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Abstract

Primary health care facilities are usually the first point of call for patients seeking medical help. However,
mis-diagnosis at this stage of the clinical encounter is still quite prevalent. Mis-diagnosis can be potentially
harmful to the patient and even when not the case, there is an increased financial cost of arriving at the cor-
rect diagnosis borne by the patient and an increased pressure on the capacity of the medical system. The
focus of this thesis is an evaluation of machine learning models which can make a differential diagnosis of
possible patient conditions from presented symptoms. In this project, a systematic approach to the acqui-
sition and generation of data relevant to the task is presented. This approach sidesteps one of the major
barriers to the application of artificial intelligence methods in the health care domain i.e. access to data.
With a generated dataset of approximately 5 million records, containing 801 conditions and 376 symptoms,
three machine learning models - Naive Bayes, Random Forest and Multilayer perceptron (MLP) - are eval-
uated and compared on the generated data using the accuracy, precision and Top-5 accuracy as evaluation
metrics. The Naive Bayes model achieves a 58.8% accuracy score, 63.3% precision score and an 85.3% top-5
accuracy score. The Random Forest achieves 57.1% accuracy with a precision score of 61.2% and a top-5 ac-
curacy of 84.5%. The MLP model achieves similar performance with Naive Bayes with an accuracy of 58.8%,
a precision of 63.0% and a top-5 accuracy of 85.5%. The number of symptoms expressed per condition was
shown to have a strong effect on the achieved metric scores. When evaluated on a generated dataset with at
least 5 symptoms per condition, the accuracy score lay between 80.2% and 83.6%, the precision was within
the range of 84.2% and 87.6% and the top-5 accuracy was between 95.7% and 96.6% across all evaluated mod-
els. For a better understanding of the potential efficacy of these models in a real world setting, a number of
possible real world scenarios are proposed and new datasets are generated based on these scenarios. The
trained models are then evaluated on these new datasets. It is shown that model performance is closely re-
lated to the relevance and number of observed symptoms for each condition - a higher number of symptoms
expressed per condition results in higher performance by the models. It is also shown that model perfor-
mance degrades considerably when the new datasets are very different from the original generated data. The
models perform poorly especially in the case when symptoms not usually associated with a condition are
presented even when the presentation probability is still low.
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1
Introduction

1.1. Motivating the Research
Primary health care facilities are usually the first point of call for patients seeking medical help. As a brief
introduction to the main topic of this thesis consider the following scenario which typically occurs at pri-
mary health care facilities and almost all facets of medical practice that involve patient interaction. An ill
patient arrives at a health care facility with complaints about one or more symptoms. In a conversation with
a medical practitioner - e.g. a medical doctor, for the case of this illustration - the patient is typically asked
some more questions regarding the nature of the presented symptoms, their location, how long the patient
has been experiencing these symptoms, possible triggers, etc. At the end of this cross-examination of the
patient, the doctor - based on the noted symptoms - makes a note of possible medical conditions, in order of
likelihood, that could be responsible for the presented symptoms. As a next step, further medical tests might
be recommended to either rule out or confirm the doctor’s hypothesis. This provided illustration captures
very broadly the components of what is known in the medical field as obtaining a differential diagnosis.

In many cases, this process works quite well and the proper diagnosis of the patient’s condition is given.
However, misdiagnosis is still quite prevalent. A study [1] has shown that in the United States, 1 in 20 outpa-
tient visits are misdiagnosed. The same study also found that almost half of these misdiagnosed conditions
could be potentially harmful.

Even when the patient’s health is not immediately at risk due to a misdiagnosis there is an increase in
the financial cost borne by the patient. This results from the additional tests and encounters with the health
care practitioners in a bid to arrive at the actual cause of the patient’s condition. This, in turn, increases the
burden on the medical care system since it requires more contact moments to arrive at the right diagnosis. In
what can now be described as a vicious cycle this added burden can also impair the doctor’s ability to make
an accurate diagnosis which further exacerbates the problem and keeps the cycle going.

Circling back to the doctor’s initial list of possible conditions responsible for the patient’s symptoms (i.e.
the differential diagnosis for the patient), it is logical to assume that the chances of a misdiagnosis are higher
if in the doctor’s initial list of the actual cause of the patient’s symptoms is not included. This suggests that
a tool which is also able to make a differential diagnosis based on the patient’s symptoms would be of great
value in the diagnostic process. At the very least such a tool would confirm the doctor’s own evaluation of the
patient and might quite possibly also include conditions which the doctor might otherwise have overlooked.
In collaboration with Medvice 1 - a Dutch Health Startup which focuses on automating as much of the patient-
doctor interaction as is possible - this project explores the design of such a differential diagnostic tool.

With rapid advancements in machine learning techniques, it would be possible to utilize patient data
showing presented symptoms and eventually diagnosed conditions to develop an automated differential di-
agnostic tool. It should be emphasized from the onset that it would be an outlandish claim to suggest that
this tool would be a replacement for a medical expert. The main objective would be to assist the medical
practitioner in arriving at an accurate diagnosis.

1https://www.medvice.io/
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2 1. Introduction

1.2. Problem Statement and Research Questions
Problem Statement and Main Research Question
The foregoing motivation directly leads to the following problem statement and main research question:

What is the suitability of machine learning techniques to the task of predicting a differential diagnosis
based solely on the patient’s presented symptoms.

Research Questions
In addition to answering the main problem statement above, the following research questions are also rele-
vant:

1. Another challenge that this thesis would attempt to answer is how can the accuracy of a predicted
differential diagnosis be measured? For typical classification problems in machine learning, the goal
of the model is to identify the target class (in this case actual causal condition) based on the available
features (patient symptoms). However, for this project, the desired outcome is not just an accurate
prediction of the causal condition but also an identification of other conditions that might also have
been responsible for the presented symptoms.

2. Access to real medical data is difficult to obtain due to a myriad of reasons which will be touched on
in subsequent chapters. To circumvent these difficulties synthetic patient data was used instead. A
resulting research theme requires an investigation into how best to mimic real data behavior and what
the effect would be on the trained models. More specifically, what metric scores are obtained in the
mimicked real data scenarios and what do these results mean for the potential efficacy of the trained
models in a real world setting.

1.3. Outline of the Thesis
The rest of the thesis is organized as follows: Chapter 2 gives a quick but sufficient introduction to differen-
tial diagnosis for medical conditions. It then proceeds to formulate the differential diagnosis problem as a
machine learning task. To better understand the chapters to come, relevant machine learning theory is also
discussed. In Chapter 3 an in-depth explanation is provided for the data generation process which allowed for
the circumvention of restricted access to medical data. Chapter 4 explains the methodology and approach
adopted for model training and evaluation on selected metrics. The results of this training and evaluation
process are discussed in Chapter 5. Chapter 6 concludes this project with a summary of the results and sug-
gestions for future research.



2
Differential Diagnosis and Machine

Learning: An Introduction

2.1. Background
The Merriam Webster online dictionary defines differential diagnosis as:

“The distinguishing of a disease or condition from others presenting with similar signs and symptoms” 1

Calling to mind the illustration of the patient-doctor encounter at a primary health care facility in the
previous chapter, the reader can see how this definition ties in with the provided illustration. The initial set of
possible conditions that the doctor deemed to be responsible for the presented symptoms is, in fact, a differ-
ential diagnosis. For readers who have ever had to consult a doctor for medical advice, this illustration would
be very familiar and it can be agreed that based on anecdotal evidence the differential diagnosis component
in the medical practice is very ubiquitous. One author [2] while highlighting the importance of this process
to the task of the doctor referred to it as the “bread and butter of the clinician’s task”.

The ubiquity and relevance of obtaining a differential diagnosis in the diagnostic process does not, how-
ever, make it a trivial task. The ability of a doctor to make accurate differential diagnosis depends quite a lot
on experience attained and familiarity with the symptoms being presented [3].

The Differential Diagnosis Process
As illustrated in figure 2.1 the differential diagnosis process can be broken down into the following steps:

Symptom
Acquisition

Ranking of
Condition

Hypothesis

Hypothesis
Validation

and
Elimination

List of Causal
Conditions

Figure 2.1: High-Level Overview of the Differential Diagnosis Process

Symptom Acquisition In this part of the process, the doctor examines the patient and identifies symptoms
which the patient is experiencing. This process might also involve utilizing additional information about a
patient’s medical history. As an example of the relevance of medical history, the fact that a patient was once
an active smoker for a prolonged period might provide additional context for a persistent cough even though
the patient has since quit smoking.
Once the relevant patient data, symptoms and medical history have been gathered the doctor moves on to
the next stage of the process.

List of Causal Conditions Based on the collected patient information and utilizing possessed medical knowl-
edge, the doctor makes an initial list of conditions which might be responsible for the patients’ symptoms.
This initial list i.e. the hypothesis might be formed based on the organs where the symptoms manifest, the
specific combination of the presented symptoms among other factors.

1https://www.merriam-webster.com/dictionary/differential%20diagnosis
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4 2. Differential Diagnosis and Machine Learning: An Introduction

Ranking of Conditions Hypothesis From the hypothesis of possible conditions, the doctor then ranks the
conditions based on the likelihood of the condition being responsible for the symptoms. Many factors deter-
mine what the rank of an item on this initial list would be, some of which include: prevalence of the condition
in the local population, current season - which might be relevant for seasonal infections, patient’s age, sex,
race and ethnicity, medical history of the patient, patterns observed by the doctor in previous encounters
with other patients, etc.

Elimination of Conditions Once the ranking is done, the doctor then begins to eliminate or confirm the
hypothesis. This process might involve requesting laboratory tests or other medical procedures. Treatment
might even begin immediately with medication given to eliminate the more likely conditions first. The pro-
cess of elimination is also dependent on several factors such as the severity of the symptoms, cost implica-
tions of the diagnostic tests required to confirm the hypothesis, etc.

It is worth noting that while the workflow has been presented - for sake of simplicity - as a linear top-down
approach it is usually an iterative process with the flow repeated when more information becomes available.
The doctor then begins an elimination of the conditions usually starting from the most likely condition first.
This elimination process might involve laboratory tests that either confirm or debunk the hypothesis of the
causing condition.

Given this initial list, the doctor constructs a ranking based on the probability of occurrence of each con-
dition and the probability that the condition is indeed responsible for the presented symptoms.

2.2. Automated Differential Diagnosis
The health care industry has benefited greatly from the application of software solutions to many medical
domains. This has resulted in rising adoption of electronic medical health record systems (E.M.R.s) - which
enable hospitals to capture patient data, medical history, encounters with doctors etc -, systems for manag-
ing outpatient care, automating patient appointments and health care plan compliance checks just to name
a few. It is safe to say that nearly all aspects of the medical domain have benefited from the digital revolution
of the last few decades.

The process of generating differential diagnosis is no exception to this phenomenon. There are several
tools available both to medical practitioners and patients as well which produce a differential diagnosis based
on the patient’s presented symptoms and sometimes other information such as medical history, patient de-
mographics, etc. With increased global access to the Internet many of these tools, for example Symcat symp-
tom checker 2 and WebMD 3, collectively referred to as symptom-checkers, allow a patient to enter in a web
page the symptoms being experienced and receive a list of possible conditions and in some cases suggested
courses of action regarding treatment.

There are also differential diagnostic tools which specifically target medical practitioners to aid their clin-
ical reasoning during encounters with patient. One such tool - Isabel 4 - was used in a study [4] which sug-
gested that the use of differential diagnosis tools early in the diagnostic process might help improve the accu-
racy of medical general practitioners. In medical lingo, automated differential diagnosis falls under a broader
spectrum of tools collectively called: Clinical Decision Support Systems (C.D.S.S.). In a medical setting, such
tools would typically receive as input patient data either entered manually or imported from an E.M.R. sys-
tem in use by the health care facility.

Even outside active practice, such tools can be very helpful in the education process for clinical students
and early-career practitioners. As has been suggested previously, the process at arriving at an accurate differ-
ential diagnosis can be complex and require a level of experience which takes time to acquire [3]. Accurate
automated differential diagnosis tools also aid students in learning a framework for combining different as-
pects of patient information into a useful differential diagnosis.

2http://www.symcat.com/
3https://symptoms.webmd.com/default.htm
4https://symptomchecker.isabelhealthcare.com/

http://www.symcat.com/
https://symptoms.webmd.com/default.htm
https://symptomchecker.isabelhealthcare.com/
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Automated differential diagnosis systems (and CDSS in general) would typically embed expert knowl-
edge [5] and use this embedded information to suggest differential diagnoses for subsequent cases. This
embedding process might take the form of a rule-based system that extracts diagnostic rules from a corpus
of medical literature. Similar to this rule-based embedding is the use of decision trees which can capture
expert knowledge. More recently, with advances in machine learning techniques, it is also possible to capture
this expert knowledge via a trained model. Machine learning models can also utilize previous patient med-
ical records with a confirmed diagnosis - which can be seen as an embedded form of expert knowledge - in
arriving at a differential diagnosis for future patients.

2.3. Differential Diagnosis as a Machine Learning Problem
Recalling the differential diagnosis process shown in figure 2.1 it can be said in summary that the doctor
collects information (symptoms, medical history, etc) from the patient, combines this information with ob-
tained medical experience, environmental factors, clinical patterns, prevalence and generates a list of condi-
tions ranked in order of the likelihood of responsibility for the presented symptoms.

If we denote all the patient information available as p = P and each condition Ci in the set of all possible
conditions (hypothesis) C where Ci ∈ C∀i then more formally we can state that the doctor ranks conditions
using the probability:

Pr (c =Ci |p = P ) (2.1)

In colloquial terms, equation 2.1 gives the probability that the patient’s condition is Ci given that P cap-
tures all available patient information e.g. demography (sex, age, race), symptoms, medical history, environ-
mental conditions etc.

Using Bayes Law which can be stated as follows:

Pr (Y |X ) = Pr (X |Y )×Pr (Y )

Pr (X )
(2.2)

where Pr (X ) and Pr (Y ) represent the prior probability distribution of X and Y respectively , Pr (Y |X )
represents the posterior probability and Pr (X |Y ) represents the likelihood of X given Y , we can then write
equation 2.1 as:

Pr (c =Ci |p = P ) = Pr (p = P |c =Ci )×Pr (c =Ci )

Pr (p = P )
(2.3)

This Bayesian formulation of the differential diagnosis task is an analog to the starting point for every
machine learning problem.

2.4. Machine Learning Models
There are several machine learning models or techniques for obtaining Pr (c = Ci |p = P ) also known as the
posterior probability. These techniques can be grouped into different categories e.g. linear/non-linear,
parametric/non-parametric, etc. However, applying a very broad taxonomy, within the context of this project
all the machine learning techniques will be grouped in two: Generative and Discriminative models.

2.4.1. Generative Models
The numerator of the R.H.S of equation 2.3 can more concisely be expressed as Pr (P,C ) which is known as
the joint distribution of P and C i.e.

Pr (P,C ) = Pr (C |P )×Pr (P ) = Pr (P |C )×Pr (C ) (2.4)

This distribution can be thought of as the underlying function that maps the relationship between all
patient information and all conditions. It is also sometimes referred to as the data generating distribution
because once known it is possible to generate (fictitious) samples which would be identical to those found in
the data set being evaluated.
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Comparing equations 2.3 and 2.4 it can be seen that once the joint distribution is known the posterior
probability Pr (c =Ci |p = P ) can easily be obtained. The joint distribution however is typically unknown and
instead generative models attempt to estimate the likelihood Pr (p = P |c = Ci ) from the data and use this
estimate to obtain the desired posterior probability using equation 2.3. The prior probabilities Pr (p = P ) and
Pr (c =Ci ) are also usually estimated from the data.

Generative models typically utilize a density estimation technique where a probability density function is
assumed for the likelihood Pr (p = P |c =Ci ) and parameters of the assumed function, which give the best fit
of the density function to the available data, are estimated.

As a contrived example consider a very simple classification problem which determines if a patient has
a flu based on the presence of cough. Since a patient can either have a cough or not the feature cough can
take on the values 1 or 0. Given a dataset which contains patients with cough and the eventual flu diagnosis,
the Bernoulli distribution which models a random variable which can take values 1 or 0 becomes an ideal
assumption for the data generating function of this dataset.

The Bernoulli Distribution is given as:

Ber n(x|µ) =µx (1−µ)1−x (2.5)

Where:

• µ denotes the probability that the patient has the flu

• and x takes on the value 1 or 0 indicating the presence or absence of cough

In the estimation part of generative modeling, the parameter µ is estimated from the data such that
Ber n(x|µ) best fits the points in the given dataset.

Obtaining the joint probability distribution (and by extension an estimate for the likelihood) can be a dif-
ficult task. In the foregoing example, it was straight forward to select a probability distribution function that
best fits the problem and also trivial to obtain an estimate of the parameters. In practice, this is not often
the case. First, the space of possible probability distribution functions that might fit the data can be quite
large and it is not often practical to explore this space completely. Nothing also excludes the possibility that
the joint distribution is a combination of different functions. This fact is exploited by a sub-classification
of generative models called mixture models. Even when the right approximating function (or functions) is
selected for estimation, there is also the possibility that - depending on the size and nature of the problem
being solved - estimating the parameters of the selected function might be too computationally expensive to
be deemed feasible.

These considerations often lead to simplifying assumptions which make the problem easier to solve albeit
at the loss of accuracy. An example of such a simplified model is the Naive Bayes model discussed below.

Naive Bayes
As an illustration, and continuing with our notation for the differential diagnosis problem, it is noted that
the definition of p = P encompasses all data available for the patient and includes also environmental con-
ditions, etc. For the sake of this illustration (and indeed in practice) consider that P actually can be split into
information regarding the patient’s demography d = D , the symptoms presented s = S and all other factors
o =O. Equation 2.3 can then be re-written as:

Pr (c =Ci |d = D, s = S,o =O) = Pr (d = D, s = S,o =O|c =Ci )×Pr (c =Ci )

Pr (d = D, s = S,o =O)
(2.6)

A density based estimation technique would aim to estimate Pr (d = D, s = S,o =O|c =Ci ) from the data.
Naive Bayes, as an example of a simplifying technique, assumes that the parameters D , S and O are all con-
ditionally independent given the patient’s condition Ci i.e. Ci is enough to explain the relationship between
these three variables. This allows for the distribution to be estimated as:

Pr (d = D, s = S,o =O|c =Ci ) = Pr (d = D|c =Ci )×Pr (s = S|c =Ci )×Pr (o =O|c =Ci ) (2.7)
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This is a much simpler formulation and easier to solve since each of the terms in the R.H.S of equation 2.7
can be estimated independently. As the reader might realize, the assumption of conditional independence
might not hold and in such a case a reduction in accuracy becomes the price paid for this simplification.

It is however interesting to note that despite the strong assumption of conditional independence, Naive
Bayes is known to perform reasonably well on many tasks [6] and research [6, 7] has shown that even when
this assumption is wrong, Naive Bayes is still able to correctly classify the sample with acceptable accuracy.

2.4.2. Discriminative Models
Discriminative models on the other hand attempt to directly estimate the posterior probability Pr (c =Ci |d =
D, s = S,o = O) (or a proxy to this value) without the need of first obtaining the joint probability distribu-
tion. The aim of discriminative models - as the name suggests - is simply to distinguish between the different
classes present in the data. As a result, any metric which provides such a distinction is a valid proxy to the
target probability.

Consider an example dataset which contains presented symptoms s = S and the eventual diagnosis c =Ci

where each symptom Sk can be considered a feature. Also assume for the sake of simplicity that there are
only two conditions i.e. i ∈ 0,1. A discriminative model might aim to define so-called decision boundaries
that separate the conditions C0 and C1. New patients with a set of symptoms s = S would then be classified
according to what region of the decision boundary they lie on.

In the context of a differential diagnosis, and continuing with the example above, a discriminative model
might identify multiple boundaries for each condition and the differential diagnosis for a new patient with
symptoms s = S would be a list of the conditions ranked according to the distance of the test sample to their
respective decision boundaries.

Two such discriminative models of relevance to this project are the Random Forest algorithm and the
Multilayer Perceptron. These are discussed below in further detail.

Random Forest
To give a proper explanation of the Random Forest model it is necessary that the reader is familiar with certain
associated concepts:

1. Decision Tree

The Decision tree is a popular algorithm used in supervised machine learning tasks both for classifica-
tion and regression (where the desired output is a continuous value as opposed to the correct class). It
uses a tree-like structure to infer classification rules (or functions) from the given data [8]. In a classifi-
cation setting, the decision tree classifier uses a splitting-measure to rank features present in the data.
A popular example of such a splitting measure is the information gain or entropy. The data is then re-
peatedly split based on features present - beginning with the highest ranked feature (according to the
splitting measure) until all leaf nodes of the tree contain sample data points of the same class. At each
split stage, the split measure is reevaluated to determine the feature that would give the next best split.
In the case of the information gain, the feature which causes the highest drop in entropy at each level
of the tree is used to split the data. Figure 2.2 shows a visual representation of the process.

2. Ensemble Model

An ensemble model combines results from multiple models trained using the same learning algo-
rithms. Two groups of such models are:

• Bagging: where individual models are trained in parallel on randomly selected samples of the
data set and the predicted class is selected based on a majority vote among the trained models

• Boosting: where each model is also trained on a randomly selected sample but the training is
sequential and each model takes into account the success of the previously trained model.
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Figure 2.2: A Conceptual Decision Tree.
Ideally, for a fully grown tree, all samples in the leaf nodes would belong to the same class

The Random Forest model is an ensemble of decision trees combined using the Bagging approach. Each
tree is trained using a different subset of the features present in the data. It has been shown that Random
Forests are very performant and robust to noise [9]. It also does not suffer as much from overfitting the
data - a problem often associated with Decision trees. Random Forest unlike many other machine learning
models do not require feature normalization and can easily handle a combination of continuous, ordinal,
and categorical data.

2.4.3. Multilayer Perceptrons
The multilayer perceptrons (MLP) deep learning model which is also discriminative and non-linear. Given
that discriminative models seek to learn a function that maps from the input to the target label, an MLP seeks
to learn the parameters that result in the best function fit [10]. More succinctly, given a classifier f which takes
as input a vector x, an MLP seeks to learn θ such that f (x;θ) predicts the correct class labels associated with
the input vector x. A typical architecture for an MLP is shown in figure 2.3. In the figure, the layers between
the input layer (x) and the output layer (y) are called hidden layers. The figure shows only one hidden layer
but in theory the MLP can have as many layers as necessary. This theoretically infinite depth is the reason for
the deep in deep learning.
The MLP is typically trained using an iterative optimization technique called stochastic gradient descent
(SGD). To apply SGD to an MLP, a loss function suited to the task at hand is selected for optimization. In
each iteration of SGD the weights θ are updated so as to minimize the selected loss. The choice of the loss
function is then very important as a loss which does not adequately capture learning task would result in a
poorly performing model. For multi-class classification problems, the cross entropy loss is often selected for
minimization.

y

h2

x2

h1

x1

Figure 2.3: Simple MLP Architecture
Only one hidden layer is shown
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2.5. Types of Data
The importance of data in the machine learning process cannot be overemphasized. Hence it would be im-
portant that the reader is familiar with the types of data typically encountered in machine learning tasks:

• Continuous Data: This type of data is quantitative and can take values from a possibly infinite continu-
ous range. Examples include patient age, height measurements, etc. Depending on the algorithm being
used, continuous features are usually normalized e.g. adjusted to have a unit mean and variance. This
allows the algorithm to better utilize continuous features that might have different scales, e.g. patient
height measurements in feet without normalization would be on a different scale (0-8) than a patient’s
age in years (0 - 100).

• Ordinal Data: This is also a quantitative data type but takes on an infinite but discrete range of values.
Just like continuous data, there is an implicit ordering for ordinal features e.g., a patient’s smoking
history may be captured using the ordinal values - active (1), recently-stopped (2), and never smoked
(3). The reader would recognize immediately an ordering in the assigned values.

• Categorical Data: Features of this data type take on a finite range of discrete values. There is no implicit
ordering for categorical data. Examples include a patient’s gender and race. There are two common
methods of handling categorical data:

1. One-Hot Encoding: In this method, each category is assigned a unique non-zero binary vector
B with length equal to the number of categories. The ith column in this vector is assigned the
value of 1 encoding the ith category. As an example given 4 race categories: White, Black, Asian
and Hispanic, a one-hot encoding would assign the vector B = [0 0 0 1] for White patients,
B = [0 0 1 0] for Black patients and so on. A downside of this method is an increase in the
dimension of the feature space. In the above example, race - which is a single feature vector - has
been replaced by a vector of length 4. The length of the one-hot encoded vector grows linearly
with the number of categories.

2. Ordinal Encoding: Due to dimensionality concerns associated with one-hot encoding, categori-
cal variables are also sometimes encoded as ordinal variables. Continuing with the race example,
a White patient would be encoded as 1, a Black patient as 2, and so on. This avoids an increase
in the dimension of the feature space but it introduces an implicit ordering in the features which
does not exist or is not desirable.

There are other methods for handling categorical data but for the sake of brevity, the already mentioned
methods would suffice.

2.6. Model Evaluation Metrics
An important component of training a machine learning model is the metric on which the model is evaluated.
This determines how effective the trained model is and also serves as a means for comparing multiple models
on the same task. There are several metrics on which machine learning models can be evaluated but for this
project, only the following are discussed:

2.6.1. Classification Accuracy
Given N data samples, the classification accuracy is the ratio of correctly identified classes C to the total
number of samples. It is the most common metric for evaluating models on a classification task.

2.6.2. Recall
In a classification task with only two labels (positive and negative classes) i.e. a binary classification task,
Recall can be defined as the ratio:

r ecal l = T P

T P +F N
(2.8)

where T P - the true positives - is the number of samples correctly identified as being part of the positive
class and F N - the false negatives - is the number of samples incorrectly identified as being part of the neg-
ative class. Recall can take on values between 0 (worst case) and 1 (best case). It is a measure of the model’s
ability to correctly identify positive samples. This intuition becomes apparent when the reader considers that
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false negatives are in fact members of the positive class.

Consider this illustrative example which shows why recall can be an important metric. Given a classi-
fication task that aims to identify cancer in a patient. The outcome of such a classification would be YES
(positive) or NO (negative). The reader would agree that the cost of wrongly assigning a NO-cancer label to
a cancer patient outweighs that of wrongly assigning a YES label to a patient without cancer. In the latter
case, subsequent tests would rule out the presence of cancer but in the former, the patient might, as a result,
miss out on an opportunity to begin treatment early. Hence a high recall score for such a problem would be a
better indicator of the model’s effectiveness as opposed to just the classification accuracy.

When extending this to the multi-class case, there are some approaches 5 which can be taken:

1. Micro Evaluation: In this method the contribution of each class to the true positive and false negative
count is calculated and the result is used in equation 2.8.

2. Macro Evaluation: In this method, the true positive and false negative count is calculated and recall
values are obtained for each class using equation 2.8. The overall recall score is then calculated as the
average of the obtained scores.

3. Weighted Evaluation: This method is similar to the macro evaluation approach with the difference
being that the overall recall score is calculated as a weighted average of the scores for each class. The
corresponding weights for each class indicate the prevalence of the class in the data. Hence, classes
which occur less often in the data would contribute less to the overall score.

2.6.3. Precision
For a binary classification task, the precision is defined as the ratio:

pr eci si on = T P

T P +F P
(2.9)

where T P retains the definition from section 2.6.2 and F P - the false positives - indicates the number of
samples incorrectly identified as being part of the positive class.
Recalling the illustrative example from section 2.6.2, it is clear that a model which immediately assigns the
positive class to all samples would have the highest possible recall score. However, this would translate to a
poor accuracy score and from a practical point of view (in the case of the cancer classification example) it is
desirable to minimize the number of patients who need to undergo further examination when they do not
have cancer. The precision score then acts as a counterbalance of sorts to the recall score as the reader would
notice that assigning the positive class to all samples would result in a poor precision score. An accurate
model would score high on both precision and recall. It should be noted that the methods for extension to
the multi-class case discussed in 2.6.2 are also applicable to precision.

2.6.4. Top-N Accuracy
As mentioned, classifiers typically attempt to estimate the posterior probability (or some monotonically in-
creasing/decreasing proxy of this value). The predicted class is taken as the label with the highest (or lowest -
depending on the proxy selected) estimate. The Top-N accuracy also checks if the correct class is within the
Top-N estimates.
This is especially relevant to the differential diagnosis task as the desired output does not necessarily require
that the eventual diagnosis be labeled as the most likely but that it be in the list of suggested conditions.

2.7. Overview of the Machine Learning Pipeline
The diagram in figure 2.4 illustrates a typical machine learning pipeline showing major steps in the process
of training a model and is representative of the steps taken in this project towards training models capable of
making a differential diagnosis.

5https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html
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Figure 2.4: A Typical Machine Learning Pipeline

2.7.1. Data Collection
In the foregoing discussion datasets have been a recurring term hinting at the importance of data to the
machine learning process. The first step of any machine learning task is indeed the collection of data. The
eventual accuracy of the trained models depends just as much on the quality of the data with which the
models are trained as the techniques employed in training the models.

2.7.2. Data Processing and Feature Extraction
After data collection, it is usually required to perform processing steps on the data. Such steps often include
encoding or normalizing the data using schemes and techniques described in section 2.5 , handling class
imbalance - a situation which arises when certain classes in the collected dataset are under-represented,
dropping redundant features (feature selection), filling in missing values etc.
Feature extraction is sometimes also required and involves combining existing features in the dataset to yield
new features which capture the information contained by its parent feature but help reduce the dimension-
ality of the data which in turn makes the training process less computationally expensive.

2.7.3. Model Training and Evaluation
With the data processed and relevant features selected and/or extracted, the next stage in the pipeline is the
training and evaluation of machine learning models. In a typical setting several techniques - such as those
mentioned earlier e.g. Naive Bayes, Random Forest - are trained on the data. Best practices in model training
recommend that the data be split into 3: the training, validation and test set.
During training, models are trained using the train set and the validation set is used when optimizing hy-
perparameters of the model. The test set - which the model is never exposed to while training - is used to
evaluate the performance of the model and is indicative of expected performance of the trained model on
samples which it has never seen before (usually referred to as a measure of the model’s ability to generalize).
In the evaluation process, the right metric is chosen as a measure of the effectiveness of the model. The con-
cept of "rightness" of the selected metric depends largely on the application domain. In some domains, the
accuracy of the model e.g. the ability to correctly classify a sample is the desired metric. For differential diag-
nosis monitoring the accuracy, precision, recall and top-N accuracy (where N defines how many conditions
are expected in the differential diagnosis) would be good choices for evaluation metrics.





3
Data Generation

Medical data typically contains very sensitive information about the patients, this coupled with an increase
in privacy rules surrounding access and utilization of data makes it especially difficult to access real patient
electronic health records. There are often many requirements which need to be fulfilled both from legal and
data security perspectives to obtain access and these requirements vary depending on the country and the
institution providing the data.

Another difficulty associated with access to real medical data is the need to properly anonymize the data
by eliminating any links to the patient from the data. There have been cases [11] where actual patient recovery
from anonymized data was indeed possible. These factors have led many research efforts [12, 13] to resort to
the use of synthetically generated patient records using data from publicly available medical databases such
as PubMed 1 or other sources of such as medical literature, published records of disease symptom relation-
ships [14]. There are also many electronic medical records generators [15, 16] which allow for a transparent,
reproducible means of generating synthetic patient records etc.

To sidestep the difficulties mentioned above with regards to obtaining real patient data, use was made of
one of such public disease-symptom data source in combination with a synthetic patient electronic medical
record generator to generate the data used subsequently for the analysis in this project. The following sections
provide more detail regarding the selected data source and generator.

3.1. Synthea: A Synthetic Patient Generator
The first component in the search for synthetic data is Synthea [16]. Written in Java, Synthea - a Synthetic
Patient Population Simulator - allows for the generation of realistic patient medical records. To avoid pri-
vacy concerns, the generator was developed relying on publicly available medical information and health
statistics. The source code for the project is also fully open-source with a permissive license which allows
prospective users to modify the codebase to suit target applications. In its earliest version, Synthea modeled
conditions ranked as the top 10 causes of visits to a primary health care provider and the top 10 conditions
according to the "years of life lost" metric. Since this initial version, support has been added for more condi-
tions with many of these contributed by its active community. This contribution is largely due to an expres-
sive generic module framework which allows even non-technical users (with sufficient medical knowledge)
to model any medical condition.

3.1.1. Synthea Architecture
The diagram in figure 3.1 gives a high level overview of Synthea’s architecture. The following subsections give
an overview of the main components of this architecture.

Incidence Prevalence Statistics

This contains information about the condition which is being modeled. It might include gender, age, and
race prevalence, the incidence in a given population, etc. This information is eventually encoded in the dis-
ease/condition modules.

1https://pubmed.ncbi.nlm.nih.gov/
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Figure 3.1: Synthea Architecture [16]

Clinical Care Maps
This component contains information about recommended care plans for patients suffering from the condi-
tion being modeled. It might include diagnostic procedures typically performed in the course of treatment,
medication prescribed by the doctor, etc. Together with the incidence prevalence statistics, this component
serves as input to the disease/condition modules.

Disease/Condition Modules
These are a core part of the Synthea generator and major contributing factor in its active user base. Using
data from the prevalence statistics and clinical care maps, Synthea provides an expressive Generic Module
Framework which allows for the proper definition of the progression of the modeled condition. These mod-
ules are designed as state machines which each state defining a step in the condition progression process.
Synthea has two broad categories of states:

• Clinical States

• Control States

As the name suggests clinical states provide medically related information about the condition being
modeled. They define encounters with the health care facilities or doctors, the condition which the patient
develops, medications that might be prescribed, observations ranging from temperature readings associated
with the condition to findings from more detailed laboratory investigation. Clinical states also encode the
symptoms experienced by a patient suffering from the modeled condition.

Control states, on the other hand, are used to indicate the start and end of the disease module. They
can also be used to introduce delays between other states e.g. introducing a time delay between the start of
prescribed medication and the next encounter with the doctor. Some control states are also used to define
special attributes on the patients or set a guard on a particular state e.g. preventing male patients from being
pregnant.

All states - except the Terminal state which indicates the end of the module - must define a transition.
This property determines which next state in the module the patient would move to. In combination with
the clinical and control states, the state transition definitions and the prevalence statistics and clinical care
maps, it is possible to completely model patient’s interaction with a health caregiver while suffering from the
modeled condition.

Synthea also provides a module builder 2 which allows users to graphically construct disease modules
and to visualize constructed modules. A visualization of a fictitious deadly disease from the module builder

2https://synthetichealth.github.io/module-builder/
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- Examplitis - is shown in figure 3.2 to give a better understanding of the disease modeling capabilities of
Synthea.

Figure 3.2: Synthea Generic Module for Examplitis (a fictitious terminal illness)
From the figure, the condition is only contracted by males older than 40 years old. All patients are first given Examplitol. 70% of
patients on the medication end up recovering, 10% end up dying and 20% have to undergo an Examplotomy. 10% of those who

undergo this procedure die while the rest make a full recovery.

Demographic Data
Synthea makes use of census data when generating its patient population. This data determines what the
gender ratio of the generated population would be, as well as race, ethnicity, and age distribution.

Generator Configuration
The Synthea generator provides configuration options to customize the eventual output of the generation
process. Configuration options include the number of patients to generate, census information to be used,
specific disease modules to consider, etc.

Synthetic Patient Simulator
The patient simulator is another core component of the Synthea generator. Using the provided or specified
demographic data, the simulator generates patients matching the demography. Over the lifetime of the pa-
tient i.e. from the assigned date of birth until death or the present time (whichever comes first), the patient
interacts with the disease modules. The module definitions determine what encounter will be valid for each
patient at each time step. Using the Examplitis module, a male patient would be prevented from contracting
the disease until he is at least 40 years old and a female patient would never contract the disease. Once a pa-
tient reaches the terminal state for a module, the interaction between the module and the patient is stopped.
If the terminal state is never reached then the patient can re-contract the disease at a future time-step. If a
patient dies due to a condition (or natural causes) then the simulation for that patient ends.

Exporter
Synthea allows the generated records to be exported in different formats such as plain text, CSV files, Fast
Healthcare Interoperability Resources (FHIR), and Consolidated Clinical Document Architecture (CCDA).
The desired export format is specified in the Generator Configuration.
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3.1.2. The Synthea Limitation
While Synthea does generate the patient records, more focus is placed on activities carried out during en-
counters with the health care providers e.g. laboratory procedures, payments, prescribed medication, etc.
There is very little attention placed on the symptomatic expression of a particular condition. For many of
the disease modules included in Synthea, symptoms were left out of the disease models and in the few cases
where they were included, there was no statistical relationship between the condition being modeled and the
symptoms presented. In such cases, once a patient contracts the disease, all symptoms associated with that
disease would be expressed in the generated patient record. However, Synthea’s expressive generic module
framework provides a means to encode a disease-symptom source into Synthea compatible modules. For
this project Symcat [14] was chosen as such a data source.

3.2. Symcat
Symcat is described by its creators as “A disease calculator that uses hundreds of thousands of patient records
to estimate the probability of disease”[14]. It provides an interface where users can supply information about
the symptoms being experienced and receive a differential diagnosis. Of greater importance to this project,
however, is Symcat’s conditions and symptoms directory. This knowledgebase which is publicly available on
Symcat’s website 3 provides probabilistic relationships between symptoms and conditions. It also includes
the prevalence of diseases and symptoms by age, gender, race, and ethnicity.

Symcat Data Description
Symcat contains 801 conditions and 474 symptoms. For each condition, it gives a list of symptoms presented
by patients with the condition and indicates the probability that patients will present with the specified symp-
tom. Symcat data for each condition also contains the gender-based odds of contracting the disease. Also in-
cluded are race-based odds for disease contraction. Symcat contains 4 race divisions: White, Black, Hispanic
and Others. Finally, age based odds for contracting each condition are provided. Symcat has 8 age groups: < 1
year, 1-4 years, 5-14 years, 15-29 years, 30-44 years, 45-59 years, 60-74 years and > 75 years. It should be stated
that of the 474 symptoms, only 376 of them were associated with a condition. Symptoms with no condition
association were dropped.

Probabilistic Definition of Symcat Data A more formal description of Symcat’s data is given below:

• A list of conditions C is provided.

• For each condition Ci , the age based odds Pr (c =Ci |a = A j ) for each age group A j is provided.

• Also, for each condition, the gender based odds Pr (c =Ci |g =Gk ) is provided given that Gk ∈ {mal e, f emal e}.

• Race based odds Pr (c =Ci |r = Rl ) for each race group Rl , for each condition are also provided.

• For each condition Ci , a set of symptoms Si which might be presented for that condition along with the
probability that the symptom is presented Pr (Si

m |c =Ci ) where Si
m ∈ Si is also provided

• Additionally, for each symptom Si , age based odds Pr (s = Si |a = A j ), race based odds Pr (s = Si |r = Rl )
and gender based odds Pr (s = Si |g =Gk ) are also provided

3.3. Combining Symcat and Synthea
As mentioned in section 3.1.2, the introduction of Symcat data replaces the poor symptomatic expressions in
Synthea disease modules and also increases the number of modeled conditions. Symcat also has the advan-
tage of having more modeled conditions. Incorporating Symcat data into the generation process requires the
creation of Synthea-compatible modules based on Symcat data. Using the probabilistic definitions given in
section 3.2, this section shows how the data from Symcat was used in generating Synthea modules.

As mentioned in section 3.1.1, a Synthea module is composed of states and each state defines a transition
that determines the next state while progressing through the module. As was also mentioned, Synthea uses

3A scrapped CSV version of this data was provided by Alexis Smirnov of https://www.dialogue.co/en and is publicly available at
https://github.com/teliov/symcat-to-synthea

https://www.dialogue.co/en
https://github.com/teliov/symcat-to-synthea
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demographic data to generate its patient population. Once a patient has been generated, for each disease
module, the next step would require determining if the patient would contract the disease. This means for-
mulating the probability that a patient contracts a disease based on the patients demography (age, gender
and race) i.e. Pr (c =Ci |a = A j , g =Gk ,r = Rl ).

Applying Bayes Law (equation 2.3, this probability can be expressed as:

Pr (c =Ci |a = A j , g =Gk ,r = Rl ) = Pr (a = Ai , g =Gk ,r = Rl |c =Ci )×Pr (c =Ci )

Pr (a = Ai , g =Gk ,r = Rl )
(3.1)

Assuming a conditional independence for any condition, race, gender and age combination i.e assuming:

Pr (a = Ai , g =Gk ,r = Rl |c =Ci ) = Pr (c =Ci |a = A j )×Pr (c =Ci |g =Gk )×Pr (c =Ci |r = Rl ) (3.2)

Pr (a = Ai , g =Gk ,r = Rl ) = Pr (a = Ai )×Pr (g =Gk )×Pr (r = Rl ) (3.3)

then equation 3.1 becomes:

Pr (c =Ci |a = A j , g =Gk ,r = Rl ) = Pr (a = Ai |c =Ci )×Pr (g =Gk |c =Ci )×Pr (r = Rl |c =Ci )×Pr (c =Ci )

Pr (a = Ai )×Pr (g =Gk )×Pr (r = Rl )
(3.4)

where with a repeated application of Bayes Law, we have:

Pr (a = Ai |c =Ci ) = Pr (c =Ci |a = Ai )×Pr (a = Ai )

Pr (c =Ci )
(3.5)

Pr (g =Gk |c =Ci ) = Pr (c =Ci |g =Gk )×Pr (g =Gk )

Pr (c =Ci )
(3.6)

Pr (r = Rk |c =Ci ) = Pr (c =Ci |r = Rl )×Pr (r = Rk )

Pr (c =Ci )
(3.7)

Equations 3.5 - 3.7 can then be substituted in 3.4 to obtain:

Pr (c =Ci |a = A j , g =Gk ,r = Rl ) = Pr (c =Ci |a = Ai )×Pr (c =Ci |g =Gk )×Pr (c =Ci |r = Rl )

Pr (c =Ci )×Pr (c =Ci )
(3.8)

It is also assumed that all conditions have an equal prior probability i.e. Pr (c =Ci ) = Pr (c =C j )∀i 6= j .

We can then ignore the influence of the denominator in 3.8 since with respect to all conditions it only
serves as a scaling factor. This results finally in:

Pr (c =Ci |a = A j , g =Gk ,r = Rl ) = Pr (c =Ci |a = A j )×Pr (c =Ci |g =Gk )×Pr (c =Ci |r = Rl ) (3.9)

Equation 3.9 allows for a direct formulation using Synthea’s generic module framework and can be used
to define transition probabilities for module states that would determine if a patient would contract a disease.

It should be noted that the conditional independence assumption implies that the condition c =Ci cap-
tures any relationship between the age, gender, and race. This eliminates any possible relationship between
a potential patient’s age, race and gender except for the relationship based on the condition being considered.

This assumption does not always hold. As an example of a possible violation, consider the case of a hy-
pothetical disease where a particular gender-race combination is more likely to develop the disease. This
implies that Pr (c =Ci |r = Rl , g =Gk ) 6= Pr (c =Ci |r = Rl )×Pr (c =Ci |g =Gk ) or put otherwise Pr (r = Rl , g =
Gk ) 6= Pr (r = Rl )×Pr (g =Gk ). Note that for simplicity sake in this example the influence of age has not been
considered.

Violations aside and considering the contents of data supplied by Symcat, this is a reasonable simplifying
assumption to make. The reader would recall that this is the same assumption employed by the Naive Bayes
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algorithm has stated in equation 2.6.

Once a patient contracts a disease, the presented symptoms are simply picked based on the probability
Pr (Si

m |c =Ci ) provided from Symcat’s data.

Enforcing a Minimum Number of Symptoms Due to the probabilistic selection of the symptoms as de-
scribed above it is possible that during the Synthea simulation process, a patient might contract a disease
and not present any symptoms. While this is a perfectly valid medical scenario in practice, such data points
will not provide any useful information in the training process and in a preprocessing step would be dropped.
To avoid such a scenario, checks were also added - via control states - in the generated modules to make sure
that a minimum number of symptoms are present for every condition. This minimum symptom count could
then be configured when generating the modules and also presents an opportunity to observe how changes
in this count would affect predictive performance.

A Python module 4 was developed in collaboration with Arsène Fansi Tchango 5 of the MILA 6 research
institute in Quebec. This module performs two tasks: the first is parsing the Symcat data into JSON for-
mat which is easier to process while the second task incorporates the probabilistic formulations above in a
Synthea module generating process. Synthea modules were generated for all 801 conditions present in the
Symcat database. A sample generated module for appendicitis is shown in figure 3.3.

3.4. Generating Data
The generated modules were used as input to the Synthea generator and a patient population was generated.
The CSV export format was chosen. For all datasets generated the demography was based on census data
from the state of Massachusetts in the United States of America. Each dataset contained approximately 5
million records.

For the Massachusetts population, there was a slight difference in the race categorization scheme used
as compared to the race categories described in section 3.2. For this demography the race categories were:
Black, White, Asian, Hispanic, Native and Others. When generating Synthea modules from the Symcat data
which is missing the Asian and Native race category, the probabilities associated with the Others race in Sym-
cat was also applied to the Asian and Native race categories in Synthea. Table 3.1 shows sample data gener-
ated using this approach for the conditions: Appendicitis, Acute Sinusitis and Pharyngitis.

Patient
ID

Gender Race Ethnicity Age Pathology
Symp-
tom
Count

Symptoms

05b9.... M white
non-
hispanic

7 Appendicitis 6

Vomiting;Chills;Lower
abdominal
pain;Nausea;Sharp
abdominal pain;Side
pain

b0f4... F white
non-
hispanic

38
Acute-
sinusitis

5
Cough;Coryza;Sore
throat;Headache;Fever

4ce3... M white
non-
hispanic

49 Pharyngitis 8

Hoarse
voice;Cough;Coryza;Sore
throat;Fever;Ear
pain;Difficulty in swal-
lowing;Wheezing

Table 3.1: Sample Generated Data for Patients with Appendicitis, Acute Sinusitis and Pharyngitis

4https://github.com/teliov/symcat-to-synthea
5https://github.com/afansi
6https://mila.quebec/en/mila/

https://github.com/teliov/symcat-to-synthea
https://github.com/afansi
https://mila.quebec/en/mila/
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Figure 3.3: Generated Synthea Module for Appendicitis
Not all symptoms are shown to allow for an easier visualization
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3.5. A Note on Synthetic Data Generation
The chosen approach of data generation sidesteps the problems stated with getting access to medical data at
the start of this chapter. However, it should be re-iterated that there are downsides to using synthetic data.
Already certain assumptions have been made while generating the data and it has been shown that there are
scenarios where these assumptions do not necessarily hold. Also noteworthy is the fact that even for syn-
thetic E.M.R. generators like Synthea, validation of the generated data is still an open question and so far the
best attempts at validation have been comparisons with patterns observed in actual datasets.

Nonetheless, the use of synthetic data in machine learning research is very widespread and would con-
tinue to be especially in domains like the medical health sector where access to actual data is notoriously
difficult and out of reach for many research teams.
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Methodology and Approach

4.1. Data Processing Steps
Referring to the generated data presented in table 3.1, for each data point the following relevant information
is available: the patient’s Gender, Age and Race, the patient’s Pathology and the presented Symptoms. The
main processing step required the selection of proper encoding schemes for features which were not already
in a numerical format. The selected encoding schemes are described below.

• Gender: A patient’s gender is always either male or female. Hence a 0 or 1 encoding scheme was used
for this feature.

• Age: The age feature was used without any processing for the Naive Bayes and Random Forest models.
However, when training the Multilayer perceptron, this feature was normalized to have 0 mean and
unit standard deviation.

• Race: As mentioned in sections 3.2 and 3.4, a patient’s race can take discrete values. A One-Hot en-
coding scheme was selected. Since there is no implicit ordering present in race categories, an ordinal
encoding scheme would not have been ideal. Also, the number of possible race values i.e. 5 was small
enough to avoid an explosion in the dimensionality of the input feature vector to the models.

• Pathology: A patient’s pathology i.e. the condition/disease which the patient is suffering from can also
be considered as taking discrete values in the range from 0 to 800 (representing the 801 conditions
available in the data). Each condition was assigned a number within this range as the class label for the
condition.

• Symptoms: Since each patient, even for the same condition, can have a different set of symptoms the
presented symptoms were considered as yes answers to a questionnaire containing all 376 valid symp-
toms. In other words, symptoms were encoded as a 376 length vector with each column corresponding
to a particular symptom and taking the value of 0 except for symptoms which the patient reports as
being present. It is worth noting that this results in a very sparse representation as all conditions have
at most 12 possible symptoms associated with them in the Symcat data source.

4.2. Mimicking Real Data
One of the research questions put forward at the start of this project was to identify what sort of results we
might expect if the trained models are evaluated on real data. To answer this question, datasets were gen-
erated in Synthea to approximate possible realistic scenarios. This section gives details about the reasoning
behind these selected scenarios.

4.2.1. Baseline
This refers to data generated from Synthea using the Symcat generated modules with no modification to
Symcat data or constraints imposed when generating the data.

4.2.2. Minimum Number of Symptoms
For this group of generated data sets, the minimum number of symptoms presented by patients in the data
was varied from the default value of 1 to 5 which is the average number of symptoms per condition in Symcat.

21
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From a medical point of view, it stands to reason that the higher the number of symptoms a patient presents
the better the chance a doctor - and by extension, an automated diagnostic tool - has of making an accurate
diagnosis. This is especially true when differentiating between conditions that share similar symptoms.

4.2.3. Perturbed Symptom Presentation Probability
While the Symcat data presents concrete statistical relationships between conditions and symptoms, it is not
unlikely that in a real-world setting there would be a deviation from this relationship. Hence it might be in-
structive to observe how the models behave on a data set generated with a perturbed statistical relationship
between a condition and its symptoms. To achieve this, the symptom presentation probability was randomly
perturbed within a set limit ranging from 10% to 30%. This implies that assuming a fictional condition Exam-
plitis for which the presentation probability of abdominal pain is given as 50%, then under a 10% perturbation
range, the presentation probability might be as low as 45% or as high as 55%.

4.2.4. Symptom Injection
It is not uncommon in medical practice to have patients present with symptoms completely unrelated to
the condition which is eventually diagnosed. This might be as a result of the fact that a different condition
is responsible for the odd symptoms or that these oddities are a result of already expressed symptoms. To
mimic this possibility the following approach was taken.

Likelihood Based Injection
In this method, "likely" symptoms were added as probable symptoms for each condition. To determine the
likelihood of a symptom being presented by a condition even though it was not originally given as being
related to that condition by Symcat, a graphical view of symptoms and conditions was taken. In this graph-
based approach, each symptom represents a node and two nodes are connected if they are both the symp-
tomatic expression list of a condition i.e. symptoms are connected if they can be presented for the same
condition. With this approach, two nodes can have more than one connecting edge indicating that the rep-
resented symptoms can present together in more than one condition.

Hence, given a condition Ci with its set of symptoms Si and given that Sm represents the set of symptoms
such that Si ∩Sm =; then the likelihood of a symptom Sm

k where Sm
k ∈ Sm being presented by the condition

Ci is given as:

K =
i∑

j=1
Eki (4.1)

where Eki is the edge count between symptom Si
j and Sm

k given that Si
j ∈ Si and Sm

k ∈ Sm .

In essence, this quantity measures how often the symptom being considered is presented alongside symp-
toms of the condition. A higher K value is taken to indicate a high likelihood that that symptom might present
for the given condition even though it is not in the given symptomatic expression for the condition.

A maximum of 5 such symptoms were injected per condition. Once the symptoms to be injected were de-
termined, three methods of assigning the probabilistic expression for a condition were explored. Symptoms
were equally assigned a value equal to the most probable symptom, least probable symptom and the mean
probabilistic expression value for the condition.

4.2.5. Data Augmentation
In many machine learning applications, it is often desired to make the output models more robust to possi-
ble deviations from the train data as is often experienced in a real world setting or to avoid overfitting. One
popular method of achieving this robustness is Data Augmentation [17, 18]. In this method, samples which
are different from those present in the training data are generated (or collected). Often, these samples are
generated from populations where the original model typically performs poorly. This process of data aug-
mentation is one of the more popular uses of synthetic data in machine learning problems.
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This technique was also applied to this project. A dataset obtained by combining samples from all previ-
ously generated datasets was generated with care taken to maintain the existing class balance. Models would
then be trained on this dataset and evaluated on other generated datasets.

4.3. Model Evaluation Metric Selection
As mentioned in section 2.7.3 selecting relevant metrics for evaluation is an important part of any machine
learning task. For this project, the accuracy and precision metrics were selected. For the precision the
weighted extension to the multiclass case was used as described in 2.6.2. For the multiclass weighted ex-
tension, the recall is the same as the accuracy score and hence is not explicitly reported. Also, because we
are interested in a differential diagnosis and not just the exact diagnosis, the first five most likely conditions
were taken as the required differential diagnosis. Hence, the Top-5 accuracy was also used when evaluating
the models.

4.4. Selected Models
The space of machine learning models is very large and this project does not aim to make an exhaustive
comparison of all possible choices. For this project the following models were selected and evaluated:

4.4.1. Naive Bayes
The Naive Bayes model was a logical choice following from the formulation of the data generation task of this
project. The conditional independence assumption used in the data generation process is the same assump-
tion made by the Naive Bayes algorithm. Also, this model allows for the most suitable probability distribution
function to be used for each feature. This flexibility allows us to assume that the patient’s age is distributed
according to a Gaussian distribution, the patient’s race assumes a categorical probability distribution and the
gender along with all the symptoms (which take on values of 0 or 1) assume a Bernoulli probability distribu-
tion.

Hence, given that we want to determine the probability Pr (c = Ci |a = Ai , g = G j ,r = Rl ,S) for all condi-
tions Ci ∈C , it follows from the conditional independence assumption that:

Pr (c =Ci |a = Ai , g =G j ,r = Rl , s = Sk ) = Pr (a = Ai |c =Ci )×Pr (r = Rl |c =Ci )×Pr (g =G j |C )×Pr (S|c =Ci )
(4.2)

Assuming a Gaussian distribution for the age, we can obtain Pr (a = Ai |c =Ci ) as:

Pr (a = Ai |c =Ci ) = 1

σi
p

2π
exp

− 1
2 (

x−µi
σi

)2

(4.3)

where x = Ai and using maximum likelihood estimation we obtain µi and σi are the mean age and vari-
ance of patients with condition Ci .

With a categorical distribution assumed for the patient’s race, we obtain Pr (r = Rl |c =Ci ) as:

Pr (r = Rl |c =Ci ) =
k∏

l=1
p [r=l ]

l (4.4)

where using the maximum likelihood estimate pl is the ratio of patients of race r = Rl who have condition
Ci to the total number of patients who have that condition i.e. the probability that a patient suffering from
condition Ci belongs to race r = Rl

With Gender taking on a Bernoulli distribution, we obtain Pr (g =Gk |c =Ci ) as:

Pr (g =Gk |c =Ci ) = pk (1−p)1−k for k ∈ {0,1} (4.5)

where 0 represents females and 1 represents males and with a maximum likelihood estimate p is the ratio
of males who have the condition Ci and conversely 1−p is the ratio of females with the condition.

The explanation given for the Bernoulli distribution above is also valid for the symptoms presented by the
patient. The only distinction is that since S is a set of symptoms then:

Pr (S|c =Ci ) =
K∏

k=1
Pr (Sk |c =Ci ) (4.6)
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where each Pr (Sk |c =Ci ) is then estimated using a Bernoulli distribution.

The Naive Bayes formulation even though simplistic is nonetheless a very effective classifier and, as dis-
cussed, has been known to give decent results in very many applications, even when the conditional inde-
pendence assumption does not hold [6]. However, while the Naive Bayes performs very well in identifying
the correct class, it does not properly estimate the probabilities of other classes [19] which by extension sug-
gests that its differential diagnosis output would not necessarily be accurate. It nonetheless provides a good
baseline for comparing other models with better estimation capabilities.

4.4.2. Random Forest
The Random Forest model is also explored in this project. Its ability to handle a mix of quantitative and
categorical data as well as robustness to noise and overfitting make it an attractive choice for exploration. It
also provides better posterior probability estimates than the Naive Bayes making it a more ideal model for
the problem. As discussed previously, fewer hyperparameters make model optimization an easier task from a
computational perspective. The following section gives a summary of the Random Forest’s hyperparameters
selected for optimization.

Relevant Hyperparameters
The following are hyperparameters for the Random Forest which were selected to be optimized:

Maximum Tree Depth This parameter determines how deep each tree in the forest is allowed to grow when
fitting the data. A larger tree depth usually means the generated forest is better able to fit the data set. It also
translates to larger model size, and longer train time. This parameter can take on any integer value and can
also be configured to allow trees in the forest to grow to their full depth.

Minimum Split Samples The minimum split samples determines the number of leaves i.e. data points that
are allowed to be on a non-pure node (a node in the tree where all the samples are not of the same class).
Smaller values result in a better fit of the data but like the maximum tree depth there is also an increase in the
size of the tree, and the train time.

Minimum Leaf Samples This determines what the minimum number of leaves at each node in a tree in the
forest should be. Splitting a node would only if the resulting children nodes have at least this many samples.
Smaller values of this parameter follow a similar logic to the already discussed parameters i.e. increased fitting
capability at the expense of model size, and train duration.

Maximum Number of Features As discussed previously, each tree in the Random Forest ensemble is trained
on a subset of the features present in the dataset. This parameter then determines what the maximum size of
this subset would be.

Number of Estimators Perhaps the most important parameter, the number of estimators determines how
large the forest is i.e. the number of trees in the forest. Higher values translate to a larger tree and better fit on
the data but also larger model size and train time.

In other to determine the best combination of parameters, a Grid Search approach was chosen. In this
method, different combinations of the parameters are evaluated on a selected metric and the parameter com-
bination with the best performance is selected. In an exhaustive Grid Search, all possible combinations would
be evaluated. However, due to run time and memory constraints the exploratory space was reduced to make
the search feasible.

Optimization Metric
When considering a suitable optimization metric, it was desired that the selected candidate performs well
with regards to the validation score and that it has a reasonable model size (measured in megabytes) and
train time (in seconds). Combining these requirements resulted in a multi-objective optimization problem.
A simple linear scalarization approach was taken i.e.

max
p∈P

N∑
i=1

ωi ti (p) (4.7)
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where P is the hyper-parameter search space, ti represents individual optimization objectives (validation
score, training time, model size, p represents a particular combination of all hyper parameters and ωi are
weights which determine the importance of each objective to the final metric.

The following metric was formulated as the optimization target:

metr i c = max
p∈P

(2∗ val i d ati on_scor e −0.1× tr ai n_t i me −0.1×model_si ze) (4.8)

In equation 4.8 above, negative weights indicate that smaller values of the corresponding objectives would
result in a better metric. To avoid a drastic loss in accuracy, an additional constraint was added which con-
sidered only parameter combinations that yielded a validation score within 1% of the maximum score in the
search space. It should also be noted that all parameters in equation 4.8 are normalized.

Ideally, a grid search of the entire hyper-parameter space would yield the most optimal configuration,
however due to computational and time constraints, the actual search space was restricted to allow for a
feasible search. Within this restricted search space, the optimal hyper-parameters are shown in table 4.1. The
optimization operation was carried out on the baseline dataset and these obtained configuration was used
for all other generated datasets.

Hyper-parameter Value
Maximum Tree Depth 380
Minimum Split Samples 2
Minimum Leaf Samples 2
Maximum Number of Features log2(num_ f eatur es)
Number of Estimators 20

Table 4.1: Selected Hyper-parameters for Random Forest

4.4.3. Multilayer Perceptrons
The suitability of multilayer perceptrons to the differential diagnosis task is also evaluated in this project.
The MLP is trained to minimize the cross entropy loss - a commonly selected loss function for multi-class
classification tasks. The selected architecture of the MLP is shown in table 4.2. The rectified linear unit (ReLU)
is used as the non-linear activation between fully connected layers. The weights of the layers are initialized
using the so called He-Initialization [20] which has been shown to work well with ReLU activations. Due to
time and computational constraints, an exhaustive hyper parameter optimization was not performed for the
MLP. Also comparisons with the other explored models are restricted to those trained on the baseline data.

Layer Type Activation Input Dimension Output Dimension
Linear ReLU 383 1024
Linear ReLU 1024 1024
Linear None 1024 801

Table 4.2: Multilayer Perceptron Architecture
Note that the input dimension of the first layer is obtained as the sum of the available symptoms (376), the length of the one-hot
encoded race vector (5) and the patient’s age and gender. The output dimensions correspond to the number of conditions being

predicted.

4.5. Computing Platform and Technology Stack
Computing Platform
Except where otherwise stated all experiments were carried out on the computing cluster of the Quantum
and Computer Engineering (Q&CE) at the Delft University of Technology [21]. This project made use of four
compute nodes on the cluster each equipped with 28 cores, 192GB of memory and a CPU speed of 2.4GHz.
The Q&CE cluster is equipped with the SLURM [22] workload manager which was used to schedule training
and evaluation jobs on the compute nodes.
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Technology Stack
Data generation, as has been mentioned, was carried out using Synthea - a JAVA based application. The
Q&CE cluster, as at the time of writing, does not support JAVA applications out of the box. To resolve this, a
Singularity [23] container was built specifically for running the data generation process with Synthea on the
cluster. All other components of this project were performed using Python libraries. NumPy (v1.18.2), SciPy
(v1.4.1) [24] and Pandas [25] (v1.0.2) were used for data analysis and exploration. The scikit-learn (v0.22.2)
[26] library provided the implementation for all the machine learning models trained and all plots where
generated using Matplotlib (v3.2.1) [27]. MLFlow (v1.8.0) [28] was used to track results from different experi-
ments.
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Results and Discussion

In this chapter, we discuss the results obtained using the models discussed previously with model perfor-
mance evaluated using the aforementioned evaluation metrics. We first observe the performance of the se-
lected models on the different generated data sets. This would provide some insight into how the models
might behave in a real-world setting.

5.1. Performance on Baseline Data
The baseline dataset was generated as described in section 4.2.1. For each selected metric a learning curve
was generated with training size varying from 10-100% of the full training data. For each training sample size,
5-fold cross validation The learning curves for the trained Naive Bayes and Random Forest models are shown
in the figures below.
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Figure 5.1: Learning Curves for Naive Bayes on Baseline Dataset
The shaded region around each plot indicates the standard deviation of the results.
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Figure 5.2: Learning Curves for Random Forest on Baseline Dataset
The shaded region around each plot indicates the standard deviation of the results.

For both Naive Bayes and Random Forest, the learning curves show an increased performance on the
validation set with an increase in the training sample size - which is typical behavior for learning curves.
However, it can be seen that the performance gap between the training set and the validation set is much
higher in the case of Random Forest than that of Naive Bayes.
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Table 5.1 - which summarizes results from an evaluation on the full training set - shows that for all the
metrics Naive Bayes performs better on the validation set than Random Forest while the reverse is the case
for performance on the training set. This result indicates that there is perhaps a higher level of overfitting on
the train set in the case of Random Forest than Naive Bayes. The almost nonexistent shaded region in the
plots for the Random Forest model show that results - both in the train set and the validation set - are more
stable than that of Naive Bayes for which there is a higher level of variation in performance especially on the
validation set. Judging by these metrics, the Naive Bayes model is the better of the two though only by a small
margin.

Naive Bayes Random Forest
Accuracy (Train) 0.589 0.614
Accuracy (Val.) 0.588 0.571
Precision (Train) 0.634 0.665
Precision (Val.) 0.633 0.611
Top-5 Accuracy (Train) 0.854 0.872
Top-5 Accuracy (Val.) 0.853 0.845

Table 5.1: Comparing Naive Bayes and Random Forest on Baseline Dataset
Results were obtained from an evaluation on the full training set with 5-Fold Stratified Cross Validation

5.1.1. Limits on the Accuracy of the Models
From the results discussed so far, the reader would notice that the accuracy obtained is quite low. For both
models, this value is between 57-58%. One explanation for this low accuracy value is the difficulty distinguish-
ing between conditions that present similar symptoms. The models simply would be unable to discriminate
against conditions such as Chronic Sinusitis and Acute Sinusitis that both present near identical symptoms.
This explanation is also in someway corroborated by the much higher Top-5 accuracy scores.

Another plausible explanation for the low values might be the number of symptoms presented by each
condition. The reader would recall that when generating the baseline dataset, the only requirement enforced
was that each condition should have at least one symptom. Figure 5.3 shows a histogram of symptoms per
record in the data. Records with 3 or fewer symptoms account for about 57% of all generated records. Some
symptoms can be very indicative of the condition e.g. presence of Abdominal Pain would strongly suggest a
gastro-intestinal condition but many other symptoms - on their own - do not contain enough information to
accurately determine a diagnosis.
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Figure 5.3: Histogram of Symptom Count in Baseline Data

5.1.2. Confusion Matrix
It would also be informative to investigate the confusion matrix for both models to gain more insights into
the model behavior. However, the number of conditions is quite large - 801 - and this makes a presentation
of the full confusion matrix cumbersome. For the sake of this discussion, a set of conditions were selected
to make the presentation much easier. The underlying assumption with this approach is that the differences
in performance between the models on these selected conditions can be extrapolated to the entire dataset.
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Using the International Statistical Classification of Diseases and Related Health Problems (ICD) 1 system, the
conditions are selected from three separate groups or blocks: diseases of the respiratory system, diseases of
the digestive system and diseases of the genitourinary system. Conditions which fall within the same block
all have codes beginning with the same letter of the English alphabet. The selected conditions are given in
table 5.2.

Condition Group ICD-10 Block Range Condition Name ICD-10 Code

Respiratory J00–J99

Acute Bronchitis J20.9
Acute Sinusitis J01.9
Asthma J45.9

Digestive K00–K93

Appendicitis K37
Chronic Constipation K59.00
Acute Pancreatitis K85.9

Genitourinary
N00–N99

Urethritis N34.1
Pyelonephritis N12
Cystitis N30.9

Table 5.2: Selected Conditions for Confusion-Comparison

Tables B.2, B.3 and B.4 in the appendix show the top 5 wrongly assigned labels for each condition in the
respective groups of table 5.2. Comparing the models show a high level of agreement in the predictions. Also,
the top 5 wrongly assigned conditions, in nearly all cases, also belong to the same condition group as the cor-
rect condition. Conditions in the same group usually have similar symptomatic expressions and this backs
up the explanation that the models need more information in such cases to make a proper distinction.

5.1.3. Comparing the Top-5 Predictions
Using the same conditions as listed in table 5.2, the top-5 co-occurring predictions are also compared across
the models. In other words, given that the prediction is Top-5 accurate, the tables B.5, B.6 and B.7 show 5
other conditions which are most commonly included in the Top-5 along with the selected conditions. Again,
we observe a strong similarity between the predictions of the models and these top co-occurring conditions
in all cases also fall under the same condition group as the conditions being evaluated.

For a differential diagnostic tool, however, the Top-5 accuracy and the condition group similarity between
the top 5 wrong labels and the target condition as well as the similarity between the top co-occurring condi-
tions suggests that this approach is indeed feasible. In a practical setting the doctor would then request for
additional tests to begin the elimination/confirmation part of the differential diagnosis flow.

5.1.4. Posterior Estimate Comparisons
In addition to the qualitative comparisons made in the preceding discussion, it is also interesting to observe
the posterior estimates for each of the models. Since the differential diagnosis - in the case of this study - is
taken as the first 5 conditions, and this selection is made based on the posterior estimates from each model,
we can also say that the posterior estimates tell how confident the models are about the diagnosis. We observe
this confidence for both models in the following scenarios:

1. Top-1 Accurate

2. Top-5 Accurate

3. Non-Top-1 Accurate

4. Non-Top-5 Accurate

Top-1 Accurate Figure 5.4 below compares the posterior probability estimate for both models when they
are accurate in predicting the correct diagnosis as the most likely condition. What is particularly interest-
ing is Naive Bayes’ seemingly very high probability estimates (median of 0.97) in this case when compared

1https://en.wikipedia.org/wiki/ICD-10

https://en.wikipedia.org/wiki/ICD-10
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to the more moderate Random Forest (median of 0.57). Another interesting consequence of this confident
classification is that the next top 4 predictions of Naive Bayes receive much lower (and almost similar - by
the median) estimates. This behavior of Naive Bayes is in line with its ability to discriminate the correct class
without having accurate probability estimates [19].
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Figure 5.4: Comparing Posterior Probability Estimates for Top-1 Accurate Classification

Top-5 Accurate When comparing the posterior probability estimates for the Top-5 accurate case, again
the Naive Bayes selects the most likely condition with higher confidence (median of 0.68) than the Random
Forest (median of 0.43). When these values are compared with the Top-1 accurate case above, the median
confidence level of Naive Bayes was reduced by 30.52% compared to a 25.28% reduction for the Random
Forest.
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Figure 5.5: Comparing Posterior Probability Estimates for Top-5 Accurate Classification

Non-Top-1 Accurate In this case, the probability estimates for both models are much lower compared to
Top-1 accurate as seen in figure 5.6. This behaviour is ideal since it would be desirable that the models are
not very confident when they are wrong. This also allows for the use of a confidence threshold in practice. In
such a setting, predicted diagnoses would be presented only if the most accurate prediction exceeds the set
confidence threshold. The median posterior probability estimate or the 25th percentile estimate for the most
likely condition are possible values for such a confidence threshold.

Non-Top-5 Accurate Figure 5.7 shows the posterior estimates for both models when the top 5 predictions
do not contain the actual diagnosis. The low posterior estimates for both models reinforce the argument for
a confidence threshold when presenting the predicted diagnoses to a user.

Confidence Threshold Evaluation To better understand the effects of a confidence threshold applied to
exclude possible wrong predictions, different threshold values were evaluated on predictions made by the
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Figure 5.6: Comparing Posterior Probability Estimates for Non-Top-1 Accurate Classification
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Figure 5.7: Comparing Posterior Probability Estimates for Non-Top-5 Accurate Classification

Naive Bayes model on the test set. The selected threshold values were the 25th percentile, the median, the
mean and the 75th percentile of the posterior probability estimates for the top-1 predictions on the train set.
Figures 5.8a and 5.8b show the effects of these thresholds on the Top-1 and Top-5 accuracy respectively. From
the figures, we see - as expected - that increasing the threshold values increases the accuracy (both top-1 and
top-5) obtained but also reduces the number of predictions which are considered "confident". Taking the
25th percentile of the Non Top-1 accurate case, the model obtains a 65% Top-1 accuracy and a 91% Top-5
accuracy and it admits 88% of the predictions. In a deployed environment, such a threshold value might be
considered ideal. Predictions below the threshold would not typically be presented to the doctor.

5.2. Non-Baseline Data
In this section, we train and evaluate both the Naive Bayes and Random Forest on datasets generated as
described in section 4.2. The reader would recall that these different datasets were generated to observe
model behavior in possible real-life scenarios. Ultimately, models trained on the baseline data would be
evaluated on these datasets but as a precursor we compare performance of models trained on these modified
datasets with the performance obtained in section 5.1. This might give some insight as to how the baseline
model would perform on this data eventually.

5.2.1. Varying Minimum Number of Symptoms
Recall that for these datasets, the minimum number of symptoms was varied from 2 to 5. Following, from
the comments on the obtained accuracies in the baseline case, we expect that if the number of symptoms
presented increases then the models would do a much better job at identifying the actual condition. Figure
5.9 shows the accuracy, precision, and Top-5 accuracy plots for each minimum number of symptoms. The
baseline case i.e. minimum of 1 symptom was also included for comparison. From the figure, we do indeed
see an almost linear increase in metric scores with an increase in the minimum number of symptoms. This
highlights the importance of symptom discovery/acquisition in a general differential diagnosis.
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Figure 5.8: Naive Bayes Top-1 and Top-5 Accuracy and Percentage of Diagnosed Conditions for Different Posterior Probability
Threshold Values

5.2.2. Perturbed Symptom Presentation Probability
Models were also trained on a dataset in which the probabilistic relationship between symptoms and condi-
tions were perturbed as described in section 4.2.3. The results for both Naive Bayes and Random Forest are
shown in figure 5.10

Effectively, perturbing the condition-symptom probabilistic relationship increases the probabilities of
certain symptoms being presented while reducing that for other symptoms. Since these perturbations were
randomly applied, in some cases, this led to an increase in the number of symptoms expressed per condition
which - as has been previously established - increases the models’ ability to distinguish between conditions.

Figure 5.11 shows the average number of expressed symptoms per condition. We see that in the perturbed-
50% case, the average symptom count is much higher than the others and this correlates with the recorded
performance. However, solely by this reasoning, we should have obtained much worse performance from the
perturbed-70% case. One possible explanation for this irregularity is that in the perturbed-70% case, there
is a widened gap between symptoms whose expressive probabilities were increased and those for which the
values were reduced. This widened range would have increased the overall predictive potential of the posi-
tively increased symptoms and made them more relevant to the models when making distinctions between
the conditions. This explanation is made stronger by the empirical observation that for the perturbed-70%
data, which had 49.49% of its samples present at most two symptoms, a trained Naive Bayes model got an
accuracy score of 44.14% on conditions with at most two symptoms compared to a 20.60% accuracy score
with the same setting on the baseline dataset which had 37.58% of its samples present with at most two
symptoms. This increase was also the case for the Random Forest model. This theory aligns with medical
reasoning where for certain cases the presence of a particular symptom becomes a strong indicator for the
actual causal condition.

5.2.3. Symptom Injection
The last realistic scenario was the injection of so-called similar symptoms as described in section 4.2.4. Re-
call that once the similar symptoms were injected, three methods were used to assign their probability of
expression: the largest, smallest, and mean probability value of existing symptoms for each condition. The
results for models trained on these different datasets are shown in figure 5.12. From this figure, we observe
a significant difference in the max-injected based model compared to the baseline based model. This might
be explained by the fact that for the symptoms injected with maximum probability, they increase both the
relevance and number of the symptoms present per condition - also suggesting a significant change in the
data distribution. There is almost no change when comparing the min-injected based Naive Bayes model
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Figure 5.9: Effect of Increased Minimum Number of Symptoms on Evaluation Metrics

(58.766%) to the baseline based model’s accuracy (58.762%). This might be explained by the fact that inject-
ing the additional symptoms with so little probability of being expressed does not significantly change the
data distribution when compared to the baseline. For the mean-injected model, there was a slight drop in
accuracy (56.993%) compared to the baseline. A logical explanation might be that the additional symptoms
injected have the effect of increasing the symptom space without providing much discriminatory information
hence making the task of the models slightly more difficult.

In summary, observing the performance of the models on these modified datasets have given a strong
intuition and insights into the metric scores obtained. More specifically, it has been established that both the
number of symptoms presented by a patient and the relevance of these symptoms aid the model in being
able to properly diagnose the condition.

5.3. Baseline Model Performance on Modified Datasets
While the analysis of section 5.2 provided possible explanation for model performance under different sce-
narios, the main aim of generating these different datasets was to evaluate the performance of the baseline
model under these different possible real-world scenarios. To accomplish this, both the baseline Naive Bayes
and Random Forest models were evaluated on the test sets of the different cases and comparisons are made
with the performance of models trained on specifically on the different non-baseline datasets. In the follow-
ing discussion, we evaluate the performance of the baseline-trained models on the test sets of the different
datasets mimicking real world scenarios. As a benchmark, we use the performance of models trained specif-
ically in these real-world settings. This gives a sort of upper limit on achievable performance.

Tables A.1 and A.2 show the performance of the baseline models for Naive Bayes and Random Forest re-
spectively on all the different generated datasets. We see that the baseline models still perform comparatively
well compared to the data-specific models in the case of datasets generated with increased minimum number
of symptoms. The performance of the baseline based models also increases with an increase in the minimum
number of symptoms as show in figure 5.13. The near linear relationship observed in figure 5.9 is also present.
The models perform much better in this case with Naive Bayes model achieving 83.6% top-1 accuracy, 87.6%
precision and 96.6% top-5 accuracy with a minimum of 5 symptoms. Similarly Random Forest achieves 80.2%
top-1 accuracy, 84.2% precision and 95.7% top-5 accuracy. This is despite having being trained on a dataset
which contained conditions presenting only one symptom. Again this underscores the importance of iden-
tifying as many symptoms as possible in the differential diagnosis flow. When observing the results on the
datasets generated by perturbing the condition-symptom probabilistic relationship, it can be seen that for
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Figure 5.10: Evaluation Metrics for Models trained on Perturbed Datasets
Note that the perturbed-0% case corresponds to the baseline data i.e. no perturbation

small perturbations the difference between the baseline and the data-specific models is almost negligible.
As the perturbations increase, the difference becomes even more noticeable. At 70% perturbation, the base-
line based models fall below their performance on the baseline dataset. In the 50% perturbation case, the
baseline model still performs reasonably well in comparison. The higher number of symptoms explanation
given in section 5.2.2 might be a reason for this relatively good performance despite a high level of pertur-
bation. In the case of the similarly injected symptoms and for all three modes of assigning probabilities to
the injected symptoms, the performance of the baseline based models was well below their performance
on the baseline dataset and also much lower than the performance of the data specific models. The perfor-
mance on the symptom injected datasets got worse with an increase in the probability with which the similar
symptoms were injected. In the max-injected case, the baseline based model achieved an accuracy of 0.099
and 0.1 for Naive Bayes and Random Forest respectively. The Top-5 accuracy was also very low (0.234 and
0.271) for both models. It is fair to reiterate that the data modeling process did not capture a possible similar-
ity between symptoms, therefore injecting the new symptoms presented the models with patterns they had
never encountered during training and the higher the probability of the injected symptoms, the greater the
divergence of the resulting data from the baseline data, hence the results are not entirely surprising.

5.4. Augmented Model Performance on Modified Datasets
Both the Random Forest and Naive Bayes model were trained on the augmented data which was generated
according to section 4.2.5. The performance comparison of these augmented based Naive Bayes and Random
Forest models compared to that of their baseline based counterparts on the different generated datasets are
shown in the tables A.3 and A.4.

In both tables A.3 and A.4, it is observed that for most of the datasets where the baseline performed rela-
tively good compared to the data specific models there was a drop in performance for the augmented model
but this drop was never more than 5%. We also observe significant improvements over the baseline in the
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Figure 5.11: Average Expressed Symptom Count per Condition in Perturbed Datasets

case of the symptom injected datasets although the performance, especially in the max-injected case, is still
far off from that of the data-specific model. Nonetheless, training on this sort of augmented data does provide
some level of robustness.
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Figure 5.13: Performance of Baseline Based Models on Datasets With Increasing Minimum Number of Symptoms

5.5. Evaluation of the Multilayer Perceptron
The multilayer perceptron was trained on the baseline dataset. This trained model was then evaluated on the
different generated datasets. The comparison of the MLP with the Naive Bayes and Random Forest models
are shown in table A.5

We see from table A.5 that the MLP has a very similar performance to the Naive Bayes model across all
metrics. Just like the Naive Bayes model it also consistently out performs the Random Forest model. Previous
studies [29] have shown that the MLP approximates a Bayes optimal discriminant function and recalling that
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Figure 5.12: Evaluation Metrics for Models trained on Symptom-Injected Datasets

the data generation process as explained in chapter 3 closely resembles a Naive Bayes formulation, this would
explain the similarity in performance of the Naive Bayes and the MLP.
Comparing the posterior probability estimates of the MLP model also reveals near identical performance
with the Naive Bayes model as might be observed from figure 5.14.

5.6. Summary and Discussion
From the foregoing analysis, it has been shown that both the number of symptoms available per condition
and the significance of the presented symptoms make the task of obtaining an accurate differential diagnosis
easier for trained models. Also from the results obtained on the baseline dataset, it was observed that a pos-
terior probability estimate threshold could be used in practice to filter out most wrong and weakly-correct
predictions.

The models compared showed similar performance. The Naive Bayes and the Multilayer Perceptron pro-
duced nearly identical results with respect to the evaluation metrics selected. They also showed similar poste-
rior probability estimates for the Top-1 accurate, Top-5 accurate, Non Top-1 accurate and Non Top-5 accurate
cases. The Random Forest in most scenarios performed slightly worse than both the Naive Bayes and the MLP
model. The difference in metric scores however were not very significant.
Computationally, the Naive Bayes is a much simpler model to train but the Random Forest produces better
posterior probability estimates which perhaps makes it a more suitable candidate for the task of differential
diagnosis.

While mimicking possible real-world scenarios, it was also observed that the performance of the models
was significantly reduced when symptoms not usually associated in a condition were presented and when
the symptom-condition probabilistic relationship was significantly different than that on which the models
were trained on.
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Figure 5.14: Comparing Posterior Probability Estimates for MLP

When the Naive Bayes and Random Forest models were trained on an augmented dataset, there was an im-
provement in the performance on the real-world scenario datasets although the obtained performance was
still less than the performance of models trained specifically on generated datasets. The MLP model was not
trained on the augmented dataset but judging by the similarity in performance to the Naive Bayes model, it
is logical to expect similar results. These result highlights the important role of the data (or in this particular
case the probabilistic relationship between patient’s demography, symptoms and conditions) in the success
of these models in a real-world setting.

An interesting discussion ensues from the results of the augmented based model, one which might strengthen
the case for synthetic data in this type of medical application. All the datasets which were generated were
based - as mentioned earlier - on the population distribution of Massachusetts in the United States of America
and all modifications made were solely targeted at modifying the probabilistic relationship between symp-
toms and conditions. From a medical perspective, there is known relationship between patient’s race and the
prevalence of certain conditions e.g. certain races [30] being more likely to have diabetes and its resulting
symptoms or a dependence on a combination of race and age etc. The nature of these dependencies also
varies depending on the population being studied. In many cases, real data obtained for similar studies are
gotten from a specific country in a specific hospital/settings and might not be representative of the general
case. However, medical academic literature contains several studies across different populations and hos-
pitals which often summarize the important relationships between a patient’s demography, symptoms, and
conditions. An argument can then possibly be made for a potential superiority in results of an augmented
data approach i.e. combining datasets generated using these summary statistics when compared to real data
obtained from just one location. Also, more sophisticated probabilistic models can be developed using data
from these different studies and sources to further improve expected performance in a real world setting.





6
Conclusion and Recommendations

To conclude, we revisit the problem statement and research questions posed in chapter 1. Recommendations
for possible future research are also discussed.

6.1. Problem Statement and Research Questions Revisited
Suitability of Machine Learning Techniques to the Differential Diagnosis Problem From the results in
chapter 5, it was shown that the models trained were able to capture the probabilistic relationship between
conditions, symptoms, and patient’s demography making them suitable to the task of obtaining a differen-
tial diagnoses. The Naive Bayes model achieved a top-1 accuracy of 58.8%, a precision of 63.3% and a top-5
accuracy of 85.3%. The MLP model achieved a 58.8% top-1 accuracy, 63.0% precision and a top-5 accuracy
of 85.5%. For the Random Forest, the top-1 accuracy was 57.1%, a precision of 61.2% and a top-5 accuracy of
85.5%. Since the most important task in a differential diagnoses is obtaining a valid list of possible symptoms,
the top-5 accuracy is a good measure of the suitability of these models to the task and judging by the relatively
high scores on this metric, it is logical to conclude that the models are up to the task. It was also shown that
the number of symptoms presented per condition had an almost linear relationship with the achieved metric
scores. When the models were evaluated on data with at least 5 symptoms per condition, the accuracy was
between 80.2 and 83.3%, precision lay between 84.2 and 87.4% while top-5 accuracy was between 95.7 and
96.6% across all evaluated models.
A qualitative comparison of the top 5 co-occurring predictions for selected conditions showed an agreement
between the models. These co-occurring conditions also belonged to the same condition group as the se-
lected conditions i.e they affect related organs and also present similar symptoms.
A qualitative analysis of the top 5 misclassification for selected conditions also revealed that these top 5 con-
ditions were usually very similar to the actual condition and as such would present similar symptoms high-
lighting the difficulty the models face in distinguishing similar conditions based on symptoms alone.

Model Performance on Possible Real World Scenarios
In this project, especially owing to the use of synthetic data, it was desired to also synthesize possible real-
world scenarios and observe how the trained models behave in these cases. Results from chapter 5 show
that the performance of the models start to degrade when the synthesized scenarios result in datasets which
deviate significantly from the baseline dataset. As observed earlier, this was especially true when the mod-
els were confronted with cases that had symptoms not associated with the causal condition (as captured in
the baseline dataset). Even when these new symptoms were injected with minimal probability, there was a
reduction in accuracy of about 16% in the performance when compared with models trained specifically on
the modified data.
When the probabilistic relationship between symptoms and conditions were perturbed - mimicking a change
in the relevance of the symptoms it was seen that the greater the perturbation, the larger the difference in per-
formance between the baseline based models and the data specific models. When the probabilities of these
perturbations were restricted to within 10% of the baseline values, there was hardly any change in accuracy
(less than 1%) while for a 70% perturbation there was a reduction in accuracy of about 31% for the Naive
Bayes model and 35% for the Random Forest.
These results indicate that the performance of the models in a real world setting depends a lot on the simi-
larity between real world data and the synthetically generated data. The larger the deviation, the larger the
difference in expected performance.
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It was also shown that training models on data augmented to account for these deviations produced much
better results than the baseline - even though less than ideal. In the case of the 70% perturbed data, the aug-
mented model had a reduction in performance of 28.6% for Naive Bayes and 20.67% for Random Forest -
which are better than the baseline models. This suggests that if possible deviations from a real world setting
can be anticipated, data augmentation techniques can help improve the robustness of the trained models.

6.2. Recommendations
Improving Symptom Information
As mentioned, distinguishing conditions based on just the symptoms presented is a difficult task for the
trained models and understandably so - similar conditions have similar symptoms. Enriching the data with
extra information such as the nature of the symptom, its duration, what situations or activities excite the
symptom, etc might also provide additional discriminatory information and possibly yield better results.
Some work has already been done in this regard on a small set of conditions and symptoms and initial re-
sults suggest that these additional features do make it easier for models to distinguish between conditions.

Investigating More Metrics for Differential Diagnosis Accuracy
In this project, the top-5 accuracy was selected as the main metric of interest when evaluating a differential
diagnosis prediction. A qualitative analysis also showed that predicted top 5 conditions - when accurate -
typically affect the same body parts. It is not inconceivable that two conditions might affect different body
parts and present a subset of similar conditions.Hence a body-part based similarity test would not be a good
evaluation metric in such a case. To the best of our knowledge, there is no gold standard for evaluating a
differential diagnosis - even in practice. This provides an interesting angle for further research.

Model Evaluation in a Real World Setting
The ultimate test of any machine learning model is its performance in a real-world setting. In the planning of
this project, Medvice - our industry collaborators - were running data gathering pilot programs with partner
hospitals and the trained models would be evaluated on the data. However, due to the corona-virus pan-
demic, those efforts had to be suspended. At the time of writing, the lock-down and restrictions placed on
movement and business activities are being lifted and the plan is to resume the data gathering pilots and use
the data obtained for a more realistic evaluation of the model’s efficacy.

Further Exploration of Deep Learning Techniques
In this project, more focus was placed on the Naive Bayes and Random Forest models. Results from the MLP
model were very similar to that of the Naive Bayes but there is still more room for optimization e.g. hyper-
parameter optimization, improved architecture, e.t.c. An interesting direction is the use of Autoencoders
[31, 32] to learn latent representations in the dataset and use this learned representation as input to other
models. This might also help improve the robustness of the trained models.



A
Model Comparison Data

The table below compares the Naive Bayes and Random Forest for selected conditions and shows the top 5
mis-classification for each of these conditions.

A.1. Baseline Based Model Performance on Generated Datasets

Dataset
Accuracy Precision Top-5

Base Model Data Model Base Model Data Model Base Model Data Model
Baseline 0.588 0.588 0.633 0.633 0.853 0.853

Min. 2 Symptoms 0.669 0.690 0.690 0.706 0.913 0.925

Min. 3 Symptoms 0.734 0.789 0.764 0.798 0.941 0.964

Min. 4 Symptoms 0.789 0.869 0.827 0.876 0.957 0.983

Min. 5 Symptoms 0.836 0.914 0.876 0.921 0.966 0.989

Mean Injected 0.312 0.588 0.380 0.623 0.563 0.842

Max Injected 0.099 0.784 0.207 0.800 0.234 0.942

Min Injected 0.480 0.571 0.515 0.605 0.754 0.834

Perturbed-10% 0.594 0.597 0.642 0.641 0.861 0.863

Perturbed-20% 0.600 0.610 0.653 0.656 0.867 0.875

Perturbed-30% 0.549 0.601 0.599 0.647 0.826 0.866

Perturbed-50% 0.696 0.731 0.724 0.756 0.919 0.935

Perturbed-70% 0.441 0.643 0.507 0.687 0.726 0.882

Table A.1: Naive Bayes Model Performance on Test Set of Different Generated Datasets
Baseline Model is compared with performance of Model trained specifically on each generated dataset.

41



42 A. Model Comparison Data

Dataset
Accuracy Precision Top-5

Base Model Data Model Base Model Data Model Base Model Data Model
Baseline 0.571 0.571 0.612 0.612 0.845 0.845

Min. 2 Symptoms 0.638 0.679 0.660 0.691 0.901 0.922

Min. 3 Symptoms 0.699 0.785 0.726 0.790 0.930 0.961

Min. 4 Symptoms 0.752 0.866 0.793 0.870 0.947 0.981

Min. 5 Symptoms 0.802 0.912 0.842 0.914 0.957 0.988

Mean Injected 0.286 0.554 0.340 0.582 0.560 0.820

Max Injected 0.100 0.754 0.177 0.766 0.271 0.928

Min Injected 0.451 0.538 0.478 0.567 0.743 0.815

Perturbed-10% 0.580 0.581 0.623 0.620 0.855 0.855

Perturbed-20% 0.589 0.596 0.636 0.637 0.865 0.868

Perturbed-30% 0.533 0.585 0.578 0.626 0.818 0.858

Perturbed-50% 0.679 0.718 0.705 0.741 0.915 0.929

Perturbed-70% 0.407 0.629 0.465 0.673 0.709 0.874

Table A.2: Random Forest Model Performance on Test Set of Different Generated Datasets
Baseline Model is compared with performance of Model trained specifically on each generated dataset.

A.2. Effect of Data Augmentation on Model Performance on Generated Datasets

Dataset
Accuracy Precision Top-5

Base Model Aug. Model Base Model Aug. Model Base Model Aug. Model
Baseline 0.588 0.562 0.633 0.618 0.853 0.835

Min. 2 Symptoms 0.669 0.656 0.690 0.680 0.913 0.902

Min. 3 Symptoms 0.734 0.752 0.764 0.765 0.941 0.944

Min. 4 Symptoms 0.789 0.821 0.827 0.835 0.957 0.966

Min. 5 Symptoms 0.836 0.866 0.876 0.887 0.966 0.977

Mean Injected 0.312 0.531 0.380 0.556 0.563 0.796

Max Injected 0.099 0.488 0.207 0.550 0.234 0.735

Min. Injected 0.480 0.553 0.515 0.588 0.754 0.822

Perturbed-10% 0.594 0.570 0.642 0.628 0.861 0.844

Perturbed-20% 0.600 0.578 0.653 0.640 0.867 0.854

Perturbed-30% 0.549 0.538 0.599 0.601 0.826 0.823

Perturbed-50% 0.696 0.687 0.724 0.719 0.919 0.916

Perturbed-70% 0.441 0.459 0.507 0.536 0.726 0.742

Table A.3: Comparing Naive Bayes Baseline and Augmented Model Performance on Different Generated Datasets
As before, comparisons are made on the test set.
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Dataset
Accuracy Precision Top-5

Base Model Aug. Model Base Model Aug. Model Base Model Aug. Model
Baseline 0.571 0.557 0.612 0.602 0.845 0.835

Min. 2 Symptoms 0.638 0.654 0.660 0.669 0.901 0.906

Min. 3 Symptoms 0.699 0.749 0.726 0.757 0.930 0.946

Min. 4 Symptoms 0.752 0.830 0.793 0.838 0.947 0.970

Min. 5 Symptoms 0.802 0.888 0.842 0.895 0.957 0.983

Mean Injected 0.286 0.454 0.340 0.469 0.560 0.735

Max Injected 0.100 0.574 0.177 0.584 0.271 0.794

Min. Injected 0.451 0.507 0.478 0.528 0.743 0.789

Perturbed-10% 0.580 0.569 0.623 0.616 0.855 0.847

Perturbed-20% 0.589 0.580 0.636 0.631 0.865 0.858

Perturbed-30% 0.533 0.535 0.578 0.584 0.818 0.819

Perturbed-50% 0.679 0.683 0.705 0.710 0.915 0.916

Perturbed-70% 0.407 0.499 0.465 0.563 0.709 0.784

Table A.4: Comparing Random Forest Baseline and Augmented Model Performance on Different Generated Datasets

A.3. Performance of MLP on Generated Datasets

Dataset
Accuracy Precision Top-5

NB RF MLP NB RF MLP NB RF MLP
Baseline 0.588 0.571 0.588 0.633 0.612 0.630 0.853 0.845 0.855

Min. 2 Symptoms 0.669 0.638 0.662 0.690 0.660 0.691 0.913 0.901 0.911

Min. 3 Symptoms 0.734 0.699 0.729 0.764 0.726 0.763 0.941 0.930 0.941

Min. 4 Symptoms 0.789 0.752 0.785 0.827 0.793 0.827 0.957 0.947 0.955

Min. 5 Symptoms 0.836 0.802 0.833 0.876 0.842 0.874 0.966 0.957 0.966

Mean Injected 0.312 0.286 0.333 0.380 0.340 0.392 0.563 0.560 0.585

Max Injected 0.099 0.100 0.127 0.207 0.177 0.228 0.234 0.271 0.275

Min Injected 0.480 0.451 0.492 0.515 0.478 0.521 0.754 0.743 0.766

Perturbed-10% 0.594 0.580 0.595 0.642 0.623 0.639 0.861 0.855 0.863

Perturbed-20% 0.600 0.589 0.601 0.653 0.636 0.650 0.867 0.865 0.870

Perturbed-30% 0.549 0.533 0.551 0.599 0.578 0.598 0.826 0.818 0.828

Perturbed-50% 0.696 0.679 0.695 0.724 0.705 0.721 0.919 0.915 0.922

Perturbed-70% 0.441 0.407 0.450 0.507 0.465 0.509 0.726 0.709 0.738

Table A.5: Comparing Baseline MLP, Naive Bayes and Random Forest on Different Generated Datasets





B
Qualitative Evaluation of Model Predictions

B.1. ICD-10 Code Blocks
The table below shows the grouping for ICD-10 classification codes.

Chapter Block Title
I A00–B99 Certain infectious and parasitic diseases
II C00–D48 Neoplasms

III D50–D89
Diseases of the blood and blood-forming organs
and certain disorders involving the immune mechanism

IV E00–E90 Endocrine, nutritional and metabolic diseases
V F00–F99 Mental and behavioural disorders
VI G00–G99 Diseases of the nervous system
VII H00–H59 Diseases of the eye and adnexa
VIII H60–H95 Diseases of the ear and mastoid process
IX I00–I99 Diseases of the circulatory system
X J00–J99 Diseases of the respiratory system
XI K00–K93 Diseases of the digestive system
XII L00–L99 Diseases of the skin and subcutaneous tissue
XIII M00–M99 Diseases of the musculoskeletal system and connective tissue
XIV N00–N99 Diseases of the genitourinary system
XV O00–O99 Pregnancy, childbirth and the puerperium
XVI P00–P96 Certain conditions originating in the perinatal period
XVII Q00–Q99 Congenital malformations, deformations and chromosomal abnormalities

XVIII R00–R99
Symptoms, signs and abnormal clinical
and laboratory findings, not elsewhere classified

XIX S00–T98 Injury, poisoning and certain other consequences of external causes
XX V01–Y98 External causes of morbidity and mortality
XXI Z00–Z99 Factors influencing health status and contact with health services
XXII U00–U99 Codes for special purposes

Table B.1: ICD-10 Code Blocks
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B.2. Confusion Comparison for Selected Models
The table below compares the Naive Bayes Random Forest and MLP for selected conditions and shows the
top 5 mis-classifications for each of the selected conditions.

Condition Naive Bayes Random Forest MLP

Acute
Bronchitis
(J20.9)

COPD (J44.9) COPD (J44.9) COPD (J44.9)
Acute Bronchospasm (J98.01) Acute Bronchospasm (J98.01) Acute Bronchospasm (J98.01)
Common Cold (J00) Common Cold (J00) Common Cold (J00)
Asthma (J45.9) Bronchiectasis (J47) Asthma (J45.9)
Croup (J05.0) Asthma (J45.9) Bronchiectasis (J47)

Acute Sinusitis
(J01.9)

Chronic Sinusitis (J32.9) Chronic Sinusitis (J32.9) Chronic sinusitis (J32.9)
Nose Disorder (J34) Nose Disorder (J34) Nose disorder (J34)
Common Cold (J00) Common Cold (J00) Common Cold (J00)
Abscess of nose (J34.0) Abscess of nose (J34.0) Abscess of nose (J34.0)
Strep. Throat (J02.0) Nasal polyp (J33.9) Abscess of the pharynx (J39.1)

Asthma (J45.9)

COPD (J44.9) ARDS (J80) COPD (J44.9)
Acute bronchospasm (J98.01) Pulmonary congestion (J81) ARDS (J80)
ARDS (J80) Acute bronchospasm (J98.01) Acute bronchospasm (J98.01)
Croup (J05.0) Acute bronchiolitis (J21.9) Croup (J05.0)
Pulmonary fibrosis (J84.10) Pulmonary fibrosis (J84.10) Pulmonary congestion (J81)

Table B.2: Confusion Comparison for Selected Respiratory Infections
ICD-10 codes are shown as well.

Condition Naive Bayes Random Forest MLP

Acute
pancreatitis
(K85.9)

Cholecystitis (K81.9) Cholecystitis (K81.9) Cholecystitis (K81.9)
Gallstone (K80) Gallstone (K80) Gallstone (K80)
Crohn disease (K50.9) Chronic pancreatitis (K86.1) Persistent Vomiting (R11)
Gallbladder disease (K82.9) Crohn disease (K50.9) Crohn disease (K50.9)
Persistent vomiting (R11) Gallbladder disease (K82.9) Gallbladder disease (K82.9)

Appendicitis
(K37)

Diverticulitis (K57.3) Diverticulitis (K57.3) Diverticulitis (K57.3)
Peritonitis (K65.9) Crohn disease (K50.9) Ovarian cyst (N83.2)
Crohn disease (K50.9) Persistent Vomiting (R11) Peritonitis (K65.9)
Noninfectious gastroenteritis (K52.9) Noninfectious gastroenteritis (K52.9) Crohn disease (K50.9)
Persistent vomiting (R11) Peritonitis (K65.9) Persistent Vomiting (R11)

Chronic
constipation
(K59.00)

Intestinal obstruction (K56.6) Hirschsprung disease (Q43.1) Hirschsprung disease (Q43.1)
Hirschsprung disease (Q43.1) Intestinal obstruction (K56.6) Intestinal obstruction (K56.6)
Crohn disease (K50.9) Diverticulosis (K57) Crohn disease (K50.9)
Ileus (K56.7) Hashimoto thyroiditis (E06.3) Gallbladder cancer (C23)
Diverticulosis (K57) Crohn disease (K50.9) Diverticulosis (K57)

Table B.3: Confusion Comparison for Selected Gastro-Intestinal Infections
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Condition Naive Bayes Random Forest MLP

Cystitis
(N30.9)

Benign blood in urine (R31) Benign blood in urine (R31) Benign blood in urine (R31)
Urethral disorder (N36.9) Urethral disorder (N36.9) Urethral disorder (N36.9)
Bladder disorder (N32.9) Bladder disorder (N32.9) Bladder disorder (N32.9)
Urge incontinence (N39.4) Urge incontinence (N39.4) Urge incontinence (N39.4)
Urethral stricture (N35.9) Urethral stricture (N35.9) Urethral stricture (N35.9)

Pyelonephritis
(N12)

Kidney stone (N20.0) Kidney stone (N20.0) Kidney stone (N20.0)
Urinary tract infection (N39.0) Urinary tract infection (N39.0) Urinary tract infection (N39.0)
Peritonitis (K65.9) Hydronephrosis (N13.3) Peritonitis (K65.9)
Hydronephrosis (N13.3) Peritonitis (K65.9) Hydronephrosis (N13.3)
Benign kidney cyst (N28.1) Benign kidney cyst (N28.1) Benign kidney cyst (N28.1)

Urethritis
(N34.1)

Urethral stricture (N35.9) Urethral stricture (N35.9) Urethral stricture (N35.9)
Gonorrhea (A54.9) Cystitis (N30.9) Gonorrhea (A54.9)
Chlamydia (A56) Gonorrhea (A54.9) Benign blood in urine (R31)
Benign blood in urine (R31) Phimosis (N47) Phimosis (N47)
Urethral disorder (N36.9) Benign blood in urine (R31) Prostatitis (N41.9)

Table B.4: Confusion Comparison for Selected Urinary Tract Infections
ICD-10 codes are shown as well

B.3. Comparing Top-5 Model Predictions
For the same set of conditions as above, this table shows the top 5 most commonly occurring conditions given
that the prediction is Top-5 accurate. In other words, if the actual condition is in the top-5 predictions, the
tables below show the top 5 other conditions which are included in the differential diagnosis.

Condition Naive Bayes Random Forest MLP

Acute
Bronchitis
(J20.9)

COPD (J44.9) COPD (J44.9) COPD (J44.9)
Acute bronchospasm (J98.01) Acute bronchospasm (J98.01) Acute bronchospasm (J98.01)
Asthma (J45.9) Asthma (J45.9) Asthma (J45.9)
Pneumonia (J18.9) Pneumonia (J18.9) Pneumonia (J18.9)
Interstitial lung disease (J84.9) Poisoning due to gas (Y17.9) Interstitial lung disease (J84.9)

Acute sinusitis
( J01.9)

Chronic sinusitis (J32.9) Chronic sinusitis (J32.9) Chronic sinusitis (J32.9)
Nose disorder (J34) Nose disorder (J34) Nose disorder (J34)
Abscess of nose (J34.0) Hay fever (J30.1) Hay fever (J30.1)
Hay fever (J30.1) Abscess of nose (J34.0) Abscess of nose (J34.0)
Common cold (J00) Common cold (J00) Abscess of the pharynx (J39.1)

Asthma (J45.9)

Acute bronchospasm (J98.01) COPD (J44.9) COPD (J44.9)
COPD (J44.9) Acute bronchospasm (J98.01) Acute bronchospasm (J98.01)
ARDS (J80) ARDS (J80) ARDS (J80)
Croup (J05.0) Croup (J05.0) Croup (J05.0)
Acute bronchiolitis (J21.9) Acute bronchiolitis (J21.9) Acute bronchitis (J21.9)

Table B.5: Top 5 Commonly Included Predictions for Selected Respiratory Infections
ICD-10 codes included
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Condition Naive Bayes Random Forest MLP

Acute
pancreatitis
(K85.9)

Cholecystitis (K81.9) Choledocholithiasis (K80.5) Gallstone (K80)
Gallstone (K80) Cholecystitis (K81.9) Choledocholithiasis (K80.5)
Choledocholithiasis (K80.5) Gallstone (K80) Cholecystitis (K81.9)
Gallbladder disease (K82.9) Gallbladder disease (K82.9) Gallbladder disease (K82.9)
Chronic pancreatitis (K86.1) Chronic pancreatitis (K86.1) Chronic pancreatitis (K86.1)

Appendicitis
(K37)

Diverticulitis (K57.3) Diverticulitis (K57.3) Diverticulitis (K57.3)
Peritonitis (K65.9) Peritonitis (K65.9) Peritonitis (K65.9)
Ileus (K56.7) Ileus (K56.7) Ileus (K56.7)
Noninfectious gastroenteritis (K52.9) Ovarian cyst (N83.2) Pyelonephritis (N12)
Infectious gastroenteritis (A09.0) Ischemia of the bowel (K55.9) Infectious gastroenteritis (A09.0)

Chronic
constipation
(K59.00)

Diverticulosis (K57) Intestinal obstruction (K56.6) Diverticulosis (K57)
Intestinal obstruction (K56.6) Diverticulosis (K57) Intestinal obstruction (K56.6)
Ileus (K56.7) Ileus (K56.7) Ischemia of the bowel (K55.9)
Ischemia of the bowel (K55.9) Hirschsprung disease (Q43.1) Ileus (K56.7)
Hirschsprung disease (Q43.1) Ischemia of the bowel (K55.9) Colonic polyp (K63.5)

Table B.6: Top 5 Commonly Included Predictions for Selected Digestive Infections

Condition Naive Bayes Random Forest MLP

Cystitis
(N30.9)

Benign blood in urine (R31) Benign blood in urine (R31) Benign blood in urine (R31)
Urinary tract infection (N39.0) Urethral disorder (N36.9) Urinary tract infection (N39.0)
Urethral disorder (N36.9) Urinary tract infection (N39.0) Urethral disorder (N36.9)
Bladder disorder (N32.9) Bladder disorder (N32.9) Bladder disorder (N32.9)
Urinary tract obstruction (N13.9) Urge incontinence (N39.4) Urinary tract obstruction (N13.9)

Pyelonephritis
(N12)

Urinary tract infection (N39.0) Urinary tract infection (N39.0) Urinary tract infection (N39.0)
Kidney stone (N20.0) Kidney stone (N20.0) Kidney stone (N20.0)
Peritonitis (K65.9) Peritonitis (K65.9) Hydronephrosis (N13.3)
Hydronephrosis (N13.3) Hydronephrosis (N13.3) Peritonitis (K65.9)
Polycystic kidney disease (Q61.3) Benign kidney cyst (N28.1) Pelvic inflammatory disease (N73.9)

Urethritis
(N34.1)

Chlamydia (A56) Chlamydia (A56) Chlamydia (A56)
Gonorrhea (A54.9) Gonorrhea (A54.9) Gonorrhea (A54.9)
Cystitis (N30.9) Cystitis (N30.9) Prostatitis (N41.9)
Prostatitis (N41.9) Prostatitis (N41.9) Balanitis (N48.1)
Urethral disorder (N36.9) Benign blood in urine (R11) Phimosis (N47)

Table B.7: Top 5 Commonly Included Predictions for Selected Genitourinary Infections
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Eric Larson, CJ Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake Vand erPlas, Denis Laxalde, Josef Perk-
told, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R Harris, Anne M. Archibald, Antônio H.
Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1. 0 Contributors. SciPy 1.0: Fundamental
Algorithms for Scientific Computing in Python. Nature Methods, 17:261–272, 2020.

[25] Wes McKinney. Data Structures for Statistical Computing in Python. In Stéfan van der Walt and Jarrod
Millman, editors, Proceedings of the 9th Python in Science Conference, pages 56 – 61, 2010.

[26] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[27] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science Engineering, 9(3):90–95,
2007.

[28] LF Projects LLC. Mlflow. https://mlflow.org/. Accessed: 2020-08-05.

[29] Dennis W Ruck, Steven K Rogers, Matthew Kabrisky, Mark E Oxley, and Bruce W Suter. The multilayer
perceptron as an approximation to a bayes optimal discriminant function. IEEE Transactions on Neural
Networks, 1(4):296–298, 1990.

[30] Yiling J. Cheng, Alka M. Kanaya, Maria Rosario G. Araneta, Sharon H. Saydah, Henry S. Kahn, Edward W.
Gregg, Wilfred Y. Fujimoto, and Giuseppina Imperatore. Prevalence of Diabetes by Race and Ethnicity in
the United States, 2011-2016. JAMA, 322(24):2389–2398, 12 2019.

[31] Riccardo Miotto, Li Li, and Joel T. Dudley. Deep learning to predict patient future diseases from the elec-
tronic health records. In Nicola Ferro, Fabio Crestani, Marie-Francine Moens, Josiane Mothe, Fabrizio
Silvestri, Giorgio Maria Di Nunzio, Claudia Hauff, and Gianmaria Silvello, editors, Advances in Informa-
tion Retrieval, pages 768–774, Cham, 2016. Springer International Publishing.

[32] Weinan Zhang, Tianming Du, and Jun Wang. Deep learning over multi-field categorical data. Advances
in Information Retrieval, page 45–57, 2016.

http://qce-it-infra.ewi.tudelft.nl/qce_cluster.html
http://qce-it-infra.ewi.tudelft.nl/qce_cluster.html
https://slurm.schedmd.com/overview.html
https://sylabs.io/guides/3.6/user-guide/introduction.html
https://mlflow.org/

	List of Figures
	List of Tables
	Introduction
	Motivating the Research
	Problem Statement and Research Questions
	Outline of the Thesis

	Differential Diagnosis and Machine Learning: An Introduction
	Background
	Automated Differential Diagnosis
	Differential Diagnosis as a Machine Learning Problem
	Machine Learning Models
	Generative Models
	Discriminative Models
	Multilayer Perceptrons

	Types of Data
	Model Evaluation Metrics
	Classification Accuracy
	Recall
	Precision
	Top-N Accuracy

	Overview of the Machine Learning Pipeline
	Data Collection
	Data Processing and Feature Extraction
	Model Training and Evaluation


	Data Generation
	Synthea: A Synthetic Patient Generator
	Synthea Architecture
	The Synthea Limitation

	Symcat
	Combining Symcat and Synthea
	Generating Data
	A Note on Synthetic Data Generation

	Methodology and Approach
	Data Processing Steps
	Mimicking Real Data
	Baseline
	Minimum Number of Symptoms
	Perturbed Symptom Presentation Probability
	Symptom Injection
	Data Augmentation

	Model Evaluation Metric Selection
	Selected Models
	Naive Bayes
	Random Forest
	Multilayer Perceptrons

	Computing Platform and Technology Stack

	Results and Discussion
	Performance on Baseline Data
	Limits on the Accuracy of the Models
	Confusion Matrix
	Comparing the Top-5 Predictions
	Posterior Estimate Comparisons

	Non-Baseline Data
	Varying Minimum Number of Symptoms
	Perturbed Symptom Presentation Probability
	Symptom Injection

	Baseline Model Performance on Modified Datasets 
	Augmented Model Performance on Modified Datasets
	Evaluation of the Multilayer Perceptron
	Summary and Discussion

	Conclusion and Recommendations
	Problem Statement and Research Questions Revisited
	Recommendations

	Model Comparison Data 
	Baseline Based Model Performance on Generated Datasets
	Effect of Data Augmentation on Model Performance on Generated Datasets
	Performance of MLP on Generated Datasets

	Qualitative Evaluation of Model Predictions
	ICD-10 Code Blocks
	Confusion Comparison for Selected Models
	Comparing Top-5 Model Predictions

	Bibliography

