3,1); 

  
out.V0_0.x=V0_0(1,1); 
out.V0_0.y=V0_0(2,1); 
out.V0_0.z=V0_0(3,1); 

  
% out.a0_0.x=a0_0(1,1); 
% out.a0_0.y=a0_0(2,1); 
% out.a0_0.z=a0_0(3,1); 
out.a0_0.x=a0_0(1,1); 
out.a0_0.y=a0_0(2,1); 
out.a0_0.z=a0_0(3,1); 
% % % % % % % % % % % % % % % % % % % % % % % % % %  

  
% % % % % % % % % % % % % % % % % % % % % % % % % % % %  
out.amru_1.x=amru_1(1,1); 
out.amru_1.y=amru_1(2,1); 
out.amru_1.z=amru_1(3,1); 
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out.anmru_1.x=amru_1(1,1)+sqrt(out.varA(1))*randn+0.2;%bias 
out.anmru_1.y=amru_1(2,1)+sqrt(out.varA(2))*randn+0.001;%bias 
out.anmru_1.z=amru_1(3,1)+sqrt(out.varA(3))*randn+0.003;%bias 

  
out.amru_0.x=amru_0(1,1); 
out.amru_0.y=amru_0(2,1); 
out.amru_0.z=amru_0(3,1); 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % %  
out.Pgps_0.x=Pgps_0(1,1); 

out.Pgps_0.y=Pgps_0(2,1); 
out.Pgps_0.z=Pgps_0(3,1); 

  
out.Pngps_0.x=Pgps_0(1,1)+sqrt(out.varPGPS(1))*randn; 
out.Pngps_0.y=Pgps_0(2,1)+sqrt(out.varPGPS(2))*randn; 
out.Pngps_0.z=Pgps_0(3,1)+sqrt(out.varPGPS(3))*randn; 

  
out.Vgps_0.x=Vgps_0(1,1); 
out.Vgps_0.y=Vgps_0(2,1); 

out.Vgps_0.z=Vgps_0(3,1); 

  
out.Vngps_0.x=Vgps_0(1,1)+sqrt(out.varVGPS(1))*randn; 
out.Vngps_0.y=Vgps_0(2,1)+sqrt(out.varVGPS(2))*randn; 
out.Vngps_0.z=Vgps_0(3,1)+sqrt(out.varVGPS(3))*randn; 

 

 

9.2.2 SRUKF Algorithm for Sensor Fusion 

function [y,IMUbias,lost] = 

UNKF(s,GPS,GPS_avl_num,IMU,IMU_avl_num,Radar,Radar_avl_num,IMUbias_in,

Process_ncov) 

  
assert (GPS_avl_num <= 10); 
assert (IMU_avl_num <= 10); 
assert (Radar_avl_num <= 10); 
nGPS=GPS_avl_num; 
nIMU=IMU_avl_num; 
nRadar=Radar_avl_num; 
if nIMU==0 
    nIMU=1;%assume there is 1 IMU, its roll and pitch =0 

end 

  
if nGPS+nRadar==0 
    nGPS=1;%assume there is 1 GPS, when there is no position sensor 
end 
g=[0;0;9.81]; 
persistent P; 
persistent P1; 
persistent P2; 

persistent Xe; 
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persistent Xe_;%prior Xe 

  
persistent flag;%for pos 
persistent flag1;%for heading 
persistent count;%for pos 
persistent count1;%for heading 
persistent lost1; 
persistent lost2; 
persistent lost3; 

persistent lost4; 
persistent NUM; 
persistent All_position_UKF; 
persistent All_IMU_UKF 
persistent flag_yaw 
if isempty(flag_yaw) 
flag_yaw=0; 
end; 
if isempty(All_position_UKF) 
All_position_UKF=1; 
end; 
if isempty(All_IMU_UKF) 
All_IMU_UKF=1; 
end; 
if isempty(NUM) 
NUM=0; 
end; 
NUM=NUM+1; 
if isempty(lost1) 

lost1=0; 
end; 
if isempty(lost2) 
lost2=0; 
end; 
if isempty(lost3) 
lost3=0; 
end; 
if isempty(lost4) 
lost4=0; 
end; 
if isempty(count) 
count=0; 
end; 
if isempty(count1) 
count1=0; 
end; 
if isempty(flag) 
flag=0; 
end; 
if isempty(flag1) 
flag1=0; 
end; 
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nXe=24; 

  
nRn=nGPS*6+nIMU*9+nRadar*3; 
nPsub1=12; 
nPsub2=nRn; 
nPsub=nPsub1+nPsub2; 
assert(nRn <= 200); 
assert(nPsub <= 200); 

  

if isempty(Xe) 
Xe=zeros(nXe,1); 
end; 
if isempty(Xe_) 
Xe_=zeros(nXe,1); 
end; 

  
sPsub=eye(nPsub,nPsub); 
if isempty(P2) 

P2=eye(nXe,nXe); 
end; 
if isempty(P) 
P=10*eye(nXe,nXe); 
P=chol(P,'lower'); 
end; 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 

f 
% determin lost signal 
f=eye(nRn); 

  

  

  
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 

% %  

  
alfa =0.05;%alfa =0.05;I found that alfa has a large influence on the 

result,in this case, the smaller the better 

  
kappa =0; 
beta =2; 
Lsigma =nXe;%+nPsub; 
lambada =alfa*alfa*(Lsigma+kappa)-Lsigma; 
gamma =alfa*(Lsigma+kappa)^0.5; 
sqrt_gamma =gamma; 

  

  
% % % % % % % % % % % INTI% % % % % % % % % % %  
Ym=zeros(1,nRn); 
t=s.tt; 
if s.ts<20%warm up 
    All_position_UKF=1; 
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    All_IMU_UKF=1; 
end 

  

  
if nGPS>=1 
 for i=1:nGPS 
  sPsub(nPsub1+1+6*(i-1):nPsub1+3+6*(i-1),nPsub1+1+6*(i-

1):nPsub1+3+6*(i-1))=diag(GPS(i).varPGPS); %GPS position 

  

  sPsub(nPsub1+4+6*(i-1):nPsub1+6+6*(i-1),nPsub1+4+6*(i-

1):nPsub1+6+6*(i-1))=diag(GPS(i).varVGPS); %GPS velocity 

   
Ym(1+(i-1)*6)=GPS(i).Pngps_0.x; 
Ym(2+(i-1)*6)=GPS(i).Pngps_0.y; 
Ym(3+(i-1)*6)=GPS(i).Pngps_0.z; 
Ym(4+(i-1)*6)=GPS(i).Vngps_0.x; 
Ym(5+(i-1)*6)=GPS(i).Vngps_0.y; 
Ym(6+(i-1)*6)=GPS(i).Vngps_0.z; 

  
f(1+(i-1)*6:6+(i-1)*6,1+(i-1)*6:6+(i-1)*6)=eye(6)*GPS(i).avl;%if sigal 

available 

  
if GPS(i).avl==0 
    Ym(1+(i-1)*6:2+(i-1)*6)=Xe_(1:2,1)'+([cos(Xe_(12,1)) -

sin(Xe_(12,1));sin(Xe_(12,1)) cos(Xe_(12,1))]... 
                                        *[GPS(i).Pgps_1.x-s.P0_1.x; 

GPS(i).Pgps_1.y-s.P0_1.y])';%!!!!!!!!!!!!!do not forget Rz 

    Ym(3+(i-1)*6)=GPS(i).Pgps_1.z-s.P0_1.z; 
    Ym(4+(i-1)*6:6+(i-1)*6)=zeros(1,3); 
    f(1+(i-1)*6:6+(i-1)*6,1+(i-1)*6:6+(i-

1)*6)=eye(6)*(All_position_UKF); 
else 
    Xe_(1:6)=Xe(1:6); 

     
end 

  

 end 

  
end 

  

  
 if nIMU>=1 

  
 for i=1:nIMU 
  sPsub(nPsub1+1+nGPS*6+9*(i-1):nPsub1+3+nGPS*6+9*(i-

1),nPsub1+1+nGPS*6+9*(i-1):nPsub1+3+nGPS*6+9*(i-

1))=diag(IMU(i).varA); % accel 
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  sPsub(nPsub1+4+nGPS*6+9*(i-1):nPsub1+6+nGPS*6+9*(i-

1),nPsub1+4+nGPS*6+9*(i-1):nPsub1+6+nGPS*6+9*(i-

1))=diag(IMU(i).varAngle); %angle 

   
  sPsub(nPsub1+7+nGPS*6+9*(i-1):nPsub1+9+nGPS*6+9*(i-

1),nPsub1+7+nGPS*6+9*(i-1):nPsub1+9+nGPS*6+9*(i-

1))=diag(IMU(i).varDangle); %dangle 

  
Ym(1+nGPS*6+9*(i-1))=IMU(i).anmru_1.x; 

Ym(2+nGPS*6+9*(i-1))=IMU(i).anmru_1.y; 
Ym(3+nGPS*6+9*(i-1))=IMU(i).anmru_1.z; 

  
Ym(4+nGPS*6+9*(i-1))=IMU(i).anglen.x; 
Ym(5+nGPS*6+9*(i-1))=IMU(i).anglen.y; 
Ym(6+nGPS*6+9*(i-1))=IMU(i).anglen.z; 

  
Ym(7+nGPS*6+9*(i-1))=IMU(i).danglen.x; 
Ym(8+nGPS*6+9*(i-1))=IMU(i).danglen.y; 

Ym(9+nGPS*6+9*(i-1))=IMU(i).danglen.z;  

  
f(1+nGPS*6+9*(i-1):9+nGPS*6+9*(i-1),1+nGPS*6+9*(i-1):9+nGPS*6+9*(i-

1))=eye(9)*IMU(i).avl;  
    if IMU(i).avl==0 
  sPsub(nPsub1+1+nGPS*6+9*(i-1):nPsub1+3+nGPS*6+9*(i-

1),nPsub1+1+nGPS*6+9*(i-1):nPsub1+3+nGPS*6+9*(i-

1))=diag(IMU(i).varA); % accel 

   

  sPsub(nPsub1+4+nGPS*6+9*(i-1):nPsub1+6+nGPS*6+9*(i-

1),nPsub1+4+nGPS*6+9*(i-1):nPsub1+6+nGPS*6+9*(i-

1))=diag(IMU(i).varAngle); %angle 

  
  sPsub(nPsub1+7+nGPS*6+9*(i-1):nPsub1+9+nGPS*6+9*(i-

1),nPsub1+7+nGPS*6+9*(i-1):nPsub1+9+nGPS*6+9*(i-

1))=diag(IMU(i).varDangle); %dangle 
    Ym(1+nGPS*6+9*(i-1):3+nGPS*6+9*(i-1))=-

g';%!!!!!!!!!!!!!!!!!!!!!!!!not zero here 
    Ym(4+nGPS*6+9*(i-1):5+nGPS*6+9*(i-1))=zeros(2,1)';%roll pitch 

forced to 0 
    Ym(6+nGPS*6+9*(i-1))=Xe(12,1);%yaw not Xe_ 
    Ym(7+nGPS*6+9*(i-1):9+nGPS*6+9*(i-1))=zeros(3,1)'; 
    IMUbias_in(i).ab=zeros(3,1); 
    IMUbias_in(i).wb=zeros(3,1); 
    f(1+nGPS*6+9*(i-1):9+nGPS*6+9*(i-1),1+nGPS*6+9*(i-

1):9+nGPS*6+9*(i-1))=eye(9)*All_IMU_UKF; 
         if nGPS+nRadar>1 %2 position sensor determin yaw 
         sPsub(nPsub1+6+nGPS*6+9*(i-1),nPsub1+6+nGPS*6+9*(i-

1))=sPsub(nPsub1+6+nGPS*6+9*(i-1),nPsub1+6+nGPS*6+9*(i-1))*1e10; %yaw 

Changing cov will cause abruption 

         
         flag_yaw=flag_yaw+1; 
         else 
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         flag_yaw=0; 
         end 
    else 

         
    Xe_(7:15)=Xe(7:15); 
    flag_yaw=0; 
    end 
 end 

  

 end 

  
 if nRadar>=1 

  
 for i=1:nRadar  
  sPsub(nPsub1+1+nGPS*6+nIMU*9+3*(i-1):nPsub1+3+nGPS*6+nIMU*9+3*(i-

1),... 
      nPsub1+1+nGPS*6+nIMU*9+3*(i-1):nPsub1+3+nGPS*6+nIMU*9+3*(i-

1))=diag(Radar(i).varPGPS); %Radar or laser or acoustics position 

  
%   sPsub(nPsub1+4+6*(i-1):nPsub1+6+6*(i-1),nPsub1+4+6*(i-

1):nPsub1+6+6*(i-1))=diag(GPS(i).varVGPS); %GPS velocity 

   
Ym(1+nGPS*6+nIMU*9+(i-1)*3)=Radar(i).Pngps_0.x; 
Ym(2+nGPS*6+nIMU*9+(i-1)*3)=Radar(i).Pngps_0.y; 
Ym(3+nGPS*6+nIMU*9+(i-1)*3)=Radar(i).Pngps_0.z; 

  

  
f(1+nGPS*6+nIMU*9+(i-1)*3:3+nGPS*6+nIMU*9+(i-1)*3,1+nGPS*6+nIMU*9+(i-

1)*3:3+nGPS*6+nIMU*9+(i-1)*3)=eye(3)*Radar(i).avl;%if sigal available 
    if Radar(i).avl==0 
    Ym(1+nGPS*6+nIMU*9+(i-1)*3:2+nGPS*6+nIMU*9+(i-

1)*3)=Xe_(1:2,1)'+([cos(Xe_(12,1)) -sin(Xe_(12,1));sin(Xe_(12,1)) 

cos(Xe_(12,1))]... 
                                                                    

*[Radar(i).Pgps_1.x-s.P0_1.x; Radar(i).Pgps_1.y-s.P0_1.y])';%!!!do not 

forget Rz 

    Ym(3+nGPS*6+nIMU*9+(i-1)*3)=Radar(i).Pgps_1.z-s.P0_1.z; 
    f(1+nGPS*6+nIMU*9+(i-1)*3:3+nGPS*6+nIMU*9+(i-

1)*3,1+nGPS*6+nIMU*9+(i-1)*3:3+nGPS*6+nIMU*9+(i-

1)*3)=eye(3)*All_position_UKF; 
    else 
    Xe_(1:3)=Xe(1:3); 

     
    end 

  
 end 

  
 end 

  
temp1=0; 
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if nGPS>=1 
for i=1:nGPS 
    temp1=GPS(i).avl+temp1; 
end 
end 

  
if nRadar>=1 
for i=1:nRadar 
    temp1=Radar(i).avl+temp1; 

end 
end 

  
temp2=0; 

  
if nIMU>=1 
for i=1:nIMU 
    temp2=IMU(i).avl+temp2; 
end 

end 

  

  

  
 if temp1==0 
    %all position lost 
     All_position_UKF=1; 
 else 
     All_position_UKF=0; 

 end 

  
  if temp1==0||(temp1<=1&&temp2==0) 
     All_position_lost=1;%without IMU, 1 position sensors canot give a 

good result of position. it is worse than dead reckoning 

  
 else 
     All_position_lost=0; 

  
 end 

  
  if temp2==0 %with 3 position sensors, euler angles can be calculated. 

so IMU lost doesn't mean heading lost 

  
     All_IMU_UKF=1;%all IMU lost 
 else 

  
     All_IMU_UKF=0; 
  end 

  
  if temp2==0&&temp1<=1 %with 3 position sensors, euler angles can be 

calculated. so IMU lost doesn't mean heading lost 
    All_heading_lost=1; 
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 else 
     All_heading_lost=0; 

  
  end 

   
 if flag_yaw==1 
     All_heading_lost=1;%to avoid jump in Yaw 
     All_position_lost=1; 

 end 

   

  
sPsub(1:12,1:12)=diag(Process_ncov); 

  

  

  
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 

% % % %  
P1=P; 
Xa=zeros(Lsigma,1); 
lost=[0 0]; 
% % % % % % % % % % % % % % % % % % %position recovered, do not inform 

KF immediately, but wait a few 

minutes % % % % % % % % % % % % % % % % % % % % % % % % % % % %  
lost1=All_position_lost; 
if lost1==0&&lost2==1 
    flag=1; 
else 

  
end 

  
if flag==1 
   count=count+1;  
end 

  
%position is lost, then recovered. output to next KF block after 

30(can be ajusted) rounds of UKF to avoid jump in next KF output. 
if count==300||count==0; 
    lost(1)=0; 
    flag=0; 
    count=0; 
else 
    lost(1)=1; 
end 
if All_position_lost==1 
   lost(1)=1;  
end 

  
lost2=All_position_lost; 
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 %heading recovered, do not inform KF immediately, but wait a few 

minutes  
lost3=All_heading_lost; 
if lost3==0&&lost4==1 
    flag1=1; 
else 

  
end 

  
if flag1==1 
   count1=count1+1;  
end 

  
if count1==300||count1==0;%heading is lost, then recovered. output to 

next KF block after 30(can be ajusted) rounds of UKF to avoid jump in 

next KF output. 
    lost(2)=0; 

    flag1=0; 
    count1=0; 
else 
    lost(2)=1; 
end 
if All_heading_lost==1 
   lost(2)=1;  
end 

  

lost4=All_heading_lost; 

  
% % % % % % % % % % % % % % 

SRUKF % % % % % % % % % % % % % % % % % % % % 
wm=zeros(Lsigma*2+1,1); 
wc=zeros(Lsigma*2+1,1); 
X=zeros(Lsigma,Lsigma*2+1); 
gamma_P=zeros(Lsigma,1); 

  
q1=sPsub(1,1); q2=q1; q3=q1; 
q4=sPsub(4,4); q5=q4; q6=q4; 
q7=sPsub(7,7); q8=q7; q9=q7; 
q10=sPsub(10,10); q11=q10; q12=q10; 

  
Rv=zeros(Lsigma,Lsigma); 
A=zeros(Lsigma,Lsigma); 
F=zeros(Lsigma,Lsigma); 
A(1,1)=1;A(1,4)=t;A(1,7)=t^2/2; 
A(2,2)=1;A(2,5)=t;A(2,8)=t^2/2; 
A(3,3)=1;A(3,6)=t;A(3,9)=t^2/2; 

  
A(4,4)=1;A(4,7)=t; 
A(5,5)=1;A(5,8)=t; 
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A(6,6)=1;A(6,9)=t; 

  
A(7,7)=1;A(8,8)=1;A(9,9)=1; 

  
A(10,10)=1;A(10,13)=t;A(10,16)=t^2/2; 
A(11,11)=1;A(11,14)=t;A(11,17)=t^2/2; 
A(12,12)=1;A(12,15)=t;A(12,18)=t^2/2; 

  
A(13,13)=1;A(13,16)=t; 

A(14,14)=1;A(14,17)=t; 
A(15,15)=1;A(15,18)=t; 
for i=16:24 
A(i,i)=1; 
end 

  
F(1:3,4:6)=eye(3); 
F(4:6,7:9)=eye(3); 
F(10:12,13:15)=eye(3); 

F(13:15,16:18)=eye(3); 

  
Rv=[ (q1*t^5)/20,           0,           0, (q1*t^4)/8,          0,          

0, (q1*t^3)/6,          0,          0,           0,           0,           

0,          0,          0,          0,          0,          0,          

0,    0,    0,    0,     0,     0,     0 
           0, (q2*t^5)/20,           0,          0, (q2*t^4)/8,          

0,          0, (q2*t^3)/6,          0,           0,           0,           

0,          0,          0,          0,          0,          0,          

0,    0,    0,    0,     0,     0,     0 
           0,           0, (q3*t^5)/20,          0,          0, 

(q3*t^4)/8,          0,          0, (q3*t^3)/6,           0,           

0,           0,          0,          0,          0,          0,          

0,          0,    0,    0,    0,     0,     0,     0 
  (q1*t^4)/8,           0,           0, (q1*t^3)/3,          0,          

0, (q1*t^2)/2,          0,          0,           0,           0,           

0,          0,          0,          0,          0,          0,          

0,    0,    0,    0,     0,     0,     0 
           0,  (q2*t^4)/8,           0,          0, (q2*t^3)/3,          

0,          0, (q2*t^2)/2,          0,           0,           0,           

0,          0,          0,          0,          0,          0,          

0,    0,    0,    0,     0,     0,     0 
           0,           0,  (q3*t^4)/8,          0,          0, 

(q3*t^3)/3,          0,          0, (q3*t^2)/2,           0,           

0,           0,          0,          0,          0,          0,          

0,          0,    0,    0,    0,     0,     0,     0 
  (q1*t^3)/6,           0,           0, (q1*t^2)/2,          0,          

0,       q1*t,          0,          0,           0,           0,           

0,          0,          0,          0,          0,          0,          

0,    0,    0,    0,     0,     0,     0 
           0,  (q2*t^3)/6,           0,          0, (q2*t^2)/2,          

0,          0,       q2*t,          0,           0,           0,           
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0,          0,          0,          0,          0,          0,          

0,    0,    0,    0,     0,     0,     0 
           0,           0,  (q3*t^3)/6,          0,          0, 

(q3*t^2)/2,          0,          0,       q3*t,           0,           

0,           0,          0,          0,          0,          0,          

0,          0,    0,    0,    0,     0,     0,     0 
           0,           0,           0,          0,          0,          

0,          0,          0,          0, (q4*t^5)/20,           0,           

0, (q4*t^4)/8,          0,          0, (q4*t^3)/6,          0,          

0,    0,    0,    0,     0,     0,     0 
           0,           0,           0,          0,          0,          

0,          0,          0,          0,           0, (q5*t^5)/20,           

0,          0, (q5*t^4)/8,          0,          0, (q5*t^3)/6,          

0,    0,    0,    0,     0,     0,     0 
           0,           0,           0,          0,          0,          

0,          0,          0,          0,           0,           0, 

(q6*t^5)/20,          0,          0, (q6*t^4)/8,          0,          

0, (q6*t^3)/6,    0,    0,    0,     0,     0,     0 
           0,           0,           0,          0,          0,          

0,          0,          0,          0,  (q4*t^4)/8,           0,           

0, (q4*t^3)/3,          0,          0, (q4*t^2)/2,          0,          

0,    0,    0,    0,     0,     0,     0 
           0,           0,           0,          0,          0,          

0,          0,          0,          0,           0,  (q5*t^4)/8,           

0,          0, (q5*t^3)/3,          0,          0, (q5*t^2)/2,          

0,    0,    0,    0,     0,     0,     0 
           0,           0,           0,          0,          0,          

0,          0,          0,          0,           0,           0,  

(q6*t^4)/8,          0,          0, (q6*t^3)/3,          0,          0, 

(q6*t^2)/2,    0,    0,    0,     0,     0,     0 
           0,           0,           0,          0,          0,          

0,          0,          0,          0,  (q4*t^3)/6,           0,           

0, (q4*t^2)/2,          0,          0,       q4*t,          0,          

0,    0,    0,    0,     0,     0,     0 
           0,           0,           0,          0,          0,          

0,          0,          0,          0,           0,  (q5*t^3)/6,           

0,          0, (q5*t^2)/2,          0,          0,       q5*t,          

0,    0,    0,    0,     0,     0,     0 
           0,           0,           0,          0,          0,          

0,          0,          0,          0,           0,           0,  

(q6*t^3)/6,          0,          0, (q6*t^2)/2,          0,          0,       

q6*t,    0,    0,    0,     0,     0,     0 
           0,           0,           0,          0,          0,          

0,          0,          0,          0,           0,           0,           

0,          0,          0,          0,          0,          0,          

0, q7*t,    0,    0,     0,     0,     0 
           0,           0,           0,          0,          0,          

0,          0,          0,          0,           0,           0,           

0,          0,          0,          0,          0,          0,          

0,    0, q8*t,    0,     0,     0,     0 
           0,           0,           0,          0,          0,          

0,          0,          0,          0,           0,           0,           
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0,          0,          0,          0,          0,          0,          

0,    0,    0, q9*t,     0,     0,     0 
           0,           0,           0,          0,          0,          

0,          0,          0,          0,           0,           0,           

0,          0,          0,          0,          0,          0,          

0,    0,    0,    0, q10*t,     0,     0 
           0,           0,           0,          0,          0,          

0,          0,          0,          0,           0,           0,           

0,          0,          0,          0,          0,          0,          

0,    0,    0,    0,     0, q11*t,     0 
           0,           0,           0,          0,          0,          

0,          0,          0,          0,           0,           0,           

0,          0,          0,          0,          0,          0,          

0,    0,    0,    0,     0,     0, q12*t 
 ]; 

  
Rn=sPsub(nPsub1+1:nPsub,nPsub1+1:nPsub); 

  

% % % % % % % % % % % % % % % % % % % % % % % % % % %  
for i=0:Lsigma 

  
    if i==0  

  
        X(:,i+1)=Xe; 
        wm(i+1)=lambada/(Lsigma+lambada); 
        wc(i+1)=wm(i+1)+1-alfa^2+beta; 

  

    else 
        wm(i+1)=0.5/(Lsigma+lambada); 
        wm(i+1+Lsigma)=wm(i+1); 
        wc(i+1)=0.5/(Lsigma+lambada); 
        wc(i+1+Lsigma)=wc(i+1); 

  
        gamma_P(1:nXe,1)=P(1:nXe,i);; 

  
        gamma_P=sqrt_gamma*gamma_P; 
        X(:,i+1)=Xe(:,1)+gamma_P; 
        X(:,i+1+Lsigma)=Xe(:,1)-gamma_P; 
    end 
end 

  
Xkk1=zeros(nXe,Lsigma*2+1); 

  
%time update 
for i=1 :Lsigma*2+1 
% runge kutta 4th order method 
h=t; 
   k1=F*X(:,i); 
   k2=F*(X(:,i)+0.5*k1*h); 
   k3=F*(X(:,i)+0.5*k2*h); 



114 
 

   k4=F*(X(:,i)+k3*h); 
   Xkk1(:,i)=X(:,i)+h/6*(k1+2*k2+2*k3+k4); 
end 

  
X_k=wm(1)*Xkk1(:,1); 
for i=2 : Lsigma*2+1 
I1_=wm(i)*Xkk1(:,i); 
X_k=X_k+I1_; 
end 

   
X_kex=zeros(nXe,2*Lsigma); 
for i=2:2*Lsigma+1 
       X_kex(:,i-1)=X_k; 
end 
[Sxxx,P_xk]=qr([sqrt(wc(2))*(Xkk1(:,2:end)-X_kex) sqrt(Rv)]',0); 

  
P_xk=chol(P_xk'*P_xk+sign(wc(1))*(abs(wc(1)))*(Xkk1(:,1)-

X_k)*(Xkk1(:,1)-X_k)'); 

  
P_xk=P_xk'; 

  
Ykk1=zeros(nRn,Lsigma*2 + 1 ); 

  
for i=1 : Lsigma*2 + 1  
invR=[                              cos(Xkk1(12,i))*cos(Xkk1(11,i)),                              

cos(Xkk1(11,i))*sin(Xkk1(12,i)),         -sin(Xkk1(11,i)) 
 cos(Xkk1(12,i))*sin(Xkk1(10,i))*sin(Xkk1(11,i)) - 

cos(Xkk1(10,i))*sin(Xkk1(12,i)), cos(Xkk1(12,i))*cos(Xkk1(10,i)) + 

sin(Xkk1(12,i))*sin(Xkk1(10,i))*sin(Xkk1(11,i)), 

cos(Xkk1(11,i))*sin(Xkk1(10,i)) 
 sin(Xkk1(12,i))*sin(Xkk1(10,i)) + 

cos(Xkk1(12,i))*cos(Xkk1(10,i))*sin(Xkk1(11,i)), 

cos(Xkk1(10,i))*sin(Xkk1(12,i))*sin(Xkk1(11,i)) - 

cos(Xkk1(12,i))*sin(Xkk1(10,i)), cos(Xkk1(10,i))*cos(Xkk1(11,i))]; 

  
R=[ cos(Xkk1(12,i))*cos(Xkk1(11,i)), 

cos(Xkk1(12,i))*sin(Xkk1(10,i))*sin(Xkk1(11,i)) - 

cos(Xkk1(10,i))*sin(Xkk1(12,i)), sin(Xkk1(12,i))*sin(Xkk1(10,i)) + 

cos(Xkk1(12,i))*cos(Xkk1(10,i))*sin(Xkk1(11,i)) 
 cos(Xkk1(11,i))*sin(Xkk1(12,i)), cos(Xkk1(12,i))*cos(Xkk1(10,i)) + 

sin(Xkk1(12,i))*sin(Xkk1(10,i))*sin(Xkk1(11,i)), 

cos(Xkk1(10,i))*sin(Xkk1(12,i))*sin(Xkk1(11,i)) - 

cos(Xkk1(12,i))*sin(Xkk1(10,i)) 
         -sin(Xkk1(11,i)),                              

cos(Xkk1(11,i))*sin(Xkk1(10,i)),                              

cos(Xkk1(10,i))*cos(Xkk1(11,i))]; 

  
dR=[0, 

cos(Xkk1(10,i))*(Xkk1(13,i))*Xkk1(11,i)+sin(Xkk1(10,i))*(Xkk1(14,i))+s

in(Xkk1(10,i))*(Xkk1(13,i))*Xkk1(12,i)-cos(Xkk1(10,i))*(Xkk1(15,i)), 
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(Xkk1(15,i))*sin(Xkk1(10,i))+Xkk1(12,i)*cos(Xkk1(10,i))*(Xkk1(13,i))-

sin(Xkk1(10,i))*(Xkk1(13,i))*Xkk1(11,i)+cos(Xkk1(10,i))*(Xkk1(14,i)) 
Xkk1(15,i), -

sin(Xkk1(10,i))*(Xkk1(13,i))+(Xkk1(15,i))*sin(Xkk1(10,i))*Xkk1(11,i)+X

kk1(12,i)*cos(Xkk1(10,i))*(Xkk1(13,i))*Xkk1(11,i)+Xkk1(12,i)*sin(Xkk1(

10,i))*(Xkk1(14,i)), -

sin(Xkk1(10,i))*(Xkk1(13,i))*Xkk1(12,i)*Xkk1(11,i)+cos(Xkk1(10,i))*(Xk

k1(15,i))*Xkk1(11,i)+cos(Xkk1(10,i))*Xkk1(12,i)*(Xkk1(14,i))-

cos(Xkk1(10,i))*(Xkk1(13,i)) 

-(Xkk1(14,i)), cos(Xkk1(10,i))*(Xkk1(13,i)), -

sin(Xkk1(10,i))*(Xkk1(13,i))]; 
ddR=[0, -

sin(Xkk1(10,i))*(Xkk1(13,i))^2*Xkk1(11,i)+cos(Xkk1(10,i))*(Xkk1(16,i))

*Xkk1(11,i)+2*cos(Xkk1(10,i))*(Xkk1(13,i))*(Xkk1(14,i))+sin(Xkk1(10,i)

)*(Xkk1(17,i))+cos(Xkk1(10,i))*(Xkk1(13,i))^2*Xkk1(12,i)+sin(Xkk1(10,i

))*(Xkk1(16,i))*Xkk1(12,i)+2*sin(Xkk1(10,i))*(Xkk1(13,i))*(Xkk1(15,i))

-cos(Xkk1(10,i))*(Xkk1(18,i)), 

(Xkk1(18,i))*sin(Xkk1(10,i))+2*(Xkk1(15,i))*cos(Xkk1(10,i))*(Xkk1(13,i

))-

Xkk1(12,i)*sin(Xkk1(10,i))*(Xkk1(13,i))^2+Xkk1(12,i)*cos(Xkk1(10,i))*(

Xkk1(16,i))-cos(Xkk1(10,i))*(Xkk1(13,i))^2*Xkk1(11,i)-

sin(Xkk1(10,i))*(Xkk1(16,i))*Xkk1(11,i)-

2*sin(Xkk1(10,i))*(Xkk1(13,i))*(Xkk1(14,i))+cos(Xkk1(10,i))*(Xkk1(17,i

)) 
    Xkk1(18,i), -cos(Xkk1(10,i))*(Xkk1(13,i))^2-

sin(Xkk1(10,i))*(Xkk1(16,i))+(Xkk1(18,i))*sin(Xkk1(10,i))*Xkk1(11,i)+2

*(Xkk1(15,i))*cos(Xkk1(10,i))*(Xkk1(13,i))*Xkk1(11,i)+2*(Xkk1(15,i))*s

in(Xkk1(10,i))*(Xkk1(14,i))-

Xkk1(12,i)*sin(Xkk1(10,i))*(Xkk1(13,i))^2*Xkk1(11,i)+Xkk1(12,i)*cos(Xk

k1(10,i))*(Xkk1(16,i))*Xkk1(11,i)+2*Xkk1(12,i)*cos(Xkk1(10,i))*(Xkk1(1

3,i))*(Xkk1(14,i))+Xkk1(12,i)*sin(Xkk1(10,i))*(Xkk1(17,i)), -

cos(Xkk1(10,i))*(Xkk1(13,i))^2*Xkk1(11,i)*Xkk1(12,i)-

sin(Xkk1(10,i))*(Xkk1(16,i))*Xkk1(11,i)*Xkk1(12,i)-

2*sin(Xkk1(10,i))*(Xkk1(13,i))*Xkk1(11,i)*(Xkk1(15,i))-

2*sin(Xkk1(10,i))*(Xkk1(13,i))*(Xkk1(14,i))*Xkk1(12,i)+cos(Xkk1(10,i))

*Xkk1(11,i)*(Xkk1(18,i))+2*cos(Xkk1(10,i))*(Xkk1(14,i))*(Xkk1(15,i))+c

os(Xkk1(10,i))*(Xkk1(17,i))*Xkk1(12,i)+sin(Xkk1(10,i))*(Xkk1(13,i))^2-

cos(Xkk1(10,i))*(Xkk1(16,i)) 
    -(Xkk1(17,i)), -

sin(Xkk1(10,i))*(Xkk1(13,i))^2+cos(Xkk1(10,i))*(Xkk1(16,i)), -

cos(Xkk1(10,i))*(Xkk1(13,i))^2-sin(Xkk1(10,i))*(Xkk1(16,i))]; 

  
if nGPS>=1 
for j=1:nGPS 
Ykk1(1+6*(j-1):3+6*(j-1),i)=(Xkk1(1:3,i)+R*[GPS(j).Pgps_1.x-

s.P0_1.x;GPS(j).Pgps_1.y-s.P0_1.y;GPS(j).Pgps_1.z-s.P0_1.z]);    

  
Ykk1(4+6*(j-1):6+6*(j-1),i)=(Xkk1(4:6,i)+dR*[GPS(j).Pgps_1.x-

s.P0_1.x;GPS(j).Pgps_1.y-s.P0_1.y;GPS(j).Pgps_1.z-s.P0_1.z]); 
end 
end 
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if nIMU>=1 
for j=1:nIMU 
Ykk1(1+nGPS*6+9*(j-1):3+nGPS*6+9*(j-1),i)=(-

invR*g+invR*Xkk1(7:9,i)+invR*ddR*[IMU(j).Pmru_1.x-

s.P0_1.x;IMU(j).Pmru_1.y-s.P0_1.y;IMU(j).Pmru_1.z-

s.P0_1.z])+Xkk1(19:21,i)+IMUbias_in(j).ab; 

  
Ykk1(4+nGPS*6+9*(j-1):6+nGPS*6+9*(j-1),i)=Xkk1(10:12,i); 

  

Ykk1(7+nGPS*6+9*(j-1):9+nGPS*6+9*(j-

1),i)=Xkk1(13:15,i)+Xkk1(22:24,i)+IMUbias_in(j).wb; 
end 
end 

  
if nRadar>=1 
for j=1:nRadar 
Ykk1(1+nGPS*6+nIMU*9+3*(j-1):3+nGPS*6+nIMU*9+3*(j-

1),i)=(Xkk1(1:3,i)+R*[Radar(j).Pgps_1.x-s.P0_1.x;Radar(j).Pgps_1.y-

s.P0_1.y;Radar(j).Pgps_1.z-s.P0_1.z]);    

  
end 
end 

  
end 

  

  
Y_k=wm(1)*Ykk1(:,1); 

for i=2 : Lsigma*2+1 

  
I1_=wm(i)*Ykk1(:,i); 
Y_k=Y_k+I1_; 

  
end 

  
Y_kex=zeros(nRn,2*Lsigma); 
for i=2:2*Lsigma+1 
       Y_kex(:,i-1)=Y_k; 
end 
[Syyy,P_yk]=qr([sqrt(wc(2))*(Ykk1(:,2:end)-Y_kex)  sqrt(Rn)]',0); 
[P_yk,p]=chol(P_yk'*P_yk+wc(1)*(Ykk1(:,1)-Y_k)*(Ykk1(:,1)-Y_k)'); 

  
P_yk=P_yk'; 
XI=Xkk1(:,1)-X_k; 
YI=Ykk1(:,1)-Y_k;; 
Pxy=wc(1)*XI*YI'; 

  
for i=1+1 : Lsigma*2+1 

  
I1_=Xkk1(:,i)-X_k; 
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XI=I1_; 

  
I1_=Ykk1(:,i)-Y_k; 

  
YI=I1_; 

  
I1=wc(i)*XI*YI'; 

Pxy=Pxy+I1; 
end 

  
KK=(Pxy/P_yk')/P_yk; 

  
Xe=X_k+KK*f*(Ym'-Y_k); 

  
U=KK*P_yk; 
[Ptest,p]=chol(P_xk*P_xk'-U*U','lower'); 

if p==0 %in case P is not positive definite 
    P=chol(P_xk*P_xk'-U*U','lower'); 
else 
   P=P2;  
end 

  
P2=P; 

  

  

IMUbias=IMU; 
invR=[ cos(Xe(12,1))*cos(Xe(11,1)), 

cos(Xe(12,1))*sin(Xe(10,1))*sin(Xe(11,1)) - 

cos(Xe(10,1))*sin(Xe(12,1)), sin(Xe(12,1))*sin(Xe(10,1)) + 

cos(Xe(12,1))*cos(Xe(10,1))*sin(Xe(11,1)) 
 cos(Xe(11,1))*sin(Xe(12,1)), cos(Xe(12,1))*cos(Xe(10,1)) + 

sin(Xe(12,1))*sin(Xe(10,1))*sin(Xe(11,1)), 

cos(Xe(10,1))*sin(Xe(12,1))*sin(Xe(11,1)) - cos(Xe(12,1))*sin(Xe(10,1)) 
         -sin(Xe(11,1)),                              

cos(Xe(11,1))*sin(Xe(10,1)),                              

cos(Xe(10,1))*cos(Xe(11,1))]'; 
 if nIMU>=1 
for i=1:nIMU 
   IMUbias(i).ab=Ym(1+nGPS*6+9*(i-1):3+nGPS*6+9*(i-1))'+invR*g-

(invR*Xe(7:9,1)+invR*ddR*[IMU(i).Pmru_1.x-s.P0_1.x;IMU(i).Pmru_1.y-

s.P0_1.y;IMU(i).Pmru_1.z-s.P0_1.z]);  
   IMUbias(i).wb=Ym(7+nGPS*6+9*(i-1):9+nGPS*6+9*(i-1))'-Xe(13:15,1); 
end 
 end 
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9.2.3 KF Algorithm for Observer 

% % % % % % % % % % % % % KF algorithm% % % % % % % % % % % % % %  
function y  = fcn(s,t,w,tau,lost,cwb,cwxi,cR,alpha) 

  
persistent P; 
persistent Xe; 
persistent Xe1; 
persistent flag; 
persistent wb; 

  
if isempty(flag) 
    flag=1; 
end; 
n=15; 
if isempty(Xe) 
    Xe=zeros(n,1); 
end; 
if isempty(Xe1) 
    Xe1=zeros(n,1); 
end; 
if isempty(P) 
    P=eye(n,n); 
end; 

  
if flag==1 
    Xe=eye(n,1) 
    P=eye(n,n); 
    flag=0; 
    z=zeros(12,1); 
end 
z=zeros(12,1); 
z(1:9)=s; 
z(10:12)=Xe(4:6,1); 
R=zeros(12,12); 
R(1,1)=cR(1); 
R(2,2)=cR(2); 
R(3,3)=cR(3); 
R(4,4)=cR(4); 
R(5,5)=cR(5); 
R(6,6)=cR(6); 
R(7,7)=cR(7); 
R(8,8)=cR(8); 
R(9,9)=cR(9); 

  
R(10,10)=1e8; 
R(11,11)=1e8; 
R(12,12)=1e2; 
if lost(1) ==0 

     
else 
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    R(1,1)=cR(1)*1e4; 
    R(2,2)=cR(2)*1e4; 
    R(4,4)=cR(4)*1e4; 
    R(5,5)=cR(5)*1e4; 
    z(1:2)=zeros(2,1); 
    z(4:5)=zeros(2,1); 
end 

  
if lost(2) ==0 

     
else 
    R(3,3)=cR(3)*1e4; 

     
    R(6,6)=cR(6)*1e4; 

   
    z(3)=0;% 
    z(6)=0; 
end 

  
M=[     7.010149032153999e+06                         0            0 
    0     8.519007042379107e+06      4.718726399134355e+05 
    0    -2.595508500000000e+06      3.797290756932775e+09] ; %correct 

value that is found in vessel.mat and vessleABC.mat 

  
D=[2.648609825197792e+05 0 0 
    0 8.816423000000000e+05 -1e7 
    0 -1e7 337743760]; %correct value that is found in vessel.mat and 

vessleABC.mat in Bv 

  
omega=diag(w); 
zeta=diag([0.01,0.01,0.01])*1;%damping 

  
wb=diag(cwb); 
wxi=diag(cwxi); 
T=diag([600,600,600]); 
phi=Xe(3); 

Rz=[cos(phi) -sin(phi) 0 
    sin(phi) cos(phi) 0 
    0 0 1]; 
F22=-(M)\D; 
F23=(M)\Rz'; 
F33=diag([0,0,0]); 
F54=-omega.^2; 
F55=-2*zeta*omega; 
B21=inv(M); 

  
F=[zeros(3) Rz zeros(3) zeros(3) zeros(3) 
    zeros(3) F22 F23 zeros(3) zeros(3) 
    zeros(3) zeros(3) F33 zeros(3) zeros(3) 
    zeros(3) zeros(3) zeros(3) zeros(3) eye(3) 
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    zeros(3) zeros(3) zeros(3) F54 F55];%process transition matrix for 

continious time 

  
A=[ eye(3),     (F22*Rz*t^2)/2 + Rz*t,                            

(F23*Rz*t^2)/2,                       zeros(3),                                       

zeros(3) 
    zeros(3), (F22^2*t^2)/2 + F22*t + eye(3), F23*t + (F22*F23*t^2)/2 

+ (F23*F33*t^2)/2,                       zeros(3),                                       

zeros(3) 

    zeros(3),                         zeros(3),                 

(F33^2*t^2)/2 + F33*t + eye(3),                       zeros(3),                                       

zeros(3) 
    zeros(3),                         zeros(3),                                         

zeros(3),         (F54*t^2)/2 + eye(3),                         

(F55*t^2)/2 + eye(3)*t 
    zeros(3),                         zeros(3),                                         

zeros(3), (F54*F55*t^2)/2 + F54*t, (F55^2*t^2)/2 + F55*t + (F54*t^2)/2 

+ eye(3) 
    ];%process transition matrix 

  
Q=[                            (F23^2*Rz^2*t^5*wb)/20,                                                                                                           

(F23^2*Rz*t^4*wb*(2*F22*t + 2*F33*t + 5*eye(3)))/40,                                                                                                      

(F23*Rz*t^3*wb*(6*F33^2*t^2 + 15*F33*t + 20*eye(3)))/120,                                                                                                           

zeros(3),                                                                                                                                                              

zeros(3) 
    (F23^2*Rz*t^4*wb*(2*F22*t + 2*F33*t + 5*eye(3)))/40,                                                               

(F23^2*t^3*wb*(3*F22^2*t^2 + 6*F22*F33*t^2 + 15*F22*t + 3*F33^2*t^2 + 

15*F33*t + 20*eye(3)))/60, ((F23*wb*F33^3)/20 + 

(F22*F23*wb*F33^2)/20)*t^5 + ((F23*wb*F33^2)/4 + 

(F22*F23*wb*F33)/8)*t^4 + ((F22*F23*wb)/6 + (F23*F33*wb)/2)*t^3 + 

(F23*wb*t^2)/2,                                                                                                           

zeros(3),                                                                                                                                                              

zeros(3) 
    (F23*Rz*t^3*wb*(6*F33^2*t^2 + 15*F33*t + 20*eye(3)))/120, 

((F23*wb*F33^3)/20 + (F22*F23*wb*F33^2)/20)*t^5 + ((F23*wb*F33^2)/4 + 

(F22*F23*wb*F33)/8)*t^4 + ((F22*F23*wb)/6 + (F23*F33*wb)/2)*t^3 + 

(F23*wb*t^2)/2,                                                                          

(wb*F33^4*t^5)/20 + (wb*F33^3*t^4)/4 + (2*wb*F33^2*t^3)/3 + wb*F33*t^2 

+ wb*t,                                                                                                           

zeros(3),                                                                                                                                                              

zeros(3) 
    zeros(3),                                                                                                                                                      

zeros(3),                                                                                                                                                      

zeros(3),                                                                  

(t^3*wxi*(3*F55^2*t^2 + 15*F55*t + 20*eye(3)))/60,                                                    

((wxi*F55^3)/20 + (F54*wxi*F55)/20)*t^5 + ((wxi*F55^2)/4 + 

(F54*wxi)/8)*t^4 + (F55*wxi*t^3)/2 + (wxi*t^2)/2 
    zeros(3),                                                                                                                                                      

zeros(3),                                                                                                                                                      

zeros(3), ((wxi*F55^3)/20 + (F54*wxi*F55)/20)*t^5 + ((wxi*F55^2)/4 + 

(F54*wxi)/8)*t^4 + (F55*wxi*t^3)/2 + (wxi*t^2)/2, ((wxi*F54^2)/20 + 

(wxi*F54*F55^2)/10 + (wxi*F55^4)/20)*t^5 + ((wxi*F55^3)/4 + 
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(F54*wxi*F55)/4)*t^4 + ((2*wxi*F55^2)/3 + (F54*wxi)/3)*t^3 + 

F55*wxi*t^2 + wxi*t 
    ];%process noise covariance matrix 

  

  
B0=[zeros(3);B21;zeros(3);zeros(3);zeros(3)]; 

  
u=tau; 

  

H=[eye(3) zeros(3) zeros(3) eye(3) zeros(3); 
    zeros(3) Rz zeros(3) zeros(3) eye(3) ; 
    zeros(3) Rz*F22 Rz*F23 Rz*Rz'*F54 Rz*Rz'*F55 
    zeros(3) eye(3) zeros(3) zeros(3) zeros(3) ; 
    ]; 

  

  
% % % % % % % % % KF 

  
P = alpha^2*A * P * A' + Q; 
K=P*H'/(H*P*H'+R); 

  
% % % % % % % % % % runge kutta 4th order% % % % % % % % % %  
h=t; 
k1=F*Xe + B0*u; 
k2=F*(Xe+0.5*k1*h)+B0*u; 
k3=F*(Xe+0.5*k2*h)+B0*u; 
k4=F*(Xe+k3*h)+B0*u; 
Xe=Xe+h/6*(k1+2*k2+2*k3+k4); 

  
f=eye(12); 
if lost(1)~=0 
    f(1:2,1:2)=f(1:2,1:2)*0; 
    f(4:5,4:5)=f(4:5,4:5)*0; 

     
end 

  
if lost(2)~=0 
    f(3,3)=f(3,3)*0; 
    f(6,6)=f(6,6)*0; 
    f(7:9,7:9)=f(7:9,7:9)*0; 
end 
% Correction based on observation: 
Xe = Xe +  K*f*(z-H*Xe-[zeros(6,1); Rz*B21*u;zeros(3,1)]); 
P = P -  K*H*P; 
P=0.5*(P+P'); 
y=Xe; 
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