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Abstract

The MICROSCOPE mission launched on April 25th 2016 represents the first space-based test of the Equiva-
lence Principle, one of the foundational pillars of the well-known Einstein’s theory of General Relativity es-
tablished in 1915. This principle is indeed challenged by some theories attempting to unify General Relativity
and Quantum Mechanics, such as the string theory. The MICROSCOPE mission therefore intents to confirm
or overturn the Equivalence Principle by testing one of its basis, known as the universality of free-fall, with
an unrivaled precision objective of 10−15 (meaning a precision a hundred times higher than the one obtained
with the current experiment set-up on Earth). The test is performed by means of a differential accelerome-
ter, on board a drag-free microsatellite, in which two test-masses of different materials are held on the same
trajectory by means of electrostatic forces. The masses are concentric coaxial cylinders, each surrounded by
a set of electrodes allowing both detection and control of the test-mass position in six degrees of freedom
(3 translations and 3 rotations). A difference observed in the the forces required to maintain their common
center of mass would prove a violation of the universality of free fall, and hence, of the Equivalence Princi-
ple. If an EP violation should be pointed out, this would involve that Einstein’s General Relativity theory, on
which is based all modern physics, has to be completed. On the contrary, if no violation should be identi-
fied by the mission, this would bring additional constraints on some alternative theories predicting an EP
violation, and thus would represent a step forward for the Science field. Because of the high sensitivity of
the instrument, the measurement precision is limited by a number of perturbations. Among these pertur-
bations, the knowledge of certain instrument parameters (inertial or dimensional) is crucial for the accuracy
of the computations. These parameters nonetheless cannot be estimated on-ground with the required pre-
cision. Dedicated in-orbit calibration sessions have therefore been designed and implemented within the
mission scenario to finely characterize some of them and thus correct the measurement. Various other per-
turbations are taken into account during the data processing, such as saturation events due to the satellite
environment (impact with micrometerotites), instrument noise, random thermal fluctuations and data gaps
in the measurement (caused by transmission losses or outliers). A protocol has thus been elaborated to care-
fully process the scientific data. The first results of the experiment released on December 2017, and based
on 120 orbits among the 1900 realized so far by the microsatellite, have allowed to deduce the non-violation
of the Equivalence Principle with an accuracy of about 2 · 10−14 (improvement of one order of magnitude
compared to the current most precise on-ground experiments). Nonetheless, these first results have been
computed with conservative upper limits for some errors, such as coupling defects and thermal sensitivity.
The data collection will continue until the end of the mission in October 2018. The processing of the addi-
tional scientific data will allow a more thorough analysis of the errors perturbing the measurement, and thus
the design of more accurate models for the overestimated perturbations, leading to an improvement of the
mission performance. This is the purpose of this Master thesis project.

Keywords: MICROSCOPE microsatellite, satellite instrumentation, test of the Equivalence Principle, satellite
data processing, electrostatic accelerometer, coupling defects, thermal sensitivity
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Introduction

For decades, fundamental physics has been able to accurately interpret an ever wider range of phenomena,
going from the cosmological universe to the quantum world of particles, but it is now facing new challenges in
its attempt to fully explain the dynamics of celestial bodies at the scales of galaxies. The dynamics of bodies
separated by astrophysical distances, is driven by a fundamental interaction named gravitation and accu-
rately described by the General Theory of Relativity developed by the well-known physicist Albert Einstein in
1915 [8]. The general relativity is a geometric theory describing the gravitational interaction as an effect of
the space-time curvature, due to the mass and energy it contains. This theory has been proven remarkably
accurate and robust through several experiments over the last century [32], such as, recently, the direct obser-
vation of gravitational waves from a binary black hole merger as predicted by the general relativity [6]. These
tests have allowed to confirm, with the precision of experimental means, the compatibility of the theory with
observations.

The general theory of relativity is based on the Equivalence Principle, providing that all bodies fall in the same
way in a uniform gravitational field, irrespective of their internal structure, mass and composition. The uni-
versality of free fall, stating that in a uniform gravitational field, the acceleration undergone by any particle
is independent of its nature, is a concrete consequence of the Equivalence Principle. This statement leads to
the equality between the gravitational mass of a body, representing the intensity of the gravitational force un-
dergone by it, and its inertial mass, determining its ability to oppose any movement or modification of state
imparted to it. In other terms, the effects on a body of a constant acceleration, and of a uniform gravitational
field cannot be distinguished. This last formulation is named the Weak Equivalence Principle (WEP). Einstein
later extended the WEP to the invariance of all laws of physics for an observer in free-fall within a uniform
gravitational field, referred to as the Einstein Equivalence Principle (EEP) [19].
Nonetheless, the physicists Stephen Hawking and Roger Penrose’s singularity theorem, produced in 1970 [20],
suggests that the standard model of general relativity and particle physics is incomplete in that it cannot fully
explain the origin of the universe known as the "Big Bang" singularity. Indeed, the “Big Bang” singularity is
a point of space-time where the theory necessarily breaks down. Theorists are therefore currently trying to
elaborate a unified theory of both quantum and cosmological scales. Some of these theories, such as the
string theory [24], predict the existence of new interactions which could depend on the composition of the
particles, and therefore challenge the Equivalence Principle. To confirm or rule out the new theoretical devel-
opments, the general theory of relativity needs to be more precisely tested by experimenting one of its pillars:
the WEP.

Since the beginning of the 17th century, several experiments have been undertaken in order to test the Equiv-
alence Principle [11]. The most precise test developed up to now is the lunar laser-ranging (LLR) method,
using the precise measurement of the distance separating the Moon from the Earth over a long period of time
provided by laser telemetry to investigate the fall of the Moon within the Sun’s gravitational field [35]. The
current state-of-the-art ground-based WEP tests reach a precision of the order of 10−13, but are nonetheless
limited by instabilities inherent to the near-Earth environment, such as the non-uniformity of the gravita-
tional field, thermal fluctuations and sismic perturbations. A space-based experiment would overcome these
limitations and thus allow a more precise test.

The MICROSCOPE space mission, developed by the French national center for space studies (referred to as
CNES), represents the first space-based test of the equivalence principle, and will attempt to achieve an un-
rivaled precision of 10−15 [28] (two orders of magnitude better than the best ground-based results to date).
The experiment consists in a modified free-fall test in which two test-masses are maintained on the same
trajectory by means of electrostatic forces. A difference observed in the forces necessary to maintain the test-
masses common center of mass will indicate a violation of the equivalence principle. The MICROSCOPE mis-
sion was successfully launched on April 25th, 2016 from Kourou, French Guyana and placed on a near-polar,
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xviii 0. Introduction

quasi-circular Sun-synchronous orbit at an altitude of 711 kilometers. The satellite carries on-board the T-
SAGE Experiment (standing for Twin Space Accelerometers for space Gravity Experiment). This experiment,
constituting the only payload of the 330-Kg satellite, is composed of two differential electrostatic accelerom-
eters developed by the French national aerospace research center (referred to as ONERA). Each electrostatic
accelerometer computes the acceleration of two concentric cylindrical and coaxial test-masses. In the ac-
celerometer referred to as SUREF, the two test-masses have the same composition: a platinum-rhodium alloy.
SUREF is used both as a calibration and as an experimental reference. In the second accelerometer, referred
to as SUEP, the two test-masses have a different composition: the inner mass is made of a titanium alloy while
the outer mass is made of the same platinum-rhodium as in the SUREF accelerometer. The test-masses are
servo-controlled by surrounding electrodes which maintain them at the center of the accelerometer sensor
cages by applying small accelerations. Thanks to this servo-control loop, each test-mass is maintained on the
same trajectory and undergo the same gravitational field. The instruments are designed to operate in orbit,
where only very weak accelerations are required to maintain the masses position. The signal investigated
during the mission is then the difference between the electrostatic accelerations applied by the electrodes
to the internal and external test-masses, projected on the test-masses longitudinal axis (named the sensi-
tive axis of the accelerometer) and referred to as the differential acceleration. These projected accelerations
vary during an orbit revolution because of the satellite attitude control. A violation of the weak equivalence
principle would thus be highlighted by a periodic characteristic difference observed between the measured
accelerations of the SUEP test-masses. In order to improve the precision of the measurements, additional
servo-loops have been set up to reduce non-gravitational accelerations for the six degrees of freedom of the
satellite (three translations and three rotations). This is achieved by cold gas microthrusters driven by the
measurements provided by the accelerometers.

The success of the MICROSCOPE mission relies on a thorough and careful data analysis to point out a possible
signal of a WEP violation among time variations observed in the data caused by other physical phenomena
such as perturbations due to the instrument imperfections. Some of the perturbations, such as small mis-
alignments in the satellite design, can be accurately modeled and corrected; Some other perturbations oc-
cur at frequencies different than the equivalence principle test, and thus induce a bias in the measurement.
These perturbations, coupled with unpredictable events within the satellite, or in the satellite environment,
could limit the accuracy of the MICROSCOPE experiment. The instruments must therefore be carefully char-
acterized to identify the effects of any imperfections, and to measure the sensitivity of the instrument to its
environment.

A scientific article presenting the first results of the MICROSCOPE experiment has been released on Decem-
ber 2017 [29]. Up to now, the results have allowed to deduce a non-violation of the WEP with a precision of
about 2 ·10−14, constituting an improvement of one order of magnitude in comparison with the current most
precise on-ground experiments. Nonetheless, the results have been computed with conservative upper limits
for some errors, such as coupling defects and thermal sensitivity. The forthcoming sessions of the mission
will thus be dedicated to a more detailed analysis of the systematic errors, by integrating the signal of the
differential accelerometer over longer periods of time. The design of more accurate models for the overesti-
mated errors, from the analysis of the additional scientific data available by the end of the mission (in October
2018), will allow an improvement of the mission performance, and thus to get closer to the mission precision
objective. This is the purpose of this Master thesis project. The thesis will therefore carefully investigate the
various ways in which the instrumental model used for the MICROSCOPE data processing can be improved.
A thorough and detailed study of satellite data processing and space instrumentation as well as an in-depth
analysis of the satellite environment and mission scenario will be essential in the completion of the research
objective.

The chapter 1 will review the motivation for a weak equivalence principle test as well as the state-of-the-art
experiments in this area. The chapter 2 will present the MICROSCOPE satellite as well as the T-SAGE exper-
iment. This chapter will lead to the formulation of the measurement equation, and the description of the
various perturbations to take into account in the data processing. The following chapters will be dedicated to
the improvement of the model used for some perturbations limiting the measurement precision: the chap-
ter 3 will present a plan to thoroughly estimate the coupling factors of the instrument, while the chapter 4 will
investigate the instrument thermal sensitivity.
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This first chapter will introduce the challenges of the MICROSCOPE space mission: the motivations for an
Equivalence Principle test will be developed, and the current state-of-the-art experiments in this field, as
well as their limits, will be thoroughly presented.

1.1. The Equivalence Principle
As previously stated in the introduction, the MICROSCOPE mission aims at testing the Equivalence Princi-
ple through one of its foundation, known as the universality of free fall. Although this phenomenon can be
observed in nature, it however has no theoretical basis.

Newton was the first physicist to distinguish between an inertial mass mI , defining the ability of a body to
oppose any movement or modification of state that is imparted on it, and a gravitational mass mg , which
represents the intensity of the gravitational force undergone by a body. Throughout his investigation of the
gravity behavior, Newton noticed that the gravitational acceleration does not depend on the composition of
the masses [12], and hence, that the inertial mass mI is proportional to the gravitational mass mg . The as-
sumption of the equality of the two masses is known as the Weak Equivalence Principle (WEP) and constitutes
the first manifestation of the equivalence principle. It has been verified by Newton in 1686 with a precision of
about 10−3, by means of pendulums made of various materials [14]. The Eötvös parameter is defined as the
difference in acceleration undergone by two test bodies exposed to the same gravitational field:

η1,2 = a1 −a2

(a1 +a2)/2
= 2

mg ,1

mI ,1
− mg ,2

mI ,2

mg ,1

mI ,1
+ mg ,2

mI ,2

The WEP can therefore be translated into ηi , j = 0 for all bodies i and j.

Over two hundred years later, Einstein expanded the WEP, proposing the complete equivalence between an
accelerated reference frame and a reference frame in a gravitational field, as a foundation for the General
Relativity (geometric theory interpreting the gravitational interaction as an effect of the curvature of space-
time due to the mass and energy it contains [1]). The Einstein Equivalence Principle (EEP) can be summarized
by three conditions:

1
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• The WEP is valid

• Non-gravitational experiments are independent of the velocity of their reference frame (referred to as
the local Lorentz invariance)

• Non-gravitational experiments are independent of when and where they are performed (referred to as
the local position invariance)

A theory violating the WEP would automatically violate the EEP; a theory satisfying the WEP but violating
the EEP could be possible, but yet hard to imagine ([10] gives an example of particles that would spin while
falling, betraying the effect of gravitation).

The equivalence principle has not only profound implications on the nature of spacetime, but leads to physi-
cal effects that can be inferred from it without writing any relativistic equation. It constitutes one of the pillars
of the theory of General Relativity, which is, up to now, the most accurate theory describing the gravitational
interaction. This theory has allowed to describe several phenomenon, both qualitatively and quantitatively
with a high accuracy, such as the existence of gravitational waves generated from black hole mergers([5]), the
gravitational redshift ([25]), and the perihelion advance of Mercury ([23]). Nonetheless, some phenomenon
observed, especially at large astronomical scales, remain unexplained by the theoretical development stated.
This suggests a need to perform ever more accurate tests of general relativity.

1.2. Interests of an Equivalence Principle test

As previously introduced, although General Relativity has been verified experimentally, it is not, at present,
considered as a complete theory. It is indeed unable to explain some anomalies observed in astrophysics,
such as the accelerating expansion of the universe (investigated from the observation of supernovae [26]).
This anomaly has been regarded as a proof of the existence of a dark energy provided with a negative pressure
tending to accelerate the expansion of the universe. However, this anomaly could also result from deviations
from the theory of General Relativity. This type of anomaly encourages the need for ever precise tests of the
theory.

Moreover, there is a well-known contradiction between the two different descriptions of the world currently
available known as the geometric theory of gravitation and the quantum field theory. This contradiction
motivates the development of a gravitational theory compatible with the Standard Model describing the
three other fundamental forces (weak, strong and electromagnetic). Some new theoretical developments are
therefore currently investigated to unify both the quantum and the gravitational theory. Among these trials
are string theory models which try to unify all fundamental interactions and postulate that particles can be
modeled by one-dimensional strings whose vibrational state determines the properties of the particles. One
of these states gives rise to a particle, named graviton, carrying the gravitational interaction. Nonetheless,
string theory models can lead to violations of the equivalence principle at different levels ([33]): a violation
anywhere from 10−14 to 10−23 could be possible. An equivalence principle test is therefore of great interest
for the progress toward unification of the fundamental interactions. The confirmation of equivalence, to any
accuracy, would increase the range of confirmed validity of general relativity, and also places more stringent
constraints on modern theories.

1.3. On-ground experimental tests of the Equivalence Principle: State-of-
the-art

The previous subsection showed that a modification of general relativity in an effort to build a universal the-
ory of astronomic and quantum scales may lead to a violation of the equivalence principle, motivating the
need for a more precise test than previous experiments. Numerous tests of the equivalence principle cur-
rently exist. Free fall testing offers a direct measurement of the ratio between the inertial and the gravitational
mass, and thus, a direct verification of the WEP. This subsection will briefly review the most accurate exper-
imental tests of the WEP that have been performed up to now: the torsion pendulum experiment and the
lunar laser telemetry. A given WEP experimental test is characterized by three main parameters: the nature
of the test bodies investigated, the gravitational source used, and the range of the gravitational interac-
tion.
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Torsion pendulum experiment

In 1885, the physicist Lorànd Eötvöst implemented a WEP experiment based on a torsion pendulum. The in-
strument consists in two test-masses, made of different material, attached at both ends of an ideally massless
rigid frame (also named rod) supported by a torsion fiber as illustrated Figure 1.1. The suspension point is
chosen to annul the torque caused by the gravitational forces undergone by the test-masses.

Figure 1.1: Illustration of the torsion pendulum experiment [31]

On Figure 1.1, ~F1 and ~F2 denote the resulting external forces undergone respectively by the test-masses 1 and
2, ~r12 represents the vector joining the two ends of the horizontal frame. The torque Tz about the fiber axis is
expressed by the following relation:

TZ = (~F1 × ~F2) · ~r12

||~F1 + ~F2||
(1.1)

The term (~F1 × ~F2) in the previous relation shows that the torque on the wire depends on the angle between
~F1 and ~F2. A WEP violation would be expressed by an inequality of the ratios of the gravitational and inertial

forces
(

FG ,k
FI ,k

,k = 1,2
)

of the two test-masses. A difference observed between these two ratios would mean that

the resulting external forces ~F1 and ~F2 applied on the two test-masses are not parallel. According to Equa-
tion 1.1, a non-null torque would therefore be induced about the fiber axis. This would result in a rotation
of the horizontal frame with respect to its initial position (eventually stopped by the wire stiffness). Torsion
pendulums thus permit extremely sensitive WEP experiments because they only respond to a difference in
the directions of the resulting external forces applied on the two test-masses, not to a difference in their mag-
nitude. The principle of the experiment allows instruments with tolerances of the order of 10−5 to make
measurements with a much higher precision. In 1889, this process allowed Eötvös and his team to obtain a
precision of 10−9. Then, the Dicke’s experiment, located in Princeton, reached a precision of about 10−11 in
1965 [27], followed by the Braginsky’s experiment in Moscow with a precision of 10−12 on the Eötvös param-
eter [9].

These experiments are nonetheless limited by the inhomogeneity of the gravitational field and by imperfec-
tions in the geometry of the instrument, causing small gravity gradients and thus inducing a slight difference
in the directions of the resulting external forces undergone by the two masses. A better resolution of a WEP
violation can however be obtained by rotating the torsion pendulum with respect to the gravitational attrac-
tor, in order to make the signal of interest sinusoidal. The experiments of both the Princeton and Moscow
groups mentioned above used the Sun as the gravitational attractor and let the rotation of the Earth provide
the rotation of the instrument. This configuration nonetheless has some disadvantages, such as the weakness
of the gravitational source and the distance between the attractor and the test-bodies (149.6 ·106 kilometers).
Besides, the noise sources increase when the frequency decreases.

At the end of the 20th century, the Eötvös Washington group managed to improve the torsion pendulum
experiment by means of plates rotating with varying frequency in the Earth’s gravitational field [31]. An ap-
propriate arrangement of masses around the instrument as well as a horizontal and rotational symmetry of
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the design were implemented in order to limit the local gravitational gradients. To improve the precision
of the experiment, the Eötvos-Washington group settled several other devices such as a vacuum chamber
to reduce the air drag, thermal shields, and a control of the alignment of the wire with the local vertical. The
measurement of the pendulum twist is achieved through the auto-collimation of an optical device. With these
improvements implemented, the best precisions reached up to now are 1.8·10−13 for beryllium-titanium test-
bodies and 1.5 ·10−13 for beryllium-aluminum test-bodies [16]. Currently, the main limitations of the torsion
pendulum test can be divided into, on the one hand, the systematic errors due to time-dependent local gra-
dients, and on the other hand, the thermal fluctuations from the damping losses of the wire. Moving away
from on-ground gravity and thermal fluctuations by setting the test in space would allow a better control of
the mentioned error sources.

Lunar laser ranging

The WEP can also be experimented by considering astronomical bodies. The Lunar Laser Ranging (LLR), or
lunar laser telemetry, provides time series of precise measurements of the distance separating the Earth from
the Moon. The valuable information provided by this data allows to determine if, according to the WEP, both
celestial bodies fall within the gravitational field of the Sun at the same rate, in spite of their different com-
positions, masses and gravitational energies. The particularity of LLR experiment compared to the torsion
pendulum tests is that it involves massive bodies with masses not negligible regarding the surrounding grav-
itational field.

The WEP test uses precise measurement of the distance between the Earth and the Moon over a long period
of time, provided by laser telemetry. The LLR relies on the emission and reception by a ground-based tele-
scope of a laser pulse between an on-ground station and a retroreflector cube placed on the Moon’s surface.
The lunar retroflectors were installed during the American manned space mission Apollo 11, 14, 15, and by
the Russian robotics space missions Lunokhod 1 and 2 [34]. The Earth-Moon distance is then deduced from
the pulse round-trip travel time. The current experiments allow a centimetric precision on the distance mea-
surement. Because of both the dispersion of the pulse and the refraction effects, the telescope only collects
1 photon every 100 laser shots of 1019 photons each. Nonetheless, to achieve a millimeter-range precision,
more photons must be received by the telescope. Indeed, more collected photons would allow to compute an
average round-trip travel time of the pulse and therefore improve the precision of the measurement. Such a
specification requires a larger telescope. This is the purpose of the project named Apache Point Observatory
Lunar Laser-ranging Operation and referred to as APOLLO project, that uses a 3.5-meter telescope and thus
allowing the collection of more than one photon per laser shot [22].

The careful analysis of precise LLR measurements of the Earth-Moon distance provides increasingly strict
limits on any WEP violation: current WEP experimental tests based on the lunar laser telemetry experiment
reach a precision up to 1.8 ·10−13 [36], and the APOLLO project is expected to allow the gain of one additional
order of magnitude. The precision of this experiment nonetheless remains limited by some modelling errors.
To improve the precision of the test, the errors in the position of the on-ground LLR observatory and of the
lunar retroreflectors, as well as the errors in the pulse round-trip travel time caused by the atmosphere cross-
ing, need to be carefully modelled. These errors being inherent to the near-Earth environment, a space-based
experiment could overcome them.

Table 1.1: Eötvös parameter values obtained with both the torsion pendulum and the LLR experiments

EP Experiment Torsion Pendulum Lunar Laser Ranging
Test Bodies Beryllium-Titanium Beryllium-Aluminum Earth-Moon

Eötvös parameter value 1.8 ·10−13 1.5 ·10−13 1.8 ·10−13

1.4. Motivation for a space-based experiment
The main arguments justifying a space-based experiment in order to achieve the precision objective of the
mission are:

• The space environment provides soft and stable conditions to perform the experiment, and allows to
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be freed from all on-ground perturbation sources, such as the electromagnetic, thermal and vibrational
perturbations induced by human activity. These perturbations can be consistently reduced or, at least,
easily controlled in space. Moreover, the Earth’s gravity gradient fluctuations are lower than on ground
because of the decrease of all the derivatives of the gravitational potential with distance.

• An in-orbit experiment provides long free-fall times in steady conditions since the signal can be inte-
grated during several orbits to average the stochastic disturbances. The duration of free-fall can thus
be several days.

This first chapter has carefully introduced the equivalence principle as a cornerstone to discriminate be-
tween new proposals for unified theories in modern physics. These new theoretical developments re-
quire a step forward in the precision of the equivalence principle test, in order to better constrain the key-
parameters of the theories (in case of a non-violation of the WEP) or to pave the way for new physics (in case
of a violation). The current state-of-the-art experiments reach a precision of 10−13 on the Eötvös parame-
ter. However these on-ground experiments are limited by near-Earth environment perturbations (sismic or
thermal) or errors in the modelling of Earth dynamics. A space-based test would therefore overcome these
limitations: this statement leads to the design of the MICROSCOPE space mission that would be thoroughly
presented in the next chapter.
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The chapter 1 motivated the needs for a more precise equivalence principle test to better constraint new
theoretical developments in modern physics, and presented the limits of the current state-of-the-art on-
ground experiments. This chapter will now introduce the MICROSCOPE space mission as a first space-
based test of the equivalence principle, attempting to reach an unrivaled precision of 10−15 on the Eötvös
parameter. The payload of the satellite, referred to as the T-SAGE experiment will be thoroughly described
and justified. This description will lead to both the derivation of the model equations used to estimate
the WEP violation parameter, and the presentation of the various perturbations limiting the measurement
precision.

2.1. Description of the MICROSCOPE space mission

MICROSCOPE is a French acronym standing for Microsatellite with drag free control for the observation of
the Equivalence Principle. The MICROSCOPE space mission has been designed by the French space agency
CNES as a relatively low cost, first space-based test of the Equivalence Principle. This experiment benefits
from a highly precise measurement instrument, a low noise environment, as well as the availability of long
measurement duration to attempt to reach an unrivalled precision of 10−15 on the Eötvös parameter [28].

The microsatellite, placed on a low-Earth orbit, carries on board a set of two differential electrostatic ac-
celerometers referred to as the T-SAGE experiment (an acronym for Twin Space Accelerometers for Gravi-
tational Experiment) and constituting the primary payload of the mission. Both accelerometers are specif-
ically designed to contain and control two test-masses for the space-based test. The test-masses, made of
different material, are precisely placed on the same orbit around Earth, and will naturally continue on the
same free-fall trajectory only if the equivalence principle holds. The MICROSCOPE experiment differs from
the traditional ground-based WEP tests introduced in chapter 1 because, while previously the difference in

7
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the trajectories followed by the test-masses would be measured, with MICROSCOPE, the masses are forced
through an electrostatic set-up to maintain the same trajectory, and the difference in the required restoring
forces is investigated. Such an active control of the test-masses is allowed by both a detection of their position
by capacitive sensing and the implementation of a servo-controlled loop. The levitation of the test-masses is
achieved by surrounding electrodes exerting electrostatic forces on them. Indeed, the instrument has been
designed to operate in orbit, where only very weak accelerations are required to maintain the masses po-
sition. To allow the test-masses to undergo the exact same gravitational field, their shapes are concentric
coaxial cylinders, so that the distance between their centers of inertia is as little as possible.

Figure 2.1: Attitude and Orbit Control Loop [2]

The payload of the space mission is constituted of two SAGE instruments, developed by the French aerospace
laboratory ONERA, whose characteristics will be described in detail in section 2.2. In the first electrostatic ac-
celerometer (referred to as SUREF), the two test-masses are made of the same material: a platinum-rhodium
alloy (more precisely, 10% rhodium and 90% platinum). This instrument serves both as a confirmation of
the test precision and results, and as a calibration, to detect any bias in the measurements provided by the
sensors. In the second accelerometer (referred to as SUEP), the two test-masses have a different composition:
the external mass is made of a titanium alloy (4% vanadium, 6% aluminium and 90% titanium) while the in-
ner mass is made of the same platinum-rhodium alloy as in the SUREF instrument. A WEP violation would be
highlighted by a difference observed between the electrostatic accelerations applied to the SUEP test-masses,
resulting in a violation signal proportional to the Eötvös parameter δ and to the gravitational acceleration at
the satellite altitude. The materials composing the test-masses have been selected by taking into account
both theoretical test aspects and more practical concerns of their physical properties: a significant difference
in subatomic particles between the two materials increases the probability of a detectable WEP violation.

The MICROSCOPE satellite is part of the CNES Myriade line [3], which was initially developed to send low-
cost scientific missions on geocentric orbits. The Attitude and Orbit Control System (AOCS) is provided by one
star sensor, the science instruments themselves, and a set of cold gas thrusters. This innovative control sys-
tem measures and compensates for all non-gravitational forces imparted to the microsatellite, including the
solar radiation pressure and the atmospheric drag. For both the SUREF and the SUEP instruments, the signal
of interest is the differential acceleration, defined as the difference between the electrostatic accelerations
applied to the two test-masses to maintain them on the same trajectory. Since the non-gravitational forces
act equally on both test-masses, their effect should be nullified by computing the differential acceleration,
and thus, compensating the atmospheric drag should not be a necessary condition for the MICROSCOPE ex-
periment. Nonetheless, because of the imperfections of the two sensors, a disturbing term, proportional to
the common acceleration, defined as the average acceleration measurement from the two masses, and thus
to the non-gravitational forces is introduced. The drag compensating system is thus essential to annul the
coupling between the common and differential accelerations. The AOCS loop is illustrated in Figure 2.1. The
control system uses the acceleration measurement from one of the test-masses (depending on the session)
of the instrument under test (SUREF or SUEP), as well as data from the star tracker to complete the angu-
lar rates of the test-masses for precise attitude control. These measurements are then sent to the on-board



2.1. Description of the MICROSCOPE space mission 9

computer that determines the commands to be sent to the cold gas microthrusters in order to correct for the
external perturbation acting on the satellite. The cold gas propulsion system is ideal for drag-compensation
as it enables to apply micro-newton thrusts of short duration. This drag compensating system is essential for
the mission performance, reducing to less than 10−12m · s−2 the drag-free residual acceleration at the WEP
test frequency, while its stochastic fluctuations are lower than 10−10m · s−2 ·/

p
H z.

Figure 2.2: (Left side) Inertial Mode configuration. (Right side) Spin mode configuration. Increasing the spin rate increases the WEP test
frequency. The blue arrows represent the orientation of the instrument axis. [7]

The MICROSCOPE microsatellite has been placed on a quasi-circular and quasi-polar geocentric orbit. With
such an orbit, chosen to be Sun-synchronous and with an inclination of 98.5°, the periods of eclipse are min-
imal to allow a relative thermal stability during long measurement periods while providing an optimal power
supply during all the mission. The orbit eccentricity had to be below 5 ·10−3 to maintain the gravitational sig-
nal as constant as possible and thus to avoid perturbing effects on the measurement due to the Earth’s gravity
gradient. The chosen orbit altitude is 700km, in order to maximize the intensity of the Equivalence Principle
test signal (which is proportional to the magnitude of the gravity field), while limiting the atmospheric drag
to levels which can be compensated by the cold gas thrusters of the AOCS.

One of the particularity of the MICROSCOPE mission is the ability to finely tune the frequency at which the
test is performed. This is achieved thanks to the satellite attitude control. The attitude control can function
in two modes as illustrated in Figure 2.2. For the Inertial pointing mode, the sensitive axis of the instrument
( the longitudinal axis of the test-mass cylinder) is maintained parallel to the orbital plane, while for the Spin
configuration, the microsatellite rotates around the axis perpendicular to the orbital plane. Modifying the
frequency of the test signal can confirm that the possible WEP violation signal is independent of other per-
turbing effects. It also allows to bring the frequency of the test signal closer to the frequency corresponding to
the minimum intrumental noise, as explained in subsection 2.3.2. The lowest test frequency, corresponding
to the Inertial mode, is equal to the orbital frequency for b = 1.66 ·10−4H z. In spin mode, the test frequency is
equal to the sum of the orbital and spin frequencies for b + fspi n . To better reject the orbital frequency pertur-
bations, the spin frequency should not be an even multiple of the orbit frequency.

The acceleration measurement provided by the accelerometer inertial sensor is not rigorously equal to the
electrostatic acceleration applied to the test-masses. The measured acceleration is derived from the correc-
tion voltage applied to the surrounding electrodes, and therefore undergoes slight defects throughout the
measurement process [17]. These defects are divided into, on the one hand, the systematic errors (including
axis couplings and misalignment, non linearity and scaling differences), and the stochastic errors (includ-
ing electronic noise, thermal fluctuations and stochastic variations of the applied electrostatic forces). The
stochastic errors can be reduced down to a desired level by both increasing the frequency of the WEP test
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(by increasing the spin rate of the satellite), and integrating numerous data points over a long enough period
of time. Because of the systematic errors, the accuracy of the measurements is limited by the partial knowl-
edge of the physical parameters of the instrument. Therefore, for the MICROSCOPE experiment to reach the
required precision, important in-orbit calibration sessions are needed to finely characterize the instrument
and thus to correct the measurement. During these calibration phases, the satellite and the instrument are
excited in various ways with a known sinusoidal signal to estimate the desired instrument characteristics.
Throughout the mission, the in-orbit calibration sessions as well as the WEP test sessions have been per-
formed several times in different conditions.

In order to both pilot the various mission operational phases and carefully process the data received from the
satellite, a dedicated ground segment has been established, divided in two parts:

• The Microstalellite Ground Segment (MIGS), located in the CNES center in Toulouse and composed
of the control and command centre as well as the ground station network. The MIGS receives the
telemetry from the satellite and transmits it to the drag compensation system expertise center (whose
French acronym is CECT).

• The scientific mission center (whose French acronym is CMS), located in the ONERA facilities near
Paris, responsible for both the scientific data processing and the mission and payload monitoring.

2.2. Presentation of the payload: The T-SAGE instrument

The SAGE (Space Accelerometer for Gravitational Experimentation) instrument is a differential electrostatic
accelerometer containing two test-masses whose positions are controlled in six degrees of freedom (three
translations X,Y,Z, and three rotations φ,θ,ψ) by means of electrostatic forces. This instrument follows a long
line of electrostatic accelerometers developed by ONERA. Nonetheless, it significantly differs from the pre-
vious instruments because of its high accuracy requirements, and its particular configuration with two con-
centric, coaxial and cylindrical test-masses. This subsection will carefully describe the design of the SAGE
instrument, and the requirements needed to reach the performance objectives.

2.2.1. Instrument overview

Figure 2.3: (Left side) T-SAGE instruments. (Right side) Cross Section of the Sensor Unit [4].

As previously mentioned in section 2.1, the payload used for the MICROSCOPE space mission consists in two
SAGE instruments. The first one (referred to as SUEP) is dedicated to the WEP test and contains test-masses
of different composition (PtRh for the inner mass and TA6V for the outter one). The second instrument (re-
ferred to as SUREF) serves both as a calibration, to detect a potential bias in the measurement, and as a con-
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firmation of the test precision. Both test-masses of the SUREF instrument are made with PtRh. A differential
electrostatic accelerometer is composed of the three following units:

• The Front-End Electronic Unit (FEEU) contains the analogue electronics of the control loop and con-
nects directly to the SU. It includes the capacitive sensors of both test-masses, the reference voltage
sources, and the electronics generating the voltages applied to the surrounding electrodes.

• The Sensor Unit (SU), composed by two concentric and coaxial cylindrical test-masses surrounded by
four silica cores. The whole is disposed inside the same tight cage, as illustrated in Figure 2.3. In order
to reduce the parasitic forces acting on the test-masses, such as radiometric forces or gas damping, a
vacuum system maintains the pressure in the housing below 10−5Pa.

• The Interface Control Unit (ICU) hosts the digital laws controlling the motion of both test-masses, and
serves as the interface to the on-board computer.

The ICU receives the position measurement from the FEEU, computes the controls and sends them back to
the FEEU. The FEEU then generates the required voltages to be applied to the SU electrodes. The components
of both the SU and the FEEU require a steady thermal environment as well as a limited operating tempera-
ture range to ensure an optimal performance. The two Sensor Units and the two Front-End Electronic Units
are thus gathered within a highly stabilized thermal environment referred to as the Payload Block (a passive
thermal cocoon).

The two instruments can be separately switched on and off throughout the mission. Each electrostatic ac-
celerometer has three operating modes:

• Stand-by mode: The Sensor Unit is switched off.

• Position sensing mode: The test-mass control does not operate in closed-loop. Therefore, only the
test-mass position is measured.

• Acceleration sensing mode: The servo-control loop of the test-mass is closed. This last mode has two
possible configurations: the full range mode (referred to as FR mode), offering a broader measurement
range but a lower resolution, and the high resolution mode (referred to as HR mode), in which the
resolution is higher, but the measurement range is narrower. During the WEP test sessions, the HR
mode is used.

The configuration of the set of electrodes as well as the test-masses orientation with respect to the sensor unit
are illustrated in Figure 2.4.

Figure 2.4: Electrode Configuration for the SAGE instrument. The test-mass is included (in yellow) in both diagrams. The X and φ
control uses variations of the covering area, that is to say the area of the test-mass facing the electrodes. Radial control (Y, Z, θ and ψ)

uses variations of the gap between the test-mass and the electrode [4].

The X-axis corresponds to the axial direction of the cylindrical test-mass, and provides the most sensitive
measurements, which are used for the WEP test. The Z-axis is oriented along one of the radial directions of
the test-mass and is in the orbital plane. The Y-axis orientation is chosen to form an orthogonal triad with
the X, and Z axis. The Y-axis is therefore normal to the orbital plane, as illustrated in Figure 2.4. φ, θ and
ψ respectively represent the rotation angles around the X, Y and Z axis. Both the axial and radial motion
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of the test-mass are controlled by the surrounding electrodes, exerting electrostatic forces on it. The X and
φ control is achieved through a change of capacitance caused by a variation of the surface of the test-mass
facing the electrodes (referred to as variation of the covering area). The control in radial directions is achieved
through the variations of the gap between the electrode and the test-mass (referred to as gap variation). The
next subsection will thoroughly introduce the operating principle of the SAGE instruments, as well as the
electrostatic detection and control of the test-masses.

2.2.2. Operating principle of the servo-controlled electrostatic accelerometer

Within the electrostatic accelerometer, the test-mass is levitated by means of electrostatic forces applied by
the surrounding electrodes. A servo-controlled loop, based on the study of the electrostatic forces necessary
to maintain the test-mass motionless at the center of the accelerometer cage allows the direct measurement
of the acceleration. The control forces to be applied are inferred from the test-mass position measurement,
through capacitive sensing.

Figure 2.5: Test-mass control loop [18]

Every loop of the servo-controlled system contains both a detection step and an actuation step, as illustrated
in Figure 2.5. First, a shift in the test-mass position is detected through capacitive sensing. The test-mass
motion within the accelerometer cage indeed induces a capacity variation between the electrodes, which is
then converted into an output voltage by the Capacitive Detection block. This output is used by the Digital
Control Law block to compute the control signal, which is then amplified and applied to the surrounding
electrodes to bring the test-mass back to its initial position, at the center of the cage. In the SAGE instruments,
the same electrodes are used for both detection and action. In order to allow this control system to work
properly, the test-mass potential Vm is controlled via a thin gold wire, which extends from one end of each
mass to a pin on the facing end plate. This fragile yet essential wire, characterized by a thickness of 7µm,
represents the only physical contact between the masses and the rest of the sensor.

Detection of a test-mass displacement

A test-mass displacement along a given axis is measured by a pair of electrodes either facing or surrounding
the test-mass as illustrated in Figure 2.4. Although the differential instrument for the MICROSCOPE mission
requires cylindrical masses, with corresponding curved electrodes, this part will use a basic parallelepipedic
form to present the accelerometer concept with basic equations. This simple form has been used for previosu
highly successful space instruments, such as the STAR for the CHAMP mission, and the SuperSTAR for the
GRACE mission.

The control electrodes function in pairs in order to simultaneously measure and control the test-mass posi-
tion, with the complete set providing the control in six degrees of freedom. Each electrode forms a capacitor
with the surface of the test-mass facing it, whose capacitance will be denoted Ci . To enable the position
detection, a sinusoidal reference voltage Vd , whose frequency is about 100kHz, is applied to the test-mass
via a fine gold wire to generate currents across the capacitors. The detector output voltage is, in the end,
proportional to the capacitances difference (C1 −C2):

Vdet = Gdet (C1 −C2) (2.1)
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Where Vdet is the detector output voltage and Gdet denotes the sensitivity gain of the capacitive sensor:
Gdet = 2Vd

Ceq
. Vd is the potential of the test-mass, and Ceq represents the sensor capacitance when the test-

mass is located at the center of the cage (referred to as the mean capacitance).

For plane parallel surfaces separated by vacuum, the capacitance of the capacitor can be expressed by:

Ci = ε0Si

ei
(2.2)

Where ε0 is the dielectric permittivity of vacuum, Si represents the area of the electrode i facing the test-mass,
and ei denotes the distance separating the electrode i and the test-mass. Assuming perfectly conducting sur-
faces under vacuum, the capacitance only depends on the configuration geometry. A test-mass displacement
therefore results in a variation of the capacitance, either by changing the separation distance when the test-
mass moves toward or away from the electrode (detection by gap variation), or by changing the covering sur-
face area, when the test-mass moves parallel to the electrode surface (detection by variation of the covering
area). Both detection techniques are detailed below.

Figure 2.6: Variation of Capacitance due to mass displacement. (Left side) Gap variation. (Right side) Covering area variation [7].

2.2.2.1.1 Detection by gap variation: The detection by gap variation is used for a test-mass displacement
in the Y and Z directions. Such a shift in the test-mass position would induce a variation of the distance ei

separating the electrode i and the test-mass, referred to as gap, as illustrated in Figure 2.6. For a displacement
of the test-mass along the Y-axis, the gap of each capacitor can be expressed by:

ei =
{

e − y if i = 2
e + y if i = 1

(2.3)

Where e denotes the distance separating the test-mass and the electrode, when the test-mass is located at the
center of the accelerometer cage. If only small displacements around the equilibrium position are considered
(that is to say if y << e), according to Equation 2.1, the detector output voltage can be written as:

Vdet = Gdetε0S

(
1

e − y
− 1

e + y

)
≈ 2Gdetε0S

e2 · y + ◦
(( y

e

)3
)

(2.4)

The detector output voltage provided by the position sensor is therefore proportional to the test-mass dis-
placement y. The gain depends both on the sensitivity of the sensor (with the term Gdet ), and on the instru-
ment geometry (with the terms e and S). A good knowledge of these two parameters is therefore essential to
precisely deduce the test-mass displacement.

2.2.2.1.2 Detection by variation of the covering area: An other detection method, based on the variation
of the covering area S of the capacitance, is used to detect the displacement of the test-mass along the X-
axis. We consider a cylindrical test-mass surrounded by a pair of concentric electrodes of similar shape, as



14 2. The MICROSCOPE experiment

illustrated in Figure 2.6. When the test-mass is at the center of the accelerometer cage, at position x = 0, each
electrode covers the test-mass over a distance h. The area of the test-mass covered by the electrode i can be
expressed by:

Si = 2πr hi (2.5)

Where r represents the radius of the electrode i, and hi denotes the covering distance:

hi =
{

h −x if i = 1
h +x if i = 2

(2.6)

The detector output voltage is therefore equal to:

Vdet = −Gdetε04πr

e
· x (2.7)

Contrary to the expression of the output voltage for the detection by gap variation, the relation in Equation 2.7
is exact and does not stem from a first order Taylor expansion. Consequently, in case of a detection by varia-
tion of the covering area, the output voltage is directly proportional to the test-mass displacement x.

Action to compensate for the displacement

The detector output voltage is digitized to be processed by the servo-control loop. The servo-control loop
aims at nullifying the voltage Vdet by applying an actuation voltage to the surrounding electrodes to com-
pensate for the test-mass displacement and thus bring it back to its equilibrium position, at the center of the
accelerometer cage.

Let us consider a single capacitor of capacitance Ci . It is assumed that the medium in-between is vacuum and
that each plate carries a constant charge equal to ± Q. The constant voltage V between the plates produces
a force Fel undergone by the movable plate. According to the definition of the kinetic energy, an elementary
displacement ∆ of the movable plate leads to a work of the force Fel equal to:

dEk = Fel ·∆ (2.8)

The potential energy stored in the electrode-mass capacitor is equal to:

Ep = 1

2
QV (2.9)

Thanks to the definition of the capacitance Ci = Q
V , the relation previously derived can be rewritten as:

Ep = 1

2
Ci V 2 (2.10)

And hence, the infinitesimal potential energy during dt is equal to:

dEp = 1

2
V 2dCi (2.11)

The infinitesimal power supplied by the generator during dt is equal to:

dE = V dQ = V 2dCi (2.12)

Assuming no energy loss by Joule heating, the relation of energy conservation can be written as:

dE = dEk +dEp (2.13)

This last relation means that the energy supplied by the generator is either stored in the capacitor, or turned
into work. The Equation 2.13 leads to:

V 2dCi = Fel ·du + 1

2
V 2dCi (2.14)



2.2. Presentation of the payload: The T-SAGE instrument 15

The applied electrostatic force Fel can therefore be deduced and is equal to:

Fel = 1

2
V 2∇C (2.15)

Where V denotes the potential difference between the plates V = Vi −Vp . Vp , referred to as polarization,
represents the constant potential at which the test-mass is maintained via the golden wire. Vi is the potential
of the electrodes, which can be tuned by the servo-control loop. ∇C denotes the capacitance spatial gradient.
According to Equation 2.15, a careful control of the potentials of both the test-mass and the electrodes enables
to finely control the applied electrostatic force.

As for the detection of a test-mass displacement, the test-mass position control is achieved by two differ-
ent techniques, respectively reffered to as Gap control and Covering area control. Both control methods are
described in the following.

2.2.2.2.1 Gap control This technique is used to control the test-mass motion along the Y and Z-axis (re-
ferred to as radial motion). As illustrated in Figure 2.7, the resulting force undergone by the test-mass is the
sum of the electrostatic forces applied by the two electrodes. For a control along the Y-axis, the resulting force
can be expressed as:

Fel ,y = Fel ,1,y +Fel ,2,y = 1

2
ε0S

(
− (V1 −Vp )2

(e + y)2 + (V2 −Vp )2

(e − y)2

)
(2.16)

Equal yet opposite control voltages are applied to the two electrodes of a pair: V1 =−Ve and V2 = Ve . If only
small test-mass displacements around the equilibrium position are considered (in other words, if y << e), a
first order Taylor expansion leads to:

Fel ,y = 1

2

ε0S

e2

[
−VpVe + (V 2

p +V 2
e )

y

e

]
+◦

(( y

e

)3
)

(2.17)

Figure 2.7: Test-mass control by gap variation. The electrostatic force is attractive, so the accelerometer electrodes act in pairs to
provide both a positive and a negative force, but with a different magnitude. The resulting force tends to bring the test-mass at its

equilibrium point, at the center of the cage [7].

This resulting applied force can be converted into an applied acceleration Γy , expressed in terms of both an
actuation gain Gact and an electrostatic stiffness coefficient ω2

p :

Γy = Fel ,y

mI
= −Gact Ve +ω2

p

[
1+

(
Ve

Vp

)2]
y (2.18)

Where mI is the inertial mass of the test-mass, and:

Gact = 2ε0SVp

mI e2 &; and ω2
p =

2ε0SV 2
p

mI e3 (2.19)
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If only the first term of the right-hand side of the Equation 2.19 is considered, a good knowledge of the actu-
ation gain Gact would be sufficient to derive the test-mass acceleration Γy from the applied voltage Ve . The
measurement is nonetheless perturbed by the second term (proportional to ω2

p ) inducing a bias if the test-
mass is not maintained at the center of the accelerometer cage (y = 0). However, it has been proved that the
asymmetry included here as well as the displacement amplitude are small enough to neglect the second term
with respect to the first one.

A similar technique is used for the angular control around the X-axis (Θ angle), but two pairs of electrodes are
necessary to be able to induce a torque to the test-mass.

2.2.2.2.2 Covering area control This technique is used to control the test-mass motion along the X-axis
(referred to as axial motion). As illustrated in Figure 2.8, the resulting force undergone by the test-mass can
be expressed as:

Fel ,x = Fel ,1,x +Fel ,2,x = 2πr ε0

e

[
Vp (V1 −V2)+ V 2

2 −V 2
1

2

]
(2.20)

Figure 2.8: Test-mass control by variation of the covering area [7].

With equal yet opposite control voltages applied to the two electrodes of a pair: V1 = −Ve and V2 = Ve , the
applied acceleration can be expressed as:

Γx = −4πr ε0Vp

mI e
Ve (2.21)

In case of a control by variation of the covering area, the applied acceleration is therefore directly proportional
to the electrodes potential. Contrary to the control by gap variation, the acceleration of the test-mass does
not include any perturbation term proportional to the electrostatic stiffness. For this reason, the X-axis is
referred to as the sensitive axis of the instrument, and is used for the WEP test.

Detection and Action Management

As mentionned in subsection 2.2.1, in a SAGE instrument, the same electrodes are used for both detection
and action. This is achieved by using a different frequency for the detection potential Vd (production of a
current across the capacitors), and the actuation potential Vp used to adjust the potential of the electrodes.
Such a configuration allows the decoupling between the detection and the action processes. The value of the
test-mass potential is therefore equal to Vp +Vd .

2.3. The measurement equation
This chapter has so far presented the operating process of the SAGE instruments. This subsection will now
derive the physical equations modelling the in-orbit measurements provided by the instrument sensors. This
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will be divided into, on the one hand, the derivation of the electrostatic acceleration applied to the test-mass,
and on the other hand, the actual measured acceleration including the instrument defects and the other
disturbances perturbing the estimation of the Eötvös parameter.

2.3.1. Derivation of the applied electrostatic acceleration

Let us consider a system defined by a test-mass i of a single inertial sensor. Its inertial mass is denoted mi ,
its gravitational mass is denoted m̃i , and its center of inertia is denoted Oi . This system undergoes the grav-
itational force Fg ,i (equal to m̃i g ), the electrostatic force fe,i , as well as the sum of all other disrupting forces
fp,i . The gravitational acceleration g of a point of the test-mass includes the contribution of two main gravi-
tational sources which are, on the one hand, the Earth, and on the other hand the microsatellite carrying the
SAGE instrument. The effects of distant astrophysical sources, such as the Sun or the Moon, are negligible
and their contribution is thus omitted in the following, leading to g = gE ar th + gSatel l i te .

Let us now consider a system defined by the microsatellite. Its inertial mass, excluding the test-masses, is
denoted M , its gravitational mass is denoted M̃ and its center of inertia is denoted OS . This system is subject
to the gravitational force Fg ,sat , the non-gravitational external forces F and the electrostatic forces from all
the N test-masses.

Since the test-mass is not located at the satellite center of inertia OS , some inertia terms are introduced.
The study of these inertia terms requires the introduction of a satellite reference frame, fixed to the satellite
platform and referred to as Rsat . The Rsat reference frame rotates with respect to the inertial reference frame
Ri n with an angular velocityΩRsat /Ri n =Ω. The composition of acceleration leads to:

Γ(Oi )|Ri n = Γ(OS )|Ri n +Ω× (Ω×OSOi )+ Ω̇×OSOi +2Ω×
[

dOSOi

d t

]
Rsat

+
[

d 2OSOi

d t 2

]
Rsat

(2.22)

In order to simplify the previous equation, the following notations are introduced:

˙OSOi =
[

dOSOi

d t

]
Rsat

and ¨OSOi =
[

d 2OSOi

d t 2

]
Rsat

(2.23)

The inertia gradient matrix [In] as well as the angular velocity matrix [Ω] are introduced as well and defined
as:

[Ω] =
 0 −Ωz Ωy

Ωz 0 −Ωx

−Ωy Ωx 0

 (2.24)

WhereΩx ,Ωy andΩz represent the components of the angular velocity vectorΩ and:

[In] = [Ω2]+ [Ω̇] (2.25)

Finally, the Equation 2.22 giving the test-mass kinematic equation in the Rsat reference frame can be rewritten
as:

Γ(Oi )|Ri n −Γ(OS )|Ri n = [In]OSOi +2[Ω] ˙OSOi + ¨OSOi (2.26)

The Newton’s second law therefore leads to:

[In]OSOi +2Ω ˙OSOi + ¨OSOi = 1

mi
fe,i + 1

M

N∑
j=1

fe, j + 1

mi
Fg ,i − 1

M
Fg ,sat + 1

mi
fp,i − 1

M
F (2.27)

The parameters δi and δS are introduced:

δi = m̃i

mi
−1 and δS = M̃

M
−1 (2.28)

While [T ](A) denotes the gravitational gradient computed at point A, and defined as the Jacobian matrix of
the gravitational potential U. It can be written that:

1

mi
Fg ,i − 1

M
Fg ,sat ≈ gS,i + (δi −δS )gE (A)+ [T ](A) · [OSOi + (δi AOi −δS AOS )] (2.29)
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The order of magnitude of the gravitational gradient at a 700km altitude is about 10−6s−2, and it has been
stated in chapter 1 that current on-ground EP experiments proved that δ < 10−12. The last term in paren-
thesis in the expression above leads to an acceleration error lower than 10−18m · s−2 (to be compared to the
mission precision objective of 10−15m · s−2), and can therefore be neglected. The Equation 2.27 can therefore
be rewritten as:

[In]OSOi +2Ω ˙OSOi + ¨OSOi = 1

mi
fe,i + 1

M

N∑
j=1

fe, j + gS,i + (δi −δS )gE (A)+ [T ](A) ·OSOi + 1

mi
fp,i − 1

M
F

(2.30)

In order to simplify the Equation 2.30, the following parameters are introduced:

• The mechanical bias, defined as the sum of the mechanical perturbations on the test-masses and the
microsatellite self-gravity: bi =− 1

mi
fp,i − gS,i .

• The vector joining the satellite center of inertia and the one of the test-mass, referred to as the off-
centering vector: ∆i =OSOi

• The electrostatic acceleration applied to the test-mass i: ΓApp,i = 1
mi

fe,i

The Equation 2.30 can thus be re-arranged as:(
1+ mi

M

)
ΓApp,i = −[T ](A) ·∆i − (δi −δS )gE (A)+ [In]∆i +2[Ω]∆̇i + ∆̈i +bi + 1

M
F −

N∑
j 6=i

m j

M
ΓApp, j (2.31)

The MICROSCOPE space mission objective consists in studying the difference between the acceleration un-
dergone by the two test-masses. It is therefore useful to introduce a parameter defined as the half difference
of the accelerations applied to the two test-masses of one SU and referred to as the differential accelera-
tion:

ΓApp,d = 1

2
(ΓApp,1 −ΓApp,2) (2.32)

Where index 1 refers to the internal test-mass and index 2 refers to the external test-mass of the SU. The
common acceleration, defined as the half-mean of the applied accelerations, is also introduced:

ΓApp,c = 1

2
(ΓApp,1 +ΓApp,2) (2.33)

More generally, the common and differential modes are defined for any quantity yi as:

yc = 1

2
(y1 + y2) (2.34)

yd = 1

2
(y1 − y2) (2.35)

The expressions for both the differential and common acceleration can therefore be derived:

ΓApp,c = 1

1+αc

{− ([T ]− [In]) · (∆c −αd∆d )− (δc −αdδd )gE

+δS gE +2[Ω](∆̇c −αd ∆̇d )+ ∆̈c −αd ∆̈d

+bc −αd bd + 1

M
F −

N∑
j 6=1,2

m j

M
ΓApp, j

}
≈− ([T ]− [In]) ·∆c − (δc −δS )gE +2[Ω]∆̇c + ∆̈c +bc + 1

M
F −

N∑
j 6=1,2

m j

M
ΓApp, j

(2.36)

and

ΓApp,d = −([T ]− [In]) ·∆d −δd gE +2[Ω]∆̇d + ∆̈d +bd (2.37)

Where αc = m1+m2
M , αd = m1−m2

M and δd denotes the differential WEP parameter, approximately equal to half
the Eötvös parameter. Since m j << M , the ratios αc and αd are small with respect to 1. It can be observed
that, contrary to the expression of the common acceleration, the expression of the differential acceleration
does not depend on the non-gravitational external forces F, nor on the reaction of the microsatellite to the
electrostatic accelerations applied to the other test-masses.
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2.3.2. Instrument imperfections

The subsection 2.3.1 derived the equation of the applied electrostatic acceleration. Nonetheless, in practice,
the measurement provided by the accelerometer inertial sensor is not rigorously equal to ΓApp,i . The mea-
sured acceleration is derived from the correction voltage applied to the electrodes, and is therefore subject
to slight defects throughout the measurement process. These defects can be divided into, on the one hand,
the systematic errors (including axis couplings and misalignment, non linearity and scaling differences), and
the stochastic errors (including electronic noise, thermal fluctuations and stochastic variations of the forces
applied to the masses).

Deterministic errors

The systematic instrumental errors are listed and formalized below.

• The coupling between axes, resulting from the non-exact orthogonality of the sensors measurement
axes and modelled by the symmetric matrix [ηi ]:

[ηi ] =
 0 ηzi ηyi

ηzi 0 ηxi

ηyi ηxi 0


These couplings will be thoroughly investigated in the next chapter.

• The measurement scale factors, depending on the instrument geometry (surface of the electrode, equi-
librium gap and mass of the test-mass) and modelled by the diagonal matrix [K1i ]:

[K1i ] =
K1xi 0 0

0 K1yi 0
0 0 K1zi


The measurement scale factors can depend on the temperature, but their thermal sensitivities are as-
sumed to be negligible.

• The small misalignments and rotations between the satellite reference frame, and the test-mass refer-
ence frame, modelled by the antisymmetric rotation matrix [Θi ]:

[Θi ] =
 1 Θzi −Θyi

−Θzi 1 Θxi

Θyi −Θxi 1


• The coupling of the linear acceleration with the angular acceleration, resulting from the slight pertur-

bations caused by the angular control on the linear control, and modelled by the coupling matrix [Ci ].

• The electrical bias, including all the parasitic constant terms, and denoted b0i . The bias depends on
the temperature. This will be investigated more in-depth in chapter 4.

• The quadratic term Qi , modelling the non-linearities, and proportional to the squared components of
the applied acceleration: Qi = K2i ◦ [Θi ]Γ2

App,i , where ◦ denotes the operator multiplying two arrays

element by element, and K2i represents the 3-components quadratic coefficient vector:

[K2i ] = (
K2i xx K2i y y K2i zz

)
The scale factors [K1i ], the coupling between axes [ηi ], as well as the slight misalignments [Θi ] are gathered
in the sensitivity matrix [Ai ] defined as:

[Ai ] = ([K1i ]+ [ηi ]) · [Θi ] ≈
 K1xi ηzi +Θzi ηyi −Θyi

ηzi −Θzi K1yi ηxi +Θxi

ηyi +Θyi ηxi −Θxi K1zi


Because ηki << 1, and Θki << 1, where k ∈ (x, y, z). The symmetric part of the sensitivity matrix corresponds
to the coupling between axes, while its antisymmetric part corresponds to the misalignments and small rota-
tions. The diagonal of [Ai ] includes the scale factors.
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Noise

As previously mentioned, the measurement process is perturbed by some random disturbances referred to
as stochastic noise. The instrumental stochastic noise, denoted by a variable ni , is characterized by its power
spectral density (PSD) expressed, for a quantity expressed in a unit U, in U 2 ·H z−1. If the PSD depends on the
frequency, the noise is said "coloured", otherwise, the noise is said "white". The main contributions of the
instrument stochastic noise are:

• The electronic noise coming from the capacitive detectors, whose contribution is low at the WEP test
frequency, but predominant at high frequency.

• The thermal acceleration noise, which can be divided into, on the one hand, the radiometric noise
(resulting from the momentum exchange between the particles in the accelerometer cage and the test-
mass), and on the other hand, the noise originating from the thermal radiation of the test-mass envi-
ronment and referred to as radiation pressure.

• The noise resulting from both the stiffness and the damping of the gold wire used to maintain the
test-mass at a constant potential. The damping noise is the principal contributor to the measurement
uncertainty at the WEP test frequency.

Other souces of noise, such as the fluctuations of the magnetic field, are also included in the instrumental
stochastic noise, but will not be detailed here. The total acceleration noise, for a test-mass i , is obtained by
summing all contributions. Assuming that all noise sources are independent, the PSDs can be summed as
well, resulting in the PSD noise model illustrated in Figure 2.9.

Figure 2.9: PSD noise model on the X-axis considering all noise sources [7].

When the satellite is in Spin mode, the WEP test frequency increases, resulting, according to Figure 2.9, in a
reduction of the instrumental noise. It can also be inferred from Figure 2.9 that a rotation rate higher than
the one selected for the Spin mode configuration would lead to a better noise reduction. Nonetheless, such a
choice would have drastically reduced the duration of the space mission. The rotation rate of the satellite has
thus been selected as a trade-off between the reduction of the noise and the mission lifetime.

The test uncertainty being inversely proportional to the integration time [7], the instrument stochastic noise
can be reduced down to a desired level by integrating numerous data points over a sufficient long period of
time. In order to be compatible with the mission precision objective of 10−15, the WEP test sessions for the
inertial and the spin mode have to last respectively 120 orbits and 20 orbits.

2.3.3. Derivation of the measured electrostatic acceleration

According to the previous parts, the acceleration measurement Γmes,i affected by all the systematic and
stochastic errors can be defined as:

Γmeas,i = b0i + [Ai ]ΓApp,i +Qi + [Ci ]Ω̇i +ni (2.38)
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Where ΓApp,i is the electrostatic acceleration applied to the test-mass. The Equation 2.34 allows to derive the
expressions for both the common and differential measured accelerations:

Γmeas,c = b0c + [Ac ]ΓApp,c + [Ad ]ΓApp,d +Qc +nc (2.39)

Γmeas,d = b0d + [Ac ]ΓApp,d + [Ad ]ΓApp,c +Qd +nd (2.40)

To lighten the two relations above, the couplings of the linear acceleration with the angular acceleration mod-
elled by the coupling matrix [C ] were omitted. They will be included again if needed in the next develop-
ments.

The objective of the MICROSCOPE experiment is to evaluate the parameter δd , corresponding to the ampli-
tude of a potential WEP violation signal. In order to reach this goal, the measurement equation previously
derived must be decomposed into a signal of interest (including the parameter δd ), and a sum of perturb-
ing signals that can be measured, modelled, or controlled to remain at a value compatible with the mission
precision objective. These perturbations are then characterized and removed to reduce the error on the WEP
violation signal.

To decompose the measurement equation as required, the following variables are introduced:

[A′
c ] = [Ac ][Θc ]−1 , [A′

d ] = [Ad ][Θc ]−1

[Ād ] = [A′
d ][A′

c ]−1 , [Āc ] = [Ac ]− [Ād ][Ad ]

and

Q̄d = Qd − [Ād ]Qc

By substituting Equation 2.36 into Equation 2.39, the measured differential acceleration can be expressed
as:

Γmeas,d =b0d + [Āc ]ΓApp,d
(−([T ]− [In]) ·∆d −δd gE +2[Ω]∆̇d ∆̈d +bd

)
+ [Ād ](Γmeas,c −b0c −nc )+Q̄d +nd

(2.41)

The right-hand side terms of the previous equation can be either measured, modelled, or controlled to re-
main at an acceptable level. For instance, although the term (Γmeas,c −b0c −nc ) cannot be directly measured,
it is nonetheless maintained to the lowest possible value thanks to the AOCS loop that controls the common
acceleration to be equal to b0c +nc . Some of the terms of the measurement equation are multiplied by un-
known matrices ([Āc ] for example). The several in-orbit calibration sessions aim at evaluating the unknown
coefficients of these matrices, to be able to correct the measured differential acceleration for the correspond-
ing perturbations, and thus to isolate the WEP violation signal δd gE .

The coefficients of the [Ād ] and [Āc ] matrices are respectively denoted:

[Ād ](i , j ) = adi j and [Āc ] = aci j

Then, the measured differential acceleration along the X-axis (referred to as the sensitive axis), can be ex-
pressed as a linear combination of calibration parameters, defined as known time variations pi (t ) with un-
known amplitudes βi :

Γmeas,d x = −ac11δd gE ,x +
Np∑
i=1

βi pi (t )+nd (t ) (2.42)

If the various disturbances are not rejected from the measured differential equation, they may induce a bias
in the estimation of the parameter δd . Therefore, all the perturbations must be accurately evaluated to cor-
rect the acceleration measurements for the disturbing signals and thus reduce the systematic errors to a level
compatible with the mission precision objective.
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2.3.4. Estimation of the WEP violation parameter

The estimation of both the instrument calibration parameters and the WEP violation parameter δ relies on
the general form of Equation 2.42:

Γmeas,cor r,d x (t ) = 1

2
δgx (t )+

Np∑
i=1

βi pi (t )+nd x (t ) (2.43)

The whole estimation process begins by the obtention of estimates β̂i for the instrument defects βi . This
is achieved by fitting the measured or modelled signals pi to the differential acceleration or other variables
measured during dedicated in-flight calibration phases (See subsection 3.2.1). The error made in the estima-
tion of the instrument defects will directly affect the error made on the WEP violation parameter estimation.
Once the instrument parameters separately estimated, the differential acceleration of a WEP test session is

computed and corrected by removing
∑Np

i=1 β̂i pi (t ) from the signal. The corrected acceleration obtained can
be expressed as:

Γmeas,d x (t ) = 1

2
δgx (t )+

Np∑
i=1

(βi − β̂i )pi (t )+nd x (t ) (2.44)

The WEP violation parameter is then evaluated by fitting the gravitational acceleration gx to the corrected
differential acceleration Γmeas,cor r,d x by means of an ordinary least-squares regression:

δ̂ = 2(g T
x gx )−1g T

x Γmeas,cor r,d x (2.45)

The error made in the estimation of the instrument parameter i , denoted εi and defined as εi = βi − β̂i ,
depends on both the variance and the bias of the estimation. The upper bound of each εi , denoted ε̄i , can
be evaluated by a thorough analysis of the different disturbance terms involved in each in-orbit calibration
phase. Then, an estimation of the maximal residual bias in the measurement can be obtained by summing
the bias resulting from all the residual perturbing signals:

b̄δ = 2
Np∑
i=1

[(g T
x gx )−1g T

x pi ε̄i ] (2.46)

Another contribution to the estimation error is the stochastic noise, characterized by its power spectral den-
sity (denoted PSD). The covariance of the matrix β̂, defined as the one-dimensional matrix gathering the
estimates of the instrument parameters, thus depends on the PSD of the instrument stochastic noise.

2.3.5. Other perturbations in the measurement

The range of data processing techniques developed in the previous sections was based on the hypothesis of
a regular sampling of the measurements. Nonetheless, the ordinary least-squares estimator may be impre-
cise in case of a lack of several data points in the time series recorded by the instrument. In practice, some
data loss may occur in the measurements, involving a modification of the projection rate, and thus an impact
on the precision of the WEP violation parameter estimation. The absence or invalidity of some data (both
referred to as "missing data") in the measurements can result from various physical or operational phenom-
ena, such as telemetry losses due to errors occured in the down-link transmission (the recovery rate remains
satisfactory during transmission losses because the data remains stored in the satellite during 9 hours and
thus can be downloaded again), or instrument saturation events resulting from cracks in the multilayer in-
sulation coating, cracks in the cold gas tanks of the thrusters, and impacts with micrometeorites (because of
the limited measurement range of the accelerometer, the acceleration peaks induced by the events previously
mentioned can exceed the saturation threshold and thus lead to either corrupted or missing data). Missing
data in the measurement leads to an increase of uncertainty because of the spectral leakage. As illustrated
in Figure 2.10, the OLS uncertainty rapidly increases with the number of gaps per orbit. This phenomenon
being incompatible with the MICROSCOPE mission precision objective of 10−15 on the Eötvös parameter, an
other estimaton technique is needed.

Some robust and reliable data processing techniques dedicated to deal with data gaps in the measurement
have thus been developed ([18], [7]). This is the case for the general autoregressive least-squares estimator
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with missing data referred to as the KARMA method [7]. The KARMA estimator allows to maintain a precision
close to 10−15 despite the data gaps in the measurements. In order to reduce the uncertainty of the WEP test
in case of missing data, a PSD estimation technique referred to as Inpainting has been developed, allowing
an estimation of the square-root PSD with an error lower than 10−12ms−2/

p
H z around fEP , while providing

faithful reconstructed data sets. The KARMA method is only mentioned and will not be thoroughly developed
here.

Figure 2.10: OLS uncertainty with respect to the number of gaps per orbit. [7]

This chapter carefully introduced the MICROSCOPE experiment, based on the use of two differential elec-
trostatic accelerometers referred to as SAGE instruments. The measurements provided by each accelerom-
eter are derived from the control voltage applied to the electrodes in order to maintain the test-masses
relatively motionless at the center of the cage. The thorough instrument description has led to the deriva-
tion of the measurement equation, taking into account the several perturbations occuring throughout the
measurement process and thus limiting the measurement precision. The amplitudes of these disturbing
signals, depending both on the instrument characteristics and defects, may induce a bias in the measure-
ment of a possible WEP violation and must therefore be carefully estimated. The first results of the MICRO-
SCOPE experiment released on December 2017 [29], and based on 120 orbits among the 1900 realized by the
satellite so far, allowed to reach a precision ten times higher than the current ground-based WEP tests on
the WEP parameter: δ(Ti,Pt) = [−1±9(stochastic)±9(systematic)] ·10−15 for the SUEP instrument. The test
performed with the SUREF instrument and based on 62 orbits led to: δ(Pt,Pt) = [+4±4(systematic)] ·10−15.
Nonetheless, the instrumental model implemented to process the data used conservative upper limits for
some systematic errors, such as the coupling defects and the thermal sensitivity. The research work devel-
oped in the following chapters will be dedicated to the design of more accurate models for both the coupling
factors and the thermal sensitivity, in order to improve the mission performance. The fundamental prop-
erties and equations presented throughout this chapter will be of great interest in the upcoming work, and
will thus be put into practice in the coming chapters.
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The chapter 2 thoroughly presented the MICROSCOPE experiment and introduced the slight defects per-
turbing the measurement process. In an attempt to improve the model used for some perturbations, this
chapter will now investigate the ways to carefully estimate the coupling between axes.

3.1. Definition of the coupling between axes
Coupling refers to the interactions between the six axes of the instrument (3 translations X, Y, Z, and the 3
corresponding rotations φ, θ and ψ around the linear axes). Ideally, the six axes would be completely inde-
pendent, but the imperfections of the SAGE instrument discussed in the previous chapter does not allow this.
The coupling perturbs the measurement by creating a bias: the detector sees a non-zero position and thus
offsets the test-mass to compensate for the false position reading. With the six axes functioning simultane-
ously, coupling from one axis will cause the control voltage on a second axis to react, which, in turn, creates a
coupling effect to a third axis. The required characterization is the behavior of the six axes of the instrument
in response to an external acceleration. The effects of an acceleration along one axis can be recorded in the
acceleration measurements of each axis. After applying a well known acceleration on multiple axes, the data
can be analyzed simultaneously to identify the coupling coefficients between each axis. To perform the mea-
surement, a sinusoid of a specific frequency needs to be applied in the instrument loop to force an oscillation
of the test-mass. Such a process is applied during the in-orbit calibration sessions, that will be discussed in
the next section.

3.2. Exploitation of the in-orbit calibration sessions

3.2.1. Overview of the calibration sessions

As previously mentionned in chapter 2, in order to estimate the WEP violation parameter δ with a precision
objective of 10−15, one should be able to extract from the measurement a signal of amplitude 1

2 gx ( fEP ) ·δ =
4 ·10−15m · s−2. The disturbing terms exposed in the measurement equation derived in subsection 2.3.3 are
related to perturbations in the test-masses motion (parasitic electrostatic forces), to the AOCS performance,

25
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and to the instrument characteristics. All these perturbing terms need to be precisely evaluated during ded-
icated calbration sessions. The calibration of the several parameters have been achieved in orbit in order to
be freed from all on-ground perturbation sources (such as, for example, the thermal perturbations induced
by human activity), and therefore to reach a satisfactory precision.

Therefore, specific mission phases have been designed in order to precisely evaluate the various disturbing
parameters. The calibration principle for the MICROSCOPE instrument consists in exciting the satellite and
the instrument in various ways to generate an acceleration signal amplifying the effect of the instrument
parameter that needs to be estimated, and making it preponderant in the measurement. Contrary to the
space missions using electrostatic accelerometers but not having access to a continuous Orbit Control Sys-
tem, such as CHAMP and GRACE [30], the MICROSCOPE calibration sessions can exploit the satellite drag
compensating system. The calibration signal is therefore obtained by applying either a linear or angular os-
cillating movement to the satellite through the drag compensating system [15]. Contrary to the frequency of
the oscillating movement imparted to the satellite, the amplitude of the motion does not need to be precisely
known, since it is measured by the accelerometer. It is also possible to use for the calibration a naturally
occuring signal with a high amplitude at a given frequency, such as the gravitational gradient T at twice the
orbital frequency (the gravitational gradient is determined from a very precise model). The total calibration
duration is 138 orbits, that is to say about 9 days. A range of specific processes dedicated to the estimation of
each of the instrument parameters has therefore been developed. The calibration performance depends on
the performance of the AOCS.

Among the various types of calibration sessions, the ones that can be relevantly quoted are gathered be-
low:

• The K1dx calibration sessions: These sessions have been designed to evaluate the differential measure-
ment scale factor K1d x introduced in subsection 2.3.2. As seen in the measurement equation derived
in the previous chapter, the effect of K1d x can be amplified by adding an extra command to the drag
compensating control block. To perform the measurement, a sinusoid of a specific frequency fcal/l i n

is applied in the instrument control loop in order to force an oscillation of the test-mass position along
the X-axis. The excitation signal E(t) has an amplitude of 5·10−8m ·s−2, and a frequency of 1.23·10−3H z:

EX (t ) = (5 ·10−8) · sin(2π(1.23 ·10−3)t )

• The Θdy and Θdz calibration sessions: These sessions have been designed to evaluate the differential
misalignements Θd y and Θd z between the satellite reference frame and the test-mass reference frame
introduced in subsection 2.3.2. As for the estimation of the differential measurement scale factor K1d x ,
the effect of each parameter can be amplified by adding an extra command to the drag compensating
control block. To perform the measurement, a sinusoid of frequency fcal/l i n (same frequency as the
one used for the K1d x calibration sessions) is applied in the instrument control loop in order to force an
oscillation of the test-mass position. The satellite oscillates along the Y-axis, for the estimation of Θd z ,
and along the Z-axis, for the estimation of Θd y . For both types of calibration session, the excitation
signal E(t) has an amplitude of 5 ·10−8m · s−2, and a frequency of 1.23 ·10−3H z:

EY (t ) = EZ (t ) = (5 ·10−8) · sin(2π(1.23 ·10−3)t )

These various types of calibration sessions have been achieved for both the accelerometers SUEP and SUREF
described in section 2.2. For each calibration scenario, the drag compensating system can be set to compen-
sate either the motion of the internal test-mass, or the motion of the external test-mass. Each calibration
scenario has been repeated several times throughout the mission in order to take into account the variations
of the instrument parameters over time. Therefore, in order to differentiate among the numerous phases,
each calibration session bears an unique identifying number. The next subsections will present how these
calibration sessions can be used in order to estimate the instrument coupling factors.

3.2.2. Presentation of the instrumental model

Some of the calibration sessions can be used to investigate the coupling between axes. As mentioned in the
previous subsection, the calibration principle consists in exciting the satellite with a known signal to amplify
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the effect of the instrument parameter that needs to be estimated, and thus make it preponderant in the mea-
surement. During some of the calibration sessions, an oscillation of the test-mass position along one axis of
the instrument is forced though the Attitude and Orbit Control System. The careful study of the test-mass
acceleration along the other axes can give valuable information about the coupling between axes.

Throughout this part, the coupling factors investigation process will be illustrated with the K1d x calibration
sessions. The same process will nonetheless also be applied to the Θd y and Θd z calibration sessions. The
computations derived next will thus consider a mission phase in which an oscillation of the test-mass posi-
tion along the X-direction is forced by the drag compensating control block.

Each functionning instrument model has a corresponding computer simulation, created with Simulink. These
simulations have been used to define the control laws and confirm that the complete instrument loop is suf-
ficient for both the initial acquisition and the stable control. The definitive instrument model will be a non-
linear simulation treating each electrode separately, and including interactions between the instrument axes.
However, this will be achieved in steps, starting with a simple linearized model to illustrate the principle
of the calibration sessions. The instrument model used to illustrate the calibration scenario must be suffi-
ciently simple to be easily interpreted, but also sufficiently detailed to provide an accurate representation
of the instrument working principle. A simplified linear instrument model in which the electrical bias and
the instrumental noise (introduced in subsection 2.3.2) are neglected is therefore used. The control in the X-
direction is represented on Figure 3.1. In this illustration, the drag-compensating system is set to compensate
the motion of the external test-mass, referred to as IS2. The internal test-mass is referred to as IS1.

(a) (b)

Figure 3.1: (a) Illustration of the instrument loop along the X-axis, for a K1d x calibration session. The axes labelled IS1 refer to the
internal test-mass axes and those labelled IS2 refer to the external test-mass axes. (b) Another illustration of the instrument loop along

the X-axis, for a K1d x calibration session, with a detailed representation of the accelerometer control laws.

EX sat denotes the external acceleration along the X-axis. In the mission phases investigated, it is assumed
that:

EX sat ≈ 0
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SX I S2 and SX I S1 respectively represent the measured acceleration for the external and internal test-masses
along the X-direction. Gd f denotes the drag-compensating control block. KX I S2(p) and KX I S1(p) respectively
denote the accelerometer transfer function along the X-direction for the external and internal test-mass. The
Laplace variable p is equal to: p = iω = i 2π f ; ω is the measurement frequency, which is the frequency of
the sinusoid input.

The working principle of each block is detailed below:

ä The 1/p2 block: The proof-mass motion is modelled by the double integration of the acceleration applied
to the mass. This block also includes rebound conditions if the mass hits the stop. However, with a stable
control, this will not happen.

ä The CXIS2(p) block: This block illustrates the working principle of both the position detector and the
Proportional-Integral-Differential controller (referred to as PID). The mass position produced by the 1/p2

block is then measured by the position detector block, with a conversion from a position to a voltage. A
transfer function represents the measured cut-off frequency of the detector. The output of the detector
block is limited to the 15V saturation of the electronic circuit. The PID controller, illustrated in Figure 3.2,
has been selected for its relative simplicity and robustness. The proportional term controls the band-
width of the loop. The integral term provides an output proportional to the integral of the error. The
differential term can reduce the overshoot of the response, but also introduces a damping factor. The
PID performance objectives must meet the requirements for both the EP test, and the AOCS. In order to
reach the precision objective of the EP test, a high gain is desired at low frequencies to minimize the test-
mass motion. Nonetheless, since micrometeorite impacts are possible within the orbital environment,
the accelerometer must also be able to support sudden shocks without the mass hitting the stops. The
PID controller parameters have been calculated from the electronic components used, for a close match
between the model and the actual intsrument. Each axis of each mass of each instrument has its own well
tuned PID.

Figure 3.2: General form of a Proportional-Integral-Differential controller

The general expression of the C(p) block control function, for each sensor, is detailed in the relation below:

C (p) =
 Gdet G f m
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(3.1)

ä The GXIS2(p) and AXIS2(p) blocks: The PID output is then amplified by the Digital Voltage Amplifier block
(referred to as DVA) which consists of a measured gain, a transfer function representing the measured
cut-off frequency and a saturation level corresponding to the high voltage supply. The output of the DVA
corresponds to the voltage applied to the positive electrode of each pair. The actuation gain converts the
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DVA output to an acceleration of the mass due to the control voltage on the electrodes. Unlike the GX I S2(p)
block, the AX I S2(p) block also includes an anti-aliasing filter, which is a 5th order Butterworth low-pass
filter (see Appendix A for the detailed expression of the filter transfer function HBut ter wor th(p)), to restrict
the bandwidth of the signal and therefore satisfy the sampling theorem. The general expressions of both
the G(p) and A(p) block control functions, for each sensor, are detailed below:

G(p) = GDV A

1+ p
2πFCutO f fDV A

·Gactuati on (3.2)

and

A(p) = GDV A ·Gactuati on ·HBut ter wor th(p) (3.3)

ä Theω2
p stiffness block: The sensor stiffness is the component of the electrostatic force proportional to the

offset of the test-mass from the center of the electrode pair applying the force. The stiffness is provided
as a gain ω2

p . A positive sign of the stiffness indicatess a destabilizing effect, since the acceleration created
by the stiffness has the same sign as the position offset. The stiffness has a constant part, which could
be due to a defect in the cylindricity of the test-mass or electrode cylinders, and a frequency dependant
part, most likely due to a mechanical effect. The stiffness of all sensors have been accurately evaluated
in-flight, with dedicated mission phases during which a sinusoid with a specific frequency was applied to
the PID external input to force an oscillation of the mass position: the ratio of acceleration to position then
provides a measurement of the stiffness.

ä The GdfXIS2(p) block: The AOCS controller computes the acceleration that needs to be applied to the satel-
lite in order to compensate for the non-gravitational accelerations. For the satellite linear acceleration, the
calculation uses the instrument measurement as input, whereas for the angular acceleration, the calcu-
lation uses both the instrument and the stellar sensor measurements. This allows to combine two types
of information to estimate the satellite attitude: the angular acceleration measurement provided by the
instrument, more effective at high frequencies, integrated twice, and the attitude measurement provided
by the stellar sensor, more effective at low frequencies. This hybridization technique allows to improve the
precision of the estimated satellite attitude. The estimated attitude is obtained by applying a high-pass
filter to the measured angular acceleration integrated twice, and a low-pass filter to attitude measurement
provided by the stellar sensor:

Φhyb = 1

p2

p2

p2 +2aDFωDF p +ω2
DF

Γmeas,ang +
ω2

SST

p2 +2aSSTωSST p +ω2
SST

ΦSST (3.4)

Where Φhyb refers to the estimated satellite attitude, Γmeas,ang refers to the angular acceleration mea-
surement provided by the instrument,ΦSST represents the satellite attitude measurement provided by the
stellar sensor, and aDF , ωDF , aSST , ωSSt are the parameters of the hybridization block. The acceleration
that needs to be applied to the satellite to compensate for the non-gravitational accelerations are then
computed for each axis. Two different calculator transfer functions are used for the linear and angular
accelerations. These functions are provided by the CNES, which is responsible for this subsystem. Once
the acceleration computed, it is applied by the propulsion system.

The various parameters of the C(p), G(p) and A(p) block control functions introduced through the previous
relations, are detailed in Appendix B. As mentioned earlier, the first investigation of the coupling between
axes is based on a simplified linear model. Therefore, the model used only takes into account the couplings
between the axis along which the sinusoid of specific frequency is applied, and the others. In other words,
concerning the K1d x calibration sessions, the only coupling factors taken into account are X > Y, X > Z, X > φ,
X > ψ and X > θ. The control of the remaining axes is illustrated on Figure 3.3.

EY sat , EZ sat , EΦsat , EΨsat and EΘsat denote the external acceleration along the various axes of the satellite.
In the mission phases investigated, it is assumed that:

EX sat = EY sat = EZ sat = EΦsat = EΨsat = EΘsat ≈ 0

On Figure 3.3, the α parameters refer to the coupling factors between axes, for either the internal or the
external test-mass. The main objective of this chapter is to precisely evaluate their values.
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(a) φ-axis - Rotation around X

(b) Y-axis (c) ψ-axis - Rotation around Y

(d) Z-axis (e)Θ-axis - Rotation around Z

Figure 3.3: Illustration of the instrument loop for the linear and angular axes, for a K1d x calibration session.
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3.2.3. Processing of the calibration sessions in the investigation of the coupling factors:

This subsection will be dedicated to the processing of the various calibration sessions, introduced in subsec-
tion 3.2.1, in order to investigate the values of the coupling factors. Since the CNES did not provide the values
of the hybridization block parameters introduced in the previous part, it will not be possible to study the
coupling between the linear and the angular axes. Only the coupling factors between the linear axes, referred
to as the linear-to-linear coupling factors will be explored (for instance X > Y and X > Z). The work approach
will be illustrated with a K1d x calibration session during which the drag-compensating system is set to com-
pensate the motion of the external test-mass, but the same investigation process will be applied to the other
types of calibration sessions to estimate the remaining linear-to-linear coupling factors.

First, the closed-loop transfer functions of the linear axes models illustrated in both Figure 3.1 and Figure 3.3
need to be established.

ä XIS2 :

SX I S2 =
[

p2 +ω2
pX I S2

+CX I S2(p)GX I S2(p)

p2 +ω2
pX I S2

+CX I S2(p)GX I S2(p)+ AX I S2(p)CX I S2(p)Gd fX (p)

]
EX (3.5)

Where EX represents the sinusoid applied to the instrument loop to force an oscillation of the test-mass:

EX (t ) = (5 ·10−8) · sin(2π(1.23 ·10−3)t )

In order to simplify the relations, the function Di , j (p) is introduced, where the index i denotes the axis (X,
Y or Z) and the index j denotes the test-mass (internal IS1, or external IS2):

Di , j (p) = p2 +ω2
pi , j

+Ci , j (p)Gi , j (p)+ Ai , j (p)Ci , j (p)Gd fi (p)

The Equation 3.5 can consequently be rewritten as:

SX I S2 =
[

p2 +ω2
pX I S2

+CX I S2(p)GX I S2(p)

DX I S2(p)

]
EX (3.6)

ä XIS1 :

SX I S1 = −
[

AX I S1(p)CX I S1(p)

p2 +ω2
pX I S1

+CX I S1(p)GX I S1(p)

][
(p2 +ω2

pX I S2
+CX I S2(p)GX I S2(p))Gd fX (p)

DX I S2(p)

]
EX (3.7)

ä YIS2 :

SY I S2 =
[

AY I S2(p)CY I S2(p)

DY I S2(p)

]
E ′

X 2 αXYIS2 (3.8)

Where

E ′
X 2 = −

[
ω2

pX I S2
+CX I S2(p)GX I S2(p)

AX I S2(p)CX I S2(p)

][
AX I S2(p)CX I S2(p)Gd fX (p)

DX I S2(p)

]
EX (3.9)

Therefore, Equation 3.8 can be written as:

SY I S2 = −
[

AY I S2(p)CY I S2(p)

DY I S2(p)

][
(ω2

pX I S2
+CX I S2(p)GX I S2(p))Gd fX (p)

DX I S2(p)

]
EX αXYIS2 (3.10)

ä YIS1 :

SY I S1

[
p2 +ω2

pY I S1
+CY I S1(p)GY I S1(p)

AY I S1(p)CY I S1(p)

]
= E ′

X 1 αXYIS1 −Gd fY SY I S2 (3.11)
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Where

E ′
X 1 = −

[
ω2

pX I S1
+CX I S1(p)GX I S1(p)

p2 +ω2
pX I S1

+CX I S1(p)GX I S1(p)

][
(p2 +ω2

pX I S2
+CX I S2(p)GX I S2(p))Gd fX (p)

DX I S2(p)

]
EX (3.12)

Therefore, Equation 3.11 can be written as:

SY I S1

[
p2 +ω2

pY I S1
+CY I S1(p)GY I S1(p)

AY I S1(p)CY I S1(p)

]
= −

[
ω2

pX I S1
+CX I S1(p)GX I S1(p)

p2 +ω2
pX I S1

+CX I S1(p)GX I S1(p)

]
[

(p2 +ω2
pX I S2

+CX I S2(p)GX I S2(p))Gd fX (p)

DX I S2(p)

]
EX αXYIS1

+
[

AY I S2(p)CY I S2(p)Gd fY (p)

DY I S2(p)

][
(ω2

pX I S2
+CX I S2(p)GX I S2(p))Gd fX (p)

DX I S2(p)

]
EX αXYIS2 (3.13)

ä ZIS2 and ZIS1 : Since the Y- and Z-sensors have the same working principle, it can easily be inferred from
Figure 3.3 that the expressions for SZ I S2 and SZ I S1 are respectively the same as the expressions derived for
SY I S2 and SY I S1, by replacing the index "Y" by "Z".

The expressions for the functions A, C and G of each sensor have been established through previous research
works ([18], [21]), as illustrated in subsection 3.2.2. Nonetheless, the expression for the transfer function of
the linear AOCS system Gdf is unknown. The CNES only provided gain and phase values for discrete values
of frequencies, as seen in Table 3.1. The linear AOCS block is the same for the three linear axes X, Y and Z,
leading to:

Gd fX = Gd fY = Gd fZ

Table 3.1: Gain and Phase values of the linear AOCS system for discrete values of frequency, provided by the CNES

f (Hz) ω= 2πf (rad/s) Gain Gain expressed in decibels (dB) Phase (°)
0.001 0.0063 14880.3955 83.4523 -218.9955
0.003 0.0188 341.0216 50.6556 -264.6633
0.006 0.0377 29.3917 29.3645 -239.5528
0.01 0.0628 7.1646 17.1038 -195.8111
0.03 0.1885 1.5327 3.7089 -124.4834
0.06 0.3770 0.7485 -2.5163 -107.0318
0.1 0.6283 0.4466 -7.0022 -100.1781
0.3 1.8850 0.1461 -16.7077 -93.3319
0.6 3.7699 0.0688 -23.2456 -91.5697
1 6.2832 0.0351 -29.1027 -90.7998

In order to be able to estimate the gain and phase values of the linear AOCS system at the frequency of the
test, the linear AOCS block has to be modelled by a transfer function complying with the constraints imposed
by the values provided by the CNES. A brief analysis of the evolution of both the gain and the phase indicates
a 4th order system. The transfer function therefore contains 4 poles and at most 3 zeros, leading to a relation
with the following form:

Gd f (p) = b0 +b1p +b2p2 +b3p3

a0 +a1p +a2p2 +a3p3 +a4p4 (3.14)

The parameters a0, a1, a2, a3, b0, b1, b2, b3 and b4 mentioned in the relation above are estimated by means
of a nonlinear least-squares method, to minimize the loss function:

Minimize
n f∑

k=1

∣∣∣∣(y(ωk )− N (ωk )

D(ωk )
u(ωk )

)∣∣∣∣2
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Table 3.2: Estimated values for the parameters of the linear AOCS block transfer function

Numerator Parameters
b0 b1 b2 b3

4.1051 ·10−5 1.9853 ·10−3 3.5369 ·10−2 2.8797 ·10−1

Denominator Parameters
a0 a1 a2 a3 a4

3.4497 ·10−10 2.0220 ·10−7 8.7468 ·10−5 1.4486 ·10−2 1

Where N and D respectively denote the numerator and denominator of the transfer function model that
is to be estimated, y and u are the measured output and input data, and nf is the number of frequencies.
The results of the estimation algorithm, to convert the frequency-response data into a transfer function are
gathered below:

The Figure 3.4 illustrates the Bode diagram of the estimated linear AOCS block transfer function with respect
to the real magnitude and phase values provided by the CNES.

Figure 3.4: Bode Diagram of the estimated linear AOCS block transfer function with respect to the real magnitude and phase values
provided by the CNES

It can be inferred from the Figure 3.4 that the magnitude of the transfer function Gdf at the frequency of the
calibration session fcal/l i n = 1.23 · 10−3Hz is approximately equal to 78dB. In comparison with the other
transfer functions A, C and G at the same frequency fcal/l i n , the magnitude of the Gdf transfer function can
be considered as infinite. The relations established in the previous paragraph can therefore be simplified. In
the following relations, the accelerometer transfer function along the i-direction, for the test-mass j is equal
to:

Ki j (p) = Ai j (p)Ci j (p)

p2 +ω2
p,i j +Ci j (p)Gi j (p)

Considering the magnitude of the linear AOCS transfer function as infinite at the frequency of the calibra-
tion session, the closed-loop transfer functions of the models illustrated in Figure 3.1 and Figure 3.3 can be
simplified:

ä XIS2 :

∣∣SX I S2( f = fcal/l i n)
∣∣ ≈ 0 (3.15)
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ä XIS1 :

SX I S1( f = fcal/l i n) ≈ −KX I S1(p f = fcal/l i n
)

KX I S2(p f = fcal/l i n
)

EX (3.16)

ä YIS2 : ∣∣SY I S2( f = fcal/l i n)
∣∣ ≈ 0 (3.17)

ä YIS1 :

SY I S1( f = fcal/l i n) ≈ KY I S1(p f = fcal/l i n
)

KX I S2(p f = fcal/l i n
)

(αXYIS2 −αXYIS1)EX (3.18)

ä ZIS2 : ∣∣SZ I S2( f = fcal/l i n)
∣∣ ≈ 0 (3.19)

ä ZIS1 :

SZ I S1( f = fcal/l i n) ≈ KZ I S1(p f = fcal/l i n
)

KX I S2(p f = fcal/l i n
)

(αXZIS2 −αXZIS1)EX (3.20)

Figure 3.5: Acceleration measured in-orbit along the linear axes during a K1dx calibration session

As observed in the previous relations, and illustrated in Figure 3.5, because of the high gain of the linear AOCS
transfer function at fcal/l i n , the SX I S2, SY I S2 and SZ I S2 outputs are mainly constituted of noise (the random
peaks observed in the accelerometer data along every axes in Figure 3.5 result from both instrument noise
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and saturation events due to the satellite environment). At a frequency fcal/l i n , the drag-free control block is
able to precisely compensate for the acceleration applied to the external test-mass IS2 (expected behavior).
In other words, because of the gain of the linear AOCS transfer function at fcal/l i n , no valuable information
can be extracted from the SX I S2, SY I S2 and SZ I S2 outputs. Thanks to the relations previously established, it
can be derived that:

∣∣∣∣SY I S1( f = fcal/l i n)

SX I S1( f = fcal/l i n)

∣∣∣∣ ≈ ∣∣∣∣KY I S1(p f = fcal/l i n
)

KX I S1(p f = fcal/l i n
)

∣∣∣∣ |αXYIS1 −αXYIS2| (3.21)

and ∣∣∣∣ SZ I S1( f = fcal/l i n)

SX I S1( f = fcal/l i n)

∣∣∣∣ ≈ ∣∣∣∣ KZ I S1(p f = fcal/l i n
)

KX I S1(p f = fcal/l i n
)

∣∣∣∣ |αXZIS1 −αXZIS2| (3.22)

The expression for KXIS1, KYIS1 and KZIS1 being known, it can easilly be computed that:∣∣∣∣KY I S1(p f = fcal/l i n
)

KX I S1(p f = fcal/l i n
)

∣∣∣∣ ≈ 1 and

∣∣∣∣ KZ I S1(p f = fcal/l i n
)

KX I S1(p f = fcal/l i n
)

∣∣∣∣ ≈ 1

Equation 3.21 and Equation 3.22 therefore lead to:∣∣∣∣SY I S1( f = fcal/l i n)

SX I S1( f = fcal/l i n)

∣∣∣∣ ≈ |αXYIS1 −αXYIS2| (3.23)

and ∣∣∣∣ SZ I S1( f = fcal/l i n)

SX I S1( f = fcal/l i n)

∣∣∣∣ ≈ |αXZIS1 −αXZIS2| (3.24)

It can be inferred from Equation 3.23 and Equation 3.24 that a careful analysis of the accelerometer data
during the calibration sessions allows an estimation of the values of (αXYIS1 −αXYIS2) and (αXZIS1 −αXZIS2),
referred to as the differential linear-to-linear coupling factors. A sinusoid is first fit to each data set and the
absolute value of the differential coupling factors is obtained from the ratio of the oscillation amplitudes.
The signs (+/-) of the differential coupling factors are given by a comparative study of the phases of the fitted
signals. An algorithm encoded in Python language has been developed to automate the process to all the
calibration sessions. It is described below in Table 3.3.

The results from all the K1d x calibration sessions are presented in Table 3.4. As mentioned earlier, the vari-
ous session numbers correspond to the several calibration sessions achieved throughout the MICROSCOPE
mission. The results are presented with a 99% confidence interval (3-σ results).

This method has drawbacks because the sinusoid requires a fit of three variables (amplitude, phase and off-
set) for each data set, but only the amplitude and phase are used. In the K1d x calibration sessions processed,
the drag-compensating system was set to compensate the motion of the external test-mass IS2 (character-
ized as DFIS2, standing for Drag-Free on IS2). The same reasoning applied to sessions in which the drag-
compensating system is set to compensate the motion of the internal test-mass IS1 (characterized as DFIS1)
leads to the following relations:

ä XIS2 :

SX I S2( f = fcal/l i n) ≈ −KX I S2(p f = fcal/l i n
)

KX I S1(p f = fcal/l i n
)

EX (3.25)

ä XIS1 : ∣∣SX I S1( f = fcal/l i n)
∣∣ ≈ 0 (3.26)

ä YIS2 :

SY I S2( f = fcal/l i n) ≈ KY I S2(p f = fcal/l i n
)

KX I S1(p f = fcal/l i n
)

(αXYIS1 −αXYIS2)EX (3.27)
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Table 3.3: Algorithm used to extract the differential linear-to-linear coupling factors from the K1d x calibration sessions

Algorithm 1: Extraction of the differential linear-to-linear coupling factors from
the K1dx calibration sessions

Require: The accelerometer data sets measured along the linear axes during all the K1d x

calibration sessions
Require: The frequency of the signal applied to force an oscillation of the test-mass along the X-axis
1: For all K1d x calibration sessions

2: Fit the accelerometer data sets SX I S1, SY I S1 and SZ I S1 with a sinusoidal function
a sin(2π fcal/l i n t +Φ)+b by means of a least-squares method. This process requires a fit of three
variables for each data set: the amplitude a, the phaseΦ and the offset b.

3: Compute the ratios of the estimated oscillation amplitudes aY I S1
aX I S1

and aZ I S1
aX I S1

. These ratios are

respectively equal to |αX Y I S1 −αX Y I S2| and |αX Z I S1 −αX Z I S2|.

4: ifΦY I S1 =ΦX I S1 [2π] then
5: αX Y I S1 −αX Y I S2 = |αX Y I S1 −αX Y I S2|
6: else
7: αX Y I S1 −αX Y I S2 = −|αX Y I S1 −αX Y I S2|
8: end if

9: ifΦZ I S1 =ΦX I S1 [2π] then
10: αX Z I S1 −αX Z I S2 = |αX Z I S1 −αX Z I S2|
11: else
12: αX Z I S1 −αX Z I S2 = −|αX Z I S1 −αX Z I S2|
13: end if

14: end for

Table 3.4: Processing of the K1d x−DF I S2 calibration sessions and 3-σ estimation of (αX Y I S1 −αX Y I S2) and (αX Z I S1 −αX Z I S2) for the
SUEP instrument

K1d x calibration session - SUEP - Drag-Free IS2
Session number αX Y I S1 −αX Y I S2 αX Z I S1 −αX Z I S2

208 0.16142 0.17867
216 0.17611 0.20442
232 0.17617 0.20459
246 0.17632 0.20545
250 0.17615 0.20461
264 0.17662 0.20597
312 0.17719 0.20932
318 0.17693 0.20905
324 0.17684 0.20997
330 0.17703 0.20773
400 0.17694 0.20769
422 0.15839 0.18151
436 0.15797 0.17567
444 0.15831 0.17668

Mean Value 0.172 0.20
Standard Deviation σ 0.008 0.01

3-σ result 0.172 ± 0.024 0.20 ± 0.03

ä YIS1 : ∣∣SY I S1( f = fcal/l i n)
∣∣ ≈ 0 (3.28)



3.2. Exploitation of the in-orbit calibration sessions 37

ä ZIS2 : ∣∣SZ I S2( f = fcal/l i n)
∣∣ ≈ KZ I S2(p f = fcal/l i n

)

KX I S2(p f = fcal/l i n
)

(αXZIS1 −αXZIS2)EX (3.29)

ä ZIS1 : ∣∣SZ I S1( f = fcal/l i n)
∣∣ ≈ 0 (3.30)

The expression for KXIS2, KYIS2 and KZIS2 being known, it can be easilly derived that:∣∣∣∣SY I S2( f = fcal/l i n)

SX I S2( f = fcal/l i n)

∣∣∣∣ ≈ |αXYIS2 −αXYIS1| (3.31)

and ∣∣∣∣ SZ I S2( f = fcal/l i n)

SX I S2( f = fcal/l i n)

∣∣∣∣ ≈ |αXZIS2 −αXZIS1| (3.32)

While the processing of the K1d x−DF I S2 calibration sessions led to an estimation of the values of (αXYIS1 −αXYIS2),
and (αXZIS1 −αXZIS2), it can be inferred from Equation 3.31 and Equation 3.32 that a careful analysis of the ac-
celerometer data during the K1d x−DF I S1 calibration sessions allows an estimation of the values of (αXYIS2 −αXYIS1)
and (αXZIS2 −αXZIS1). Therefore, the processing of the K1d x−DF I S1 calibration sessions will allow to support
the results previously computed for the differential linear-to-linear coupling factors. Another Python al-
gorithm, similar to the one presented in Table 3.3, has been developed to automate the process to all the
K1d x−DF I S1 calibration sessions.

Table 3.5: Processing of the K1d x−DF I S1 calibration sessions and 3-σ estimation of (αX Y I S2 −αX Y I S1) and (αX Z I S2 −αX Z I S1) for the
SUEP instrument

K1d x calibration session - SUEP - Drag-Free IS1
Session number αX Y I S2 −αX Y I S1 αX Z I S2 −αX Z I S1

78 -0.16012 -0.17327
84 -0.17376 -0.18211

106 -0.17291 -0.18125
146 -0.17373 -0.18384
206 -0.15241 -0.16807

Mean Value -0.167 -0.178
Standard Deviation σ 0.009 0.006

3-σ result -0.167 ± 0.027 -0.178 ± 0.018

The results obtained with the K1d x−DF I S1 calibration sessions and gathered in Table 3.5 are relevant with the
ones obtained with the K1d x−DF I S2 calibration sessions and gathered in Table 3.4.

The same steps are adapted and applied to the other types of calibration sessions, introduced in subsec-
tion 3.2.1 and referred to as T het ad y and T het ad z sessions, in order to estimate the remaining differential
linear-to-linear coupling factors (Y > X, Y > Z, Z > X and Z > Y). The final results are summurized in Table 3.6
(all the detailed results of the various calibration sessions processing are gathered in Appendix C).

The exact same approach as the one developed in this part is applied to compute the differential linear-
to-linear coupling factors for the second instrument, referred to as the SUREF instrument. The results are
summarized in Table 3.7 (the session by session results are gathered in Appendix C). The Θd y−DF I S1 and
Θd z−DF I S calibration sessions (that is to say the Θd y and Θd z calibration sessions during which the drag-
compensation system is set to compensate the motion of the internal test-mass IS1) do not appear on the
table because they have not been achieved throughout the mission scenario.

This subsection has allowed to highlight the fact that, because of the high gain of the drag-free control block
at fcal/l i n = 1.23 ·10−3Hz, the processing of the various calibration sessions can only give access to the dif-
ferential linear-to-linear coupling factors, as observed in Table 3.4, Table 3.5, Table 3.6 and Table 3.7. A new
approach thus needs to be established in order to estimate the linear-to-linear coupling factors: this is devel-
oped in the next section.
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Table 3.6: Processing of theΘd y andΘd z calibration sessions and 3-σ estimation of the remaining differential linear-to-linear coupling
factors for the SUEP instrument

Θdz calibration session - SUEP - Drag-Free IS2
Differential linear-to-linear coupling factors Mean Value Standard Deviation σ 3-σ result

αYXIS1 −αYXIS2 −5 ·10−4 2 ·10−4 [−5±6] ·10−4

αYZIS1 −αYZIS2 3 ·10−3 1 ·10−1 [3±3] ·10−3

Θdz calibration session - SUEP - Drag-Free IS1
αYXIS2 −αYXIS1 5 ·10−4 Only one session achieved
αYZIS2 −αYZIS1 −1.8 ·10−3 Only one session achieved

Θdy calibration session - SUEP - Drag-Free IS2
αZXIS1 −αZXIS2 4 ·10−4 2 ·10−4 [4±6] ·10−4

αZYIS1 −αZYIS2 −6 ·10−4 2 ·10−4 [−6±6] ·10−4

Θdy calibration session - SUEP - Drag-Free IS1
αZXIS2 −αZXIS1 No session completed
αZYIS2 −αZYIS1 No session completed

Table 3.7: Processing of the K1d x ,Θd y andΘd z calibration sessions and 3-σ estimation of the differential linear-to-linear coupling
factors for the SUREF instrument

K1dx calibration session - SUREF - Drag-Free IS2
Differential linear-to-linear coupling factors Mean Value Standard Deviation σ 3-σ result

αXYIS1 −αXYIS2 0.103 1 ·10−3 0.103±0.003
αXZIS1 −αXZIS2 −0.016 1 ·10−3 −0.016±0.003

K1dx calibration session - SUREF - Drag-Free IS1
αXYIS2 −αXYIS1 −0.1013 6 ·10−4 −0.1013±0.0018
αXZIS2 −αXZIS1 0.0133 4 ·10−4 0.0133±0.0012

Θdz calibration session - SUREF - Drag-Free IS2
αYXIS1 −αYXIS2 −3 ·10−4 2 ·10−4 [−3±6] ·10−4

αYZIS1 −αYZIS2 2.14 ·10−3 4 ·10−5 [2.14±0.12] ·10−3

Θdy calibration session - SUREF - Drag-Free IS2
αZXIS1 −αZXIS2 −2.3 ·10−4 8 ·10−5 [−2.3±2.4] ·10−4

αZYIS1 −αZYIS2 −1.33 ·10−3 5 ·10−5 [−1.33±0.15] ·10−3

3.3. Exploitation of a new type of mission phase

The new approach will be based on the processing of a specific mission phase referred to as Technical session
n°516. Throughout this session, realized with the SUEP instrument, a sinusoid of amplitude 0.148V and
frequency ftech = 0.1Hz is first applied in the instrument control loop to force an oscillation of the test-mass
position along the X-axis during 100s, as illustrated in Figure 3.6.

Then, a sinusoid with the same frequency ftech , but a different amplitude (0.01V) is induced in the satellite
motion along the Y-axis during 100s, and finally along the Z-axis during 100s.

During this session, the drag-free control block is set to compensate the motion of the external test-mass IS2.
According to Table 3.1, in comparison with the calibration sessions, at ftech = 0.1Hz, the gain of the linear
drag-free control block is reduced from 78dB to -7dB. Therefore, contrary to the calibration sessions during
which no valuable information could be extracted from the SX I S2, SY I S2 and SZ I S2 outputs, the technical
session n°516 allows to process each one of these outputs, as observed on Figure 3.7.

The careful analysis of the technical session n°516 should thus lead to the derivation of the linear-to-linear
coupling factors for the SUEP instrument. The session will be analyzed section by section: between 216s
and 316s for the excitation along the X-axis, between 366s and 466s for the excitation along the Y-axis, and
finally, between 516s and 566s for the excitation along the Z-axis. In the interest of clarity and simplicity, the
investigation process will only be illustrated for the excitation along the X-axis, but the same approach will
be applied for the excitation along the other axes.
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Figure 3.6: Illustration of the instrument control loop along the X-axis for the technical session n°516

Figure 3.7: Acceleration measured in-orbit along the linear axes during the technical session n°516



40 3. Coupling between axes

Since the port of entry of the excitation signal is different than the one used for the calibration sessions, the
closed-loop transfer functions of the linear axes models need to be derived again. The model for the X-axis is
illustrated on Figure 3.6, while the model for the remaining axes is the same as the one used for the calibration
sessions, illustrated on Figure 3.3.

ä XIS2 :

SX I S2 = −
[

AX I S2(p)CX I S2(p)GX I S2(p)

DX I S2(p)

]
E ′

X (3.33)

Where DX I S2(p) denotes the function introduced in subsection 3.2.3 and E ′
X represents the sinusoid ap-

plied to the instrument loop to force an oscillation of the test-mass:

E ′
X (t ) = 0.148 · sin(2π(0.1)t )

ä XIS1 :

SX I S1 = KX I S1(p)

[
AX I S2(p)CX I S2(p)GX I S2(p)Gd fX (p)

DX I S2(p)

]
E ′

X (3.34)

Where KX I S1(p) denotes the accelerometer transfer function along the X-axis, for the internal test-mass,
introduced in subsection 3.2.3.

The accelerometer data sets SX I S2 and SX I S1 are fitted with a sinusoidal function a sin(2π ftech t +φ)+b by
means of a least-squares method. The frequency ftech being admitted, this process requires a fit of three
variables for each data set: the amplitude a, the phase φ and the offset b. Since the expressions for the
functions A, C, G and Gdf of each sensor have already been established, the values for the theoretical val-
ues of |SX I S2( f = ftech)| and |SX I S1( f = ftech)| can be computed thanks to Equation 3.33 and Equation 3.34.
They should be respectively equal to aX I S2 and aX I S1. Nonetheless, it is not the case: the values obtained by
means of a least-squares method (that is to say the amplitudes observed in-flight) are higher than the values
computed through the theoretical model. This difference has allowed to highlight a pure phase delay in the
drag-free control loop, as illustrated in Figure 3.8.

Figure 3.8: Illustration of the pure phase delay in the drag-free control loop - XIS2 sensor

The value of the delay τX is adjusted so that the amplitude values of the SX I S2 and SX I S1 outputs, computed
through the theoretical model, match the amplitudes observed in-flight as closely as possible. This leads to a
delay equal to τX = 0.60s.

The same process is applied for the excitation along the Y-axis (section between 366s and 466s), and for the
excitation along the Z-axis (section between 516s and 616s) to respectively estimate the phase delay in the
drag-free control loop of the Y-axis (referred to as τY ), and of the Z-axis (referred to as τZ ). This finally leads to
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τY = τZ = 0.37s (values validated by the CNES responsible for the drag-free control block). The expressions for
the transfer functions of the drag-free control loops thus need to be replaced by the following relation:

Gd fi =
[

b0 +b1p +b2p2 +b3p3

a0 +a1p +a2p2 +a3p3 +a4p4

]
exp(−pτi ) (3.35)

Where i ∈ {X ,Y , Z }, and a0, a1, a2, a3, b0, b1, b2, b3 and b4 represents the parameters of the transfer function
previously evaluated in subsection 3.2.3.

Now that the expressions for the drag-free control loop transfer function have been adjusted, the closed-loop
transfer functions of the remaining linear axes can be derived:

ä YIS2 :

SY I S2 =
[

AY I S2(p)CY I S2(p)

DY I S2(p)

][
p2 + AX I S2(p)CX I S2(p)Gd fX (p)

DX I S2(p)

]
GX I S2(p)αXYIS2E ′

X (3.36)

Leading to

|αXYIS2| =
∣∣∣∣ DY I S2(p)

AY I S2(p)CY I S2(p)

∣∣∣∣ ∣∣∣∣ DX I S2(p)

p2 + AX I S2(p)CX I S2(p)Gd fX (p)

∣∣∣∣ ∣∣∣∣ SY I S2(p)

GX I S2(p)E ′
X

∣∣∣∣ (3.37)

ä YIS1 :

SY I S1 = KY I S1(p)

[
ω2

pX I S1
+CX I S1(p)GX I S1(p)

p2 +ω2
pX I S1

+CX I S1(p)GX I S1(p)

][
AX I S2(p)CX I S2(p)GX I S2(p)Gd fX (p)

DX I S2(p)

]
αXYIS1E ′

X

−KY I S1(p)

[
AY I S2(p)CY I S2(p)Gd fY (p)

DY I S2(p)

][
(p2 + AX I S2(p)CX I S2(p)Gd fX (p))GX I S2(p)

DX I S2(p)

]
αXYIS2E ′

X (3.38)

ä ZIS2 :

SZ I S2 =
[

AZ I S2(p)CZ I S2(p)

DZ I S2(p)

][
p2 + AX I S2(p)CX I S2(p)Gd fX (p)

DX I S2(p)

]
GX I S2(p)αXZIS2E ′

X (3.39)

Leading to

|αXZIS2| =
∣∣∣∣ DZ I S2(p)

AZ I S2(p)CZ I S2(p)

∣∣∣∣ ∣∣∣∣ DX I S2(p)

p2 + AX I S2(p)CX I S2(p)Gd fX (p)

∣∣∣∣ ∣∣∣∣ SZ I S2(p)

GX I S2(p)E ′
X

∣∣∣∣ (3.40)

ä ZIS1 :

SZ I S1 = KZ I S1(p)

[
ω2

pX I S1
+CX I S1(p)GX I S1(p)

p2 +ω2
pX I S1

+CX I S1(p)GX I S1(p)

][
AX I S2(p)CX I S2(p)GX I S2(p)Gd fX (p)

DX I S2(p)

]
αXZIS1E ′

X

−KZ I S1(p)

[
AZ I S2(p)CZ I S2(p)Gd fZ (p)

DZ I S2(p)

][
(p2 + AX I S2(p)CX I S2(p)Gd fX (p))GX I S2(p)

DX I S2(p)

]
αXZIS2E ′

X (3.41)

It can be inferred from the relations derived above that a careful analysis of the accelerometer data during
the technical session n°516 allows an estimation of the linear-to-linear coupling factor. The process used to
evaluate these coupling factors is developed in Table 3.8.

The same approach is applied for both the second section (excitation along the Y-axis) and the third section
(excitation along the Z-axis) of the technical session n°516 to estimate the remaining linear-to-linear coupling
factors. The results are gathered in Table 3.9. In the same table, the differential linear-to-linear coupling fac-
tors are computed, and confronted with the values obtained with the processing of the calibration sessions.
It is observed that the values computed are relevant with the ones obtained with the calibration sessions. The
processing of the technical session n°516 has therefore allowed the derivation of the linear-to-linear coupling
factors for the SUEP instrument.



42 3. Coupling between axes

Table 3.8: Algorithm used to extract the linear-to-linear coupling factors from the technical session n°516

Algorithm 2: Extraction of the linear-to-linear coupling factors from the first section of the
technical session n°516

Require: The accelerometer data sets measured along the linear axes during the first section of
the technical session n°516

Require: The frequency of the signal applied to force an oscillation of the test-mass along the
X-axis

1: Fit the accelerometer data sets SX I S2, SX I S1, SY I S2, SY I S1, SZ I S2 and SZ I S1 with a sinusoidal
function a sin(2π fcal/l i n t +Φ)+b by means of a least-squares method.

2: Compute |αX Y I S2| thanks to Equation 3.37

|αXYIS2| =
∣∣∣∣ p2+ω2

pY I S2
+CY I S2(p)GY I S2(p)+AY I S2(p)CY I S2(p)Gd fY (p)

AY I S2(p)CY I S2(p)

∣∣∣∣ ∣∣∣∣ p2+ω2
pX I S2

+CX I S2(p)GX I S2(p)+AX I S2(p)CX I S2(p)Gd fX (p)

p2+AX I S2(p)CX I S2(p)Gd fX (p)

∣∣∣∣∣∣∣ aYIS2
GX I S2(p)E ′

X

∣∣∣
3: ifΦY I S2 =ΦX I S2 [2π] then
4: αX Y I S2 = |αX Y I S2|
5: else
6: αX Y I S2 = −|αX Y I S2|
7: end if

8: The excitation frequency ftech and the coupling factor αX Y I S2 being known, using the
Equation 3.38, find the value of αX Y I S1 leading to:

|SY I S1( ftech ,αX Y I S2,αX Y I S1)| = aYIS1

The value found is equal to αXYIS1

9: Apply the same process with the SZ I S2 and SZ I S1 outputs to estimate the coupling factors
αX Z I S2 and αX Z I S1.

Table 3.9: Processing of the technical session n°516: estimation of the linear-to-linear coupling factors and confrontation with the
results obtained with the calibration sessions

Results from the Technical session n°516 Results from the Calibration sessions
Linear-to-linear
coupling factor

Value Differential (IS1-IS2)
Differential factor from
the calibration sessions

αX Y I S2 -0,14963
0,17185 0.172 ± 0.024

αX Y I S1 0,02222
αX Z I S2 -0,15748

0,22283 0.20 ± 0.03
αX Z I S1 0,06536
αY X I S2 -0,01046 −3.2 ·10−4 [−5±6] ·10−4
αY X I S1 -0,01077
αY Z I S2 0,01406

6.43 ·10−3 [3±3] ·10−3
αY Z I S1 0,02049
αZ X I S2 -0,02633

2.6 ·10−4 [4±6] ·10−4
αZ X I S1 -0,02607
αZ Y I S2 -0,01494 −4.2 ·10−4 [−6±6] ·10−4
αZ Y I S1 -0,01536

A similar technical session realized with the SUREF instrument would lead to the estimation of the linear-
to-linear coupling factors for the SUREF instrument. Such a session has therefore been proposed to the
scientific mission center and accepted. It has been added to the mission scenario before the end of the
MICROSCOPE mission.

The linear-to-linear coupling factors computed are an estimation of the real values, since the instrumental
model used for the processing of the various sessions is a simplified linear model neglecting certain terms.
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Indeed, the model used only took into account the couplings between the axis along which the sinusoid of
specific frequency was applied, and the others. A more complex instrumental model taking into account all
the linear-to-linear coupling factors will allow to improve the precision of the estimation. This is the purpose
of the instrument simulator presented in the next section.

3.4. Design of an instrument simulator

Figure 3.9: Illustration of the Simulink Simulator of the instrument
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As mentioned at the end of the previous section, in the interest of clarity and simplicity, the instrumental
model used so far only took into account the couplings between the axis along which the excitation signal
was applied, and the others. This simplified model allowed a first estimation of the linear-to-linear coupling
factors. In order to get closer to the real values, a more complex instrumental model, taking into account
all the linear-to-linear coupling factors, needs to be designed: a Simulink simulator of the instrument is
therefore developed, as illustrated on Figure 3.9. Simulink is an add-on tool to MATLAB that provides an
interactive, graphical environment for modeling, simulating, and analyzing dynamic systems. For modeling,
Simulink provides a graphical user interface for building models as block diagrams. It therefore enables rapid
construction of virtual prototypes to explore design concepts. This tool will thus allow to build an instrument
simulator taking into account all the linear-to-linear coupling factors simultaneously.

The simulator simulates the behavior of the linear axes of the SUEP instrument. Each sensor of the ac-
celerometer simulator is designed according to the model illustrated in Figure 3.8. The control functions
(C(p), G(p) and A(p)) of each sensor have been detailed in Appendix B. The drag-free control block is set to
compensate the motion of the external test-mass (DFIS2). The linear-to-linear coupling factors are initialized
with the values estimated in the previous section (as seen in Table 3.9).

Three simulations are run with these first settings:

• First, a sinusoid of amplitude 0.148V and frequency ftech = 0.1Hz is applied in the instrument control
loop to force an oscillation of the test-mass along the X-axis: E′

X(t) = 0.148 · sin(2π(0.1)t)

• Then, a sinusoid of amplitude 0.01V and frequency ftech is induced in the satellite motion along the
Y-axis: E′

Y(t) = 0.01 · sin(2π(0.1)t)

• Finally, a sinusoid of amplitude 0.01V and frequency ftech is induced in the satellite motion along the
Z-axis: E′

Z(t) = E′
Y(t) = 0.01 · sin(2π(0.1)t)

These three simulations attempt to reproduce the scenario realized during the technical session n°516. The
outputs provided by each sensor of the instrument simulator for the first simulation are illustrated on Fig-
ure 3.10. The first random oscillations observed on these figures correspond to the convergence time of the
simulator. The outputs observed with the two other simulations are gathered in Appendix D.

(a) XIS2 and XIS1 axes

(b) YIS2 and YIS1 axes
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(c) ZIS2 and ZIS1 axes

Figure 3.10: Outputs provided by the instrument simulator for the first simulation (Excitation along the X-axis)

For each simulation, the amplitude of the acceleration measured by every sensor is computed by means of
a least-squares method, and confronted with the values observed in-flight during the technical session n°516.

The results are gathered in Table 3.10.

Table 3.10: Results obtained with the instrument simulator - Linear-to-linear coupling factors initialized with the values computed in
section 3.3

Excitation along the X-axis - Amplitude 0.148V - Frequency 0.1Hz

Sensor
Amplitude obtained with the Simulator

(m/s2)

Amplitude obtained in-flight during the first
section of the technical session n°516

(m/s2)
XIS2 3.330 ·10−7 3.349 ·10−7

XIS1 1.747 ·10−7 1.754 ·10−7

YIS2 2.84 ·10−8 2.86 ·10−8

YIS1 1.24 ·10−8 1.16 ·10−8

ZIS2 3.00 ·10−8 3.01 ·10−8

ZIS1 1.55 ·10−8 1.02 ·10−8

Excitation along the Y-axis - Amplitude 0.01V - Frequency 0.1Hz

Sensor
Amplitude obtained with the Simulator

(m/s2)

Amplitude obtained in-flight during the second
section of the technical session n°516

(m/s2)
YIS2 1.937 ·10−7 1.931 ·10−7

YIS1 9.14 ·10−8 7.08 ·10−8

XIS2 1.8 ·10−9 1.7 ·10−9

XIS1 1.8 ·10−9 1.8 ·10−9

ZIS2 1.9 ·10−9 1.6 ·10−9

ZIS1 2.1 ·10−9 2.0 ·10−9

Excitation along the Y-axis - Amplitude 0.01V - Frequency 0.1Hz

Sensor
Amplitude obtained with the Simulator

(m/s2)

Amplitude obtained in-flight during the third
section of the technical session n°516

(m/s2)
ZIS2 1.934 ·10−7 1.923 ·10−7

ZIS1 9.14 ·10−8 7.00 ·10−8

XIS2 4.4 ·10−9 4.3 ·10−9

XIS1 4.3 ·10−9 4.2 ·10−9

YIS2 1.0 ·10−9 1.7 ·10−9

YIS1 1.7 ·10−9 2.2 ·10−9
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As planned, with a more complex instrumental model, the values of the linear-to-linear coupling factors need
to be adjusted so that the accelerations amplitudes obtained with the Simulink simulator get as close as pos-
sible to the values observed in-flight during the technical session n°516. The Simulink Design Optimization
toolbox allows to adjust the parameters of a Simulink model in order to meet certain constraints. This feature
will be of great interest in the linear-to-linear coupling factors optimization process developed in Table 3.11.

Table 3.11: Algorithm used to adjust the values of the linear-to-linear coupling factors

Algorithm 3: Optimization of the linear-to-linear coupling factors
Require: The first estimates of the linear-to-linear coupling factors computed in section 3.3

to initialize the process
1: Initialize the linear-to-linear coupling factors with the estimates computed in section 3.3.

2: The parameters αY X I S2, αY X I S1, αY Z I S2, αY Z I S1, αZ X I S2, αZ X I S1, αZ Y I S2 and αZ Y I S1 are fixed.
The simulator is set so that an excitation signal E′

X(t) is applied in the instrument loop to force
an oscillation of the test-mass along the X-axis. Use the Simulink Design Optimization to adjust
the parameters αX Y I S2, αX Y I S1, αX Z I S2 and αX Z I S1 so that the accelerations amplitudes obtained
with the simulator get as close as possible to the values observed in-flight during the first section
of technical session n°516 (Excitation along the X-axis).

3: Update the values of the parameters αX Y I S2, αX Y I S1, αX Z I S2 and αX Z I S1.

4: The parameters αX Y I S2, αX Y I S1, αX Z I S2, αX Z I S1, αZ X I S2, αZ X I S1, αZ Y I S2 and αZ Y I S1 are fixed.
The simulator is set so that an excitation signal E′

Y(t) is applied in the instrument loop to force
an oscillation of the test-mass along the Y-axis. Use the Simulink Design Optimization to adjust
the parameters αY X I S2, αY X I S1, αY Z I S2 and αY Z I S1 so that the accelerations amplitudes obtained
with the simulator get as close as possible to the values observed in-flight during the second section
of technical session n°516 (Excitation along the Y-axis).

5: Update the values of the parameters αY X I S2, αY X I S1, αY Z I S2 and αY Z I S1.

6: The parameters αX Y I S2, αX Y I S1, αX Z I S2, αX Z I S1, αY X I S2, αY X I S1, αY Z I S2 and αY Z I S1 are fixed.
The simulator is set so that an excitation signal E′

Z(t) is applied in the instrument loop to force
an oscillation of the test-mass along the Z-axis. Use the Simulink Design Optimization to adjust
the parameters αZ X I S2, αZ X I S1, αZ Y I S2 and αZ Y I S1 so that the accelerations amplitudes obtained
with the simulator get as close as possible to the values observed in-flight during the third section
of technical session n°516 (Excitation along the Z-axis).

7: Update the values of the parameters αZ X I S2, αZ X I S1, αZ Y I S2 and αZ Y I S1.

8: The steps 2 to 7 are repeated until convergence of the linear-to-linear coupling factors.

The values obtained with this approach are presented in Table 3.12. The accelerations amplitudes provided by
the simulator using the adjusted linear-to-linear coupling factors are shown in Table 3.13 while the simulator
outputs are gathered in Appendix D.

As observed in Table 3.13, the optimization process has allowed an improvement of the precision. Nonethe-
less, the accelerations amplitudes provided by the instrument simulator are still slightly different from the
values measured in-flight throughout the technical session n°516. This can be explained by the simplifica-
tions used for the instrumental model: the simulator neglected the electrical bias and the instrumental
noise, but also and above all did not take into account the coupling between the linear and angular axes.
A simulator simulating the behavior of the six axes of the instrument, and considering both the coupling
between the linear and angular axes, and the other perturbations mentioned would provide more accurate
results. The work achieved so far has therefore paved the way for further research that would lead to an even
more precise estimation of the instrument coupling factors.
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Table 3.12: Adjusted linear-to-linear coupling factors provided by the optimization process

Linear-to-linear coupling factors Estimated Value (section 3.3) Adjusted Value
αX Y I S2 -0.14963 -0.15101
αX Y I S1 0.02222 0.02725
αX Z I S2 -0.15748 -0.15400
αX Z I S1 0.06536 0.03010
αY X I S2 -0.01046 -0.01019
αY X I S1 -0.01077 -0.01059
αY Z I S2 0.01406 0.01145
αY Z I S1 0.02049 0.01962
αZ X I S2 -0.02633 -0.02647
αZ X I S1 -0.02607 -0.02627
αZ Y I S2 -0.01494 -0.02120
αZ Y I S1 -0.01536 -0.02151

Table 3.13: Results obtained with the instrument simulator using the adjusted linear-to-linear coupling factors

Excitation along the X-axis - Amplitude 0.148V - Frequency 0.1Hz

Sensor

Amplitude measured in-flight
during the first section
of the technical session

n°516 (m/s2)

Amplitude obtained with the
simulator using the

coupling factors first
estimates (m/s2)

Amplitude obtained with the
simulator using the
adjusted coupling

factors (m/s2)
XIS2 3.349 ·10−7 3.330 ·10−7 3.347 ·10−7

XIS1 1.754 ·10−7 1.747 ·10−7 1.750 ·10−7

YIS2 2.86 ·10−8 2.84 ·10−8 2.86 ·10−8

YIS1 1.16 ·10−8 1.24 ·10−8 1.21 ·10−8

ZIS2 3.01 ·10−8 3.00 ·10−8 3.01 ·10−8

ZIS1 1.02 ·10−8 1.55 ·10−8 1.34 ·10−8

Excitation along the Y-axis - Amplitude 0.01V - Frequency 0.1Hz

Sensor

Amplitude measured in-flight
during the second section

of the technical session
n°516 (m/s2)

Amplitude obtained with the
simulator using the

coupling factors first
estimates (m/s2)

Amplitude obtained with the
simulator using the
adjusted coupling

factors (m/s2)
YIS2 1.931 ·10−7 1.937 ·10−7 1.930 ·10−7

YIS1 7.08 ·10−8 9.14 ·10−8 9.10 ·10−8

XIS2 1.7 ·10−9 1.8 ·10−9 1.7 ·10−9

XIS1 1.8 ·10−9 1.8 ·10−9 1.8 ·10−9

ZIS2 1.6 ·10−9 1.9 ·10−9 1.6 ·10−9

ZIS1 2.0 ·10−9 2.1 ·10−9 2.0 ·10−9

Excitation along the Y-axis - Amplitude 0.01V - Frequency 0.1Hz

Sensor

Amplitude measured in-flight
during the third section
of the technical session

n°516 (m/s2)

Amplitude obtained with the
simulator using the

coupling factors first
estimates (m/s2)

Amplitude obtained with the
simulator using the
adjusted coupling

factors (m/s2)
ZIS2 1.923 ·10−7 1.934 ·10−7 1.930 ·10−7

ZIS1 7.00 ·10−8 9.14 ·10−8 9.11 ·10−8

XIS2 4.3 ·10−9 4.4 ·10−9 4.3 ·10−9

XIS1 4.2 ·10−9 4.3 ·10−9 4.3 ·10−9

YIS2 1.7 ·10−9 1.0 ·10−9 1.7 ·10−9

YIS1 2.2 ·10−9 1.7 ·10−9 2.4 ·10−9
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Nonetheless, as of now, the values computed represent a good estimation of the linear-to-linear coupling fac-
tors of the SUEP instrument, and the Simulink simulator designed can predict the amplitudes of the linear
accelerations measured in-flight with a satisfactory accuracy.

To illustrate this point, several simulations during which a sinusoid is applied in the instrument loop to force
an oscillation of the test-mass along the X-axis are run. The frequency range of the excitation signal goes
from 0.0018Hz to 1Hz. The accelerations amplitudes provided by each sensor of the simulator are then con-
fronted with the amplitudes measured in-flight during dedicated mission phases. This is illustrated in Fig-
ure 3.11. The values missing for the amplitudes measured in-flight will be completed through future research
work.

(a) XIS2 sensor

(b) XIS1 sensor
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(c) YIS2 sensor

(d) YIS1 sensor

(e) ZIS2 sensor
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(f) ZIS1 sensor

Figure 3.11: Confrontation between the amplitudes of the accelerations provided by each simulator sensor, and the values measured
in-flight during dedicated mission phases

This chapter has investigated various ways to estimate the coupling between axes. In a first time, the pro-
cessing of the various calibration sessions allowed an evaluation of the differential linear-to-linear coupling
factors. Then, the careful analysis of a specific mission phase led to a first estimation of the linear-to-linear
coupling factors of the SUEP instrument. The coupling factors of the SUREF instrument could be derived
from a similar session realized with the SUREF instrument. Therefore, such a session may be added to the
mission scenario before the end of the MICROSCOPE space mission. The first coupling factors estimates
then underwent an optimization process based on a more complex instrumental model, in order to get
closer to the real values. As the simulator designed can predict the amplitude of the linear accelerations
measured in-flight with a satisfactory accuracy, it can be inferred that the adjusted values represent a good
estimation of the linear-to-linear coupling factors of the SUEP instrument.
Nonetheless, the instrumental model used in the investigation process was based on a number of simpli-
fications: it neglected the electrical bias and the instrumental noise, but also and above all did not take
into account the coupling between the linear and angular axes. An instrumental model including both the
couplings and the other perturbations mentioned would enhance the precision of the results. Therefore,
the work achieved so far has paved the way for further research that would lead to an even more accurate
estimation of the instrument coupling factors.
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For each instrument, the components of both the Sensor Units (SU) and the Front-End Electronic Units
(FEEU) require a steady thermal environment as well as a limited operating temperature range to ensure
an optimal performance. The accelerometers performance is indeed highly sensitive to temperature vari-
ations. The thermal effects represent one of the main contribution to the systematic error pertubing the
measurement process. The evaluation of the instrument thermal sensitivity is thus of significant impor-
tance in the improvement of the instrumental model. This is the purpose of this fourth chapter.

4.1. Thermal perturbations in the measurement process

As mentioned in section 2.2, each SAGE instrument is composed of three units:

• The Sensor Unit (referred to as SU), composed by two concentric and coaxial cylindrical test-masses
surrounded by four silica cores. The whole is disposed inside the same tight cage.

• The Front-End Electronic Unit (referred to as FEEU), containing the analogue electronics of the control
loop. Each FEEU is associated to one SU and includes the capacitive sensors of the internal and external
test-masses, the reference voltage sources, and the electronics generating the voltages applied to the
surrounding electrodes.

• The Interface Control Unit (ICU), that hosts the digital laws controlling the motion of the two test-
masses, and serves as the interface to the on-board computer.

The two Sensor Units are installed with the two Front-End electronic Units on plate, referred to as the Sensor
Unit Mechanical Interface (SUMI), within a highly stabilized thermal environment named Payload Block, as
illustrated on Figure 4.1.

The accelerometers performance being highly sensitive to temperature variations, 6 temperature probes have
been integrated into each SU, and 5 temperature probes have been integrated into each FEEU in order to
carefully monitor the evolution of the thermal environment within the Payload block. Only two thermal
transfer methods are possible in-flight: the conduction and the radiation (it is assumed that, at an orbital
altitude of 700km, the convection is negligible). These transfers occur between the SU, the FEEU and the
surrounding elements through interfaces such as the wiring or the SUMI.

51
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(a)

(b)

Figure 4.1: Illustration of the MICROSCOPE Payload Block [4]

It has been demonstrated in subsection 2.3.3 that the acceleration measurement along the X-axis, affected by
all the systematic and stochastic errors can be defined as:

Γmeas,X = b0X + [AX ]ΓApp,X +QX + [CX ]Ω̇X +nX

Where ΓApp,X denotes the electrostatic acceleration applied to the test-mass, [AX ] represents the sensitivity
matrix, [CX ] corresponds to the coupling matrix, QX models the quadratic terms, and nX is the instrumental
noise. Although the sensitivity matrix can depend on the temperature, its thermal sensitivity is assumed to
be negligible. Nonetheless, the electrical bias b0X including all the parasitic constant terms, is temperature-
dependent, as illustrated by the relation:

b0X ≈ B +λ(TSU −T )+β(TF EEU −T ) (4.1)

Where B represents the bias due to the perturbations other than temperature variations; λ and β respectively

denote the SU and FEEU temperature sensitivity (expressed in m · s−2·K −1
); T is the mean temperature within

the instrument. The temperature of the Sensor Unit TSU is modelled by the average of the temperatures
provided by two probes among the six integrated into the SU:

TSU =< T4,T6 >
Ti denotes the temperature provided by the i th probe. The temperature of the Front-End Electronic Unit
TF EEU is assumed to be equal to the temperature provided by a specific probe integrated into the FEEU,
referred to as the TRP probe (standing for Temperature Reference Point probe). The TRP probe is located at
the interface between the FEEU and the SUMI:

TF EEU = TT RP

The impact of these thermal effects on the acceleration signal is:

Γmeas
X (therm) = λ∆TSU +β∆TF EEU (4.2)
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The estimation of the thermal sensitivities λ and β are thus of significant importance in the improvement of
the instrumental model. These parameters will be investigated in the next section.

4.2. Thermal mission phases

This section will be dedicated to the design of a process to estimate the thermal sensitivity of the SUEP and
SUREF instruments.

4.2.1. Presentation of the thermal mission phases

In order to investigate the thermal sensitivity of the SUEP and SUREF instruments, some specific mission
phases, referred to as thermal sessions, have been integrated to the mission scenario. During these sessions,
thermistors located within the Payload Block are activated in order to apply thermal fluctuations at fEP either
to the SU baseplate (session referred to as SU thermal session), or to the electronic interface (session referred
to as FEEU thermal session). Throughout a SU thermal session, the Sensor Unit temperature TSU varies while
the FEEU temperature fluctuations ∆TF EEU remain relatively negligible, as illustrated in Figure 4.2. On the
contrary, throughout a FEEU thermal session, the Front-End Electronic Unit temperature TF EEU varies while
the SU temperature fluctuations ∆TSU remain relatively negligible, as illustrated in Figure 4.3.

Figure 4.2: Evolution of both the SU (in blue) and the FEEU (in orange) temperatures throughout a SU thermal session realized with the
SUEP instrument

Figure 4.3: Evolution of both the SU (in blue) and the FEEU (in orange) temperatures throughout a FEEU thermal session realized with
the SUEP instrument

The thermal sensitivity of the instrument is modelled by the ratio between the acceleration variation along
the X-axis and the temperature variation. It can therefore be inferred that the careful processing of the SU
and FEEU thermal sessions will lead to the estimation of both the SU temperature sensitivity λ, and the
FEEU temperature sensitivity β. Nonetheless, only the SU thermal sessions have been analyzed through this
research work, and consequently, only the λ parameter will be evaluated here. The investigation process is
developed in the next subsection.

4.2.2. Exploitation of the thermal sessions in the investigation of the instrument thermal
sensitivity

As specified in the previous subsection, the thermal sensitivity of the instrument is modelled by the ratio
between the acceleration variation along the X-axis and the temperature variation. The acceleration data is
sampled at 4Hz, whereas the temperature data is sampled at 1Hz. The temperature data has therefore been
interpolated in order to oversample the signal at 4Hz.
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Then, a 2nd order Butterworth low-pass filter with a cut-off frequency fc = 5·10−2Hz has been applied to both
the acceleration and the temperature data in order to reduce the noice perturbing the signal:

HBut ter wor th(p) = G0((
p
ωc

)2 +1.4142
(

p
ωc

)
+1

)
Where G0 = 1 and ωc = 2π fc .

Previous research work [13] has allowed to demonstrate that the thermal transients could be modelled with
satisfactory precision by the following function:

f (t ) = A(1−exp−B t )(1−exp−C t )+D

Where A, B, C and D denote the parameters to be determined.

The investigation process used to estimate either the SU temperature sensitivity λ (in case of a SU thermal
session), or the FEEU temperature sensitivity β (in case of a FEEU thermal session) is developped in Ta-
ble 4.1.

Table 4.1: Algorithm used to extract the instrument thermal sensitivity from the thermal sessions

Algorithm 4: Extraction of either the SU or the FEEU temperature sensitivity from
the mission thermal sessions

Require: The accelerometer data sets measured along the X-axis during the thermal
session

Require: The SU temperature data set (in case of a SU thermal session) or the FEEU
temperature data set (in case of a FEEU thermal session), oversampled
at 4Hz

1: Fit the accelerometer data sets SX I S1 and SX I S2 as well as the temperature data set with a function
A(1−exp−B t )(1−exp−C t )+D by means of a least-squares method. This process has
drawbacks because it requires a fit of four variables (A,B,C and D) for each data set
whereas only the value of A will be used.

2: if SU thermal session then
5: λI S1 = AX I S1

ATSU
and λI S2 = AX I S2

ATSU

∆AX I S1, ∆AX I S2 and ∆ATSU denote the error made on the estimation of the parameters AX I S1,
AX I S2 and ATSU . The absolute uncertainty on the derived thermal sensitivities λI S1 and λI S2

can therefore be expressed as:

∆λI S1 = ∆AX I S1
ATSU

+ AX I S1

A2
TSU

∆ATSU and ∆λI S2 = ∆AX I S2
ATSU

+ AX I S2

A2
TSU

∆ATSU

6: else if FEEU thermal session then
7: βI S1 = AX I S1

ATF EEU
and βI S2 = AX I S2

ATF EEU

∆AX I S1, ∆AX I S2 and ∆ATF EEU denote the error made on the estimation of the parameters AX I S1,
AX I S2 and ATF EEU . The absolute uncertainty on the derived thermal sensitivities βI S1 and βI S2

can therefore be expressed as:

∆βI S1 = ∆AX I S1
ATF EEU

+ AX I S1

A2
TF EEU

∆ATF EEU and ∆βI S2 = ∆AX I S2
ATF EEU

+ AX I S2

A2
TF EEU

∆ATF EEU

As mentioned in the previous subsection, only the SU thermal sessions have been analyzed through this
research work, and consequently, only the λ parameter will be evaluated here. The results of the investi-
gation process are gathered in Table 4.2 and confronted with the SU temperature sensitivity theoretical val-
ues.

As observed on Table 4.2, the evaluated SU temperature sensitivities are more than 3 orders of magnitude
larger than expected. Such values are way too high to be due to the radiometer effect or radiation pressure
and must therefore result from another source. As previously stated, the impact of the thermal fluctuations
on the acceleration signal is equal to Γmeas

X (therm) = λ∆TSU +β∆TF EEU . Therefore, further research on the
FEEU temperature sensitivityβ and on the FEEU and SU temperature variations during an EP test session will
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Table 4.2: Processing of the SU thermal session and estimation of the SU temperature sensitivity λ

Instrument
SU Temperature

sensitivity
Theoretical Value

(m/s²/K)
Estimated Value

(m/s²/K)
Absolute uncertainty

(m/s²/K)

SUEP
λI S2 2.78 ·10−12 1.71 ·10−8 2.35 ·10−10

λI S1 2.55 ·10−13 5.8 ·10−9 7.66 ·10−10

SUREF
λI S2 1.56 ·10−12 1.7 ·10−9 1.84 ·10−10

λI S1 2.30 ·10−13 3.0 ·10−9 1.34 ·10−10

allow to decide whether the conservative upper limit used for the thermal systematic error can be lowered,
and thus lead to further improve the instrumental model.

This chapter represents the first steps towards more in-depth investigations of the instrument thermal sen-
sitivity. A process to extract both the SU and FEEU temperature sensitivity from the thermal mission ses-
sions has been designed, and led to an evaluation of the parameter λ more than 3 orders of magnitude
larger than expected. This chapter has therefore paved the way for further research work on both the FEEU
temperature sensitivity β, and on the FEEU and SU temperature fluctuations during an EP test session, that
would allow to decide whether the conservative upper limit used for the thermal systematic error can be
lowered, leading to an enhanced instrumental model.





Chapter5
Conclusion and prospects

The MICROSCOPE space mission aims at testing the equivalence principle in space with an unrivalled pre-
cision of 10−15 (a gain of two order of magnitude compared to the current experiment set up on Earth). The
success of the mission relies on a thorough and careful data analysis to point out a possible signal of a WEP
violation among time variations observed in the data caused by other physical phenomena, such as pertur-
bations due to the instrument imperfections. Some of the perturbations, such as small misalignments in
the satellite design, can be accurately modeled and corrected; some other perturbations require further re-
search to be accurately estimated, and could therefore limit the accuracy of the MICROSCOPE experiment.
This Master Thesis work has investigated two of these perturbations: the coupling between axes, and the
instrument thermal sensitivity.

The chapter 3 has explored various ways to evaluate the coupling between axes through a simplified model,
leading eventually to a good estimation of the linear-to-linear coupling factors of the SUEP instrument.
Throughout chapter 4, a process to extract the instrument thermal sensitivity from specific mission phases,
referred to as thermal sessions, has been designed, leading to a first estimation of the SU temperature sensi-
tivity more than 3 orders of magnitude larger than expected.

The work carried out during this Master Thesis Project nonetheless only represent the first steps towards
more in-depth investigations. Additional mission sessions are needed to compute the coupling factors of the
SUREF instrument. Moreover, a more complex model taking into account the coupling between the linear
and the angular axes would enhance the precision of the results. Regarding the instrument thermal sensitiv-
ity, a more in-depth exploration of both the FEEU temperature sensitivity and the FEEU and SU temperature
variations during an EP test session would allow to decide whether the conservative upper limit used for the
thermal systematic error can be lowered, and also, to find out the source involving the large value of the SU
thermal sensitivity. In a nutshell, this Master thesis Project has paved the way for further research work that
would lead to an even more accurate instrumental model.
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ChapterA
Anti-Aliasing Filter

This appendix will present the anti-aliasing filter used in the A block of the instrument loop.

The anti-aliasing filter is used to restrict the bandwidth of a signal in order to satisfy the Nyquist sampling
theorem stated below.

Nyquist Sampling Theorem. A bandlimited continuous-time signal can be sampled and perfectly reconstructed
from its samples only if the waveform is sampled over twice as fast as its highest frequency component. In other
words, in order to perfectly reconstruct a signal with spectrum between 0 and fmax , the sampling frequency
must be greater than 2 fmax , referred to as the Nyquist frequency.

When selecting a filter, one should provide a cutoff frequency allowing to remove unwanted signals from the
input or at least attenuate them so that they do not affect the circuit. An ideal anti-aliasing filter should have a
"brick-wall" response, as illustrated in Figure A.1, corresponding to an infinite quality factor Q. Nonetheless,
such a configuration is impossible in practice. A higher value of Q comes with a more complex filter de-
sign and therefore, high quality factors can lead to filter instabilities and self-oscillation at the desired corner
frequency.

Figure A.1: Gain diagram of an ideal anti-aliasing filter

Among the four basic filter types (Elliptic, Chebyshev, Butturworth and Bessel), the filter selected for the
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instrument loop is a 5th order Butterworth low-pass filter, with a cut-off frequency fc = 2Hz:

HBut ter wor th(p) = G0[(
p
ωc

)
+1

][(
p
ωc

)2 +0.6180
(

p
ωc

)
+1

][(
p
ωc

)2 +1.6180
(

p
ωc

)
+1

]
Where G0 = 1 and ωc = 2π fc . The Bode diagram of the selected filter is presented on Figure A.2.

Figure A.2: Bode diagram of a 5th Butterworth filter with a cut-off frequency fc = 2Hz

The Butterworth filter has been chosen because it has the flattest frequency response in the passband region.
In other words, it provides the least attenuation over the desired frequency range.



ChapterB
Control Functions Parameters

In this appendix, the various parameter values for the C(p), G(p) and A(p) block control functions will be
detailed. As a reminder, the general expressions of the concerned block control functions are specified be-
low:

C(p) =
 Gdet G f m

1+ p
2πFCutO f fDet


 Kp

1+
p

2
2πFpr e

p +
(

p
2πFpr e

)2


 p

2πFD1(
1+ p

2πFD2

)
·
(
1+ p

2πFC

) + FD1 +FI

FD1
+ 2πFI

p

 1

1+ p
2πFpost



G(p) = GDV A

1+ p
2πFCutO f fDV A

·Gactuati on

A(p) = GDV A ·Gactuati on ·HBut ter wor th(p)

The values of the parameters introduced through these relations are gathered in Table B.1, Table B.2 and
Table B.3, for both instruments (SUEP and SUREF), and both test-masses (internal and external).

Table B.1: Values of the control functions parameters for the inernal test-mass of both the SUEP and the SUREF instrument

Internal Test-mass IS1 - SUEP and SUREF instruments

Class Parameter
X I S1

axis
YI S1

axis
ZI S1

axis
Actuation Gactuation (in m/s²/V) −6.86E −08 1.60E −07 1.60E −07

DVA
GDVA (in V) -16 -16 -16

FCutOffDVA (in Hz) 76 76 76

Control

Fpre (in Hz) 10 30 30
Fpost (in Hz) 10 30 30

Kp -2.0 18.5 18.5
FI (in Hz) 0.004 0.1 0.1

FD1 (in Hz) 0.05 0.25 0.25
FD2 (in Hz) 1 20 20
FC (in Hz) 5 25 25

Capacitive
Sensor

Gdet (in V/F) 82E +12 −17E +12 −17E +12
FCutOffDet (in Hz) 167 167 167

Capacitive
Transducer

Gfm (in F/m) 3.69E −09 −1.29E −08 −1.29E −08

Stiffness ω2
p (in s−2) 3.2E −03 -0.0715 -0.0715
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Table B.2: Values of the control functions parameters for the external test-mass of the SUEP instrument

External Test-mass IS2 - SUEP instrument

Class Parameter
X I S2

axis
YI S2

axis
ZI S2

axis
Actuation Gactuation (in m/s²/V) −8.01E −08 9.85E −07 9.85E −07

DVA
GDVA (in V) -16 -16 -16

FCutOffDVA (in Hz) 76 76 76

Control

Fpre (in Hz) 10 30 30
Fpost (in Hz) 10 30 30

Kp -1.9957 2.22 2.22
FI (in Hz) 0.004 0.1 0.1

FD1 (in Hz) 0.05 0.25 0.25
FD2 (in Hz) 1 20 20
FC (in Hz) 5 25 25

Capacitive
Sensor

Gdet (in V/F) 40E +12 −5E +12 −5E +12
FCutOffDet (in Hz) 167 173 173

Capacitive
Transducer

Gfm (in F/m) 6.46E −09 −5.94E −08 −5.94E −08

Stiffness ω2
p (in s−2) 3.8E −03 -0.42 -0.42

Table B.3: Values of the control functions parameters for the external test-mass of the SUREF instrument

External Test-mass IS2 - SUREF instrument

Class Parameter
X I S2

axis
YI S2

axis
ZI S2

axis
Actuation Gactuation (in m/s²/V) −5.34E −08 4.36E −07 2.18E −07

DVA
GDVA (in V) -16 -16 -16

FCutOffDVA (in Hz) 76 76 76

Control

Fpre (in Hz) 10 30 30
Fpost (in Hz) 10 30 30

Kp -3.0025 5.0129 5.0129
FI (in Hz) 0.004 0.1 0.1

FD1 (in Hz) 0.05 0.25 0.25
FD2 (in Hz) 1 20 20
FC (in Hz) 5 25 25

Capacitive
Sensor

Gdet (in V/F) 40E +12 −5E +12 −5E +12
FCutOffDet (in Hz) 172 168 168

Capacitive
Transducer

Gfm (in F/m) 6.46E −09 −5.94E −08 −5.94E −08

Stiffness ω2
p (in s−2) 4.6E −03 -0.11 -0.11



ChapterC
Detailed results of the calibration sessions

processing

This appendix will present the detailed results of the calibration sessions processing.

C.1. K1d x calibration sessions

Table C.1: Processing of the K1d x−DF I S2 calibration sessions and 3-σ estimation of (αX Y I S1 −αX Y I S2) and (αX Z I S1 −αX Z I S2) for the
SUREF instrument

K1dx calibration session - SUREF - DFIS2
Session Number αX Y I S1 −αX Y I S2 αX Z I S1 −αX Z I S2

128 0,102989 -0,014319
172 0,102016 -0,014916
192 0,103162 -0,015119
286 0,102300 -0,015856
296 0,102893 -0,016571
302 0,103994 -0,017329
308 0,104091 -0,017664
374 0,101630 -0,015621
382 0,103263 -0,015882
450 0,106918 -0,017665

Mean Value 0,103 -0,016
Standard Deviation σ 0,001 0,001

3-σ result 0,103 ± 0,003 -0,016 ± 0,003

Table C.2: Processing of the K1d x−DF I S1 calibration sessions and 3-σ estimation of (αX Y I S2 −αX Y I S1) and (αX Z I S2 −αX Z I S1) for the
SUREF instrument

K1dx calibration session - SUREF - DFIS1
Session Number αX Y I S2 −αX Y I S1 αX Z I S2 −αX Z I S1

70 -0,100858 0,013031
114 -0,101770 0,013541

Mean Value -0,1013 0,0133
Standard Deviation σ 0,0006 0,0004

3-σ result -0,1013 ± 0,0018 0,0133 ± 0,0012
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C.2.Θd z calibration sessions

Table C.3: Processing of theΘd z−DF I S2 calibration sessions and 3-σ estimation of (αY X I S1 −αY X I S2) and (αY Z I S1 −αY Z I S2) for the
SUEP instrument

Θdz calibration session - SUEP - DFIS2
Session Number αY X I S1 −αY X I S2 αY Z I S1 −αY Z I S2

220 -8,13E-04 4,608E-03
244 -5,15E-04 2,558E-03
262 -3,57E-04 1,458E-03
426 -5,09E-04 1,421E-03

Mean Value -5E-04 3E-03
Standard Deviation σ 2E-04 1E-03

3-σ result [−5±6] ·10−4 [3±3] ·10−3

Table C.4: Processing of theΘd z−DF I S2 calibration sessions and 3-σ estimation of (αY X I S1 −αY X I S2) and (αY Z I S1 −αY Z I S2) for the
SUREF instrument

Θdz calibration session - SUREF - DFIS2
Session Number αY X I S1 −αY X I S2 αY Z I S1 −αY Z I S2

122 -5.01E-04 2.145E-03
178 -3.90E-04 2.097E-03
290 -5,1E-05 2.173E-03

Mean Value -3E-04 2,14E-03
Standard Deviation σ 2E-04 4E-05

3-σ result [−3±6] ·10−4 [2,14±0,12] ·10−3

C.3.Θd y calibration sessions

Table C.5: Processing of theΘd y−DF I S2 calibration sessions and 3-σ estimation of (αZ X I S1 −αZ X I S2) and (αZ Y I S1 −αZ Y I S2) for the
SUEP instrument

Θdy calibration session - SUEP - DFIS2
Session Number αZ X I S1 −αZ X I S2 αZ Y I S1 −αZ Y I S2

222 2.70E-04 -4.75E-4
242 4.41E-04 -5.63E-04
258 2.43E-04 -4.69E-04
424 6.06E-04 -9.45E-04

Mean Value 4E-04 -6E-04
Standard Deviation σ 2E-04 2E-04

3-σ result [4±6] ·10−4 [−6±6] ·10−4

Table C.6: Processing of theΘd y−DF I S2 calibration sessions and 3-σ estimation of (αZ X I S1 −αZ X I S2) and (αZ Y I S1 −αZ Y I S2) for the
SUREF instrument

Θdy calibration session - SUREF - DFIS2
Session Number αZ X I S1 −αZ X I S2 αZ Y I S1 −αZ Y I S2

124 -1,89E-04 -1,364E-03
180 -3,23E-04 -1,359E-03
288 -1,88E-04 -1,276E-03

Mean Value -2,3E-04 -1,33E-03
Standard Deviation σ 8E-05 5E-05

3-σ result [2,3±2,4] ·10−4 [−1,33±0,15] ·10−3



ChapterD
Outputs provided by the simulator

This appendix will present the outputs provided by the instrument simulator for various simulations. Two
cases are distinguished: in the first case, the Simulink simulator uses the linear-to-linear coupling factors
first estimates (as seen in section 3.3), while in the second case, it uses the adjusted values of the linear-to-
linear coupling factors (presented in section 3.4).

D.1. Simulator using the linear-to-linear coupling factors first estimates
In this first section, the instrument simulator uses the linear-to-linear coupling factors first estimates pre-
sented in Table 3.9.

D.1.1. Simulation n°2: Satellite oscillation along the Y-axis

During this simulation, a sinusoid of amplitude 0.01V and frequency ftech = 0.1Hz is induced in the satellite
motion along the Y-axis: E′

Y(t) = 0.01 · sin(2π(0.1)t). The following figures illustrate the outputs provided by
each sensor of the simulator during the simulation:

(a) YIS2 and YIS1 axes (b) XIS2 and XIS1 axes

(c) ZIS2 and ZIS1 axes

Figure D.1: Outputs provided by the simulator for the second simulation (Excitation along the Y-axis) - Coupling factors first estimates
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D.1.2. Simulation n°3: Satellite oscillation along the Z-axis

Throughout this simulation, a sinusoid of amplitude 0.01V and frequency ftech is induced in the satellite
motion along the Z-axis: E′

Z(t) = E′
Y(t) = 0.01 · sin(2π(0.1)t). Once again, the following figure illustrates the

outputs provided by each sensor of the simulator during the simulation.

(a) ZIS2 and ZIS1 axes (b) XIS2 and XIS1 axes

(c) YIS2 and YIS1 axes

Figure D.2: Outputs provided by the simulator for the third simulation (Excitation along the Z-axis) - Coupling factors first estimates

D.2. Simulator using the adjusted linear-to-linear coupling factors

In this second section, the instrument simulator now uses the linear-to-linear coupling factors adjusted val-
ues, as seen in Table 3.12.

D.2.1. Simulation n°1: Satellite oscillation along the X-axis

During this simulation, a sinusoid of amplitude 0.148V and frequency ftech is applied in the instrument con-
trol loop to force an oscillation of the test-mass along the X-axis: E′

X(t) = 0.148 · sin(2π(0.1)t).

(a) XIS2 and XIS1 axes (b) YIS2 and YIS1 axes
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(a) ZIS2 and ZIS1 axes

Figure D.3: Outputs provided by the simulator for the first simulation (Excitation along the X-axis) - Coupling factors adjusted values

D.2.2. Simulation n°2: Satellite oscillation along the Y-axis

The same simulation as the one introduced in the previous section (oscillation along the Y-axis) is run with
the simulator new settings.

(a) YIS2 and YIS1 axes (b) XIS2 and XIS1 axes

(c) ZIS2 and ZIS1 axes

Figure D.4: Outputs provided by the simulator for the second simulation (Excitation along the Y-axis) - Coupling factors adjusted
values

D.2.3. Simulation n°3: Satellite oscillation along the Z-axis

Finally, the same simulation as the one introduced in the previous section (oscillation along the Z-axis) is run
with the simulator new settings.



72 D. Outputs provided by the simulator

(a) ZIS2 and ZIS1 axes

(b) XIS2 and XIS1 axes

(c) YIS2 and YIS1 axes

Figure D.5: Outputs provided by the simulator for the third simulation (Excitation along the Z-axis) - Coupling factors adjusted values
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