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Abstract. Bubbles and droplets can be simulated as a problem involving Fluid-Structure
Interaction (FSI). The interface between the liquid and the gas is then conceived as a
zero thickness structure. The position of the interface is determined by the equilibrium
between surface tension effects and the pressure jump across the interface. Most techniques
frequently used for studying bubble and droplet dynamics, such as Level Set or Volume Of
Fluid, use monolithic schemes. The flow on both sides of the interface and the position
of the interface are calculated in a single code. Here, a partitioned approach is presented.
The flow in the liquid is calculated with a black box commercial code. The position of the
interface is calculated with a structural solver, using a reduced order model of the fluid
solver to obtain implicit coupling between both solvers. The reduced order model, based on
modal analysis, is build up during the coupling iterations of a time step. This model is
applied to three axisymmetric problems: an oscillating water droplet in air, an air bubble
rising in stagnant mineral oil and the growth and detachment of an air bubble from a
vertical needle, submerged in quiescent water.

1 INTRODUCTION

Bubble and droplet dynamics are studied frequently using different techniques. The
dynamics of bubbles and droplets result from the interaction of surface tension on the
interface, conceived as a zero thickness structure, with the fluids on both sides of the
interface. Techniques such as Level Set1, Volume Of Fluid2, Marker And Cell3, Front
Tracking4, among others, use monolithic schemes. The position of the interface is cal-
culated together with the flow of the fluids on both sides of the interface in a single
code.

In this paper, partitioned solvers are used to calculate the interface position and the liq-
uid flow. The solvers are implicitly coupled with an algorithm developed by Vierendeels5.
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In Section 2, the fluid solver and the structural solver are defined. Only axisymmetric
problems without mass transfer between the liquid and the gas are considered. Section 3
gives an overview of the coupling algorithm. The application of the model to an oscillating
water droplet in air is presented in Section 4. Sections 5 and 6 present an air bubble rising
in stagnant mineral oil and the formation of an air bubble at the end of a vertical needle,
submerged in quiescent water, respectively.

2 SOLVERS

2.1 Structural solver

As only axisymmetric bubbles and droplets are simulated, the interface is represented
by a curve in a meridional plane. This curve is discretised with N nodes. On an interface,
equation (1) must be satisfied.

(p1 − p2 + σκ)n = (T1 − T2) · n +∇σ (1)

A subscript 1 is used to indicate the fluid inside the bubble or droplet, 2 is used for
the surrounding fluid. p is the pressure, σ the surface tension coefficient, κ the local
surface curvature, n the unit normal to the surface pointing outwards and T the viscous
stress tensor. The pressure jump P across the interface, due to surface tension, is defined
in equation (2). This notation allows simultaneous explanation of the solvers and the
coupling algorithm for bubbles and droplets.

P ≡ p1 − p2 (2)

If the viscous stresses on the interface and the variation of the surface tension coefficient
are neglected, equation (1) simplifies to equation (3).

P + σκ = 0 (3)

Equation (1) contains a normal and tangential condition, equation (3) is scalar. Equation
(3) is used here, so surface tension results in only one equation for every interface node.

The surface curvature is defined using the principal radii of curvature R1 and R2.

κ =
1

R1

+
1

R2

(4)

For the calculation of R1 and R2 in node i of the interface, a local parametric interpolant
of the interface is constructed through node i and two neighbours on each side (i− 2, i−
1, i + 1, i + 2).

xi(s) = c0 + c1s + c2s
2 + c3s

3 + c4s
4 (5a)

ri(s) = d0 + d1s + d2s
2 + d3s

3 + d4s
4 (5b)

with x the axial coordinate, r the radial coordinate and s the arc length along the curve
representing the interface. The derivatives of expressions (5) evaluated in node i are used
to calculate the principal radii of curvature.

2



J. Degroote, J. Vierendeels and E. Dick

R1 =

[(
dx
ds

)2
+
(

dr
ds

)2] 3
2

dx
ds

d2r
ds2 − dr

ds
d2x
ds2

(6a)

R2 = −r

√(
dx
ds

)2
+
(

dr
ds

)2
dx
ds

(6b)

Both R1 and R2 are negative if the interface is a sphere. On the axis of symmetry, a
numerical singularity arises during the calculation of R2, as both r and dx

ds
become zero.

Using limits and L’Hôpital’s rule, it follows that R2 approaches R1 as the distance to the
axis approaches zero. Thus, on the axis the surface curvature κ is defined as in equation
(7).

κ =
2

R1

(7)

The left hand side of equation (3) is called gi,1.

gi,1 = Pi + σκi (8a)

The first condition that must be statisfied in every node of the interface is thus given by
equation (8b).

gi,1 = 0 (8b)

A second equation in every node keeps the nodes equidistant.[
(xi − xi−1)

2 + (ri − ri−1)
2]− [(xi − xi+1)

2 + (ri − ri+1)
2] = 0 (9a)

The left hand side of equation (9a) is called gi,2.

gi,2 =
[
(xi − xi−1)

2 + (ri − ri−1)
2]− [(xi − xi+1)

2 + (ri − ri+1)
2] (9b)

Using this notation, equation (9a) becomes:

gi,2 = 0 (9c)

gi,1 and gi,2 (i = 0, . . . , N − 1) are placed together in a vector G.

G =



g0,1(x−2, r−2, x−1, r−1, x0, r0, x1, r1, x2, r2, P0)
g0,2(x−1, r−1, x0, r0, x1, r1)

g1,1(x−1, r−1, x0, r0, x1, r1, x2, r2, x3, r3, P1)
g1,2(x0, r0, x1, r1, x2, r2)

...
gN−1,1(xN−3, rN−3, xN−2, rN−2, xN−1, rN−1, xN , rN , xN+1, rN+1, PN−1)

gN−1,2(xN−2, rN−2, xN−1, rN−1, xN , rN)


(10)
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Indices outside the range 0, . . . , N−1 denote points mirrored around the axis of symmetry.
To satisfy equations (8b) and (9c), G must equal zero.

G(X, P ) = 0 (11a)

with:

X =



x0

r0

x1

r1
...

xN−1

rN−1

t


, P =


P0

P1
...

PN−1

 (11b)

The reason for including the time t in the position vector X is given later. The code that
solves equation (11a) for X is called the structural solver.

2.2 Fluid solver

The pressure distributions on the liquid and gas sides of the interface are required to
calculate P .

The gas pressure is modelled uniform in space, because the pressure variation on the
interface is due to inertia (ρDv

Dt
). As the density of a gas is often a thousand times lower

than the density of a liquid, the pressure variation on the gas side of the interface can be
neglected compared with the variation on the liquid side.

The pressure of a gas surrounding a liquid droplet is modelled constant. The pressure
inside a bubble is calculated from the mass, temperature and volume (X) of the bubble
using the ideal gas law.

A black box commercial code (Fluent 6.1) is used to determine the pressure on the
liquid side of the interface. The commercial code must be capable to compute the pressure
distribution on the liquid side of the interface, given a deformation of this interface. The
interface is modelled as a free-slip wall. The position of the interface is not known in
advance. The Arbitrary Lagrangian-Eulerian (ALE) description is used for the liquid.
The grid nodes close to the interface move along with the interface. A smaller fraction
of the interface’s displacement is applied as the distance to the interface increases. Large
cells are split up, small cells are merged and the skewness of the cells is automatically
limited.

Fluent 6.1 responds on a deformation of the interface with the pressure distribution
on the liquid side, which can be converted into P using the uniform gas pressure. The
combination of Fluent with the conversion program, returning P for given X, is called
the fluid solver. The fluid solver’s action is further indicated with F.

P = F(X) (12)
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3 COUPLING ALGORITHM

Subsequent calls of the structural solver to obtain a new position of the interface and
the fluid solver to obtain a new distribution of the pressure jump across the interface,
lead to divergence. Explicit coupling of the solvers fails due to the strong interaction of
the fluids and the structure. Therefore, the structural problem, equation (11a), has to be
solved in an implicit way. To solve equation (11a) for X with implicit calculation of P
using Newton’s method, the Jacobian of F is required. As the fluid solver used here is a
black box commercial code, the Jacobian is unavailable. Thus, a reduced order model of
the fluid solver is constructed using modal analysis. With this reduced order model, an
approximation of the Jacobian can be obtained and the pressure jump across the interface
can be updated during the Newton iterations.

This coupling procedure is now explained in detail. The values of Xn+1 and P n+1

are calculated, starting from the known values of Xn, P n and V n, with the superscript
indicating the time level. V is the vector containing the velocity of the interface nodes.

V =



ẋ0

ṙ0

ẋ1

ṙ1
...

ẋN−1

ṙN−1


(13)

A subscript k is used to indicate the current coupling iteration.

• First coupling iteration (k = 1)
A first guess for the position of the interface on time level n+1 is determined using
an explicit forward Euler scheme.

Xn+1
1 = Xn + V n∆t (14)

with ∆t the time step. The pressure jump across the interface is obtained from the
fluid solver.

P n+1
1 = Fn+1

(
Xn+1

1

)
(15)

The superscript of the fluid solver indicates that the boundary conditions are up-
dated to time level n + 1.

• Second coupling iteration (k = 2)
The time superscript is now dropped as all variables are at time level n + 1. X∗

2 is
calculated explicitly, that is with P = P 1, using Newton’s method. The Newton
iterations are indicated with the subscript j and start from X1.
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X∗
2,j+1 = X∗

2,j −
(

∂G

∂X

)−1

X∗
2,j

·G
(
X∗

2,j, P 1

)
(16)

As X∗
2 is calculated with explicit coupling between the fluid solver and the structural

solver, it can differ largely from the exact solution. So, underrelaxation with ω =
0.05 is applied.

X2 = (1− ω)X1 + ωX∗
2 (17)

Again, P is calculated using the fluid solver.

P 2 = F(X2) (18)

• Further coupling iterations (k + 1 with k ≥ 2)
At the start of coupling iteration k + 1, k positions of the interface are known, with
the corresponding distributions of the pressure jump across the interface. Thus, k−1
displacement modes vm with the corresponding pressure modes wm are known.

vm = Xk −Xm (19a)

wm = P k − P m (19b)

with m = 1, . . . , k − 1.

During the solution of equation (11a) for X, the position of the interface changes
from Xk to Xk+1. Any displacement ∆Xk+1 = Xk+1 − Xk can be projected on
the set of displacement modes. As the dimension of X is bigger than k − 1, there
is a correction term.

∆Xk+1 =
k−1∑
m=1

αmvm + ∆Xcorrection (20a)

The displacement modes are considered to be well chosen, so the correction term is
small and can be neglected.

∆Xk+1 ≈
k−1∑
m=1

αmvm (20b)

=
[
v1 v2 . . . vk−1

]


α1

α2
...

αk−1

 (20c)
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If the coefficients αm are known, the change of P corresponding to ∆Xk+1 can be
calculated.

∆P k+1 =
k−1∑
m=1

αmwm (21a)

=
[
w1 w2 . . . wk−1

]


α1

α2
...

αk−1

 (21b)

The reduced order model for P is given in equation (22).

P̂ k+1 = P k + ∆P k+1 (22a)

= F̂ (Xk+1) (22b)

To distinguish between distributions of the pressure jump across the interface com-
ing from the reduced order model and distributions from the fluid solver, a hat is
used for those from the reduced order model.

As the reduced order model is constructed, it is fully known. So it can be substituted
in equation (11a) and its Jacobian can be calculated. Thus, equation (11a) can be
solved implicitly using Newton’s method, with Xk+1,1 = Xk. After every Newton
iteration, P is updated using the reduced order model.

Xk+1,j+1 = Xk+1,j −

(
∂G

∂X
+

∂G

∂P

∂P̂

∂X

)−1

Xk+1,j

·G
(
Xk+1,j, P̂ k+1,j

)
(23)

P̂ k+1,j+1 = P k +
∂P̂

∂X
· (Xk+1,j+1 −Xk) (24)

The coefficients αm and the Jacobian of the reduced order model, used in equations
(23) and (24), still have to be defined. As the dimension of X is bigger than k− 1,
equation (20c) shows that the αm are overdetermined. A least squares technique
can be used. Equation (20c) is multiplied with vT

q .

vT
q ∆Xk+1 =

[
vT

q v1 vT
q v2 . . . vT

q vk−1

]


α1

α2
...

αk−1

 (25)

with q = 1, . . . , k − 1. These k − 1 equations are placed together in a matrix.
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
vT

1

vT
2
...

vT
k−1

∆Xk+1 =


vT

1 v1 vT
1 v2 . . . vT

1 vk−1

vT
2 v1 vT

2 v2 . . . vT
2 vk−1

...
...

. . .
...

vT
k−1v1 vT

k−1v2 . . . vT
k−1vk−1




α1

α2
...

αk−1

 (26)

The coefficients αm are calculated using matrix inversion. This requires that the
displacement modes vm are linearly independent.

α1

α2
...

αk−1

 =


vT

1 v1 vT
1 v2 . . . vT

1 vk−1

vT
2 v1 vT

2 v2 . . . vT
2 vk−1

...
...

. . .
...

vT
k−1v1 vT

k−1v2 . . . vT
k−1vk−1


−1 

vT
1

vT
2
...

vT
k−1

∆Xk+1 (27)

The Jacobian of the reduced order model is given by equation (28).

∂P̂

∂X
=

∂∆P

∂X
(28a)

=
[
w1 w2 . . . wm

] ∂

∂X


α1

α2
...

αk−1

 (28b)

=
[
w1 w2 . . . wm

]  vT
1 v1 . . . vT

1 vk−1
...

. . .
...

vT
k−1v1 . . . vT

k−1vk−1


−1  vT

1
...

vT
k−1

 (28c)

When the Newton iterations have converged, the fluid solver is used to obtain P k+1.

P k+1 = F (Xk+1) (29)

Using the distribution of the pressure jump from the fluid solver, the residual is
calculated.

G (Xk+1, P k+1) (30)

The root-mean-square of expression (30) should decrease three or four orders of
magnitude to obtain convergence of the time step. If the residual has decreased
enough, the time step has converged. Otherwise, another coupling iteration has to
be performed.

If the time step is sufficiently small, the modes of the previous time step are still relevant.
They are reused to make a better reduced order model and thus to reduce the required
number of coupling iterations. This is the reason for including t in X.
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4 OSCILLATING DROPLET

Using the implicitly coupled partitioned solvers, the oscillation of a water droplet in air
is simulated. The unstructured grid used to calculate the water flow is shown in Figure 1.
The horizontal and vertical edges of the grid are the axes of the coordinate system. The

-�
R

Figure 1: The unstructured grid used to calculate the flow in the water.

problem is considered to be axisymmetric around the horizontal axis, but also symmetric
around the vertical axis. Gravity is neglected. The initial situation is an ellipsoid droplet
of water at rest. The distance between the origin and the intersection of the horizontal
axis with the interface is denoted as R. The oscillation amplitude reduces due to viscosity
and the droplet evolves to a sphere with equilibrium radius R0.

The physical properties of water (subscript 1) and the water-air interface used for the
simulations are given in equation (31).

ρ1 = 998.2 kg/m3

µ1 = 0.001003 Pa s

σ = 0.070 N/m

(31)

4.1 Small amplitude oscillation

The angular frequency of the small amplitude oscillation can be compared with the
linear, irrotational approximation for low viscosity fluids by Lamb6, who splits the droplet
oscillation in an infinite series of spherical harmonics. The angular frequency of the lth

mode of an oscillating liquid droplet is given by equation (32a).

ω̂l = ωl

√
1− (ωlτl)

−2 (32a)

with:

ωl
2 =

σ

ρR0
3 l(l − 1)(l + 2) (32b)

τl =
ρR0

2

µ(l − 1)(2l + 1)
(32c)
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Figure 2 shows R/R0 as a function of time for a droplet with R0 = 1.48mm and initial
deformation R = 1.07R0. 20 nodes on the interface and time steps of 0.35ms are used.
The oscillation period is 15.05ms, resulting in an angular frequency of ω = 417.49 rad/s.
With the parameters stated in equation (31), equation (32a) yields ω̂2 = 418.26 rad/s.

0.95

0.97

0.99

1.01

1.03

1.05

1.07

0 50 100 150 200
t [ms]

R
/R

0

Figure 2: Small amplitude oscillation of a water droplet in air, with R0 = 1.48 mm and initial deformation
R = 1.07R0.

4.2 Large amplitude oscillation

Large amplitude oscillation of a droplet can also be studied using the model. One
oscillation period of a droplet with R0 = 1.65mm and initial deformation R = 1.21R0 is
simulated in 54 time steps with 30 nodes on the interface. The velocity vectors are shown
in Figure 3. The number of new modes required each time step of the first oscillation
period is given in Figure 4(a), with an average of 4.46. The modes of the previous time
step are used to make a better reduced order model. If the modes of the two previous time
steps are used, the algorithm does not work properly, especially not when the direction
of the motion reverses. Modes of the previous time steps are no longer relevant in that
situation and convergence can not be obtained. The convergence behaviour of the fastest
and slowest converging time step is shown in Figure 4(b).

For the large amplitude oscillation, a grid dependence study has been done with 10,
20, 40, 80 and 160 nodes on the interface. Figure 5 shows R as a function of time for the
different numbers of nodes, together with a Richardson extrapolation using the data from
the simulations with 40, 80 and 160 nodes. The minimum and maximum of R during
the first period of the oscillation are studied more in detail in Table 1. The Error is the
relative difference with the Richardson extrapolation. From the value of α, which is close
to unity, it can be seen that the algorithm is first-order accurate.
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- is 0.1m/s

Figure 3: Velocity vectors of the large amplitude oscillation with 30 nodes on the interface after 0.35ms,
7 ms, 14 ms and 17.5 ms.

Number of nodes Minimum Error Maximum Error
[mm] [%] [mm] [%]

10 1.46 9.04 1.77 9.87
20 1.42 6.28 1.86 5.64
40 1.39 3.45 1.91 2.97
80 1.36 1.89 1.94 1.35

160 1.35 1.04 1.95 0.71
Extrapolation 1.34 1.97

α 0.862 0.928

Table 1: Richardson extrapolation of the minimum and maximum of R during the first oscillation period
of the large amplitude oscillation.
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Figure 4: (a) The number of new modes required each time step of the first period of the large amplitude
oscillation with 30 nodes on the interface and (b) the convergence behaviour of the coupling iterations
for time step 1 (8 new modes) and 54 (2 new modes).
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Figure 5: R as a function of time for the large amplitude oscillation using 10, 20, 40, 80 and 160 nodes
on the interface, together with a Richardson extrapolation.
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5 RISING BUBBLE

The second application is an air bubble rising in stagnant mineral oil, due to gravity.
This is simulated using a grid in a moving reference frame. There are two possibilities
to determine the velocity of the reference frame. It can be held fixed during the time
step, allowing all the nodes on the interface to move. After the time step the velocity of
the reference frame is increased by the amount the bubble center has risen in the relative
frame divided by the time step. This way, the bubble only rises a little, minimizing grid
distortion. The velocity of the reference frame can also be a variable during the coupling
iterations of the time step. The top of the bubble is then fixed. Equation (3) in the fixed
node is satisfied by changing the velocity of the reference frame. The axial coordinate of
the fixed node is substituted in the displacement modes by the reference frame velocity.
The former method results in faster convergence and is more robust than the latter.

It should be mentionned that most authors neither neglect viscous forces on the inter-
face nor the flow within the bubble, when studying a rising bubble. As recommended by
Harmaty7, we chose the size of the liquid domain equal to ten times the bubble diameter
in all directions.

Bubble A from Table I in Hnat and Buckmaster8 has been simulated with 52 nodes on
the interface and time steps of 0.0025 s. This is a spherical cap bubble of 0.94ml without
skirts, rising in mineral oil with the properties given in equation (33).

ρ2 = 875.5 kg/m3

µ2 = 0.118 Pa s

σ = 0.0322 N/m

(33)

The build up of the velocity in the bubble’s center of mass is shown in Figure 6(a). The
shape of the bubble after 0.5 s is given in Figure 6(b). The terminal velocity is 0.2437m/s,
which differs 12% from the experimental value. The shape agrees reasonably well with
the experiment.

6 BUBBLE GROWTH AND DETACHMENT FROM A VERTICAL NEE-
DLE

The third application of the model is the growth and detachment of an air bubble
from a vertical needle with inner radius a, submerged in quiescent water. A specific case
already studied experimentally by Longuet-Higgins et al.9 and numerically by Og̃uz et
al.10, has been simulated.

The air mass flow rate ṁ through the needle is modelled as done by Og̃uz et al.10.

ṁ =
π

16

a4

lµ1

pC
2 − p1

2

RT
(34)

with pC the pressure in the device delivering the mass flow, R the gas constant of air and
T the temperature which is modelled constant. p1 and µ1 are the pressure and dynamic
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Figure 6: Simulation of bubble A in Table I from Hnat and Buckmaster8. (a) Rise velocity as a function
of time and (b) bubble shape after 0.5 s.

viscosity inside the bubble, so the values for air. l is the effective length of the needle.
Constrictions are converted into an equivalent needle length.

Equation (34) is integrated implicitly in time, to avoid explicit time step restrictions.

mn+1 = mn +
π

16

a4

lµ1

pC
2 − pn+1

1
2

RT
(35)

The air pressure is calculated using the ideal gas law.

pn+1
1 =

mn+1RT

V n+1
(36)

with V the volume of the bubble, calculated from the position of the interface nodes.
Equations (35) and (36) are a set of two equations, resulting in a quadratic equation
for mn+1. The physically correct solution for mn+1 is selected and then substituted in
equation (36) to obtain pn+1

1

The bubble starts as half a sphere at the end of the needle. In this situation the radii
of curvature are at their lowest value, so the air pressure p1 in the bubble is maximal.

p1 = p∞ +
2σ

a
(37)

with p∞ the stagnation pressure at the needle’s tip on the water side of the interface.
This situation can only be reached if pC > p∞ + 2σ/a.

For this simulation the parameters stated in (38) are used, resulting in a volumetric
growth rate around 200mm3/s.
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

p∞ = 1 bar

pC = 1.00073 bar

σ = 0.070 N/m

µ1 = 1.81 · 10−5 Pa s

µ2 = 0.001003 Pa s

ρ2 = 998.2 kg/m3

l = 128 m

(38)

The velocity vectors in the water around the bubble are shown in Figure 7. This
simulation is done with 31 nodes on the bubble edge before detachment and 32 nodes
afterwards. The unstructured grid in the water consists of about 4000 cells. The point
where the interface thouches the needle’s top is fixed. Good agreement is found between
this Figure and Figure 4 in Og̃uz et al.10.

- is 0.5m/s

Figure 7: Velocity vectors of an air bubble detaching from a vertical needle at -97.0 ms, at detachment
(t = 0ms) and 2.7 ms afterwards.

Figure 8(a) shows the number of new modes needed to drop the residual by four orders
of magnitude during each time step of bubble growth, with an average of 4.32. At time
step 300, ∆t is reduced from 2ms to 0.1ms. 6 out of 410 time steps use more than 10
new modes. Figure 8(b) shows the convergence behaviour of the coupling iterations for
the fastest and slowest converging time step.
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Figure 8: (a) The number of new modes required each time step during bubble growth with 31 nodes
on the interface and (b) the convergence behaviour of the coupling iterations for time step 156 (2 new
modes) and 393 (10 new modes).

7 CONCLUSIONS

The ALE description allows a very accurate representation of the interface of bubbles
and droplets. The position of the interface is calculated with a structural solver using
a reduced order model for the black box fluid solver. The reduced order model allows
efficient implicit coupling of the partitioned solvers. The model has succesfully been
applied to an axisymmetric water droplet oscillating in air and an air bubble growing and
detaching from a vertical needle, submerged in quiescent water. For an air bubble rising
in stagnant mineral oil, less agreement with experiments is obtained.
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